ALL: Huge upstream synch + PerRom DelaySI & CountPerOp parameters
[mupen64plus-pandora.git] / source / mupen64plus-core / src / r4300 / new_dynarec / new_dynarec.c
CommitLineData
451ab91e 1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2011 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdio.h>
22#include <string.h>
23#include <stdarg.h>
24#include <stdlib.h>
25#include <stdint.h> //include for uint64_t
97d8cdb7 26//#include <assert.h>
27#define assert(a) {}
451ab91e 28
29#include "../recomp.h"
30#include "../recomph.h" //include for function prototypes
31#include "../macros.h"
32#include "../r4300.h"
33#include "../ops.h"
34#include "../interupt.h"
35#include "new_dynarec.h"
36
37#include "../../memory/memory.h"
38#include "../../main/rom.h"
39
40#include <sys/mman.h>
41
42#if NEW_DYNAREC == NEW_DYNAREC_X86
43#include "assem_x86.h"
44#elif NEW_DYNAREC == NEW_DYNAREC_ARM
45#include "assem_arm.h"
46#else
47#error Unsupported dynarec architecture
48#endif
49
50#define MAXBLOCK 4096
51#define MAX_OUTPUT_BLOCK_SIZE 262144
2d262872 52#define CLOCK_DIVIDER count_per_op
451ab91e 53
54void *base_addr;
55
56struct regstat
57{
58 signed char regmap_entry[HOST_REGS];
59 signed char regmap[HOST_REGS];
60 uint64_t was32;
61 uint64_t is32;
62 uint64_t wasdirty;
63 uint64_t dirty;
64 uint64_t u;
65 uint64_t uu;
66 u_int wasconst;
67 u_int isconst;
68 uint64_t constmap[HOST_REGS];
69};
70
71struct ll_entry
72{
73 u_int vaddr;
74 u_int reg32;
75 void *addr;
76 struct ll_entry *next;
77};
78
79static u_int start;
80static u_int *source;
81static u_int pagelimit;
82static char insn[MAXBLOCK][10];
83static u_char itype[MAXBLOCK];
84static u_char opcode[MAXBLOCK];
85static u_char opcode2[MAXBLOCK];
86static u_char bt[MAXBLOCK];
87static u_char rs1[MAXBLOCK];
88static u_char rs2[MAXBLOCK];
89static u_char rt1[MAXBLOCK];
90static u_char rt2[MAXBLOCK];
91static u_char us1[MAXBLOCK];
92static u_char us2[MAXBLOCK];
93static u_char dep1[MAXBLOCK];
94static u_char dep2[MAXBLOCK];
95static u_char lt1[MAXBLOCK];
96static int imm[MAXBLOCK];
97static u_int ba[MAXBLOCK];
98static char likely[MAXBLOCK];
99static char is_ds[MAXBLOCK];
100static char ooo[MAXBLOCK];
101static uint64_t unneeded_reg[MAXBLOCK];
102static uint64_t unneeded_reg_upper[MAXBLOCK];
103static uint64_t branch_unneeded_reg[MAXBLOCK];
104static uint64_t branch_unneeded_reg_upper[MAXBLOCK];
105static uint64_t p32[MAXBLOCK];
106static uint64_t pr32[MAXBLOCK];
107static signed char regmap_pre[MAXBLOCK][HOST_REGS];
108#ifdef ASSEM_DEBUG
109static signed char regmap[MAXBLOCK][HOST_REGS];
110static signed char regmap_entry[MAXBLOCK][HOST_REGS];
111#endif
112static uint64_t constmap[MAXBLOCK][HOST_REGS];
113static struct regstat regs[MAXBLOCK];
114static struct regstat branch_regs[MAXBLOCK];
115static signed char minimum_free_regs[MAXBLOCK];
116static u_int needed_reg[MAXBLOCK];
117static uint64_t requires_32bit[MAXBLOCK];
118static u_int wont_dirty[MAXBLOCK];
119static u_int will_dirty[MAXBLOCK];
120static int ccadj[MAXBLOCK];
121static int slen;
122static u_int instr_addr[MAXBLOCK];
123static u_int link_addr[MAXBLOCK][3];
124static int linkcount;
125static u_int stubs[MAXBLOCK*3][8];
126static int stubcount;
127static int literalcount;
128static int is_delayslot;
129static int cop1_usable;
130u_char *out;
131struct ll_entry *jump_in[4096];
132static struct ll_entry *jump_out[4096];
133struct ll_entry *jump_dirty[4096];
134u_int hash_table[65536][4] __attribute__((aligned(16)));
135static char shadow[2097152] __attribute__((aligned(16)));
136static void *copy;
137static int expirep;
138u_int using_tlb;
139static u_int stop_after_jal;
140extern u_char restore_candidate[512];
141extern int cycle_count;
142
143 /* registers that may be allocated */
144 /* 1-31 gpr */
145#define HIREG 32 // hi
146#define LOREG 33 // lo
147#define FSREG 34 // FPU status (FCSR)
148#define CSREG 35 // Coprocessor status
149#define CCREG 36 // Cycle count
150#define INVCP 37 // Pointer to invalid_code
151#define MMREG 38 // Pointer to memory_map
152#define ROREG 39 // ram offset (if rdram!=0x80000000)
153#define TEMPREG 40
154#define FTEMP 40 // FPU temporary register
155#define PTEMP 41 // Prefetch temporary register
156#define TLREG 42 // TLB mapping offset
157#define RHASH 43 // Return address hash
158#define RHTBL 44 // Return address hash table address
159#define RTEMP 45 // JR/JALR address register
160#define MAXREG 45
161#define AGEN1 46 // Address generation temporary register
162#define AGEN2 47 // Address generation temporary register
163#define MGEN1 48 // Maptable address generation temporary register
164#define MGEN2 49 // Maptable address generation temporary register
165#define BTREG 50 // Branch target temporary register
166
167 /* instruction types */
168#define NOP 0 // No operation
169#define LOAD 1 // Load
170#define STORE 2 // Store
171#define LOADLR 3 // Unaligned load
172#define STORELR 4 // Unaligned store
173#define MOV 5 // Move
174#define ALU 6 // Arithmetic/logic
175#define MULTDIV 7 // Multiply/divide
176#define SHIFT 8 // Shift by register
177#define SHIFTIMM 9// Shift by immediate
178#define IMM16 10 // 16-bit immediate
179#define RJUMP 11 // Unconditional jump to register
180#define UJUMP 12 // Unconditional jump
181#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
182#define SJUMP 14 // Conditional branch (regimm format)
183#define COP0 15 // Coprocessor 0
184#define COP1 16 // Coprocessor 1
185#define C1LS 17 // Coprocessor 1 load/store
186#define FJUMP 18 // Conditional branch (floating point)
187#define FLOAT 19 // Floating point unit
188#define FCONV 20 // Convert integer to float
189#define FCOMP 21 // Floating point compare (sets FSREG)
190#define SYSCALL 22// SYSCALL
191#define OTHER 23 // Other
192#define SPAN 24 // Branch/delay slot spans 2 pages
193#define NI 25 // Not implemented
194
195 /* stubs */
196#define CC_STUB 1
197#define FP_STUB 2
198#define LOADB_STUB 3
199#define LOADH_STUB 4
200#define LOADW_STUB 5
201#define LOADD_STUB 6
202#define LOADBU_STUB 7
203#define LOADHU_STUB 8
204#define STOREB_STUB 9
205#define STOREH_STUB 10
206#define STOREW_STUB 11
207#define STORED_STUB 12
208#define STORELR_STUB 13
209#define INVCODE_STUB 14
210
211 /* branch codes */
212#define TAKEN 1
213#define NOTTAKEN 2
214#define NULLDS 3
215
216/* bug-fix to implement __clear_cache (missing in Android; http://code.google.com/p/android/issues/detail?id=1803) */
217void __clear_cache_bugfix(char* begin, char *end);
218#ifdef ANDROID
219 #define __clear_cache __clear_cache_bugfix
220#endif
221
222// asm linkage
223int new_recompile_block(int addr);
224void *get_addr_ht(u_int vaddr);
225static void remove_hash(int vaddr);
226void dyna_linker();
227void dyna_linker_ds();
228void verify_code();
229void verify_code_vm();
230void verify_code_ds();
231void cc_interrupt();
232void fp_exception();
233void fp_exception_ds();
234void jump_syscall();
235void jump_eret();
236#if NEW_DYNAREC == NEW_DYNAREC_ARM
237static void invalidate_addr(u_int addr);
238#endif
239
240// TLB
241void TLBWI_new();
242void TLBWR_new();
243void read_nomem_new();
244void read_nomemb_new();
245void read_nomemh_new();
246void read_nomemd_new();
247void write_nomem_new();
248void write_nomemb_new();
249void write_nomemh_new();
250void write_nomemd_new();
251void write_rdram_new();
252void write_rdramb_new();
253void write_rdramh_new();
254void write_rdramd_new();
255extern u_int memory_map[1048576];
256
257// Needed by assembler
258static void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
259static void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
260static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
261static void load_all_regs(signed char i_regmap[]);
262static void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
263static void load_regs_entry(int t);
264static void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
265
266static void add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e);
267static void add_to_linker(int addr,int target,int ext);
268static int verify_dirty(void *addr);
269
270//static int tracedebug=0;
271
272//#define DEBUG_CYCLE_COUNT 1
273
274// Uncomment these two lines to generate debug output:
275//#define ASSEM_DEBUG 1
276//#define INV_DEBUG 1
277
278// Uncomment this line to output the number of NOTCOMPILED blocks as they occur:
279//#define COUNT_NOTCOMPILEDS 1
280
281#if defined (COUNT_NOTCOMPILEDS )
282 int notcompiledCount = 0;
283#endif
284static void nullf() {}
285
286#if defined( ASSEM_DEBUG )
287 #define assem_debug(...) DebugMessage(M64MSG_VERBOSE, __VA_ARGS__)
288#else
289 #define assem_debug nullf
290#endif
291#if defined( INV_DEBUG )
292 #define inv_debug(...) DebugMessage(M64MSG_VERBOSE, __VA_ARGS__)
293#else
294 #define inv_debug nullf
295#endif
296
297#define log_message(...) DebugMessage(M64MSG_VERBOSE, __VA_ARGS__)
298
299static void tlb_hacks()
300{
301 // Goldeneye hack
302 if (strncmp((char *) ROM_HEADER.Name, "GOLDENEYE",9) == 0)
303 {
304 u_int addr;
305 int n;
306 switch (ROM_HEADER.Country_code&0xFF)
307 {
308 case 0x45: // U
309 addr=0x34b30;
310 break;
311 case 0x4A: // J
312 addr=0x34b70;
313 break;
314 case 0x50: // E
315 addr=0x329f0;
316 break;
317 default:
318 // Unknown country code
319 addr=0;
320 break;
321 }
322 u_int rom_addr=(u_int)rom;
323 #ifdef ROM_COPY
324 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
325 // in the lower 4G of memory to use this hack. Copy it if necessary.
326 if((void *)rom>(void *)0xffffffff) {
327 munmap(ROM_COPY, 67108864);
328 if(mmap(ROM_COPY, 12582912,
329 PROT_READ | PROT_WRITE,
330 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
331 -1, 0) <= 0) {DebugMessage(M64MSG_ERROR, "mmap() failed");}
332 memcpy(ROM_COPY,rom,12582912);
333 rom_addr=(u_int)ROM_COPY;
334 }
335 #endif
336 if(addr) {
337 for(n=0x7F000;n<0x80000;n++) {
338 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
339 }
340 }
341 }
342}
343
344// Get address from virtual address
345// This is called from the recompiled JR/JALR instructions
346void *get_addr(u_int vaddr)
347{
348 u_int page=(vaddr^0x80000000)>>12;
349 u_int vpage=page;
350 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
351 if(page>2048) page=2048+(page&2047);
352 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
353 if(vpage>2048) vpage=2048+(vpage&2047);
354 struct ll_entry *head;
355 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr %x,page %d)",Count,next_interupt,vaddr,page);
356 head=jump_in[page];
357 while(head!=NULL) {
358 if(head->vaddr==vaddr&&head->reg32==0) {
359 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr match %x: %x)",Count,next_interupt,vaddr,(int)head->addr);
360 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
361 ht_bin[3]=ht_bin[1];
362 ht_bin[2]=ht_bin[0];
363 ht_bin[1]=(int)head->addr;
364 ht_bin[0]=vaddr;
365 return head->addr;
366 }
367 head=head->next;
368 }
369 head=jump_dirty[vpage];
370 while(head!=NULL) {
371 if(head->vaddr==vaddr&&head->reg32==0) {
372 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr match dirty %x: %x)",Count,next_interupt,vaddr,(int)head->addr);
373 // Don't restore blocks which are about to expire from the cache
374 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
375 if(verify_dirty(head->addr)) {
376 //DebugMessage(M64MSG_VERBOSE, "restore candidate: %x (%d) d=%d",vaddr,page,invalid_code[vaddr>>12]);
377 invalid_code[vaddr>>12]=0;
378 memory_map[vaddr>>12]|=0x40000000;
379 if(vpage<2048) {
380 if(tlb_LUT_r[vaddr>>12]) {
381 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
382 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
383 }
384 restore_candidate[vpage>>3]|=1<<(vpage&7);
385 }
386 else restore_candidate[page>>3]|=1<<(page&7);
387 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
388 if(ht_bin[0]==vaddr) {
389 ht_bin[1]=(int)head->addr; // Replace existing entry
390 }
391 else
392 {
393 ht_bin[3]=ht_bin[1];
394 ht_bin[2]=ht_bin[0];
395 ht_bin[1]=(int)head->addr;
396 ht_bin[0]=vaddr;
397 }
398 return head->addr;
399 }
400 }
401 head=head->next;
402 }
403 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr no-match %x)",Count,next_interupt,vaddr);
404 int r=new_recompile_block(vaddr);
405 if(r==0) return get_addr(vaddr);
406 // Execute in unmapped page, generate pagefault execption
407 Status|=2;
408 Cause=(vaddr<<31)|0x8;
409 EPC=(vaddr&1)?vaddr-5:vaddr;
410 BadVAddr=(vaddr&~1);
411 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
412 EntryHi=BadVAddr&0xFFFFE000;
413 return get_addr_ht(0x80000000);
414}
415// Look up address in hash table first
416void *get_addr_ht(u_int vaddr)
417{
418 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_ht %x)",Count,next_interupt,vaddr);
419 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
420 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
421 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
422 return get_addr(vaddr);
423}
424
425void *get_addr_32(u_int vaddr,u_int flags)
426{
427 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_32 %x,flags %x)",Count,next_interupt,vaddr,flags);
428 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
429 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
430 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
431 u_int page=(vaddr^0x80000000)>>12;
432 u_int vpage=page;
433 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
434 if(page>2048) page=2048+(page&2047);
435 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
436 if(vpage>2048) vpage=2048+(vpage&2047);
437 struct ll_entry *head;
438 head=jump_in[page];
439 while(head!=NULL) {
440 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
441 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_32 match %x: %x)",Count,next_interupt,vaddr,(int)head->addr);
442 if(head->reg32==0) {
443 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
444 if(ht_bin[0]==-1) {
445 ht_bin[1]=(int)head->addr;
446 ht_bin[0]=vaddr;
447 }else if(ht_bin[2]==-1) {
448 ht_bin[3]=(int)head->addr;
449 ht_bin[2]=vaddr;
450 }
451 //ht_bin[3]=ht_bin[1];
452 //ht_bin[2]=ht_bin[0];
453 //ht_bin[1]=(int)head->addr;
454 //ht_bin[0]=vaddr;
455 }
456 return head->addr;
457 }
458 head=head->next;
459 }
460 head=jump_dirty[vpage];
461 while(head!=NULL) {
462 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
463 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)",Count,next_interupt,vaddr,(int)head->addr);
464 // Don't restore blocks which are about to expire from the cache
465 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
466 if(verify_dirty(head->addr)) {
467 //DebugMessage(M64MSG_VERBOSE, "restore candidate: %x (%d) d=%d",vaddr,page,invalid_code[vaddr>>12]);
468 invalid_code[vaddr>>12]=0;
469 memory_map[vaddr>>12]|=0x40000000;
470 if(vpage<2048) {
471 if(tlb_LUT_r[vaddr>>12]) {
472 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
473 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
474 }
475 restore_candidate[vpage>>3]|=1<<(vpage&7);
476 }
477 else restore_candidate[page>>3]|=1<<(page&7);
478 if(head->reg32==0) {
479 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
480 if(ht_bin[0]==-1) {
481 ht_bin[1]=(int)head->addr;
482 ht_bin[0]=vaddr;
483 }else if(ht_bin[2]==-1) {
484 ht_bin[3]=(int)head->addr;
485 ht_bin[2]=vaddr;
486 }
487 //ht_bin[3]=ht_bin[1];
488 //ht_bin[2]=ht_bin[0];
489 //ht_bin[1]=(int)head->addr;
490 //ht_bin[0]=vaddr;
491 }
492 return head->addr;
493 }
494 }
495 head=head->next;
496 }
497 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)",Count,next_interupt,vaddr,flags);
498 int r=new_recompile_block(vaddr);
499 if(r==0) return get_addr(vaddr);
500 // Execute in unmapped page, generate pagefault execption
501 Status|=2;
502 Cause=(vaddr<<31)|0x8;
503 EPC=(vaddr&1)?vaddr-5:vaddr;
504 BadVAddr=(vaddr&~1);
505 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
506 EntryHi=BadVAddr&0xFFFFE000;
507 return get_addr_ht(0x80000000);
508}
509
510static void clear_all_regs(signed char regmap[])
511{
512 int hr;
513 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
514}
515
516static signed char get_reg(signed char regmap[],int r)
517{
518 int hr;
519 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
520 return -1;
521}
522
523// Find a register that is available for two consecutive cycles
524static signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
525{
526 int hr;
527 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
528 return -1;
529}
530
531static int count_free_regs(signed char regmap[])
532{
533 int count=0;
534 int hr;
535 for(hr=0;hr<HOST_REGS;hr++)
536 {
537 if(hr!=EXCLUDE_REG) {
538 if(regmap[hr]<0) count++;
539 }
540 }
541 return count;
542}
543
544static void dirty_reg(struct regstat *cur,signed char reg)
545{
546 int hr;
547 if(!reg) return;
548 for (hr=0;hr<HOST_REGS;hr++) {
549 if((cur->regmap[hr]&63)==reg) {
550 cur->dirty|=1<<hr;
551 }
552 }
553}
554
555// If we dirty the lower half of a 64 bit register which is now being
556// sign-extended, we need to dump the upper half.
557// Note: Do this only after completion of the instruction, because
558// some instructions may need to read the full 64-bit value even if
559// overwriting it (eg SLTI, DSRA32).
560static void flush_dirty_uppers(struct regstat *cur)
561{
562 int hr,reg;
563 for (hr=0;hr<HOST_REGS;hr++) {
564 if((cur->dirty>>hr)&1) {
565 reg=cur->regmap[hr];
566 if(reg>=64)
567 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
568 }
569 }
570}
571
572static void set_const(struct regstat *cur,signed char reg,uint64_t value)
573{
574 int hr;
575 if(!reg) return;
576 for (hr=0;hr<HOST_REGS;hr++) {
577 if(cur->regmap[hr]==reg) {
578 cur->isconst|=1<<hr;
579 cur->constmap[hr]=value;
580 }
581 else if((cur->regmap[hr]^64)==reg) {
582 cur->isconst|=1<<hr;
583 cur->constmap[hr]=value>>32;
584 }
585 }
586}
587
588static void clear_const(struct regstat *cur,signed char reg)
589{
590 int hr;
591 if(!reg) return;
592 for (hr=0;hr<HOST_REGS;hr++) {
593 if((cur->regmap[hr]&63)==reg) {
594 cur->isconst&=~(1<<hr);
595 }
596 }
597}
598
599static int is_const(struct regstat *cur,signed char reg)
600{
601 int hr;
602 if(reg<0) return 0;
603 if(!reg) return 1;
604 for (hr=0;hr<HOST_REGS;hr++) {
605 if((cur->regmap[hr]&63)==reg) {
606 return (cur->isconst>>hr)&1;
607 }
608 }
609 return 0;
610}
611static uint64_t get_const(struct regstat *cur,signed char reg)
612{
613 int hr;
614 if(!reg) return 0;
615 for (hr=0;hr<HOST_REGS;hr++) {
616 if(cur->regmap[hr]==reg) {
617 return cur->constmap[hr];
618 }
619 }
620 DebugMessage(M64MSG_ERROR, "Unknown constant in r%d",reg);
621 exit(1);
622}
623
624// Least soon needed registers
625// Look at the next ten instructions and see which registers
626// will be used. Try not to reallocate these.
627static void lsn(u_char hsn[], int i, int *preferred_reg)
628{
629 int j;
630 int b=-1;
631 for(j=0;j<9;j++)
632 {
633 if(i+j>=slen) {
634 j=slen-i-1;
635 break;
636 }
637 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
638 {
639 // Don't go past an unconditonal jump
640 j++;
641 break;
642 }
643 }
644 for(;j>=0;j--)
645 {
646 if(rs1[i+j]) hsn[rs1[i+j]]=j;
647 if(rs2[i+j]) hsn[rs2[i+j]]=j;
648 if(rt1[i+j]) hsn[rt1[i+j]]=j;
649 if(rt2[i+j]) hsn[rt2[i+j]]=j;
650 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
651 // Stores can allocate zero
652 hsn[rs1[i+j]]=j;
653 hsn[rs2[i+j]]=j;
654 }
655 // On some architectures stores need invc_ptr
656 #if defined(HOST_IMM8)
657 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39) {
658 hsn[INVCP]=j;
659 }
660 #endif
661 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
662 {
663 hsn[CCREG]=j;
664 b=j;
665 }
666 }
667 if(b>=0)
668 {
669 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
670 {
671 // Follow first branch
672 int t=(ba[i+b]-start)>>2;
673 j=7-b;if(t+j>=slen) j=slen-t-1;
674 for(;j>=0;j--)
675 {
676 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
677 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
678 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
679 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
680 }
681 }
682 // TODO: preferred register based on backward branch
683 }
684 // Delay slot should preferably not overwrite branch conditions or cycle count
685 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
686 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
687 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
688 hsn[CCREG]=1;
689 // ...or hash tables
690 hsn[RHASH]=1;
691 hsn[RHTBL]=1;
692 }
693 // Coprocessor load/store needs FTEMP, even if not declared
694 if(itype[i]==C1LS) {
695 hsn[FTEMP]=0;
696 }
697 // Load L/R also uses FTEMP as a temporary register
698 if(itype[i]==LOADLR) {
699 hsn[FTEMP]=0;
700 }
701 // Also 64-bit SDL/SDR
702 if(opcode[i]==0x2c||opcode[i]==0x2d) {
703 hsn[FTEMP]=0;
704 }
705 // Don't remove the TLB registers either
706 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS ) {
707 hsn[TLREG]=0;
708 }
709 // Don't remove the miniht registers
710 if(itype[i]==UJUMP||itype[i]==RJUMP)
711 {
712 hsn[RHASH]=0;
713 hsn[RHTBL]=0;
714 }
715}
716
717// We only want to allocate registers if we're going to use them again soon
718static int needed_again(int r, int i)
719{
720 int j;
721 /*int b=-1;*/
722 int rn=10;
723
724 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
725 {
726 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
727 return 0; // Don't need any registers if exiting the block
728 }
729 for(j=0;j<9;j++)
730 {
731 if(i+j>=slen) {
732 j=slen-i-1;
733 break;
734 }
735 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
736 {
737 // Don't go past an unconditonal jump
738 j++;
739 break;
740 }
741 if(itype[i+j]==SYSCALL||((source[i+j]&0xfc00003f)==0x0d))
742 {
743 break;
744 }
745 }
746 for(;j>=1;j--)
747 {
748 if(rs1[i+j]==r) rn=j;
749 if(rs2[i+j]==r) rn=j;
750 if((unneeded_reg[i+j]>>r)&1) rn=10;
751 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
752 {
753 /*b=j;*/
754 }
755 }
756 /*
757 if(b>=0)
758 {
759 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
760 {
761 // Follow first branch
762 int o=rn;
763 int t=(ba[i+b]-start)>>2;
764 j=7-b;if(t+j>=slen) j=slen-t-1;
765 for(;j>=0;j--)
766 {
767 if(!((unneeded_reg[t+j]>>r)&1)) {
768 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
769 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
770 }
771 else rn=o;
772 }
773 }
774 }*/
775 if(rn<10) return 1;
776 return 0;
777}
778
779// Try to match register allocations at the end of a loop with those
780// at the beginning
781static int loop_reg(int i, int r, int hr)
782{
783 int j,k;
784 for(j=0;j<9;j++)
785 {
786 if(i+j>=slen) {
787 j=slen-i-1;
788 break;
789 }
790 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
791 {
792 // Don't go past an unconditonal jump
793 j++;
794 break;
795 }
796 }
797 k=0;
798 if(i>0){
799 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
800 k--;
801 }
802 for(;k<j;k++)
803 {
804 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
805 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
806 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
807 {
808 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
809 {
810 int t=(ba[i+k]-start)>>2;
811 int reg=get_reg(regs[t].regmap_entry,r);
812 if(reg>=0) return reg;
813 //reg=get_reg(regs[t+1].regmap_entry,r);
814 //if(reg>=0) return reg;
815 }
816 }
817 }
818 return hr;
819}
820
821
822// Allocate every register, preserving source/target regs
823static void alloc_all(struct regstat *cur,int i)
824{
825 int hr;
826
827 for(hr=0;hr<HOST_REGS;hr++) {
828 if(hr!=EXCLUDE_REG) {
829 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
830 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
831 {
832 cur->regmap[hr]=-1;
833 cur->dirty&=~(1<<hr);
834 }
835 // Don't need zeros
836 if((cur->regmap[hr]&63)==0)
837 {
838 cur->regmap[hr]=-1;
839 cur->dirty&=~(1<<hr);
840 }
841 }
842 }
843}
844
845
846static void div64(int64_t dividend,int64_t divisor)
847{
587ca588 848 if ((dividend) && (divisor)) {
451ab91e 849 lo=dividend/divisor;
850 hi=dividend%divisor;
587ca588 851 } else {
852 lo=0;
853 hi=0;
854 }
451ab91e 855 //DebugMessage(M64MSG_VERBOSE, "TRACE: ddiv %8x%8x %8x%8x" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
856 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
857}
858static void divu64(uint64_t dividend,uint64_t divisor)
859{
587ca588 860 if ((dividend) && (divisor)) {
861 lo=dividend/divisor;
862 hi=dividend%divisor;
863 } else {
864 lo=0;
865 hi=0;
866 }
867 //DebugMessage(M64MSG_VERBOSE, "TRACE: ddivu %8x%8x %8x%8x",(int)reg[HIREG],(int)(reg[HIREG]>>32)
868 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
869}
870static void div32(int32_t dividend,int32_t divisor)
871{
872 if ((dividend) && (divisor)) {
451ab91e 873 lo=dividend/divisor;
874 hi=dividend%divisor;
587ca588 875 } else {
876 lo=0;
877 hi=0;
878 }
879 //DebugMessage(M64MSG_VERBOSE, "TRACE: ddiv %8x%8x %8x%8x" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
880 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
881}
882static void divu32(uint32_t dividend,uint32_t divisor)
883{
884 if ((dividend) && (divisor)) {
885 lo=dividend/divisor;
886 hi=dividend%divisor;
887 } else {
888 lo=0;
889 hi=0;
890 }
451ab91e 891 //DebugMessage(M64MSG_VERBOSE, "TRACE: ddivu %8x%8x %8x%8x",(int)reg[HIREG],(int)(reg[HIREG]>>32)
892 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
893}
894
ce68e3b9 895static void mult64(int64_t m1,int64_t m2)
451ab91e 896{
587ca588 897 uint64_t op1, op2, op3, op4;
898 uint64_t result1, result2, result3, result4;
899 uint64_t temp1, temp2, temp3, temp4;
451ab91e 900 int sign = 0;
901
902 if (m1 < 0)
903 {
904 op2 = -m1;
905 sign = 1 - sign;
906 }
907 else op2 = m1;
908 if (m2 < 0)
909 {
910 op4 = -m2;
911 sign = 1 - sign;
912 }
913 else op4 = m2;
914
915 op1 = op2 & 0xFFFFFFFF;
916 op2 = (op2 >> 32) & 0xFFFFFFFF;
917 op3 = op4 & 0xFFFFFFFF;
918 op4 = (op4 >> 32) & 0xFFFFFFFF;
919
920 temp1 = op1 * op3;
921 temp2 = (temp1 >> 32) + op1 * op4;
922 temp3 = op2 * op3;
923 temp4 = (temp3 >> 32) + op2 * op4;
924
925 result1 = temp1 & 0xFFFFFFFF;
926 result2 = temp2 + (temp3 & 0xFFFFFFFF);
927 result3 = (result2 >> 32) + temp4;
928 result4 = (result3 >> 32);
929
930 lo = result1 | (result2 << 32);
931 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
932 if (sign)
933 {
934 hi = ~hi;
935 if (!lo) hi++;
936 else lo = ~lo + 1;
937 }
938}
939
940#if NEW_DYNAREC == NEW_DYNAREC_ARM
941static void multu64(uint64_t m1,uint64_t m2)
942{
587ca588 943 uint64_t op1, op2, op3, op4;
944 uint64_t result1, result2, result3, result4;
945 uint64_t temp1, temp2, temp3, temp4;
451ab91e 946
947 op1 = m1 & 0xFFFFFFFF;
948 op2 = (m1 >> 32) & 0xFFFFFFFF;
949 op3 = m2 & 0xFFFFFFFF;
950 op4 = (m2 >> 32) & 0xFFFFFFFF;
951
952 temp1 = op1 * op3;
953 temp2 = (temp1 >> 32) + op1 * op4;
954 temp3 = op2 * op3;
955 temp4 = (temp3 >> 32) + op2 * op4;
956
957 result1 = temp1 & 0xFFFFFFFF;
958 result2 = temp2 + (temp3 & 0xFFFFFFFF);
959 result3 = (result2 >> 32) + temp4;
960 result4 = (result3 >> 32);
961
962 lo = result1 | (result2 << 32);
963 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
964
965 //DebugMessage(M64MSG_VERBOSE, "TRACE: dmultu %8x%8x %8x%8x",(int)reg[HIREG],(int)(reg[HIREG]>>32)
966 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
967}
968#endif
969
970static uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
971{
972 if(bits) {
973 original<<=64-bits;
974 original>>=64-bits;
975 loaded<<=bits;
976 original|=loaded;
977 }
978 else original=loaded;
979 return original;
980}
981static uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
982{
983 if(bits^56) {
984 original>>=64-(bits^56);
985 original<<=64-(bits^56);
986 loaded>>=bits^56;
987 original|=loaded;
988 }
989 else original=loaded;
990 return original;
991}
992
993#if NEW_DYNAREC == NEW_DYNAREC_X86
994#include "assem_x86.c"
995#elif NEW_DYNAREC == NEW_DYNAREC_ARM
996#include "assem_arm.c"
997#else
998#error Unsupported dynarec architecture
999#endif
1000
1001// Add virtual address mapping to linked list
1002static void ll_add(struct ll_entry **head,int vaddr,void *addr)
1003{
1004 struct ll_entry *new_entry;
1005 new_entry=malloc(sizeof(struct ll_entry));
1006 assert(new_entry!=NULL);
1007 new_entry->vaddr=vaddr;
1008 new_entry->reg32=0;
1009 new_entry->addr=addr;
1010 new_entry->next=*head;
1011 *head=new_entry;
1012}
1013
1014// Add virtual address mapping for 32-bit compiled block
1015static void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
1016{
1017 struct ll_entry *new_entry;
1018 new_entry=malloc(sizeof(struct ll_entry));
1019 assert(new_entry!=NULL);
1020 new_entry->vaddr=vaddr;
1021 new_entry->reg32=reg32;
1022 new_entry->addr=addr;
1023 new_entry->next=*head;
1024 *head=new_entry;
1025}
1026
1027// Check if an address is already compiled
1028// but don't return addresses which are about to expire from the cache
1029static void *check_addr(u_int vaddr)
1030{
1031 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
1032 if(ht_bin[0]==vaddr) {
1033 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1034 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1035 }
1036 if(ht_bin[2]==vaddr) {
1037 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1038 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1039 }
1040 u_int page=(vaddr^0x80000000)>>12;
1041 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
1042 if(page>2048) page=2048+(page&2047);
1043 struct ll_entry *head;
1044 head=jump_in[page];
1045 while(head!=NULL) {
1046 if(head->vaddr==vaddr&&head->reg32==0) {
1047 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1048 // Update existing entry with current address
1049 if(ht_bin[0]==vaddr) {
1050 ht_bin[1]=(int)head->addr;
1051 return head->addr;
1052 }
1053 if(ht_bin[2]==vaddr) {
1054 ht_bin[3]=(int)head->addr;
1055 return head->addr;
1056 }
1057 // Insert into hash table with low priority.
1058 // Don't evict existing entries, as they are probably
1059 // addresses that are being accessed frequently.
1060 if(ht_bin[0]==-1) {
1061 ht_bin[1]=(int)head->addr;
1062 ht_bin[0]=vaddr;
1063 }else if(ht_bin[2]==-1) {
1064 ht_bin[3]=(int)head->addr;
1065 ht_bin[2]=vaddr;
1066 }
1067 return head->addr;
1068 }
1069 }
1070 head=head->next;
1071 }
1072 return 0;
1073}
1074
1075static void remove_hash(int vaddr)
1076{
1077 //DebugMessage(M64MSG_VERBOSE, "remove hash: %x",vaddr);
1078 u_int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1079 if(ht_bin[2]==vaddr) {
1080 ht_bin[2]=ht_bin[3]=-1;
1081 }
1082 if(ht_bin[0]==vaddr) {
1083 ht_bin[0]=ht_bin[2];
1084 ht_bin[1]=ht_bin[3];
1085 ht_bin[2]=ht_bin[3]=-1;
1086 }
1087}
1088
1089static void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1090{
1091 struct ll_entry *next;
1092 while(*head) {
1093 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1094 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1095 {
1096 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1097 remove_hash((*head)->vaddr);
1098 next=(*head)->next;
1099 free(*head);
1100 *head=next;
1101 }
1102 else
1103 {
1104 head=&((*head)->next);
1105 }
1106 }
1107}
1108
1109// Remove all entries from linked list
1110static void ll_clear(struct ll_entry **head)
1111{
1112 struct ll_entry *cur;
1113 struct ll_entry *next;
1114 if((cur=*head)) {
1115 *head=0;
1116 while(cur) {
1117 next=cur->next;
1118 free(cur);
1119 cur=next;
1120 }
1121 }
1122}
1123
1124// Dereference the pointers and remove if it matches
1125static void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1126{
1127 while(head) {
1128 int ptr=get_pointer(head->addr);
1129 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1130 if(((ptr>>shift)==(addr>>shift)) ||
1131 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1132 {
1133 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1134 u_int host_addr=(int)kill_pointer(head->addr);
1135 #if NEW_DYNAREC == NEW_DYNAREC_ARM
1136 needs_clear_cache[(host_addr-(u_int)base_addr)>>17]|=1<<(((host_addr-(u_int)base_addr)>>12)&31);
1137 #endif
1138 }
1139 head=head->next;
1140 }
1141}
1142
1143// This is called when we write to a compiled block (see do_invstub)
1144static void invalidate_page(u_int page)
1145{
1146 struct ll_entry *head;
1147 struct ll_entry *next;
1148 head=jump_in[page];
1149 jump_in[page]=0;
1150 while(head!=NULL) {
1151 inv_debug("INVALIDATE: %x\n",head->vaddr);
1152 remove_hash(head->vaddr);
1153 next=head->next;
1154 free(head);
1155 head=next;
1156 }
1157 head=jump_out[page];
1158 jump_out[page]=0;
1159 while(head!=NULL) {
1160 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1161 u_int host_addr=(int)kill_pointer(head->addr);
1162 #if NEW_DYNAREC == NEW_DYNAREC_ARM
1163 needs_clear_cache[(host_addr-(u_int)base_addr)>>17]|=1<<(((host_addr-(u_int)base_addr)>>12)&31);
1164 #endif
1165 next=head->next;
1166 free(head);
1167 head=next;
1168 }
1169}
1170void invalidate_block(u_int block)
1171{
1172 u_int page,vpage;
1173 page=vpage=block^0x80000;
1174 if(page>262143&&tlb_LUT_r[block]) page=(tlb_LUT_r[block]^0x80000000)>>12;
1175 if(page>2048) page=2048+(page&2047);
1176 if(vpage>262143&&tlb_LUT_r[block]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
1177 if(vpage>2048) vpage=2048+(vpage&2047);
1178 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1179 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1180 u_int first,last;
1181 first=last=page;
1182 struct ll_entry *head;
1183 head=jump_dirty[vpage];
1184 //DebugMessage(M64MSG_VERBOSE, "page=%d vpage=%d",page,vpage);
1185 while(head!=NULL) {
1186 u_int start,end;
1187 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1188 get_bounds((int)head->addr,&start,&end);
1189 //DebugMessage(M64MSG_VERBOSE, "start: %x end: %x",start,end);
1190 if(page<2048&&start>=0x80000000&&end<0x80800000) {
1191 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1192 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1193 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1194 }
1195 }
1196 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1197 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1198 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1199 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1200 }
1201 }
1202 }
1203 head=head->next;
1204 }
1205 //DebugMessage(M64MSG_VERBOSE, "first=%d last=%d",first,last);
1206 invalidate_page(page);
1207 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1208 assert(last<page+5);
1209 // Invalidate the adjacent pages if a block crosses a 4K boundary
1210 while(first<page) {
1211 invalidate_page(first);
1212 first++;
1213 }
1214 for(first=page+1;first<last;first++) {
1215 invalidate_page(first);
1216 }
1217 #if NEW_DYNAREC == NEW_DYNAREC_ARM
1218 do_clear_cache();
1219 #endif
1220
1221 // Don't trap writes
1222 invalid_code[block]=1;
1223 // If there is a valid TLB entry for this page, remove write protect
1224 if(tlb_LUT_w[block]) {
1225 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1226 // CHECK: Is this right?
1227 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1228 u_int real_block=tlb_LUT_w[block]>>12;
1229 invalid_code[real_block]=1;
1230 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1231 }
1232 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1233 #ifdef USE_MINI_HT
1234 memset(mini_ht,-1,sizeof(mini_ht));
1235 #endif
1236}
1237
1238#if NEW_DYNAREC == NEW_DYNAREC_ARM
1239static void invalidate_addr(u_int addr)
1240{
1241 invalidate_block(addr>>12);
1242}
1243#endif
1244
1245// This is called when loading a save state.
1246// Anything could have changed, so invalidate everything.
1247void invalidate_all_pages()
1248{
1249 u_int page;
1250 for(page=0;page<4096;page++)
1251 invalidate_page(page);
1252 for(page=0;page<1048576;page++)
1253 if(!invalid_code[page]) {
1254 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1255 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1256 }
1257 #if NEW_DYNAREC == NEW_DYNAREC_ARM
1258 __clear_cache((void *)base_addr,(void *)base_addr+(1<<TARGET_SIZE_2));
1259 //cacheflush((void *)base_addr,(void *)base_addr+(1<<TARGET_SIZE_2),0);
1260 #endif
1261 #ifdef USE_MINI_HT
1262 memset(mini_ht,-1,sizeof(mini_ht));
1263 #endif
1264 // TLB
1265 for(page=0;page<0x100000;page++) {
1266 if(tlb_LUT_r[page]) {
1267 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1268 if(!tlb_LUT_w[page]||!invalid_code[page])
1269 memory_map[page]|=0x40000000; // Write protect
1270 }
1271 else memory_map[page]=-1;
1272 if(page==0x80000) page=0xC0000;
1273 }
1274 tlb_hacks();
1275}
1276
1277// Add an entry to jump_out after making a link
1278void add_link(u_int vaddr,void *src)
1279{
1280 u_int page=(vaddr^0x80000000)>>12;
1281 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
1282 if(page>4095) page=2048+(page&2047);
1283 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1284 ll_add(jump_out+page,vaddr,src);
1285 //int ptr=get_pointer(src);
1286 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1287}
1288
1289// If a code block was found to be unmodified (bit was set in
1290// restore_candidate) and it remains unmodified (bit is clear
1291// in invalid_code) then move the entries for that 4K page from
1292// the dirty list to the clean list.
1293void clean_blocks(u_int page)
1294{
1295 struct ll_entry *head;
1296 inv_debug("INV: clean_blocks page=%d\n",page);
1297 head=jump_dirty[page];
1298 while(head!=NULL) {
1299 if(!invalid_code[head->vaddr>>12]) {
1300 // Don't restore blocks which are about to expire from the cache
1301 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1302 u_int start,end;
1303 if(verify_dirty(head->addr)) {
1304 //DebugMessage(M64MSG_VERBOSE, "Possibly Restore %x (%x)",head->vaddr, (int)head->addr);
1305 u_int i;
1306 u_int inv=0;
1307 get_bounds((int)head->addr,&start,&end);
1308 if(start-(u_int)rdram<0x800000) {
1309 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1310 inv|=invalid_code[i];
1311 }
1312 }
1313 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1314 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1315 //DebugMessage(M64MSG_VERBOSE, "addr=%x start=%x end=%x",addr,start,end);
1316 if(addr<start||addr>=end) inv=1;
1317 }
1318 else if((signed int)head->vaddr>=(signed int)0x80800000) {
1319 inv=1;
1320 }
1321 if(!inv) {
1322 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1323 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1324 u_int ppage=page;
1325 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1326 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1327 //DebugMessage(M64MSG_VERBOSE, "page=%x, addr=%x",page,head->vaddr);
1328 //assert(head->vaddr>>12==(page|0x80000));
1329 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1330 u_int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1331 if(!head->reg32) {
1332 if(ht_bin[0]==head->vaddr) {
1333 ht_bin[1]=(int)clean_addr; // Replace existing entry
1334 }
1335 if(ht_bin[2]==head->vaddr) {
1336 ht_bin[3]=(int)clean_addr; // Replace existing entry
1337 }
1338 }
1339 }
1340 }
1341 }
1342 }
1343 }
1344 head=head->next;
1345 }
1346}
1347
1348
1349static void mov_alloc(struct regstat *current,int i)
1350{
1351 // Note: Don't need to actually alloc the source registers
1352 if((~current->is32>>rs1[i])&1) {
1353 //alloc_reg64(current,i,rs1[i]);
1354 alloc_reg64(current,i,rt1[i]);
1355 current->is32&=~(1LL<<rt1[i]);
1356 } else {
1357 //alloc_reg(current,i,rs1[i]);
1358 alloc_reg(current,i,rt1[i]);
1359 current->is32|=(1LL<<rt1[i]);
1360 }
1361 clear_const(current,rs1[i]);
1362 clear_const(current,rt1[i]);
1363 dirty_reg(current,rt1[i]);
1364}
1365
1366static void shiftimm_alloc(struct regstat *current,int i)
1367{
1368 clear_const(current,rs1[i]);
1369 clear_const(current,rt1[i]);
1370 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1371 {
1372 if(rt1[i]) {
1373 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1374 else lt1[i]=rs1[i];
1375 alloc_reg(current,i,rt1[i]);
1376 current->is32|=1LL<<rt1[i];
1377 dirty_reg(current,rt1[i]);
1378 }
1379 }
1380 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1381 {
1382 if(rt1[i]) {
1383 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1384 alloc_reg64(current,i,rt1[i]);
1385 current->is32&=~(1LL<<rt1[i]);
1386 dirty_reg(current,rt1[i]);
1387 }
1388 }
1389 if(opcode2[i]==0x3c) // DSLL32
1390 {
1391 if(rt1[i]) {
1392 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1393 alloc_reg64(current,i,rt1[i]);
1394 current->is32&=~(1LL<<rt1[i]);
1395 dirty_reg(current,rt1[i]);
1396 }
1397 }
1398 if(opcode2[i]==0x3e) // DSRL32
1399 {
1400 if(rt1[i]) {
1401 alloc_reg64(current,i,rs1[i]);
1402 if(imm[i]==32) {
1403 alloc_reg64(current,i,rt1[i]);
1404 current->is32&=~(1LL<<rt1[i]);
1405 } else {
1406 alloc_reg(current,i,rt1[i]);
1407 current->is32|=1LL<<rt1[i];
1408 }
1409 dirty_reg(current,rt1[i]);
1410 }
1411 }
1412 if(opcode2[i]==0x3f) // DSRA32
1413 {
1414 if(rt1[i]) {
1415 alloc_reg64(current,i,rs1[i]);
1416 alloc_reg(current,i,rt1[i]);
1417 current->is32|=1LL<<rt1[i];
1418 dirty_reg(current,rt1[i]);
1419 }
1420 }
1421}
1422
1423static void shift_alloc(struct regstat *current,int i)
1424{
1425 if(rt1[i]) {
1426 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1427 {
1428 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1429 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1430 alloc_reg(current,i,rt1[i]);
1431 if(rt1[i]==rs2[i]) {
1432 alloc_reg_temp(current,i,-1);
1433 minimum_free_regs[i]=1;
1434 }
1435 current->is32|=1LL<<rt1[i];
1436 } else { // DSLLV/DSRLV/DSRAV
1437 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1438 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1439 alloc_reg64(current,i,rt1[i]);
1440 current->is32&=~(1LL<<rt1[i]);
1441 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1442 {
1443 alloc_reg_temp(current,i,-1);
1444 minimum_free_regs[i]=1;
1445 }
1446 }
1447 clear_const(current,rs1[i]);
1448 clear_const(current,rs2[i]);
1449 clear_const(current,rt1[i]);
1450 dirty_reg(current,rt1[i]);
1451 }
1452}
1453
1454static void alu_alloc(struct regstat *current,int i)
1455{
1456 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1457 if(rt1[i]) {
1458 if(rs1[i]&&rs2[i]) {
1459 alloc_reg(current,i,rs1[i]);
1460 alloc_reg(current,i,rs2[i]);
1461 }
1462 else {
1463 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1464 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1465 }
1466 alloc_reg(current,i,rt1[i]);
1467 }
1468 current->is32|=1LL<<rt1[i];
1469 }
1470 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1471 if(rt1[i]) {
1472 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1473 {
1474 alloc_reg64(current,i,rs1[i]);
1475 alloc_reg64(current,i,rs2[i]);
1476 alloc_reg(current,i,rt1[i]);
1477 } else {
1478 alloc_reg(current,i,rs1[i]);
1479 alloc_reg(current,i,rs2[i]);
1480 alloc_reg(current,i,rt1[i]);
1481 }
1482 }
1483 current->is32|=1LL<<rt1[i];
1484 }
1485 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1486 if(rt1[i]) {
1487 if(rs1[i]&&rs2[i]) {
1488 alloc_reg(current,i,rs1[i]);
1489 alloc_reg(current,i,rs2[i]);
1490 }
1491 else
1492 {
1493 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1494 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1495 }
1496 alloc_reg(current,i,rt1[i]);
1497 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1498 {
1499 if(!((current->uu>>rt1[i])&1)) {
1500 alloc_reg64(current,i,rt1[i]);
1501 }
1502 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1503 if(rs1[i]&&rs2[i]) {
1504 alloc_reg64(current,i,rs1[i]);
1505 alloc_reg64(current,i,rs2[i]);
1506 }
1507 else
1508 {
1509 // Is is really worth it to keep 64-bit values in registers?
1510 #ifdef NATIVE_64BIT
1511 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1512 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1513 #endif
1514 }
1515 }
1516 current->is32&=~(1LL<<rt1[i]);
1517 } else {
1518 current->is32|=1LL<<rt1[i];
1519 }
1520 }
1521 }
1522 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1523 if(rt1[i]) {
1524 if(rs1[i]&&rs2[i]) {
1525 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1526 alloc_reg64(current,i,rs1[i]);
1527 alloc_reg64(current,i,rs2[i]);
1528 alloc_reg64(current,i,rt1[i]);
1529 } else {
1530 alloc_reg(current,i,rs1[i]);
1531 alloc_reg(current,i,rs2[i]);
1532 alloc_reg(current,i,rt1[i]);
1533 }
1534 }
1535 else {
1536 alloc_reg(current,i,rt1[i]);
1537 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1538 // DADD used as move, or zeroing
1539 // If we have a 64-bit source, then make the target 64 bits too
1540 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1541 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1542 alloc_reg64(current,i,rt1[i]);
1543 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1544 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1545 alloc_reg64(current,i,rt1[i]);
1546 }
1547 if(opcode2[i]>=0x2e&&rs2[i]) {
1548 // DSUB used as negation - 64-bit result
1549 // If we have a 32-bit register, extend it to 64 bits
1550 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1551 alloc_reg64(current,i,rt1[i]);
1552 }
1553 }
1554 }
1555 if(rs1[i]&&rs2[i]) {
1556 current->is32&=~(1LL<<rt1[i]);
1557 } else if(rs1[i]) {
1558 current->is32&=~(1LL<<rt1[i]);
1559 if((current->is32>>rs1[i])&1)
1560 current->is32|=1LL<<rt1[i];
1561 } else if(rs2[i]) {
1562 current->is32&=~(1LL<<rt1[i]);
1563 if((current->is32>>rs2[i])&1)
1564 current->is32|=1LL<<rt1[i];
1565 } else {
1566 current->is32|=1LL<<rt1[i];
1567 }
1568 }
1569 }
1570 clear_const(current,rs1[i]);
1571 clear_const(current,rs2[i]);
1572 clear_const(current,rt1[i]);
1573 dirty_reg(current,rt1[i]);
1574}
1575
1576static void imm16_alloc(struct regstat *current,int i)
1577{
1578 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1579 else lt1[i]=rs1[i];
1580 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1581 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1582 current->is32&=~(1LL<<rt1[i]);
1583 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1584 // TODO: Could preserve the 32-bit flag if the immediate is zero
1585 alloc_reg64(current,i,rt1[i]);
1586 alloc_reg64(current,i,rs1[i]);
1587 }
1588 clear_const(current,rs1[i]);
1589 clear_const(current,rt1[i]);
1590 }
1591 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1592 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1593 current->is32|=1LL<<rt1[i];
1594 clear_const(current,rs1[i]);
1595 clear_const(current,rt1[i]);
1596 }
1597 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1598 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1599 if(rs1[i]!=rt1[i]) {
1600 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1601 alloc_reg64(current,i,rt1[i]);
1602 current->is32&=~(1LL<<rt1[i]);
1603 }
1604 }
1605 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1606 if(is_const(current,rs1[i])) {
1607 int v=get_const(current,rs1[i]);
1608 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1609 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1610 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1611 }
1612 else clear_const(current,rt1[i]);
1613 }
1614 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1615 if(is_const(current,rs1[i])) {
1616 int v=get_const(current,rs1[i]);
1617 set_const(current,rt1[i],v+imm[i]);
1618 }
1619 else clear_const(current,rt1[i]);
1620 current->is32|=1LL<<rt1[i];
1621 }
1622 else {
1623 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1624 current->is32|=1LL<<rt1[i];
1625 }
1626 dirty_reg(current,rt1[i]);
1627}
1628
1629static void load_alloc(struct regstat *current,int i)
1630{
1631 clear_const(current,rt1[i]);
1632 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1633 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1634 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1635 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
1636 alloc_reg(current,i,rt1[i]);
1637 assert(get_reg(current->regmap,rt1[i])>=0);
1638 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1639 {
1640 current->is32&=~(1LL<<rt1[i]);
1641 alloc_reg64(current,i,rt1[i]);
1642 }
1643 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1644 {
1645 current->is32&=~(1LL<<rt1[i]);
1646 alloc_reg64(current,i,rt1[i]);
1647 alloc_all(current,i);
1648 alloc_reg64(current,i,FTEMP);
1649 minimum_free_regs[i]=HOST_REGS;
1650 }
1651 else current->is32|=1LL<<rt1[i];
1652 dirty_reg(current,rt1[i]);
1653 // If using TLB, need a register for pointer to the mapping table
1654 if(using_tlb) alloc_reg(current,i,TLREG);
1655 // LWL/LWR need a temporary register for the old value
1656 if(opcode[i]==0x22||opcode[i]==0x26)
1657 {
1658 alloc_reg(current,i,FTEMP);
1659 alloc_reg_temp(current,i,-1);
1660 minimum_free_regs[i]=1;
1661 }
1662 }
1663 else
1664 {
1665 // Load to r0 or unneeded register (dummy load)
1666 // but we still need a register to calculate the address
1667 if(opcode[i]==0x22||opcode[i]==0x26)
1668 {
1669 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1670 }
1671 // If using TLB, need a register for pointer to the mapping table
1672 if(using_tlb) alloc_reg(current,i,TLREG);
1673 alloc_reg_temp(current,i,-1);
1674 minimum_free_regs[i]=1;
1675 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1676 {
1677 alloc_all(current,i);
1678 alloc_reg64(current,i,FTEMP);
1679 minimum_free_regs[i]=HOST_REGS;
1680 }
1681 }
1682}
1683
1684static void store_alloc(struct regstat *current,int i)
1685{
1686 clear_const(current,rs2[i]);
1687 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1688 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1689 alloc_reg(current,i,rs2[i]);
1690 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1691 alloc_reg64(current,i,rs2[i]);
1692 if(rs2[i]) alloc_reg(current,i,FTEMP);
1693 }
1694 // If using TLB, need a register for pointer to the mapping table
1695 if(using_tlb) alloc_reg(current,i,TLREG);
1696 #if defined(HOST_IMM8)
1697 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1698 else alloc_reg(current,i,INVCP);
1699 #endif
1700 if(opcode[i]==0x2c||opcode[i]==0x2d) { // 64-bit SDL/SDR
1701 alloc_reg(current,i,FTEMP);
1702 }
1703 // We need a temporary register for address generation
1704 alloc_reg_temp(current,i,-1);
1705 minimum_free_regs[i]=1;
1706}
1707
1708static void c1ls_alloc(struct regstat *current,int i)
1709{
1710 //clear_const(current,rs1[i]); // FIXME
1711 clear_const(current,rt1[i]);
1712 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1713 alloc_reg(current,i,CSREG); // Status
1714 alloc_reg(current,i,FTEMP);
1715 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1716 alloc_reg64(current,i,FTEMP);
1717 }
1718 // If using TLB, need a register for pointer to the mapping table
1719 if(using_tlb) alloc_reg(current,i,TLREG);
1720 #if defined(HOST_IMM8)
1721 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1722 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1723 alloc_reg(current,i,INVCP);
1724 #endif
1725 // We need a temporary register for address generation
1726 alloc_reg_temp(current,i,-1);
1727 minimum_free_regs[i]=1;
1728}
1729
1730#ifndef multdiv_alloc
1731void multdiv_alloc(struct regstat *current,int i)
1732{
1733 // case 0x18: MULT
1734 // case 0x19: MULTU
1735 // case 0x1A: DIV
1736 // case 0x1B: DIVU
1737 // case 0x1C: DMULT
1738 // case 0x1D: DMULTU
1739 // case 0x1E: DDIV
1740 // case 0x1F: DDIVU
1741 clear_const(current,rs1[i]);
1742 clear_const(current,rs2[i]);
1743 if(rs1[i]&&rs2[i])
1744 {
1745 if((opcode2[i]&4)==0) // 32-bit
1746 {
1747 current->u&=~(1LL<<HIREG);
1748 current->u&=~(1LL<<LOREG);
1749 alloc_reg(current,i,HIREG);
1750 alloc_reg(current,i,LOREG);
1751 alloc_reg(current,i,rs1[i]);
1752 alloc_reg(current,i,rs2[i]);
1753 current->is32|=1LL<<HIREG;
1754 current->is32|=1LL<<LOREG;
1755 dirty_reg(current,HIREG);
1756 dirty_reg(current,LOREG);
1757 }
1758 else // 64-bit
1759 {
1760 current->u&=~(1LL<<HIREG);
1761 current->u&=~(1LL<<LOREG);
1762 current->uu&=~(1LL<<HIREG);
1763 current->uu&=~(1LL<<LOREG);
1764 alloc_reg64(current,i,HIREG);
ce68e3b9 1765 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG); //*SEB* Why commenting this line? uncommenting make SM64 freeze after title (before mario head and spinning stars)
451ab91e 1766 alloc_reg64(current,i,rs1[i]);
1767 alloc_reg64(current,i,rs2[i]);
1768 alloc_all(current,i);
1769 current->is32&=~(1LL<<HIREG);
1770 current->is32&=~(1LL<<LOREG);
1771 dirty_reg(current,HIREG);
1772 dirty_reg(current,LOREG);
1773 minimum_free_regs[i]=HOST_REGS;
1774 }
1775 }
1776 else
1777 {
1778 // Multiply by zero is zero.
1779 // MIPS does not have a divide by zero exception.
1780 // The result is undefined, we return zero.
ce68e3b9 1781 alloc_reg(current,i,HIREG);
1782 alloc_reg(current,i,LOREG);
1783 current->is32|=1LL<<HIREG;
1784 current->is32|=1LL<<LOREG;
1785 dirty_reg(current,HIREG);
1786 dirty_reg(current,LOREG);
451ab91e 1787 }
1788}
1789#endif
1790
1791static void cop0_alloc(struct regstat *current,int i)
1792{
1793 if(opcode2[i]==0) // MFC0
1794 {
1795 if(rt1[i]) {
1796 clear_const(current,rt1[i]);
1797 alloc_all(current,i);
1798 alloc_reg(current,i,rt1[i]);
1799 current->is32|=1LL<<rt1[i];
1800 dirty_reg(current,rt1[i]);
1801 }
1802 }
1803 else if(opcode2[i]==4) // MTC0
1804 {
1805 if(rs1[i]){
1806 clear_const(current,rs1[i]);
1807 alloc_reg(current,i,rs1[i]);
1808 alloc_all(current,i);
1809 }
1810 else {
1811 alloc_all(current,i); // FIXME: Keep r0
1812 current->u&=~1LL;
1813 alloc_reg(current,i,0);
1814 }
1815 }
1816 else
1817 {
1818 // TLBR/TLBWI/TLBWR/TLBP/ERET
1819 assert(opcode2[i]==0x10);
1820 alloc_all(current,i);
1821 }
1822 minimum_free_regs[i]=HOST_REGS;
1823}
1824
1825static void cop1_alloc(struct regstat *current,int i)
1826{
1827 alloc_reg(current,i,CSREG); // Load status
1828 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1829 {
1830 assert(rt1[i]);
1831 clear_const(current,rt1[i]);
1832 if(opcode2[i]==1) {
1833 alloc_reg64(current,i,rt1[i]); // DMFC1
1834 current->is32&=~(1LL<<rt1[i]);
1835 }else{
1836 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1837 current->is32|=1LL<<rt1[i];
1838 }
1839 dirty_reg(current,rt1[i]);
1840 alloc_reg_temp(current,i,-1);
1841 }
1842 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1843 {
1844 if(rs1[i]){
1845 clear_const(current,rs1[i]);
1846 if(opcode2[i]==5)
1847 alloc_reg64(current,i,rs1[i]); // DMTC1
1848 else
1849 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1850 alloc_reg_temp(current,i,-1);
1851 }
1852 else {
1853 current->u&=~1LL;
1854 alloc_reg(current,i,0);
1855 alloc_reg_temp(current,i,-1);
1856 }
1857 }
1858 minimum_free_regs[i]=1;
1859}
1860static void fconv_alloc(struct regstat *current,int i)
1861{
1862 alloc_reg(current,i,CSREG); // Load status
1863 alloc_reg_temp(current,i,-1);
1864 minimum_free_regs[i]=1;
1865}
1866static void float_alloc(struct regstat *current,int i)
1867{
1868 alloc_reg(current,i,CSREG); // Load status
1869 alloc_reg_temp(current,i,-1);
1870 minimum_free_regs[i]=1;
1871}
1872static void fcomp_alloc(struct regstat *current,int i)
1873{
1874 alloc_reg(current,i,CSREG); // Load status
1875 alloc_reg(current,i,FSREG); // Load flags
1876 dirty_reg(current,FSREG); // Flag will be modified
1877 alloc_reg_temp(current,i,-1);
1878 minimum_free_regs[i]=1;
1879}
1880
1881static void syscall_alloc(struct regstat *current,int i)
1882{
1883 alloc_cc(current,i);
1884 dirty_reg(current,CCREG);
1885 alloc_all(current,i);
1886 minimum_free_regs[i]=HOST_REGS;
1887 current->isconst=0;
1888}
1889
1890static void delayslot_alloc(struct regstat *current,int i)
1891{
1892 switch(itype[i]) {
1893 case UJUMP:
1894 case CJUMP:
1895 case SJUMP:
1896 case RJUMP:
1897 case FJUMP:
1898 case SYSCALL:
1899 case SPAN:
1900 assem_debug("jump in the delay slot. this shouldn't happen.");//exit(1);
1901 DebugMessage(M64MSG_VERBOSE, "Disabled speculative precompilation");
1902 stop_after_jal=1;
1903 break;
1904 case IMM16:
1905 imm16_alloc(current,i);
1906 break;
1907 case LOAD:
1908 case LOADLR:
1909 load_alloc(current,i);
1910 break;
1911 case STORE:
1912 case STORELR:
1913 store_alloc(current,i);
1914 break;
1915 case ALU:
1916 alu_alloc(current,i);
1917 break;
1918 case SHIFT:
1919 shift_alloc(current,i);
1920 break;
1921 case MULTDIV:
1922 multdiv_alloc(current,i);
1923 break;
1924 case SHIFTIMM:
1925 shiftimm_alloc(current,i);
1926 break;
1927 case MOV:
1928 mov_alloc(current,i);
1929 break;
1930 case COP0:
1931 cop0_alloc(current,i);
1932 break;
1933 case COP1:
1934 cop1_alloc(current,i);
1935 break;
1936 case C1LS:
1937 c1ls_alloc(current,i);
1938 break;
1939 case FCONV:
1940 fconv_alloc(current,i);
1941 break;
1942 case FLOAT:
1943 float_alloc(current,i);
1944 break;
1945 case FCOMP:
1946 fcomp_alloc(current,i);
1947 break;
1948 }
1949}
1950
1951// Special case where a branch and delay slot span two pages in virtual memory
1952static void pagespan_alloc(struct regstat *current,int i)
1953{
1954 current->isconst=0;
1955 current->wasconst=0;
1956 regs[i].wasconst=0;
1957 minimum_free_regs[i]=HOST_REGS;
1958 alloc_all(current,i);
1959 alloc_cc(current,i);
1960 dirty_reg(current,CCREG);
1961 if(opcode[i]==3) // JAL
1962 {
1963 alloc_reg(current,i,31);
1964 dirty_reg(current,31);
1965 }
1966 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1967 {
1968 alloc_reg(current,i,rs1[i]);
1969 if (rt1[i]!=0) {
1970 alloc_reg(current,i,rt1[i]);
1971 dirty_reg(current,rt1[i]);
1972 }
1973 }
1974 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1975 {
1976 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1977 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1978 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1979 {
1980 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1981 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1982 }
1983 }
1984 else
1985 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1986 {
1987 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1988 if(!((current->is32>>rs1[i])&1))
1989 {
1990 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1991 }
1992 }
1993 else
1994 if(opcode[i]==0x11) // BC1
1995 {
1996 alloc_reg(current,i,FSREG);
1997 alloc_reg(current,i,CSREG);
1998 }
1999 //else ...
2000}
2001
2002static void add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
2003{
2004 stubs[stubcount][0]=type;
2005 stubs[stubcount][1]=addr;
2006 stubs[stubcount][2]=retaddr;
2007 stubs[stubcount][3]=a;
2008 stubs[stubcount][4]=b;
2009 stubs[stubcount][5]=c;
2010 stubs[stubcount][6]=d;
2011 stubs[stubcount][7]=e;
2012 stubcount++;
2013}
2014
2015// Write out a single register
2016static void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2017{
2018 int hr;
2019 for(hr=0;hr<HOST_REGS;hr++) {
2020 if(hr!=EXCLUDE_REG) {
2021 if((regmap[hr]&63)==r) {
2022 if((dirty>>hr)&1) {
2023 if(regmap[hr]<64) {
2024 emit_storereg(r,hr);
2025 if((is32>>regmap[hr])&1) {
2026 emit_sarimm(hr,31,hr);
2027 emit_storereg(r|64,hr);
2028 }
2029 }else{
2030 emit_storereg(r|64,hr);
2031 }
2032 }
2033 }
2034 }
2035 }
2036}
2037#if 0
2038static int mchecksum()
2039{
2040 //if(!tracedebug) return 0;
2041 int i;
2042 int sum=0;
2043 for(i=0;i<2097152;i++) {
2044 unsigned int temp=sum;
2045 sum<<=1;
2046 sum|=(~temp)>>31;
2047 sum^=((u_int *)rdram)[i];
2048 }
2049 return sum;
2050}
2051
2052static int rchecksum()
2053{
2054 int i;
2055 int sum=0;
2056 for(i=0;i<64;i++)
2057 sum^=((u_int *)reg)[i];
2058 return sum;
2059}
2060
2061static void rlist()
2062{
2063 int i;
2064 DebugMessage(M64MSG_VERBOSE, "TRACE: ");
2065 for(i=0;i<32;i++)
2066 DebugMessage(M64MSG_VERBOSE, "r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2067 DebugMessage(M64MSG_VERBOSE, "TRACE: ");
2068 for(i=0;i<32;i++)
2069 DebugMessage(M64MSG_VERBOSE, "f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2070}
2071
2072static void enabletrace()
2073{
2074 tracedebug=1;
2075}
2076
2077
2078static void memdebug(int i)
2079{
2080 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x) lo=%8x%8x",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2081 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (rchecksum %x)",Count,next_interupt,rchecksum());
2082 //rlist();
2083 //if(tracedebug) {
2084 //if(Count>=-2084597794) {
2085 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2086 //if(0) {
2087 DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x)",Count,next_interupt,mchecksum());
2088 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x) Status=%x",Count,next_interupt,mchecksum(),Status);
2089 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x) hi=%8x%8x",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2090 rlist();
2091 #if NEW_DYNAREC == NEW_DYNAREC_X86
2092 DebugMessage(M64MSG_VERBOSE, "TRACE: %x",(&i)[-1]);
2093 #endif
2094 #if NEW_DYNAREC == NEW_DYNAREC_ARM
2095 int j;
2096 DebugMessage(M64MSG_VERBOSE, "TRACE: %x ",(&j)[10]);
2097 DebugMessage(M64MSG_VERBOSE, "TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2098 #endif
2099 //fflush(stdout);
2100 }
2101 //DebugMessage(M64MSG_VERBOSE, "TRACE: %x",(&i)[-1]);
2102}
2103#endif
2104
2105/* Debug:
2106static void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2107{
2108 DebugMessage(M64MSG_VERBOSE, "TLB Exception: instruction=%x addr=%x cause=%x",iaddr, addr, cause);
2109}
2110end debug */
2111
2112static void alu_assemble(int i,struct regstat *i_regs)
2113{
2114 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2115 if(rt1[i]) {
2116 signed char s1,s2,t;
2117 t=get_reg(i_regs->regmap,rt1[i]);
2118 if(t>=0) {
2119 s1=get_reg(i_regs->regmap,rs1[i]);
2120 s2=get_reg(i_regs->regmap,rs2[i]);
2121 if(rs1[i]&&rs2[i]) {
2122 assert(s1>=0);
2123 assert(s2>=0);
2124 if(opcode2[i]&2) emit_sub(s1,s2,t);
2125 else emit_add(s1,s2,t);
2126 }
2127 else if(rs1[i]) {
2128 if(s1>=0) emit_mov(s1,t);
2129 else emit_loadreg(rs1[i],t);
2130 }
2131 else if(rs2[i]) {
2132 if(s2>=0) {
2133 if(opcode2[i]&2) emit_neg(s2,t);
2134 else emit_mov(s2,t);
2135 }
2136 else {
2137 emit_loadreg(rs2[i],t);
2138 if(opcode2[i]&2) emit_neg(t,t);
2139 }
2140 }
2141 else emit_zeroreg(t);
2142 }
2143 }
2144 }
2145 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2146 if(rt1[i]) {
2147 signed char s1l,s2l,s1h,s2h,tl,th;
2148 tl=get_reg(i_regs->regmap,rt1[i]);
2149 th=get_reg(i_regs->regmap,rt1[i]|64);
2150 if(tl>=0) {
2151 s1l=get_reg(i_regs->regmap,rs1[i]);
2152 s2l=get_reg(i_regs->regmap,rs2[i]);
2153 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2154 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2155 if(rs1[i]&&rs2[i]) {
2156 assert(s1l>=0);
2157 assert(s2l>=0);
2158 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2159 else emit_adds(s1l,s2l,tl);
2160 if(th>=0) {
2161 #ifdef INVERTED_CARRY
2162 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2163 #else
2164 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2165 #endif
2166 else emit_add(s1h,s2h,th);
2167 }
2168 }
2169 else if(rs1[i]) {
2170 if(s1l>=0) emit_mov(s1l,tl);
2171 else emit_loadreg(rs1[i],tl);
2172 if(th>=0) {
2173 if(s1h>=0) emit_mov(s1h,th);
2174 else emit_loadreg(rs1[i]|64,th);
2175 }
2176 }
2177 else if(rs2[i]) {
2178 if(s2l>=0) {
2179 if(opcode2[i]&2) emit_negs(s2l,tl);
2180 else emit_mov(s2l,tl);
2181 }
2182 else {
2183 emit_loadreg(rs2[i],tl);
2184 if(opcode2[i]&2) emit_negs(tl,tl);
2185 }
2186 if(th>=0) {
2187 #ifdef INVERTED_CARRY
2188 if(s2h>=0) emit_mov(s2h,th);
2189 else emit_loadreg(rs2[i]|64,th);
2190 if(opcode2[i]&2) {
2191 emit_adcimm(-1,th); // x86 has inverted carry flag
2192 emit_not(th,th);
2193 }
2194 #else
2195 if(opcode2[i]&2) {
2196 if(s2h>=0) emit_rscimm(s2h,0,th);
2197 else {
2198 emit_loadreg(rs2[i]|64,th);
2199 emit_rscimm(th,0,th);
2200 }
2201 }else{
2202 if(s2h>=0) emit_mov(s2h,th);
2203 else emit_loadreg(rs2[i]|64,th);
2204 }
2205 #endif
2206 }
2207 }
2208 else {
2209 emit_zeroreg(tl);
2210 if(th>=0) emit_zeroreg(th);
2211 }
2212 }
2213 }
2214 }
2215 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2216 if(rt1[i]) {
2217 signed char s1l,s1h,s2l,s2h,t;
2218 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2219 {
2220 t=get_reg(i_regs->regmap,rt1[i]);
2221 //assert(t>=0);
2222 if(t>=0) {
2223 s1l=get_reg(i_regs->regmap,rs1[i]);
2224 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2225 s2l=get_reg(i_regs->regmap,rs2[i]);
2226 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2227 if(rs2[i]==0) // rx<r0
2228 {
2229 assert(s1h>=0);
2230 if(opcode2[i]==0x2a) // SLT
2231 emit_shrimm(s1h,31,t);
2232 else // SLTU (unsigned can not be less than zero)
2233 emit_zeroreg(t);
2234 }
2235 else if(rs1[i]==0) // r0<rx
2236 {
2237 assert(s2h>=0);
2238 if(opcode2[i]==0x2a) // SLT
2239 emit_set_gz64_32(s2h,s2l,t);
2240 else // SLTU (set if not zero)
2241 emit_set_nz64_32(s2h,s2l,t);
2242 }
2243 else {
2244 assert(s1l>=0);assert(s1h>=0);
2245 assert(s2l>=0);assert(s2h>=0);
2246 if(opcode2[i]==0x2a) // SLT
2247 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2248 else // SLTU
2249 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2250 }
2251 }
2252 } else {
2253 t=get_reg(i_regs->regmap,rt1[i]);
2254 //assert(t>=0);
2255 if(t>=0) {
2256 s1l=get_reg(i_regs->regmap,rs1[i]);
2257 s2l=get_reg(i_regs->regmap,rs2[i]);
2258 if(rs2[i]==0) // rx<r0
2259 {
2260 assert(s1l>=0);
2261 if(opcode2[i]==0x2a) // SLT
2262 emit_shrimm(s1l,31,t);
2263 else // SLTU (unsigned can not be less than zero)
2264 emit_zeroreg(t);
2265 }
2266 else if(rs1[i]==0) // r0<rx
2267 {
2268 assert(s2l>=0);
2269 if(opcode2[i]==0x2a) // SLT
2270 emit_set_gz32(s2l,t);
2271 else // SLTU (set if not zero)
2272 emit_set_nz32(s2l,t);
2273 }
2274 else{
2275 assert(s1l>=0);assert(s2l>=0);
2276 if(opcode2[i]==0x2a) // SLT
2277 emit_set_if_less32(s1l,s2l,t);
2278 else // SLTU
2279 emit_set_if_carry32(s1l,s2l,t);
2280 }
2281 }
2282 }
2283 }
2284 }
2285 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2286 if(rt1[i]) {
2287 signed char s1l,s1h,s2l,s2h,th,tl;
2288 tl=get_reg(i_regs->regmap,rt1[i]);
2289 th=get_reg(i_regs->regmap,rt1[i]|64);
2290 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2291 {
2292 assert(tl>=0);
2293 if(tl>=0) {
2294 s1l=get_reg(i_regs->regmap,rs1[i]);
2295 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2296 s2l=get_reg(i_regs->regmap,rs2[i]);
2297 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2298 if(rs1[i]&&rs2[i]) {
2299 assert(s1l>=0);assert(s1h>=0);
2300 assert(s2l>=0);assert(s2h>=0);
2301 if(opcode2[i]==0x24) { // AND
2302 emit_and(s1l,s2l,tl);
2303 emit_and(s1h,s2h,th);
2304 } else
2305 if(opcode2[i]==0x25) { // OR
2306 emit_or(s1l,s2l,tl);
2307 emit_or(s1h,s2h,th);
2308 } else
2309 if(opcode2[i]==0x26) { // XOR
2310 emit_xor(s1l,s2l,tl);
2311 emit_xor(s1h,s2h,th);
2312 } else
2313 if(opcode2[i]==0x27) { // NOR
2314 emit_or(s1l,s2l,tl);
2315 emit_or(s1h,s2h,th);
2316 emit_not(tl,tl);
2317 emit_not(th,th);
2318 }
2319 }
2320 else
2321 {
2322 if(opcode2[i]==0x24) { // AND
2323 emit_zeroreg(tl);
2324 emit_zeroreg(th);
2325 } else
2326 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2327 if(rs1[i]){
2328 if(s1l>=0) emit_mov(s1l,tl);
2329 else emit_loadreg(rs1[i],tl);
2330 if(s1h>=0) emit_mov(s1h,th);
2331 else emit_loadreg(rs1[i]|64,th);
2332 }
2333 else
2334 if(rs2[i]){
2335 if(s2l>=0) emit_mov(s2l,tl);
2336 else emit_loadreg(rs2[i],tl);
2337 if(s2h>=0) emit_mov(s2h,th);
2338 else emit_loadreg(rs2[i]|64,th);
2339 }
2340 else{
2341 emit_zeroreg(tl);
2342 emit_zeroreg(th);
2343 }
2344 } else
2345 if(opcode2[i]==0x27) { // NOR
2346 if(rs1[i]){
2347 if(s1l>=0) emit_not(s1l,tl);
2348 else{
2349 emit_loadreg(rs1[i],tl);
2350 emit_not(tl,tl);
2351 }
2352 if(s1h>=0) emit_not(s1h,th);
2353 else{
2354 emit_loadreg(rs1[i]|64,th);
2355 emit_not(th,th);
2356 }
2357 }
2358 else
2359 if(rs2[i]){
2360 if(s2l>=0) emit_not(s2l,tl);
2361 else{
2362 emit_loadreg(rs2[i],tl);
2363 emit_not(tl,tl);
2364 }
2365 if(s2h>=0) emit_not(s2h,th);
2366 else{
2367 emit_loadreg(rs2[i]|64,th);
2368 emit_not(th,th);
2369 }
2370 }
2371 else {
2372 emit_movimm(-1,tl);
2373 emit_movimm(-1,th);
2374 }
2375 }
2376 }
2377 }
2378 }
2379 else
2380 {
2381 // 32 bit
2382 if(tl>=0) {
2383 s1l=get_reg(i_regs->regmap,rs1[i]);
2384 s2l=get_reg(i_regs->regmap,rs2[i]);
2385 if(rs1[i]&&rs2[i]) {
2386 assert(s1l>=0);
2387 assert(s2l>=0);
2388 if(opcode2[i]==0x24) { // AND
2389 emit_and(s1l,s2l,tl);
2390 } else
2391 if(opcode2[i]==0x25) { // OR
2392 emit_or(s1l,s2l,tl);
2393 } else
2394 if(opcode2[i]==0x26) { // XOR
2395 emit_xor(s1l,s2l,tl);
2396 } else
2397 if(opcode2[i]==0x27) { // NOR
2398 emit_or(s1l,s2l,tl);
2399 emit_not(tl,tl);
2400 }
2401 }
2402 else
2403 {
2404 if(opcode2[i]==0x24) { // AND
2405 emit_zeroreg(tl);
2406 } else
2407 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2408 if(rs1[i]){
2409 if(s1l>=0) emit_mov(s1l,tl);
2410 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2411 }
2412 else
2413 if(rs2[i]){
2414 if(s2l>=0) emit_mov(s2l,tl);
2415 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2416 }
2417 else emit_zeroreg(tl);
2418 } else
2419 if(opcode2[i]==0x27) { // NOR
2420 if(rs1[i]){
2421 if(s1l>=0) emit_not(s1l,tl);
2422 else {
2423 emit_loadreg(rs1[i],tl);
2424 emit_not(tl,tl);
2425 }
2426 }
2427 else
2428 if(rs2[i]){
2429 if(s2l>=0) emit_not(s2l,tl);
2430 else {
2431 emit_loadreg(rs2[i],tl);
2432 emit_not(tl,tl);
2433 }
2434 }
2435 else emit_movimm(-1,tl);
2436 }
2437 }
2438 }
2439 }
2440 }
2441 }
2442}
2443
2444static void imm16_assemble(int i,struct regstat *i_regs)
2445{
2446 if (opcode[i]==0x0f) { // LUI
2447 if(rt1[i]) {
2448 signed char t;
2449 t=get_reg(i_regs->regmap,rt1[i]);
2450 //assert(t>=0);
2451 if(t>=0) {
2452 if(!((i_regs->isconst>>t)&1))
2453 emit_movimm(imm[i]<<16,t);
2454 }
2455 }
2456 }
2457 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2458 if(rt1[i]) {
2459 signed char s,t;
2460 t=get_reg(i_regs->regmap,rt1[i]);
2461 s=get_reg(i_regs->regmap,rs1[i]);
2462 if(rs1[i]) {
2463 //assert(t>=0);
2464 //assert(s>=0);
2465 if(t>=0) {
2466 if(!((i_regs->isconst>>t)&1)) {
2467 if(s<0) {
2468 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2469 emit_addimm(t,imm[i],t);
2470 }else{
2471 if(!((i_regs->wasconst>>s)&1))
2472 emit_addimm(s,imm[i],t);
2473 else
2474 emit_movimm(constmap[i][s]+imm[i],t);
2475 }
2476 }
2477 }
2478 } else {
2479 if(t>=0) {
2480 if(!((i_regs->isconst>>t)&1))
2481 emit_movimm(imm[i],t);
2482 }
2483 }
2484 }
2485 }
2486 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2487 if(rt1[i]) {
2488 signed char sh,sl,th,tl;
2489 th=get_reg(i_regs->regmap,rt1[i]|64);
2490 tl=get_reg(i_regs->regmap,rt1[i]);
2491 sh=get_reg(i_regs->regmap,rs1[i]|64);
2492 sl=get_reg(i_regs->regmap,rs1[i]);
2493 if(tl>=0) {
2494 if(rs1[i]) {
2495 assert(sh>=0);
2496 assert(sl>=0);
2497 if(th>=0) {
2498 emit_addimm64_32(sh,sl,imm[i],th,tl);
2499 }
2500 else {
2501 emit_addimm(sl,imm[i],tl);
2502 }
2503 } else {
2504 emit_movimm(imm[i],tl);
2505 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2506 }
2507 }
2508 }
2509 }
2510 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2511 if(rt1[i]) {
2512 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2513 signed char sh,sl,t;
2514 t=get_reg(i_regs->regmap,rt1[i]);
2515 sh=get_reg(i_regs->regmap,rs1[i]|64);
2516 sl=get_reg(i_regs->regmap,rs1[i]);
2517 //assert(t>=0);
2518 if(t>=0) {
2519 if(rs1[i]>0) {
2520 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2521 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2522 if(opcode[i]==0x0a) { // SLTI
2523 if(sl<0) {
2524 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2525 emit_slti32(t,imm[i],t);
2526 }else{
2527 emit_slti32(sl,imm[i],t);
2528 }
2529 }
2530 else { // SLTIU
2531 if(sl<0) {
2532 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2533 emit_sltiu32(t,imm[i],t);
2534 }else{
2535 emit_sltiu32(sl,imm[i],t);
2536 }
2537 }
2538 }else{ // 64-bit
2539 assert(sl>=0);
2540 if(opcode[i]==0x0a) // SLTI
2541 emit_slti64_32(sh,sl,imm[i],t);
2542 else // SLTIU
2543 emit_sltiu64_32(sh,sl,imm[i],t);
2544 }
2545 }else{
2546 // SLTI(U) with r0 is just stupid,
2547 // nonetheless examples can be found
2548 if(opcode[i]==0x0a) // SLTI
2549 if(0<imm[i]) emit_movimm(1,t);
2550 else emit_zeroreg(t);
2551 else // SLTIU
2552 {
2553 if(imm[i]) emit_movimm(1,t);
2554 else emit_zeroreg(t);
2555 }
2556 }
2557 }
2558 }
2559 }
2560 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2561 if(rt1[i]) {
2562 signed char sh,sl,th,tl;
2563 th=get_reg(i_regs->regmap,rt1[i]|64);
2564 tl=get_reg(i_regs->regmap,rt1[i]);
2565 sh=get_reg(i_regs->regmap,rs1[i]|64);
2566 sl=get_reg(i_regs->regmap,rs1[i]);
2567 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2568 if(opcode[i]==0x0c) //ANDI
2569 {
2570 if(rs1[i]) {
2571 if(sl<0) {
2572 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2573 emit_andimm(tl,imm[i],tl);
2574 }else{
2575 if(!((i_regs->wasconst>>sl)&1))
2576 emit_andimm(sl,imm[i],tl);
2577 else
2578 emit_movimm(constmap[i][sl]&imm[i],tl);
2579 }
2580 }
2581 else
2582 emit_zeroreg(tl);
2583 if(th>=0) emit_zeroreg(th);
2584 }
2585 else
2586 {
2587 if(rs1[i]) {
2588 if(sl<0) {
2589 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2590 }
2591 if(th>=0) {
2592 if(sh<0) {
2593 emit_loadreg(rs1[i]|64,th);
2594 }else{
2595 emit_mov(sh,th);
2596 }
2597 }
2598 if(opcode[i]==0x0d) { //ORI
2599 if(sl<0) {
2600 emit_orimm(tl,imm[i],tl);
2601 }else{
2602 if(!((i_regs->wasconst>>sl)&1))
2603 emit_orimm(sl,imm[i],tl);
2604 else
2605 emit_movimm(constmap[i][sl]|imm[i],tl);
2606 }
2607 }
2608 if(opcode[i]==0x0e) { //XORI
2609 if(sl<0) {
2610 emit_xorimm(tl,imm[i],tl);
2611 }else{
2612 if(!((i_regs->wasconst>>sl)&1))
2613 emit_xorimm(sl,imm[i],tl);
2614 else
2615 emit_movimm(constmap[i][sl]^imm[i],tl);
2616 }
2617 }
2618 }
2619 else {
2620 emit_movimm(imm[i],tl);
2621 if(th>=0) emit_zeroreg(th);
2622 }
2623 }
2624 }
2625 }
2626 }
2627}
2628
2629static void shiftimm_assemble(int i,struct regstat *i_regs)
2630{
2631 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2632 {
2633 if(rt1[i]) {
2634 signed char s,t;
2635 t=get_reg(i_regs->regmap,rt1[i]);
2636 s=get_reg(i_regs->regmap,rs1[i]);
2637 //assert(t>=0);
2638 if(t>=0){
2639 if(rs1[i]==0)
2640 {
2641 emit_zeroreg(t);
2642 }
2643 else
2644 {
2645 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2646 if(imm[i]) {
2647 if(opcode2[i]==0) // SLL
2648 {
2649 emit_shlimm(s<0?t:s,imm[i],t);
2650 }
2651 if(opcode2[i]==2) // SRL
2652 {
2653 emit_shrimm(s<0?t:s,imm[i],t);
2654 }
2655 if(opcode2[i]==3) // SRA
2656 {
2657 emit_sarimm(s<0?t:s,imm[i],t);
2658 }
2659 }else{
2660 // Shift by zero
2661 if(s>=0 && s!=t) emit_mov(s,t);
2662 }
2663 }
2664 }
2665 //emit_storereg(rt1[i],t); //DEBUG
2666 }
2667 }
2668 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2669 {
2670 if(rt1[i]) {
2671 signed char sh,sl,th,tl;
2672 th=get_reg(i_regs->regmap,rt1[i]|64);
2673 tl=get_reg(i_regs->regmap,rt1[i]);
2674 sh=get_reg(i_regs->regmap,rs1[i]|64);
2675 sl=get_reg(i_regs->regmap,rs1[i]);
2676 if(tl>=0) {
2677 if(rs1[i]==0)
2678 {
2679 emit_zeroreg(tl);
2680 if(th>=0) emit_zeroreg(th);
2681 }
2682 else
2683 {
2684 assert(sl>=0);
2685 assert(sh>=0);
2686 if(imm[i]) {
2687 if(opcode2[i]==0x38) // DSLL
2688 {
2689 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2690 emit_shlimm(sl,imm[i],tl);
2691 }
2692 if(opcode2[i]==0x3a) // DSRL
2693 {
2694 emit_shrdimm(sl,sh,imm[i],tl);
2695 if(th>=0) emit_shrimm(sh,imm[i],th);
2696 }
2697 if(opcode2[i]==0x3b) // DSRA
2698 {
2699 emit_shrdimm(sl,sh,imm[i],tl);
2700 if(th>=0) emit_sarimm(sh,imm[i],th);
2701 }
2702 }else{
2703 // Shift by zero
2704 if(sl!=tl) emit_mov(sl,tl);
2705 if(th>=0&&sh!=th) emit_mov(sh,th);
2706 }
2707 }
2708 }
2709 }
2710 }
2711 if(opcode2[i]==0x3c) // DSLL32
2712 {
2713 if(rt1[i]) {
2714 signed char sl,tl,th;
2715 tl=get_reg(i_regs->regmap,rt1[i]);
2716 th=get_reg(i_regs->regmap,rt1[i]|64);
2717 sl=get_reg(i_regs->regmap,rs1[i]);
2718 if(th>=0||tl>=0){
2719 assert(tl>=0);
2720 assert(th>=0);
2721 assert(sl>=0);
2722 emit_mov(sl,th);
2723 emit_zeroreg(tl);
2724 if(imm[i]>32)
2725 {
2726 emit_shlimm(th,imm[i]&31,th);
2727 }
2728 }
2729 }
2730 }
2731 if(opcode2[i]==0x3e) // DSRL32
2732 {
2733 if(rt1[i]) {
2734 signed char sh,tl,th;
2735 tl=get_reg(i_regs->regmap,rt1[i]);
2736 th=get_reg(i_regs->regmap,rt1[i]|64);
2737 sh=get_reg(i_regs->regmap,rs1[i]|64);
2738 if(tl>=0){
2739 assert(sh>=0);
2740 emit_mov(sh,tl);
2741 if(th>=0) emit_zeroreg(th);
2742 if(imm[i]>32)
2743 {
2744 emit_shrimm(tl,imm[i]&31,tl);
2745 }
2746 }
2747 }
2748 }
2749 if(opcode2[i]==0x3f) // DSRA32
2750 {
2751 if(rt1[i]) {
2752 signed char sh,tl;
2753 tl=get_reg(i_regs->regmap,rt1[i]);
2754 sh=get_reg(i_regs->regmap,rs1[i]|64);
2755 if(tl>=0){
2756 assert(sh>=0);
2757 emit_mov(sh,tl);
2758 if(imm[i]>32)
2759 {
2760 emit_sarimm(tl,imm[i]&31,tl);
2761 }
2762 }
2763 }
2764 }
2765}
2766
2767#ifndef shift_assemble
2768void shift_assemble(int i,struct regstat *i_regs)
2769{
2770 DebugMessage(M64MSG_ERROR, "Need shift_assemble for this architecture.");
2771 exit(1);
2772}
2773#endif
2774
2775static void load_assemble(int i,struct regstat *i_regs)
2776{
2777 int s,th,tl,addr,map=-1,cache=-1;
2778 int offset;
2779 int jaddr=0;
2780 int memtarget,c=0;
2781 u_int hr,reglist=0;
2782 th=get_reg(i_regs->regmap,rt1[i]|64);
2783 tl=get_reg(i_regs->regmap,rt1[i]);
2784 s=get_reg(i_regs->regmap,rs1[i]);
2785 offset=imm[i];
2786 for(hr=0;hr<HOST_REGS;hr++) {
2787 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2788 }
2789 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2790 if(s>=0) {
2791 c=(i_regs->wasconst>>s)&1;
2792 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
2793 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2794 }
2795 if(tl<0) tl=get_reg(i_regs->regmap,-1);
2796 if(offset||s<0||c) addr=tl;
2797 else addr=s;
2798 //DebugMessage(M64MSG_VERBOSE, "load_assemble: c=%d",c);
2799 //if(c) DebugMessage(M64MSG_VERBOSE, "load_assemble: const=%x",(int)constmap[i][s]+offset);
2800 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2801 reglist&=~(1<<tl);
2802 if(th>=0) reglist&=~(1<<th);
2803 if(!using_tlb) {
2804 if(!c) {
2805 #ifdef RAM_OFFSET
2806 map=get_reg(i_regs->regmap,ROREG);
2807 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2808 #endif
2809//#define R29_HACK 1
2810 #ifdef R29_HACK
2811 // Strmnnrmn's speed hack
2812 if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
2813 #endif
2814 {
2815 emit_cmpimm(addr,0x800000);
2816 jaddr=(int)out;
2817 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2818 // Hint to branch predictor that the branch is unlikely to be taken
2819 if(rs1[i]>=28)
2820 emit_jno_unlikely(0);
2821 else
2822 #endif
2823 emit_jno(0);
2824 }
2825 }
2826 }else{ // using tlb
2827 int x=0;
2828 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2829 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2830 map=get_reg(i_regs->regmap,TLREG);
2831 cache=get_reg(i_regs->regmap,MMREG);
2832 assert(map>=0);
2833 reglist&=~(1<<map);
2834 map=do_tlb_r(addr,tl,map,cache,x,-1,-1,c,constmap[i][s]+offset);
2835 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2836 }
2837 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2838 if (opcode[i]==0x20) { // LB
2839 if(!c||memtarget) {
2840 if(!dummy) {
2841 #ifdef HOST_IMM_ADDR32
2842 if(c)
2843 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2844 else
2845 #endif
2846 {
2847 //emit_xorimm(addr,3,tl);
2848 //gen_tlb_addr_r(tl,map);
2849 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2850 int x=0;
2851 if(!c) emit_xorimm(addr,3,tl);
2852 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2853 emit_movsbl_indexed_tlb(x,tl,map,tl);
2854 }
2855 }
2856 if(jaddr)
2857 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2858 }
2859 else
2860 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2861 }
2862 if (opcode[i]==0x21) { // LH
2863 if(!c||memtarget) {
2864 if(!dummy) {
2865 #ifdef HOST_IMM_ADDR32
2866 if(c)
2867 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2868 else
2869 #endif
2870 {
2871 int x=0;
2872 if(!c) emit_xorimm(addr,2,tl);
2873 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2874 //#ifdef
2875 //emit_movswl_indexed_tlb(x,tl,map,tl);
2876 //else
2877 if(map>=0) {
2878 gen_tlb_addr_r(tl,map);
2879 emit_movswl_indexed(x,tl,tl);
2880 }else{
2881 #ifdef RAM_OFFSET
2882 emit_movswl_indexed(x,tl,tl);
2883 #else
2884 emit_movswl_indexed((int)rdram-0x80000000+x,tl,tl);
2885 #endif
2886 }
2887 }
2888 }
2889 if(jaddr)
2890 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2891 }
2892 else
2893 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2894 }
2895 if (opcode[i]==0x23) { // LW
2896 if(!c||memtarget) {
2897 if(!dummy) {
2898 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2899 #ifdef HOST_IMM_ADDR32
2900 if(c)
2901 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2902 else
2903 #endif
2904 emit_readword_indexed_tlb(0,addr,map,tl);
2905 }
2906 if(jaddr)
2907 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2908 }
2909 else
2910 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2911 }
2912 if (opcode[i]==0x24) { // LBU
2913 if(!c||memtarget) {
2914 if(!dummy) {
2915 #ifdef HOST_IMM_ADDR32
2916 if(c)
2917 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2918 else
2919 #endif
2920 {
2921 //emit_xorimm(addr,3,tl);
2922 //gen_tlb_addr_r(tl,map);
2923 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2924 int x=0;
2925 if(!c) emit_xorimm(addr,3,tl);
2926 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2927 emit_movzbl_indexed_tlb(x,tl,map,tl);
2928 }
2929 }
2930 if(jaddr)
2931 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2932 }
2933 else
2934 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2935 }
2936 if (opcode[i]==0x25) { // LHU
2937 if(!c||memtarget) {
2938 if(!dummy) {
2939 #ifdef HOST_IMM_ADDR32
2940 if(c)
2941 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2942 else
2943 #endif
2944 {
2945 int x=0;
2946 if(!c) emit_xorimm(addr,2,tl);
2947 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2948 //#ifdef
2949 //emit_movzwl_indexed_tlb(x,tl,map,tl);
2950 //#else
2951 if(map>=0) {
2952 gen_tlb_addr_r(tl,map);
2953 emit_movzwl_indexed(x,tl,tl);
2954 }else{
2955 #ifdef RAM_OFFSET
2956 emit_movzwl_indexed(x,tl,tl);
2957 #else
2958 emit_movzwl_indexed((int)rdram-0x80000000+x,tl,tl);
2959 #endif
2960 }
2961 }
2962 }
2963 if(jaddr)
2964 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2965 }
2966 else
2967 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2968 }
2969 if (opcode[i]==0x27) { // LWU
2970 assert(th>=0);
2971 if(!c||memtarget) {
2972 if(!dummy) {
2973 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2974 #ifdef HOST_IMM_ADDR32
2975 if(c)
2976 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2977 else
2978 #endif
2979 emit_readword_indexed_tlb(0,addr,map,tl);
2980 }
2981 if(jaddr)
2982 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2983 }
2984 else {
2985 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2986 }
2987 emit_zeroreg(th);
2988 }
2989 if (opcode[i]==0x37) { // LD
2990 if(!c||memtarget) {
2991 if(!dummy) {
2992 //gen_tlb_addr_r(tl,map);
2993 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2994 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2995 #ifdef HOST_IMM_ADDR32
2996 if(c)
2997 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2998 else
2999 #endif
3000 emit_readdword_indexed_tlb(0,addr,map,th,tl);
3001 }
3002 if(jaddr)
3003 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3004 }
3005 else
3006 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3007 }
3008 //emit_storereg(rt1[i],tl); // DEBUG
3009 //if(opcode[i]==0x23)
3010 //if(opcode[i]==0x24)
3011 //if(opcode[i]==0x23||opcode[i]==0x24)
3012 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3013 {
3014 //emit_pusha();
3015 save_regs(0x100f);
3016 emit_readword((int)&last_count,ECX);
3017 #if NEW_DYNAREC == NEW_DYNAREC_X86
3018 if(get_reg(i_regs->regmap,CCREG)<0)
3019 emit_loadreg(CCREG,HOST_CCREG);
3020 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3021 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3022 emit_writeword(HOST_CCREG,(int)&Count);
3023 #endif
3024 #if NEW_DYNAREC == NEW_DYNAREC_ARM
3025 if(get_reg(i_regs->regmap,CCREG)<0)
3026 emit_loadreg(CCREG,0);
3027 else
3028 emit_mov(HOST_CCREG,0);
3029 emit_add(0,ECX,0);
3030 emit_addimm(0,2*ccadj[i],0);
3031 emit_writeword(0,(int)&Count);
3032 #endif
3033 emit_call((int)memdebug);
3034 //emit_popa();
3035 restore_regs(0x100f);
3036 }*/
3037}
3038
3039#ifndef loadlr_assemble
3040static void loadlr_assemble(int i,struct regstat *i_regs)
3041{
3042 DebugMessage(M64MSG_ERROR, "Need loadlr_assemble for this architecture.");
3043 exit(1);
3044}
3045#endif
3046
3047static void store_assemble(int i,struct regstat *i_regs)
3048{
3049 int s,th,tl,map=-1,cache=-1;
3050 int addr,temp;
3051 int offset;
3052 int jaddr=0,jaddr2,type;
3053 int memtarget,c=0;
3054 int agr=AGEN1+(i&1);
3055 u_int hr,reglist=0;
3056 th=get_reg(i_regs->regmap,rs2[i]|64);
3057 tl=get_reg(i_regs->regmap,rs2[i]);
3058 s=get_reg(i_regs->regmap,rs1[i]);
3059 temp=get_reg(i_regs->regmap,agr);
3060 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3061 offset=imm[i];
3062 if(s>=0) {
3063 c=(i_regs->wasconst>>s)&1;
3064 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
3065 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3066 }
3067 assert(tl>=0);
3068 assert(temp>=0);
3069 for(hr=0;hr<HOST_REGS;hr++) {
3070 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3071 }
3072 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3073 if(offset||s<0||c) addr=temp;
3074 else addr=s;
3075 if(!using_tlb) {
3076 #ifdef RAM_OFFSET
3077 map=get_reg(i_regs->regmap,ROREG);
3078 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3079 #endif
3080 if(!c) {
3081 #ifdef R29_HACK
3082 // Strmnnrmn's speed hack
3083 memtarget=1;
3084 if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
3085 #endif
3086 emit_cmpimm(addr,0x800000);
3087 #ifdef DESTRUCTIVE_SHIFT
3088 if(s==addr) emit_mov(s,temp);
3089 #endif
3090 #ifdef R29_HACK
3091 if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
3092 #endif
3093 {
3094 jaddr=(int)out;
3095 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3096 // Hint to branch predictor that the branch is unlikely to be taken
3097 if(rs1[i]>=28)
3098 emit_jno_unlikely(0);
3099 else
3100 #endif
3101 emit_jno(0);
3102 }
3103 }
3104 }else{ // using tlb
3105 int x=0;
3106 if (opcode[i]==0x28) x=3; // SB
3107 if (opcode[i]==0x29) x=2; // SH
3108 map=get_reg(i_regs->regmap,TLREG);
3109 cache=get_reg(i_regs->regmap,MMREG);
3110 assert(map>=0);
3111 reglist&=~(1<<map);
3112 map=do_tlb_w(addr,temp,map,cache,x,c,constmap[i][s]+offset);
3113 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3114 }
3115
3116 if (opcode[i]==0x28) { // SB
3117 if(!c||memtarget) {
3118 int x=0;
3119 if(!c) emit_xorimm(addr,3,temp);
3120 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3121 //gen_tlb_addr_w(temp,map);
3122 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3123 emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3124 }
3125 type=STOREB_STUB;
3126 }
3127 if (opcode[i]==0x29) { // SH
3128 if(!c||memtarget) {
3129 int x=0;
3130 if(!c) emit_xorimm(addr,2,temp);
3131 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3132 //#ifdef
3133 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3134 //#else
3135 if(map>=0) {
3136 gen_tlb_addr_w(temp,map);
3137 emit_writehword_indexed(tl,x,temp);
3138 }else
3139 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3140 }
3141 type=STOREH_STUB;
3142 }
3143 if (opcode[i]==0x2B) { // SW
3144 if(!c||memtarget)
3145 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3146 emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3147 type=STOREW_STUB;
3148 }
3149 if (opcode[i]==0x3F) { // SD
3150 if(!c||memtarget) {
3151 if(rs2[i]) {
3152 assert(th>=0);
3153 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3154 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3155 emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3156 }else{
3157 // Store zero
3158 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3159 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3160 emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3161 }
3162 }
3163 type=STORED_STUB;
3164 }
3165 if(!using_tlb) {
3166 if(!c||memtarget) {
3167 #ifdef DESTRUCTIVE_SHIFT
3168 // The x86 shift operation is 'destructive'; it overwrites the
3169 // source register, so we need to make a copy first and use that.
3170 addr=temp;
3171 #endif
3172 #if defined(HOST_IMM8)
3173 int ir=get_reg(i_regs->regmap,INVCP);
3174 assert(ir>=0);
3175 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3176 #else
3177 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3178 #endif
3179 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3180 emit_callne(invalidate_addr_reg[addr]);
3181 #else
3182 jaddr2=(int)out;
3183 emit_jne(0);
3184 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3185 #endif
3186 }
3187 }
3188 if(jaddr) {
3189 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3190 } else if(c&&!memtarget) {
3191 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3192 }
3193 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3194 //if(opcode[i]==0x2B || opcode[i]==0x28)
3195 //if(opcode[i]==0x2B || opcode[i]==0x29)
3196 //if(opcode[i]==0x2B)
3197
3198// Uncomment for extra debug output:
3199/*
3200 if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3201 {
3202 #if NEW_DYNAREC == NEW_DYNAREC_X86
3203 emit_pusha();
3204 #endif
3205 #if NEW_DYNAREC == NEW_DYNAREC_ARM
3206 save_regs(0x100f);
3207 #endif
3208 emit_readword((int)&last_count,ECX);
3209 #if NEW_DYNAREC == NEW_DYNAREC_X86
3210 if(get_reg(i_regs->regmap,CCREG)<0)
3211 emit_loadreg(CCREG,HOST_CCREG);
3212 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3213 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3214 emit_writeword(HOST_CCREG,(int)&Count);
3215 #endif
3216 #if NEW_DYNAREC == NEW_DYNAREC_ARM
3217 if(get_reg(i_regs->regmap,CCREG)<0)
3218 emit_loadreg(CCREG,0);
3219 else
3220 emit_mov(HOST_CCREG,0);
3221 emit_add(0,ECX,0);
3222 emit_addimm(0,2*ccadj[i],0);
3223 emit_writeword(0,(int)&Count);
3224 #endif
3225 emit_call((int)memdebug);
3226 #if NEW_DYNAREC == NEW_DYNAREC_X86
3227 emit_popa();
3228 #endif
3229 #if NEW_DYNAREC == NEW_DYNAREC_ARM
3230 restore_regs(0x100f);
3231 #endif
3232 }
3233*/
3234}
3235
3236static void storelr_assemble(int i,struct regstat *i_regs)
3237{
3238 int s,th,tl;
3239 int temp;
3240 int temp2;
3241 int offset;
3242 int jaddr=0,jaddr2;
3243 int case1,case2,case3;
3244 int done0,done1,done2;
3245 int memtarget,c=0;
3246 int agr=AGEN1+(i&1);
3247 u_int hr,reglist=0;
3248 th=get_reg(i_regs->regmap,rs2[i]|64);
3249 tl=get_reg(i_regs->regmap,rs2[i]);
3250 s=get_reg(i_regs->regmap,rs1[i]);
3251 temp=get_reg(i_regs->regmap,agr);
3252 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3253 offset=imm[i];
3254 if(s>=0) {
3255 c=(i_regs->isconst>>s)&1;
3256 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
3257 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3258 }
3259 assert(tl>=0);
3260 for(hr=0;hr<HOST_REGS;hr++) {
3261 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3262 }
3263 assert(temp>=0);
3264 if(!using_tlb) {
3265 if(!c) {
3266 emit_cmpimm(s<0||offset?temp:s,0x800000);
3267 if(!offset&&s!=temp) emit_mov(s,temp);
3268 jaddr=(int)out;
3269 emit_jno(0);
3270 }
3271 else
3272 {
3273 if(!memtarget||!rs1[i]) {
3274 jaddr=(int)out;
3275 emit_jmp(0);
3276 }
3277 }
3278 #ifdef RAM_OFFSET
3279 int map=get_reg(i_regs->regmap,ROREG);
3280 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3281 gen_tlb_addr_w(temp,map);
3282 #else
3283 if((u_int)rdram!=0x80000000)
3284 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3285 #endif
3286 }else{ // using tlb
3287 int map=get_reg(i_regs->regmap,TLREG);
3288 int cache=get_reg(i_regs->regmap,MMREG);
3289 assert(map>=0);
3290 reglist&=~(1<<map);
3291 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,cache,0,c,constmap[i][s]+offset);
3292 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3293 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3294 if(!jaddr&&!memtarget) {
3295 jaddr=(int)out;
3296 emit_jmp(0);
3297 }
3298 gen_tlb_addr_w(temp,map);
3299 }
3300
3301 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3302 temp2=get_reg(i_regs->regmap,FTEMP);
3303 if(!rs2[i]) temp2=th=tl;
3304 }
3305
3306 emit_testimm(temp,2);
3307 case2=(int)out;
3308 emit_jne(0);
3309 emit_testimm(temp,1);
3310 case1=(int)out;
3311 emit_jne(0);
3312 // 0
3313 if (opcode[i]==0x2A) { // SWL
3314 emit_writeword_indexed(tl,0,temp);
3315 }
3316 if (opcode[i]==0x2E) { // SWR
3317 emit_writebyte_indexed(tl,3,temp);
3318 }
3319 if (opcode[i]==0x2C) { // SDL
3320 emit_writeword_indexed(th,0,temp);
3321 if(rs2[i]) emit_mov(tl,temp2);
3322 }
3323 if (opcode[i]==0x2D) { // SDR
3324 emit_writebyte_indexed(tl,3,temp);
3325 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3326 }
3327 done0=(int)out;
3328 emit_jmp(0);
3329 // 1
3330 set_jump_target(case1,(int)out);
3331 if (opcode[i]==0x2A) { // SWL
3332 // Write 3 msb into three least significant bytes
3333 if(rs2[i]) emit_rorimm(tl,8,tl);
3334 emit_writehword_indexed(tl,-1,temp);
3335 if(rs2[i]) emit_rorimm(tl,16,tl);
3336 emit_writebyte_indexed(tl,1,temp);
3337 if(rs2[i]) emit_rorimm(tl,8,tl);
3338 }
3339 if (opcode[i]==0x2E) { // SWR
3340 // Write two lsb into two most significant bytes
3341 emit_writehword_indexed(tl,1,temp);
3342 }
3343 if (opcode[i]==0x2C) { // SDL
3344 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3345 // Write 3 msb into three least significant bytes
3346 if(rs2[i]) emit_rorimm(th,8,th);
3347 emit_writehword_indexed(th,-1,temp);
3348 if(rs2[i]) emit_rorimm(th,16,th);
3349 emit_writebyte_indexed(th,1,temp);
3350 if(rs2[i]) emit_rorimm(th,8,th);
3351 }
3352 if (opcode[i]==0x2D) { // SDR
3353 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3354 // Write two lsb into two most significant bytes
3355 emit_writehword_indexed(tl,1,temp);
3356 }
3357 done1=(int)out;
3358 emit_jmp(0);
3359 // 2
3360 set_jump_target(case2,(int)out);
3361 emit_testimm(temp,1);
3362 case3=(int)out;
3363 emit_jne(0);
3364 if (opcode[i]==0x2A) { // SWL
3365 // Write two msb into two least significant bytes
3366 if(rs2[i]) emit_rorimm(tl,16,tl);
3367 emit_writehword_indexed(tl,-2,temp);
3368 if(rs2[i]) emit_rorimm(tl,16,tl);
3369 }
3370 if (opcode[i]==0x2E) { // SWR
3371 // Write 3 lsb into three most significant bytes
3372 emit_writebyte_indexed(tl,-1,temp);
3373 if(rs2[i]) emit_rorimm(tl,8,tl);
3374 emit_writehword_indexed(tl,0,temp);
3375 if(rs2[i]) emit_rorimm(tl,24,tl);
3376 }
3377 if (opcode[i]==0x2C) { // SDL
3378 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3379 // Write two msb into two least significant bytes
3380 if(rs2[i]) emit_rorimm(th,16,th);
3381 emit_writehword_indexed(th,-2,temp);
3382 if(rs2[i]) emit_rorimm(th,16,th);
3383 }
3384 if (opcode[i]==0x2D) { // SDR
3385 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3386 // Write 3 lsb into three most significant bytes
3387 emit_writebyte_indexed(tl,-1,temp);
3388 if(rs2[i]) emit_rorimm(tl,8,tl);
3389 emit_writehword_indexed(tl,0,temp);
3390 if(rs2[i]) emit_rorimm(tl,24,tl);
3391 }
3392 done2=(int)out;
3393 emit_jmp(0);
3394 // 3
3395 set_jump_target(case3,(int)out);
3396 if (opcode[i]==0x2A) { // SWL
3397 // Write msb into least significant byte
3398 if(rs2[i]) emit_rorimm(tl,24,tl);
3399 emit_writebyte_indexed(tl,-3,temp);
3400 if(rs2[i]) emit_rorimm(tl,8,tl);
3401 }
3402 if (opcode[i]==0x2E) { // SWR
3403 // Write entire word
3404 emit_writeword_indexed(tl,-3,temp);
3405 }
3406 if (opcode[i]==0x2C) { // SDL
3407 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3408 // Write msb into least significant byte
3409 if(rs2[i]) emit_rorimm(th,24,th);
3410 emit_writebyte_indexed(th,-3,temp);
3411 if(rs2[i]) emit_rorimm(th,8,th);
3412 }
3413 if (opcode[i]==0x2D) { // SDR
3414 if(rs2[i]) emit_mov(th,temp2);
3415 // Write entire word
3416 emit_writeword_indexed(tl,-3,temp);
3417 }
3418 set_jump_target(done0,(int)out);
3419 set_jump_target(done1,(int)out);
3420 set_jump_target(done2,(int)out);
3421 if (opcode[i]==0x2C) { // SDL
3422 emit_testimm(temp,4);
3423 done0=(int)out;
3424 emit_jne(0);
3425 emit_andimm(temp,~3,temp);
3426 emit_writeword_indexed(temp2,4,temp);
3427 set_jump_target(done0,(int)out);
3428 }
3429 if (opcode[i]==0x2D) { // SDR
3430 emit_testimm(temp,4);
3431 done0=(int)out;
3432 emit_jeq(0);
3433 emit_andimm(temp,~3,temp);
3434 emit_writeword_indexed(temp2,-4,temp);
3435 set_jump_target(done0,(int)out);
3436 }
3437 if(!c||!memtarget)
3438 add_stub(STORELR_STUB,jaddr,(int)out,0,(int)i_regs,rs2[i],ccadj[i],reglist);
3439 if(!using_tlb) {
3440 #ifdef RAM_OFFSET
3441 int map=get_reg(i_regs->regmap,ROREG);
3442 if(map<0) map=HOST_TEMPREG;
3443 gen_orig_addr_w(temp,map);
3444 #else
3445 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3446 #endif
3447 #if defined(HOST_IMM8)
3448 int ir=get_reg(i_regs->regmap,INVCP);
3449 assert(ir>=0);
3450 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3451 #else
3452 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3453 #endif
3454 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3455 emit_callne(invalidate_addr_reg[temp]);
3456 #else
3457 jaddr2=(int)out;
3458 emit_jne(0);
3459 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3460 #endif
3461 }
3462 /*
3463 emit_pusha();
3464 //save_regs(0x100f);
3465 emit_readword((int)&last_count,ECX);
3466 if(get_reg(i_regs->regmap,CCREG)<0)
3467 emit_loadreg(CCREG,HOST_CCREG);
3468 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3469 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3470 emit_writeword(HOST_CCREG,(int)&Count);
3471 emit_call((int)memdebug);
3472 emit_popa();
3473 //restore_regs(0x100f);
3474 */
3475}
3476
3477static void c1ls_assemble(int i,struct regstat *i_regs)
3478{
3479 int s,th,tl;
3480 int temp,ar;
3481 int map=-1;
3482 int offset;
3483 int c=0;
3484 int jaddr,jaddr2=0,jaddr3,type;
3485 int agr=AGEN1+(i&1);
3486 u_int hr,reglist=0;
3487 th=get_reg(i_regs->regmap,FTEMP|64);
3488 tl=get_reg(i_regs->regmap,FTEMP);
3489 s=get_reg(i_regs->regmap,rs1[i]);
3490 temp=get_reg(i_regs->regmap,agr);
3491 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3492 offset=imm[i];
3493 assert(tl>=0);
3494 assert(rs1[i]>0);
3495 assert(temp>=0);
3496 for(hr=0;hr<HOST_REGS;hr++) {
3497 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3498 }
3499 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3500 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3501 {
3502 // Loads use a temporary register which we need to save
3503 reglist|=1<<temp;
3504 }
3505 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3506 ar=temp;
3507 else // LWC1/LDC1
3508 ar=tl;
3509 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3510 //else c=(i_regs->wasconst>>s)&1;
3511 if(s>=0) c=(i_regs->wasconst>>s)&1;
3512 // Check cop1 unusable
3513 if(!cop1_usable) {
3514 signed char rs=get_reg(i_regs->regmap,CSREG);
3515 assert(rs>=0);
3516 emit_testimm(rs,0x20000000);
3517 jaddr=(int)out;
3518 emit_jeq(0);
3519 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3520 cop1_usable=1;
3521 }
3522 if (opcode[i]==0x39) { // SWC1 (get float address)
3523 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3524 }
3525 if (opcode[i]==0x3D) { // SDC1 (get double address)
3526 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3527 }
3528 // Generate address + offset
3529 if(!using_tlb) {
3530 #ifdef RAM_OFFSET
3531 if (!c||opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3532 {
3533 map=get_reg(i_regs->regmap,ROREG);
3534 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3535 }
3536 #endif
3537 if(!c)
3538 emit_cmpimm(offset||c||s<0?ar:s,0x800000);
3539 }
3540 else
3541 {
3542 map=get_reg(i_regs->regmap,TLREG);
3543 int cache=get_reg(i_regs->regmap,MMREG);
3544 assert(map>=0);
3545 reglist&=~(1<<map);
3546 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3547 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,cache,0,-1,-1,c,constmap[i][s]+offset);
3548 }
3549 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3550 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,cache,0,c,constmap[i][s]+offset);
3551 }
3552 }
3553 if (opcode[i]==0x39) { // SWC1 (read float)
3554 emit_readword_indexed(0,tl,tl);
3555 }
3556 if (opcode[i]==0x3D) { // SDC1 (read double)
3557 emit_readword_indexed(4,tl,th);
3558 emit_readword_indexed(0,tl,tl);
3559 }
3560 if (opcode[i]==0x31) { // LWC1 (get target address)
3561 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3562 }
3563 if (opcode[i]==0x35) { // LDC1 (get target address)
3564 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3565 }
3566 if(!using_tlb) {
3567 if(!c) {
3568 jaddr2=(int)out;
3569 emit_jno(0);
3570 }
3571 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80800000) {
3572 jaddr2=(int)out;
3573 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3574 }
3575 #ifdef DESTRUCTIVE_SHIFT
3576 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3577 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3578 }
3579 #endif
3580 }else{
3581 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3582 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3583 }
3584 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3585 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3586 }
3587 }
3588 if (opcode[i]==0x31) { // LWC1
3589 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3590 //gen_tlb_addr_r(ar,map);
3591 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3592 #ifdef HOST_IMM_ADDR32
3593 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3594 else
3595 #endif
3596 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3597 type=LOADW_STUB;
3598 }
3599 if (opcode[i]==0x35) { // LDC1
3600 assert(th>=0);
3601 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3602 //gen_tlb_addr_r(ar,map);
3603 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3604 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3605 #ifdef HOST_IMM_ADDR32
3606 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3607 else
3608 #endif
3609 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3610 type=LOADD_STUB;
3611 }
3612 if (opcode[i]==0x39) { // SWC1
3613 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3614 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3615 type=STOREW_STUB;
3616 }
3617 if (opcode[i]==0x3D) { // SDC1
3618 assert(th>=0);
3619 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3620 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3621 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3622 type=STORED_STUB;
3623 }
3624 if(!using_tlb) {
3625 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3626 #ifndef DESTRUCTIVE_SHIFT
3627 temp=offset||c||s<0?ar:s;
3628 #endif
3629 #if defined(HOST_IMM8)
3630 int ir=get_reg(i_regs->regmap,INVCP);
3631 assert(ir>=0);
3632 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3633 #else
3634 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3635 #endif
3636 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3637 emit_callne(invalidate_addr_reg[temp]);
3638 #else
3639 jaddr3=(int)out;
3640 emit_jne(0);
3641 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3642 #endif
3643 }
3644 }
3645 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3646 if (opcode[i]==0x31) { // LWC1 (write float)
3647 emit_writeword_indexed(tl,0,temp);
3648 }
3649 if (opcode[i]==0x35) { // LDC1 (write double)
3650 emit_writeword_indexed(th,4,temp);
3651 emit_writeword_indexed(tl,0,temp);
3652 }
3653 //if(opcode[i]==0x39)
3654 /*if(opcode[i]==0x39||opcode[i]==0x31)
3655 {
3656 emit_pusha();
3657 emit_readword((int)&last_count,ECX);
3658 if(get_reg(i_regs->regmap,CCREG)<0)
3659 emit_loadreg(CCREG,HOST_CCREG);
3660 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3661 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3662 emit_writeword(HOST_CCREG,(int)&Count);
3663 emit_call((int)memdebug);
3664 emit_popa();
3665 }*/
3666}
3667
3668#ifndef multdiv_assemble
3669void multdiv_assemble(int i,struct regstat *i_regs)
3670{
3671 DebugMessage(M64MSG_ERROR, "Need multdiv_assemble for this architecture.");
3672 exit(1);
3673}
3674#endif
3675
3676static void mov_assemble(int i,struct regstat *i_regs)
3677{
3678 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3679 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3680 if(rt1[i]) {
3681 signed char sh,sl,th,tl;
3682 th=get_reg(i_regs->regmap,rt1[i]|64);
3683 tl=get_reg(i_regs->regmap,rt1[i]);
3684 //assert(tl>=0);
3685 if(tl>=0) {
3686 sh=get_reg(i_regs->regmap,rs1[i]|64);
3687 sl=get_reg(i_regs->regmap,rs1[i]);
3688 if(sl>=0) emit_mov(sl,tl);
3689 else emit_loadreg(rs1[i],tl);
3690 if(th>=0) {
3691 if(sh>=0) emit_mov(sh,th);
3692 else emit_loadreg(rs1[i]|64,th);
3693 }
3694 }
3695 }
3696}
3697
3698#ifndef fconv_assemble
3699void fconv_assemble(int i,struct regstat *i_regs)
3700{
3701 DebugMessage(M64MSG_ERROR, "Need fconv_assemble for this architecture.");
3702 exit(1);
3703}
3704#endif
3705
3706#if 0
3707static void float_assemble(int i,struct regstat *i_regs)
3708{
3709 DebugMessage(M64MSG_ERROR, "Need float_assemble for this architecture.");
3710 exit(1);
3711}
3712#endif
3713
3714static void syscall_assemble(int i,struct regstat *i_regs)
3715{
3716 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3717 assert(ccreg==HOST_CCREG);
3718 assert(!is_delayslot);
3719 emit_movimm(start+i*4,EAX); // Get PC
3720 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3721 emit_jmp((int)jump_syscall);
3722}
3723
3724static void ds_assemble(int i,struct regstat *i_regs)
3725{
3726 is_delayslot=1;
3727 switch(itype[i]) {
3728 case ALU:
3729 alu_assemble(i,i_regs);break;
3730 case IMM16:
3731 imm16_assemble(i,i_regs);break;
3732 case SHIFT:
3733 shift_assemble(i,i_regs);break;
3734 case SHIFTIMM:
3735 shiftimm_assemble(i,i_regs);break;
3736 case LOAD:
3737 load_assemble(i,i_regs);break;
3738 case LOADLR:
3739 loadlr_assemble(i,i_regs);break;
3740 case STORE:
3741 store_assemble(i,i_regs);break;
3742 case STORELR:
3743 storelr_assemble(i,i_regs);break;
3744 case COP0:
3745 cop0_assemble(i,i_regs);break;
3746 case COP1:
3747 cop1_assemble(i,i_regs);break;
3748 case C1LS:
3749 c1ls_assemble(i,i_regs);break;
3750 case FCONV:
3751 fconv_assemble(i,i_regs);break;
3752 case FLOAT:
3753 float_assemble(i,i_regs);break;
3754 case FCOMP:
3755 fcomp_assemble(i,i_regs);break;
3756 case MULTDIV:
3757 multdiv_assemble(i,i_regs);break;
3758 case MOV:
3759 mov_assemble(i,i_regs);break;
3760 case SYSCALL:
3761 case SPAN:
3762 case UJUMP:
3763 case RJUMP:
3764 case CJUMP:
3765 case SJUMP:
3766 case FJUMP:
3767 DebugMessage(M64MSG_VERBOSE, "Jump in the delay slot. This is probably a bug.");
3768 }
3769 is_delayslot=0;
3770}
3771
3772// Is the branch target a valid internal jump?
3773static int internal_branch(uint64_t i_is32,int addr)
3774{
3775 if(addr&1) return 0; // Indirect (register) jump
3776 if(addr>=start && addr<start+slen*4-4)
3777 {
3778 int t=(addr-start)>>2;
3779 // Delay slots are not valid branch targets
3780 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3781 // 64 -> 32 bit transition requires a recompile
3782 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3783 {
3784 if(requires_32bit[t]&~i_is32) DebugMessage(M64MSG_VERBOSE, "optimizable: no");
3785 else DebugMessage(M64MSG_VERBOSE, "optimizable: yes");
3786 }*/
3787 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3788 if(requires_32bit[t]&~i_is32) return 0;
3789 else return 1;
3790 }
3791 return 0;
3792}
3793
3794#ifndef wb_invalidate
3795static void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3796 uint64_t u,uint64_t uu)
3797{
3798 int hr;
3799 for(hr=0;hr<HOST_REGS;hr++) {
3800 if(hr!=EXCLUDE_REG) {
3801 if(pre[hr]!=entry[hr]) {
3802 if(pre[hr]>=0) {
3803 if((dirty>>hr)&1) {
3804 if(get_reg(entry,pre[hr])<0) {
3805 if(pre[hr]<64) {
3806 if(!((u>>pre[hr])&1)) {
3807 emit_storereg(pre[hr],hr);
3808 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3809 emit_sarimm(hr,31,hr);
3810 emit_storereg(pre[hr]|64,hr);
3811 }
3812 }
3813 }else{
3814 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3815 emit_storereg(pre[hr],hr);
3816 }
3817 }
3818 }
3819 }
3820 }
3821 }
3822 }
3823 }
3824 // Move from one register to another (no writeback)
3825 for(hr=0;hr<HOST_REGS;hr++) {
3826 if(hr!=EXCLUDE_REG) {
3827 if(pre[hr]!=entry[hr]) {
3828 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3829 int nr;
3830 if((nr=get_reg(entry,pre[hr]))>=0) {
3831 emit_mov(hr,nr);
3832 }
3833 }
3834 }
3835 }
3836 }
3837}
3838#endif
3839
3840// Load the specified registers
3841// This only loads the registers given as arguments because
3842// we don't want to load things that will be overwritten
3843static void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3844{
3845 int hr;
3846 // Load 32-bit regs
3847 for(hr=0;hr<HOST_REGS;hr++) {
3848 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3849 if(entry[hr]!=regmap[hr]) {
3850 if(regmap[hr]==rs1||regmap[hr]==rs2)
3851 {
3852 if(regmap[hr]==0) {
3853 emit_zeroreg(hr);
3854 }
3855 else
3856 {
3857 emit_loadreg(regmap[hr],hr);
3858 }
3859 }
3860 }
3861 }
3862 }
3863 //Load 64-bit regs
3864 for(hr=0;hr<HOST_REGS;hr++) {
3865 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3866 if(entry[hr]!=regmap[hr]) {
3867 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3868 {
3869 assert(regmap[hr]!=64);
3870 if((is32>>(regmap[hr]&63))&1) {
3871 int lr=get_reg(regmap,regmap[hr]-64);
3872 if(lr>=0)
3873 emit_sarimm(lr,31,hr);
3874 else
3875 emit_loadreg(regmap[hr],hr);
3876 }
3877 else
3878 {
3879 emit_loadreg(regmap[hr],hr);
3880 }
3881 }
3882 }
3883 }
3884 }
3885}
3886
3887// Load registers prior to the start of a loop
3888// so that they are not loaded within the loop
3889static void loop_preload(signed char pre[],signed char entry[])
3890{
3891 int hr;
3892 for(hr=0;hr<HOST_REGS;hr++) {
3893 if(hr!=EXCLUDE_REG) {
3894 if(pre[hr]!=entry[hr]) {
3895 if(entry[hr]>=0) {
3896 if(get_reg(pre,entry[hr])<0) {
3897 assem_debug("loop preload:");
3898 //DebugMessage(M64MSG_VERBOSE, "loop preload: %d",hr);
3899 if(entry[hr]==0) {
3900 emit_zeroreg(hr);
3901 }
3902 else if(entry[hr]<TEMPREG)
3903 {
3904 emit_loadreg(entry[hr],hr);
3905 }
3906 else if(entry[hr]-64<TEMPREG)
3907 {
3908 emit_loadreg(entry[hr],hr);
3909 }
3910 }
3911 }
3912 }
3913 }
3914 }
3915}
3916
3917// Generate address for load/store instruction
3918static void address_generation(int i,struct regstat *i_regs,signed char entry[])
3919{
3920 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
3921 int ra;
3922 int agr=AGEN1+(i&1);
3923 int mgr=MGEN1+(i&1);
3924 if(itype[i]==LOAD) {
3925 ra=get_reg(i_regs->regmap,rt1[i]);
3926 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3927 assert(ra>=0);
3928 }
3929 if(itype[i]==LOADLR) {
3930 ra=get_reg(i_regs->regmap,FTEMP);
3931 }
3932 if(itype[i]==STORE||itype[i]==STORELR) {
3933 ra=get_reg(i_regs->regmap,agr);
3934 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3935 }
3936 if(itype[i]==C1LS) {
3937 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3938 ra=get_reg(i_regs->regmap,FTEMP);
3939 else { // SWC1/SDC1
3940 ra=get_reg(i_regs->regmap,agr);
3941 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3942 }
3943 }
3944 int rs=get_reg(i_regs->regmap,rs1[i]);
3945 int rm=get_reg(i_regs->regmap,TLREG);
3946 if(ra>=0) {
3947 int offset=imm[i];
3948 int c=(i_regs->wasconst>>rs)&1;
3949 if(rs1[i]==0) {
3950 // Using r0 as a base address
3951 /*if(rm>=0) {
3952 if(!entry||entry[rm]!=mgr) {
3953 generate_map_const(offset,rm);
3954 } // else did it in the previous cycle
3955 }*/
3956 if(!entry||entry[ra]!=agr) {
3957 if (opcode[i]==0x22||opcode[i]==0x26) {
3958 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3959 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3960 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3961 }else{
3962 emit_movimm(offset,ra);
3963 }
3964 } // else did it in the previous cycle
3965 }
3966 else if(rs<0) {
3967 if(!entry||entry[ra]!=rs1[i])
3968 emit_loadreg(rs1[i],ra);
3969 //if(!entry||entry[ra]!=rs1[i])
3970 // DebugMessage(M64MSG_VERBOSE, "poor load scheduling!");
3971 }
3972 else if(c) {
3973 if(rm>=0) {
3974 if(!entry||entry[rm]!=mgr) {
3975 if(itype[i]==STORE||itype[i]==STORELR||opcode[i]==0x39||opcode[i]==0x3D) {
3976 // Stores to memory go thru the mapper to detect self-modifying
3977 // code, loads don't.
3978 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
3979 (unsigned int)(constmap[i][rs]+offset)<0x80800000 )
3980 generate_map_const(constmap[i][rs]+offset,rm);
3981 }else{
3982 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
3983 generate_map_const(constmap[i][rs]+offset,rm);
3984 }
3985 }
3986 }
3987 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
3988 if(!entry||entry[ra]!=agr) {
3989 if (opcode[i]==0x22||opcode[i]==0x26) { // LWL/LWR
3990 #ifdef RAM_OFFSET
3991 if((signed int)constmap[i][rs]+offset<(signed int)0x80800000)
3992 emit_movimm(((constmap[i][rs]+offset)&0xFFFFFFFC)+(int)rdram-0x80000000,ra);
3993 else
3994 #endif
3995 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra);
3996 }else if (opcode[i]==0x1a||opcode[i]==0x1b) { // LDL/LDR
3997 #ifdef RAM_OFFSET
3998 if((signed int)constmap[i][rs]+offset<(signed int)0x80800000)
3999 emit_movimm(((constmap[i][rs]+offset)&0xFFFFFFF8)+(int)rdram-0x80000000,ra);
4000 else
4001 #endif
4002 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra);
4003 }else{
4004 #ifdef HOST_IMM_ADDR32
4005 if((itype[i]!=LOAD&&opcode[i]!=0x31&&opcode[i]!=0x35) ||
4006 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4007 #endif
4008 #ifdef RAM_OFFSET
4009 if((itype[i]==LOAD||opcode[i]==0x31||opcode[i]==0x35)&&(signed int)constmap[i][rs]+offset<(signed int)0x80800000)
4010 emit_movimm(constmap[i][rs]+offset+(int)rdram-0x80000000,ra);
4011 else
4012 #endif
4013 emit_movimm(constmap[i][rs]+offset,ra);
4014 }
4015 } // else did it in the previous cycle
4016 } // else load_consts already did it
4017 }
4018 if(offset&&!c&&rs1[i]) {
4019 if(rs>=0) {
4020 emit_addimm(rs,offset,ra);
4021 }else{
4022 emit_addimm(ra,offset,ra);
4023 }
4024 }
4025 }
4026 }
4027 // Preload constants for next instruction
4028 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS) {
4029 int agr,ra;
4030 #ifndef HOST_IMM_ADDR32
4031 // Mapper entry
4032 agr=MGEN1+((i+1)&1);
4033 ra=get_reg(i_regs->regmap,agr);
4034 if(ra>=0) {
4035 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4036 int offset=imm[i+1];
4037 int c=(regs[i+1].wasconst>>rs)&1;
4038 if(c) {
4039 if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) {
4040 // Stores to memory go thru the mapper to detect self-modifying
4041 // code, loads don't.
4042 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4043 (unsigned int)(constmap[i+1][rs]+offset)<0x80800000 )
4044 generate_map_const(constmap[i+1][rs]+offset,ra);
4045 }else{
4046 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4047 generate_map_const(constmap[i+1][rs]+offset,ra);
4048 }
4049 }
4050 /*else if(rs1[i]==0) {
4051 generate_map_const(offset,ra);
4052 }*/
4053 }
4054 #endif
4055 // Actual address
4056 agr=AGEN1+((i+1)&1);
4057 ra=get_reg(i_regs->regmap,agr);
4058 if(ra>=0) {
4059 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4060 int offset=imm[i+1];
4061 int c=(regs[i+1].wasconst>>rs)&1;
4062 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4063 if (opcode[i+1]==0x22||opcode[i+1]==0x26) { // LWL/LWR
4064 #ifdef RAM_OFFSET
4065 if((signed int)constmap[i+1][rs]+offset<(signed int)0x80800000)
4066 emit_movimm(((constmap[i+1][rs]+offset)&0xFFFFFFFC)+(int)rdram-0x80000000,ra);
4067 else
4068 #endif
4069 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra);
4070 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) { // LDL/LDR
4071 #ifdef RAM_OFFSET
4072 if((signed int)constmap[i+1][rs]+offset<(signed int)0x80800000)
4073 emit_movimm(((constmap[i+1][rs]+offset)&0xFFFFFFF8)+(int)rdram-0x80000000,ra);
4074 else
4075 #endif
4076 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra);
4077 }else{
4078 #ifdef HOST_IMM_ADDR32
4079 if((itype[i+1]!=LOAD&&opcode[i+1]!=0x31&&opcode[i+1]!=0x35) ||
4080 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4081 #endif
4082 #ifdef RAM_OFFSET
4083 if((itype[i+1]==LOAD||opcode[i+1]==0x31||opcode[i+1]==0x35)&&(signed int)constmap[i+1][rs]+offset<(signed int)0x80800000)
4084 emit_movimm(constmap[i+1][rs]+offset+(int)rdram-0x80000000,ra);
4085 else
4086 #endif
4087 emit_movimm(constmap[i+1][rs]+offset,ra);
4088 }
4089 }
4090 else if(rs1[i+1]==0) {
4091 // Using r0 as a base address
4092 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4093 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4094 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4095 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4096 }else{
4097 emit_movimm(offset,ra);
4098 }
4099 }
4100 }
4101 }
4102}
4103
4104static int get_final_value(int hr, int i, int *value)
4105{
4106 int reg=regs[i].regmap[hr];
4107 while(i<slen-1) {
4108 if(regs[i+1].regmap[hr]!=reg) break;
4109 if(!((regs[i+1].isconst>>hr)&1)) break;
4110 if(bt[i+1]) break;
4111 i++;
4112 }
4113 if(i<slen-1) {
4114 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4115 *value=constmap[i][hr];
4116 return 1;
4117 }
4118 if(!bt[i+1]) {
4119 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4120 // Load in delay slot, out-of-order execution
4121 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4122 {
4123 #ifdef HOST_IMM_ADDR32
4124 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4125 #endif
4126 #ifdef RAM_OFFSET
4127 if((signed int)constmap[i][hr]+imm[i+2]<(signed int)0x80800000)
4128 *value=constmap[i][hr]+imm[i+2]+(int)rdram-0x80000000;
4129 else
4130 #endif
4131 // Precompute load address
4132 *value=constmap[i][hr]+imm[i+2];
4133 return 1;
4134 }
4135 }
4136 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4137 {
4138 #ifdef HOST_IMM_ADDR32
4139 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4140 #endif
4141 #ifdef RAM_OFFSET
4142 if((signed int)constmap[i][hr]+imm[i+1]<(signed int)0x80800000)
4143 *value=constmap[i][hr]+imm[i+1]+(int)rdram-0x80000000;
4144 else
4145 #endif
4146 // Precompute load address
4147 *value=constmap[i][hr]+imm[i+1];
4148 //DebugMessage(M64MSG_VERBOSE, "c=%x imm=%x",(int)constmap[i][hr],imm[i+1]);
4149 return 1;
4150 }
4151 }
4152 }
4153 *value=constmap[i][hr];
4154 //DebugMessage(M64MSG_VERBOSE, "c=%x",(int)constmap[i][hr]);
4155 if(i==slen-1) return 1;
4156 if(reg<64) {
4157 return !((unneeded_reg[i+1]>>reg)&1);
4158 }else{
4159 return !((unneeded_reg_upper[i+1]>>reg)&1);
4160 }
4161}
4162
4163// Load registers with known constants
4164static void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4165{
4166 int hr;
4167 // Load 32-bit regs
4168 for(hr=0;hr<HOST_REGS;hr++) {
4169 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4170 //if(entry[hr]!=regmap[hr]) {
4171 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4172 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4173 int value;
4174 if(get_final_value(hr,i,&value)) {
4175 if(value==0) {
4176 emit_zeroreg(hr);
4177 }
4178 else {
4179 emit_movimm(value,hr);
4180 }
4181 }
4182 }
4183 }
4184 }
4185 }
4186 // Load 64-bit regs
4187 for(hr=0;hr<HOST_REGS;hr++) {
4188 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4189 //if(entry[hr]!=regmap[hr]) {
4190 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4191 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4192 if((is32>>(regmap[hr]&63))&1) {
4193 int lr=get_reg(regmap,regmap[hr]-64);
4194 assert(lr>=0);
4195 emit_sarimm(lr,31,hr);
4196 }
4197 else
4198 {
4199 int value;
4200 if(get_final_value(hr,i,&value)) {
4201 if(value==0) {
4202 emit_zeroreg(hr);
4203 }
4204 else {
4205 emit_movimm(value,hr);
4206 }
4207 }
4208 }
4209 }
4210 }
4211 }
4212 }
4213}
4214static void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4215{
4216 int hr;
4217 // Load 32-bit regs
4218 for(hr=0;hr<HOST_REGS;hr++) {
4219 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4220 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4221 int value=constmap[i][hr];
4222 if(value==0) {
4223 emit_zeroreg(hr);
4224 }
4225 else {
4226 emit_movimm(value,hr);
4227 }
4228 }
4229 }
4230 }
4231 // Load 64-bit regs
4232 for(hr=0;hr<HOST_REGS;hr++) {
4233 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4234 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4235 if((is32>>(regmap[hr]&63))&1) {
4236 int lr=get_reg(regmap,regmap[hr]-64);
4237 assert(lr>=0);
4238 emit_sarimm(lr,31,hr);
4239 }
4240 else
4241 {
4242 int value=constmap[i][hr];
4243 if(value==0) {
4244 emit_zeroreg(hr);
4245 }
4246 else {
4247 emit_movimm(value,hr);
4248 }
4249 }
4250 }
4251 }
4252 }
4253}
4254
4255// Write out all dirty registers (except cycle count)
4256static void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4257{
4258 int hr;
4259 for(hr=0;hr<HOST_REGS;hr++) {
4260 if(hr!=EXCLUDE_REG) {
4261 if(i_regmap[hr]>0) {
4262 if(i_regmap[hr]!=CCREG) {
4263 if((i_dirty>>hr)&1) {
4264 if(i_regmap[hr]<64) {
4265 emit_storereg(i_regmap[hr],hr);
4266 if( ((i_is32>>i_regmap[hr])&1) ) {
4267 #ifdef DESTRUCTIVE_WRITEBACK
4268 emit_sarimm(hr,31,hr);
4269 emit_storereg(i_regmap[hr]|64,hr);
4270 #else
4271 emit_sarimm(hr,31,HOST_TEMPREG);
4272 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4273 #endif
4274 }
4275 }else{
4276 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4277 emit_storereg(i_regmap[hr],hr);
4278 }
4279 }
4280 }
4281 }
4282 }
4283 }
4284 }
4285}
4286// Write out dirty registers that we need to reload (pair with load_needed_regs)
4287// This writes the registers not written by store_regs_bt
4288static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4289{
4290 int hr;
4291 int t=(addr-start)>>2;
4292 for(hr=0;hr<HOST_REGS;hr++) {
4293 if(hr!=EXCLUDE_REG) {
4294 if(i_regmap[hr]>0) {
4295 if(i_regmap[hr]!=CCREG) {
4296 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4297 if((i_dirty>>hr)&1) {
4298 if(i_regmap[hr]<64) {
4299 emit_storereg(i_regmap[hr],hr);
4300 if( ((i_is32>>i_regmap[hr])&1) ) {
4301 #ifdef DESTRUCTIVE_WRITEBACK
4302 emit_sarimm(hr,31,hr);
4303 emit_storereg(i_regmap[hr]|64,hr);
4304 #else
4305 emit_sarimm(hr,31,HOST_TEMPREG);
4306 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4307 #endif
4308 }
4309 }else{
4310 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4311 emit_storereg(i_regmap[hr],hr);
4312 }
4313 }
4314 }
4315 }
4316 }
4317 }
4318 }
4319 }
4320}
4321
4322// Load all registers (except cycle count)
4323static void load_all_regs(signed char i_regmap[])
4324{
4325 int hr;
4326 for(hr=0;hr<HOST_REGS;hr++) {
4327 if(hr!=EXCLUDE_REG) {
4328 if(i_regmap[hr]==0) {
4329 emit_zeroreg(hr);
4330 }
4331 else
4332 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4333 {
4334 emit_loadreg(i_regmap[hr],hr);
4335 }
4336 }
4337 }
4338}
4339
4340// Load all current registers also needed by next instruction
4341static void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4342{
4343 int hr;
4344 for(hr=0;hr<HOST_REGS;hr++) {
4345 if(hr!=EXCLUDE_REG) {
4346 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4347 if(i_regmap[hr]==0) {
4348 emit_zeroreg(hr);
4349 }
4350 else
4351 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4352 {
4353 emit_loadreg(i_regmap[hr],hr);
4354 }
4355 }
4356 }
4357 }
4358}
4359
4360// Load all regs, storing cycle count if necessary
4361static void load_regs_entry(int t)
4362{
4363 int hr;
4364 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4365 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4366 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4367 emit_storereg(CCREG,HOST_CCREG);
4368 }
4369 // Load 32-bit regs
4370 for(hr=0;hr<HOST_REGS;hr++) {
4371 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4372 if(regs[t].regmap_entry[hr]==0) {
4373 emit_zeroreg(hr);
4374 }
4375 else if(regs[t].regmap_entry[hr]!=CCREG)
4376 {
4377 emit_loadreg(regs[t].regmap_entry[hr],hr);
4378 }
4379 }
4380 }
4381 // Load 64-bit regs
4382 for(hr=0;hr<HOST_REGS;hr++) {
4383 if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4384 assert(regs[t].regmap_entry[hr]!=64);
4385 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4386 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4387 if(lr<0) {
4388 emit_loadreg(regs[t].regmap_entry[hr],hr);
4389 }
4390 else
4391 {
4392 emit_sarimm(lr,31,hr);
4393 }
4394 }
4395 else
4396 {
4397 emit_loadreg(regs[t].regmap_entry[hr],hr);
4398 }
4399 }
4400 }
4401}
4402
4403// Store dirty registers prior to branch
4404static void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4405{
4406 if(internal_branch(i_is32,addr))
4407 {
4408 int t=(addr-start)>>2;
4409 int hr;
4410 for(hr=0;hr<HOST_REGS;hr++) {
4411 if(hr!=EXCLUDE_REG) {
4412 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4413 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4414 if((i_dirty>>hr)&1) {
4415 if(i_regmap[hr]<64) {
4416 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4417 emit_storereg(i_regmap[hr],hr);
4418 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4419 #ifdef DESTRUCTIVE_WRITEBACK
4420 emit_sarimm(hr,31,hr);
4421 emit_storereg(i_regmap[hr]|64,hr);
4422 #else
4423 emit_sarimm(hr,31,HOST_TEMPREG);
4424 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4425 #endif
4426 }
4427 }
4428 }else{
4429 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4430 emit_storereg(i_regmap[hr],hr);
4431 }
4432 }
4433 }
4434 }
4435 }
4436 }
4437 }
4438 }
4439 else
4440 {
4441 // Branch out of this block, write out all dirty regs
4442 wb_dirtys(i_regmap,i_is32,i_dirty);
4443 }
4444}
4445
4446// Load all needed registers for branch target
4447static void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4448{
4449 //if(addr>=start && addr<(start+slen*4))
4450 if(internal_branch(i_is32,addr))
4451 {
4452 int t=(addr-start)>>2;
4453 int hr;
4454 // Store the cycle count before loading something else
4455 if(i_regmap[HOST_CCREG]!=CCREG) {
4456 assert(i_regmap[HOST_CCREG]==-1);
4457 }
4458 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4459 emit_storereg(CCREG,HOST_CCREG);
4460 }
4461 // Load 32-bit regs
4462 for(hr=0;hr<HOST_REGS;hr++) {
4463 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4464 #ifdef DESTRUCTIVE_WRITEBACK
4465 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4466 #else
4467 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4468 #endif
4469 if(regs[t].regmap_entry[hr]==0) {
4470 emit_zeroreg(hr);
4471 }
4472 else if(regs[t].regmap_entry[hr]!=CCREG)
4473 {
4474 emit_loadreg(regs[t].regmap_entry[hr],hr);
4475 }
4476 }
4477 }
4478 }
4479 //Load 64-bit regs
4480 for(hr=0;hr<HOST_REGS;hr++) {
4481 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4482 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4483 assert(regs[t].regmap_entry[hr]!=64);
4484 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4485 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4486 if(lr<0) {
4487 emit_loadreg(regs[t].regmap_entry[hr],hr);
4488 }
4489 else
4490 {
4491 emit_sarimm(lr,31,hr);
4492 }
4493 }
4494 else
4495 {
4496 emit_loadreg(regs[t].regmap_entry[hr],hr);
4497 }
4498 }
4499 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4500 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4501 assert(lr>=0);
4502 emit_sarimm(lr,31,hr);
4503 }
4504 }
4505 }
4506 }
4507}
4508
4509static int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4510{
4511 if(addr>=start && addr<start+slen*4-4)
4512 {
4513 int t=(addr-start)>>2;
4514 int hr;
4515 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4516 for(hr=0;hr<HOST_REGS;hr++)
4517 {
4518 if(hr!=EXCLUDE_REG)
4519 {
4520 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4521 {
4522 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4523 {
4524 return 0;
4525 }
4526 else
4527 if((i_dirty>>hr)&1)
4528 {
4529 if(i_regmap[hr]<TEMPREG)
4530 {
4531 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4532 return 0;
4533 }
4534 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4535 {
4536 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4537 return 0;
4538 }
4539 }
4540 }
4541 else // Same register but is it 32-bit or dirty?
4542 if(i_regmap[hr]>=0)
4543 {
4544 if(!((regs[t].dirty>>hr)&1))
4545 {
4546 if((i_dirty>>hr)&1)
4547 {
4548 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4549 {
4550 //DebugMessage(M64MSG_VERBOSE, "%x: dirty no match",addr);
4551 return 0;
4552 }
4553 }
4554 }
4555 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4556 {
4557 //DebugMessage(M64MSG_VERBOSE, "%x: is32 no match",addr);
4558 return 0;
4559 }
4560 }
4561 }
4562 }
4563 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4564 if(requires_32bit[t]&~i_is32) return 0;
4565 // Delay slots are not valid branch targets
4566 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4567 // Delay slots require additional processing, so do not match
4568 if(is_ds[t]) return 0;
4569 }
4570 else
4571 {
4572 int hr;
4573 for(hr=0;hr<HOST_REGS;hr++)
4574 {
4575 if(hr!=EXCLUDE_REG)
4576 {
4577 if(i_regmap[hr]>=0)
4578 {
4579 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4580 {
4581 if((i_dirty>>hr)&1)
4582 {
4583 return 0;
4584 }
4585 }
4586 }
4587 }
4588 }
4589 }
4590 return 1;
4591}
4592
4593// Used when a branch jumps into the delay slot of another branch
4594static void ds_assemble_entry(int i)
4595{
4596 int t=(ba[i]-start)>>2;
4597 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4598 assem_debug("Assemble delay slot at %x",ba[i]);
4599 assem_debug("<->");
4600 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4601 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4602 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4603 address_generation(t,&regs[t],regs[t].regmap_entry);
4604 if(itype[t]==LOAD||itype[t]==LOADLR||itype[t]==STORE||itype[t]==STORELR||itype[t]==C1LS)
4605 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,MMREG,ROREG);
4606 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39)
4607 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4608 cop1_usable=0;
4609 is_delayslot=0;
4610 switch(itype[t]) {
4611 case ALU:
4612 alu_assemble(t,&regs[t]);break;
4613 case IMM16:
4614 imm16_assemble(t,&regs[t]);break;
4615 case SHIFT:
4616 shift_assemble(t,&regs[t]);break;
4617 case SHIFTIMM:
4618 shiftimm_assemble(t,&regs[t]);break;
4619 case LOAD:
4620 load_assemble(t,&regs[t]);break;
4621 case LOADLR:
4622 loadlr_assemble(t,&regs[t]);break;
4623 case STORE:
4624 store_assemble(t,&regs[t]);break;
4625 case STORELR:
4626 storelr_assemble(t,&regs[t]);break;
4627 case COP0:
4628 cop0_assemble(t,&regs[t]);break;
4629 case COP1:
4630 cop1_assemble(t,&regs[t]);break;
4631 case C1LS:
4632 c1ls_assemble(t,&regs[t]);break;
4633 case FCONV:
4634 fconv_assemble(t,&regs[t]);break;
4635 case FLOAT:
4636 float_assemble(t,&regs[t]);break;
4637 case FCOMP:
4638 fcomp_assemble(t,&regs[t]);break;
4639 case MULTDIV:
4640 multdiv_assemble(t,&regs[t]);break;
4641 case MOV:
4642 mov_assemble(t,&regs[t]);break;
4643 case SYSCALL:
4644 case SPAN:
4645 case UJUMP:
4646 case RJUMP:
4647 case CJUMP:
4648 case SJUMP:
4649 case FJUMP:
4650 DebugMessage(M64MSG_VERBOSE, "Jump in the delay slot. This is probably a bug.");
4651 }
4652 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4653 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4654 if(internal_branch(regs[t].is32,ba[i]+4))
4655 assem_debug("branch: internal");
4656 else
4657 assem_debug("branch: external");
4658 assert(internal_branch(regs[t].is32,ba[i]+4));
4659 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4660 emit_jmp(0);
4661}
4662
4663static void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4664{
4665 int count;
4666 int jaddr;
4667 int idle=0;
4668 if(itype[i]==RJUMP)
4669 {
4670 *adj=0;
4671 }
4672 //if(ba[i]>=start && ba[i]<(start+slen*4))
4673 if(internal_branch(branch_regs[i].is32,ba[i]))
4674 {
4675 int t=(ba[i]-start)>>2;
4676 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4677 else *adj=ccadj[t];
4678 }
4679 else
4680 {
4681 *adj=0;
4682 }
4683 count=ccadj[i];
4684 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4685 // Idle loop
4686 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4687 idle=(int)out;
4688 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4689 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4690 jaddr=(int)out;
4691 emit_jmp(0);
4692 }
4693 else if(*adj==0||invert) {
4694 emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4695 jaddr=(int)out;
4696 emit_jns(0);
4697 }
4698 else
4699 {
4700 emit_cmpimm(HOST_CCREG,-CLOCK_DIVIDER*(count+2));
4701 jaddr=(int)out;
4702 emit_jns(0);
4703 }
4704 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4705}
4706
4707static void do_ccstub(int n)
4708{
4709 literal_pool(256);
4710 assem_debug("do_ccstub %x",start+stubs[n][4]*4);
4711 set_jump_target(stubs[n][1],(int)out);
4712 int i=stubs[n][4];
4713 if(stubs[n][6]==NULLDS) {
4714 // Delay slot instruction is nullified ("likely" branch)
4715 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4716 }
4717 else if(stubs[n][6]!=TAKEN) {
4718 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4719 }
4720 else {
4721 if(internal_branch(branch_regs[i].is32,ba[i]))
4722 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4723 }
4724 if(stubs[n][5]!=-1)
4725 {
4726 // Save PC as return address
4727 emit_movimm(stubs[n][5],EAX);
4728 emit_writeword(EAX,(int)&pcaddr);
4729 }
4730 else
4731 {
4732 // Return address depends on which way the branch goes
4733 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4734 {
4735 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4736 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4737 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4738 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4739 if(rs1[i]==0)
4740 {
4741 s1l=s2l;s1h=s2h;
4742 s2l=s2h=-1;
4743 }
4744 else if(rs2[i]==0)
4745 {
4746 s2l=s2h=-1;
4747 }
4748 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4749 s1h=s2h=-1;
4750 }
4751 assert(s1l>=0);
4752 #ifdef DESTRUCTIVE_WRITEBACK
4753 if(rs1[i]) {
4754 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4755 emit_loadreg(rs1[i],s1l);
4756 }
4757 else {
4758 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4759 emit_loadreg(rs2[i],s1l);
4760 }
4761 if(s2l>=0)
4762 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4763 emit_loadreg(rs2[i],s2l);
4764 #endif
4765 int hr=0;
4766 int addr,alt,ntaddr;
4767 while(hr<HOST_REGS)
4768 {
4769 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4770 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4771 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4772 {
4773 addr=hr++;break;
4774 }
4775 hr++;
4776 }
4777 while(hr<HOST_REGS)
4778 {
4779 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4780 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4781 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4782 {
4783 alt=hr++;break;
4784 }
4785 hr++;
4786 }
4787 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4788 {
4789 while(hr<HOST_REGS)
4790 {
4791 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4792 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4793 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4794 {
4795 ntaddr=hr;break;
4796 }
4797 hr++;
4798 }
4799 assert(hr<HOST_REGS);
4800 }
4801 if((opcode[i]&0x2f)==4) // BEQ
4802 {
4803 #ifdef HAVE_CMOV_IMM
4804 if(s1h<0) {
4805 if(s2l>=0) emit_cmp(s1l,s2l);
4806 else emit_test(s1l,s1l);
4807 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4808 }
4809 else
4810 #endif
4811 {
4812 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4813 if(s1h>=0) {
4814 if(s2h>=0) emit_cmp(s1h,s2h);
4815 else emit_test(s1h,s1h);
4816 emit_cmovne_reg(alt,addr);
4817 }
4818 if(s2l>=0) emit_cmp(s1l,s2l);
4819 else emit_test(s1l,s1l);
4820 emit_cmovne_reg(alt,addr);
4821 }
4822 }
4823 if((opcode[i]&0x2f)==5) // BNE
4824 {
4825 #ifdef HAVE_CMOV_IMM
4826 if(s1h<0) {
4827 if(s2l>=0) emit_cmp(s1l,s2l);
4828 else emit_test(s1l,s1l);
4829 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4830 }
4831 else
4832 #endif
4833 {
4834 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4835 if(s1h>=0) {
4836 if(s2h>=0) emit_cmp(s1h,s2h);
4837 else emit_test(s1h,s1h);
4838 emit_cmovne_reg(alt,addr);
4839 }
4840 if(s2l>=0) emit_cmp(s1l,s2l);
4841 else emit_test(s1l,s1l);
4842 emit_cmovne_reg(alt,addr);
4843 }
4844 }
4845 if((opcode[i]&0x2f)==6) // BLEZ
4846 {
4847 //emit_movimm(ba[i],alt);
4848 //emit_movimm(start+i*4+8,addr);
4849 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4850 emit_cmpimm(s1l,1);
4851 if(s1h>=0) emit_mov(addr,ntaddr);
4852 emit_cmovl_reg(alt,addr);
4853 if(s1h>=0) {
4854 emit_test(s1h,s1h);
4855 emit_cmovne_reg(ntaddr,addr);
4856 emit_cmovs_reg(alt,addr);
4857 }
4858 }
4859 if((opcode[i]&0x2f)==7) // BGTZ
4860 {
4861 //emit_movimm(ba[i],addr);
4862 //emit_movimm(start+i*4+8,ntaddr);
4863 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4864 emit_cmpimm(s1l,1);
4865 if(s1h>=0) emit_mov(addr,alt);
4866 emit_cmovl_reg(ntaddr,addr);
4867 if(s1h>=0) {
4868 emit_test(s1h,s1h);
4869 emit_cmovne_reg(alt,addr);
4870 emit_cmovs_reg(ntaddr,addr);
4871 }
4872 }
4873 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4874 {
4875 //emit_movimm(ba[i],alt);
4876 //emit_movimm(start+i*4+8,addr);
4877 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4878 if(s1h>=0) emit_test(s1h,s1h);
4879 else emit_test(s1l,s1l);
4880 emit_cmovs_reg(alt,addr);
4881 }
4882 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4883 {
4884 //emit_movimm(ba[i],addr);
4885 //emit_movimm(start+i*4+8,alt);
4886 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4887 if(s1h>=0) emit_test(s1h,s1h);
4888 else emit_test(s1l,s1l);
4889 emit_cmovs_reg(alt,addr);
4890 }
4891 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4892 if(source[i]&0x10000) // BC1T
4893 {
4894 //emit_movimm(ba[i],alt);
4895 //emit_movimm(start+i*4+8,addr);
4896 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4897 emit_testimm(s1l,0x800000);
4898 emit_cmovne_reg(alt,addr);
4899 }
4900 else // BC1F
4901 {
4902 //emit_movimm(ba[i],addr);
4903 //emit_movimm(start+i*4+8,alt);
4904 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4905 emit_testimm(s1l,0x800000);
4906 emit_cmovne_reg(alt,addr);
4907 }
4908 }
4909 emit_writeword(addr,(int)&pcaddr);
4910 }
4911 else
4912 if(itype[i]==RJUMP)
4913 {
4914 int r=get_reg(branch_regs[i].regmap,rs1[i]);
4915 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4916 r=get_reg(branch_regs[i].regmap,RTEMP);
4917 }
4918 emit_writeword(r,(int)&pcaddr);
4919 }
4920 else {DebugMessage(M64MSG_ERROR, "Unknown branch type in do_ccstub");exit(1);}
4921 }
4922 // Update cycle count
4923 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4924 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4925 emit_call((int)cc_interrupt);
4926 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4927 if(stubs[n][6]==TAKEN) {
4928 if(internal_branch(branch_regs[i].is32,ba[i]))
4929 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4930 else if(itype[i]==RJUMP) {
4931 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4932 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4933 else
4934 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4935 }
4936 }else if(stubs[n][6]==NOTTAKEN) {
4937 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4938 else load_all_regs(branch_regs[i].regmap);
4939 }else if(stubs[n][6]==NULLDS) {
4940 // Delay slot instruction is nullified ("likely" branch)
4941 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4942 else load_all_regs(regs[i].regmap);
4943 }else{
4944 load_all_regs(branch_regs[i].regmap);
4945 }
4946 emit_jmp(stubs[n][2]); // return address
4947
4948 /* This works but uses a lot of memory...
4949 emit_readword((int)&last_count,ECX);
4950 emit_add(HOST_CCREG,ECX,EAX);
4951 emit_writeword(EAX,(int)&Count);
4952 emit_call((int)gen_interupt);
4953 emit_readword((int)&Count,HOST_CCREG);
4954 emit_readword((int)&next_interupt,EAX);
4955 emit_readword((int)&pending_exception,EBX);
4956 emit_writeword(EAX,(int)&last_count);
4957 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
4958 emit_test(EBX,EBX);
4959 int jne_instr=(int)out;
4960 emit_jne(0);
4961 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
4962 load_all_regs(branch_regs[i].regmap);
4963 emit_jmp(stubs[n][2]); // return address
4964 set_jump_target(jne_instr,(int)out);
4965 emit_readword((int)&pcaddr,EAX);
4966 // Call get_addr_ht instead of doing the hash table here.
4967 // This code is executed infrequently and takes up a lot of space
4968 // so smaller is better.
4969 emit_storereg(CCREG,HOST_CCREG);
4970 emit_pushreg(EAX);
4971 emit_call((int)get_addr_ht);
4972 emit_loadreg(CCREG,HOST_CCREG);
4973 emit_addimm(ESP,4,ESP);
4974 emit_jmpreg(EAX);*/
4975}
4976
4977static void add_to_linker(int addr,int target,int ext)
4978{
4979 link_addr[linkcount][0]=addr;
4980 link_addr[linkcount][1]=target;
4981 link_addr[linkcount][2]=ext;
4982 linkcount++;
4983}
4984
4985static void ujump_assemble(int i,struct regstat *i_regs)
4986{
4987 #ifdef REG_PREFETCH
4988 signed char *i_regmap=i_regs->regmap;
4989 #endif
4990 if(i==(ba[i]-start)>>2) assem_debug("idle loop");
4991 address_generation(i+1,i_regs,regs[i].regmap_entry);
4992 #ifdef REG_PREFETCH
4993 int temp=get_reg(branch_regs[i].regmap,PTEMP);
4994 if(rt1[i]==31&&temp>=0)
4995 {
4996 int return_address=start+i*4+8;
4997 if(get_reg(branch_regs[i].regmap,31)>0)
4998 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4999 }
5000 #endif
5001 ds_assemble(i+1,i_regs);
5002 uint64_t bc_unneeded=branch_regs[i].u;
5003 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5004 bc_unneeded|=1|(1LL<<rt1[i]);
5005 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5006 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5007 bc_unneeded,bc_unneeded_upper);
5008 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5009 if(rt1[i]==31) {
5010 int rt;
5011 unsigned int return_address;
5012 assert(rt1[i+1]!=31);
5013 assert(rt2[i+1]!=31);
5014 rt=get_reg(branch_regs[i].regmap,31);
5015 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5016 //assert(rt>=0);
5017 return_address=start+i*4+8;
5018 if(rt>=0) {
5019 #ifdef USE_MINI_HT
5020 if(internal_branch(branch_regs[i].is32,return_address)) {
5021 int temp=rt+1;
5022 if(temp==EXCLUDE_REG||temp>=HOST_REGS||
5023 branch_regs[i].regmap[temp]>=0)
5024 {
5025 temp=get_reg(branch_regs[i].regmap,-1);
5026 }
5027 #ifdef HOST_TEMPREG
5028 if(temp<0) temp=HOST_TEMPREG;
5029 #endif
5030 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5031 else emit_movimm(return_address,rt);
5032 }
5033 else
5034 #endif
5035 {
5036 #ifdef REG_PREFETCH
5037 if(temp>=0)
5038 {
5039 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5040 }
5041 #endif
5042 emit_movimm(return_address,rt); // PC into link register
5043 #ifdef IMM_PREFETCH
5044 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5045 #endif
5046 }
5047 }
5048 }
5049 int cc,adj;
5050 cc=get_reg(branch_regs[i].regmap,CCREG);
5051 assert(cc==HOST_CCREG);
5052 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5053 #ifdef REG_PREFETCH
5054 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5055 #endif
5056 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5057 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5058 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5059 if(internal_branch(branch_regs[i].is32,ba[i]))
5060 assem_debug("branch: internal");
5061 else
5062 assem_debug("branch: external");
5063 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5064 ds_assemble_entry(i);
5065 }
5066 else {
5067 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5068 emit_jmp(0);
5069 }
5070}
5071
5072static void rjump_assemble(int i,struct regstat *i_regs)
5073{
5074 #ifdef REG_PREFETCH
5075 signed char *i_regmap=i_regs->regmap;
5076 #endif
5077 int temp;
5078 int rs,cc;
5079 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5080 assert(rs>=0);
5081 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5082 // Delay slot abuse, make a copy of the branch address register
5083 temp=get_reg(branch_regs[i].regmap,RTEMP);
5084 assert(temp>=0);
5085 assert(regs[i].regmap[temp]==RTEMP);
5086 emit_mov(rs,temp);
5087 rs=temp;
5088 }
5089 address_generation(i+1,i_regs,regs[i].regmap_entry);
5090 #ifdef REG_PREFETCH
5091 if(rt1[i]==31)
5092 {
5093 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5094 int return_address=start+i*4+8;
5095 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5096 }
5097 }
5098 #endif
5099 #ifdef USE_MINI_HT
5100 if(rs1[i]==31) {
5101 int rh=get_reg(regs[i].regmap,RHASH);
5102 if(rh>=0) do_preload_rhash(rh);
5103 }
5104 #endif
5105 ds_assemble(i+1,i_regs);
5106 uint64_t bc_unneeded=branch_regs[i].u;
5107 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5108 bc_unneeded|=1|(1LL<<rt1[i]);
5109 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5110 bc_unneeded&=~(1LL<<rs1[i]);
5111 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5112 bc_unneeded,bc_unneeded_upper);
5113 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5114 if(rt1[i]!=0) {
5115 int rt,return_address;
5116 assert(rt1[i+1]!=rt1[i]);
5117 assert(rt2[i+1]!=rt1[i]);
5118 rt=get_reg(branch_regs[i].regmap,rt1[i]);
5119 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5120 assert(rt>=0);
5121 return_address=start+i*4+8;
5122 #ifdef REG_PREFETCH
5123 if(temp>=0)
5124 {
5125 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5126 }
5127 #endif
5128 emit_movimm(return_address,rt); // PC into link register
5129 #ifdef IMM_PREFETCH
5130 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5131 #endif
5132 }
5133 cc=get_reg(branch_regs[i].regmap,CCREG);
5134 assert(cc==HOST_CCREG);
5135 #ifdef USE_MINI_HT
5136 int rh=get_reg(branch_regs[i].regmap,RHASH);
5137 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5138 if(rs1[i]==31) {
5139 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5140 do_preload_rhtbl(ht);
5141 do_rhash(rs,rh);
5142 }
5143 #endif
5144 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5145 #ifdef DESTRUCTIVE_WRITEBACK
5146 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5147 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5148 emit_loadreg(rs1[i],rs);
5149 }
5150 }
5151 #endif
5152 #ifdef REG_PREFETCH
5153 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5154 #endif
5155 #ifdef USE_MINI_HT
5156 if(rs1[i]==31) {
5157 do_miniht_load(ht,rh);
5158 }
5159 #endif
5160 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5161 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5162 //assert(adj==0);
5163 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5164 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5165 emit_jns(0);
5166 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5167 #ifdef USE_MINI_HT
5168 if(rs1[i]==31) {
5169 do_miniht_jump(rs,rh,ht);
5170 }
5171 else
5172 #endif
5173 {
5174 //if(rs!=EAX) emit_mov(rs,EAX);
5175 //emit_jmp((int)jump_vaddr_eax);
5176 emit_jmp(jump_vaddr_reg[rs]);
5177 }
5178 /* Check hash table
5179 temp=!rs;
5180 emit_mov(rs,temp);
5181 emit_shrimm(rs,16,rs);
5182 emit_xor(temp,rs,rs);
5183 emit_movzwl_reg(rs,rs);
5184 emit_shlimm(rs,4,rs);
5185 emit_cmpmem_indexed((int)hash_table,rs,temp);
5186 emit_jne((int)out+14);
5187 emit_readword_indexed((int)hash_table+4,rs,rs);
5188 emit_jmpreg(rs);
5189 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5190 emit_addimm_no_flags(8,rs);
5191 emit_jeq((int)out-17);
5192 // No hit on hash table, call compiler
5193 emit_pushreg(temp);
5194//DEBUG >
5195#ifdef DEBUG_CYCLE_COUNT
5196 emit_readword((int)&last_count,ECX);
5197 emit_add(HOST_CCREG,ECX,HOST_CCREG);
5198 emit_readword((int)&next_interupt,ECX);
5199 emit_writeword(HOST_CCREG,(int)&Count);
5200 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5201 emit_writeword(ECX,(int)&last_count);
5202#endif
5203//DEBUG <
5204 emit_storereg(CCREG,HOST_CCREG);
5205 emit_call((int)get_addr);
5206 emit_loadreg(CCREG,HOST_CCREG);
5207 emit_addimm(ESP,4,ESP);
5208 emit_jmpreg(EAX);*/
5209 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5210 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5211 #endif
5212}
5213
5214static void cjump_assemble(int i,struct regstat *i_regs)
5215{
5216 signed char *i_regmap=i_regs->regmap;
5217 int cc;
5218 int match;
5219 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5220 assem_debug("match=%d",match);
5221 int s1h,s1l,s2h,s2l;
5222 int prev_cop1_usable=cop1_usable;
5223 int unconditional=0,nop=0;
5224 int only32=0;
5225 int invert=0;
5226 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5227 if(i==(ba[i]-start)>>2) assem_debug("idle loop");
5228 if(!match) invert=1;
5229 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5230 if(i>(ba[i]-start)>>2) invert=1;
5231 #endif
5232
5233 if(ooo[i]) {
5234 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5235 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5236 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5237 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5238 }
5239 else {
5240 s1l=get_reg(i_regmap,rs1[i]);
5241 s1h=get_reg(i_regmap,rs1[i]|64);
5242 s2l=get_reg(i_regmap,rs2[i]);
5243 s2h=get_reg(i_regmap,rs2[i]|64);
5244 }
5245 if(rs1[i]==0&&rs2[i]==0)
5246 {
5247 if(opcode[i]&1) nop=1;
5248 else unconditional=1;
5249 //assert(opcode[i]!=5);
5250 //assert(opcode[i]!=7);
5251 //assert(opcode[i]!=0x15);
5252 //assert(opcode[i]!=0x17);
5253 }
5254 else if(rs1[i]==0)
5255 {
5256 s1l=s2l;s1h=s2h;
5257 s2l=s2h=-1;
5258 only32=(regs[i].was32>>rs2[i])&1;
5259 }
5260 else if(rs2[i]==0)
5261 {
5262 s2l=s2h=-1;
5263 only32=(regs[i].was32>>rs1[i])&1;
5264 }
5265 else {
5266 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5267 }
5268
5269 if(ooo[i]) {
5270 // Out of order execution (delay slot first)
5271 //DebugMessage(M64MSG_VERBOSE, "OOOE");
5272 address_generation(i+1,i_regs,regs[i].regmap_entry);
5273 ds_assemble(i+1,i_regs);
5274 int adj;
5275 uint64_t bc_unneeded=branch_regs[i].u;
5276 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5277 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5278 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5279 bc_unneeded|=1;
5280 bc_unneeded_upper|=1;
5281 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5282 bc_unneeded,bc_unneeded_upper);
5283 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5284 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5285 cc=get_reg(branch_regs[i].regmap,CCREG);
5286 assert(cc==HOST_CCREG);
5287 if(unconditional)
5288 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5289 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5290 //assem_debug("cycle count (adj)");
5291 if(unconditional) {
5292 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5293 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5294 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5295 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5296 if(internal)
5297 assem_debug("branch: internal");
5298 else
5299 assem_debug("branch: external");
5300 if(internal&&is_ds[(ba[i]-start)>>2]) {
5301 ds_assemble_entry(i);
5302 }
5303 else {
5304 add_to_linker((int)out,ba[i],internal);
5305 emit_jmp(0);
5306 }
5307 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5308 if(((u_int)out)&7) emit_addnop(0);
5309 #endif
5310 }
5311 }
5312 else if(nop) {
5313 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5314 int jaddr=(int)out;
5315 emit_jns(0);
5316 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5317 }
5318 else {
5319 int taken=0,nottaken=0,nottaken1=0;
5320 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5321 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5322 if(!only32)
5323 {
5324 assert(s1h>=0);
5325 if(opcode[i]==4) // BEQ
5326 {
5327 if(s2h>=0) emit_cmp(s1h,s2h);
5328 else emit_test(s1h,s1h);
5329 nottaken1=(int)out;
5330 emit_jne(1);
5331 }
5332 if(opcode[i]==5) // BNE
5333 {
5334 if(s2h>=0) emit_cmp(s1h,s2h);
5335 else emit_test(s1h,s1h);
5336 if(invert) taken=(int)out;
5337 else add_to_linker((int)out,ba[i],internal);
5338 emit_jne(0);
5339 }
5340 if(opcode[i]==6) // BLEZ
5341 {
5342 emit_test(s1h,s1h);
ce68e3b9 5343// emit_testimm(s1h,0);
451ab91e 5344 if(invert) taken=(int)out;
5345 else add_to_linker((int)out,ba[i],internal);
5346 emit_js(0);
5347 nottaken1=(int)out;
5348 emit_jne(1);
5349 }
5350 if(opcode[i]==7) // BGTZ
5351 {
5352 emit_test(s1h,s1h);
ce68e3b9 5353// emit_testimm(s1h,0);
451ab91e 5354 nottaken1=(int)out;
5355 emit_js(1);
5356 if(invert) taken=(int)out;
5357 else add_to_linker((int)out,ba[i],internal);
5358 emit_jne(0);
5359 }
5360 } // if(!only32)
5361
5362 //DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5363 assert(s1l>=0);
5364 if(opcode[i]==4) // BEQ
5365 {
5366 if(s2l>=0) emit_cmp(s1l,s2l);
5367 else emit_test(s1l,s1l);
5368 if(invert){
5369 nottaken=(int)out;
5370 emit_jne(1);
5371 }else{
5372 add_to_linker((int)out,ba[i],internal);
5373 emit_jeq(0);
5374 }
5375 }
5376 if(opcode[i]==5) // BNE
5377 {
5378 if(s2l>=0) emit_cmp(s1l,s2l);
5379 else emit_test(s1l,s1l);
5380 if(invert){
5381 nottaken=(int)out;
5382 emit_jeq(1);
5383 }else{
5384 add_to_linker((int)out,ba[i],internal);
5385 emit_jne(0);
5386 }
5387 }
5388 if(opcode[i]==6) // BLEZ
5389 {
5390 emit_cmpimm(s1l,1);
5391 if(invert){
5392 nottaken=(int)out;
5393 emit_jge(1);
5394 }else{
5395 add_to_linker((int)out,ba[i],internal);
5396 emit_jl(0);
5397 }
5398 }
5399 if(opcode[i]==7) // BGTZ
5400 {
5401 emit_cmpimm(s1l,1);
5402 if(invert){
5403 nottaken=(int)out;
5404 emit_jl(1);
5405 }else{
5406 add_to_linker((int)out,ba[i],internal);
5407 emit_jge(0);
5408 }
5409 }
5410 if(invert) {
5411 if(taken) set_jump_target(taken,(int)out);
5412 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5413 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5414 if(adj) {
5415 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5416 add_to_linker((int)out,ba[i],internal);
5417 }else{
5418 emit_addnop(13);
5419 add_to_linker((int)out,ba[i],internal*2);
5420 }
5421 emit_jmp(0);
5422 }else
5423 #endif
5424 {
5425 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5426 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5427 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5428 if(internal)
5429 assem_debug("branch: internal");
5430 else
5431 assem_debug("branch: external");
5432 if(internal&&is_ds[(ba[i]-start)>>2]) {
5433 ds_assemble_entry(i);
5434 }
5435 else {
5436 add_to_linker((int)out,ba[i],internal);
5437 emit_jmp(0);
5438 }
5439 }
5440 set_jump_target(nottaken,(int)out);
5441 }
5442
5443 if(nottaken1) set_jump_target(nottaken1,(int)out);
5444 if(adj) {
5445 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5446 }
5447 } // (!unconditional)
5448 } // if(ooo)
5449 else
5450 {
5451 // In-order execution (branch first)
5452 //if(likely[i]) DebugMessage(M64MSG_VERBOSE, "IOL");
5453 //else
5454 //DebugMessage(M64MSG_VERBOSE, "IOE");
5455 int taken=0,nottaken=0,nottaken1=0;
5456 if(!unconditional&&!nop) {
5457 if(!only32)
5458 {
5459 assert(s1h>=0);
5460 if((opcode[i]&0x2f)==4) // BEQ
5461 {
5462 if(s2h>=0) emit_cmp(s1h,s2h);
5463 else emit_test(s1h,s1h);
5464 nottaken1=(int)out;
5465 emit_jne(2);
5466 }
5467 if((opcode[i]&0x2f)==5) // BNE
5468 {
5469 if(s2h>=0) emit_cmp(s1h,s2h);
5470 else emit_test(s1h,s1h);
5471 taken=(int)out;
5472 emit_jne(1);
5473 }
5474 if((opcode[i]&0x2f)==6) // BLEZ
5475 {
5476 emit_test(s1h,s1h);
5477 taken=(int)out;
5478 emit_js(1);
5479 nottaken1=(int)out;
5480 emit_jne(2);
5481 }
5482 if((opcode[i]&0x2f)==7) // BGTZ
5483 {
5484 emit_test(s1h,s1h);
5485 nottaken1=(int)out;
5486 emit_js(2);
5487 taken=(int)out;
5488 emit_jne(1);
5489 }
5490 } // if(!only32)
5491
5492 //DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5493 assert(s1l>=0);
5494 if((opcode[i]&0x2f)==4) // BEQ
5495 {
5496 if(s2l>=0) emit_cmp(s1l,s2l);
5497 else emit_test(s1l,s1l);
5498 nottaken=(int)out;
5499 emit_jne(2);
5500 }
5501 if((opcode[i]&0x2f)==5) // BNE
5502 {
5503 if(s2l>=0) emit_cmp(s1l,s2l);
5504 else emit_test(s1l,s1l);
5505 nottaken=(int)out;
5506 emit_jeq(2);
5507 }
5508 if((opcode[i]&0x2f)==6) // BLEZ
5509 {
5510 emit_cmpimm(s1l,1);
5511 nottaken=(int)out;
5512 emit_jge(2);
5513 }
5514 if((opcode[i]&0x2f)==7) // BGTZ
5515 {
5516 emit_cmpimm(s1l,1);
5517 nottaken=(int)out;
5518 emit_jl(2);
5519 }
5520 } // if(!unconditional)
5521 int adj;
5522 uint64_t ds_unneeded=branch_regs[i].u;
5523 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5524 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5525 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5526 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5527 ds_unneeded|=1;
5528 ds_unneeded_upper|=1;
5529 // branch taken
5530 if(!nop) {
5531 if(taken) set_jump_target(taken,(int)out);
5532 assem_debug("1:");
5533 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5534 ds_unneeded,ds_unneeded_upper);
5535 // load regs
5536 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5537 address_generation(i+1,&branch_regs[i],0);
5538 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5539 ds_assemble(i+1,&branch_regs[i]);
5540 cc=get_reg(branch_regs[i].regmap,CCREG);
5541 if(cc==-1) {
5542 emit_loadreg(CCREG,cc=HOST_CCREG);
5543 // CHECK: Is the following instruction (fall thru) allocated ok?
5544 }
5545 assert(cc==HOST_CCREG);
5546 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5547 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5548 assem_debug("cycle count (adj)");
5549 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5550 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5551 if(internal)
5552 assem_debug("branch: internal");
5553 else
5554 assem_debug("branch: external");
5555 if(internal&&is_ds[(ba[i]-start)>>2]) {
5556 ds_assemble_entry(i);
5557 }
5558 else {
5559 add_to_linker((int)out,ba[i],internal);
5560 emit_jmp(0);
5561 }
5562 }
5563 // branch not taken
5564 cop1_usable=prev_cop1_usable;
5565 if(!unconditional) {
5566 if(nottaken1) set_jump_target(nottaken1,(int)out);
5567 set_jump_target(nottaken,(int)out);
5568 assem_debug("2:");
5569 if(!likely[i]) {
5570 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5571 ds_unneeded,ds_unneeded_upper);
5572 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5573 address_generation(i+1,&branch_regs[i],0);
5574 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5575 ds_assemble(i+1,&branch_regs[i]);
5576 }
5577 cc=get_reg(branch_regs[i].regmap,CCREG);
5578 if(cc==-1&&!likely[i]) {
5579 // Cycle count isn't in a register, temporarily load it then write it out
5580 emit_loadreg(CCREG,HOST_CCREG);
5581 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5582 int jaddr=(int)out;
5583 emit_jns(0);
5584 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5585 emit_storereg(CCREG,HOST_CCREG);
5586 }
5587 else{
5588 cc=get_reg(i_regmap,CCREG);
5589 assert(cc==HOST_CCREG);
5590 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5591 int jaddr=(int)out;
5592 emit_jns(0);
5593 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5594 }
5595 }
5596 }
5597}
5598
5599static void sjump_assemble(int i,struct regstat *i_regs)
5600{
5601 signed char *i_regmap=i_regs->regmap;
5602 int cc;
5603 int match;
5604 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5605 assem_debug("smatch=%d",match);
5606 int s1h,s1l;
5607 int prev_cop1_usable=cop1_usable;
5608 int unconditional=0,nevertaken=0;
5609 int only32=0;
5610 int invert=0;
5611 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5612 if(i==(ba[i]-start)>>2) assem_debug("idle loop");
5613 if(!match) invert=1;
5614 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5615 if(i>(ba[i]-start)>>2) invert=1;
5616 #endif
5617
5618 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5619 assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5620
5621 if(ooo[i]) {
5622 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5623 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5624 }
5625 else {
5626 s1l=get_reg(i_regmap,rs1[i]);
5627 s1h=get_reg(i_regmap,rs1[i]|64);
5628 }
5629 if(rs1[i]==0)
5630 {
5631 if(opcode2[i]&1) unconditional=1;
5632 else nevertaken=1;
5633 // These are never taken (r0 is never less than zero)
5634 //assert(opcode2[i]!=0);
5635 //assert(opcode2[i]!=2);
5636 //assert(opcode2[i]!=0x10);
5637 //assert(opcode2[i]!=0x12);
5638 }
5639 else {
5640 only32=(regs[i].was32>>rs1[i])&1;
5641 }
5642
5643 if(ooo[i]) {
5644 // Out of order execution (delay slot first)
5645 //DebugMessage(M64MSG_VERBOSE, "OOOE");
5646 address_generation(i+1,i_regs,regs[i].regmap_entry);
5647 ds_assemble(i+1,i_regs);
5648 int adj;
5649 uint64_t bc_unneeded=branch_regs[i].u;
5650 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5651 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5652 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5653 bc_unneeded|=1;
5654 bc_unneeded_upper|=1;
5655 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5656 bc_unneeded,bc_unneeded_upper);
5657 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5658 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5659 if(rt1[i]==31) {
5660 int rt,return_address;
5661 assert(rt1[i+1]!=31);
5662 assert(rt2[i+1]!=31);
5663 rt=get_reg(branch_regs[i].regmap,31);
5664 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5665 if(rt>=0) {
5666 // Save the PC even if the branch is not taken
5667 return_address=start+i*4+8;
5668 emit_movimm(return_address,rt); // PC into link register
5669 #ifdef IMM_PREFETCH
5670 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5671 #endif
5672 }
5673 }
5674 cc=get_reg(branch_regs[i].regmap,CCREG);
5675 assert(cc==HOST_CCREG);
5676 if(unconditional)
5677 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5678 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5679 assem_debug("cycle count (adj)");
5680 if(unconditional) {
5681 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5682 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5683 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5684 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5685 if(internal)
5686 assem_debug("branch: internal");
5687 else
5688 assem_debug("branch: external");
5689 if(internal&&is_ds[(ba[i]-start)>>2]) {
5690 ds_assemble_entry(i);
5691 }
5692 else {
5693 add_to_linker((int)out,ba[i],internal);
5694 emit_jmp(0);
5695 }
5696 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5697 if(((u_int)out)&7) emit_addnop(0);
5698 #endif
5699 }
5700 }
5701 else if(nevertaken) {
5702 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5703 int jaddr=(int)out;
5704 emit_jns(0);
5705 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5706 }
5707 else {
5708 int nottaken=0;
5709 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5710 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5711 if(!only32)
5712 {
5713 assert(s1h>=0);
5714 if(opcode2[i]==0) // BLTZ
5715 {
5716 emit_test(s1h,s1h);
5717 if(invert){
5718 nottaken=(int)out;
5719 emit_jns(1);
5720 }else{
5721 add_to_linker((int)out,ba[i],internal);
5722 emit_js(0);
5723 }
5724 }
5725 if(opcode2[i]==1) // BGEZ
5726 {
5727 emit_test(s1h,s1h);
5728 if(invert){
5729 nottaken=(int)out;
5730 emit_js(1);
5731 }else{
5732 add_to_linker((int)out,ba[i],internal);
5733 emit_jns(0);
5734 }
5735 }
5736 } // if(!only32)
5737 else
5738 {
5739 assert(s1l>=0);
5740 if(opcode2[i]==0) // BLTZ
5741 {
5742 emit_test(s1l,s1l);
5743 if(invert){
5744 nottaken=(int)out;
5745 emit_jns(1);
5746 }else{
5747 add_to_linker((int)out,ba[i],internal);
5748 emit_js(0);
5749 }
5750 }
5751 if(opcode2[i]==1) // BGEZ
5752 {
5753 emit_test(s1l,s1l);
5754 if(invert){
5755 nottaken=(int)out;
5756 emit_js(1);
5757 }else{
5758 add_to_linker((int)out,ba[i],internal);
5759 emit_jns(0);
5760 }
5761 }
5762 } // if(!only32)
5763
5764 if(invert) {
5765 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5766 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5767 if(adj) {
5768 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5769 add_to_linker((int)out,ba[i],internal);
5770 }else{
5771 emit_addnop(13);
5772 add_to_linker((int)out,ba[i],internal*2);
5773 }
5774 emit_jmp(0);
5775 }else
5776 #endif
5777 {
5778 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5779 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5780 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5781 if(internal)
5782 assem_debug("branch: internal");
5783 else
5784 assem_debug("branch: external");
5785 if(internal&&is_ds[(ba[i]-start)>>2]) {
5786 ds_assemble_entry(i);
5787 }
5788 else {
5789 add_to_linker((int)out,ba[i],internal);
5790 emit_jmp(0);
5791 }
5792 }
5793 set_jump_target(nottaken,(int)out);
5794 }
5795
5796 if(adj) {
5797 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5798 }
5799 } // (!unconditional)
5800 } // if(ooo)
5801 else
5802 {
5803 // In-order execution (branch first)
5804 //DebugMessage(M64MSG_VERBOSE, "IOE");
5805 int nottaken=0;
5806 if(!unconditional) {
5807 //DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5808 if(!only32)
5809 {
5810 assert(s1h>=0);
5811 if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5812 {
5813 emit_test(s1h,s1h);
5814 nottaken=(int)out;
5815 emit_jns(1);
5816 }
5817 if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5818 {
5819 emit_test(s1h,s1h);
5820 nottaken=(int)out;
5821 emit_js(1);
5822 }
5823 } // if(!only32)
5824 else
5825 {
5826 assert(s1l>=0);
5827 if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5828 {
5829 emit_test(s1l,s1l);
5830 nottaken=(int)out;
5831 emit_jns(1);
5832 }
5833 if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5834 {
5835 emit_test(s1l,s1l);
5836 nottaken=(int)out;
5837 emit_js(1);
5838 }
5839 }
5840 } // if(!unconditional)
5841 int adj;
5842 uint64_t ds_unneeded=branch_regs[i].u;
5843 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5844 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5845 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5846 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5847 ds_unneeded|=1;
5848 ds_unneeded_upper|=1;
5849 // branch taken
5850 if(!nevertaken) {
5851 //assem_debug("1:");
5852 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5853 ds_unneeded,ds_unneeded_upper);
5854 // load regs
5855 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5856 address_generation(i+1,&branch_regs[i],0);
5857 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5858 ds_assemble(i+1,&branch_regs[i]);
5859 cc=get_reg(branch_regs[i].regmap,CCREG);
5860 if(cc==-1) {
5861 emit_loadreg(CCREG,cc=HOST_CCREG);
5862 // CHECK: Is the following instruction (fall thru) allocated ok?
5863 }
5864 assert(cc==HOST_CCREG);
5865 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5866 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5867 assem_debug("cycle count (adj)");
5868 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5869 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5870 if(internal)
5871 assem_debug("branch: internal");
5872 else
5873 assem_debug("branch: external");
5874 if(internal&&is_ds[(ba[i]-start)>>2]) {
5875 ds_assemble_entry(i);
5876 }
5877 else {
5878 add_to_linker((int)out,ba[i],internal);
5879 emit_jmp(0);
5880 }
5881 }
5882 // branch not taken
5883 cop1_usable=prev_cop1_usable;
5884 if(!unconditional) {
5885 set_jump_target(nottaken,(int)out);
5886 assem_debug("1:");
5887 if(!likely[i]) {
5888 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5889 ds_unneeded,ds_unneeded_upper);
5890 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5891 address_generation(i+1,&branch_regs[i],0);
5892 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5893 ds_assemble(i+1,&branch_regs[i]);
5894 }
5895 cc=get_reg(branch_regs[i].regmap,CCREG);
5896 if(cc==-1&&!likely[i]) {
5897 // Cycle count isn't in a register, temporarily load it then write it out
5898 emit_loadreg(CCREG,HOST_CCREG);
5899 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5900 int jaddr=(int)out;
5901 emit_jns(0);
5902 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5903 emit_storereg(CCREG,HOST_CCREG);
5904 }
5905 else{
5906 cc=get_reg(i_regmap,CCREG);
5907 assert(cc==HOST_CCREG);
5908 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5909 int jaddr=(int)out;
5910 emit_jns(0);
5911 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5912 }
5913 }
5914 }
5915}
5916
5917static void fjump_assemble(int i,struct regstat *i_regs)
5918{
5919 signed char *i_regmap=i_regs->regmap;
5920 int cc;
5921 int match;
5922 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5923 assem_debug("fmatch=%d",match);
5924 int fs,cs;
5925 int eaddr;
5926 int invert=0;
5927 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5928 if(i==(ba[i]-start)>>2) assem_debug("idle loop");
5929 if(!match) invert=1;
5930 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5931 if(i>(ba[i]-start)>>2) invert=1;
5932 #endif
5933
5934 if(ooo[i]) {
5935 fs=get_reg(branch_regs[i].regmap,FSREG);
5936 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
5937 }
5938 else {
5939 fs=get_reg(i_regmap,FSREG);
5940 }
5941
5942 // Check cop1 unusable
5943 if(!cop1_usable) {
5944 cs=get_reg(i_regmap,CSREG);
5945 assert(cs>=0);
5946 emit_testimm(cs,0x20000000);
5947 eaddr=(int)out;
5948 emit_jeq(0);
5949 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
5950 cop1_usable=1;
5951 }
5952
5953 if(ooo[i]) {
5954 // Out of order execution (delay slot first)
5955 //DebugMessage(M64MSG_VERBOSE, "OOOE");
5956 ds_assemble(i+1,i_regs);
5957 int adj;
5958 uint64_t bc_unneeded=branch_regs[i].u;
5959 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5960 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5961 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5962 bc_unneeded|=1;
5963 bc_unneeded_upper|=1;
5964 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5965 bc_unneeded,bc_unneeded_upper);
5966 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5967 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5968 cc=get_reg(branch_regs[i].regmap,CCREG);
5969 assert(cc==HOST_CCREG);
5970 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5971 assem_debug("cycle count (adj)");
5972 if(1) {
5973 int nottaken=0;
5974 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5975 if(1) {
5976 assert(fs>=0);
5977 emit_testimm(fs,0x800000);
5978 if(source[i]&0x10000) // BC1T
5979 {
5980 if(invert){
5981 nottaken=(int)out;
5982 emit_jeq(1);
5983 }else{
5984 add_to_linker((int)out,ba[i],internal);
5985 emit_jne(0);
5986 }
5987 }
5988 else // BC1F
5989 if(invert){
5990 nottaken=(int)out;
5991 emit_jne(1);
5992 }else{
5993 add_to_linker((int)out,ba[i],internal);
5994 emit_jeq(0);
5995 }
5996 {
5997 }
5998 } // if(!only32)
5999
6000 if(invert) {
6001 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6002 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6003 else if(match) emit_addnop(13);
6004 #endif
6005 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6006 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6007 if(internal)
6008 assem_debug("branch: internal");
6009 else
6010 assem_debug("branch: external");
6011 if(internal&&is_ds[(ba[i]-start)>>2]) {
6012 ds_assemble_entry(i);
6013 }
6014 else {
6015 add_to_linker((int)out,ba[i],internal);
6016 emit_jmp(0);
6017 }
6018 set_jump_target(nottaken,(int)out);
6019 }
6020
6021 if(adj) {
6022 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6023 }
6024 } // (!unconditional)
6025 } // if(ooo)
6026 else
6027 {
6028 // In-order execution (branch first)
6029 //DebugMessage(M64MSG_VERBOSE, "IOE");
6030 int nottaken=0;
6031 if(1) {
6032 //DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6033 if(1) {
6034 assert(fs>=0);
6035 emit_testimm(fs,0x800000);
6036 if(source[i]&0x10000) // BC1T
6037 {
6038 nottaken=(int)out;
6039 emit_jeq(1);
6040 }
6041 else // BC1F
6042 {
6043 nottaken=(int)out;
6044 emit_jne(1);
6045 }
6046 }
6047 } // if(!unconditional)
6048 int adj;
6049 uint64_t ds_unneeded=branch_regs[i].u;
6050 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6051 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6052 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6053 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6054 ds_unneeded|=1;
6055 ds_unneeded_upper|=1;
6056 // branch taken
6057 //assem_debug("1:");
6058 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6059 ds_unneeded,ds_unneeded_upper);
6060 // load regs
6061 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6062 address_generation(i+1,&branch_regs[i],0);
6063 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6064 ds_assemble(i+1,&branch_regs[i]);
6065 cc=get_reg(branch_regs[i].regmap,CCREG);
6066 if(cc==-1) {
6067 emit_loadreg(CCREG,cc=HOST_CCREG);
6068 // CHECK: Is the following instruction (fall thru) allocated ok?
6069 }
6070 assert(cc==HOST_CCREG);
6071 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6072 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6073 assem_debug("cycle count (adj)");
6074 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6075 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6076 if(internal)
6077 assem_debug("branch: internal");
6078 else
6079 assem_debug("branch: external");
6080 if(internal&&is_ds[(ba[i]-start)>>2]) {
6081 ds_assemble_entry(i);
6082 }
6083 else {
6084 add_to_linker((int)out,ba[i],internal);
6085 emit_jmp(0);
6086 }
6087
6088 // branch not taken
6089 if(1) { // <- FIXME (don't need this)
6090 set_jump_target(nottaken,(int)out);
6091 assem_debug("1:");
6092 if(!likely[i]) {
6093 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6094 ds_unneeded,ds_unneeded_upper);
6095 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6096 address_generation(i+1,&branch_regs[i],0);
6097 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6098 ds_assemble(i+1,&branch_regs[i]);
6099 }
6100 cc=get_reg(branch_regs[i].regmap,CCREG);
6101 if(cc==-1&&!likely[i]) {
6102 // Cycle count isn't in a register, temporarily load it then write it out
6103 emit_loadreg(CCREG,HOST_CCREG);
6104 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6105 int jaddr=(int)out;
6106 emit_jns(0);
6107 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6108 emit_storereg(CCREG,HOST_CCREG);
6109 }
6110 else{
6111 cc=get_reg(i_regmap,CCREG);
6112 assert(cc==HOST_CCREG);
6113 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6114 int jaddr=(int)out;
6115 emit_jns(0);
6116 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6117 }
6118 }
6119 }
6120}
6121
6122static void pagespan_assemble(int i,struct regstat *i_regs)
6123{
6124 int s1l=get_reg(i_regs->regmap,rs1[i]);
6125 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6126 int s2l=get_reg(i_regs->regmap,rs2[i]);
6127 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6128 int taken=0;
6129 int nottaken=0;
6130 int unconditional=0;
6131 if(rs1[i]==0)
6132 {
6133 s1l=s2l;s1h=s2h;
6134 s2l=s2h=-1;
6135 }
6136 else if(rs2[i]==0)
6137 {
6138 s2l=s2h=-1;
6139 }
6140 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6141 s1h=s2h=-1;
6142 }
6143 int hr=0;
6144 int addr,alt,ntaddr;
6145 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6146 else {
6147 while(hr<HOST_REGS)
6148 {
6149 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6150 (i_regs->regmap[hr]&63)!=rs1[i] &&
6151 (i_regs->regmap[hr]&63)!=rs2[i] )
6152 {
6153 addr=hr++;break;
6154 }
6155 hr++;
6156 }
6157 }
6158 while(hr<HOST_REGS)
6159 {
6160 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6161 (i_regs->regmap[hr]&63)!=rs1[i] &&
6162 (i_regs->regmap[hr]&63)!=rs2[i] )
6163 {
6164 alt=hr++;break;
6165 }
6166 hr++;
6167 }
6168 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6169 {
6170 while(hr<HOST_REGS)
6171 {
6172 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6173 (i_regs->regmap[hr]&63)!=rs1[i] &&
6174 (i_regs->regmap[hr]&63)!=rs2[i] )
6175 {
6176 ntaddr=hr;break;
6177 }
6178 hr++;
6179 }
6180 }
6181 assert(hr<HOST_REGS);
6182 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6183 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6184 }
6185 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6186 if(opcode[i]==2) // J
6187 {
6188 unconditional=1;
6189 }
6190 if(opcode[i]==3) // JAL
6191 {
6192 // TODO: mini_ht
6193 int rt=get_reg(i_regs->regmap,31);
6194 emit_movimm(start+i*4+8,rt);
6195 unconditional=1;
6196 }
6197 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6198 {
6199 emit_mov(s1l,addr);
6200 if(opcode2[i]==9) // JALR
6201 {
6202 int rt=get_reg(i_regs->regmap,rt1[i]);
6203 emit_movimm(start+i*4+8,rt);
6204 }
6205 }
6206 if((opcode[i]&0x3f)==4) // BEQ
6207 {
6208 if(rs1[i]==rs2[i])
6209 {
6210 unconditional=1;
6211 }
6212 else
6213 #ifdef HAVE_CMOV_IMM
6214 if(s1h<0) {
6215 if(s2l>=0) emit_cmp(s1l,s2l);
6216 else emit_test(s1l,s1l);
6217 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6218 }
6219 else
6220 #endif
6221 {
6222 assert(s1l>=0);
6223 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6224 if(s1h>=0) {
6225 if(s2h>=0) emit_cmp(s1h,s2h);
6226 else emit_test(s1h,s1h);
6227 emit_cmovne_reg(alt,addr);
6228 }
6229 if(s2l>=0) emit_cmp(s1l,s2l);
6230 else emit_test(s1l,s1l);
6231 emit_cmovne_reg(alt,addr);
6232 }
6233 }
6234 if((opcode[i]&0x3f)==5) // BNE
6235 {
6236 #ifdef HAVE_CMOV_IMM
6237 if(s1h<0) {
6238 if(s2l>=0) emit_cmp(s1l,s2l);
6239 else emit_test(s1l,s1l);
6240 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6241 }
6242 else
6243 #endif
6244 {
6245 assert(s1l>=0);
6246 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6247 if(s1h>=0) {
6248 if(s2h>=0) emit_cmp(s1h,s2h);
6249 else emit_test(s1h,s1h);
6250 emit_cmovne_reg(alt,addr);
6251 }
6252 if(s2l>=0) emit_cmp(s1l,s2l);
6253 else emit_test(s1l,s1l);
6254 emit_cmovne_reg(alt,addr);
6255 }
6256 }
6257 if((opcode[i]&0x3f)==0x14) // BEQL
6258 {
6259 if(s1h>=0) {
6260 if(s2h>=0) emit_cmp(s1h,s2h);
6261 else emit_test(s1h,s1h);
6262 nottaken=(int)out;
6263 emit_jne(0);
6264 }
6265 if(s2l>=0) emit_cmp(s1l,s2l);
6266 else emit_test(s1l,s1l);
6267 if(nottaken) set_jump_target(nottaken,(int)out);
6268 nottaken=(int)out;
6269 emit_jne(0);
6270 }
6271 if((opcode[i]&0x3f)==0x15) // BNEL
6272 {
6273 if(s1h>=0) {
6274 if(s2h>=0) emit_cmp(s1h,s2h);
6275 else emit_test(s1h,s1h);
6276 taken=(int)out;
6277 emit_jne(0);
6278 }
6279 if(s2l>=0) emit_cmp(s1l,s2l);
6280 else emit_test(s1l,s1l);
6281 nottaken=(int)out;
6282 emit_jeq(0);
6283 if(taken) set_jump_target(taken,(int)out);
6284 }
6285 if((opcode[i]&0x3f)==6) // BLEZ
6286 {
6287 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6288 emit_cmpimm(s1l,1);
6289 if(s1h>=0) emit_mov(addr,ntaddr);
6290 emit_cmovl_reg(alt,addr);
6291 if(s1h>=0) {
6292 emit_test(s1h,s1h);
6293 emit_cmovne_reg(ntaddr,addr);
6294 emit_cmovs_reg(alt,addr);
6295 }
6296 }
6297 if((opcode[i]&0x3f)==7) // BGTZ
6298 {
6299 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6300 emit_cmpimm(s1l,1);
6301 if(s1h>=0) emit_mov(addr,alt);
6302 emit_cmovl_reg(ntaddr,addr);
6303 if(s1h>=0) {
6304 emit_test(s1h,s1h);
6305 emit_cmovne_reg(alt,addr);
6306 emit_cmovs_reg(ntaddr,addr);
6307 }
6308 }
6309 if((opcode[i]&0x3f)==0x16) // BLEZL
6310 {
6311 assert((opcode[i]&0x3f)!=0x16);
6312 }
6313 if((opcode[i]&0x3f)==0x17) // BGTZL
6314 {
6315 assert((opcode[i]&0x3f)!=0x17);
6316 }
6317 assert(opcode[i]!=1); // BLTZ/BGEZ
6318
6319 //FIXME: Check CSREG
6320 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6321 if((source[i]&0x30000)==0) // BC1F
6322 {
6323 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6324 emit_testimm(s1l,0x800000);
6325 emit_cmovne_reg(alt,addr);
6326 }
6327 if((source[i]&0x30000)==0x10000) // BC1T
6328 {
6329 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6330 emit_testimm(s1l,0x800000);
6331 emit_cmovne_reg(alt,addr);
6332 }
6333 if((source[i]&0x30000)==0x20000) // BC1FL
6334 {
6335 emit_testimm(s1l,0x800000);
6336 nottaken=(int)out;
6337 emit_jne(0);
6338 }
6339 if((source[i]&0x30000)==0x30000) // BC1TL
6340 {
6341 emit_testimm(s1l,0x800000);
6342 nottaken=(int)out;
6343 emit_jeq(0);
6344 }
6345 }
6346
6347 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6348 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6349 if(likely[i]||unconditional)
6350 {
6351 emit_movimm(ba[i],HOST_BTREG);
6352 }
6353 else if(addr!=HOST_BTREG)
6354 {
6355 emit_mov(addr,HOST_BTREG);
6356 }
6357 void *branch_addr=out;
6358 emit_jmp(0);
6359 int target_addr=start+i*4+5;
6360 void *stub=out;
6361 void *compiled_target_addr=check_addr(target_addr);
6362 emit_extjump_ds((int)branch_addr,target_addr);
6363 if(compiled_target_addr) {
6364 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6365 add_link(target_addr,stub);
6366 }
6367 else set_jump_target((int)branch_addr,(int)stub);
6368 if(likely[i]) {
6369 // Not-taken path
6370 set_jump_target((int)nottaken,(int)out);
6371 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6372 void *branch_addr=out;
6373 emit_jmp(0);
6374 int target_addr=start+i*4+8;
6375 void *stub=out;
6376 void *compiled_target_addr=check_addr(target_addr);
6377 emit_extjump_ds((int)branch_addr,target_addr);
6378 if(compiled_target_addr) {
6379 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6380 add_link(target_addr,stub);
6381 }
6382 else set_jump_target((int)branch_addr,(int)stub);
6383 }
6384}
6385
6386// Assemble the delay slot for the above
6387static void pagespan_ds()
6388{
6389 assem_debug("initial delay slot:");
6390 u_int vaddr=start+1;
6391 u_int page=(0x80000000^vaddr)>>12;
6392 u_int vpage=page;
6393 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[page^0x80000]^0x80000000)>>12;
6394 if(page>2048) page=2048+(page&2047);
6395 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
6396 if(vpage>2048) vpage=2048+(vpage&2047);
6397 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6398 do_dirty_stub_ds();
6399 ll_add(jump_in+page,vaddr,(void *)out);
6400 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6401 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6402 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6403 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6404 emit_writeword(HOST_BTREG,(int)&branch_target);
6405 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6406 address_generation(0,&regs[0],regs[0].regmap_entry);
6407 if(itype[0]==LOAD||itype[0]==LOADLR||itype[0]==STORE||itype[0]==STORELR||itype[0]==C1LS)
6408 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,MMREG,ROREG);
6409 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39)
6410 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6411 cop1_usable=0;
6412 is_delayslot=0;
6413 switch(itype[0]) {
6414 case ALU:
6415 alu_assemble(0,&regs[0]);break;
6416 case IMM16:
6417 imm16_assemble(0,&regs[0]);break;
6418 case SHIFT:
6419 shift_assemble(0,&regs[0]);break;
6420 case SHIFTIMM:
6421 shiftimm_assemble(0,&regs[0]);break;
6422 case LOAD:
6423 load_assemble(0,&regs[0]);break;
6424 case LOADLR:
6425 loadlr_assemble(0,&regs[0]);break;
6426 case STORE:
6427 store_assemble(0,&regs[0]);break;
6428 case STORELR:
6429 storelr_assemble(0,&regs[0]);break;
6430 case COP0:
6431 cop0_assemble(0,&regs[0]);break;
6432 case COP1:
6433 cop1_assemble(0,&regs[0]);break;
6434 case C1LS:
6435 c1ls_assemble(0,&regs[0]);break;
6436 case FCONV:
6437 fconv_assemble(0,&regs[0]);break;
6438 case FLOAT:
6439 float_assemble(0,&regs[0]);break;
6440 case FCOMP:
6441 fcomp_assemble(0,&regs[0]);break;
6442 case MULTDIV:
6443 multdiv_assemble(0,&regs[0]);break;
6444 case MOV:
6445 mov_assemble(0,&regs[0]);break;
6446 case SYSCALL:
6447 case SPAN:
6448 case UJUMP:
6449 case RJUMP:
6450 case CJUMP:
6451 case SJUMP:
6452 case FJUMP:
6453 DebugMessage(M64MSG_VERBOSE, "Jump in the delay slot. This is probably a bug.");
6454 }
6455 int btaddr=get_reg(regs[0].regmap,BTREG);
6456 if(btaddr<0) {
6457 btaddr=get_reg(regs[0].regmap,-1);
6458 emit_readword((int)&branch_target,btaddr);
6459 }
6460 assert(btaddr!=HOST_CCREG);
6461 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6462#ifdef HOST_IMM8
6463 emit_movimm(start+4,HOST_TEMPREG);
6464 emit_cmp(btaddr,HOST_TEMPREG);
6465#else
6466 emit_cmpimm(btaddr,start+4);
6467#endif
6468 int branch=(int)out;
6469 emit_jeq(0);
6470 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6471 emit_jmp(jump_vaddr_reg[btaddr]);
6472 set_jump_target(branch,(int)out);
6473 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6474 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6475}
6476
6477// Basic liveness analysis for MIPS registers
6478static void unneeded_registers(int istart,int iend,int r)
6479{
6480 int i;
6481 uint64_t u,uu,b,bu;
6482 uint64_t temp_u,temp_uu;
6483 uint64_t tdep;
6484 if(iend==slen-1) {
6485 u=1;uu=1;
6486 }else{
6487 u=unneeded_reg[iend+1];
6488 uu=unneeded_reg_upper[iend+1];
6489 u=1;uu=1;
6490 }
6491 for (i=iend;i>=istart;i--)
6492 {
6493 //DebugMessage(M64MSG_VERBOSE, "unneeded registers i=%d (%d,%d) r=%d",i,istart,iend,r);
6494 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6495 {
6496 // If subroutine call, flag return address as a possible branch target
6497 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6498
6499 if(ba[i]<start || ba[i]>=(start+slen*4))
6500 {
6501 // Branch out of this block, flush all regs
6502 u=1;
6503 uu=1;
6504 /* Hexagon hack
6505 if(itype[i]==UJUMP&&rt1[i]==31)
6506 {
6507 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6508 }
6509 if(itype[i]==RJUMP&&rs1[i]==31)
6510 {
6511 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6512 }
6513 if(start>0x80000400&&start<0x80800000) {
6514 if(itype[i]==UJUMP&&rt1[i]==31)
6515 {
6516 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6517 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6518 }
6519 if(itype[i]==RJUMP&&rs1[i]==31)
6520 {
6521 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6522 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6523 }
6524 }*/
6525 branch_unneeded_reg[i]=u;
6526 branch_unneeded_reg_upper[i]=uu;
6527 // Merge in delay slot
6528 tdep=(~uu>>rt1[i+1])&1;
6529 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6530 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6531 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6532 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6533 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6534 u|=1;uu|=1;
6535 // If branch is "likely" (and conditional)
6536 // then we skip the delay slot on the fall-thru path
6537 if(likely[i]) {
6538 if(i<slen-1) {
6539 u&=unneeded_reg[i+2];
6540 uu&=unneeded_reg_upper[i+2];
6541 }
6542 else
6543 {
6544 u=1;
6545 uu=1;
6546 }
6547 }
6548 }
6549 else
6550 {
6551 // Internal branch, flag target
6552 bt[(ba[i]-start)>>2]=1;
6553 if(ba[i]<=start+i*4) {
6554 // Backward branch
6555 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6556 {
6557 // Unconditional branch
6558 temp_u=1;temp_uu=1;
6559 } else {
6560 // Conditional branch (not taken case)
6561 temp_u=unneeded_reg[i+2];
6562 temp_uu=unneeded_reg_upper[i+2];
6563 }
6564 // Merge in delay slot
6565 tdep=(~temp_uu>>rt1[i+1])&1;
6566 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6567 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6568 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6569 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6570 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6571 temp_u|=1;temp_uu|=1;
6572 // If branch is "likely" (and conditional)
6573 // then we skip the delay slot on the fall-thru path
6574 if(likely[i]) {
6575 if(i<slen-1) {
6576 temp_u&=unneeded_reg[i+2];
6577 temp_uu&=unneeded_reg_upper[i+2];
6578 }
6579 else
6580 {
6581 temp_u=1;
6582 temp_uu=1;
6583 }
6584 }
6585 tdep=(~temp_uu>>rt1[i])&1;
6586 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6587 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6588 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6589 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6590 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6591 temp_u|=1;temp_uu|=1;
6592 unneeded_reg[i]=temp_u;
6593 unneeded_reg_upper[i]=temp_uu;
6594 // Only go three levels deep. This recursion can take an
6595 // excessive amount of time if there are a lot of nested loops.
6596 if(r<2) {
6597 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6598 }else{
6599 unneeded_reg[(ba[i]-start)>>2]=1;
6600 unneeded_reg_upper[(ba[i]-start)>>2]=1;
6601 }
6602 } /*else*/ if(1) {
6603 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6604 {
6605 // Unconditional branch
6606 u=unneeded_reg[(ba[i]-start)>>2];
6607 uu=unneeded_reg_upper[(ba[i]-start)>>2];
6608 branch_unneeded_reg[i]=u;
6609 branch_unneeded_reg_upper[i]=uu;
6610 //u=1;
6611 //uu=1;
6612 //branch_unneeded_reg[i]=u;
6613 //branch_unneeded_reg_upper[i]=uu;
6614 // Merge in delay slot
6615 tdep=(~uu>>rt1[i+1])&1;
6616 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6617 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6618 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6619 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6620 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6621 u|=1;uu|=1;
6622 } else {
6623 // Conditional branch
6624 b=unneeded_reg[(ba[i]-start)>>2];
6625 bu=unneeded_reg_upper[(ba[i]-start)>>2];
6626 branch_unneeded_reg[i]=b;
6627 branch_unneeded_reg_upper[i]=bu;
6628 //b=1;
6629 //bu=1;
6630 //branch_unneeded_reg[i]=b;
6631 //branch_unneeded_reg_upper[i]=bu;
6632 // Branch delay slot
6633 tdep=(~uu>>rt1[i+1])&1;
6634 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6635 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6636 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6637 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6638 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6639 b|=1;bu|=1;
6640 // If branch is "likely" then we skip the
6641 // delay slot on the fall-thru path
6642 if(likely[i]) {
6643 u=b;
6644 uu=bu;
6645 if(i<slen-1) {
6646 u&=unneeded_reg[i+2];
6647 uu&=unneeded_reg_upper[i+2];
6648 //u=1;
6649 //uu=1;
6650 }
6651 } else {
6652 u&=b;
6653 uu&=bu;
6654 //u=1;
6655 //uu=1;
6656 }
6657 if(i<slen-1) {
6658 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6659 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6660 //branch_unneeded_reg[i]=1;
6661 //branch_unneeded_reg_upper[i]=1;
6662 } else {
6663 branch_unneeded_reg[i]=1;
6664 branch_unneeded_reg_upper[i]=1;
6665 }
6666 }
6667 }
6668 }
6669 }
6670 else if(itype[i]==SYSCALL)
6671 {
6672 // SYSCALL instruction (software interrupt)
6673 u=1;
6674 uu=1;
6675 }
6676 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6677 {
6678 // ERET instruction (return from interrupt)
6679 u=1;
6680 uu=1;
6681 }
6682 //u=uu=1; // DEBUG
6683 tdep=(~uu>>rt1[i])&1;
6684 // Written registers are unneeded
6685 u|=1LL<<rt1[i];
6686 u|=1LL<<rt2[i];
6687 uu|=1LL<<rt1[i];
6688 uu|=1LL<<rt2[i];
6689 // Accessed registers are needed
6690 u&=~(1LL<<rs1[i]);
6691 u&=~(1LL<<rs2[i]);
6692 uu&=~(1LL<<us1[i]);
6693 uu&=~(1LL<<us2[i]);
6694 // Source-target dependencies
6695 uu&=~(tdep<<dep1[i]);
6696 uu&=~(tdep<<dep2[i]);
6697 // R0 is always unneeded
6698 u|=1;uu|=1;
6699 // Save it
6700 unneeded_reg[i]=u;
6701 unneeded_reg_upper[i]=uu;
6702 /*
6703 DebugMessage(M64MSG_VERBOSE, "ur (%d,%d) %x: ",istart,iend,start+i*4);
6704 DebugMessage(M64MSG_VERBOSE, "U:");
6705 int r;
6706 for(r=1;r<=CCREG;r++) {
6707 if((unneeded_reg[i]>>r)&1) {
6708 if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
6709 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
6710 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
6711 }
6712 }
6713 DebugMessage(M64MSG_VERBOSE, " UU:");
6714 for(r=1;r<=CCREG;r++) {
6715 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6716 if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
6717 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
6718 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
6719 }
6720 }*/
6721 }
6722}
6723
6724// Identify registers which are likely to contain 32-bit values
6725// This is used to predict whether any branches will jump to a
6726// location with 64-bit values in registers.
6727static void provisional_32bit()
6728{
6729 int i,j;
6730 uint64_t is32=1;
6731 uint64_t lastbranch=1;
6732
6733 for(i=0;i<slen;i++)
6734 {
6735 if(i>0) {
6736 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6737 if(i>1) is32=lastbranch;
6738 else is32=1;
6739 }
6740 }
6741 if(i>1)
6742 {
6743 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6744 if(likely[i-2]) {
6745 if(i>2) is32=lastbranch;
6746 else is32=1;
6747 }
6748 }
6749 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6750 {
6751 if(rs1[i-2]==0||rs2[i-2]==0)
6752 {
6753 if(rs1[i-2]) {
6754 is32|=1LL<<rs1[i-2];
6755 }
6756 if(rs2[i-2]) {
6757 is32|=1LL<<rs2[i-2];
6758 }
6759 }
6760 }
6761 }
6762 // If something jumps here with 64-bit values
6763 // then promote those registers to 64 bits
6764 if(bt[i])
6765 {
6766 uint64_t temp_is32=is32;
6767 for(j=i-1;j>=0;j--)
6768 {
6769 if(ba[j]==start+i*4)
6770 //temp_is32&=branch_regs[j].is32;
6771 temp_is32&=p32[j];
6772 }
6773 for(j=i;j<slen;j++)
6774 {
6775 if(ba[j]==start+i*4)
6776 temp_is32=1;
6777 }
6778 is32=temp_is32;
6779 }
6780 int type=itype[i];
6781 int op=opcode[i];
6782 int op2=opcode2[i];
6783 int rt=rt1[i];
6784 int s1=rs1[i];
6785 int s2=rs2[i];
6786 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6787 // Branches don't write registers, consider the delay slot instead.
6788 type=itype[i+1];
6789 op=opcode[i+1];
6790 op2=opcode2[i+1];
6791 rt=rt1[i+1];
6792 s1=rs1[i+1];
6793 s2=rs2[i+1];
6794 lastbranch=is32;
6795 }
6796 switch(type) {
6797 case LOAD:
6798 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6799 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6800 is32&=~(1LL<<rt);
6801 else
6802 is32|=1LL<<rt;
6803 break;
6804 case STORE:
6805 case STORELR:
6806 break;
6807 case LOADLR:
6808 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6809 if(op==0x22) is32|=1LL<<rt; // LWL
6810 break;
6811 case IMM16:
6812 if (op==0x08||op==0x09|| // ADDI/ADDIU
6813 op==0x0a||op==0x0b|| // SLTI/SLTIU
6814 op==0x0c|| // ANDI
6815 op==0x0f) // LUI
6816 {
6817 is32|=1LL<<rt;
6818 }
6819 if(op==0x18||op==0x19) { // DADDI/DADDIU
6820 is32&=~(1LL<<rt);
6821 //if(imm[i]==0)
6822 // is32|=((is32>>s1)&1LL)<<rt;
6823 }
6824 if(op==0x0d||op==0x0e) { // ORI/XORI
6825 uint64_t sr=((is32>>s1)&1LL);
6826 is32&=~(1LL<<rt);
6827 is32|=sr<<rt;
6828 }
6829 break;
6830 case UJUMP:
6831 break;
6832 case RJUMP:
6833 break;
6834 case CJUMP:
6835 break;
6836 case SJUMP:
6837 break;
6838 case FJUMP:
6839 break;
6840 case ALU:
6841 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6842 is32|=1LL<<rt;
6843 }
6844 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6845 is32|=1LL<<rt;
6846 }
6847 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6848 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6849 is32&=~(1LL<<rt);
6850 is32|=sr<<rt;
6851 }
6852 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6853 if(s1==0&&s2==0) {
6854 is32|=1LL<<rt;
6855 }
6856 else if(s2==0) {
6857 uint64_t sr=((is32>>s1)&1LL);
6858 is32&=~(1LL<<rt);
6859 is32|=sr<<rt;
6860 }
6861 else if(s1==0) {
6862 uint64_t sr=((is32>>s2)&1LL);
6863 is32&=~(1LL<<rt);
6864 is32|=sr<<rt;
6865 }
6866 else {
6867 is32&=~(1LL<<rt);
6868 }
6869 }
6870 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
6871 if(s1==0&&s2==0) {
6872 is32|=1LL<<rt;
6873 }
6874 else if(s2==0) {
6875 uint64_t sr=((is32>>s1)&1LL);
6876 is32&=~(1LL<<rt);
6877 is32|=sr<<rt;
6878 }
6879 else {
6880 is32&=~(1LL<<rt);
6881 }
6882 }
6883 break;
6884 case MULTDIV:
6885 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
6886 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
6887 }
6888 else {
6889 is32|=(1LL<<HIREG)|(1LL<<LOREG);
6890 }
6891 break;
6892 case MOV:
6893 {
6894 uint64_t sr=((is32>>s1)&1LL);
6895 is32&=~(1LL<<rt);
6896 is32|=sr<<rt;
6897 }
6898 break;
6899 case SHIFT:
6900 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
6901 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
6902 break;
6903 case SHIFTIMM:
6904 is32|=1LL<<rt;
6905 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
6906 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
6907 break;
6908 case COP0:
6909 if(op2==0) is32|=1LL<<rt; // MFC0
6910 break;
6911 case COP1:
6912 if(op2==0) is32|=1LL<<rt; // MFC1
6913 if(op2==1) is32&=~(1LL<<rt); // DMFC1
6914 if(op2==2) is32|=1LL<<rt; // CFC1
6915 break;
6916 case C1LS:
6917 break;
6918 case FLOAT:
6919 case FCONV:
6920 break;
6921 case FCOMP:
6922 break;
6923 case SYSCALL:
6924 break;
6925 default:
6926 break;
6927 }
6928 is32|=1;
6929 p32[i]=is32;
6930
6931 if(i>0)
6932 {
6933 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
6934 {
6935 if(rt1[i-1]==31) // JAL/JALR
6936 {
6937 // Subroutine call will return here, don't alloc any registers
6938 is32=1;
6939 }
6940 else if(i+1<slen)
6941 {
6942 // Internal branch will jump here, match registers to caller
6943 is32=0x3FFFFFFFFLL;
6944 }
6945 }
6946 }
6947 }
6948}
6949
6950// Identify registers which may be assumed to contain 32-bit values
6951// and where optimizations will rely on this.
6952// This is used to determine whether backward branches can safely
6953// jump to a location with 64-bit values in registers.
6954static void provisional_r32()
6955{
6956 u_int r32=0;
6957 int i;
6958
6959 for (i=slen-1;i>=0;i--)
6960 {
6961 int hr;
6962 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6963 {
6964 if(ba[i]<start || ba[i]>=(start+slen*4))
6965 {
6966 // Branch out of this block, don't need anything
6967 r32=0;
6968 }
6969 else
6970 {
6971 // Internal branch
6972 // Need whatever matches the target
6973 // (and doesn't get overwritten by the delay slot instruction)
6974 r32=0;
6975 int t=(ba[i]-start)>>2;
6976 if(ba[i]>start+i*4) {
6977 // Forward branch
6978 //if(!(requires_32bit[t]&~regs[i].was32))
6979 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
6980 if(!(pr32[t]&~regs[i].was32))
6981 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
6982 }else{
6983 // Backward branch
6984 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
6985 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
6986 }
6987 }
6988 // Conditional branch may need registers for following instructions
6989 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
6990 {
6991 if(i<slen-2) {
6992 //r32|=requires_32bit[i+2];
6993 r32|=pr32[i+2];
6994 r32&=regs[i].was32;
6995 // Mark this address as a branch target since it may be called
6996 // upon return from interrupt
6997 //bt[i+2]=1;
6998 }
6999 }
7000 // Merge in delay slot
7001 if(!likely[i]) {
7002 // These are overwritten unless the branch is "likely"
7003 // and the delay slot is nullified if not taken
7004 r32&=~(1LL<<rt1[i+1]);
7005 r32&=~(1LL<<rt2[i+1]);
7006 }
7007 // Assume these are needed (delay slot)
7008 if(us1[i+1]>0)
7009 {
7010 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7011 }
7012 if(us2[i+1]>0)
7013 {
7014 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7015 }
7016 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7017 {
7018 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7019 }
7020 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7021 {
7022 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7023 }
7024 }
7025 else if(itype[i]==SYSCALL)
7026 {
7027 // SYSCALL instruction (software interrupt)
7028 r32=0;
7029 }
7030 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7031 {
7032 // ERET instruction (return from interrupt)
7033 r32=0;
7034 }
7035 // Check 32 bits
7036 r32&=~(1LL<<rt1[i]);
7037 r32&=~(1LL<<rt2[i]);
7038 if(us1[i]>0)
7039 {
7040 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7041 }
7042 if(us2[i]>0)
7043 {
7044 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7045 }
7046 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7047 {
7048 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7049 }
7050 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7051 {
7052 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7053 }
7054 //requires_32bit[i]=r32;
7055 pr32[i]=r32;
7056
7057 // Dirty registers which are 32-bit, require 32-bit input
7058 // as they will be written as 32-bit values
7059 for(hr=0;hr<HOST_REGS;hr++)
7060 {
7061 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7062 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7063 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7064 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7065 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7066 }
7067 }
7068 }
7069 }
7070}
7071
7072// Write back dirty registers as soon as we will no longer modify them,
7073// so that we don't end up with lots of writes at the branches.
7074static void clean_registers(int istart,int iend,int wr)
7075{
7076 int i;
7077 int r;
7078 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7079 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7080 if(iend==slen-1) {
7081 will_dirty_i=will_dirty_next=0;
7082 wont_dirty_i=wont_dirty_next=0;
7083 }else{
7084 will_dirty_i=will_dirty_next=will_dirty[iend+1];
7085 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7086 }
7087 for (i=iend;i>=istart;i--)
7088 {
7089 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7090 {
7091 if(ba[i]<start || ba[i]>=(start+slen*4))
7092 {
7093 // Branch out of this block, flush all regs
7094 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7095 {
7096 // Unconditional branch
7097 will_dirty_i=0;
7098 wont_dirty_i=0;
7099 // Merge in delay slot (will dirty)
7100 for(r=0;r<HOST_REGS;r++) {
7101 if(r!=EXCLUDE_REG) {
7102 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7103 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7104 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7105 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7106 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7107 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7108 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7109 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7110 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7111 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7112 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7113 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7114 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7115 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7116 }
7117 }
7118 }
7119 else
7120 {
7121 // Conditional branch
7122 will_dirty_i=0;
7123 wont_dirty_i=wont_dirty_next;
7124 // Merge in delay slot (will dirty)
7125 for(r=0;r<HOST_REGS;r++) {
7126 if(r!=EXCLUDE_REG) {
7127 if(!likely[i]) {
7128 // Might not dirty if likely branch is not taken
7129 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7130 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7131 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7132 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7133 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7134 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7135 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7136 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7137 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7138 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7139 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7140 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7141 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7142 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7143 }
7144 }
7145 }
7146 }
7147 // Merge in delay slot (wont dirty)
7148 for(r=0;r<HOST_REGS;r++) {
7149 if(r!=EXCLUDE_REG) {
7150 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7151 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7152 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7153 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7154 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7155 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7156 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7157 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7158 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7159 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7160 }
7161 }
7162 if(wr) {
7163 #ifndef DESTRUCTIVE_WRITEBACK
7164 branch_regs[i].dirty&=wont_dirty_i;
7165 #endif
7166 branch_regs[i].dirty|=will_dirty_i;
7167 }
7168 }
7169 else
7170 {
7171 // Internal branch
7172 if(ba[i]<=start+i*4) {
7173 // Backward branch
7174 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7175 {
7176 // Unconditional branch
7177 temp_will_dirty=0;
7178 temp_wont_dirty=0;
7179 // Merge in delay slot (will dirty)
7180 for(r=0;r<HOST_REGS;r++) {
7181 if(r!=EXCLUDE_REG) {
7182 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7183 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7184 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7185 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7186 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7187 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7188 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7189 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7190 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7191 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7192 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7193 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7194 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7195 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7196 }
7197 }
7198 } else {
7199 // Conditional branch (not taken case)
7200 temp_will_dirty=will_dirty_next;
7201 temp_wont_dirty=wont_dirty_next;
7202 // Merge in delay slot (will dirty)
7203 for(r=0;r<HOST_REGS;r++) {
7204 if(r!=EXCLUDE_REG) {
7205 if(!likely[i]) {
7206 // Will not dirty if likely branch is not taken
7207 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7208 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7209 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7210 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7211 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7212 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7213 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7214 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7215 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7216 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7217 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7218 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7219 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7220 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7221 }
7222 }
7223 }
7224 }
7225 // Merge in delay slot (wont dirty)
7226 for(r=0;r<HOST_REGS;r++) {
7227 if(r!=EXCLUDE_REG) {
7228 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7229 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7230 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7231 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7232 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7233 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7234 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7235 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7236 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7237 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7238 }
7239 }
7240 // Deal with changed mappings
7241 if(i<iend) {
7242 for(r=0;r<HOST_REGS;r++) {
7243 if(r!=EXCLUDE_REG) {
7244 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7245 temp_will_dirty&=~(1<<r);
7246 temp_wont_dirty&=~(1<<r);
7247 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7248 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7249 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7250 } else {
7251 temp_will_dirty|=1<<r;
7252 temp_wont_dirty|=1<<r;
7253 }
7254 }
7255 }
7256 }
7257 }
7258 if(wr) {
7259 will_dirty[i]=temp_will_dirty;
7260 wont_dirty[i]=temp_wont_dirty;
7261 clean_registers((ba[i]-start)>>2,i-1,0);
7262 }else{
7263 // Limit recursion. It can take an excessive amount
7264 // of time if there are a lot of nested loops.
7265 will_dirty[(ba[i]-start)>>2]=0;
7266 wont_dirty[(ba[i]-start)>>2]=-1;
7267 }
7268 }
7269 /*else*/ if(1)
7270 {
7271 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7272 {
7273 // Unconditional branch
7274 will_dirty_i=0;
7275 wont_dirty_i=0;
7276 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7277 for(r=0;r<HOST_REGS;r++) {
7278 if(r!=EXCLUDE_REG) {
7279 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7280 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7281 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7282 }
7283 if(branch_regs[i].regmap[r]>=0) {
7284 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7285 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7286 }
7287 }
7288 }
7289 //}
7290 // Merge in delay slot
7291 for(r=0;r<HOST_REGS;r++) {
7292 if(r!=EXCLUDE_REG) {
7293 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7294 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7295 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7296 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7297 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7298 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7299 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7300 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7301 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7302 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7303 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7304 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7305 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7306 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7307 }
7308 }
7309 } else {
7310 // Conditional branch
7311 will_dirty_i=will_dirty_next;
7312 wont_dirty_i=wont_dirty_next;
7313 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7314 for(r=0;r<HOST_REGS;r++) {
7315 if(r!=EXCLUDE_REG) {
7316 signed char target_reg=branch_regs[i].regmap[r];
7317 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7318 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7319 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7320 }
7321 else if(target_reg>=0) {
7322 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7323 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7324 }
7325 // Treat delay slot as part of branch too
7326 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7327 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7328 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7329 }
7330 else
7331 {
7332 will_dirty[i+1]&=~(1<<r);
7333 }*/
7334 }
7335 }
7336 //}
7337 // Merge in delay slot
7338 for(r=0;r<HOST_REGS;r++) {
7339 if(r!=EXCLUDE_REG) {
7340 if(!likely[i]) {
7341 // Might not dirty if likely branch is not taken
7342 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7343 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7344 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7345 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7346 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7347 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7348 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7349 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7350 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7351 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7352 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7353 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7354 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7355 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7356 }
7357 }
7358 }
7359 }
7360 // Merge in delay slot (won't dirty)
7361 for(r=0;r<HOST_REGS;r++) {
7362 if(r!=EXCLUDE_REG) {
7363 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7364 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7365 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7366 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7367 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7368 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7369 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7370 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7371 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7372 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7373 }
7374 }
7375 if(wr) {
7376 #ifndef DESTRUCTIVE_WRITEBACK
7377 branch_regs[i].dirty&=wont_dirty_i;
7378 #endif
7379 branch_regs[i].dirty|=will_dirty_i;
7380 }
7381 }
7382 }
7383 }
7384 else if(itype[i]==SYSCALL)
7385 {
7386 // SYSCALL instruction (software interrupt)
7387 will_dirty_i=0;
7388 wont_dirty_i=0;
7389 }
7390 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7391 {
7392 // ERET instruction (return from interrupt)
7393 will_dirty_i=0;
7394 wont_dirty_i=0;
7395 }
7396 will_dirty_next=will_dirty_i;
7397 wont_dirty_next=wont_dirty_i;
7398 for(r=0;r<HOST_REGS;r++) {
7399 if(r!=EXCLUDE_REG) {
7400 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7401 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7402 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7403 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7404 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7405 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7406 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7407 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7408 if(i>istart) {
7409 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7410 {
7411 // Don't store a register immediately after writing it,
7412 // may prevent dual-issue.
7413 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7414 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7415 }
7416 }
7417 }
7418 }
7419 // Save it
7420 will_dirty[i]=will_dirty_i;
7421 wont_dirty[i]=wont_dirty_i;
7422 // Mark registers that won't be dirtied as not dirty
7423 if(wr) {
7424 /*DebugMessage(M64MSG_VERBOSE, "wr (%d,%d) %x will:",istart,iend,start+i*4);
7425 for(r=0;r<HOST_REGS;r++) {
7426 if((will_dirty_i>>r)&1) {
7427 DebugMessage(M64MSG_VERBOSE, " r%d",r);
7428 }
7429 }*/
7430
7431 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7432 regs[i].dirty|=will_dirty_i;
7433 #ifndef DESTRUCTIVE_WRITEBACK
7434 regs[i].dirty&=wont_dirty_i;
7435 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7436 {
7437 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7438 for(r=0;r<HOST_REGS;r++) {
7439 if(r!=EXCLUDE_REG) {
7440 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7441 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7442 }else {/*DebugMessage(M64MSG_VERBOSE, "i: %x (%d) mismatch(+2): %d",start+i*4,i,r); / *assert(!((wont_dirty_i>>r)&1));*/}
7443 }
7444 }
7445 }
7446 }
7447 else
7448 {
7449 if(i<iend) {
7450 for(r=0;r<HOST_REGS;r++) {
7451 if(r!=EXCLUDE_REG) {
7452 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7453 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7454 }else {/*DebugMessage(M64MSG_VERBOSE, "i: %x (%d) mismatch(+1): %d",start+i*4,i,r);/ *assert(!((wont_dirty_i>>r)&1));*/}
7455 }
7456 }
7457 }
7458 }
7459 #endif
7460 //}
7461 }
7462 // Deal with changed mappings
7463 temp_will_dirty=will_dirty_i;
7464 temp_wont_dirty=wont_dirty_i;
7465 for(r=0;r<HOST_REGS;r++) {
7466 if(r!=EXCLUDE_REG) {
7467 int nr;
7468 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7469 if(wr) {
7470 #ifndef DESTRUCTIVE_WRITEBACK
7471 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7472 #endif
7473 regs[i].wasdirty|=will_dirty_i&(1<<r);
7474 }
7475 }
7476 else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7477 // Register moved to a different register
7478 will_dirty_i&=~(1<<r);
7479 wont_dirty_i&=~(1<<r);
7480 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7481 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7482 if(wr) {
7483 #ifndef DESTRUCTIVE_WRITEBACK
7484 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7485 #endif
7486 regs[i].wasdirty|=will_dirty_i&(1<<r);
7487 }
7488 }
7489 else {
7490 will_dirty_i&=~(1<<r);
7491 wont_dirty_i&=~(1<<r);
7492 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7493 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7494 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7495 } else {
7496 wont_dirty_i|=1<<r;
7497 /*DebugMessage(M64MSG_VERBOSE, "i: %x (%d) mismatch: %d",start+i*4,i,r);/ *assert(!((will_dirty>>r)&1));*/
7498 }
7499 }
7500 }
7501 }
7502 }
7503}
7504
7505#ifdef ASSEM_DEBUG
7506 /* disassembly */
7507static void disassemble_inst(int i)
7508{
7509 if (bt[i]) DebugMessage(M64MSG_VERBOSE, "*"); else DebugMessage(M64MSG_VERBOSE, " ");
7510 switch(itype[i]) {
7511 case UJUMP:
7512 printf (" %x: %s %8x",start+i*4,insn[i],ba[i]);break;
7513 case CJUMP:
7514 printf (" %x: %s r%d,r%d,%8x",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7515 case SJUMP:
7516 printf (" %x: %s r%d,%8x",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7517 case FJUMP:
7518 printf (" %x: %s %8x",start+i*4,insn[i],ba[i]);break;
7519 case RJUMP:
7520 if ((opcode2[i]&1)&&rt1[i]!=31)
7521 printf (" %x: %s r%d,r%d",start+i*4,insn[i],rt1[i],rs1[i]);
7522 else
7523 printf (" %x: %s r%d",start+i*4,insn[i],rs1[i]);
7524 break;
7525 case SPAN:
7526 printf (" %x: %s (pagespan) r%d,r%d,%8x",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7527 case IMM16:
7528 if(opcode[i]==0xf) //LUI
7529 printf (" %x: %s r%d,%4x0000",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7530 else
7531 printf (" %x: %s r%d,r%d,%d",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7532 break;
7533 case LOAD:
7534 case LOADLR:
7535 printf (" %x: %s r%d,r%d+%x",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7536 break;
7537 case STORE:
7538 case STORELR:
7539 printf (" %x: %s r%d,r%d+%x",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7540 break;
7541 case ALU:
7542 case SHIFT:
7543 printf (" %x: %s r%d,r%d,r%d",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7544 break;
7545 case MULTDIV:
7546 printf (" %x: %s r%d,r%d",start+i*4,insn[i],rs1[i],rs2[i]);
7547 break;
7548 case SHIFTIMM:
7549 printf (" %x: %s r%d,r%d,%d",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7550 break;
7551 case MOV:
7552 if((opcode2[i]&0x1d)==0x10)
7553 printf (" %x: %s r%d",start+i*4,insn[i],rt1[i]);
7554 else if((opcode2[i]&0x1d)==0x11)
7555 printf (" %x: %s r%d",start+i*4,insn[i],rs1[i]);
7556 else
7557 printf (" %x: %s",start+i*4,insn[i]);
7558 break;
7559 case COP0:
7560 if(opcode2[i]==0)
7561 printf (" %x: %s r%d,cpr0[%d]",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7562 else if(opcode2[i]==4)
7563 printf (" %x: %s r%d,cpr0[%d]",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7564 else printf (" %x: %s",start+i*4,insn[i]);
7565 break;
7566 case COP1:
7567 if(opcode2[i]<3)
7568 printf (" %x: %s r%d,cpr1[%d]",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7569 else if(opcode2[i]>3)
7570 printf (" %x: %s r%d,cpr1[%d]",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7571 else printf (" %x: %s",start+i*4,insn[i]);
7572 break;
7573 case C1LS:
7574 printf (" %x: %s cpr1[%d],r%d+%x",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7575 break;
7576 default:
7577 //printf (" %s %8x",insn[i],source[i]);
7578 printf (" %x: %s",start+i*4,insn[i]);
7579 }
7580}
7581#endif
7582
7583void new_dynarec_init()
7584{
7585 DebugMessage(M64MSG_INFO, "Init new dynarec");
7586
7587#if NEW_DYNAREC == NEW_DYNAREC_ARM
7588 if ((base_addr = mmap ((u_char *)BASE_ADDR, 1<<TARGET_SIZE_2,
7589 PROT_READ | PROT_WRITE | PROT_EXEC,
7590 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7591 -1, 0)) <= 0) {DebugMessage(M64MSG_ERROR, "mmap() failed");}
7592#else
7593 if ((base_addr = mmap (NULL, 1<<TARGET_SIZE_2,
7594 PROT_READ | PROT_WRITE | PROT_EXEC,
7595 MAP_PRIVATE | MAP_ANONYMOUS,
7596 -1, 0)) <= 0) {DebugMessage(M64MSG_ERROR, "mmap() failed");}
7597#endif
7598 out=(u_char *)base_addr;
7599
7600 rdword=&readmem_dword;
7601 fake_pc.f.r.rs=(long long int *)&readmem_dword;
7602 fake_pc.f.r.rt=(long long int *)&readmem_dword;
7603 fake_pc.f.r.rd=(long long int *)&readmem_dword;
7604 int n;
7605 for(n=0x80000;n<0x80800;n++)
7606 invalid_code[n]=1;
7607 for(n=0;n<65536;n++)
7608 hash_table[n][0]=hash_table[n][2]=-1;
7609 memset(mini_ht,-1,sizeof(mini_ht));
7610 memset(restore_candidate,0,sizeof(restore_candidate));
7611 copy=shadow;
7612 expirep=16384; // Expiry pointer, +2 blocks
7613 pending_exception=0;
7614 literalcount=0;
7615#ifdef HOST_IMM8
7616 // Copy this into local area so we don't have to put it in every literal pool
7617 invc_ptr=invalid_code;
7618#endif
7619 stop_after_jal=0;
7620 // TLB
7621 using_tlb=0;
7622 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7623 memory_map[n]=-1;
7624 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7625 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7626 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7627 memory_map[n]=-1;
7628 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7629 writemem[n] = write_nomem_new;
7630 writememb[n] = write_nomemb_new;
7631 writememh[n] = write_nomemh_new;
7632 writememd[n] = write_nomemd_new;
7633 readmem[n] = read_nomem_new;
7634 readmemb[n] = read_nomemb_new;
7635 readmemh[n] = read_nomemh_new;
7636 readmemd[n] = read_nomemd_new;
7637 }
7638 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7639 writemem[n] = write_rdram_new;
7640 writememb[n] = write_rdramb_new;
7641 writememh[n] = write_rdramh_new;
7642 writememd[n] = write_rdramd_new;
7643 }
7644 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7645 writemem[n] = write_nomem_new;
7646 writememb[n] = write_nomemb_new;
7647 writememh[n] = write_nomemh_new;
7648 writememd[n] = write_nomemd_new;
7649 readmem[n] = read_nomem_new;
7650 readmemb[n] = read_nomemb_new;
7651 readmemh[n] = read_nomemh_new;
7652 readmemd[n] = read_nomemd_new;
7653 }
7654 tlb_hacks();
7655 arch_init();
7656}
7657
7658void new_dynarec_cleanup()
7659{
7660 int n;
7661 if (munmap (base_addr, 1<<TARGET_SIZE_2) < 0) {DebugMessage(M64MSG_ERROR, "munmap() failed");}
7662 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7663 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7664 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7665 #ifdef ROM_COPY
7666 if (munmap (ROM_COPY, 67108864) < 0) {DebugMessage(M64MSG_ERROR, "munmap() failed");}
7667 #endif
7668}
7669
7670int new_recompile_block(int addr)
7671{
7672/*
7673 if(addr==0x800cd050) {
7674 int block;
7675 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7676 int n;
7677 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7678 }
7679*/
7680 //if(Count==365117028) tracedebug=1;
7681 assem_debug("NOTCOMPILED: addr = %x -> %x", (int)addr, (int)out);
7682#if defined (COUNT_NOTCOMPILEDS )
7683 notcompiledCount++;
7684 log_message( "notcompiledCount=%i", notcompiledCount );
7685#endif
7686 //DebugMessage(M64MSG_VERBOSE, "NOTCOMPILED: addr = %x -> %x", (int)addr, (int)out);
7687 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (compile %x)",Count,next_interupt,addr);
7688 //if(debug)
7689 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x)",Count,next_interupt,mchecksum());
7690 //DebugMessage(M64MSG_VERBOSE, "fpu mapping=%x enabled=%x",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7691 /*if(Count>=312978186) {
7692 rlist();
7693 }*/
7694 //rlist();
7695 start = (u_int)addr&~3;
7696 //assert(((u_int)addr&1)==0);
7697 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7698 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7699 pagelimit = 0xa4001000;
7700 }
7701 else if ((int)addr >= 0x80000000 && (int)addr < 0x80800000) {
7702 source = (u_int *)((u_int)rdram+start-0x80000000);
7703 pagelimit = 0x80800000;
7704 }
7705 else if ((signed int)addr >= (signed int)0xC0000000) {
7706 //DebugMessage(M64MSG_VERBOSE, "addr=%x mm=%x",(u_int)addr,(memory_map[start>>12]<<2));
7707 //if(tlb_LUT_r[start>>12])
7708 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7709 if((signed int)memory_map[start>>12]>=0) {
7710 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7711 pagelimit=(start+4096)&0xFFFFF000;
7712 int map=memory_map[start>>12];
7713 int i;
7714 for(i=0;i<5;i++) {
7715 //DebugMessage(M64MSG_VERBOSE, "start: %x next: %x",map,memory_map[pagelimit>>12]);
7716 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7717 }
7718 assem_debug("pagelimit=%x",pagelimit);
7719 assem_debug("mapping=%x (%x)",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7720 }
7721 else {
7722 assem_debug("Compile at unmapped memory address: %x ", (int)addr);
7723 //assem_debug("start: %x next: %x",memory_map[start>>12],memory_map[(start+4096)>>12]);
7724 return 1; // Caller will invoke exception handler
7725 }
7726 //DebugMessage(M64MSG_VERBOSE, "source= %x",(int)source);
7727 }
7728 else {
7729 //DebugMessage(M64MSG_VERBOSE, "Compile at bogus memory address: %x ", (int)addr);
7730 log_message("Compile at bogus memory address: %x", (int)addr);
7731 exit(1);
7732 }
7733
7734 /* Pass 1: disassemble */
7735 /* Pass 2: register dependencies, branch targets */
7736 /* Pass 3: register allocation */
7737 /* Pass 4: branch dependencies */
7738 /* Pass 5: pre-alloc */
7739 /* Pass 6: optimize clean/dirty state */
7740 /* Pass 7: flag 32-bit registers */
7741 /* Pass 8: assembly */
7742 /* Pass 9: linker */
7743 /* Pass 10: garbage collection / free memory */
7744
7745 int i,j;
7746 int done=0;
7747 unsigned int type,op,op2;
7748
7749 //DebugMessage(M64MSG_VERBOSE, "addr = %x source = %x %x", addr,source,source[0]);
7750
7751 /* Pass 1 disassembly */
7752
7753 for(i=0;!done;i++) {
7754 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7755 minimum_free_regs[i]=0;
7756 opcode[i]=op=source[i]>>26;
7757 switch(op)
7758 {
7759 case 0x00: strcpy(insn[i],"special"); type=NI;
7760 op2=source[i]&0x3f;
7761 switch(op2)
7762 {
7763 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7764 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7765 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7766 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7767 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7768 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7769 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7770 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7771 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7772 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7773 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7774 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7775 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7776 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7777 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7778 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7779 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7780 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7781 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7782 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7783 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7784 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7785 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7786 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7787 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7788 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7789 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7790 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7791 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7792 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7793 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7794 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7795 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7796 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7797 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7798 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7799 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7800 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7801 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7802 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7803 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7804 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7805 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7806 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7807 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7808 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7809 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7810 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7811 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7812 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7813 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7814 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7815 }
7816 break;
7817 case 0x01: strcpy(insn[i],"regimm"); type=NI;
7818 op2=(source[i]>>16)&0x1f;
7819 switch(op2)
7820 {
7821 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7822 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7823 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7824 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7825 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7826 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7827 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7828 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7829 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7830 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7831 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7832 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7833 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7834 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7835 }
7836 break;
7837 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7838 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7839 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7840 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7841 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7842 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7843 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7844 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7845 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7846 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7847 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7848 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7849 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7850 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7851 case 0x10: strcpy(insn[i],"cop0"); type=NI;
7852 op2=(source[i]>>21)&0x1f;
7853 switch(op2)
7854 {
7855 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7856 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7857 case 0x10: strcpy(insn[i],"tlb"); type=NI;
7858 switch(source[i]&0x3f)
7859 {
7860 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
7861 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
7862 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
7863 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
7864 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
7865 }
7866 }
7867 break;
7868 case 0x11: strcpy(insn[i],"cop1"); type=NI;
7869 op2=(source[i]>>21)&0x1f;
7870 switch(op2)
7871 {
7872 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
7873 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
7874 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
7875 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
7876 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
7877 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
7878 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
7879 switch((source[i]>>16)&0x3)
7880 {
7881 case 0x00: strcpy(insn[i],"BC1F"); break;
7882 case 0x01: strcpy(insn[i],"BC1T"); break;
7883 case 0x02: strcpy(insn[i],"BC1FL"); break;
7884 case 0x03: strcpy(insn[i],"BC1TL"); break;
7885 }
7886 break;
7887 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
7888 switch(source[i]&0x3f)
7889 {
7890 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
7891 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
7892 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
7893 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
7894 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
7895 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
7896 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
7897 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
7898 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
7899 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
7900 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
7901 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
7902 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
7903 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
7904 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
7905 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
7906 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
7907 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
7908 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
7909 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
7910 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
7911 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
7912 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
7913 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
7914 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
7915 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
7916 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
7917 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
7918 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
7919 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
7920 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
7921 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
7922 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
7923 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
7924 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
7925 }
7926 break;
7927 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
7928 switch(source[i]&0x3f)
7929 {
7930 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
7931 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
7932 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
7933 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
7934 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
7935 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
7936 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
7937 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
7938 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
7939 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
7940 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
7941 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
7942 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
7943 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
7944 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
7945 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
7946 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
7947 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
7948 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
7949 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
7950 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
7951 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
7952 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
7953 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
7954 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
7955 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
7956 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
7957 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
7958 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
7959 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
7960 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
7961 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
7962 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
7963 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
7964 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
7965 }
7966 break;
7967 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
7968 switch(source[i]&0x3f)
7969 {
7970 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
7971 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
7972 }
7973 break;
7974 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
7975 switch(source[i]&0x3f)
7976 {
7977 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
7978 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
7979 }
7980 break;
7981 }
7982 break;
7983 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
7984 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
7985 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
7986 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
7987 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
7988 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
7989 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
7990 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
7991 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
7992 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
7993 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
7994 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
7995 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
7996 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
7997 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
7998 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
7999 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8000 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8001 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8002 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8003 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8004 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8005 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8006 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8007 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8008 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8009 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8010 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8011 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8012 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8013 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8014 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8015 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8016 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8017 default: strcpy(insn[i],"???"); type=NI; break;
8018 }
8019 itype[i]=type;
8020 opcode2[i]=op2;
8021 /* Get registers/immediates */
8022 lt1[i]=0;
8023 us1[i]=0;
8024 us2[i]=0;
8025 dep1[i]=0;
8026 dep2[i]=0;
8027 switch(type) {
8028 case LOAD:
8029 rs1[i]=(source[i]>>21)&0x1f;
8030 rs2[i]=0;
8031 rt1[i]=(source[i]>>16)&0x1f;
8032 rt2[i]=0;
8033 imm[i]=(short)source[i];
8034 break;
8035 case STORE:
8036 case STORELR:
8037 rs1[i]=(source[i]>>21)&0x1f;
8038 rs2[i]=(source[i]>>16)&0x1f;
8039 rt1[i]=0;
8040 rt2[i]=0;
8041 imm[i]=(short)source[i];
8042 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8043 break;
8044 case LOADLR:
8045 // LWL/LWR only load part of the register,
8046 // therefore the target register must be treated as a source too
8047 rs1[i]=(source[i]>>21)&0x1f;
8048 rs2[i]=(source[i]>>16)&0x1f;
8049 rt1[i]=(source[i]>>16)&0x1f;
8050 rt2[i]=0;
8051 imm[i]=(short)source[i];
8052 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8053 if(op==0x26) dep1[i]=rt1[i]; // LWR
8054 break;
8055 case IMM16:
8056 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8057 else rs1[i]=(source[i]>>21)&0x1f;
8058 rs2[i]=0;
8059 rt1[i]=(source[i]>>16)&0x1f;
8060 rt2[i]=0;
8061 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8062 imm[i]=(unsigned short)source[i];
8063 }else{
8064 imm[i]=(short)source[i];
8065 }
8066 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8067 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8068 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8069 break;
8070 case UJUMP:
8071 rs1[i]=0;
8072 rs2[i]=0;
8073 rt1[i]=0;
8074 rt2[i]=0;
8075 // The JAL instruction writes to r31.
8076 if (op&1) {
8077 rt1[i]=31;
8078 }
8079 rs2[i]=CCREG;
8080 break;
8081 case RJUMP:
8082 rs1[i]=(source[i]>>21)&0x1f;
8083 rs2[i]=0;
8084 rt1[i]=0;
8085 rt2[i]=0;
8086 // The JALR instruction writes to rd.
8087 if (op2&1) {
8088 rt1[i]=(source[i]>>11)&0x1f;
8089 }
8090 rs2[i]=CCREG;
8091 break;
8092 case CJUMP:
8093 rs1[i]=(source[i]>>21)&0x1f;
8094 rs2[i]=(source[i]>>16)&0x1f;
8095 rt1[i]=0;
8096 rt2[i]=0;
8097 if(op&2) { // BGTZ/BLEZ
8098 rs2[i]=0;
8099 }
8100 us1[i]=rs1[i];
8101 us2[i]=rs2[i];
8102 likely[i]=op>>4;
8103 break;
8104 case SJUMP:
8105 rs1[i]=(source[i]>>21)&0x1f;
8106 rs2[i]=CCREG;
8107 rt1[i]=0;
8108 rt2[i]=0;
8109 us1[i]=rs1[i];
8110 if(op2&0x10) { // BxxAL
8111 rt1[i]=31;
8112 // NOTE: If the branch is not taken, r31 is still overwritten
8113 }
8114 likely[i]=(op2&2)>>1;
8115 break;
8116 case FJUMP:
8117 rs1[i]=FSREG;
8118 rs2[i]=CSREG;
8119 rt1[i]=0;
8120 rt2[i]=0;
8121 likely[i]=((source[i])>>17)&1;
8122 break;
8123 case ALU:
8124 rs1[i]=(source[i]>>21)&0x1f; // source
8125 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8126 rt1[i]=(source[i]>>11)&0x1f; // destination
8127 rt2[i]=0;
8128 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8129 us1[i]=rs1[i];us2[i]=rs2[i];
8130 }
8131 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8132 dep1[i]=rs1[i];dep2[i]=rs2[i];
8133 }
8134 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8135 dep1[i]=rs1[i];dep2[i]=rs2[i];
8136 }
8137 break;
8138 case MULTDIV:
8139 rs1[i]=(source[i]>>21)&0x1f; // source
8140 rs2[i]=(source[i]>>16)&0x1f; // divisor
8141 rt1[i]=HIREG;
8142 rt2[i]=LOREG;
8143 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8144 us1[i]=rs1[i];us2[i]=rs2[i];
8145 }
8146 break;
8147 case MOV:
8148 rs1[i]=0;
8149 rs2[i]=0;
8150 rt1[i]=0;
8151 rt2[i]=0;
8152 if(op2==0x10) rs1[i]=HIREG; // MFHI
8153 if(op2==0x11) rt1[i]=HIREG; // MTHI
8154 if(op2==0x12) rs1[i]=LOREG; // MFLO
8155 if(op2==0x13) rt1[i]=LOREG; // MTLO
8156 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8157 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8158 dep1[i]=rs1[i];
8159 break;
8160 case SHIFT:
8161 rs1[i]=(source[i]>>16)&0x1f; // target of shift
8162 rs2[i]=(source[i]>>21)&0x1f; // shift amount
8163 rt1[i]=(source[i]>>11)&0x1f; // destination
8164 rt2[i]=0;
8165 // DSLLV/DSRLV/DSRAV are 64-bit
8166 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8167 break;
8168 case SHIFTIMM:
8169 rs1[i]=(source[i]>>16)&0x1f;
8170 rs2[i]=0;
8171 rt1[i]=(source[i]>>11)&0x1f;
8172 rt2[i]=0;
8173 imm[i]=(source[i]>>6)&0x1f;
8174 // DSxx32 instructions
8175 if(op2>=0x3c) imm[i]|=0x20;
8176 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8177 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8178 break;
8179 case COP0:
8180 rs1[i]=0;
8181 rs2[i]=0;
8182 rt1[i]=0;
8183 rt2[i]=0;
8184 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8185 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8186 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8187 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8188 break;
8189 case COP1:
8190 rs1[i]=0;
8191 rs2[i]=0;
8192 rt1[i]=0;
8193 rt2[i]=0;
8194 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8195 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8196 if(op2==5) us1[i]=rs1[i]; // DMTC1
8197 rs2[i]=CSREG;
8198 break;
8199 case C1LS:
8200 rs1[i]=(source[i]>>21)&0x1F;
8201 rs2[i]=CSREG;
8202 rt1[i]=0;
8203 rt2[i]=0;
8204 imm[i]=(short)source[i];
8205 break;
8206 case FLOAT:
8207 case FCONV:
8208 rs1[i]=0;
8209 rs2[i]=CSREG;
8210 rt1[i]=0;
8211 rt2[i]=0;
8212 break;
8213 case FCOMP:
8214 rs1[i]=FSREG;
8215 rs2[i]=CSREG;
8216 rt1[i]=FSREG;
8217 rt2[i]=0;
8218 break;
8219 case SYSCALL:
8220 rs1[i]=CCREG;
8221 rs2[i]=0;
8222 rt1[i]=0;
8223 rt2[i]=0;
8224 break;
8225 default:
8226 rs1[i]=0;
8227 rs2[i]=0;
8228 rt1[i]=0;
8229 rt2[i]=0;
8230 }
8231 /* Calculate branch target addresses */
8232 if(type==UJUMP)
8233 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8234 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8235 ba[i]=start+i*4+8; // Ignore never taken branch
8236 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8237 ba[i]=start+i*4+8; // Ignore never taken branch
8238 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8239 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8240 else ba[i]=-1;
8241 /* Is this the end of the block? */
8242 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8243 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8244 done=1;
8245 // Does the block continue due to a branch?
8246 for(j=i-1;j>=0;j--)
8247 {
8248 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
8249 if(ba[j]==start+i*4+4) done=j=0;
8250 if(ba[j]==start+i*4+8) done=j=0;
8251 }
8252 }
8253 else {
8254 if(stop_after_jal) done=1;
8255 // Stop on BREAK
8256 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8257 }
8258 // Don't recompile stuff that's already compiled
8259 if(check_addr(start+i*4+4)) done=1;
8260 // Don't get too close to the limit
8261 if(i>MAXBLOCK/2) done=1;
8262 }
8263 if(i>0&&itype[i-1]==SYSCALL&&stop_after_jal) done=1;
8264 assert(i<MAXBLOCK-1);
8265 if(start+i*4==pagelimit-4) done=1;
8266 assert(start+i*4<pagelimit);
8267 if (i==MAXBLOCK-1) done=1;
8268 // Stop if we're compiling junk
8269 if(itype[i]==NI&&opcode[i]==0x11) {
8270 done=stop_after_jal=1;
8271 DebugMessage(M64MSG_VERBOSE, "Disabled speculative precompilation");
8272 }
8273 }
8274 slen=i;
8275 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8276 if(start+i*4==pagelimit) {
8277 itype[i-1]=SPAN;
8278 }
8279 }
8280 assert(slen>0);
8281
8282 /* Pass 2 - Register dependencies and branch targets */
8283
8284 unneeded_registers(0,slen-1,0);
8285
8286 /* Pass 3 - Register allocation */
8287
8288 struct regstat current; // Current register allocations/status
8289 current.is32=1;
8290 current.dirty=0;
8291 current.u=unneeded_reg[0];
8292 current.uu=unneeded_reg_upper[0];
8293 clear_all_regs(current.regmap);
8294 alloc_reg(&current,0,CCREG);
8295 dirty_reg(&current,CCREG);
8296 current.isconst=0;
8297 current.wasconst=0;
8298 int ds=0;
8299 int cc=0;
8300 int hr;
8301
8302 provisional_32bit();
8303
8304 if((u_int)addr&1) {
8305 // First instruction is delay slot
8306 cc=-1;
8307 bt[1]=1;
8308 ds=1;
8309 unneeded_reg[0]=1;
8310 unneeded_reg_upper[0]=1;
8311 current.regmap[HOST_BTREG]=BTREG;
8312 }
8313
8314 for(i=0;i<slen;i++)
8315 {
8316 if(bt[i])
8317 {
8318 int hr;
8319 for(hr=0;hr<HOST_REGS;hr++)
8320 {
8321 // Is this really necessary?
8322 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8323 }
8324 current.isconst=0;
8325 }
8326 if(i>1)
8327 {
8328 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8329 {
8330 if(rs1[i-2]==0||rs2[i-2]==0)
8331 {
8332 if(rs1[i-2]) {
8333 current.is32|=1LL<<rs1[i-2];
8334 int hr=get_reg(current.regmap,rs1[i-2]|64);
8335 if(hr>=0) current.regmap[hr]=-1;
8336 }
8337 if(rs2[i-2]) {
8338 current.is32|=1LL<<rs2[i-2];
8339 int hr=get_reg(current.regmap,rs2[i-2]|64);
8340 if(hr>=0) current.regmap[hr]=-1;
8341 }
8342 }
8343 }
8344 }
8345 // If something jumps here with 64-bit values
8346 // then promote those registers to 64 bits
8347 if(bt[i])
8348 {
8349 uint64_t temp_is32=current.is32;
8350 for(j=i-1;j>=0;j--)
8351 {
8352 if(ba[j]==start+i*4)
8353 temp_is32&=branch_regs[j].is32;
8354 }
8355 for(j=i;j<slen;j++)
8356 {
8357 if(ba[j]==start+i*4)
8358 //temp_is32=1;
8359 temp_is32&=p32[j];
8360 }
8361 if(temp_is32!=current.is32) {
8362 //DebugMessage(M64MSG_VERBOSE, "dumping 32-bit regs (%x)",start+i*4);
8363 #ifndef DESTRUCTIVE_WRITEBACK
8364 if(ds)
8365 #endif
8366 for(hr=0;hr<HOST_REGS;hr++)
8367 {
8368 int r=current.regmap[hr];
8369 if(r>0&&r<64)
8370 {
8371 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8372 temp_is32|=1LL<<r;
8373 //DebugMessage(M64MSG_VERBOSE, "restore %d",r);
8374 }
8375 }
8376 }
8377 current.is32=temp_is32;
8378 }
8379 }
8380 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8381 regs[i].wasconst=current.isconst;
8382 regs[i].was32=current.is32;
8383 regs[i].wasdirty=current.dirty;
8384 #ifdef DESTRUCTIVE_WRITEBACK
8385 // To change a dirty register from 32 to 64 bits, we must write
8386 // it out during the previous cycle (for branches, 2 cycles)
8387 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8388 {
8389 uint64_t temp_is32=current.is32;
8390 for(j=i-1;j>=0;j--)
8391 {
8392 if(ba[j]==start+i*4+4)
8393 temp_is32&=branch_regs[j].is32;
8394 }
8395 for(j=i;j<slen;j++)
8396 {
8397 if(ba[j]==start+i*4+4)
8398 //temp_is32=1;
8399 temp_is32&=p32[j];
8400 }
8401 if(temp_is32!=current.is32) {
8402 //DebugMessage(M64MSG_VERBOSE, "pre-dumping 32-bit regs (%x)",start+i*4);
8403 for(hr=0;hr<HOST_REGS;hr++)
8404 {
8405 int r=current.regmap[hr];
8406 if(r>0)
8407 {
8408 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8409 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8410 {
8411 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8412 {
8413 //DebugMessage(M64MSG_VERBOSE, "dump %d/r%d",hr,r);
8414 current.regmap[hr]=-1;
8415 if(get_reg(current.regmap,r|64)>=0)
8416 current.regmap[get_reg(current.regmap,r|64)]=-1;
8417 }
8418 }
8419 }
8420 }
8421 }
8422 }
8423 }
8424 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8425 {
8426 uint64_t temp_is32=current.is32;
8427 for(j=i-1;j>=0;j--)
8428 {
8429 if(ba[j]==start+i*4+8)
8430 temp_is32&=branch_regs[j].is32;
8431 }
8432 for(j=i;j<slen;j++)
8433 {
8434 if(ba[j]==start+i*4+8)
8435 //temp_is32=1;
8436 temp_is32&=p32[j];
8437 }
8438 if(temp_is32!=current.is32) {
8439 //DebugMessage(M64MSG_VERBOSE, "pre-dumping 32-bit regs (%x)",start+i*4);
8440 for(hr=0;hr<HOST_REGS;hr++)
8441 {
8442 int r=current.regmap[hr];
8443 if(r>0)
8444 {
8445 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8446 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8447 {
8448 //DebugMessage(M64MSG_VERBOSE, "dump %d/r%d",hr,r);
8449 current.regmap[hr]=-1;
8450 if(get_reg(current.regmap,r|64)>=0)
8451 current.regmap[get_reg(current.regmap,r|64)]=-1;
8452 }
8453 }
8454 }
8455 }
8456 }
8457 }
8458 #endif
8459 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8460 if(i+1<slen) {
8461 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8462 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8463 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8464 current.u|=1;
8465 current.uu|=1;
8466 } else {
8467 current.u=1;
8468 current.uu=1;
8469 }
8470 } else {
8471 if(i+1<slen) {
8472 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8473 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8474 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8475 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8476 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8477 current.u|=1;
8478 current.uu|=1;
8479 } else { DebugMessage(M64MSG_ERROR, "oops, branch at end of block with no delay slot");exit(1); }
8480 }
8481 is_ds[i]=ds;
8482 if(ds) {
8483 ds=0; // Skip delay slot, already allocated as part of branch
8484 // ...but we need to alloc it in case something jumps here
8485 if(i+1<slen) {
8486 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8487 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8488 }else{
8489 current.u=branch_unneeded_reg[i-1];
8490 current.uu=branch_unneeded_reg_upper[i-1];
8491 }
8492 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8493 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8494 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8495 current.u|=1;
8496 current.uu|=1;
8497 struct regstat temp;
8498 memcpy(&temp,&current,sizeof(current));
8499 temp.wasdirty=temp.dirty;
8500 temp.was32=temp.is32;
8501 // TODO: Take into account unconditional branches, as below
8502 delayslot_alloc(&temp,i);
8503 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8504 regs[i].wasdirty=temp.wasdirty;
8505 regs[i].was32=temp.was32;
8506 regs[i].dirty=temp.dirty;
8507 regs[i].is32=temp.is32;
8508 regs[i].isconst=0;
8509 regs[i].wasconst=0;
8510 current.isconst=0;
8511 // Create entry (branch target) regmap
8512 for(hr=0;hr<HOST_REGS;hr++)
8513 {
8514 int r=temp.regmap[hr];
8515 if(r>=0) {
8516 if(r!=regmap_pre[i][hr]) {
8517 regs[i].regmap_entry[hr]=-1;
8518 }
8519 else
8520 {
8521 if(r<64){
8522 if((current.u>>r)&1) {
8523 regs[i].regmap_entry[hr]=-1;
8524 regs[i].regmap[hr]=-1;
8525 //Don't clear regs in the delay slot as the branch might need them
8526 //current.regmap[hr]=-1;
8527 }else
8528 regs[i].regmap_entry[hr]=r;
8529 }
8530 else {
8531 if((current.uu>>(r&63))&1) {
8532 regs[i].regmap_entry[hr]=-1;
8533 regs[i].regmap[hr]=-1;
8534 //Don't clear regs in the delay slot as the branch might need them
8535 //current.regmap[hr]=-1;
8536 }else
8537 regs[i].regmap_entry[hr]=r;
8538 }
8539 }
8540 } else {
8541 // First instruction expects CCREG to be allocated
8542 if(i==0&&hr==HOST_CCREG)
8543 regs[i].regmap_entry[hr]=CCREG;
8544 else
8545 regs[i].regmap_entry[hr]=-1;
8546 }
8547 }
8548 }
8549 else { // Not delay slot
8550 switch(itype[i]) {
8551 case UJUMP:
8552 //current.isconst=0; // DEBUG
8553 //current.wasconst=0; // DEBUG
8554 //regs[i].wasconst=0; // DEBUG
8555 clear_const(&current,rt1[i]);
8556 alloc_cc(&current,i);
8557 dirty_reg(&current,CCREG);
8558 if (rt1[i]==31) {
8559 alloc_reg(&current,i,31);
8560 dirty_reg(&current,31);
8561 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8562 #ifdef REG_PREFETCH
8563 alloc_reg(&current,i,PTEMP);
8564 #endif
8565 //current.is32|=1LL<<rt1[i];
8566 }
8567 ooo[i]=1;
8568 delayslot_alloc(&current,i+1);
8569 //current.isconst=0; // DEBUG
8570 ds=1;
8571 //DebugMessage(M64MSG_VERBOSE, "i=%d, isconst=%x",i,current.isconst);
8572 break;
8573 case RJUMP:
8574 //current.isconst=0;
8575 //current.wasconst=0;
8576 //regs[i].wasconst=0;
8577 clear_const(&current,rs1[i]);
8578 clear_const(&current,rt1[i]);
8579 alloc_cc(&current,i);
8580 dirty_reg(&current,CCREG);
8581 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8582 alloc_reg(&current,i,rs1[i]);
8583 if (rt1[i]!=0) {
8584 alloc_reg(&current,i,rt1[i]);
8585 dirty_reg(&current,rt1[i]);
8586 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8587 #ifdef REG_PREFETCH
8588 alloc_reg(&current,i,PTEMP);
8589 #endif
8590 }
8591 #ifdef USE_MINI_HT
8592 if(rs1[i]==31) { // JALR
8593 alloc_reg(&current,i,RHASH);
8594 #ifndef HOST_IMM_ADDR32
8595 alloc_reg(&current,i,RHTBL);
8596 #endif
8597 }
8598 #endif
8599 delayslot_alloc(&current,i+1);
8600 } else {
8601 // The delay slot overwrites our source register,
8602 // allocate a temporary register to hold the old value.
8603 current.isconst=0;
8604 current.wasconst=0;
8605 regs[i].wasconst=0;
8606 delayslot_alloc(&current,i+1);
8607 current.isconst=0;
8608 alloc_reg(&current,i,RTEMP);
8609 }
8610 //current.isconst=0; // DEBUG
8611 ooo[i]=1;
8612 ds=1;
8613 break;
8614 case CJUMP:
8615 //current.isconst=0;
8616 //current.wasconst=0;
8617 //regs[i].wasconst=0;
8618 clear_const(&current,rs1[i]);
8619 clear_const(&current,rs2[i]);
8620 if((opcode[i]&0x3E)==4) // BEQ/BNE
8621 {
8622 alloc_cc(&current,i);
8623 dirty_reg(&current,CCREG);
8624 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8625 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8626 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8627 {
8628 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8629 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8630 }
8631 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8632 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8633 // The delay slot overwrites one of our conditions.
8634 // Allocate the branch condition registers instead.
8635 current.isconst=0;
8636 current.wasconst=0;
8637 regs[i].wasconst=0;
8638 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8639 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8640 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8641 {
8642 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8643 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8644 }
8645 }
8646 else
8647 {
8648 ooo[i]=1;
8649 delayslot_alloc(&current,i+1);
8650 }
8651 }
8652 else
8653 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8654 {
8655 alloc_cc(&current,i);
8656 dirty_reg(&current,CCREG);
8657 alloc_reg(&current,i,rs1[i]);
8658 if(!(current.is32>>rs1[i]&1))
8659 {
8660 alloc_reg64(&current,i,rs1[i]);
8661 }
8662 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8663 // The delay slot overwrites one of our conditions.
8664 // Allocate the branch condition registers instead.
8665 current.isconst=0;
8666 current.wasconst=0;
8667 regs[i].wasconst=0;
8668 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8669 if(!((current.is32>>rs1[i])&1))
8670 {
8671 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8672 }
8673 }
8674 else
8675 {
8676 ooo[i]=1;
8677 delayslot_alloc(&current,i+1);
8678 }
8679 }
8680 else
8681 // Don't alloc the delay slot yet because we might not execute it
8682 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8683 {
8684 current.isconst=0;
8685 current.wasconst=0;
8686 regs[i].wasconst=0;
8687 alloc_cc(&current,i);
8688 dirty_reg(&current,CCREG);
8689 alloc_reg(&current,i,rs1[i]);
8690 alloc_reg(&current,i,rs2[i]);
8691 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8692 {
8693 alloc_reg64(&current,i,rs1[i]);
8694 alloc_reg64(&current,i,rs2[i]);
8695 }
8696 }
8697 else
8698 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8699 {
8700 current.isconst=0;
8701 current.wasconst=0;
8702 regs[i].wasconst=0;
8703 alloc_cc(&current,i);
8704 dirty_reg(&current,CCREG);
8705 alloc_reg(&current,i,rs1[i]);
8706 if(!(current.is32>>rs1[i]&1))
8707 {
8708 alloc_reg64(&current,i,rs1[i]);
8709 }
8710 }
8711 ds=1;
8712 //current.isconst=0;
8713 break;
8714 case SJUMP:
8715 //current.isconst=0;
8716 //current.wasconst=0;
8717 //regs[i].wasconst=0;
8718 clear_const(&current,rs1[i]);
8719 clear_const(&current,rt1[i]);
8720 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8721 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8722 {
8723 alloc_cc(&current,i);
8724 dirty_reg(&current,CCREG);
8725 alloc_reg(&current,i,rs1[i]);
8726 if(!(current.is32>>rs1[i]&1))
8727 {
8728 alloc_reg64(&current,i,rs1[i]);
8729 }
8730 if (rt1[i]==31) { // BLTZAL/BGEZAL
8731 alloc_reg(&current,i,31);
8732 dirty_reg(&current,31);
8733 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8734 //#ifdef REG_PREFETCH
8735 //alloc_reg(&current,i,PTEMP);
8736 //#endif
8737 //current.is32|=1LL<<rt1[i];
8738 }
8739 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8740 // The delay slot overwrites the branch condition.
8741 // Allocate the branch condition registers instead.
8742 current.isconst=0;
8743 current.wasconst=0;
8744 regs[i].wasconst=0;
8745 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8746 if(!((current.is32>>rs1[i])&1))
8747 {
8748 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8749 }
8750 }
8751 else
8752 {
8753 ooo[i]=1;
8754 delayslot_alloc(&current,i+1);
8755 }
8756 }
8757 else
8758 // Don't alloc the delay slot yet because we might not execute it
8759 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8760 {
8761 current.isconst=0;
8762 current.wasconst=0;
8763 regs[i].wasconst=0;
8764 alloc_cc(&current,i);
8765 dirty_reg(&current,CCREG);
8766 alloc_reg(&current,i,rs1[i]);
8767 if(!(current.is32>>rs1[i]&1))
8768 {
8769 alloc_reg64(&current,i,rs1[i]);
8770 }
8771 }
8772 ds=1;
8773 //current.isconst=0;
8774 break;
8775 case FJUMP:
8776 current.isconst=0;
8777 current.wasconst=0;
8778 regs[i].wasconst=0;
8779 if(likely[i]==0) // BC1F/BC1T
8780 {
8781 // TODO: Theoretically we can run out of registers here on x86.
8782 // The delay slot can allocate up to six, and we need to check
8783 // CSREG before executing the delay slot. Possibly we can drop
8784 // the cycle count and then reload it after checking that the
8785 // FPU is in a usable state, or don't do out-of-order execution.
8786 alloc_cc(&current,i);
8787 dirty_reg(&current,CCREG);
8788 alloc_reg(&current,i,FSREG);
8789 alloc_reg(&current,i,CSREG);
8790 if(itype[i+1]==FCOMP) {
8791 // The delay slot overwrites the branch condition.
8792 // Allocate the branch condition registers instead.
8793 alloc_cc(&current,i);
8794 dirty_reg(&current,CCREG);
8795 alloc_reg(&current,i,CSREG);
8796 alloc_reg(&current,i,FSREG);
8797 }
8798 else {
8799 ooo[i]=1;
8800 delayslot_alloc(&current,i+1);
8801 alloc_reg(&current,i+1,CSREG);
8802 }
8803 }
8804 else
8805 // Don't alloc the delay slot yet because we might not execute it
8806 if(likely[i]) // BC1FL/BC1TL
8807 {
8808 alloc_cc(&current,i);
8809 dirty_reg(&current,CCREG);
8810 alloc_reg(&current,i,CSREG);
8811 alloc_reg(&current,i,FSREG);
8812 }
8813 ds=1;
8814 current.isconst=0;
8815 break;
8816 case IMM16:
8817 imm16_alloc(&current,i);
8818 break;
8819 case LOAD:
8820 case LOADLR:
8821 load_alloc(&current,i);
8822 break;
8823 case STORE:
8824 case STORELR:
8825 store_alloc(&current,i);
8826 break;
8827 case ALU:
8828 alu_alloc(&current,i);
8829 break;
8830 case SHIFT:
8831 shift_alloc(&current,i);
8832 break;
8833 case MULTDIV:
8834 multdiv_alloc(&current,i);
8835 break;
8836 case SHIFTIMM:
8837 shiftimm_alloc(&current,i);
8838 break;
8839 case MOV:
8840 mov_alloc(&current,i);
8841 break;
8842 case COP0:
8843 cop0_alloc(&current,i);
8844 break;
8845 case COP1:
8846 cop1_alloc(&current,i);
8847 break;
8848 case C1LS:
8849 c1ls_alloc(&current,i);
8850 break;
8851 case FCONV:
8852 fconv_alloc(&current,i);
8853 break;
8854 case FLOAT:
8855 float_alloc(&current,i);
8856 break;
8857 case FCOMP:
8858 fcomp_alloc(&current,i);
8859 break;
8860 case SYSCALL:
8861 syscall_alloc(&current,i);
8862 break;
8863 case SPAN:
8864 pagespan_alloc(&current,i);
8865 break;
8866 }
8867
8868 // Drop the upper half of registers that have become 32-bit
8869 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
8870 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8871 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8872 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8873 current.uu|=1;
8874 } else {
8875 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
8876 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8877 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8878 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8879 current.uu|=1;
8880 }
8881
8882 // Create entry (branch target) regmap
8883 for(hr=0;hr<HOST_REGS;hr++)
8884 {
8885 int r,or;
8886 r=current.regmap[hr];
8887 if(r>=0) {
8888 if(r!=regmap_pre[i][hr]) {
8889 // TODO: delay slot (?)
8890 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
8891 if(or<0||(r&63)>=TEMPREG){
8892 regs[i].regmap_entry[hr]=-1;
8893 }
8894 else
8895 {
8896 // Just move it to a different register
8897 regs[i].regmap_entry[hr]=r;
8898 // If it was dirty before, it's still dirty
8899 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
8900 }
8901 }
8902 else
8903 {
8904 // Unneeded
8905 if(r==0){
8906 regs[i].regmap_entry[hr]=0;
8907 }
8908 else
8909 if(r<64){
8910 if((current.u>>r)&1) {
8911 regs[i].regmap_entry[hr]=-1;
8912 //regs[i].regmap[hr]=-1;
8913 current.regmap[hr]=-1;
8914 }else
8915 regs[i].regmap_entry[hr]=r;
8916 }
8917 else {
8918 if((current.uu>>(r&63))&1) {
8919 regs[i].regmap_entry[hr]=-1;
8920 //regs[i].regmap[hr]=-1;
8921 current.regmap[hr]=-1;
8922 }else
8923 regs[i].regmap_entry[hr]=r;
8924 }
8925 }
8926 } else {
8927 // Branches expect CCREG to be allocated at the target
8928 if(regmap_pre[i][hr]==CCREG)
8929 regs[i].regmap_entry[hr]=CCREG;
8930 else
8931 regs[i].regmap_entry[hr]=-1;
8932 }
8933 }
8934 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
8935 }
8936 /* Branch post-alloc */
8937 if(i>0)
8938 {
8939 current.was32=current.is32;
8940 current.wasdirty=current.dirty;
8941 switch(itype[i-1]) {
8942 case UJUMP:
8943 memcpy(&branch_regs[i-1],&current,sizeof(current));
8944 branch_regs[i-1].isconst=0;
8945 branch_regs[i-1].wasconst=0;
8946 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8947 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8948 alloc_cc(&branch_regs[i-1],i-1);
8949 dirty_reg(&branch_regs[i-1],CCREG);
8950 if(rt1[i-1]==31) { // JAL
8951 alloc_reg(&branch_regs[i-1],i-1,31);
8952 dirty_reg(&branch_regs[i-1],31);
8953 branch_regs[i-1].is32|=1LL<<31;
8954 }
8955 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8956 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8957 break;
8958 case RJUMP:
8959 memcpy(&branch_regs[i-1],&current,sizeof(current));
8960 branch_regs[i-1].isconst=0;
8961 branch_regs[i-1].wasconst=0;
8962 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8963 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8964 alloc_cc(&branch_regs[i-1],i-1);
8965 dirty_reg(&branch_regs[i-1],CCREG);
8966 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
8967 if(rt1[i-1]!=0) { // JALR
8968 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
8969 dirty_reg(&branch_regs[i-1],rt1[i-1]);
8970 branch_regs[i-1].is32|=1LL<<rt1[i-1];
8971 }
8972 #ifdef USE_MINI_HT
8973 if(rs1[i-1]==31) { // JALR
8974 alloc_reg(&branch_regs[i-1],i-1,RHASH);
8975 #ifndef HOST_IMM_ADDR32
8976 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
8977 #endif
8978 }
8979 #endif
8980 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8981 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8982 break;
8983 case CJUMP:
8984 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
8985 {
8986 alloc_cc(&current,i-1);
8987 dirty_reg(&current,CCREG);
8988 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
8989 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
8990 // The delay slot overwrote one of our conditions
8991 // Delay slot goes after the test (in order)
8992 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8993 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8994 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8995 current.u|=1;
8996 current.uu|=1;
8997 delayslot_alloc(&current,i);
8998 current.isconst=0;
8999 }
9000 else
9001 {
9002 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9003 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9004 // Alloc the branch condition registers
9005 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9006 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9007 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9008 {
9009 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9010 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9011 }
9012 }
9013 memcpy(&branch_regs[i-1],&current,sizeof(current));
9014 branch_regs[i-1].isconst=0;
9015 branch_regs[i-1].wasconst=0;
9016 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9017 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9018 }
9019 else
9020 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9021 {
9022 alloc_cc(&current,i-1);
9023 dirty_reg(&current,CCREG);
9024 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9025 // The delay slot overwrote the branch condition
9026 // Delay slot goes after the test (in order)
9027 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9028 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9029 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9030 current.u|=1;
9031 current.uu|=1;
9032 delayslot_alloc(&current,i);
9033 current.isconst=0;
9034 }
9035 else
9036 {
9037 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9038 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9039 // Alloc the branch condition register
9040 alloc_reg(&current,i-1,rs1[i-1]);
9041 if(!(current.is32>>rs1[i-1]&1))
9042 {
9043 alloc_reg64(&current,i-1,rs1[i-1]);
9044 }
9045 }
9046 memcpy(&branch_regs[i-1],&current,sizeof(current));
9047 branch_regs[i-1].isconst=0;
9048 branch_regs[i-1].wasconst=0;
9049 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9050 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9051 }
9052 else
9053 // Alloc the delay slot in case the branch is taken
9054 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9055 {
9056 memcpy(&branch_regs[i-1],&current,sizeof(current));
9057 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9058 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9059 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9060 alloc_cc(&branch_regs[i-1],i);
9061 dirty_reg(&branch_regs[i-1],CCREG);
9062 delayslot_alloc(&branch_regs[i-1],i);
9063 branch_regs[i-1].isconst=0;
9064 alloc_reg(&current,i,CCREG); // Not taken path
9065 dirty_reg(&current,CCREG);
9066 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9067 }
9068 else
9069 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9070 {
9071 memcpy(&branch_regs[i-1],&current,sizeof(current));
9072 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9073 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9074 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9075 alloc_cc(&branch_regs[i-1],i);
9076 dirty_reg(&branch_regs[i-1],CCREG);
9077 delayslot_alloc(&branch_regs[i-1],i);
9078 branch_regs[i-1].isconst=0;
9079 alloc_reg(&current,i,CCREG); // Not taken path
9080 dirty_reg(&current,CCREG);
9081 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9082 }
9083 break;
9084 case SJUMP:
9085 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9086 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9087 {
9088 alloc_cc(&current,i-1);
9089 dirty_reg(&current,CCREG);
9090 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9091 // The delay slot overwrote the branch condition
9092 // Delay slot goes after the test (in order)
9093 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9094 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9095 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9096 current.u|=1;
9097 current.uu|=1;
9098 delayslot_alloc(&current,i);
9099 current.isconst=0;
9100 }
9101 else
9102 {
9103 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9104 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9105 // Alloc the branch condition register
9106 alloc_reg(&current,i-1,rs1[i-1]);
9107 if(!(current.is32>>rs1[i-1]&1))
9108 {
9109 alloc_reg64(&current,i-1,rs1[i-1]);
9110 }
9111 }
9112 memcpy(&branch_regs[i-1],&current,sizeof(current));
9113 branch_regs[i-1].isconst=0;
9114 branch_regs[i-1].wasconst=0;
9115 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9116 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9117 }
9118 else
9119 // Alloc the delay slot in case the branch is taken
9120 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9121 {
9122 memcpy(&branch_regs[i-1],&current,sizeof(current));
9123 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9124 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9125 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9126 alloc_cc(&branch_regs[i-1],i);
9127 dirty_reg(&branch_regs[i-1],CCREG);
9128 delayslot_alloc(&branch_regs[i-1],i);
9129 branch_regs[i-1].isconst=0;
9130 alloc_reg(&current,i,CCREG); // Not taken path
9131 dirty_reg(&current,CCREG);
9132 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9133 }
9134 // FIXME: BLTZAL/BGEZAL
9135 if(opcode2[i-1]&0x10) { // BxxZAL
9136 alloc_reg(&branch_regs[i-1],i-1,31);
9137 dirty_reg(&branch_regs[i-1],31);
9138 branch_regs[i-1].is32|=1LL<<31;
9139 }
9140 break;
9141 case FJUMP:
9142 if(likely[i-1]==0) // BC1F/BC1T
9143 {
9144 alloc_cc(&current,i-1);
9145 dirty_reg(&current,CCREG);
9146 if(itype[i]==FCOMP) {
9147 // The delay slot overwrote the branch condition
9148 // Delay slot goes after the test (in order)
9149 delayslot_alloc(&current,i);
9150 current.isconst=0;
9151 }
9152 else
9153 {
9154 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9155 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9156 // Alloc the branch condition register
9157 alloc_reg(&current,i-1,FSREG);
9158 }
9159 memcpy(&branch_regs[i-1],&current,sizeof(current));
9160 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9161 }
9162 else // BC1FL/BC1TL
9163 {
9164 // Alloc the delay slot in case the branch is taken
9165 memcpy(&branch_regs[i-1],&current,sizeof(current));
9166 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9167 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9168 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9169 alloc_cc(&branch_regs[i-1],i);
9170 dirty_reg(&branch_regs[i-1],CCREG);
9171 delayslot_alloc(&branch_regs[i-1],i);
9172 branch_regs[i-1].isconst=0;
9173 alloc_reg(&current,i,CCREG); // Not taken path
9174 dirty_reg(&current,CCREG);
9175 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9176 }
9177 break;
9178 }
9179
9180 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9181 {
9182 if(rt1[i-1]==31) // JAL/JALR
9183 {
9184 // Subroutine call will return here, don't alloc any registers
9185 current.is32=1;
9186 current.dirty=0;
9187 clear_all_regs(current.regmap);
9188 alloc_reg(&current,i,CCREG);
9189 dirty_reg(&current,CCREG);
9190 }
9191 else if(i+1<slen)
9192 {
9193 // Internal branch will jump here, match registers to caller
9194 current.is32=0x3FFFFFFFFLL;
9195 current.dirty=0;
9196 clear_all_regs(current.regmap);
9197 alloc_reg(&current,i,CCREG);
9198 dirty_reg(&current,CCREG);
9199 for(j=i-1;j>=0;j--)
9200 {
9201 if(ba[j]==start+i*4+4) {
9202 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9203 current.is32=branch_regs[j].is32;
9204 current.dirty=branch_regs[j].dirty;
9205 break;
9206 }
9207 }
9208 while(j>=0) {
9209 if(ba[j]==start+i*4+4) {
9210 for(hr=0;hr<HOST_REGS;hr++) {
9211 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9212 current.regmap[hr]=-1;
9213 }
9214 current.is32&=branch_regs[j].is32;
9215 current.dirty&=branch_regs[j].dirty;
9216 }
9217 }
9218 j--;
9219 }
9220 }
9221 }
9222 }
9223
9224 // Count cycles in between branches
9225 ccadj[i]=cc;
9226 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL))
9227 {
9228 cc=0;
9229 }
9230 else
9231 {
9232 cc++;
9233 }
9234
9235 flush_dirty_uppers(&current);
9236 if(!is_ds[i]) {
9237 regs[i].is32=current.is32;
9238 regs[i].dirty=current.dirty;
9239 regs[i].isconst=current.isconst;
9240 memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9241 }
9242 for(hr=0;hr<HOST_REGS;hr++) {
9243 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9244 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9245 regs[i].wasconst&=~(1<<hr);
9246 }
9247 }
9248 }
9249 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9250 }
9251
9252 /* Pass 4 - Cull unused host registers */
9253
9254 uint64_t nr=0;
9255
9256 for (i=slen-1;i>=0;i--)
9257 {
9258 int hr;
9259 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9260 {
9261 if(ba[i]<start || ba[i]>=(start+slen*4))
9262 {
9263 // Branch out of this block, don't need anything
9264 nr=0;
9265 }
9266 else
9267 {
9268 // Internal branch
9269 // Need whatever matches the target
9270 nr=0;
9271 int t=(ba[i]-start)>>2;
9272 for(hr=0;hr<HOST_REGS;hr++)
9273 {
9274 if(regs[i].regmap_entry[hr]>=0) {
9275 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9276 }
9277 }
9278 }
9279 // Conditional branch may need registers for following instructions
9280 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9281 {
9282 if(i<slen-2) {
9283 nr|=needed_reg[i+2];
9284 for(hr=0;hr<HOST_REGS;hr++)
9285 {
9286 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9287 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) DebugMessage(M64MSG_VERBOSE, "%x-bogus(%d=%d)",start+i*4,hr,regmap_entry[i+2][hr]);
9288 }
9289 }
9290 }
9291 // Don't need stuff which is overwritten
9292 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
ce68e3b9 9293 if(regs[i].regmap[hr]<0) nr&=~(1<<hr); //moved...
451ab91e 9294 // Merge in delay slot
9295 for(hr=0;hr<HOST_REGS;hr++)
9296 {
ce68e3b9 9297 // Don't need stuff which is overwritten
9298/* if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr); //*SEB* Moved here
9299 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);*/
9300
451ab91e 9301 if(!likely[i]) {
9302 // These are overwritten unless the branch is "likely"
9303 // and the delay slot is nullified if not taken
9304 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9305 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9306 }
9307 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9308 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9309 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9310 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9311 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9312 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9313 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9314 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9315 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9316 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9317 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9318 }
9319 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9320 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9321 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9322 }
9323 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39) {
9324 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9325 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9326 }
9327 }
9328 }
9329 else if(itype[i]==SYSCALL)
9330 {
9331 // SYSCALL instruction (software interrupt)
9332 nr=0;
9333 }
9334 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9335 {
9336 // ERET instruction (return from interrupt)
9337 nr=0;
9338 }
9339 else // Non-branch
9340 {
9341 if(i<slen-1) {
9342 for(hr=0;hr<HOST_REGS;hr++) {
9343 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9344 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9345 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9346 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9347 }
9348 }
9349 }
9350 for(hr=0;hr<HOST_REGS;hr++)
9351 {
9352 // Overwritten registers are not needed
9353 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9354 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9355 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9356 // Source registers are needed
9357 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9358 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9359 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9360 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9361 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9362 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9363 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9364 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9365 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9366 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9367 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9368 }
9369 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9370 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9371 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9372 }
9373 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39) {
9374 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9375 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9376 }
9377 // Don't store a register immediately after writing it,
9378 // may prevent dual-issue.
9379 // But do so if this is a branch target, otherwise we
9380 // might have to load the register before the branch.
9381 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9382 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9383 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9384 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9385 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9386 }
9387 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9388 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9389 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9390 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9391 }
9392 }
9393 }
9394 // Cycle count is needed at branches. Assume it is needed at the target too.
9395 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9396 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9397 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9398 }
9399 // Save it
9400 needed_reg[i]=nr;
9401
9402 // Deallocate unneeded registers
9403 for(hr=0;hr<HOST_REGS;hr++)
9404 {
9405 if(!((nr>>hr)&1)) {
9406 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9407 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9408 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9409 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9410 {
9411 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9412 {
9413 if(likely[i]) {
9414 regs[i].regmap[hr]=-1;
9415 regs[i].isconst&=~(1<<hr);
9416 if(i<slen-2) {
9417 regmap_pre[i+2][hr]=-1;
9418 regs[i+2].wasconst&=~(1<<hr);
9419 }
9420 }
9421 }
9422 }
9423 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9424 {
9425 int d1=0,d2=0,map=0,temp=0;
9426 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9427 {
9428 d1=dep1[i+1];
9429 d2=dep2[i+1];
9430 }
9431 if(using_tlb) {
9432 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9433 itype[i+1]==STORE || itype[i+1]==STORELR ||
9434 itype[i+1]==C1LS )
9435 map=TLREG;
9436 } else
9437 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39) {
9438 map=INVCP;
9439 }
9440 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9441 itype[i+1]==C1LS )
9442 temp=FTEMP;
9443 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9444 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9445 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9446 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9447 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9448 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9449 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9450 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9451 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9452 regs[i].regmap[hr]!=map )
9453 {
9454 regs[i].regmap[hr]=-1;
9455 regs[i].isconst&=~(1<<hr);
9456 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9457 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9458 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9459 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9460 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9461 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9462 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9463 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9464 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9465 branch_regs[i].regmap[hr]!=map)
9466 {
9467 branch_regs[i].regmap[hr]=-1;
9468 branch_regs[i].regmap_entry[hr]=-1;
9469 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9470 {
9471 if(!likely[i]&&i<slen-2) {
9472 regmap_pre[i+2][hr]=-1;
9473 regs[i+2].wasconst&=~(1<<hr);
9474 }
9475 }
9476 }
9477 }
9478 }
9479 else
9480 {
9481 // Non-branch
9482 if(i>0)
9483 {
9484 int d1=0,d2=0,map=-1,temp=-1;
9485 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9486 {
9487 d1=dep1[i];
9488 d2=dep2[i];
9489 }
9490 if(using_tlb) {
9491 if(itype[i]==LOAD || itype[i]==LOADLR ||
9492 itype[i]==STORE || itype[i]==STORELR ||
9493 itype[i]==C1LS )
9494 map=TLREG;
9495 } else if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39) {
9496 map=INVCP;
9497 }
9498 if(itype[i]==LOADLR || itype[i]==STORELR ||
9499 itype[i]==C1LS )
9500 temp=FTEMP;
9501 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9502 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9503 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9504 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9505 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9506 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9507 {
9508 if(i<slen-1&&!is_ds[i]) {
9509 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9510 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9511 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9512 {
9513 DebugMessage(M64MSG_VERBOSE, "fail: %x (%d %d!=%d)",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9514 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9515 }
9516 regmap_pre[i+1][hr]=-1;
9517 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9518 regs[i+1].wasconst&=~(1<<hr);
9519 }
9520 regs[i].regmap[hr]=-1;
9521 regs[i].isconst&=~(1<<hr);
9522 }
9523 }
9524 }
9525 }
9526 }
9527 }
9528
9529 /* Pass 5 - Pre-allocate registers */
9530
9531 // If a register is allocated during a loop, try to allocate it for the
9532 // entire loop, if possible. This avoids loading/storing registers
9533 // inside of the loop.
9534
9535 signed char f_regmap[HOST_REGS];
9536 clear_all_regs(f_regmap);
9537 for(i=0;i<slen-1;i++)
9538 {
9539 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9540 {
9541 if(ba[i]>=start && ba[i]<(start+i*4))
9542 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9543 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9544 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9545 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9546 ||itype[i+1]==FCOMP||itype[i+1]==FCONV)
9547 {
9548 int t=(ba[i]-start)>>2;
9549 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9550 if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
9551 for(hr=0;hr<HOST_REGS;hr++)
9552 {
9553 if(regs[i].regmap[hr]>64) {
9554 if(!((regs[i].dirty>>hr)&1))
9555 f_regmap[hr]=regs[i].regmap[hr];
9556 else f_regmap[hr]=-1;
9557 }
9558 else if(regs[i].regmap[hr]>=0) {
9559 if(f_regmap[hr]!=regs[i].regmap[hr]) {
9560 // dealloc old register
9561 int n;
9562 for(n=0;n<HOST_REGS;n++)
9563 {
9564 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9565 }
9566 // and alloc new one
9567 f_regmap[hr]=regs[i].regmap[hr];
9568 }
9569 }
9570 if(branch_regs[i].regmap[hr]>64) {
9571 if(!((branch_regs[i].dirty>>hr)&1))
9572 f_regmap[hr]=branch_regs[i].regmap[hr];
9573 else f_regmap[hr]=-1;
9574 }
9575 else if(branch_regs[i].regmap[hr]>=0) {
9576 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9577 // dealloc old register
9578 int n;
9579 for(n=0;n<HOST_REGS;n++)
9580 {
9581 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9582 }
9583 // and alloc new one
9584 f_regmap[hr]=branch_regs[i].regmap[hr];
9585 }
9586 }
9587 if(ooo[i]) {
9588 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
9589 f_regmap[hr]=branch_regs[i].regmap[hr];
9590 }else{
9591 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
9592 f_regmap[hr]=branch_regs[i].regmap[hr];
9593 }
9594 // Avoid dirty->clean transition
9595 #ifdef DESTRUCTIVE_WRITEBACK
9596 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9597 #endif
9598 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
9599 // case above, however it's always a good idea. We can't hoist the
9600 // load if the register was already allocated, so there's no point
9601 // wasting time analyzing most of these cases. It only "succeeds"
9602 // when the mapping was different and the load can be replaced with
9603 // a mov, which is of negligible benefit. So such cases are
9604 // skipped below.
9605 if(f_regmap[hr]>0) {
9606 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
9607 int r=f_regmap[hr];
9608 for(j=t;j<=i;j++)
9609 {
9610 //DebugMessage(M64MSG_VERBOSE, "Test %x -> %x, %x %d/%d",start+i*4,ba[i],start+j*4,hr,r);
9611 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9612 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9613 if(r>63) {
9614 // NB This can exclude the case where the upper-half
9615 // register is lower numbered than the lower-half
9616 // register. Not sure if it's worth fixing...
9617 if(get_reg(regs[j].regmap,r&63)<0) break;
9618 if(get_reg(regs[j].regmap_entry,r&63)<0) break;
9619 if(regs[j].is32&(1LL<<(r&63))) break;
9620 }
9621 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9622 //DebugMessage(M64MSG_VERBOSE, "Hit %x -> %x, %x %d/%d",start+i*4,ba[i],start+j*4,hr,r);
9623 int k;
9624 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9625 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9626 if(r>63) {
9627 if(get_reg(regs[i].regmap,r&63)<0) break;
9628 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9629 }
9630 k=i;
9631 while(k>1&&regs[k-1].regmap[hr]==-1) {
9632 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9633 //DebugMessage(M64MSG_VERBOSE, "no free regs for store %x",start+(k-1)*4);
9634 break;
9635 }
9636 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9637 //DebugMessage(M64MSG_VERBOSE, "no-match due to different register");
9638 break;
9639 }
9640 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9641 //DebugMessage(M64MSG_VERBOSE, "no-match due to branch");
9642 break;
9643 }
9644 // call/ret fast path assumes no registers allocated
9645 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
9646 break;
9647 }
9648 if(r>63) {
9649 // NB This can exclude the case where the upper-half
9650 // register is lower numbered than the lower-half
9651 // register. Not sure if it's worth fixing...
9652 if(get_reg(regs[k-1].regmap,r&63)<0) break;
9653 if(regs[k-1].is32&(1LL<<(r&63))) break;
9654 }
9655 k--;
9656 }
9657 if(i<slen-1) {
9658 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9659 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9660 //DebugMessage(M64MSG_VERBOSE, "bad match after branch");
9661 break;
9662 }
9663 }
9664 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9665 //DebugMessage(M64MSG_VERBOSE, "Extend r%d, %x ->",hr,start+k*4);
9666 while(k<i) {
9667 regs[k].regmap_entry[hr]=f_regmap[hr];
9668 regs[k].regmap[hr]=f_regmap[hr];
9669 regmap_pre[k+1][hr]=f_regmap[hr];
9670 regs[k].wasdirty&=~(1<<hr);
9671 regs[k].dirty&=~(1<<hr);
9672 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9673 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9674 regs[k].wasconst&=~(1<<hr);
9675 regs[k].isconst&=~(1<<hr);
9676 k++;
9677 }
9678 }
9679 else {
9680 //DebugMessage(M64MSG_VERBOSE, "Fail Extend r%d, %x ->",hr,start+k*4);
9681 break;
9682 }
9683 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9684 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9685 //DebugMessage(M64MSG_VERBOSE, "OK fill %x (r%d)",start+i*4,hr);
9686 regs[i].regmap_entry[hr]=f_regmap[hr];
9687 regs[i].regmap[hr]=f_regmap[hr];
9688 regs[i].wasdirty&=~(1<<hr);
9689 regs[i].dirty&=~(1<<hr);
9690 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9691 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9692 regs[i].wasconst&=~(1<<hr);
9693 regs[i].isconst&=~(1<<hr);
9694 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9695 branch_regs[i].wasdirty&=~(1<<hr);
9696 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9697 branch_regs[i].regmap[hr]=f_regmap[hr];
9698 branch_regs[i].dirty&=~(1<<hr);
9699 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9700 branch_regs[i].wasconst&=~(1<<hr);
9701 branch_regs[i].isconst&=~(1<<hr);
9702 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9703 regmap_pre[i+2][hr]=f_regmap[hr];
9704 regs[i+2].wasdirty&=~(1<<hr);
9705 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9706 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9707 (regs[i+2].was32&(1LL<<f_regmap[hr])));
9708 }
9709 }
9710 }
9711 for(k=t;k<j;k++) {
9712 // Alloc register clean at beginning of loop,
9713 // but may dirty it in pass 6
9714 regs[k].regmap_entry[hr]=f_regmap[hr];
9715 regs[k].regmap[hr]=f_regmap[hr];
9716 regs[k].dirty&=~(1<<hr);
9717 regs[k].wasconst&=~(1<<hr);
9718 regs[k].isconst&=~(1<<hr);
9719 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
9720 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
9721 branch_regs[k].regmap[hr]=f_regmap[hr];
9722 branch_regs[k].dirty&=~(1<<hr);
9723 branch_regs[k].wasconst&=~(1<<hr);
9724 branch_regs[k].isconst&=~(1<<hr);
9725 if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
9726 regmap_pre[k+2][hr]=f_regmap[hr];
9727 regs[k+2].wasdirty&=~(1<<hr);
9728 assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
9729 (regs[k+2].was32&(1LL<<f_regmap[hr])));
9730 }
9731 }
9732 else
9733 {
9734 regmap_pre[k+1][hr]=f_regmap[hr];
9735 regs[k+1].wasdirty&=~(1<<hr);
9736 }
9737 }
9738 if(regs[j].regmap[hr]==f_regmap[hr])
9739 regs[j].regmap_entry[hr]=f_regmap[hr];
9740 break;
9741 }
9742 if(j==i) break;
9743 if(regs[j].regmap[hr]>=0)
9744 break;
9745 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9746 //DebugMessage(M64MSG_VERBOSE, "no-match due to different register");
9747 break;
9748 }
9749 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9750 //DebugMessage(M64MSG_VERBOSE, "32/64 mismatch %x %d",start+j*4,hr);
9751 break;
9752 }
9753 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
9754 {
9755 // Stop on unconditional branch
9756 break;
9757 }
9758 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
9759 {
9760 if(ooo[j]) {
9761 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
9762 break;
9763 }else{
9764 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
9765 break;
9766 }
9767 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
9768 //DebugMessage(M64MSG_VERBOSE, "no-match due to different register (branch)");
9769 break;
9770 }
9771 }
9772 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
9773 //DebugMessage(M64MSG_VERBOSE, "No free regs for store %x",start+j*4);
9774 break;
9775 }
9776 if(f_regmap[hr]>=64) {
9777 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
9778 break;
9779 }
9780 else
9781 {
9782 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
9783 break;
9784 }
9785 }
9786 }
9787 }
9788 }
9789 }
9790 }
9791 }
9792 }else{
9793 // Non branch or undetermined branch target
9794 for(hr=0;hr<HOST_REGS;hr++)
9795 {
9796 if(hr!=EXCLUDE_REG) {
9797 if(regs[i].regmap[hr]>64) {
9798 if(!((regs[i].dirty>>hr)&1))
9799 f_regmap[hr]=regs[i].regmap[hr];
9800 }
9801 else if(regs[i].regmap[hr]>=0) {
9802 if(f_regmap[hr]!=regs[i].regmap[hr]) {
9803 // dealloc old register
9804 int n;
9805 for(n=0;n<HOST_REGS;n++)
9806 {
9807 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9808 }
9809 // and alloc new one
9810 f_regmap[hr]=regs[i].regmap[hr];
9811 }
9812 }
9813 }
9814 }
9815 // Try to restore cycle count at branch targets
9816 if(bt[i]) {
9817 for(j=i;j<slen-1;j++) {
9818 if(regs[j].regmap[HOST_CCREG]!=-1) break;
9819 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
9820 //DebugMessage(M64MSG_VERBOSE, "no free regs for store %x",start+j*4);
9821 break;
9822 }
9823 }
9824 if(regs[j].regmap[HOST_CCREG]==CCREG) {
9825 int k=i;
9826 //DebugMessage(M64MSG_VERBOSE, "Extend CC, %x -> %x",start+k*4,start+j*4);
9827 while(k<j) {
9828 regs[k].regmap_entry[HOST_CCREG]=CCREG;
9829 regs[k].regmap[HOST_CCREG]=CCREG;
9830 regmap_pre[k+1][HOST_CCREG]=CCREG;
9831 regs[k+1].wasdirty|=1<<HOST_CCREG;
9832 regs[k].dirty|=1<<HOST_CCREG;
9833 regs[k].wasconst&=~(1<<HOST_CCREG);
9834 regs[k].isconst&=~(1<<HOST_CCREG);
9835 k++;
9836 }
9837 regs[j].regmap_entry[HOST_CCREG]=CCREG;
9838 }
9839 // Work backwards from the branch target
9840 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
9841 {
9842 //DebugMessage(M64MSG_VERBOSE, "Extend backwards");
9843 int k;
9844 k=i;
9845 while(regs[k-1].regmap[HOST_CCREG]==-1) {
9846 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9847 //DebugMessage(M64MSG_VERBOSE, "no free regs for store %x",start+(k-1)*4);
9848 break;
9849 }
9850 k--;
9851 }
9852 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
9853 //DebugMessage(M64MSG_VERBOSE, "Extend CC, %x ->",start+k*4);
9854 while(k<=i) {
9855 regs[k].regmap_entry[HOST_CCREG]=CCREG;
9856 regs[k].regmap[HOST_CCREG]=CCREG;
9857 regmap_pre[k+1][HOST_CCREG]=CCREG;
9858 regs[k+1].wasdirty|=1<<HOST_CCREG;
9859 regs[k].dirty|=1<<HOST_CCREG;
9860 regs[k].wasconst&=~(1<<HOST_CCREG);
9861 regs[k].isconst&=~(1<<HOST_CCREG);
9862 k++;
9863 }
9864 }
9865 else {
9866 //DebugMessage(M64MSG_VERBOSE, "Fail Extend CC, %x ->",start+k*4);
9867 }
9868 }
9869 }
9870 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
9871 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
9872 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
9873 itype[i]!=FCONV&&itype[i]!=FCOMP)
9874 {
9875 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
9876 }
9877 }
9878 }
9879
9880 // Cache memory offset or tlb map pointer if a register is available
9881 #ifndef HOST_IMM_ADDR32
9882 #ifndef RAM_OFFSET
9883 if(using_tlb)
9884 #endif
9885 {
9886 int earliest_available[HOST_REGS];
9887 int loop_start[HOST_REGS];
9888 int score[HOST_REGS];
9889 int end[HOST_REGS];
9890 int reg=using_tlb?MMREG:ROREG;
9891
9892 // Init
9893 for(hr=0;hr<HOST_REGS;hr++) {
9894 score[hr]=0;earliest_available[hr]=0;
9895 loop_start[hr]=MAXBLOCK;
9896 }
9897 for(i=0;i<slen-1;i++)
9898 {
9899 // Can't do anything if no registers are available
9900 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
9901 for(hr=0;hr<HOST_REGS;hr++) {
9902 score[hr]=0;earliest_available[hr]=i+1;
9903 loop_start[hr]=MAXBLOCK;
9904 }
9905 }
9906 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9907 if(!ooo[i]) {
9908 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
9909 for(hr=0;hr<HOST_REGS;hr++) {
9910 score[hr]=0;earliest_available[hr]=i+1;
9911 loop_start[hr]=MAXBLOCK;
9912 }
9913 }
9914 }else{
9915 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
9916 for(hr=0;hr<HOST_REGS;hr++) {
9917 score[hr]=0;earliest_available[hr]=i+1;
9918 loop_start[hr]=MAXBLOCK;
9919 }
9920 }
9921 }
9922 }
9923 // Mark unavailable registers
9924 for(hr=0;hr<HOST_REGS;hr++) {
9925 if(regs[i].regmap[hr]>=0) {
9926 score[hr]=0;earliest_available[hr]=i+1;
9927 loop_start[hr]=MAXBLOCK;
9928 }
9929 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9930 if(branch_regs[i].regmap[hr]>=0) {
9931 score[hr]=0;earliest_available[hr]=i+2;
9932 loop_start[hr]=MAXBLOCK;
9933 }
9934 }
9935 }
9936 // No register allocations after unconditional jumps
9937 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
9938 {
9939 for(hr=0;hr<HOST_REGS;hr++) {
9940 score[hr]=0;earliest_available[hr]=i+2;
9941 loop_start[hr]=MAXBLOCK;
9942 }
9943 i++; // Skip delay slot too
9944 //DebugMessage(M64MSG_VERBOSE, "skip delay slot: %x",start+i*4);
9945 }
9946 else
9947 // Possible match
9948 if(itype[i]==LOAD||itype[i]==LOADLR||
9949 itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
9950 for(hr=0;hr<HOST_REGS;hr++) {
9951 if(hr!=EXCLUDE_REG) {
9952 end[hr]=i-1;
9953 for(j=i;j<slen-1;j++) {
9954 if(regs[j].regmap[hr]>=0) break;
9955 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9956 if(branch_regs[j].regmap[hr]>=0) break;
9957 if(ooo[j]) {
9958 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
9959 }else{
9960 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
9961 }
9962 }
9963 else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
9964 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9965 int t=(ba[j]-start)>>2;
9966 if(t<j&&t>=earliest_available[hr]) {
9967 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
9968 // Score a point for hoisting loop invariant
9969 if(t<loop_start[hr]) loop_start[hr]=t;
9970 //DebugMessage(M64MSG_VERBOSE, "set loop_start: i=%x j=%x (%x)",start+i*4,start+j*4,start+t*4);
9971 score[hr]++;
9972 end[hr]=j;
9973 }
9974 }
9975 else if(t<j) {
9976 if(regs[t].regmap[hr]==reg) {
9977 // Score a point if the branch target matches this register
9978 score[hr]++;
9979 end[hr]=j;
9980 }
9981 }
9982 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
9983 itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
9984 score[hr]++;
9985 end[hr]=j;
9986 }
9987 }
9988 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
9989 {
9990 // Stop on unconditional branch
9991 break;
9992 }
9993 else
9994 if(itype[j]==LOAD||itype[j]==LOADLR||
9995 itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
9996 score[hr]++;
9997 end[hr]=j;
9998 }
9999 }
10000 }
10001 }
10002 // Find highest score and allocate that register
10003 int maxscore=0;
10004 for(hr=0;hr<HOST_REGS;hr++) {
10005 if(hr!=EXCLUDE_REG) {
10006 if(score[hr]>score[maxscore]) {
10007 maxscore=hr;
10008 //DebugMessage(M64MSG_VERBOSE, "highest score: %d %d (%x->%x)",score[hr],hr,start+i*4,start+end[hr]*4);
10009 }
10010 }
10011 }
10012 if(score[maxscore]>1)
10013 {
10014 if(i<loop_start[maxscore]) loop_start[maxscore]=i;
10015 for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
10016 //if(regs[j].regmap[maxscore]>=0) {DebugMessage(M64MSG_ERROR, "oops: %x %x was %d=%d",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
10017 assert(regs[j].regmap[maxscore]<0);
10018 if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
10019 regs[j].regmap[maxscore]=reg;
10020 regs[j].dirty&=~(1<<maxscore);
10021 regs[j].wasconst&=~(1<<maxscore);
10022 regs[j].isconst&=~(1<<maxscore);
10023 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10024 branch_regs[j].regmap[maxscore]=reg;
10025 branch_regs[j].wasdirty&=~(1<<maxscore);
10026 branch_regs[j].dirty&=~(1<<maxscore);
10027 branch_regs[j].wasconst&=~(1<<maxscore);
10028 branch_regs[j].isconst&=~(1<<maxscore);
10029 if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
10030 regmap_pre[j+2][maxscore]=reg;
10031 regs[j+2].wasdirty&=~(1<<maxscore);
10032 }
10033 // loop optimization (loop_preload)
10034 int t=(ba[j]-start)>>2;
10035 if(t==loop_start[maxscore]) {
10036 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
10037 regs[t].regmap_entry[maxscore]=reg;
10038 }
10039 }
10040 else
10041 {
10042 if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
10043 regmap_pre[j+1][maxscore]=reg;
10044 regs[j+1].wasdirty&=~(1<<maxscore);
10045 }
10046 }
10047 }
10048 i=j-1;
10049 if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
10050 for(hr=0;hr<HOST_REGS;hr++) {
10051 score[hr]=0;earliest_available[hr]=i+i;
10052 loop_start[hr]=MAXBLOCK;
10053 }
10054 }
10055 }
10056 }
10057 }
10058 #endif
10059
10060 // This allocates registers (if possible) one instruction prior
10061 // to use, which can avoid a load-use penalty on certain CPUs.
10062 for(i=0;i<slen-1;i++)
10063 {
10064 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10065 {
10066 if(!bt[i+1])
10067 {
10068 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16||(itype[i]==COP1&&opcode2[i]<3))
10069 {
10070 if(rs1[i+1]) {
10071 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10072 {
10073 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10074 {
10075 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10076 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10077 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10078 regs[i].isconst&=~(1<<hr);
10079 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10080 constmap[i][hr]=constmap[i+1][hr];
10081 regs[i+1].wasdirty&=~(1<<hr);
10082 regs[i].dirty&=~(1<<hr);
10083 }
10084 }
10085 }
10086 if(rs2[i+1]) {
10087 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10088 {
10089 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10090 {
10091 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10092 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10093 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10094 regs[i].isconst&=~(1<<hr);
10095 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10096 constmap[i][hr]=constmap[i+1][hr];
10097 regs[i+1].wasdirty&=~(1<<hr);
10098 regs[i].dirty&=~(1<<hr);
10099 }
10100 }
10101 }
10102 // Preload target address for load instruction (non-constant)
10103 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10104 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10105 {
10106 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10107 {
10108 regs[i].regmap[hr]=rs1[i+1];
10109 regmap_pre[i+1][hr]=rs1[i+1];
10110 regs[i+1].regmap_entry[hr]=rs1[i+1];
10111 regs[i].isconst&=~(1<<hr);
10112 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10113 constmap[i][hr]=constmap[i+1][hr];
10114 regs[i+1].wasdirty&=~(1<<hr);
10115 regs[i].dirty&=~(1<<hr);
10116 }
10117 }
10118 }
10119 // Load source into target register
10120 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10121 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10122 {
10123 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10124 {
10125 regs[i].regmap[hr]=rs1[i+1];
10126 regmap_pre[i+1][hr]=rs1[i+1];
10127 regs[i+1].regmap_entry[hr]=rs1[i+1];
10128 regs[i].isconst&=~(1<<hr);
10129 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10130 constmap[i][hr]=constmap[i+1][hr];
10131 regs[i+1].wasdirty&=~(1<<hr);
10132 regs[i].dirty&=~(1<<hr);
10133 }
10134 }
10135 }
10136 // Preload map address
10137 #ifndef HOST_IMM_ADDR32
10138 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS) {
10139 hr=get_reg(regs[i+1].regmap,TLREG);
10140 if(hr>=0) {
10141 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10142 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10143 int nr;
10144 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10145 {
10146 regs[i].regmap[hr]=MGEN1+((i+1)&1);
10147 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10148 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10149 regs[i].isconst&=~(1<<hr);
10150 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10151 constmap[i][hr]=constmap[i+1][hr];
10152 regs[i+1].wasdirty&=~(1<<hr);
10153 regs[i].dirty&=~(1<<hr);
10154 }
10155 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10156 {
10157 // move it to another register
10158 regs[i+1].regmap[hr]=-1;
10159 regmap_pre[i+2][hr]=-1;
10160 regs[i+1].regmap[nr]=TLREG;
10161 regmap_pre[i+2][nr]=TLREG;
10162 regs[i].regmap[nr]=MGEN1+((i+1)&1);
10163 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10164 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10165 regs[i].isconst&=~(1<<nr);
10166 regs[i+1].isconst&=~(1<<nr);
10167 regs[i].dirty&=~(1<<nr);
10168 regs[i+1].wasdirty&=~(1<<nr);
10169 regs[i+1].dirty&=~(1<<nr);
10170 regs[i+2].wasdirty&=~(1<<nr);
10171 }
10172 }
10173 }
10174 }
10175 #endif
10176 // Address for store instruction (non-constant)
10177 if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) { // SB/SH/SW/SD/SWC1/SDC1
10178 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10179 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10180 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10181 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10182 assert(hr>=0);
10183 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10184 {
10185 regs[i].regmap[hr]=rs1[i+1];
10186 regmap_pre[i+1][hr]=rs1[i+1];
10187 regs[i+1].regmap_entry[hr]=rs1[i+1];
10188 regs[i].isconst&=~(1<<hr);
10189 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10190 constmap[i][hr]=constmap[i+1][hr];
10191 regs[i+1].wasdirty&=~(1<<hr);
10192 regs[i].dirty&=~(1<<hr);
10193 }
10194 }
10195 }
10196 if(itype[i+1]==LOADLR||opcode[i+1]==0x31||opcode[i+1]==0x35) { // LWC1/LDC1
10197 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10198 int nr;
10199 hr=get_reg(regs[i+1].regmap,FTEMP);
10200 assert(hr>=0);
10201 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10202 {
10203 regs[i].regmap[hr]=rs1[i+1];
10204 regmap_pre[i+1][hr]=rs1[i+1];
10205 regs[i+1].regmap_entry[hr]=rs1[i+1];
10206 regs[i].isconst&=~(1<<hr);
10207 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10208 constmap[i][hr]=constmap[i+1][hr];
10209 regs[i+1].wasdirty&=~(1<<hr);
10210 regs[i].dirty&=~(1<<hr);
10211 }
10212 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10213 {
10214 // move it to another register
10215 regs[i+1].regmap[hr]=-1;
10216 regmap_pre[i+2][hr]=-1;
10217 regs[i+1].regmap[nr]=FTEMP;
10218 regmap_pre[i+2][nr]=FTEMP;
10219 regs[i].regmap[nr]=rs1[i+1];
10220 regmap_pre[i+1][nr]=rs1[i+1];
10221 regs[i+1].regmap_entry[nr]=rs1[i+1];
10222 regs[i].isconst&=~(1<<nr);
10223 regs[i+1].isconst&=~(1<<nr);
10224 regs[i].dirty&=~(1<<nr);
10225 regs[i+1].wasdirty&=~(1<<nr);
10226 regs[i+1].dirty&=~(1<<nr);
10227 regs[i+2].wasdirty&=~(1<<nr);
10228 }
10229 }
10230 }
10231 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS*/) {
10232 if(itype[i+1]==LOAD)
10233 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10234 if(itype[i+1]==LOADLR||opcode[i+1]==0x31||opcode[i+1]==0x35) // LWC1/LDC1
10235 hr=get_reg(regs[i+1].regmap,FTEMP);
10236 if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) { // SWC1/SDC1
10237 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10238 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10239 }
10240 if(hr>=0&&regs[i].regmap[hr]<0) {
10241 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10242 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10243 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10244 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10245 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10246 regs[i].isconst&=~(1<<hr);
10247 regs[i+1].wasdirty&=~(1<<hr);
10248 regs[i].dirty&=~(1<<hr);
10249 }
10250 }
10251 }
10252 }
10253 }
10254 }
10255 }
10256
10257 /* Pass 6 - Optimize clean/dirty state */
10258 clean_registers(0,slen-1,1);
10259
10260 /* Pass 7 - Identify 32-bit registers */
10261
10262 provisional_r32();
10263
10264 u_int r32=0;
10265
10266 for (i=slen-1;i>=0;i--)
10267 {
10268 int hr;
10269 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10270 {
10271 if(ba[i]<start || ba[i]>=(start+slen*4))
10272 {
10273 // Branch out of this block, don't need anything
10274 r32=0;
10275 }
10276 else
10277 {
10278 // Internal branch
10279 // Need whatever matches the target
10280 // (and doesn't get overwritten by the delay slot instruction)
10281 r32=0;
10282 int t=(ba[i]-start)>>2;
10283 if(ba[i]>start+i*4) {
10284 // Forward branch
10285 if(!(requires_32bit[t]&~regs[i].was32))
10286 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10287 }else{
10288 // Backward branch
10289 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10290 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10291 if(!(pr32[t]&~regs[i].was32))
10292 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10293 }
10294 }
10295 // Conditional branch may need registers for following instructions
10296 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10297 {
10298 if(i<slen-2) {
10299 r32|=requires_32bit[i+2];
10300 r32&=regs[i].was32;
10301 // Mark this address as a branch target since it may be called
10302 // upon return from interrupt
10303 bt[i+2]=1;
10304 }
10305 }
10306 // Merge in delay slot
10307 if(!likely[i]) {
10308 // These are overwritten unless the branch is "likely"
10309 // and the delay slot is nullified if not taken
10310 r32&=~(1LL<<rt1[i+1]);
10311 r32&=~(1LL<<rt2[i+1]);
10312 }
10313 // Assume these are needed (delay slot)
10314 if(us1[i+1]>0)
10315 {
10316 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10317 }
10318 if(us2[i+1]>0)
10319 {
10320 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10321 }
10322 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10323 {
10324 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10325 }
10326 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10327 {
10328 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10329 }
10330 }
10331 else if(itype[i]==SYSCALL)
10332 {
10333 // SYSCALL instruction (software interrupt)
10334 r32=0;
10335 }
10336 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10337 {
10338 // ERET instruction (return from interrupt)
10339 r32=0;
10340 }
10341 // Check 32 bits
10342 r32&=~(1LL<<rt1[i]);
10343 r32&=~(1LL<<rt2[i]);
10344 if(us1[i]>0)
10345 {
10346 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10347 }
10348 if(us2[i]>0)
10349 {
10350 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10351 }
10352 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10353 {
10354 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10355 }
10356 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10357 {
10358 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10359 }
10360 requires_32bit[i]=r32;
10361
10362 // Dirty registers which are 32-bit, require 32-bit input
10363 // as they will be written as 32-bit values
10364 for(hr=0;hr<HOST_REGS;hr++)
10365 {
10366 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10367 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10368 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10369 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10370 }
10371 }
10372 }
10373 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10374 }
10375
10376 if(itype[slen-1]==SPAN) {
10377 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10378 }
10379
10380 /* Debug/disassembly */
10381// if((void*)assem_debug==(void*)printf)
10382#if defined( ASSEM_DEBUG )
10383 for(i=0;i<slen;i++)
10384 {
10385 DebugMessage(M64MSG_VERBOSE, "U:");
10386 int r;
10387 for(r=1;r<=CCREG;r++) {
10388 if((unneeded_reg[i]>>r)&1) {
10389 if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10390 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10391 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10392 }
10393 }
10394 DebugMessage(M64MSG_VERBOSE, " UU:");
10395 for(r=1;r<=CCREG;r++) {
10396 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10397 if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10398 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10399 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10400 }
10401 }
10402 DebugMessage(M64MSG_VERBOSE, " 32:");
10403 for(r=0;r<=CCREG;r++) {
10404 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10405 if((regs[i].was32>>r)&1) {
10406 if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
10407 else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10408 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10409 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10410 }
10411 }
10412 #if NEW_DYNAREC == NEW_DYNAREC_X86
10413 DebugMessage(M64MSG_VERBOSE, "pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10414 #endif
10415 #if NEW_DYNAREC == NEW_DYNAREC_ARM
10416 DebugMessage(M64MSG_VERBOSE, "pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10417 #endif
10418 DebugMessage(M64MSG_VERBOSE, "needs: ");
10419 if(needed_reg[i]&1) DebugMessage(M64MSG_VERBOSE, "eax ");
10420 if((needed_reg[i]>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx ");
10421 if((needed_reg[i]>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx ");
10422 if((needed_reg[i]>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx ");
10423 if((needed_reg[i]>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp ");
10424 if((needed_reg[i]>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi ");
10425 if((needed_reg[i]>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi ");
10426 DebugMessage(M64MSG_VERBOSE, "r:");
10427 for(r=0;r<=CCREG;r++) {
10428 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10429 if((requires_32bit[i]>>r)&1) {
10430 if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
10431 else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10432 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10433 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10434 }
10435 }
10436 /*DebugMessage(M64MSG_VERBOSE, "pr:");
10437 for(r=0;r<=CCREG;r++) {
10438 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10439 if((pr32[i]>>r)&1) {
10440 if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
10441 else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10442 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10443 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10444 }
10445 }
10446 if(pr32[i]!=requires_32bit[i]) DebugMessage(M64MSG_ERROR, " OOPS");*/
10447 #if NEW_DYNAREC == NEW_DYNAREC_X86
10448 DebugMessage(M64MSG_VERBOSE, "entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10449 DebugMessage(M64MSG_VERBOSE, "dirty: ");
10450 if(regs[i].wasdirty&1) DebugMessage(M64MSG_VERBOSE, "eax ");
10451 if((regs[i].wasdirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx ");
10452 if((regs[i].wasdirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx ");
10453 if((regs[i].wasdirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx ");
10454 if((regs[i].wasdirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp ");
10455 if((regs[i].wasdirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi ");
10456 if((regs[i].wasdirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi ");
10457 #endif
10458 #if NEW_DYNAREC == NEW_DYNAREC_ARM
10459 DebugMessage(M64MSG_VERBOSE, "entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10460 DebugMessage(M64MSG_VERBOSE, "dirty: ");
10461 if(regs[i].wasdirty&1) DebugMessage(M64MSG_VERBOSE, "r0 ");
10462 if((regs[i].wasdirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "r1 ");
10463 if((regs[i].wasdirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "r2 ");
10464 if((regs[i].wasdirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "r3 ");
10465 if((regs[i].wasdirty>>4)&1) DebugMessage(M64MSG_VERBOSE, "r4 ");
10466 if((regs[i].wasdirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "r5 ");
10467 if((regs[i].wasdirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "r6 ");
10468 if((regs[i].wasdirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "r7 ");
10469 if((regs[i].wasdirty>>8)&1) DebugMessage(M64MSG_VERBOSE, "r8 ");
10470 if((regs[i].wasdirty>>9)&1) DebugMessage(M64MSG_VERBOSE, "r9 ");
10471 if((regs[i].wasdirty>>10)&1) DebugMessage(M64MSG_VERBOSE, "r10 ");
10472 if((regs[i].wasdirty>>12)&1) DebugMessage(M64MSG_VERBOSE, "r12 ");
10473 #endif
10474 disassemble_inst(i);
10475 //printf ("ccadj[%d] = %d",i,ccadj[i]);
10476 #if NEW_DYNAREC == NEW_DYNAREC_X86
10477 DebugMessage(M64MSG_VERBOSE, "eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10478 if(regs[i].dirty&1) DebugMessage(M64MSG_VERBOSE, "eax ");
10479 if((regs[i].dirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx ");
10480 if((regs[i].dirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx ");
10481 if((regs[i].dirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx ");
10482 if((regs[i].dirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp ");
10483 if((regs[i].dirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi ");
10484 if((regs[i].dirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi ");
10485 #endif
10486 #if NEW_DYNAREC == NEW_DYNAREC_ARM
10487 DebugMessage(M64MSG_VERBOSE, "r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10488 if(regs[i].dirty&1) DebugMessage(M64MSG_VERBOSE, "r0 ");
10489 if((regs[i].dirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "r1 ");
10490 if((regs[i].dirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "r2 ");
10491 if((regs[i].dirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "r3 ");
10492 if((regs[i].dirty>>4)&1) DebugMessage(M64MSG_VERBOSE, "r4 ");
10493 if((regs[i].dirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "r5 ");
10494 if((regs[i].dirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "r6 ");
10495 if((regs[i].dirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "r7 ");
10496 if((regs[i].dirty>>8)&1) DebugMessage(M64MSG_VERBOSE, "r8 ");
10497 if((regs[i].dirty>>9)&1) DebugMessage(M64MSG_VERBOSE, "r9 ");
10498 if((regs[i].dirty>>10)&1) DebugMessage(M64MSG_VERBOSE, "r10 ");
10499 if((regs[i].dirty>>12)&1) DebugMessage(M64MSG_VERBOSE, "r12 ");
10500 #endif
10501 if(regs[i].isconst) {
10502 DebugMessage(M64MSG_VERBOSE, "constants: ");
10503 #if NEW_DYNAREC == NEW_DYNAREC_X86
10504 if(regs[i].isconst&1) DebugMessage(M64MSG_VERBOSE, "eax=%x ",(int)constmap[i][0]);
10505 if((regs[i].isconst>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx=%x ",(int)constmap[i][1]);
10506 if((regs[i].isconst>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx=%x ",(int)constmap[i][2]);
10507 if((regs[i].isconst>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx=%x ",(int)constmap[i][3]);
10508 if((regs[i].isconst>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp=%x ",(int)constmap[i][5]);
10509 if((regs[i].isconst>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi=%x ",(int)constmap[i][6]);
10510 if((regs[i].isconst>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi=%x ",(int)constmap[i][7]);
10511 #endif
10512 #if NEW_DYNAREC == NEW_DYNAREC_ARM
10513 if(regs[i].isconst&1) DebugMessage(M64MSG_VERBOSE, "r0=%x ",(int)constmap[i][0]);
10514 if((regs[i].isconst>>1)&1) DebugMessage(M64MSG_VERBOSE, "r1=%x ",(int)constmap[i][1]);
10515 if((regs[i].isconst>>2)&1) DebugMessage(M64MSG_VERBOSE, "r2=%x ",(int)constmap[i][2]);
10516 if((regs[i].isconst>>3)&1) DebugMessage(M64MSG_VERBOSE, "r3=%x ",(int)constmap[i][3]);
10517 if((regs[i].isconst>>4)&1) DebugMessage(M64MSG_VERBOSE, "r4=%x ",(int)constmap[i][4]);
10518 if((regs[i].isconst>>5)&1) DebugMessage(M64MSG_VERBOSE, "r5=%x ",(int)constmap[i][5]);
10519 if((regs[i].isconst>>6)&1) DebugMessage(M64MSG_VERBOSE, "r6=%x ",(int)constmap[i][6]);
10520 if((regs[i].isconst>>7)&1) DebugMessage(M64MSG_VERBOSE, "r7=%x ",(int)constmap[i][7]);
10521 if((regs[i].isconst>>8)&1) DebugMessage(M64MSG_VERBOSE, "r8=%x ",(int)constmap[i][8]);
10522 if((regs[i].isconst>>9)&1) DebugMessage(M64MSG_VERBOSE, "r9=%x ",(int)constmap[i][9]);
10523 if((regs[i].isconst>>10)&1) DebugMessage(M64MSG_VERBOSE, "r10=%x ",(int)constmap[i][10]);
10524 if((regs[i].isconst>>12)&1) DebugMessage(M64MSG_VERBOSE, "r12=%x ",(int)constmap[i][12]);
10525 #endif
10526 }
10527 DebugMessage(M64MSG_VERBOSE, " 32:");
10528 for(r=0;r<=CCREG;r++) {
10529 if((regs[i].is32>>r)&1) {
10530 if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
10531 else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10532 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10533 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10534 }
10535 }
10536 /*DebugMessage(M64MSG_VERBOSE, " p32:");
10537 for(r=0;r<=CCREG;r++) {
10538 if((p32[i]>>r)&1) {
10539 if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
10540 else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10541 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10542 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10543 }
10544 }
10545 if(p32[i]!=regs[i].is32) DebugMessage(M64MSG_VERBOSE, " NO MATCH");*/
10546 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10547 #if NEW_DYNAREC == NEW_DYNAREC_X86
10548 DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10549 if(branch_regs[i].dirty&1) DebugMessage(M64MSG_VERBOSE, "eax ");
10550 if((branch_regs[i].dirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx ");
10551 if((branch_regs[i].dirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx ");
10552 if((branch_regs[i].dirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx ");
10553 if((branch_regs[i].dirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp ");
10554 if((branch_regs[i].dirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi ");
10555 if((branch_regs[i].dirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi ");
10556 #endif
10557 #if NEW_DYNAREC == NEW_DYNAREC_ARM
10558 DebugMessage(M64MSG_VERBOSE, "branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10559 if(branch_regs[i].dirty&1) DebugMessage(M64MSG_VERBOSE, "r0 ");
10560 if((branch_regs[i].dirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "r1 ");
10561 if((branch_regs[i].dirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "r2 ");
10562 if((branch_regs[i].dirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "r3 ");
10563 if((branch_regs[i].dirty>>4)&1) DebugMessage(M64MSG_VERBOSE, "r4 ");
10564 if((branch_regs[i].dirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "r5 ");
10565 if((branch_regs[i].dirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "r6 ");
10566 if((branch_regs[i].dirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "r7 ");
10567 if((branch_regs[i].dirty>>8)&1) DebugMessage(M64MSG_VERBOSE, "r8 ");
10568 if((branch_regs[i].dirty>>9)&1) DebugMessage(M64MSG_VERBOSE, "r9 ");
10569 if((branch_regs[i].dirty>>10)&1) DebugMessage(M64MSG_VERBOSE, "r10 ");
10570 if((branch_regs[i].dirty>>12)&1) DebugMessage(M64MSG_VERBOSE, "r12 ");
10571 #endif
10572 DebugMessage(M64MSG_VERBOSE, " 32:");
10573 for(r=0;r<=CCREG;r++) {
10574 if((branch_regs[i].is32>>r)&1) {
10575 if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
10576 else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10577 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10578 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10579 }
10580 }
10581 }
10582 }
10583#endif
10584
10585 /* Pass 8 - Assembly */
10586 linkcount=0;stubcount=0;
10587 ds=0;is_delayslot=0;
10588 cop1_usable=0;
10589 #ifndef DESTRUCTIVE_WRITEBACK
10590 uint64_t is32_pre=0;
10591 u_int dirty_pre=0;
10592 #endif
10593 u_int beginning=(u_int)out;
10594 if((u_int)addr&1) {
10595 ds=1;
10596 pagespan_ds();
10597 }
10598 for(i=0;i<slen;i++)
10599 {
10600 //if(ds) DebugMessage(M64MSG_VERBOSE, "ds: ");
10601// if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10602#if defined( ASSEM_DEBUG )
10603 disassemble_inst(i);
10604#endif
10605 if(ds) {
10606 ds=0; // Skip delay slot
10607 if(bt[i]) assem_debug("OOPS - branch into delay slot");
10608 instr_addr[i]=0;
10609 } else {
10610 #ifndef DESTRUCTIVE_WRITEBACK
10611 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10612 {
10613 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10614 unneeded_reg[i],unneeded_reg_upper[i]);
10615 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10616 unneeded_reg[i],unneeded_reg_upper[i]);
10617 }
10618 is32_pre=regs[i].is32;
10619 dirty_pre=regs[i].dirty;
10620 #endif
10621 // write back
10622 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10623 {
10624 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10625 unneeded_reg[i],unneeded_reg_upper[i]);
10626 loop_preload(regmap_pre[i],regs[i].regmap_entry);
10627 }
10628 // branch target entry point
10629 instr_addr[i]=(u_int)out;
10630 assem_debug("<->");
10631 // load regs
10632 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10633 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10634 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10635 address_generation(i,&regs[i],regs[i].regmap_entry);
10636 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10637 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10638 {
10639 // Load the delay slot registers if necessary
10640 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10641 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10642 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10643 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10644 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39)
10645 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10646 }
10647 else if(i+1<slen)
10648 {
10649 // Preload registers for following instruction
10650 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10651 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10652 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10653 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10654 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10655 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10656 }
10657 // TODO: if(is_ooo(i)) address_generation(i+1);
10658 if(itype[i]==CJUMP||itype[i]==FJUMP)
10659 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10660 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS)
10661 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,MMREG,ROREG);
10662 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39)
10663 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10664 if(bt[i]) cop1_usable=0;
10665 // assemble
10666 switch(itype[i]) {
10667 case ALU:
10668 alu_assemble(i,&regs[i]);break;
10669 case IMM16:
10670 imm16_assemble(i,&regs[i]);break;
10671 case SHIFT:
10672 shift_assemble(i,&regs[i]);break;
10673 case SHIFTIMM:
10674 shiftimm_assemble(i,&regs[i]);break;
10675 case LOAD:
10676 load_assemble(i,&regs[i]);break;
10677 case LOADLR:
10678 loadlr_assemble(i,&regs[i]);break;
10679 case STORE:
10680 store_assemble(i,&regs[i]);break;
10681 case STORELR:
10682 storelr_assemble(i,&regs[i]);break;
10683 case COP0:
10684 cop0_assemble(i,&regs[i]);break;
10685 case COP1:
10686 cop1_assemble(i,&regs[i]);break;
10687 case C1LS:
10688 c1ls_assemble(i,&regs[i]);break;
10689 case FCONV:
10690 fconv_assemble(i,&regs[i]);break;
10691 case FLOAT:
10692 float_assemble(i,&regs[i]);break;
10693 case FCOMP:
10694 fcomp_assemble(i,&regs[i]);break;
10695 case MULTDIV:
10696 multdiv_assemble(i,&regs[i]);break;
10697 case MOV:
10698 mov_assemble(i,&regs[i]);break;
10699 case SYSCALL:
10700 syscall_assemble(i,&regs[i]);break;
10701 case UJUMP:
10702 ujump_assemble(i,&regs[i]);ds=1;break;
10703 case RJUMP:
10704 rjump_assemble(i,&regs[i]);ds=1;break;
10705 case CJUMP:
10706 cjump_assemble(i,&regs[i]);ds=1;break;
10707 case SJUMP:
10708 sjump_assemble(i,&regs[i]);ds=1;break;
10709 case FJUMP:
10710 fjump_assemble(i,&regs[i]);ds=1;break;
10711 case SPAN:
10712 pagespan_assemble(i,&regs[i]);break;
10713 }
10714 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10715 literal_pool(1024);
10716 else
10717 literal_pool_jumpover(256);
10718 }
10719 }
10720 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10721 // If the block did not end with an unconditional branch,
10722 // add a jump to the next instruction.
10723 if(i>1) {
10724 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10725 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10726 assert(i==slen);
10727 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10728 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10729 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10730 emit_loadreg(CCREG,HOST_CCREG);
10731 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10732 }
10733 else if(!likely[i-2])
10734 {
10735 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10736 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10737 }
10738 else
10739 {
10740 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10741 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10742 }
10743 add_to_linker((int)out,start+i*4,0);
10744 emit_jmp(0);
10745 }
10746 }
10747 else
10748 {
10749 assert(i>0);
10750 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10751 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10752 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10753 emit_loadreg(CCREG,HOST_CCREG);
10754 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10755 add_to_linker((int)out,start+i*4,0);
10756 emit_jmp(0);
10757 }
10758
10759 // TODO: delay slot stubs?
10760 // Stubs
10761 for(i=0;i<stubcount;i++)
10762 {
10763 switch(stubs[i][0])
10764 {
10765 case LOADB_STUB:
10766 case LOADH_STUB:
10767 case LOADW_STUB:
10768 case LOADD_STUB:
10769 case LOADBU_STUB:
10770 case LOADHU_STUB:
10771 do_readstub(i);break;
10772 case STOREB_STUB:
10773 case STOREH_STUB:
10774 case STOREW_STUB:
10775 case STORED_STUB:
10776 do_writestub(i);break;
10777 case CC_STUB:
10778 do_ccstub(i);break;
10779 case INVCODE_STUB:
10780 do_invstub(i);break;
10781 case FP_STUB:
10782 do_cop1stub(i);break;
10783 case STORELR_STUB:
10784 do_unalignedwritestub(i);break;
10785 }
10786 }
10787
10788 /* Pass 9 - Linker */
10789 for(i=0;i<linkcount;i++)
10790 {
10791 assem_debug("%8x -> %8x",link_addr[i][0],link_addr[i][1]);
10792 literal_pool(64);
10793 if(!link_addr[i][2])
10794 {
10795 void *stub=out;
10796 void *addr=check_addr(link_addr[i][1]);
10797 emit_extjump(link_addr[i][0],link_addr[i][1]);
10798 if(addr) {
10799 set_jump_target(link_addr[i][0],(int)addr);
10800 add_link(link_addr[i][1],stub);
10801 }
10802 else set_jump_target(link_addr[i][0],(int)stub);
10803 }
10804 else
10805 {
10806 // Internal branch
10807 int target=(link_addr[i][1]-start)>>2;
10808 assert(target>=0&&target<slen);
10809 assert(instr_addr[target]);
10810 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10811 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10812 //#else
10813 set_jump_target(link_addr[i][0],instr_addr[target]);
10814 //#endif
10815 }
10816 }
10817 // External Branch Targets (jump_in)
10818 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10819 for(i=0;i<slen;i++)
10820 {
10821 if(bt[i]||i==0)
10822 {
10823 if(instr_addr[i]) // TODO - delay slots (=null)
10824 {
10825 u_int vaddr=start+i*4;
10826 u_int page=(0x80000000^vaddr)>>12;
10827 u_int vpage=page;
10828 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[page^0x80000]^0x80000000)>>12;
10829 if(page>2048) page=2048+(page&2047);
10830 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
10831 if(vpage>2048) vpage=2048+(vpage&2047);
10832 literal_pool(256);
10833 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
10834 if(!requires_32bit[i])
10835 {
10836 assem_debug("%8x (%d) <- %8x",instr_addr[i],i,start+i*4);
10837 assem_debug("jump_in: %x",start+i*4);
10838 ll_add(jump_dirty+vpage,vaddr,(void *)out);
10839 int entry_point=do_dirty_stub(i);
10840 ll_add(jump_in+page,vaddr,(void *)entry_point);
10841 // If there was an existing entry in the hash table,
10842 // replace it with the new address.
10843 // Don't add new entries. We'll insert the
10844 // ones that actually get used in check_addr().
10845 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10846 if(ht_bin[0]==vaddr) {
10847 ht_bin[1]=entry_point;
10848 }
10849 if(ht_bin[2]==vaddr) {
10850 ht_bin[3]=entry_point;
10851 }
10852 }
10853 else
10854 {
10855 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10856 assem_debug("%8x (%d) <- %8x",instr_addr[i],i,start+i*4);
10857 assem_debug("jump_in: %x (restricted - %x)",start+i*4,r);
10858 //int entry_point=(int)out;
10859 ////assem_debug("entry_point: %x",entry_point);
10860 //load_regs_entry(i);
10861 //if(entry_point==(int)out)
10862 // entry_point=instr_addr[i];
10863 //else
10864 // emit_jmp(instr_addr[i]);
10865 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10866 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
10867 int entry_point=do_dirty_stub(i);
10868 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10869 }
10870 }
10871 }
10872 }
10873 // Write out the literal pool if necessary
10874 literal_pool(0);
10875 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10876 // Align code
10877 if(((u_int)out)&7) emit_addnop(13);
10878 #endif
10879 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10880 //DebugMessage(M64MSG_VERBOSE, "shadow buffer: %x-%x",(int)copy,(int)copy+slen*4);
10881 memcpy(copy,source,slen*4);
10882 copy+=slen*4;
10883
10884 #if NEW_DYNAREC == NEW_DYNAREC_ARM
10885 __clear_cache((void *)beginning,out);
10886 //cacheflush((void *)beginning,out,0);
10887 #endif
10888
10889 // If we're within 256K of the end of the buffer,
10890 // start over from the beginning. (Is 256K enough?)
10891 if(out > (u_char *)(base_addr+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE-JUMP_TABLE_SIZE))
10892 out=(u_char *)base_addr;
10893
10894 // Trap writes to any of the pages we compiled
10895 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10896 invalid_code[i]=0;
10897 memory_map[i]|=0x40000000;
10898 if((signed int)start>=(signed int)0xC0000000) {
10899 assert(using_tlb);
10900 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
10901 invalid_code[j]=0;
10902 memory_map[j]|=0x40000000;
10903 //DebugMessage(M64MSG_VERBOSE, "write protect physical page: %x (virtual %x)",j<<12,start);
10904 }
10905 }
10906
10907 /* Pass 10 - Free memory by expiring oldest blocks */
10908
10909 int end=((((intptr_t)out-(intptr_t)base_addr)>>(TARGET_SIZE_2-16))+16384)&65535;
10910 while(expirep!=end)
10911 {
10912 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
10913 int base=(int)base_addr+((expirep>>13)<<shift); // Base address of this block
10914 inv_debug("EXP: Phase %d\n",expirep);
10915 switch((expirep>>11)&3)
10916 {
10917 case 0:
10918 // Clear jump_in and jump_dirty
10919 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
10920 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
10921 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
10922 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
10923 break;
10924 case 1:
10925 // Clear pointers
10926 ll_kill_pointers(jump_out[expirep&2047],base,shift);
10927 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
10928 break;
10929 case 2:
10930 // Clear hash table
10931 for(i=0;i<32;i++) {
10932 u_int *ht_bin=hash_table[((expirep&2047)<<5)+i];
10933 if((ht_bin[3]>>shift)==(base>>shift) ||
10934 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10935 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
10936 ht_bin[2]=ht_bin[3]=-1;
10937 }
10938 if((ht_bin[1]>>shift)==(base>>shift) ||
10939 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10940 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
10941 ht_bin[0]=ht_bin[2];
10942 ht_bin[1]=ht_bin[3];
10943 ht_bin[2]=ht_bin[3]=-1;
10944 }
10945 }
10946 break;
10947 case 3:
10948 // Clear jump_out
10949 #if NEW_DYNAREC == NEW_DYNAREC_ARM
10950 if((expirep&2047)==0)
10951 do_clear_cache();
10952 #endif
10953 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
10954 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
10955 break;
10956 }
10957 expirep=(expirep+1)&65535;
10958 }
10959 return 0;
10960}
10961
10962void TLBWI_new(void)
10963{
10964 unsigned int i;
10965 /* Remove old entries */
10966 unsigned int old_start_even=tlb_e[Index&0x3F].start_even;
10967 unsigned int old_end_even=tlb_e[Index&0x3F].end_even;
10968 unsigned int old_start_odd=tlb_e[Index&0x3F].start_odd;
10969 unsigned int old_end_odd=tlb_e[Index&0x3F].end_odd;
10970 for (i=old_start_even>>12; i<=old_end_even>>12; i++)
10971 {
10972 if(i<0x80000||i>0xBFFFF)
10973 {
10974 invalidate_block(i);
10975 memory_map[i]=-1;
10976 }
10977 }
10978 for (i=old_start_odd>>12; i<=old_end_odd>>12; i++)
10979 {
10980 if(i<0x80000||i>0xBFFFF)
10981 {
10982 invalidate_block(i);
10983 memory_map[i]=-1;
10984 }
10985 }
10986 cached_interpreter_table.TLBWI();
10987 //DebugMessage(M64MSG_VERBOSE, "TLBWI: index=%d",Index);
10988 //DebugMessage(M64MSG_VERBOSE, "TLBWI: start_even=%x end_even=%x phys_even=%x v=%d d=%d",tlb_e[Index&0x3F].start_even,tlb_e[Index&0x3F].end_even,tlb_e[Index&0x3F].phys_even,tlb_e[Index&0x3F].v_even,tlb_e[Index&0x3F].d_even);
10989 //DebugMessage(M64MSG_VERBOSE, "TLBWI: start_odd=%x end_odd=%x phys_odd=%x v=%d d=%d",tlb_e[Index&0x3F].start_odd,tlb_e[Index&0x3F].end_odd,tlb_e[Index&0x3F].phys_odd,tlb_e[Index&0x3F].v_odd,tlb_e[Index&0x3F].d_odd);
10990 /* Combine tlb_LUT_r, tlb_LUT_w, and invalid_code into a single table
10991 for fast look up. */
10992 for (i=tlb_e[Index&0x3F].start_even>>12; i<=tlb_e[Index&0x3F].end_even>>12; i++)
10993 {
10994 //DebugMessage(M64MSG_VERBOSE, "%x: r:%8x w:%8x",i,tlb_LUT_r[i],tlb_LUT_w[i]);
10995 if(i<0x80000||i>0xBFFFF)
10996 {
10997 if(tlb_LUT_r[i]) {
10998 memory_map[i]=((tlb_LUT_r[i]&0xFFFFF000)-(i<<12)+(unsigned int)rdram-0x80000000)>>2;
10999 // FIXME: should make sure the physical page is invalid too
11000 if(!tlb_LUT_w[i]||!invalid_code[i]) {
11001 memory_map[i]|=0x40000000; // Write protect
11002 }else{
11003 assert(tlb_LUT_r[i]==tlb_LUT_w[i]);
11004 }
11005 if(!using_tlb) DebugMessage(M64MSG_VERBOSE, "Enabled TLB");
11006 // Tell the dynamic recompiler to generate tlb lookup code
11007 using_tlb=1;
11008 }
11009 else memory_map[i]=-1;
11010 }
11011 //DebugMessage(M64MSG_VERBOSE, "memory_map[%x]: %8x (+%8x)",i,memory_map[i],memory_map[i]<<2);
11012 }
11013 for (i=tlb_e[Index&0x3F].start_odd>>12; i<=tlb_e[Index&0x3F].end_odd>>12; i++)
11014 {
11015 //DebugMessage(M64MSG_VERBOSE, "%x: r:%8x w:%8x",i,tlb_LUT_r[i],tlb_LUT_w[i]);
11016 if(i<0x80000||i>0xBFFFF)
11017 {
11018 if(tlb_LUT_r[i]) {
11019 memory_map[i]=((tlb_LUT_r[i]&0xFFFFF000)-(i<<12)+(unsigned int)rdram-0x80000000)>>2;
11020 // FIXME: should make sure the physical page is invalid too
11021 if(!tlb_LUT_w[i]||!invalid_code[i]) {
11022 memory_map[i]|=0x40000000; // Write protect
11023 }else{
11024 assert(tlb_LUT_r[i]==tlb_LUT_w[i]);
11025 }
11026 if(!using_tlb) DebugMessage(M64MSG_VERBOSE, "Enabled TLB");
11027 // Tell the dynamic recompiler to generate tlb lookup code
11028 using_tlb=1;
11029 }
11030 else memory_map[i]=-1;
11031 }
11032 //DebugMessage(M64MSG_VERBOSE, "memory_map[%x]: %8x (+%8x)",i,memory_map[i],memory_map[i]<<2);
11033 }
11034}
11035
11036void TLBWR_new(void)
11037{
11038 unsigned int i;
11039 Random = (Count/2 % (32 - Wired)) + Wired;
11040 /* Remove old entries */
11041 unsigned int old_start_even=tlb_e[Random&0x3F].start_even;
11042 unsigned int old_end_even=tlb_e[Random&0x3F].end_even;
11043 unsigned int old_start_odd=tlb_e[Random&0x3F].start_odd;
11044 unsigned int old_end_odd=tlb_e[Random&0x3F].end_odd;
11045 for (i=old_start_even>>12; i<=old_end_even>>12; i++)
11046 {
11047 if(i<0x80000||i>0xBFFFF)
11048 {
11049 invalidate_block(i);
11050 memory_map[i]=-1;
11051 }
11052 }
11053 for (i=old_start_odd>>12; i<=old_end_odd>>12; i++)
11054 {
11055 if(i<0x80000||i>0xBFFFF)
11056 {
11057 invalidate_block(i);
11058 memory_map[i]=-1;
11059 }
11060 }
11061 cached_interpreter_table.TLBWR();
11062 /* Combine tlb_LUT_r, tlb_LUT_w, and invalid_code into a single table
11063 for fast look up. */
11064 for (i=tlb_e[Random&0x3F].start_even>>12; i<=tlb_e[Random&0x3F].end_even>>12; i++)
11065 {
11066 //DebugMessage(M64MSG_VERBOSE, "%x: r:%8x w:%8x",i,tlb_LUT_r[i],tlb_LUT_w[i]);
11067 if(i<0x80000||i>0xBFFFF)
11068 {
11069 if(tlb_LUT_r[i]) {
11070 memory_map[i]=((tlb_LUT_r[i]&0xFFFFF000)-(i<<12)+(unsigned int)rdram-0x80000000)>>2;
11071 // FIXME: should make sure the physical page is invalid too
11072 if(!tlb_LUT_w[i]||!invalid_code[i]) {
11073 memory_map[i]|=0x40000000; // Write protect
11074 }else{
11075 assert(tlb_LUT_r[i]==tlb_LUT_w[i]);
11076 }
11077 if(!using_tlb) DebugMessage(M64MSG_VERBOSE, "Enabled TLB");
11078 // Tell the dynamic recompiler to generate tlb lookup code
11079 using_tlb=1;
11080 }
11081 else memory_map[i]=-1;
11082 }
11083 //DebugMessage(M64MSG_VERBOSE, "memory_map[%x]: %8x (+%8x)",i,memory_map[i],memory_map[i]<<2);
11084 }
11085 for (i=tlb_e[Random&0x3F].start_odd>>12; i<=tlb_e[Random&0x3F].end_odd>>12; i++)
11086 {
11087 //DebugMessage(M64MSG_VERBOSE, "%x: r:%8x w:%8x",i,tlb_LUT_r[i],tlb_LUT_w[i]);
11088 if(i<0x80000||i>0xBFFFF)
11089 {
11090 if(tlb_LUT_r[i]) {
11091 memory_map[i]=((tlb_LUT_r[i]&0xFFFFF000)-(i<<12)+(unsigned int)rdram-0x80000000)>>2;
11092 // FIXME: should make sure the physical page is invalid too
11093 if(!tlb_LUT_w[i]||!invalid_code[i]) {
11094 memory_map[i]|=0x40000000; // Write protect
11095 }else{
11096 assert(tlb_LUT_r[i]==tlb_LUT_w[i]);
11097 }
11098 if(!using_tlb) DebugMessage(M64MSG_VERBOSE, "Enabled TLB");
11099 // Tell the dynamic recompiler to generate tlb lookup code
11100 using_tlb=1;
11101 }
11102 else memory_map[i]=-1;
11103 }
11104 //DebugMessage(M64MSG_VERBOSE, "memory_map[%x]: %8x (+%8x)",i,memory_map[i],memory_map[i]<<2);
11105 }
11106}