CORE: Inhibit assertions
[mupen64plus-pandora.git] / source / mupen64plus-core / src / r4300 / new_dynarec / new_dynarec.c
CommitLineData
451ab91e 1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2011 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdio.h>
22#include <string.h>
23#include <stdarg.h>
24#include <stdlib.h>
25#include <stdint.h> //include for uint64_t
97d8cdb7 26//#include <assert.h>
27#define assert(a) {}
451ab91e 28
29#include "../recomp.h"
30#include "../recomph.h" //include for function prototypes
31#include "../macros.h"
32#include "../r4300.h"
33#include "../ops.h"
34#include "../interupt.h"
35#include "new_dynarec.h"
36
37#include "../../memory/memory.h"
38#include "../../main/rom.h"
39
40#include <sys/mman.h>
41
42#if NEW_DYNAREC == NEW_DYNAREC_X86
43#include "assem_x86.h"
44#elif NEW_DYNAREC == NEW_DYNAREC_ARM
45#include "assem_arm.h"
46#else
47#error Unsupported dynarec architecture
48#endif
49
50#define MAXBLOCK 4096
51#define MAX_OUTPUT_BLOCK_SIZE 262144
52#define CLOCK_DIVIDER 2
53
54void *base_addr;
55
56struct regstat
57{
58 signed char regmap_entry[HOST_REGS];
59 signed char regmap[HOST_REGS];
60 uint64_t was32;
61 uint64_t is32;
62 uint64_t wasdirty;
63 uint64_t dirty;
64 uint64_t u;
65 uint64_t uu;
66 u_int wasconst;
67 u_int isconst;
68 uint64_t constmap[HOST_REGS];
69};
70
71struct ll_entry
72{
73 u_int vaddr;
74 u_int reg32;
75 void *addr;
76 struct ll_entry *next;
77};
78
79static u_int start;
80static u_int *source;
81static u_int pagelimit;
82static char insn[MAXBLOCK][10];
83static u_char itype[MAXBLOCK];
84static u_char opcode[MAXBLOCK];
85static u_char opcode2[MAXBLOCK];
86static u_char bt[MAXBLOCK];
87static u_char rs1[MAXBLOCK];
88static u_char rs2[MAXBLOCK];
89static u_char rt1[MAXBLOCK];
90static u_char rt2[MAXBLOCK];
91static u_char us1[MAXBLOCK];
92static u_char us2[MAXBLOCK];
93static u_char dep1[MAXBLOCK];
94static u_char dep2[MAXBLOCK];
95static u_char lt1[MAXBLOCK];
96static int imm[MAXBLOCK];
97static u_int ba[MAXBLOCK];
98static char likely[MAXBLOCK];
99static char is_ds[MAXBLOCK];
100static char ooo[MAXBLOCK];
101static uint64_t unneeded_reg[MAXBLOCK];
102static uint64_t unneeded_reg_upper[MAXBLOCK];
103static uint64_t branch_unneeded_reg[MAXBLOCK];
104static uint64_t branch_unneeded_reg_upper[MAXBLOCK];
105static uint64_t p32[MAXBLOCK];
106static uint64_t pr32[MAXBLOCK];
107static signed char regmap_pre[MAXBLOCK][HOST_REGS];
108#ifdef ASSEM_DEBUG
109static signed char regmap[MAXBLOCK][HOST_REGS];
110static signed char regmap_entry[MAXBLOCK][HOST_REGS];
111#endif
112static uint64_t constmap[MAXBLOCK][HOST_REGS];
113static struct regstat regs[MAXBLOCK];
114static struct regstat branch_regs[MAXBLOCK];
115static signed char minimum_free_regs[MAXBLOCK];
116static u_int needed_reg[MAXBLOCK];
117static uint64_t requires_32bit[MAXBLOCK];
118static u_int wont_dirty[MAXBLOCK];
119static u_int will_dirty[MAXBLOCK];
120static int ccadj[MAXBLOCK];
121static int slen;
122static u_int instr_addr[MAXBLOCK];
123static u_int link_addr[MAXBLOCK][3];
124static int linkcount;
125static u_int stubs[MAXBLOCK*3][8];
126static int stubcount;
127static int literalcount;
128static int is_delayslot;
129static int cop1_usable;
130u_char *out;
131struct ll_entry *jump_in[4096];
132static struct ll_entry *jump_out[4096];
133struct ll_entry *jump_dirty[4096];
134u_int hash_table[65536][4] __attribute__((aligned(16)));
135static char shadow[2097152] __attribute__((aligned(16)));
136static void *copy;
137static int expirep;
138u_int using_tlb;
139static u_int stop_after_jal;
140extern u_char restore_candidate[512];
141extern int cycle_count;
142
143 /* registers that may be allocated */
144 /* 1-31 gpr */
145#define HIREG 32 // hi
146#define LOREG 33 // lo
147#define FSREG 34 // FPU status (FCSR)
148#define CSREG 35 // Coprocessor status
149#define CCREG 36 // Cycle count
150#define INVCP 37 // Pointer to invalid_code
151#define MMREG 38 // Pointer to memory_map
152#define ROREG 39 // ram offset (if rdram!=0x80000000)
153#define TEMPREG 40
154#define FTEMP 40 // FPU temporary register
155#define PTEMP 41 // Prefetch temporary register
156#define TLREG 42 // TLB mapping offset
157#define RHASH 43 // Return address hash
158#define RHTBL 44 // Return address hash table address
159#define RTEMP 45 // JR/JALR address register
160#define MAXREG 45
161#define AGEN1 46 // Address generation temporary register
162#define AGEN2 47 // Address generation temporary register
163#define MGEN1 48 // Maptable address generation temporary register
164#define MGEN2 49 // Maptable address generation temporary register
165#define BTREG 50 // Branch target temporary register
166
167 /* instruction types */
168#define NOP 0 // No operation
169#define LOAD 1 // Load
170#define STORE 2 // Store
171#define LOADLR 3 // Unaligned load
172#define STORELR 4 // Unaligned store
173#define MOV 5 // Move
174#define ALU 6 // Arithmetic/logic
175#define MULTDIV 7 // Multiply/divide
176#define SHIFT 8 // Shift by register
177#define SHIFTIMM 9// Shift by immediate
178#define IMM16 10 // 16-bit immediate
179#define RJUMP 11 // Unconditional jump to register
180#define UJUMP 12 // Unconditional jump
181#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
182#define SJUMP 14 // Conditional branch (regimm format)
183#define COP0 15 // Coprocessor 0
184#define COP1 16 // Coprocessor 1
185#define C1LS 17 // Coprocessor 1 load/store
186#define FJUMP 18 // Conditional branch (floating point)
187#define FLOAT 19 // Floating point unit
188#define FCONV 20 // Convert integer to float
189#define FCOMP 21 // Floating point compare (sets FSREG)
190#define SYSCALL 22// SYSCALL
191#define OTHER 23 // Other
192#define SPAN 24 // Branch/delay slot spans 2 pages
193#define NI 25 // Not implemented
194
195 /* stubs */
196#define CC_STUB 1
197#define FP_STUB 2
198#define LOADB_STUB 3
199#define LOADH_STUB 4
200#define LOADW_STUB 5
201#define LOADD_STUB 6
202#define LOADBU_STUB 7
203#define LOADHU_STUB 8
204#define STOREB_STUB 9
205#define STOREH_STUB 10
206#define STOREW_STUB 11
207#define STORED_STUB 12
208#define STORELR_STUB 13
209#define INVCODE_STUB 14
210
211 /* branch codes */
212#define TAKEN 1
213#define NOTTAKEN 2
214#define NULLDS 3
215
216/* bug-fix to implement __clear_cache (missing in Android; http://code.google.com/p/android/issues/detail?id=1803) */
217void __clear_cache_bugfix(char* begin, char *end);
218#ifdef ANDROID
219 #define __clear_cache __clear_cache_bugfix
220#endif
221
222// asm linkage
223int new_recompile_block(int addr);
224void *get_addr_ht(u_int vaddr);
225static void remove_hash(int vaddr);
226void dyna_linker();
227void dyna_linker_ds();
228void verify_code();
229void verify_code_vm();
230void verify_code_ds();
231void cc_interrupt();
232void fp_exception();
233void fp_exception_ds();
234void jump_syscall();
235void jump_eret();
236#if NEW_DYNAREC == NEW_DYNAREC_ARM
237static void invalidate_addr(u_int addr);
238#endif
239
240// TLB
241void TLBWI_new();
242void TLBWR_new();
243void read_nomem_new();
244void read_nomemb_new();
245void read_nomemh_new();
246void read_nomemd_new();
247void write_nomem_new();
248void write_nomemb_new();
249void write_nomemh_new();
250void write_nomemd_new();
251void write_rdram_new();
252void write_rdramb_new();
253void write_rdramh_new();
254void write_rdramd_new();
255extern u_int memory_map[1048576];
256
257// Needed by assembler
258static void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
259static void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
260static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
261static void load_all_regs(signed char i_regmap[]);
262static void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
263static void load_regs_entry(int t);
264static void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
265
266static void add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e);
267static void add_to_linker(int addr,int target,int ext);
268static int verify_dirty(void *addr);
269
270//static int tracedebug=0;
271
272//#define DEBUG_CYCLE_COUNT 1
273
274// Uncomment these two lines to generate debug output:
275//#define ASSEM_DEBUG 1
276//#define INV_DEBUG 1
277
278// Uncomment this line to output the number of NOTCOMPILED blocks as they occur:
279//#define COUNT_NOTCOMPILEDS 1
280
281#if defined (COUNT_NOTCOMPILEDS )
282 int notcompiledCount = 0;
283#endif
284static void nullf() {}
285
286#if defined( ASSEM_DEBUG )
287 #define assem_debug(...) DebugMessage(M64MSG_VERBOSE, __VA_ARGS__)
288#else
289 #define assem_debug nullf
290#endif
291#if defined( INV_DEBUG )
292 #define inv_debug(...) DebugMessage(M64MSG_VERBOSE, __VA_ARGS__)
293#else
294 #define inv_debug nullf
295#endif
296
297#define log_message(...) DebugMessage(M64MSG_VERBOSE, __VA_ARGS__)
298
299static void tlb_hacks()
300{
301 // Goldeneye hack
302 if (strncmp((char *) ROM_HEADER.Name, "GOLDENEYE",9) == 0)
303 {
304 u_int addr;
305 int n;
306 switch (ROM_HEADER.Country_code&0xFF)
307 {
308 case 0x45: // U
309 addr=0x34b30;
310 break;
311 case 0x4A: // J
312 addr=0x34b70;
313 break;
314 case 0x50: // E
315 addr=0x329f0;
316 break;
317 default:
318 // Unknown country code
319 addr=0;
320 break;
321 }
322 u_int rom_addr=(u_int)rom;
323 #ifdef ROM_COPY
324 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
325 // in the lower 4G of memory to use this hack. Copy it if necessary.
326 if((void *)rom>(void *)0xffffffff) {
327 munmap(ROM_COPY, 67108864);
328 if(mmap(ROM_COPY, 12582912,
329 PROT_READ | PROT_WRITE,
330 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
331 -1, 0) <= 0) {DebugMessage(M64MSG_ERROR, "mmap() failed");}
332 memcpy(ROM_COPY,rom,12582912);
333 rom_addr=(u_int)ROM_COPY;
334 }
335 #endif
336 if(addr) {
337 for(n=0x7F000;n<0x80000;n++) {
338 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
339 }
340 }
341 }
342}
343
344// Get address from virtual address
345// This is called from the recompiled JR/JALR instructions
346void *get_addr(u_int vaddr)
347{
348 u_int page=(vaddr^0x80000000)>>12;
349 u_int vpage=page;
350 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
351 if(page>2048) page=2048+(page&2047);
352 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
353 if(vpage>2048) vpage=2048+(vpage&2047);
354 struct ll_entry *head;
355 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr %x,page %d)",Count,next_interupt,vaddr,page);
356 head=jump_in[page];
357 while(head!=NULL) {
358 if(head->vaddr==vaddr&&head->reg32==0) {
359 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr match %x: %x)",Count,next_interupt,vaddr,(int)head->addr);
360 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
361 ht_bin[3]=ht_bin[1];
362 ht_bin[2]=ht_bin[0];
363 ht_bin[1]=(int)head->addr;
364 ht_bin[0]=vaddr;
365 return head->addr;
366 }
367 head=head->next;
368 }
369 head=jump_dirty[vpage];
370 while(head!=NULL) {
371 if(head->vaddr==vaddr&&head->reg32==0) {
372 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr match dirty %x: %x)",Count,next_interupt,vaddr,(int)head->addr);
373 // Don't restore blocks which are about to expire from the cache
374 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
375 if(verify_dirty(head->addr)) {
376 //DebugMessage(M64MSG_VERBOSE, "restore candidate: %x (%d) d=%d",vaddr,page,invalid_code[vaddr>>12]);
377 invalid_code[vaddr>>12]=0;
378 memory_map[vaddr>>12]|=0x40000000;
379 if(vpage<2048) {
380 if(tlb_LUT_r[vaddr>>12]) {
381 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
382 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
383 }
384 restore_candidate[vpage>>3]|=1<<(vpage&7);
385 }
386 else restore_candidate[page>>3]|=1<<(page&7);
387 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
388 if(ht_bin[0]==vaddr) {
389 ht_bin[1]=(int)head->addr; // Replace existing entry
390 }
391 else
392 {
393 ht_bin[3]=ht_bin[1];
394 ht_bin[2]=ht_bin[0];
395 ht_bin[1]=(int)head->addr;
396 ht_bin[0]=vaddr;
397 }
398 return head->addr;
399 }
400 }
401 head=head->next;
402 }
403 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr no-match %x)",Count,next_interupt,vaddr);
404 int r=new_recompile_block(vaddr);
405 if(r==0) return get_addr(vaddr);
406 // Execute in unmapped page, generate pagefault execption
407 Status|=2;
408 Cause=(vaddr<<31)|0x8;
409 EPC=(vaddr&1)?vaddr-5:vaddr;
410 BadVAddr=(vaddr&~1);
411 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
412 EntryHi=BadVAddr&0xFFFFE000;
413 return get_addr_ht(0x80000000);
414}
415// Look up address in hash table first
416void *get_addr_ht(u_int vaddr)
417{
418 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_ht %x)",Count,next_interupt,vaddr);
419 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
420 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
421 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
422 return get_addr(vaddr);
423}
424
425void *get_addr_32(u_int vaddr,u_int flags)
426{
427 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_32 %x,flags %x)",Count,next_interupt,vaddr,flags);
428 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
429 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
430 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
431 u_int page=(vaddr^0x80000000)>>12;
432 u_int vpage=page;
433 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
434 if(page>2048) page=2048+(page&2047);
435 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
436 if(vpage>2048) vpage=2048+(vpage&2047);
437 struct ll_entry *head;
438 head=jump_in[page];
439 while(head!=NULL) {
440 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
441 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_32 match %x: %x)",Count,next_interupt,vaddr,(int)head->addr);
442 if(head->reg32==0) {
443 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
444 if(ht_bin[0]==-1) {
445 ht_bin[1]=(int)head->addr;
446 ht_bin[0]=vaddr;
447 }else if(ht_bin[2]==-1) {
448 ht_bin[3]=(int)head->addr;
449 ht_bin[2]=vaddr;
450 }
451 //ht_bin[3]=ht_bin[1];
452 //ht_bin[2]=ht_bin[0];
453 //ht_bin[1]=(int)head->addr;
454 //ht_bin[0]=vaddr;
455 }
456 return head->addr;
457 }
458 head=head->next;
459 }
460 head=jump_dirty[vpage];
461 while(head!=NULL) {
462 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
463 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)",Count,next_interupt,vaddr,(int)head->addr);
464 // Don't restore blocks which are about to expire from the cache
465 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
466 if(verify_dirty(head->addr)) {
467 //DebugMessage(M64MSG_VERBOSE, "restore candidate: %x (%d) d=%d",vaddr,page,invalid_code[vaddr>>12]);
468 invalid_code[vaddr>>12]=0;
469 memory_map[vaddr>>12]|=0x40000000;
470 if(vpage<2048) {
471 if(tlb_LUT_r[vaddr>>12]) {
472 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
473 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
474 }
475 restore_candidate[vpage>>3]|=1<<(vpage&7);
476 }
477 else restore_candidate[page>>3]|=1<<(page&7);
478 if(head->reg32==0) {
479 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
480 if(ht_bin[0]==-1) {
481 ht_bin[1]=(int)head->addr;
482 ht_bin[0]=vaddr;
483 }else if(ht_bin[2]==-1) {
484 ht_bin[3]=(int)head->addr;
485 ht_bin[2]=vaddr;
486 }
487 //ht_bin[3]=ht_bin[1];
488 //ht_bin[2]=ht_bin[0];
489 //ht_bin[1]=(int)head->addr;
490 //ht_bin[0]=vaddr;
491 }
492 return head->addr;
493 }
494 }
495 head=head->next;
496 }
497 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)",Count,next_interupt,vaddr,flags);
498 int r=new_recompile_block(vaddr);
499 if(r==0) return get_addr(vaddr);
500 // Execute in unmapped page, generate pagefault execption
501 Status|=2;
502 Cause=(vaddr<<31)|0x8;
503 EPC=(vaddr&1)?vaddr-5:vaddr;
504 BadVAddr=(vaddr&~1);
505 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
506 EntryHi=BadVAddr&0xFFFFE000;
507 return get_addr_ht(0x80000000);
508}
509
510static void clear_all_regs(signed char regmap[])
511{
512 int hr;
513 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
514}
515
516static signed char get_reg(signed char regmap[],int r)
517{
518 int hr;
519 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
520 return -1;
521}
522
523// Find a register that is available for two consecutive cycles
524static signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
525{
526 int hr;
527 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
528 return -1;
529}
530
531static int count_free_regs(signed char regmap[])
532{
533 int count=0;
534 int hr;
535 for(hr=0;hr<HOST_REGS;hr++)
536 {
537 if(hr!=EXCLUDE_REG) {
538 if(regmap[hr]<0) count++;
539 }
540 }
541 return count;
542}
543
544static void dirty_reg(struct regstat *cur,signed char reg)
545{
546 int hr;
547 if(!reg) return;
548 for (hr=0;hr<HOST_REGS;hr++) {
549 if((cur->regmap[hr]&63)==reg) {
550 cur->dirty|=1<<hr;
551 }
552 }
553}
554
555// If we dirty the lower half of a 64 bit register which is now being
556// sign-extended, we need to dump the upper half.
557// Note: Do this only after completion of the instruction, because
558// some instructions may need to read the full 64-bit value even if
559// overwriting it (eg SLTI, DSRA32).
560static void flush_dirty_uppers(struct regstat *cur)
561{
562 int hr,reg;
563 for (hr=0;hr<HOST_REGS;hr++) {
564 if((cur->dirty>>hr)&1) {
565 reg=cur->regmap[hr];
566 if(reg>=64)
567 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
568 }
569 }
570}
571
572static void set_const(struct regstat *cur,signed char reg,uint64_t value)
573{
574 int hr;
575 if(!reg) return;
576 for (hr=0;hr<HOST_REGS;hr++) {
577 if(cur->regmap[hr]==reg) {
578 cur->isconst|=1<<hr;
579 cur->constmap[hr]=value;
580 }
581 else if((cur->regmap[hr]^64)==reg) {
582 cur->isconst|=1<<hr;
583 cur->constmap[hr]=value>>32;
584 }
585 }
586}
587
588static void clear_const(struct regstat *cur,signed char reg)
589{
590 int hr;
591 if(!reg) return;
592 for (hr=0;hr<HOST_REGS;hr++) {
593 if((cur->regmap[hr]&63)==reg) {
594 cur->isconst&=~(1<<hr);
595 }
596 }
597}
598
599static int is_const(struct regstat *cur,signed char reg)
600{
601 int hr;
602 if(reg<0) return 0;
603 if(!reg) return 1;
604 for (hr=0;hr<HOST_REGS;hr++) {
605 if((cur->regmap[hr]&63)==reg) {
606 return (cur->isconst>>hr)&1;
607 }
608 }
609 return 0;
610}
611static uint64_t get_const(struct regstat *cur,signed char reg)
612{
613 int hr;
614 if(!reg) return 0;
615 for (hr=0;hr<HOST_REGS;hr++) {
616 if(cur->regmap[hr]==reg) {
617 return cur->constmap[hr];
618 }
619 }
620 DebugMessage(M64MSG_ERROR, "Unknown constant in r%d",reg);
621 exit(1);
622}
623
624// Least soon needed registers
625// Look at the next ten instructions and see which registers
626// will be used. Try not to reallocate these.
627static void lsn(u_char hsn[], int i, int *preferred_reg)
628{
629 int j;
630 int b=-1;
631 for(j=0;j<9;j++)
632 {
633 if(i+j>=slen) {
634 j=slen-i-1;
635 break;
636 }
637 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
638 {
639 // Don't go past an unconditonal jump
640 j++;
641 break;
642 }
643 }
644 for(;j>=0;j--)
645 {
646 if(rs1[i+j]) hsn[rs1[i+j]]=j;
647 if(rs2[i+j]) hsn[rs2[i+j]]=j;
648 if(rt1[i+j]) hsn[rt1[i+j]]=j;
649 if(rt2[i+j]) hsn[rt2[i+j]]=j;
650 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
651 // Stores can allocate zero
652 hsn[rs1[i+j]]=j;
653 hsn[rs2[i+j]]=j;
654 }
655 // On some architectures stores need invc_ptr
656 #if defined(HOST_IMM8)
657 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39) {
658 hsn[INVCP]=j;
659 }
660 #endif
661 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
662 {
663 hsn[CCREG]=j;
664 b=j;
665 }
666 }
667 if(b>=0)
668 {
669 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
670 {
671 // Follow first branch
672 int t=(ba[i+b]-start)>>2;
673 j=7-b;if(t+j>=slen) j=slen-t-1;
674 for(;j>=0;j--)
675 {
676 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
677 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
678 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
679 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
680 }
681 }
682 // TODO: preferred register based on backward branch
683 }
684 // Delay slot should preferably not overwrite branch conditions or cycle count
685 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
686 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
687 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
688 hsn[CCREG]=1;
689 // ...or hash tables
690 hsn[RHASH]=1;
691 hsn[RHTBL]=1;
692 }
693 // Coprocessor load/store needs FTEMP, even if not declared
694 if(itype[i]==C1LS) {
695 hsn[FTEMP]=0;
696 }
697 // Load L/R also uses FTEMP as a temporary register
698 if(itype[i]==LOADLR) {
699 hsn[FTEMP]=0;
700 }
701 // Also 64-bit SDL/SDR
702 if(opcode[i]==0x2c||opcode[i]==0x2d) {
703 hsn[FTEMP]=0;
704 }
705 // Don't remove the TLB registers either
706 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS ) {
707 hsn[TLREG]=0;
708 }
709 // Don't remove the miniht registers
710 if(itype[i]==UJUMP||itype[i]==RJUMP)
711 {
712 hsn[RHASH]=0;
713 hsn[RHTBL]=0;
714 }
715}
716
717// We only want to allocate registers if we're going to use them again soon
718static int needed_again(int r, int i)
719{
720 int j;
721 /*int b=-1;*/
722 int rn=10;
723
724 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
725 {
726 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
727 return 0; // Don't need any registers if exiting the block
728 }
729 for(j=0;j<9;j++)
730 {
731 if(i+j>=slen) {
732 j=slen-i-1;
733 break;
734 }
735 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
736 {
737 // Don't go past an unconditonal jump
738 j++;
739 break;
740 }
741 if(itype[i+j]==SYSCALL||((source[i+j]&0xfc00003f)==0x0d))
742 {
743 break;
744 }
745 }
746 for(;j>=1;j--)
747 {
748 if(rs1[i+j]==r) rn=j;
749 if(rs2[i+j]==r) rn=j;
750 if((unneeded_reg[i+j]>>r)&1) rn=10;
751 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
752 {
753 /*b=j;*/
754 }
755 }
756 /*
757 if(b>=0)
758 {
759 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
760 {
761 // Follow first branch
762 int o=rn;
763 int t=(ba[i+b]-start)>>2;
764 j=7-b;if(t+j>=slen) j=slen-t-1;
765 for(;j>=0;j--)
766 {
767 if(!((unneeded_reg[t+j]>>r)&1)) {
768 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
769 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
770 }
771 else rn=o;
772 }
773 }
774 }*/
775 if(rn<10) return 1;
776 return 0;
777}
778
779// Try to match register allocations at the end of a loop with those
780// at the beginning
781static int loop_reg(int i, int r, int hr)
782{
783 int j,k;
784 for(j=0;j<9;j++)
785 {
786 if(i+j>=slen) {
787 j=slen-i-1;
788 break;
789 }
790 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
791 {
792 // Don't go past an unconditonal jump
793 j++;
794 break;
795 }
796 }
797 k=0;
798 if(i>0){
799 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
800 k--;
801 }
802 for(;k<j;k++)
803 {
804 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
805 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
806 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
807 {
808 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
809 {
810 int t=(ba[i+k]-start)>>2;
811 int reg=get_reg(regs[t].regmap_entry,r);
812 if(reg>=0) return reg;
813 //reg=get_reg(regs[t+1].regmap_entry,r);
814 //if(reg>=0) return reg;
815 }
816 }
817 }
818 return hr;
819}
820
821
822// Allocate every register, preserving source/target regs
823static void alloc_all(struct regstat *cur,int i)
824{
825 int hr;
826
827 for(hr=0;hr<HOST_REGS;hr++) {
828 if(hr!=EXCLUDE_REG) {
829 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
830 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
831 {
832 cur->regmap[hr]=-1;
833 cur->dirty&=~(1<<hr);
834 }
835 // Don't need zeros
836 if((cur->regmap[hr]&63)==0)
837 {
838 cur->regmap[hr]=-1;
839 cur->dirty&=~(1<<hr);
840 }
841 }
842 }
843}
844
845
846static void div64(int64_t dividend,int64_t divisor)
847{
848 lo=dividend/divisor;
849 hi=dividend%divisor;
850 //DebugMessage(M64MSG_VERBOSE, "TRACE: ddiv %8x%8x %8x%8x" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
851 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
852}
853static void divu64(uint64_t dividend,uint64_t divisor)
854{
855 lo=dividend/divisor;
856 hi=dividend%divisor;
857 //DebugMessage(M64MSG_VERBOSE, "TRACE: ddivu %8x%8x %8x%8x",(int)reg[HIREG],(int)(reg[HIREG]>>32)
858 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
859}
860
ce68e3b9 861static void mult64(int64_t m1,int64_t m2)
451ab91e 862{
863 unsigned long long int op1, op2, op3, op4;
864 unsigned long long int result1, result2, result3, result4;
865 unsigned long long int temp1, temp2, temp3, temp4;
866 int sign = 0;
867
868 if (m1 < 0)
869 {
870 op2 = -m1;
871 sign = 1 - sign;
872 }
873 else op2 = m1;
874 if (m2 < 0)
875 {
876 op4 = -m2;
877 sign = 1 - sign;
878 }
879 else op4 = m2;
880
881 op1 = op2 & 0xFFFFFFFF;
882 op2 = (op2 >> 32) & 0xFFFFFFFF;
883 op3 = op4 & 0xFFFFFFFF;
884 op4 = (op4 >> 32) & 0xFFFFFFFF;
885
886 temp1 = op1 * op3;
887 temp2 = (temp1 >> 32) + op1 * op4;
888 temp3 = op2 * op3;
889 temp4 = (temp3 >> 32) + op2 * op4;
890
891 result1 = temp1 & 0xFFFFFFFF;
892 result2 = temp2 + (temp3 & 0xFFFFFFFF);
893 result3 = (result2 >> 32) + temp4;
894 result4 = (result3 >> 32);
895
896 lo = result1 | (result2 << 32);
897 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
898 if (sign)
899 {
900 hi = ~hi;
901 if (!lo) hi++;
902 else lo = ~lo + 1;
903 }
904}
905
906#if NEW_DYNAREC == NEW_DYNAREC_ARM
907static void multu64(uint64_t m1,uint64_t m2)
908{
909 unsigned long long int op1, op2, op3, op4;
910 unsigned long long int result1, result2, result3, result4;
911 unsigned long long int temp1, temp2, temp3, temp4;
912
913 op1 = m1 & 0xFFFFFFFF;
914 op2 = (m1 >> 32) & 0xFFFFFFFF;
915 op3 = m2 & 0xFFFFFFFF;
916 op4 = (m2 >> 32) & 0xFFFFFFFF;
917
918 temp1 = op1 * op3;
919 temp2 = (temp1 >> 32) + op1 * op4;
920 temp3 = op2 * op3;
921 temp4 = (temp3 >> 32) + op2 * op4;
922
923 result1 = temp1 & 0xFFFFFFFF;
924 result2 = temp2 + (temp3 & 0xFFFFFFFF);
925 result3 = (result2 >> 32) + temp4;
926 result4 = (result3 >> 32);
927
928 lo = result1 | (result2 << 32);
929 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
930
931 //DebugMessage(M64MSG_VERBOSE, "TRACE: dmultu %8x%8x %8x%8x",(int)reg[HIREG],(int)(reg[HIREG]>>32)
932 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
933}
934#endif
935
936static uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
937{
938 if(bits) {
939 original<<=64-bits;
940 original>>=64-bits;
941 loaded<<=bits;
942 original|=loaded;
943 }
944 else original=loaded;
945 return original;
946}
947static uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
948{
949 if(bits^56) {
950 original>>=64-(bits^56);
951 original<<=64-(bits^56);
952 loaded>>=bits^56;
953 original|=loaded;
954 }
955 else original=loaded;
956 return original;
957}
958
959#if NEW_DYNAREC == NEW_DYNAREC_X86
960#include "assem_x86.c"
961#elif NEW_DYNAREC == NEW_DYNAREC_ARM
962#include "assem_arm.c"
963#else
964#error Unsupported dynarec architecture
965#endif
966
967// Add virtual address mapping to linked list
968static void ll_add(struct ll_entry **head,int vaddr,void *addr)
969{
970 struct ll_entry *new_entry;
971 new_entry=malloc(sizeof(struct ll_entry));
972 assert(new_entry!=NULL);
973 new_entry->vaddr=vaddr;
974 new_entry->reg32=0;
975 new_entry->addr=addr;
976 new_entry->next=*head;
977 *head=new_entry;
978}
979
980// Add virtual address mapping for 32-bit compiled block
981static void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
982{
983 struct ll_entry *new_entry;
984 new_entry=malloc(sizeof(struct ll_entry));
985 assert(new_entry!=NULL);
986 new_entry->vaddr=vaddr;
987 new_entry->reg32=reg32;
988 new_entry->addr=addr;
989 new_entry->next=*head;
990 *head=new_entry;
991}
992
993// Check if an address is already compiled
994// but don't return addresses which are about to expire from the cache
995static void *check_addr(u_int vaddr)
996{
997 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
998 if(ht_bin[0]==vaddr) {
999 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1000 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1001 }
1002 if(ht_bin[2]==vaddr) {
1003 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1004 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1005 }
1006 u_int page=(vaddr^0x80000000)>>12;
1007 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
1008 if(page>2048) page=2048+(page&2047);
1009 struct ll_entry *head;
1010 head=jump_in[page];
1011 while(head!=NULL) {
1012 if(head->vaddr==vaddr&&head->reg32==0) {
1013 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1014 // Update existing entry with current address
1015 if(ht_bin[0]==vaddr) {
1016 ht_bin[1]=(int)head->addr;
1017 return head->addr;
1018 }
1019 if(ht_bin[2]==vaddr) {
1020 ht_bin[3]=(int)head->addr;
1021 return head->addr;
1022 }
1023 // Insert into hash table with low priority.
1024 // Don't evict existing entries, as they are probably
1025 // addresses that are being accessed frequently.
1026 if(ht_bin[0]==-1) {
1027 ht_bin[1]=(int)head->addr;
1028 ht_bin[0]=vaddr;
1029 }else if(ht_bin[2]==-1) {
1030 ht_bin[3]=(int)head->addr;
1031 ht_bin[2]=vaddr;
1032 }
1033 return head->addr;
1034 }
1035 }
1036 head=head->next;
1037 }
1038 return 0;
1039}
1040
1041static void remove_hash(int vaddr)
1042{
1043 //DebugMessage(M64MSG_VERBOSE, "remove hash: %x",vaddr);
1044 u_int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1045 if(ht_bin[2]==vaddr) {
1046 ht_bin[2]=ht_bin[3]=-1;
1047 }
1048 if(ht_bin[0]==vaddr) {
1049 ht_bin[0]=ht_bin[2];
1050 ht_bin[1]=ht_bin[3];
1051 ht_bin[2]=ht_bin[3]=-1;
1052 }
1053}
1054
1055static void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1056{
1057 struct ll_entry *next;
1058 while(*head) {
1059 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1060 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1061 {
1062 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1063 remove_hash((*head)->vaddr);
1064 next=(*head)->next;
1065 free(*head);
1066 *head=next;
1067 }
1068 else
1069 {
1070 head=&((*head)->next);
1071 }
1072 }
1073}
1074
1075// Remove all entries from linked list
1076static void ll_clear(struct ll_entry **head)
1077{
1078 struct ll_entry *cur;
1079 struct ll_entry *next;
1080 if((cur=*head)) {
1081 *head=0;
1082 while(cur) {
1083 next=cur->next;
1084 free(cur);
1085 cur=next;
1086 }
1087 }
1088}
1089
1090// Dereference the pointers and remove if it matches
1091static void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1092{
1093 while(head) {
1094 int ptr=get_pointer(head->addr);
1095 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1096 if(((ptr>>shift)==(addr>>shift)) ||
1097 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1098 {
1099 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1100 u_int host_addr=(int)kill_pointer(head->addr);
1101 #if NEW_DYNAREC == NEW_DYNAREC_ARM
1102 needs_clear_cache[(host_addr-(u_int)base_addr)>>17]|=1<<(((host_addr-(u_int)base_addr)>>12)&31);
1103 #endif
1104 }
1105 head=head->next;
1106 }
1107}
1108
1109// This is called when we write to a compiled block (see do_invstub)
1110static void invalidate_page(u_int page)
1111{
1112 struct ll_entry *head;
1113 struct ll_entry *next;
1114 head=jump_in[page];
1115 jump_in[page]=0;
1116 while(head!=NULL) {
1117 inv_debug("INVALIDATE: %x\n",head->vaddr);
1118 remove_hash(head->vaddr);
1119 next=head->next;
1120 free(head);
1121 head=next;
1122 }
1123 head=jump_out[page];
1124 jump_out[page]=0;
1125 while(head!=NULL) {
1126 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1127 u_int host_addr=(int)kill_pointer(head->addr);
1128 #if NEW_DYNAREC == NEW_DYNAREC_ARM
1129 needs_clear_cache[(host_addr-(u_int)base_addr)>>17]|=1<<(((host_addr-(u_int)base_addr)>>12)&31);
1130 #endif
1131 next=head->next;
1132 free(head);
1133 head=next;
1134 }
1135}
1136void invalidate_block(u_int block)
1137{
1138 u_int page,vpage;
1139 page=vpage=block^0x80000;
1140 if(page>262143&&tlb_LUT_r[block]) page=(tlb_LUT_r[block]^0x80000000)>>12;
1141 if(page>2048) page=2048+(page&2047);
1142 if(vpage>262143&&tlb_LUT_r[block]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
1143 if(vpage>2048) vpage=2048+(vpage&2047);
1144 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1145 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1146 u_int first,last;
1147 first=last=page;
1148 struct ll_entry *head;
1149 head=jump_dirty[vpage];
1150 //DebugMessage(M64MSG_VERBOSE, "page=%d vpage=%d",page,vpage);
1151 while(head!=NULL) {
1152 u_int start,end;
1153 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1154 get_bounds((int)head->addr,&start,&end);
1155 //DebugMessage(M64MSG_VERBOSE, "start: %x end: %x",start,end);
1156 if(page<2048&&start>=0x80000000&&end<0x80800000) {
1157 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1158 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1159 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1160 }
1161 }
1162 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1163 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1164 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1165 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1166 }
1167 }
1168 }
1169 head=head->next;
1170 }
1171 //DebugMessage(M64MSG_VERBOSE, "first=%d last=%d",first,last);
1172 invalidate_page(page);
1173 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1174 assert(last<page+5);
1175 // Invalidate the adjacent pages if a block crosses a 4K boundary
1176 while(first<page) {
1177 invalidate_page(first);
1178 first++;
1179 }
1180 for(first=page+1;first<last;first++) {
1181 invalidate_page(first);
1182 }
1183 #if NEW_DYNAREC == NEW_DYNAREC_ARM
1184 do_clear_cache();
1185 #endif
1186
1187 // Don't trap writes
1188 invalid_code[block]=1;
1189 // If there is a valid TLB entry for this page, remove write protect
1190 if(tlb_LUT_w[block]) {
1191 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1192 // CHECK: Is this right?
1193 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1194 u_int real_block=tlb_LUT_w[block]>>12;
1195 invalid_code[real_block]=1;
1196 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1197 }
1198 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1199 #ifdef USE_MINI_HT
1200 memset(mini_ht,-1,sizeof(mini_ht));
1201 #endif
1202}
1203
1204#if NEW_DYNAREC == NEW_DYNAREC_ARM
1205static void invalidate_addr(u_int addr)
1206{
1207 invalidate_block(addr>>12);
1208}
1209#endif
1210
1211// This is called when loading a save state.
1212// Anything could have changed, so invalidate everything.
1213void invalidate_all_pages()
1214{
1215 u_int page;
1216 for(page=0;page<4096;page++)
1217 invalidate_page(page);
1218 for(page=0;page<1048576;page++)
1219 if(!invalid_code[page]) {
1220 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1221 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1222 }
1223 #if NEW_DYNAREC == NEW_DYNAREC_ARM
1224 __clear_cache((void *)base_addr,(void *)base_addr+(1<<TARGET_SIZE_2));
1225 //cacheflush((void *)base_addr,(void *)base_addr+(1<<TARGET_SIZE_2),0);
1226 #endif
1227 #ifdef USE_MINI_HT
1228 memset(mini_ht,-1,sizeof(mini_ht));
1229 #endif
1230 // TLB
1231 for(page=0;page<0x100000;page++) {
1232 if(tlb_LUT_r[page]) {
1233 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1234 if(!tlb_LUT_w[page]||!invalid_code[page])
1235 memory_map[page]|=0x40000000; // Write protect
1236 }
1237 else memory_map[page]=-1;
1238 if(page==0x80000) page=0xC0000;
1239 }
1240 tlb_hacks();
1241}
1242
1243// Add an entry to jump_out after making a link
1244void add_link(u_int vaddr,void *src)
1245{
1246 u_int page=(vaddr^0x80000000)>>12;
1247 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
1248 if(page>4095) page=2048+(page&2047);
1249 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1250 ll_add(jump_out+page,vaddr,src);
1251 //int ptr=get_pointer(src);
1252 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1253}
1254
1255// If a code block was found to be unmodified (bit was set in
1256// restore_candidate) and it remains unmodified (bit is clear
1257// in invalid_code) then move the entries for that 4K page from
1258// the dirty list to the clean list.
1259void clean_blocks(u_int page)
1260{
1261 struct ll_entry *head;
1262 inv_debug("INV: clean_blocks page=%d\n",page);
1263 head=jump_dirty[page];
1264 while(head!=NULL) {
1265 if(!invalid_code[head->vaddr>>12]) {
1266 // Don't restore blocks which are about to expire from the cache
1267 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1268 u_int start,end;
1269 if(verify_dirty(head->addr)) {
1270 //DebugMessage(M64MSG_VERBOSE, "Possibly Restore %x (%x)",head->vaddr, (int)head->addr);
1271 u_int i;
1272 u_int inv=0;
1273 get_bounds((int)head->addr,&start,&end);
1274 if(start-(u_int)rdram<0x800000) {
1275 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1276 inv|=invalid_code[i];
1277 }
1278 }
1279 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1280 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1281 //DebugMessage(M64MSG_VERBOSE, "addr=%x start=%x end=%x",addr,start,end);
1282 if(addr<start||addr>=end) inv=1;
1283 }
1284 else if((signed int)head->vaddr>=(signed int)0x80800000) {
1285 inv=1;
1286 }
1287 if(!inv) {
1288 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1289 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1290 u_int ppage=page;
1291 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1292 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1293 //DebugMessage(M64MSG_VERBOSE, "page=%x, addr=%x",page,head->vaddr);
1294 //assert(head->vaddr>>12==(page|0x80000));
1295 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1296 u_int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1297 if(!head->reg32) {
1298 if(ht_bin[0]==head->vaddr) {
1299 ht_bin[1]=(int)clean_addr; // Replace existing entry
1300 }
1301 if(ht_bin[2]==head->vaddr) {
1302 ht_bin[3]=(int)clean_addr; // Replace existing entry
1303 }
1304 }
1305 }
1306 }
1307 }
1308 }
1309 }
1310 head=head->next;
1311 }
1312}
1313
1314
1315static void mov_alloc(struct regstat *current,int i)
1316{
1317 // Note: Don't need to actually alloc the source registers
1318 if((~current->is32>>rs1[i])&1) {
1319 //alloc_reg64(current,i,rs1[i]);
1320 alloc_reg64(current,i,rt1[i]);
1321 current->is32&=~(1LL<<rt1[i]);
1322 } else {
1323 //alloc_reg(current,i,rs1[i]);
1324 alloc_reg(current,i,rt1[i]);
1325 current->is32|=(1LL<<rt1[i]);
1326 }
1327 clear_const(current,rs1[i]);
1328 clear_const(current,rt1[i]);
1329 dirty_reg(current,rt1[i]);
1330}
1331
1332static void shiftimm_alloc(struct regstat *current,int i)
1333{
1334 clear_const(current,rs1[i]);
1335 clear_const(current,rt1[i]);
1336 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1337 {
1338 if(rt1[i]) {
1339 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1340 else lt1[i]=rs1[i];
1341 alloc_reg(current,i,rt1[i]);
1342 current->is32|=1LL<<rt1[i];
1343 dirty_reg(current,rt1[i]);
1344 }
1345 }
1346 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1347 {
1348 if(rt1[i]) {
1349 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1350 alloc_reg64(current,i,rt1[i]);
1351 current->is32&=~(1LL<<rt1[i]);
1352 dirty_reg(current,rt1[i]);
1353 }
1354 }
1355 if(opcode2[i]==0x3c) // DSLL32
1356 {
1357 if(rt1[i]) {
1358 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1359 alloc_reg64(current,i,rt1[i]);
1360 current->is32&=~(1LL<<rt1[i]);
1361 dirty_reg(current,rt1[i]);
1362 }
1363 }
1364 if(opcode2[i]==0x3e) // DSRL32
1365 {
1366 if(rt1[i]) {
1367 alloc_reg64(current,i,rs1[i]);
1368 if(imm[i]==32) {
1369 alloc_reg64(current,i,rt1[i]);
1370 current->is32&=~(1LL<<rt1[i]);
1371 } else {
1372 alloc_reg(current,i,rt1[i]);
1373 current->is32|=1LL<<rt1[i];
1374 }
1375 dirty_reg(current,rt1[i]);
1376 }
1377 }
1378 if(opcode2[i]==0x3f) // DSRA32
1379 {
1380 if(rt1[i]) {
1381 alloc_reg64(current,i,rs1[i]);
1382 alloc_reg(current,i,rt1[i]);
1383 current->is32|=1LL<<rt1[i];
1384 dirty_reg(current,rt1[i]);
1385 }
1386 }
1387}
1388
1389static void shift_alloc(struct regstat *current,int i)
1390{
1391 if(rt1[i]) {
1392 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1393 {
1394 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1395 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1396 alloc_reg(current,i,rt1[i]);
1397 if(rt1[i]==rs2[i]) {
1398 alloc_reg_temp(current,i,-1);
1399 minimum_free_regs[i]=1;
1400 }
1401 current->is32|=1LL<<rt1[i];
1402 } else { // DSLLV/DSRLV/DSRAV
1403 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1404 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1405 alloc_reg64(current,i,rt1[i]);
1406 current->is32&=~(1LL<<rt1[i]);
1407 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1408 {
1409 alloc_reg_temp(current,i,-1);
1410 minimum_free_regs[i]=1;
1411 }
1412 }
1413 clear_const(current,rs1[i]);
1414 clear_const(current,rs2[i]);
1415 clear_const(current,rt1[i]);
1416 dirty_reg(current,rt1[i]);
1417 }
1418}
1419
1420static void alu_alloc(struct regstat *current,int i)
1421{
1422 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1423 if(rt1[i]) {
1424 if(rs1[i]&&rs2[i]) {
1425 alloc_reg(current,i,rs1[i]);
1426 alloc_reg(current,i,rs2[i]);
1427 }
1428 else {
1429 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1430 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1431 }
1432 alloc_reg(current,i,rt1[i]);
1433 }
1434 current->is32|=1LL<<rt1[i];
1435 }
1436 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1437 if(rt1[i]) {
1438 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1439 {
1440 alloc_reg64(current,i,rs1[i]);
1441 alloc_reg64(current,i,rs2[i]);
1442 alloc_reg(current,i,rt1[i]);
1443 } else {
1444 alloc_reg(current,i,rs1[i]);
1445 alloc_reg(current,i,rs2[i]);
1446 alloc_reg(current,i,rt1[i]);
1447 }
1448 }
1449 current->is32|=1LL<<rt1[i];
1450 }
1451 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1452 if(rt1[i]) {
1453 if(rs1[i]&&rs2[i]) {
1454 alloc_reg(current,i,rs1[i]);
1455 alloc_reg(current,i,rs2[i]);
1456 }
1457 else
1458 {
1459 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1460 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1461 }
1462 alloc_reg(current,i,rt1[i]);
1463 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1464 {
1465 if(!((current->uu>>rt1[i])&1)) {
1466 alloc_reg64(current,i,rt1[i]);
1467 }
1468 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1469 if(rs1[i]&&rs2[i]) {
1470 alloc_reg64(current,i,rs1[i]);
1471 alloc_reg64(current,i,rs2[i]);
1472 }
1473 else
1474 {
1475 // Is is really worth it to keep 64-bit values in registers?
1476 #ifdef NATIVE_64BIT
1477 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1478 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1479 #endif
1480 }
1481 }
1482 current->is32&=~(1LL<<rt1[i]);
1483 } else {
1484 current->is32|=1LL<<rt1[i];
1485 }
1486 }
1487 }
1488 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1489 if(rt1[i]) {
1490 if(rs1[i]&&rs2[i]) {
1491 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1492 alloc_reg64(current,i,rs1[i]);
1493 alloc_reg64(current,i,rs2[i]);
1494 alloc_reg64(current,i,rt1[i]);
1495 } else {
1496 alloc_reg(current,i,rs1[i]);
1497 alloc_reg(current,i,rs2[i]);
1498 alloc_reg(current,i,rt1[i]);
1499 }
1500 }
1501 else {
1502 alloc_reg(current,i,rt1[i]);
1503 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1504 // DADD used as move, or zeroing
1505 // If we have a 64-bit source, then make the target 64 bits too
1506 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1507 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1508 alloc_reg64(current,i,rt1[i]);
1509 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1510 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1511 alloc_reg64(current,i,rt1[i]);
1512 }
1513 if(opcode2[i]>=0x2e&&rs2[i]) {
1514 // DSUB used as negation - 64-bit result
1515 // If we have a 32-bit register, extend it to 64 bits
1516 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1517 alloc_reg64(current,i,rt1[i]);
1518 }
1519 }
1520 }
1521 if(rs1[i]&&rs2[i]) {
1522 current->is32&=~(1LL<<rt1[i]);
1523 } else if(rs1[i]) {
1524 current->is32&=~(1LL<<rt1[i]);
1525 if((current->is32>>rs1[i])&1)
1526 current->is32|=1LL<<rt1[i];
1527 } else if(rs2[i]) {
1528 current->is32&=~(1LL<<rt1[i]);
1529 if((current->is32>>rs2[i])&1)
1530 current->is32|=1LL<<rt1[i];
1531 } else {
1532 current->is32|=1LL<<rt1[i];
1533 }
1534 }
1535 }
1536 clear_const(current,rs1[i]);
1537 clear_const(current,rs2[i]);
1538 clear_const(current,rt1[i]);
1539 dirty_reg(current,rt1[i]);
1540}
1541
1542static void imm16_alloc(struct regstat *current,int i)
1543{
1544 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1545 else lt1[i]=rs1[i];
1546 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1547 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1548 current->is32&=~(1LL<<rt1[i]);
1549 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1550 // TODO: Could preserve the 32-bit flag if the immediate is zero
1551 alloc_reg64(current,i,rt1[i]);
1552 alloc_reg64(current,i,rs1[i]);
1553 }
1554 clear_const(current,rs1[i]);
1555 clear_const(current,rt1[i]);
1556 }
1557 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1558 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1559 current->is32|=1LL<<rt1[i];
1560 clear_const(current,rs1[i]);
1561 clear_const(current,rt1[i]);
1562 }
1563 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1564 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1565 if(rs1[i]!=rt1[i]) {
1566 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1567 alloc_reg64(current,i,rt1[i]);
1568 current->is32&=~(1LL<<rt1[i]);
1569 }
1570 }
1571 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1572 if(is_const(current,rs1[i])) {
1573 int v=get_const(current,rs1[i]);
1574 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1575 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1576 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1577 }
1578 else clear_const(current,rt1[i]);
1579 }
1580 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1581 if(is_const(current,rs1[i])) {
1582 int v=get_const(current,rs1[i]);
1583 set_const(current,rt1[i],v+imm[i]);
1584 }
1585 else clear_const(current,rt1[i]);
1586 current->is32|=1LL<<rt1[i];
1587 }
1588 else {
1589 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1590 current->is32|=1LL<<rt1[i];
1591 }
1592 dirty_reg(current,rt1[i]);
1593}
1594
1595static void load_alloc(struct regstat *current,int i)
1596{
1597 clear_const(current,rt1[i]);
1598 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1599 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1600 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1601 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
1602 alloc_reg(current,i,rt1[i]);
1603 assert(get_reg(current->regmap,rt1[i])>=0);
1604 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1605 {
1606 current->is32&=~(1LL<<rt1[i]);
1607 alloc_reg64(current,i,rt1[i]);
1608 }
1609 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1610 {
1611 current->is32&=~(1LL<<rt1[i]);
1612 alloc_reg64(current,i,rt1[i]);
1613 alloc_all(current,i);
1614 alloc_reg64(current,i,FTEMP);
1615 minimum_free_regs[i]=HOST_REGS;
1616 }
1617 else current->is32|=1LL<<rt1[i];
1618 dirty_reg(current,rt1[i]);
1619 // If using TLB, need a register for pointer to the mapping table
1620 if(using_tlb) alloc_reg(current,i,TLREG);
1621 // LWL/LWR need a temporary register for the old value
1622 if(opcode[i]==0x22||opcode[i]==0x26)
1623 {
1624 alloc_reg(current,i,FTEMP);
1625 alloc_reg_temp(current,i,-1);
1626 minimum_free_regs[i]=1;
1627 }
1628 }
1629 else
1630 {
1631 // Load to r0 or unneeded register (dummy load)
1632 // but we still need a register to calculate the address
1633 if(opcode[i]==0x22||opcode[i]==0x26)
1634 {
1635 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1636 }
1637 // If using TLB, need a register for pointer to the mapping table
1638 if(using_tlb) alloc_reg(current,i,TLREG);
1639 alloc_reg_temp(current,i,-1);
1640 minimum_free_regs[i]=1;
1641 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1642 {
1643 alloc_all(current,i);
1644 alloc_reg64(current,i,FTEMP);
1645 minimum_free_regs[i]=HOST_REGS;
1646 }
1647 }
1648}
1649
1650static void store_alloc(struct regstat *current,int i)
1651{
1652 clear_const(current,rs2[i]);
1653 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1654 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1655 alloc_reg(current,i,rs2[i]);
1656 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1657 alloc_reg64(current,i,rs2[i]);
1658 if(rs2[i]) alloc_reg(current,i,FTEMP);
1659 }
1660 // If using TLB, need a register for pointer to the mapping table
1661 if(using_tlb) alloc_reg(current,i,TLREG);
1662 #if defined(HOST_IMM8)
1663 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1664 else alloc_reg(current,i,INVCP);
1665 #endif
1666 if(opcode[i]==0x2c||opcode[i]==0x2d) { // 64-bit SDL/SDR
1667 alloc_reg(current,i,FTEMP);
1668 }
1669 // We need a temporary register for address generation
1670 alloc_reg_temp(current,i,-1);
1671 minimum_free_regs[i]=1;
1672}
1673
1674static void c1ls_alloc(struct regstat *current,int i)
1675{
1676 //clear_const(current,rs1[i]); // FIXME
1677 clear_const(current,rt1[i]);
1678 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1679 alloc_reg(current,i,CSREG); // Status
1680 alloc_reg(current,i,FTEMP);
1681 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1682 alloc_reg64(current,i,FTEMP);
1683 }
1684 // If using TLB, need a register for pointer to the mapping table
1685 if(using_tlb) alloc_reg(current,i,TLREG);
1686 #if defined(HOST_IMM8)
1687 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1688 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1689 alloc_reg(current,i,INVCP);
1690 #endif
1691 // We need a temporary register for address generation
1692 alloc_reg_temp(current,i,-1);
1693 minimum_free_regs[i]=1;
1694}
1695
1696#ifndef multdiv_alloc
1697void multdiv_alloc(struct regstat *current,int i)
1698{
1699 // case 0x18: MULT
1700 // case 0x19: MULTU
1701 // case 0x1A: DIV
1702 // case 0x1B: DIVU
1703 // case 0x1C: DMULT
1704 // case 0x1D: DMULTU
1705 // case 0x1E: DDIV
1706 // case 0x1F: DDIVU
1707 clear_const(current,rs1[i]);
1708 clear_const(current,rs2[i]);
1709 if(rs1[i]&&rs2[i])
1710 {
1711 if((opcode2[i]&4)==0) // 32-bit
1712 {
1713 current->u&=~(1LL<<HIREG);
1714 current->u&=~(1LL<<LOREG);
1715 alloc_reg(current,i,HIREG);
1716 alloc_reg(current,i,LOREG);
1717 alloc_reg(current,i,rs1[i]);
1718 alloc_reg(current,i,rs2[i]);
1719 current->is32|=1LL<<HIREG;
1720 current->is32|=1LL<<LOREG;
1721 dirty_reg(current,HIREG);
1722 dirty_reg(current,LOREG);
1723 }
1724 else // 64-bit
1725 {
1726 current->u&=~(1LL<<HIREG);
1727 current->u&=~(1LL<<LOREG);
1728 current->uu&=~(1LL<<HIREG);
1729 current->uu&=~(1LL<<LOREG);
1730 alloc_reg64(current,i,HIREG);
ce68e3b9 1731 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG); //*SEB* Why commenting this line? uncommenting make SM64 freeze after title (before mario head and spinning stars)
451ab91e 1732 alloc_reg64(current,i,rs1[i]);
1733 alloc_reg64(current,i,rs2[i]);
1734 alloc_all(current,i);
1735 current->is32&=~(1LL<<HIREG);
1736 current->is32&=~(1LL<<LOREG);
1737 dirty_reg(current,HIREG);
1738 dirty_reg(current,LOREG);
1739 minimum_free_regs[i]=HOST_REGS;
1740 }
1741 }
1742 else
1743 {
1744 // Multiply by zero is zero.
1745 // MIPS does not have a divide by zero exception.
1746 // The result is undefined, we return zero.
ce68e3b9 1747 alloc_reg(current,i,HIREG);
1748 alloc_reg(current,i,LOREG);
1749 current->is32|=1LL<<HIREG;
1750 current->is32|=1LL<<LOREG;
1751 dirty_reg(current,HIREG);
1752 dirty_reg(current,LOREG);
451ab91e 1753 }
1754}
1755#endif
1756
1757static void cop0_alloc(struct regstat *current,int i)
1758{
1759 if(opcode2[i]==0) // MFC0
1760 {
1761 if(rt1[i]) {
1762 clear_const(current,rt1[i]);
1763 alloc_all(current,i);
1764 alloc_reg(current,i,rt1[i]);
1765 current->is32|=1LL<<rt1[i];
1766 dirty_reg(current,rt1[i]);
1767 }
1768 }
1769 else if(opcode2[i]==4) // MTC0
1770 {
1771 if(rs1[i]){
1772 clear_const(current,rs1[i]);
1773 alloc_reg(current,i,rs1[i]);
1774 alloc_all(current,i);
1775 }
1776 else {
1777 alloc_all(current,i); // FIXME: Keep r0
1778 current->u&=~1LL;
1779 alloc_reg(current,i,0);
1780 }
1781 }
1782 else
1783 {
1784 // TLBR/TLBWI/TLBWR/TLBP/ERET
1785 assert(opcode2[i]==0x10);
1786 alloc_all(current,i);
1787 }
1788 minimum_free_regs[i]=HOST_REGS;
1789}
1790
1791static void cop1_alloc(struct regstat *current,int i)
1792{
1793 alloc_reg(current,i,CSREG); // Load status
1794 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1795 {
1796 assert(rt1[i]);
1797 clear_const(current,rt1[i]);
1798 if(opcode2[i]==1) {
1799 alloc_reg64(current,i,rt1[i]); // DMFC1
1800 current->is32&=~(1LL<<rt1[i]);
1801 }else{
1802 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1803 current->is32|=1LL<<rt1[i];
1804 }
1805 dirty_reg(current,rt1[i]);
1806 alloc_reg_temp(current,i,-1);
1807 }
1808 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1809 {
1810 if(rs1[i]){
1811 clear_const(current,rs1[i]);
1812 if(opcode2[i]==5)
1813 alloc_reg64(current,i,rs1[i]); // DMTC1
1814 else
1815 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1816 alloc_reg_temp(current,i,-1);
1817 }
1818 else {
1819 current->u&=~1LL;
1820 alloc_reg(current,i,0);
1821 alloc_reg_temp(current,i,-1);
1822 }
1823 }
1824 minimum_free_regs[i]=1;
1825}
1826static void fconv_alloc(struct regstat *current,int i)
1827{
1828 alloc_reg(current,i,CSREG); // Load status
1829 alloc_reg_temp(current,i,-1);
1830 minimum_free_regs[i]=1;
1831}
1832static void float_alloc(struct regstat *current,int i)
1833{
1834 alloc_reg(current,i,CSREG); // Load status
1835 alloc_reg_temp(current,i,-1);
1836 minimum_free_regs[i]=1;
1837}
1838static void fcomp_alloc(struct regstat *current,int i)
1839{
1840 alloc_reg(current,i,CSREG); // Load status
1841 alloc_reg(current,i,FSREG); // Load flags
1842 dirty_reg(current,FSREG); // Flag will be modified
1843 alloc_reg_temp(current,i,-1);
1844 minimum_free_regs[i]=1;
1845}
1846
1847static void syscall_alloc(struct regstat *current,int i)
1848{
1849 alloc_cc(current,i);
1850 dirty_reg(current,CCREG);
1851 alloc_all(current,i);
1852 minimum_free_regs[i]=HOST_REGS;
1853 current->isconst=0;
1854}
1855
1856static void delayslot_alloc(struct regstat *current,int i)
1857{
1858 switch(itype[i]) {
1859 case UJUMP:
1860 case CJUMP:
1861 case SJUMP:
1862 case RJUMP:
1863 case FJUMP:
1864 case SYSCALL:
1865 case SPAN:
1866 assem_debug("jump in the delay slot. this shouldn't happen.");//exit(1);
1867 DebugMessage(M64MSG_VERBOSE, "Disabled speculative precompilation");
1868 stop_after_jal=1;
1869 break;
1870 case IMM16:
1871 imm16_alloc(current,i);
1872 break;
1873 case LOAD:
1874 case LOADLR:
1875 load_alloc(current,i);
1876 break;
1877 case STORE:
1878 case STORELR:
1879 store_alloc(current,i);
1880 break;
1881 case ALU:
1882 alu_alloc(current,i);
1883 break;
1884 case SHIFT:
1885 shift_alloc(current,i);
1886 break;
1887 case MULTDIV:
1888 multdiv_alloc(current,i);
1889 break;
1890 case SHIFTIMM:
1891 shiftimm_alloc(current,i);
1892 break;
1893 case MOV:
1894 mov_alloc(current,i);
1895 break;
1896 case COP0:
1897 cop0_alloc(current,i);
1898 break;
1899 case COP1:
1900 cop1_alloc(current,i);
1901 break;
1902 case C1LS:
1903 c1ls_alloc(current,i);
1904 break;
1905 case FCONV:
1906 fconv_alloc(current,i);
1907 break;
1908 case FLOAT:
1909 float_alloc(current,i);
1910 break;
1911 case FCOMP:
1912 fcomp_alloc(current,i);
1913 break;
1914 }
1915}
1916
1917// Special case where a branch and delay slot span two pages in virtual memory
1918static void pagespan_alloc(struct regstat *current,int i)
1919{
1920 current->isconst=0;
1921 current->wasconst=0;
1922 regs[i].wasconst=0;
1923 minimum_free_regs[i]=HOST_REGS;
1924 alloc_all(current,i);
1925 alloc_cc(current,i);
1926 dirty_reg(current,CCREG);
1927 if(opcode[i]==3) // JAL
1928 {
1929 alloc_reg(current,i,31);
1930 dirty_reg(current,31);
1931 }
1932 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1933 {
1934 alloc_reg(current,i,rs1[i]);
1935 if (rt1[i]!=0) {
1936 alloc_reg(current,i,rt1[i]);
1937 dirty_reg(current,rt1[i]);
1938 }
1939 }
1940 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1941 {
1942 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1943 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1944 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1945 {
1946 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1947 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1948 }
1949 }
1950 else
1951 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1952 {
1953 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1954 if(!((current->is32>>rs1[i])&1))
1955 {
1956 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1957 }
1958 }
1959 else
1960 if(opcode[i]==0x11) // BC1
1961 {
1962 alloc_reg(current,i,FSREG);
1963 alloc_reg(current,i,CSREG);
1964 }
1965 //else ...
1966}
1967
1968static void add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1969{
1970 stubs[stubcount][0]=type;
1971 stubs[stubcount][1]=addr;
1972 stubs[stubcount][2]=retaddr;
1973 stubs[stubcount][3]=a;
1974 stubs[stubcount][4]=b;
1975 stubs[stubcount][5]=c;
1976 stubs[stubcount][6]=d;
1977 stubs[stubcount][7]=e;
1978 stubcount++;
1979}
1980
1981// Write out a single register
1982static void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1983{
1984 int hr;
1985 for(hr=0;hr<HOST_REGS;hr++) {
1986 if(hr!=EXCLUDE_REG) {
1987 if((regmap[hr]&63)==r) {
1988 if((dirty>>hr)&1) {
1989 if(regmap[hr]<64) {
1990 emit_storereg(r,hr);
1991 if((is32>>regmap[hr])&1) {
1992 emit_sarimm(hr,31,hr);
1993 emit_storereg(r|64,hr);
1994 }
1995 }else{
1996 emit_storereg(r|64,hr);
1997 }
1998 }
1999 }
2000 }
2001 }
2002}
2003#if 0
2004static int mchecksum()
2005{
2006 //if(!tracedebug) return 0;
2007 int i;
2008 int sum=0;
2009 for(i=0;i<2097152;i++) {
2010 unsigned int temp=sum;
2011 sum<<=1;
2012 sum|=(~temp)>>31;
2013 sum^=((u_int *)rdram)[i];
2014 }
2015 return sum;
2016}
2017
2018static int rchecksum()
2019{
2020 int i;
2021 int sum=0;
2022 for(i=0;i<64;i++)
2023 sum^=((u_int *)reg)[i];
2024 return sum;
2025}
2026
2027static void rlist()
2028{
2029 int i;
2030 DebugMessage(M64MSG_VERBOSE, "TRACE: ");
2031 for(i=0;i<32;i++)
2032 DebugMessage(M64MSG_VERBOSE, "r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2033 DebugMessage(M64MSG_VERBOSE, "TRACE: ");
2034 for(i=0;i<32;i++)
2035 DebugMessage(M64MSG_VERBOSE, "f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2036}
2037
2038static void enabletrace()
2039{
2040 tracedebug=1;
2041}
2042
2043
2044static void memdebug(int i)
2045{
2046 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x) lo=%8x%8x",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2047 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (rchecksum %x)",Count,next_interupt,rchecksum());
2048 //rlist();
2049 //if(tracedebug) {
2050 //if(Count>=-2084597794) {
2051 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2052 //if(0) {
2053 DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x)",Count,next_interupt,mchecksum());
2054 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x) Status=%x",Count,next_interupt,mchecksum(),Status);
2055 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x) hi=%8x%8x",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2056 rlist();
2057 #if NEW_DYNAREC == NEW_DYNAREC_X86
2058 DebugMessage(M64MSG_VERBOSE, "TRACE: %x",(&i)[-1]);
2059 #endif
2060 #if NEW_DYNAREC == NEW_DYNAREC_ARM
2061 int j;
2062 DebugMessage(M64MSG_VERBOSE, "TRACE: %x ",(&j)[10]);
2063 DebugMessage(M64MSG_VERBOSE, "TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2064 #endif
2065 //fflush(stdout);
2066 }
2067 //DebugMessage(M64MSG_VERBOSE, "TRACE: %x",(&i)[-1]);
2068}
2069#endif
2070
2071/* Debug:
2072static void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2073{
2074 DebugMessage(M64MSG_VERBOSE, "TLB Exception: instruction=%x addr=%x cause=%x",iaddr, addr, cause);
2075}
2076end debug */
2077
2078static void alu_assemble(int i,struct regstat *i_regs)
2079{
2080 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2081 if(rt1[i]) {
2082 signed char s1,s2,t;
2083 t=get_reg(i_regs->regmap,rt1[i]);
2084 if(t>=0) {
2085 s1=get_reg(i_regs->regmap,rs1[i]);
2086 s2=get_reg(i_regs->regmap,rs2[i]);
2087 if(rs1[i]&&rs2[i]) {
2088 assert(s1>=0);
2089 assert(s2>=0);
2090 if(opcode2[i]&2) emit_sub(s1,s2,t);
2091 else emit_add(s1,s2,t);
2092 }
2093 else if(rs1[i]) {
2094 if(s1>=0) emit_mov(s1,t);
2095 else emit_loadreg(rs1[i],t);
2096 }
2097 else if(rs2[i]) {
2098 if(s2>=0) {
2099 if(opcode2[i]&2) emit_neg(s2,t);
2100 else emit_mov(s2,t);
2101 }
2102 else {
2103 emit_loadreg(rs2[i],t);
2104 if(opcode2[i]&2) emit_neg(t,t);
2105 }
2106 }
2107 else emit_zeroreg(t);
2108 }
2109 }
2110 }
2111 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2112 if(rt1[i]) {
2113 signed char s1l,s2l,s1h,s2h,tl,th;
2114 tl=get_reg(i_regs->regmap,rt1[i]);
2115 th=get_reg(i_regs->regmap,rt1[i]|64);
2116 if(tl>=0) {
2117 s1l=get_reg(i_regs->regmap,rs1[i]);
2118 s2l=get_reg(i_regs->regmap,rs2[i]);
2119 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2120 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2121 if(rs1[i]&&rs2[i]) {
2122 assert(s1l>=0);
2123 assert(s2l>=0);
2124 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2125 else emit_adds(s1l,s2l,tl);
2126 if(th>=0) {
2127 #ifdef INVERTED_CARRY
2128 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2129 #else
2130 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2131 #endif
2132 else emit_add(s1h,s2h,th);
2133 }
2134 }
2135 else if(rs1[i]) {
2136 if(s1l>=0) emit_mov(s1l,tl);
2137 else emit_loadreg(rs1[i],tl);
2138 if(th>=0) {
2139 if(s1h>=0) emit_mov(s1h,th);
2140 else emit_loadreg(rs1[i]|64,th);
2141 }
2142 }
2143 else if(rs2[i]) {
2144 if(s2l>=0) {
2145 if(opcode2[i]&2) emit_negs(s2l,tl);
2146 else emit_mov(s2l,tl);
2147 }
2148 else {
2149 emit_loadreg(rs2[i],tl);
2150 if(opcode2[i]&2) emit_negs(tl,tl);
2151 }
2152 if(th>=0) {
2153 #ifdef INVERTED_CARRY
2154 if(s2h>=0) emit_mov(s2h,th);
2155 else emit_loadreg(rs2[i]|64,th);
2156 if(opcode2[i]&2) {
2157 emit_adcimm(-1,th); // x86 has inverted carry flag
2158 emit_not(th,th);
2159 }
2160 #else
2161 if(opcode2[i]&2) {
2162 if(s2h>=0) emit_rscimm(s2h,0,th);
2163 else {
2164 emit_loadreg(rs2[i]|64,th);
2165 emit_rscimm(th,0,th);
2166 }
2167 }else{
2168 if(s2h>=0) emit_mov(s2h,th);
2169 else emit_loadreg(rs2[i]|64,th);
2170 }
2171 #endif
2172 }
2173 }
2174 else {
2175 emit_zeroreg(tl);
2176 if(th>=0) emit_zeroreg(th);
2177 }
2178 }
2179 }
2180 }
2181 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2182 if(rt1[i]) {
2183 signed char s1l,s1h,s2l,s2h,t;
2184 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2185 {
2186 t=get_reg(i_regs->regmap,rt1[i]);
2187 //assert(t>=0);
2188 if(t>=0) {
2189 s1l=get_reg(i_regs->regmap,rs1[i]);
2190 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2191 s2l=get_reg(i_regs->regmap,rs2[i]);
2192 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2193 if(rs2[i]==0) // rx<r0
2194 {
2195 assert(s1h>=0);
2196 if(opcode2[i]==0x2a) // SLT
2197 emit_shrimm(s1h,31,t);
2198 else // SLTU (unsigned can not be less than zero)
2199 emit_zeroreg(t);
2200 }
2201 else if(rs1[i]==0) // r0<rx
2202 {
2203 assert(s2h>=0);
2204 if(opcode2[i]==0x2a) // SLT
2205 emit_set_gz64_32(s2h,s2l,t);
2206 else // SLTU (set if not zero)
2207 emit_set_nz64_32(s2h,s2l,t);
2208 }
2209 else {
2210 assert(s1l>=0);assert(s1h>=0);
2211 assert(s2l>=0);assert(s2h>=0);
2212 if(opcode2[i]==0x2a) // SLT
2213 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2214 else // SLTU
2215 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2216 }
2217 }
2218 } else {
2219 t=get_reg(i_regs->regmap,rt1[i]);
2220 //assert(t>=0);
2221 if(t>=0) {
2222 s1l=get_reg(i_regs->regmap,rs1[i]);
2223 s2l=get_reg(i_regs->regmap,rs2[i]);
2224 if(rs2[i]==0) // rx<r0
2225 {
2226 assert(s1l>=0);
2227 if(opcode2[i]==0x2a) // SLT
2228 emit_shrimm(s1l,31,t);
2229 else // SLTU (unsigned can not be less than zero)
2230 emit_zeroreg(t);
2231 }
2232 else if(rs1[i]==0) // r0<rx
2233 {
2234 assert(s2l>=0);
2235 if(opcode2[i]==0x2a) // SLT
2236 emit_set_gz32(s2l,t);
2237 else // SLTU (set if not zero)
2238 emit_set_nz32(s2l,t);
2239 }
2240 else{
2241 assert(s1l>=0);assert(s2l>=0);
2242 if(opcode2[i]==0x2a) // SLT
2243 emit_set_if_less32(s1l,s2l,t);
2244 else // SLTU
2245 emit_set_if_carry32(s1l,s2l,t);
2246 }
2247 }
2248 }
2249 }
2250 }
2251 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2252 if(rt1[i]) {
2253 signed char s1l,s1h,s2l,s2h,th,tl;
2254 tl=get_reg(i_regs->regmap,rt1[i]);
2255 th=get_reg(i_regs->regmap,rt1[i]|64);
2256 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2257 {
2258 assert(tl>=0);
2259 if(tl>=0) {
2260 s1l=get_reg(i_regs->regmap,rs1[i]);
2261 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2262 s2l=get_reg(i_regs->regmap,rs2[i]);
2263 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2264 if(rs1[i]&&rs2[i]) {
2265 assert(s1l>=0);assert(s1h>=0);
2266 assert(s2l>=0);assert(s2h>=0);
2267 if(opcode2[i]==0x24) { // AND
2268 emit_and(s1l,s2l,tl);
2269 emit_and(s1h,s2h,th);
2270 } else
2271 if(opcode2[i]==0x25) { // OR
2272 emit_or(s1l,s2l,tl);
2273 emit_or(s1h,s2h,th);
2274 } else
2275 if(opcode2[i]==0x26) { // XOR
2276 emit_xor(s1l,s2l,tl);
2277 emit_xor(s1h,s2h,th);
2278 } else
2279 if(opcode2[i]==0x27) { // NOR
2280 emit_or(s1l,s2l,tl);
2281 emit_or(s1h,s2h,th);
2282 emit_not(tl,tl);
2283 emit_not(th,th);
2284 }
2285 }
2286 else
2287 {
2288 if(opcode2[i]==0x24) { // AND
2289 emit_zeroreg(tl);
2290 emit_zeroreg(th);
2291 } else
2292 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2293 if(rs1[i]){
2294 if(s1l>=0) emit_mov(s1l,tl);
2295 else emit_loadreg(rs1[i],tl);
2296 if(s1h>=0) emit_mov(s1h,th);
2297 else emit_loadreg(rs1[i]|64,th);
2298 }
2299 else
2300 if(rs2[i]){
2301 if(s2l>=0) emit_mov(s2l,tl);
2302 else emit_loadreg(rs2[i],tl);
2303 if(s2h>=0) emit_mov(s2h,th);
2304 else emit_loadreg(rs2[i]|64,th);
2305 }
2306 else{
2307 emit_zeroreg(tl);
2308 emit_zeroreg(th);
2309 }
2310 } else
2311 if(opcode2[i]==0x27) { // NOR
2312 if(rs1[i]){
2313 if(s1l>=0) emit_not(s1l,tl);
2314 else{
2315 emit_loadreg(rs1[i],tl);
2316 emit_not(tl,tl);
2317 }
2318 if(s1h>=0) emit_not(s1h,th);
2319 else{
2320 emit_loadreg(rs1[i]|64,th);
2321 emit_not(th,th);
2322 }
2323 }
2324 else
2325 if(rs2[i]){
2326 if(s2l>=0) emit_not(s2l,tl);
2327 else{
2328 emit_loadreg(rs2[i],tl);
2329 emit_not(tl,tl);
2330 }
2331 if(s2h>=0) emit_not(s2h,th);
2332 else{
2333 emit_loadreg(rs2[i]|64,th);
2334 emit_not(th,th);
2335 }
2336 }
2337 else {
2338 emit_movimm(-1,tl);
2339 emit_movimm(-1,th);
2340 }
2341 }
2342 }
2343 }
2344 }
2345 else
2346 {
2347 // 32 bit
2348 if(tl>=0) {
2349 s1l=get_reg(i_regs->regmap,rs1[i]);
2350 s2l=get_reg(i_regs->regmap,rs2[i]);
2351 if(rs1[i]&&rs2[i]) {
2352 assert(s1l>=0);
2353 assert(s2l>=0);
2354 if(opcode2[i]==0x24) { // AND
2355 emit_and(s1l,s2l,tl);
2356 } else
2357 if(opcode2[i]==0x25) { // OR
2358 emit_or(s1l,s2l,tl);
2359 } else
2360 if(opcode2[i]==0x26) { // XOR
2361 emit_xor(s1l,s2l,tl);
2362 } else
2363 if(opcode2[i]==0x27) { // NOR
2364 emit_or(s1l,s2l,tl);
2365 emit_not(tl,tl);
2366 }
2367 }
2368 else
2369 {
2370 if(opcode2[i]==0x24) { // AND
2371 emit_zeroreg(tl);
2372 } else
2373 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2374 if(rs1[i]){
2375 if(s1l>=0) emit_mov(s1l,tl);
2376 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2377 }
2378 else
2379 if(rs2[i]){
2380 if(s2l>=0) emit_mov(s2l,tl);
2381 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2382 }
2383 else emit_zeroreg(tl);
2384 } else
2385 if(opcode2[i]==0x27) { // NOR
2386 if(rs1[i]){
2387 if(s1l>=0) emit_not(s1l,tl);
2388 else {
2389 emit_loadreg(rs1[i],tl);
2390 emit_not(tl,tl);
2391 }
2392 }
2393 else
2394 if(rs2[i]){
2395 if(s2l>=0) emit_not(s2l,tl);
2396 else {
2397 emit_loadreg(rs2[i],tl);
2398 emit_not(tl,tl);
2399 }
2400 }
2401 else emit_movimm(-1,tl);
2402 }
2403 }
2404 }
2405 }
2406 }
2407 }
2408}
2409
2410static void imm16_assemble(int i,struct regstat *i_regs)
2411{
2412 if (opcode[i]==0x0f) { // LUI
2413 if(rt1[i]) {
2414 signed char t;
2415 t=get_reg(i_regs->regmap,rt1[i]);
2416 //assert(t>=0);
2417 if(t>=0) {
2418 if(!((i_regs->isconst>>t)&1))
2419 emit_movimm(imm[i]<<16,t);
2420 }
2421 }
2422 }
2423 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2424 if(rt1[i]) {
2425 signed char s,t;
2426 t=get_reg(i_regs->regmap,rt1[i]);
2427 s=get_reg(i_regs->regmap,rs1[i]);
2428 if(rs1[i]) {
2429 //assert(t>=0);
2430 //assert(s>=0);
2431 if(t>=0) {
2432 if(!((i_regs->isconst>>t)&1)) {
2433 if(s<0) {
2434 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2435 emit_addimm(t,imm[i],t);
2436 }else{
2437 if(!((i_regs->wasconst>>s)&1))
2438 emit_addimm(s,imm[i],t);
2439 else
2440 emit_movimm(constmap[i][s]+imm[i],t);
2441 }
2442 }
2443 }
2444 } else {
2445 if(t>=0) {
2446 if(!((i_regs->isconst>>t)&1))
2447 emit_movimm(imm[i],t);
2448 }
2449 }
2450 }
2451 }
2452 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2453 if(rt1[i]) {
2454 signed char sh,sl,th,tl;
2455 th=get_reg(i_regs->regmap,rt1[i]|64);
2456 tl=get_reg(i_regs->regmap,rt1[i]);
2457 sh=get_reg(i_regs->regmap,rs1[i]|64);
2458 sl=get_reg(i_regs->regmap,rs1[i]);
2459 if(tl>=0) {
2460 if(rs1[i]) {
2461 assert(sh>=0);
2462 assert(sl>=0);
2463 if(th>=0) {
2464 emit_addimm64_32(sh,sl,imm[i],th,tl);
2465 }
2466 else {
2467 emit_addimm(sl,imm[i],tl);
2468 }
2469 } else {
2470 emit_movimm(imm[i],tl);
2471 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2472 }
2473 }
2474 }
2475 }
2476 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2477 if(rt1[i]) {
2478 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2479 signed char sh,sl,t;
2480 t=get_reg(i_regs->regmap,rt1[i]);
2481 sh=get_reg(i_regs->regmap,rs1[i]|64);
2482 sl=get_reg(i_regs->regmap,rs1[i]);
2483 //assert(t>=0);
2484 if(t>=0) {
2485 if(rs1[i]>0) {
2486 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2487 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2488 if(opcode[i]==0x0a) { // SLTI
2489 if(sl<0) {
2490 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2491 emit_slti32(t,imm[i],t);
2492 }else{
2493 emit_slti32(sl,imm[i],t);
2494 }
2495 }
2496 else { // SLTIU
2497 if(sl<0) {
2498 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2499 emit_sltiu32(t,imm[i],t);
2500 }else{
2501 emit_sltiu32(sl,imm[i],t);
2502 }
2503 }
2504 }else{ // 64-bit
2505 assert(sl>=0);
2506 if(opcode[i]==0x0a) // SLTI
2507 emit_slti64_32(sh,sl,imm[i],t);
2508 else // SLTIU
2509 emit_sltiu64_32(sh,sl,imm[i],t);
2510 }
2511 }else{
2512 // SLTI(U) with r0 is just stupid,
2513 // nonetheless examples can be found
2514 if(opcode[i]==0x0a) // SLTI
2515 if(0<imm[i]) emit_movimm(1,t);
2516 else emit_zeroreg(t);
2517 else // SLTIU
2518 {
2519 if(imm[i]) emit_movimm(1,t);
2520 else emit_zeroreg(t);
2521 }
2522 }
2523 }
2524 }
2525 }
2526 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2527 if(rt1[i]) {
2528 signed char sh,sl,th,tl;
2529 th=get_reg(i_regs->regmap,rt1[i]|64);
2530 tl=get_reg(i_regs->regmap,rt1[i]);
2531 sh=get_reg(i_regs->regmap,rs1[i]|64);
2532 sl=get_reg(i_regs->regmap,rs1[i]);
2533 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2534 if(opcode[i]==0x0c) //ANDI
2535 {
2536 if(rs1[i]) {
2537 if(sl<0) {
2538 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2539 emit_andimm(tl,imm[i],tl);
2540 }else{
2541 if(!((i_regs->wasconst>>sl)&1))
2542 emit_andimm(sl,imm[i],tl);
2543 else
2544 emit_movimm(constmap[i][sl]&imm[i],tl);
2545 }
2546 }
2547 else
2548 emit_zeroreg(tl);
2549 if(th>=0) emit_zeroreg(th);
2550 }
2551 else
2552 {
2553 if(rs1[i]) {
2554 if(sl<0) {
2555 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2556 }
2557 if(th>=0) {
2558 if(sh<0) {
2559 emit_loadreg(rs1[i]|64,th);
2560 }else{
2561 emit_mov(sh,th);
2562 }
2563 }
2564 if(opcode[i]==0x0d) { //ORI
2565 if(sl<0) {
2566 emit_orimm(tl,imm[i],tl);
2567 }else{
2568 if(!((i_regs->wasconst>>sl)&1))
2569 emit_orimm(sl,imm[i],tl);
2570 else
2571 emit_movimm(constmap[i][sl]|imm[i],tl);
2572 }
2573 }
2574 if(opcode[i]==0x0e) { //XORI
2575 if(sl<0) {
2576 emit_xorimm(tl,imm[i],tl);
2577 }else{
2578 if(!((i_regs->wasconst>>sl)&1))
2579 emit_xorimm(sl,imm[i],tl);
2580 else
2581 emit_movimm(constmap[i][sl]^imm[i],tl);
2582 }
2583 }
2584 }
2585 else {
2586 emit_movimm(imm[i],tl);
2587 if(th>=0) emit_zeroreg(th);
2588 }
2589 }
2590 }
2591 }
2592 }
2593}
2594
2595static void shiftimm_assemble(int i,struct regstat *i_regs)
2596{
2597 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2598 {
2599 if(rt1[i]) {
2600 signed char s,t;
2601 t=get_reg(i_regs->regmap,rt1[i]);
2602 s=get_reg(i_regs->regmap,rs1[i]);
2603 //assert(t>=0);
2604 if(t>=0){
2605 if(rs1[i]==0)
2606 {
2607 emit_zeroreg(t);
2608 }
2609 else
2610 {
2611 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2612 if(imm[i]) {
2613 if(opcode2[i]==0) // SLL
2614 {
2615 emit_shlimm(s<0?t:s,imm[i],t);
2616 }
2617 if(opcode2[i]==2) // SRL
2618 {
2619 emit_shrimm(s<0?t:s,imm[i],t);
2620 }
2621 if(opcode2[i]==3) // SRA
2622 {
2623 emit_sarimm(s<0?t:s,imm[i],t);
2624 }
2625 }else{
2626 // Shift by zero
2627 if(s>=0 && s!=t) emit_mov(s,t);
2628 }
2629 }
2630 }
2631 //emit_storereg(rt1[i],t); //DEBUG
2632 }
2633 }
2634 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2635 {
2636 if(rt1[i]) {
2637 signed char sh,sl,th,tl;
2638 th=get_reg(i_regs->regmap,rt1[i]|64);
2639 tl=get_reg(i_regs->regmap,rt1[i]);
2640 sh=get_reg(i_regs->regmap,rs1[i]|64);
2641 sl=get_reg(i_regs->regmap,rs1[i]);
2642 if(tl>=0) {
2643 if(rs1[i]==0)
2644 {
2645 emit_zeroreg(tl);
2646 if(th>=0) emit_zeroreg(th);
2647 }
2648 else
2649 {
2650 assert(sl>=0);
2651 assert(sh>=0);
2652 if(imm[i]) {
2653 if(opcode2[i]==0x38) // DSLL
2654 {
2655 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2656 emit_shlimm(sl,imm[i],tl);
2657 }
2658 if(opcode2[i]==0x3a) // DSRL
2659 {
2660 emit_shrdimm(sl,sh,imm[i],tl);
2661 if(th>=0) emit_shrimm(sh,imm[i],th);
2662 }
2663 if(opcode2[i]==0x3b) // DSRA
2664 {
2665 emit_shrdimm(sl,sh,imm[i],tl);
2666 if(th>=0) emit_sarimm(sh,imm[i],th);
2667 }
2668 }else{
2669 // Shift by zero
2670 if(sl!=tl) emit_mov(sl,tl);
2671 if(th>=0&&sh!=th) emit_mov(sh,th);
2672 }
2673 }
2674 }
2675 }
2676 }
2677 if(opcode2[i]==0x3c) // DSLL32
2678 {
2679 if(rt1[i]) {
2680 signed char sl,tl,th;
2681 tl=get_reg(i_regs->regmap,rt1[i]);
2682 th=get_reg(i_regs->regmap,rt1[i]|64);
2683 sl=get_reg(i_regs->regmap,rs1[i]);
2684 if(th>=0||tl>=0){
2685 assert(tl>=0);
2686 assert(th>=0);
2687 assert(sl>=0);
2688 emit_mov(sl,th);
2689 emit_zeroreg(tl);
2690 if(imm[i]>32)
2691 {
2692 emit_shlimm(th,imm[i]&31,th);
2693 }
2694 }
2695 }
2696 }
2697 if(opcode2[i]==0x3e) // DSRL32
2698 {
2699 if(rt1[i]) {
2700 signed char sh,tl,th;
2701 tl=get_reg(i_regs->regmap,rt1[i]);
2702 th=get_reg(i_regs->regmap,rt1[i]|64);
2703 sh=get_reg(i_regs->regmap,rs1[i]|64);
2704 if(tl>=0){
2705 assert(sh>=0);
2706 emit_mov(sh,tl);
2707 if(th>=0) emit_zeroreg(th);
2708 if(imm[i]>32)
2709 {
2710 emit_shrimm(tl,imm[i]&31,tl);
2711 }
2712 }
2713 }
2714 }
2715 if(opcode2[i]==0x3f) // DSRA32
2716 {
2717 if(rt1[i]) {
2718 signed char sh,tl;
2719 tl=get_reg(i_regs->regmap,rt1[i]);
2720 sh=get_reg(i_regs->regmap,rs1[i]|64);
2721 if(tl>=0){
2722 assert(sh>=0);
2723 emit_mov(sh,tl);
2724 if(imm[i]>32)
2725 {
2726 emit_sarimm(tl,imm[i]&31,tl);
2727 }
2728 }
2729 }
2730 }
2731}
2732
2733#ifndef shift_assemble
2734void shift_assemble(int i,struct regstat *i_regs)
2735{
2736 DebugMessage(M64MSG_ERROR, "Need shift_assemble for this architecture.");
2737 exit(1);
2738}
2739#endif
2740
2741static void load_assemble(int i,struct regstat *i_regs)
2742{
2743 int s,th,tl,addr,map=-1,cache=-1;
2744 int offset;
2745 int jaddr=0;
2746 int memtarget,c=0;
2747 u_int hr,reglist=0;
2748 th=get_reg(i_regs->regmap,rt1[i]|64);
2749 tl=get_reg(i_regs->regmap,rt1[i]);
2750 s=get_reg(i_regs->regmap,rs1[i]);
2751 offset=imm[i];
2752 for(hr=0;hr<HOST_REGS;hr++) {
2753 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2754 }
2755 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2756 if(s>=0) {
2757 c=(i_regs->wasconst>>s)&1;
2758 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
2759 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2760 }
2761 if(tl<0) tl=get_reg(i_regs->regmap,-1);
2762 if(offset||s<0||c) addr=tl;
2763 else addr=s;
2764 //DebugMessage(M64MSG_VERBOSE, "load_assemble: c=%d",c);
2765 //if(c) DebugMessage(M64MSG_VERBOSE, "load_assemble: const=%x",(int)constmap[i][s]+offset);
2766 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2767 reglist&=~(1<<tl);
2768 if(th>=0) reglist&=~(1<<th);
2769 if(!using_tlb) {
2770 if(!c) {
2771 #ifdef RAM_OFFSET
2772 map=get_reg(i_regs->regmap,ROREG);
2773 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2774 #endif
2775//#define R29_HACK 1
2776 #ifdef R29_HACK
2777 // Strmnnrmn's speed hack
2778 if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
2779 #endif
2780 {
2781 emit_cmpimm(addr,0x800000);
2782 jaddr=(int)out;
2783 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2784 // Hint to branch predictor that the branch is unlikely to be taken
2785 if(rs1[i]>=28)
2786 emit_jno_unlikely(0);
2787 else
2788 #endif
2789 emit_jno(0);
2790 }
2791 }
2792 }else{ // using tlb
2793 int x=0;
2794 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2795 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2796 map=get_reg(i_regs->regmap,TLREG);
2797 cache=get_reg(i_regs->regmap,MMREG);
2798 assert(map>=0);
2799 reglist&=~(1<<map);
2800 map=do_tlb_r(addr,tl,map,cache,x,-1,-1,c,constmap[i][s]+offset);
2801 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2802 }
2803 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2804 if (opcode[i]==0x20) { // LB
2805 if(!c||memtarget) {
2806 if(!dummy) {
2807 #ifdef HOST_IMM_ADDR32
2808 if(c)
2809 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2810 else
2811 #endif
2812 {
2813 //emit_xorimm(addr,3,tl);
2814 //gen_tlb_addr_r(tl,map);
2815 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2816 int x=0;
2817 if(!c) emit_xorimm(addr,3,tl);
2818 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2819 emit_movsbl_indexed_tlb(x,tl,map,tl);
2820 }
2821 }
2822 if(jaddr)
2823 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2824 }
2825 else
2826 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2827 }
2828 if (opcode[i]==0x21) { // LH
2829 if(!c||memtarget) {
2830 if(!dummy) {
2831 #ifdef HOST_IMM_ADDR32
2832 if(c)
2833 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2834 else
2835 #endif
2836 {
2837 int x=0;
2838 if(!c) emit_xorimm(addr,2,tl);
2839 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2840 //#ifdef
2841 //emit_movswl_indexed_tlb(x,tl,map,tl);
2842 //else
2843 if(map>=0) {
2844 gen_tlb_addr_r(tl,map);
2845 emit_movswl_indexed(x,tl,tl);
2846 }else{
2847 #ifdef RAM_OFFSET
2848 emit_movswl_indexed(x,tl,tl);
2849 #else
2850 emit_movswl_indexed((int)rdram-0x80000000+x,tl,tl);
2851 #endif
2852 }
2853 }
2854 }
2855 if(jaddr)
2856 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2857 }
2858 else
2859 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2860 }
2861 if (opcode[i]==0x23) { // LW
2862 if(!c||memtarget) {
2863 if(!dummy) {
2864 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2865 #ifdef HOST_IMM_ADDR32
2866 if(c)
2867 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2868 else
2869 #endif
2870 emit_readword_indexed_tlb(0,addr,map,tl);
2871 }
2872 if(jaddr)
2873 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2874 }
2875 else
2876 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2877 }
2878 if (opcode[i]==0x24) { // LBU
2879 if(!c||memtarget) {
2880 if(!dummy) {
2881 #ifdef HOST_IMM_ADDR32
2882 if(c)
2883 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2884 else
2885 #endif
2886 {
2887 //emit_xorimm(addr,3,tl);
2888 //gen_tlb_addr_r(tl,map);
2889 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2890 int x=0;
2891 if(!c) emit_xorimm(addr,3,tl);
2892 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2893 emit_movzbl_indexed_tlb(x,tl,map,tl);
2894 }
2895 }
2896 if(jaddr)
2897 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2898 }
2899 else
2900 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2901 }
2902 if (opcode[i]==0x25) { // LHU
2903 if(!c||memtarget) {
2904 if(!dummy) {
2905 #ifdef HOST_IMM_ADDR32
2906 if(c)
2907 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2908 else
2909 #endif
2910 {
2911 int x=0;
2912 if(!c) emit_xorimm(addr,2,tl);
2913 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2914 //#ifdef
2915 //emit_movzwl_indexed_tlb(x,tl,map,tl);
2916 //#else
2917 if(map>=0) {
2918 gen_tlb_addr_r(tl,map);
2919 emit_movzwl_indexed(x,tl,tl);
2920 }else{
2921 #ifdef RAM_OFFSET
2922 emit_movzwl_indexed(x,tl,tl);
2923 #else
2924 emit_movzwl_indexed((int)rdram-0x80000000+x,tl,tl);
2925 #endif
2926 }
2927 }
2928 }
2929 if(jaddr)
2930 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2931 }
2932 else
2933 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2934 }
2935 if (opcode[i]==0x27) { // LWU
2936 assert(th>=0);
2937 if(!c||memtarget) {
2938 if(!dummy) {
2939 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2940 #ifdef HOST_IMM_ADDR32
2941 if(c)
2942 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2943 else
2944 #endif
2945 emit_readword_indexed_tlb(0,addr,map,tl);
2946 }
2947 if(jaddr)
2948 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2949 }
2950 else {
2951 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2952 }
2953 emit_zeroreg(th);
2954 }
2955 if (opcode[i]==0x37) { // LD
2956 if(!c||memtarget) {
2957 if(!dummy) {
2958 //gen_tlb_addr_r(tl,map);
2959 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2960 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2961 #ifdef HOST_IMM_ADDR32
2962 if(c)
2963 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2964 else
2965 #endif
2966 emit_readdword_indexed_tlb(0,addr,map,th,tl);
2967 }
2968 if(jaddr)
2969 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2970 }
2971 else
2972 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2973 }
2974 //emit_storereg(rt1[i],tl); // DEBUG
2975 //if(opcode[i]==0x23)
2976 //if(opcode[i]==0x24)
2977 //if(opcode[i]==0x23||opcode[i]==0x24)
2978 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2979 {
2980 //emit_pusha();
2981 save_regs(0x100f);
2982 emit_readword((int)&last_count,ECX);
2983 #if NEW_DYNAREC == NEW_DYNAREC_X86
2984 if(get_reg(i_regs->regmap,CCREG)<0)
2985 emit_loadreg(CCREG,HOST_CCREG);
2986 emit_add(HOST_CCREG,ECX,HOST_CCREG);
2987 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2988 emit_writeword(HOST_CCREG,(int)&Count);
2989 #endif
2990 #if NEW_DYNAREC == NEW_DYNAREC_ARM
2991 if(get_reg(i_regs->regmap,CCREG)<0)
2992 emit_loadreg(CCREG,0);
2993 else
2994 emit_mov(HOST_CCREG,0);
2995 emit_add(0,ECX,0);
2996 emit_addimm(0,2*ccadj[i],0);
2997 emit_writeword(0,(int)&Count);
2998 #endif
2999 emit_call((int)memdebug);
3000 //emit_popa();
3001 restore_regs(0x100f);
3002 }*/
3003}
3004
3005#ifndef loadlr_assemble
3006static void loadlr_assemble(int i,struct regstat *i_regs)
3007{
3008 DebugMessage(M64MSG_ERROR, "Need loadlr_assemble for this architecture.");
3009 exit(1);
3010}
3011#endif
3012
3013static void store_assemble(int i,struct regstat *i_regs)
3014{
3015 int s,th,tl,map=-1,cache=-1;
3016 int addr,temp;
3017 int offset;
3018 int jaddr=0,jaddr2,type;
3019 int memtarget,c=0;
3020 int agr=AGEN1+(i&1);
3021 u_int hr,reglist=0;
3022 th=get_reg(i_regs->regmap,rs2[i]|64);
3023 tl=get_reg(i_regs->regmap,rs2[i]);
3024 s=get_reg(i_regs->regmap,rs1[i]);
3025 temp=get_reg(i_regs->regmap,agr);
3026 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3027 offset=imm[i];
3028 if(s>=0) {
3029 c=(i_regs->wasconst>>s)&1;
3030 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
3031 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3032 }
3033 assert(tl>=0);
3034 assert(temp>=0);
3035 for(hr=0;hr<HOST_REGS;hr++) {
3036 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3037 }
3038 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3039 if(offset||s<0||c) addr=temp;
3040 else addr=s;
3041 if(!using_tlb) {
3042 #ifdef RAM_OFFSET
3043 map=get_reg(i_regs->regmap,ROREG);
3044 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3045 #endif
3046 if(!c) {
3047 #ifdef R29_HACK
3048 // Strmnnrmn's speed hack
3049 memtarget=1;
3050 if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
3051 #endif
3052 emit_cmpimm(addr,0x800000);
3053 #ifdef DESTRUCTIVE_SHIFT
3054 if(s==addr) emit_mov(s,temp);
3055 #endif
3056 #ifdef R29_HACK
3057 if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
3058 #endif
3059 {
3060 jaddr=(int)out;
3061 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3062 // Hint to branch predictor that the branch is unlikely to be taken
3063 if(rs1[i]>=28)
3064 emit_jno_unlikely(0);
3065 else
3066 #endif
3067 emit_jno(0);
3068 }
3069 }
3070 }else{ // using tlb
3071 int x=0;
3072 if (opcode[i]==0x28) x=3; // SB
3073 if (opcode[i]==0x29) x=2; // SH
3074 map=get_reg(i_regs->regmap,TLREG);
3075 cache=get_reg(i_regs->regmap,MMREG);
3076 assert(map>=0);
3077 reglist&=~(1<<map);
3078 map=do_tlb_w(addr,temp,map,cache,x,c,constmap[i][s]+offset);
3079 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3080 }
3081
3082 if (opcode[i]==0x28) { // SB
3083 if(!c||memtarget) {
3084 int x=0;
3085 if(!c) emit_xorimm(addr,3,temp);
3086 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3087 //gen_tlb_addr_w(temp,map);
3088 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3089 emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3090 }
3091 type=STOREB_STUB;
3092 }
3093 if (opcode[i]==0x29) { // SH
3094 if(!c||memtarget) {
3095 int x=0;
3096 if(!c) emit_xorimm(addr,2,temp);
3097 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3098 //#ifdef
3099 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3100 //#else
3101 if(map>=0) {
3102 gen_tlb_addr_w(temp,map);
3103 emit_writehword_indexed(tl,x,temp);
3104 }else
3105 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3106 }
3107 type=STOREH_STUB;
3108 }
3109 if (opcode[i]==0x2B) { // SW
3110 if(!c||memtarget)
3111 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3112 emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3113 type=STOREW_STUB;
3114 }
3115 if (opcode[i]==0x3F) { // SD
3116 if(!c||memtarget) {
3117 if(rs2[i]) {
3118 assert(th>=0);
3119 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3120 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3121 emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3122 }else{
3123 // Store zero
3124 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3125 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3126 emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3127 }
3128 }
3129 type=STORED_STUB;
3130 }
3131 if(!using_tlb) {
3132 if(!c||memtarget) {
3133 #ifdef DESTRUCTIVE_SHIFT
3134 // The x86 shift operation is 'destructive'; it overwrites the
3135 // source register, so we need to make a copy first and use that.
3136 addr=temp;
3137 #endif
3138 #if defined(HOST_IMM8)
3139 int ir=get_reg(i_regs->regmap,INVCP);
3140 assert(ir>=0);
3141 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3142 #else
3143 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3144 #endif
3145 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3146 emit_callne(invalidate_addr_reg[addr]);
3147 #else
3148 jaddr2=(int)out;
3149 emit_jne(0);
3150 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3151 #endif
3152 }
3153 }
3154 if(jaddr) {
3155 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3156 } else if(c&&!memtarget) {
3157 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3158 }
3159 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3160 //if(opcode[i]==0x2B || opcode[i]==0x28)
3161 //if(opcode[i]==0x2B || opcode[i]==0x29)
3162 //if(opcode[i]==0x2B)
3163
3164// Uncomment for extra debug output:
3165/*
3166 if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3167 {
3168 #if NEW_DYNAREC == NEW_DYNAREC_X86
3169 emit_pusha();
3170 #endif
3171 #if NEW_DYNAREC == NEW_DYNAREC_ARM
3172 save_regs(0x100f);
3173 #endif
3174 emit_readword((int)&last_count,ECX);
3175 #if NEW_DYNAREC == NEW_DYNAREC_X86
3176 if(get_reg(i_regs->regmap,CCREG)<0)
3177 emit_loadreg(CCREG,HOST_CCREG);
3178 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3179 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3180 emit_writeword(HOST_CCREG,(int)&Count);
3181 #endif
3182 #if NEW_DYNAREC == NEW_DYNAREC_ARM
3183 if(get_reg(i_regs->regmap,CCREG)<0)
3184 emit_loadreg(CCREG,0);
3185 else
3186 emit_mov(HOST_CCREG,0);
3187 emit_add(0,ECX,0);
3188 emit_addimm(0,2*ccadj[i],0);
3189 emit_writeword(0,(int)&Count);
3190 #endif
3191 emit_call((int)memdebug);
3192 #if NEW_DYNAREC == NEW_DYNAREC_X86
3193 emit_popa();
3194 #endif
3195 #if NEW_DYNAREC == NEW_DYNAREC_ARM
3196 restore_regs(0x100f);
3197 #endif
3198 }
3199*/
3200}
3201
3202static void storelr_assemble(int i,struct regstat *i_regs)
3203{
3204 int s,th,tl;
3205 int temp;
3206 int temp2;
3207 int offset;
3208 int jaddr=0,jaddr2;
3209 int case1,case2,case3;
3210 int done0,done1,done2;
3211 int memtarget,c=0;
3212 int agr=AGEN1+(i&1);
3213 u_int hr,reglist=0;
3214 th=get_reg(i_regs->regmap,rs2[i]|64);
3215 tl=get_reg(i_regs->regmap,rs2[i]);
3216 s=get_reg(i_regs->regmap,rs1[i]);
3217 temp=get_reg(i_regs->regmap,agr);
3218 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3219 offset=imm[i];
3220 if(s>=0) {
3221 c=(i_regs->isconst>>s)&1;
3222 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
3223 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3224 }
3225 assert(tl>=0);
3226 for(hr=0;hr<HOST_REGS;hr++) {
3227 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3228 }
3229 assert(temp>=0);
3230 if(!using_tlb) {
3231 if(!c) {
3232 emit_cmpimm(s<0||offset?temp:s,0x800000);
3233 if(!offset&&s!=temp) emit_mov(s,temp);
3234 jaddr=(int)out;
3235 emit_jno(0);
3236 }
3237 else
3238 {
3239 if(!memtarget||!rs1[i]) {
3240 jaddr=(int)out;
3241 emit_jmp(0);
3242 }
3243 }
3244 #ifdef RAM_OFFSET
3245 int map=get_reg(i_regs->regmap,ROREG);
3246 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3247 gen_tlb_addr_w(temp,map);
3248 #else
3249 if((u_int)rdram!=0x80000000)
3250 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3251 #endif
3252 }else{ // using tlb
3253 int map=get_reg(i_regs->regmap,TLREG);
3254 int cache=get_reg(i_regs->regmap,MMREG);
3255 assert(map>=0);
3256 reglist&=~(1<<map);
3257 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,cache,0,c,constmap[i][s]+offset);
3258 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3259 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3260 if(!jaddr&&!memtarget) {
3261 jaddr=(int)out;
3262 emit_jmp(0);
3263 }
3264 gen_tlb_addr_w(temp,map);
3265 }
3266
3267 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3268 temp2=get_reg(i_regs->regmap,FTEMP);
3269 if(!rs2[i]) temp2=th=tl;
3270 }
3271
3272 emit_testimm(temp,2);
3273 case2=(int)out;
3274 emit_jne(0);
3275 emit_testimm(temp,1);
3276 case1=(int)out;
3277 emit_jne(0);
3278 // 0
3279 if (opcode[i]==0x2A) { // SWL
3280 emit_writeword_indexed(tl,0,temp);
3281 }
3282 if (opcode[i]==0x2E) { // SWR
3283 emit_writebyte_indexed(tl,3,temp);
3284 }
3285 if (opcode[i]==0x2C) { // SDL
3286 emit_writeword_indexed(th,0,temp);
3287 if(rs2[i]) emit_mov(tl,temp2);
3288 }
3289 if (opcode[i]==0x2D) { // SDR
3290 emit_writebyte_indexed(tl,3,temp);
3291 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3292 }
3293 done0=(int)out;
3294 emit_jmp(0);
3295 // 1
3296 set_jump_target(case1,(int)out);
3297 if (opcode[i]==0x2A) { // SWL
3298 // Write 3 msb into three least significant bytes
3299 if(rs2[i]) emit_rorimm(tl,8,tl);
3300 emit_writehword_indexed(tl,-1,temp);
3301 if(rs2[i]) emit_rorimm(tl,16,tl);
3302 emit_writebyte_indexed(tl,1,temp);
3303 if(rs2[i]) emit_rorimm(tl,8,tl);
3304 }
3305 if (opcode[i]==0x2E) { // SWR
3306 // Write two lsb into two most significant bytes
3307 emit_writehword_indexed(tl,1,temp);
3308 }
3309 if (opcode[i]==0x2C) { // SDL
3310 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3311 // Write 3 msb into three least significant bytes
3312 if(rs2[i]) emit_rorimm(th,8,th);
3313 emit_writehword_indexed(th,-1,temp);
3314 if(rs2[i]) emit_rorimm(th,16,th);
3315 emit_writebyte_indexed(th,1,temp);
3316 if(rs2[i]) emit_rorimm(th,8,th);
3317 }
3318 if (opcode[i]==0x2D) { // SDR
3319 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3320 // Write two lsb into two most significant bytes
3321 emit_writehword_indexed(tl,1,temp);
3322 }
3323 done1=(int)out;
3324 emit_jmp(0);
3325 // 2
3326 set_jump_target(case2,(int)out);
3327 emit_testimm(temp,1);
3328 case3=(int)out;
3329 emit_jne(0);
3330 if (opcode[i]==0x2A) { // SWL
3331 // Write two msb into two least significant bytes
3332 if(rs2[i]) emit_rorimm(tl,16,tl);
3333 emit_writehword_indexed(tl,-2,temp);
3334 if(rs2[i]) emit_rorimm(tl,16,tl);
3335 }
3336 if (opcode[i]==0x2E) { // SWR
3337 // Write 3 lsb into three most significant bytes
3338 emit_writebyte_indexed(tl,-1,temp);
3339 if(rs2[i]) emit_rorimm(tl,8,tl);
3340 emit_writehword_indexed(tl,0,temp);
3341 if(rs2[i]) emit_rorimm(tl,24,tl);
3342 }
3343 if (opcode[i]==0x2C) { // SDL
3344 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3345 // Write two msb into two least significant bytes
3346 if(rs2[i]) emit_rorimm(th,16,th);
3347 emit_writehword_indexed(th,-2,temp);
3348 if(rs2[i]) emit_rorimm(th,16,th);
3349 }
3350 if (opcode[i]==0x2D) { // SDR
3351 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3352 // Write 3 lsb into three most significant bytes
3353 emit_writebyte_indexed(tl,-1,temp);
3354 if(rs2[i]) emit_rorimm(tl,8,tl);
3355 emit_writehword_indexed(tl,0,temp);
3356 if(rs2[i]) emit_rorimm(tl,24,tl);
3357 }
3358 done2=(int)out;
3359 emit_jmp(0);
3360 // 3
3361 set_jump_target(case3,(int)out);
3362 if (opcode[i]==0x2A) { // SWL
3363 // Write msb into least significant byte
3364 if(rs2[i]) emit_rorimm(tl,24,tl);
3365 emit_writebyte_indexed(tl,-3,temp);
3366 if(rs2[i]) emit_rorimm(tl,8,tl);
3367 }
3368 if (opcode[i]==0x2E) { // SWR
3369 // Write entire word
3370 emit_writeword_indexed(tl,-3,temp);
3371 }
3372 if (opcode[i]==0x2C) { // SDL
3373 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3374 // Write msb into least significant byte
3375 if(rs2[i]) emit_rorimm(th,24,th);
3376 emit_writebyte_indexed(th,-3,temp);
3377 if(rs2[i]) emit_rorimm(th,8,th);
3378 }
3379 if (opcode[i]==0x2D) { // SDR
3380 if(rs2[i]) emit_mov(th,temp2);
3381 // Write entire word
3382 emit_writeword_indexed(tl,-3,temp);
3383 }
3384 set_jump_target(done0,(int)out);
3385 set_jump_target(done1,(int)out);
3386 set_jump_target(done2,(int)out);
3387 if (opcode[i]==0x2C) { // SDL
3388 emit_testimm(temp,4);
3389 done0=(int)out;
3390 emit_jne(0);
3391 emit_andimm(temp,~3,temp);
3392 emit_writeword_indexed(temp2,4,temp);
3393 set_jump_target(done0,(int)out);
3394 }
3395 if (opcode[i]==0x2D) { // SDR
3396 emit_testimm(temp,4);
3397 done0=(int)out;
3398 emit_jeq(0);
3399 emit_andimm(temp,~3,temp);
3400 emit_writeword_indexed(temp2,-4,temp);
3401 set_jump_target(done0,(int)out);
3402 }
3403 if(!c||!memtarget)
3404 add_stub(STORELR_STUB,jaddr,(int)out,0,(int)i_regs,rs2[i],ccadj[i],reglist);
3405 if(!using_tlb) {
3406 #ifdef RAM_OFFSET
3407 int map=get_reg(i_regs->regmap,ROREG);
3408 if(map<0) map=HOST_TEMPREG;
3409 gen_orig_addr_w(temp,map);
3410 #else
3411 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3412 #endif
3413 #if defined(HOST_IMM8)
3414 int ir=get_reg(i_regs->regmap,INVCP);
3415 assert(ir>=0);
3416 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3417 #else
3418 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3419 #endif
3420 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3421 emit_callne(invalidate_addr_reg[temp]);
3422 #else
3423 jaddr2=(int)out;
3424 emit_jne(0);
3425 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3426 #endif
3427 }
3428 /*
3429 emit_pusha();
3430 //save_regs(0x100f);
3431 emit_readword((int)&last_count,ECX);
3432 if(get_reg(i_regs->regmap,CCREG)<0)
3433 emit_loadreg(CCREG,HOST_CCREG);
3434 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3435 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3436 emit_writeword(HOST_CCREG,(int)&Count);
3437 emit_call((int)memdebug);
3438 emit_popa();
3439 //restore_regs(0x100f);
3440 */
3441}
3442
3443static void c1ls_assemble(int i,struct regstat *i_regs)
3444{
3445 int s,th,tl;
3446 int temp,ar;
3447 int map=-1;
3448 int offset;
3449 int c=0;
3450 int jaddr,jaddr2=0,jaddr3,type;
3451 int agr=AGEN1+(i&1);
3452 u_int hr,reglist=0;
3453 th=get_reg(i_regs->regmap,FTEMP|64);
3454 tl=get_reg(i_regs->regmap,FTEMP);
3455 s=get_reg(i_regs->regmap,rs1[i]);
3456 temp=get_reg(i_regs->regmap,agr);
3457 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3458 offset=imm[i];
3459 assert(tl>=0);
3460 assert(rs1[i]>0);
3461 assert(temp>=0);
3462 for(hr=0;hr<HOST_REGS;hr++) {
3463 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3464 }
3465 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3466 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3467 {
3468 // Loads use a temporary register which we need to save
3469 reglist|=1<<temp;
3470 }
3471 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3472 ar=temp;
3473 else // LWC1/LDC1
3474 ar=tl;
3475 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3476 //else c=(i_regs->wasconst>>s)&1;
3477 if(s>=0) c=(i_regs->wasconst>>s)&1;
3478 // Check cop1 unusable
3479 if(!cop1_usable) {
3480 signed char rs=get_reg(i_regs->regmap,CSREG);
3481 assert(rs>=0);
3482 emit_testimm(rs,0x20000000);
3483 jaddr=(int)out;
3484 emit_jeq(0);
3485 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3486 cop1_usable=1;
3487 }
3488 if (opcode[i]==0x39) { // SWC1 (get float address)
3489 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3490 }
3491 if (opcode[i]==0x3D) { // SDC1 (get double address)
3492 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3493 }
3494 // Generate address + offset
3495 if(!using_tlb) {
3496 #ifdef RAM_OFFSET
3497 if (!c||opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3498 {
3499 map=get_reg(i_regs->regmap,ROREG);
3500 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3501 }
3502 #endif
3503 if(!c)
3504 emit_cmpimm(offset||c||s<0?ar:s,0x800000);
3505 }
3506 else
3507 {
3508 map=get_reg(i_regs->regmap,TLREG);
3509 int cache=get_reg(i_regs->regmap,MMREG);
3510 assert(map>=0);
3511 reglist&=~(1<<map);
3512 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3513 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,cache,0,-1,-1,c,constmap[i][s]+offset);
3514 }
3515 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3516 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,cache,0,c,constmap[i][s]+offset);
3517 }
3518 }
3519 if (opcode[i]==0x39) { // SWC1 (read float)
3520 emit_readword_indexed(0,tl,tl);
3521 }
3522 if (opcode[i]==0x3D) { // SDC1 (read double)
3523 emit_readword_indexed(4,tl,th);
3524 emit_readword_indexed(0,tl,tl);
3525 }
3526 if (opcode[i]==0x31) { // LWC1 (get target address)
3527 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3528 }
3529 if (opcode[i]==0x35) { // LDC1 (get target address)
3530 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3531 }
3532 if(!using_tlb) {
3533 if(!c) {
3534 jaddr2=(int)out;
3535 emit_jno(0);
3536 }
3537 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80800000) {
3538 jaddr2=(int)out;
3539 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3540 }
3541 #ifdef DESTRUCTIVE_SHIFT
3542 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3543 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3544 }
3545 #endif
3546 }else{
3547 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3548 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3549 }
3550 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3551 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3552 }
3553 }
3554 if (opcode[i]==0x31) { // LWC1
3555 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3556 //gen_tlb_addr_r(ar,map);
3557 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3558 #ifdef HOST_IMM_ADDR32
3559 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3560 else
3561 #endif
3562 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3563 type=LOADW_STUB;
3564 }
3565 if (opcode[i]==0x35) { // LDC1
3566 assert(th>=0);
3567 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3568 //gen_tlb_addr_r(ar,map);
3569 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3570 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3571 #ifdef HOST_IMM_ADDR32
3572 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3573 else
3574 #endif
3575 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3576 type=LOADD_STUB;
3577 }
3578 if (opcode[i]==0x39) { // SWC1
3579 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3580 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3581 type=STOREW_STUB;
3582 }
3583 if (opcode[i]==0x3D) { // SDC1
3584 assert(th>=0);
3585 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3586 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3587 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3588 type=STORED_STUB;
3589 }
3590 if(!using_tlb) {
3591 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3592 #ifndef DESTRUCTIVE_SHIFT
3593 temp=offset||c||s<0?ar:s;
3594 #endif
3595 #if defined(HOST_IMM8)
3596 int ir=get_reg(i_regs->regmap,INVCP);
3597 assert(ir>=0);
3598 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3599 #else
3600 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3601 #endif
3602 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3603 emit_callne(invalidate_addr_reg[temp]);
3604 #else
3605 jaddr3=(int)out;
3606 emit_jne(0);
3607 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3608 #endif
3609 }
3610 }
3611 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3612 if (opcode[i]==0x31) { // LWC1 (write float)
3613 emit_writeword_indexed(tl,0,temp);
3614 }
3615 if (opcode[i]==0x35) { // LDC1 (write double)
3616 emit_writeword_indexed(th,4,temp);
3617 emit_writeword_indexed(tl,0,temp);
3618 }
3619 //if(opcode[i]==0x39)
3620 /*if(opcode[i]==0x39||opcode[i]==0x31)
3621 {
3622 emit_pusha();
3623 emit_readword((int)&last_count,ECX);
3624 if(get_reg(i_regs->regmap,CCREG)<0)
3625 emit_loadreg(CCREG,HOST_CCREG);
3626 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3627 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3628 emit_writeword(HOST_CCREG,(int)&Count);
3629 emit_call((int)memdebug);
3630 emit_popa();
3631 }*/
3632}
3633
3634#ifndef multdiv_assemble
3635void multdiv_assemble(int i,struct regstat *i_regs)
3636{
3637 DebugMessage(M64MSG_ERROR, "Need multdiv_assemble for this architecture.");
3638 exit(1);
3639}
3640#endif
3641
3642static void mov_assemble(int i,struct regstat *i_regs)
3643{
3644 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3645 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3646 if(rt1[i]) {
3647 signed char sh,sl,th,tl;
3648 th=get_reg(i_regs->regmap,rt1[i]|64);
3649 tl=get_reg(i_regs->regmap,rt1[i]);
3650 //assert(tl>=0);
3651 if(tl>=0) {
3652 sh=get_reg(i_regs->regmap,rs1[i]|64);
3653 sl=get_reg(i_regs->regmap,rs1[i]);
3654 if(sl>=0) emit_mov(sl,tl);
3655 else emit_loadreg(rs1[i],tl);
3656 if(th>=0) {
3657 if(sh>=0) emit_mov(sh,th);
3658 else emit_loadreg(rs1[i]|64,th);
3659 }
3660 }
3661 }
3662}
3663
3664#ifndef fconv_assemble
3665void fconv_assemble(int i,struct regstat *i_regs)
3666{
3667 DebugMessage(M64MSG_ERROR, "Need fconv_assemble for this architecture.");
3668 exit(1);
3669}
3670#endif
3671
3672#if 0
3673static void float_assemble(int i,struct regstat *i_regs)
3674{
3675 DebugMessage(M64MSG_ERROR, "Need float_assemble for this architecture.");
3676 exit(1);
3677}
3678#endif
3679
3680static void syscall_assemble(int i,struct regstat *i_regs)
3681{
3682 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3683 assert(ccreg==HOST_CCREG);
3684 assert(!is_delayslot);
3685 emit_movimm(start+i*4,EAX); // Get PC
3686 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3687 emit_jmp((int)jump_syscall);
3688}
3689
3690static void ds_assemble(int i,struct regstat *i_regs)
3691{
3692 is_delayslot=1;
3693 switch(itype[i]) {
3694 case ALU:
3695 alu_assemble(i,i_regs);break;
3696 case IMM16:
3697 imm16_assemble(i,i_regs);break;
3698 case SHIFT:
3699 shift_assemble(i,i_regs);break;
3700 case SHIFTIMM:
3701 shiftimm_assemble(i,i_regs);break;
3702 case LOAD:
3703 load_assemble(i,i_regs);break;
3704 case LOADLR:
3705 loadlr_assemble(i,i_regs);break;
3706 case STORE:
3707 store_assemble(i,i_regs);break;
3708 case STORELR:
3709 storelr_assemble(i,i_regs);break;
3710 case COP0:
3711 cop0_assemble(i,i_regs);break;
3712 case COP1:
3713 cop1_assemble(i,i_regs);break;
3714 case C1LS:
3715 c1ls_assemble(i,i_regs);break;
3716 case FCONV:
3717 fconv_assemble(i,i_regs);break;
3718 case FLOAT:
3719 float_assemble(i,i_regs);break;
3720 case FCOMP:
3721 fcomp_assemble(i,i_regs);break;
3722 case MULTDIV:
3723 multdiv_assemble(i,i_regs);break;
3724 case MOV:
3725 mov_assemble(i,i_regs);break;
3726 case SYSCALL:
3727 case SPAN:
3728 case UJUMP:
3729 case RJUMP:
3730 case CJUMP:
3731 case SJUMP:
3732 case FJUMP:
3733 DebugMessage(M64MSG_VERBOSE, "Jump in the delay slot. This is probably a bug.");
3734 }
3735 is_delayslot=0;
3736}
3737
3738// Is the branch target a valid internal jump?
3739static int internal_branch(uint64_t i_is32,int addr)
3740{
3741 if(addr&1) return 0; // Indirect (register) jump
3742 if(addr>=start && addr<start+slen*4-4)
3743 {
3744 int t=(addr-start)>>2;
3745 // Delay slots are not valid branch targets
3746 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3747 // 64 -> 32 bit transition requires a recompile
3748 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3749 {
3750 if(requires_32bit[t]&~i_is32) DebugMessage(M64MSG_VERBOSE, "optimizable: no");
3751 else DebugMessage(M64MSG_VERBOSE, "optimizable: yes");
3752 }*/
3753 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3754 if(requires_32bit[t]&~i_is32) return 0;
3755 else return 1;
3756 }
3757 return 0;
3758}
3759
3760#ifndef wb_invalidate
3761static void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3762 uint64_t u,uint64_t uu)
3763{
3764 int hr;
3765 for(hr=0;hr<HOST_REGS;hr++) {
3766 if(hr!=EXCLUDE_REG) {
3767 if(pre[hr]!=entry[hr]) {
3768 if(pre[hr]>=0) {
3769 if((dirty>>hr)&1) {
3770 if(get_reg(entry,pre[hr])<0) {
3771 if(pre[hr]<64) {
3772 if(!((u>>pre[hr])&1)) {
3773 emit_storereg(pre[hr],hr);
3774 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3775 emit_sarimm(hr,31,hr);
3776 emit_storereg(pre[hr]|64,hr);
3777 }
3778 }
3779 }else{
3780 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3781 emit_storereg(pre[hr],hr);
3782 }
3783 }
3784 }
3785 }
3786 }
3787 }
3788 }
3789 }
3790 // Move from one register to another (no writeback)
3791 for(hr=0;hr<HOST_REGS;hr++) {
3792 if(hr!=EXCLUDE_REG) {
3793 if(pre[hr]!=entry[hr]) {
3794 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3795 int nr;
3796 if((nr=get_reg(entry,pre[hr]))>=0) {
3797 emit_mov(hr,nr);
3798 }
3799 }
3800 }
3801 }
3802 }
3803}
3804#endif
3805
3806// Load the specified registers
3807// This only loads the registers given as arguments because
3808// we don't want to load things that will be overwritten
3809static void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3810{
3811 int hr;
3812 // Load 32-bit regs
3813 for(hr=0;hr<HOST_REGS;hr++) {
3814 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3815 if(entry[hr]!=regmap[hr]) {
3816 if(regmap[hr]==rs1||regmap[hr]==rs2)
3817 {
3818 if(regmap[hr]==0) {
3819 emit_zeroreg(hr);
3820 }
3821 else
3822 {
3823 emit_loadreg(regmap[hr],hr);
3824 }
3825 }
3826 }
3827 }
3828 }
3829 //Load 64-bit regs
3830 for(hr=0;hr<HOST_REGS;hr++) {
3831 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3832 if(entry[hr]!=regmap[hr]) {
3833 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3834 {
3835 assert(regmap[hr]!=64);
3836 if((is32>>(regmap[hr]&63))&1) {
3837 int lr=get_reg(regmap,regmap[hr]-64);
3838 if(lr>=0)
3839 emit_sarimm(lr,31,hr);
3840 else
3841 emit_loadreg(regmap[hr],hr);
3842 }
3843 else
3844 {
3845 emit_loadreg(regmap[hr],hr);
3846 }
3847 }
3848 }
3849 }
3850 }
3851}
3852
3853// Load registers prior to the start of a loop
3854// so that they are not loaded within the loop
3855static void loop_preload(signed char pre[],signed char entry[])
3856{
3857 int hr;
3858 for(hr=0;hr<HOST_REGS;hr++) {
3859 if(hr!=EXCLUDE_REG) {
3860 if(pre[hr]!=entry[hr]) {
3861 if(entry[hr]>=0) {
3862 if(get_reg(pre,entry[hr])<0) {
3863 assem_debug("loop preload:");
3864 //DebugMessage(M64MSG_VERBOSE, "loop preload: %d",hr);
3865 if(entry[hr]==0) {
3866 emit_zeroreg(hr);
3867 }
3868 else if(entry[hr]<TEMPREG)
3869 {
3870 emit_loadreg(entry[hr],hr);
3871 }
3872 else if(entry[hr]-64<TEMPREG)
3873 {
3874 emit_loadreg(entry[hr],hr);
3875 }
3876 }
3877 }
3878 }
3879 }
3880 }
3881}
3882
3883// Generate address for load/store instruction
3884static void address_generation(int i,struct regstat *i_regs,signed char entry[])
3885{
3886 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
3887 int ra;
3888 int agr=AGEN1+(i&1);
3889 int mgr=MGEN1+(i&1);
3890 if(itype[i]==LOAD) {
3891 ra=get_reg(i_regs->regmap,rt1[i]);
3892 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3893 assert(ra>=0);
3894 }
3895 if(itype[i]==LOADLR) {
3896 ra=get_reg(i_regs->regmap,FTEMP);
3897 }
3898 if(itype[i]==STORE||itype[i]==STORELR) {
3899 ra=get_reg(i_regs->regmap,agr);
3900 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3901 }
3902 if(itype[i]==C1LS) {
3903 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3904 ra=get_reg(i_regs->regmap,FTEMP);
3905 else { // SWC1/SDC1
3906 ra=get_reg(i_regs->regmap,agr);
3907 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3908 }
3909 }
3910 int rs=get_reg(i_regs->regmap,rs1[i]);
3911 int rm=get_reg(i_regs->regmap,TLREG);
3912 if(ra>=0) {
3913 int offset=imm[i];
3914 int c=(i_regs->wasconst>>rs)&1;
3915 if(rs1[i]==0) {
3916 // Using r0 as a base address
3917 /*if(rm>=0) {
3918 if(!entry||entry[rm]!=mgr) {
3919 generate_map_const(offset,rm);
3920 } // else did it in the previous cycle
3921 }*/
3922 if(!entry||entry[ra]!=agr) {
3923 if (opcode[i]==0x22||opcode[i]==0x26) {
3924 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3925 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3926 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3927 }else{
3928 emit_movimm(offset,ra);
3929 }
3930 } // else did it in the previous cycle
3931 }
3932 else if(rs<0) {
3933 if(!entry||entry[ra]!=rs1[i])
3934 emit_loadreg(rs1[i],ra);
3935 //if(!entry||entry[ra]!=rs1[i])
3936 // DebugMessage(M64MSG_VERBOSE, "poor load scheduling!");
3937 }
3938 else if(c) {
3939 if(rm>=0) {
3940 if(!entry||entry[rm]!=mgr) {
3941 if(itype[i]==STORE||itype[i]==STORELR||opcode[i]==0x39||opcode[i]==0x3D) {
3942 // Stores to memory go thru the mapper to detect self-modifying
3943 // code, loads don't.
3944 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
3945 (unsigned int)(constmap[i][rs]+offset)<0x80800000 )
3946 generate_map_const(constmap[i][rs]+offset,rm);
3947 }else{
3948 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
3949 generate_map_const(constmap[i][rs]+offset,rm);
3950 }
3951 }
3952 }
3953 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
3954 if(!entry||entry[ra]!=agr) {
3955 if (opcode[i]==0x22||opcode[i]==0x26) { // LWL/LWR
3956 #ifdef RAM_OFFSET
3957 if((signed int)constmap[i][rs]+offset<(signed int)0x80800000)
3958 emit_movimm(((constmap[i][rs]+offset)&0xFFFFFFFC)+(int)rdram-0x80000000,ra);
3959 else
3960 #endif
3961 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra);
3962 }else if (opcode[i]==0x1a||opcode[i]==0x1b) { // LDL/LDR
3963 #ifdef RAM_OFFSET
3964 if((signed int)constmap[i][rs]+offset<(signed int)0x80800000)
3965 emit_movimm(((constmap[i][rs]+offset)&0xFFFFFFF8)+(int)rdram-0x80000000,ra);
3966 else
3967 #endif
3968 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra);
3969 }else{
3970 #ifdef HOST_IMM_ADDR32
3971 if((itype[i]!=LOAD&&opcode[i]!=0x31&&opcode[i]!=0x35) ||
3972 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
3973 #endif
3974 #ifdef RAM_OFFSET
3975 if((itype[i]==LOAD||opcode[i]==0x31||opcode[i]==0x35)&&(signed int)constmap[i][rs]+offset<(signed int)0x80800000)
3976 emit_movimm(constmap[i][rs]+offset+(int)rdram-0x80000000,ra);
3977 else
3978 #endif
3979 emit_movimm(constmap[i][rs]+offset,ra);
3980 }
3981 } // else did it in the previous cycle
3982 } // else load_consts already did it
3983 }
3984 if(offset&&!c&&rs1[i]) {
3985 if(rs>=0) {
3986 emit_addimm(rs,offset,ra);
3987 }else{
3988 emit_addimm(ra,offset,ra);
3989 }
3990 }
3991 }
3992 }
3993 // Preload constants for next instruction
3994 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS) {
3995 int agr,ra;
3996 #ifndef HOST_IMM_ADDR32
3997 // Mapper entry
3998 agr=MGEN1+((i+1)&1);
3999 ra=get_reg(i_regs->regmap,agr);
4000 if(ra>=0) {
4001 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4002 int offset=imm[i+1];
4003 int c=(regs[i+1].wasconst>>rs)&1;
4004 if(c) {
4005 if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) {
4006 // Stores to memory go thru the mapper to detect self-modifying
4007 // code, loads don't.
4008 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4009 (unsigned int)(constmap[i+1][rs]+offset)<0x80800000 )
4010 generate_map_const(constmap[i+1][rs]+offset,ra);
4011 }else{
4012 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4013 generate_map_const(constmap[i+1][rs]+offset,ra);
4014 }
4015 }
4016 /*else if(rs1[i]==0) {
4017 generate_map_const(offset,ra);
4018 }*/
4019 }
4020 #endif
4021 // Actual address
4022 agr=AGEN1+((i+1)&1);
4023 ra=get_reg(i_regs->regmap,agr);
4024 if(ra>=0) {
4025 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4026 int offset=imm[i+1];
4027 int c=(regs[i+1].wasconst>>rs)&1;
4028 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4029 if (opcode[i+1]==0x22||opcode[i+1]==0x26) { // LWL/LWR
4030 #ifdef RAM_OFFSET
4031 if((signed int)constmap[i+1][rs]+offset<(signed int)0x80800000)
4032 emit_movimm(((constmap[i+1][rs]+offset)&0xFFFFFFFC)+(int)rdram-0x80000000,ra);
4033 else
4034 #endif
4035 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra);
4036 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) { // LDL/LDR
4037 #ifdef RAM_OFFSET
4038 if((signed int)constmap[i+1][rs]+offset<(signed int)0x80800000)
4039 emit_movimm(((constmap[i+1][rs]+offset)&0xFFFFFFF8)+(int)rdram-0x80000000,ra);
4040 else
4041 #endif
4042 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra);
4043 }else{
4044 #ifdef HOST_IMM_ADDR32
4045 if((itype[i+1]!=LOAD&&opcode[i+1]!=0x31&&opcode[i+1]!=0x35) ||
4046 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4047 #endif
4048 #ifdef RAM_OFFSET
4049 if((itype[i+1]==LOAD||opcode[i+1]==0x31||opcode[i+1]==0x35)&&(signed int)constmap[i+1][rs]+offset<(signed int)0x80800000)
4050 emit_movimm(constmap[i+1][rs]+offset+(int)rdram-0x80000000,ra);
4051 else
4052 #endif
4053 emit_movimm(constmap[i+1][rs]+offset,ra);
4054 }
4055 }
4056 else if(rs1[i+1]==0) {
4057 // Using r0 as a base address
4058 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4059 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4060 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4061 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4062 }else{
4063 emit_movimm(offset,ra);
4064 }
4065 }
4066 }
4067 }
4068}
4069
4070static int get_final_value(int hr, int i, int *value)
4071{
4072 int reg=regs[i].regmap[hr];
4073 while(i<slen-1) {
4074 if(regs[i+1].regmap[hr]!=reg) break;
4075 if(!((regs[i+1].isconst>>hr)&1)) break;
4076 if(bt[i+1]) break;
4077 i++;
4078 }
4079 if(i<slen-1) {
4080 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4081 *value=constmap[i][hr];
4082 return 1;
4083 }
4084 if(!bt[i+1]) {
4085 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4086 // Load in delay slot, out-of-order execution
4087 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4088 {
4089 #ifdef HOST_IMM_ADDR32
4090 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4091 #endif
4092 #ifdef RAM_OFFSET
4093 if((signed int)constmap[i][hr]+imm[i+2]<(signed int)0x80800000)
4094 *value=constmap[i][hr]+imm[i+2]+(int)rdram-0x80000000;
4095 else
4096 #endif
4097 // Precompute load address
4098 *value=constmap[i][hr]+imm[i+2];
4099 return 1;
4100 }
4101 }
4102 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4103 {
4104 #ifdef HOST_IMM_ADDR32
4105 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4106 #endif
4107 #ifdef RAM_OFFSET
4108 if((signed int)constmap[i][hr]+imm[i+1]<(signed int)0x80800000)
4109 *value=constmap[i][hr]+imm[i+1]+(int)rdram-0x80000000;
4110 else
4111 #endif
4112 // Precompute load address
4113 *value=constmap[i][hr]+imm[i+1];
4114 //DebugMessage(M64MSG_VERBOSE, "c=%x imm=%x",(int)constmap[i][hr],imm[i+1]);
4115 return 1;
4116 }
4117 }
4118 }
4119 *value=constmap[i][hr];
4120 //DebugMessage(M64MSG_VERBOSE, "c=%x",(int)constmap[i][hr]);
4121 if(i==slen-1) return 1;
4122 if(reg<64) {
4123 return !((unneeded_reg[i+1]>>reg)&1);
4124 }else{
4125 return !((unneeded_reg_upper[i+1]>>reg)&1);
4126 }
4127}
4128
4129// Load registers with known constants
4130static void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4131{
4132 int hr;
4133 // Load 32-bit regs
4134 for(hr=0;hr<HOST_REGS;hr++) {
4135 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4136 //if(entry[hr]!=regmap[hr]) {
4137 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4138 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4139 int value;
4140 if(get_final_value(hr,i,&value)) {
4141 if(value==0) {
4142 emit_zeroreg(hr);
4143 }
4144 else {
4145 emit_movimm(value,hr);
4146 }
4147 }
4148 }
4149 }
4150 }
4151 }
4152 // Load 64-bit regs
4153 for(hr=0;hr<HOST_REGS;hr++) {
4154 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4155 //if(entry[hr]!=regmap[hr]) {
4156 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4157 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4158 if((is32>>(regmap[hr]&63))&1) {
4159 int lr=get_reg(regmap,regmap[hr]-64);
4160 assert(lr>=0);
4161 emit_sarimm(lr,31,hr);
4162 }
4163 else
4164 {
4165 int value;
4166 if(get_final_value(hr,i,&value)) {
4167 if(value==0) {
4168 emit_zeroreg(hr);
4169 }
4170 else {
4171 emit_movimm(value,hr);
4172 }
4173 }
4174 }
4175 }
4176 }
4177 }
4178 }
4179}
4180static void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4181{
4182 int hr;
4183 // Load 32-bit regs
4184 for(hr=0;hr<HOST_REGS;hr++) {
4185 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4186 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4187 int value=constmap[i][hr];
4188 if(value==0) {
4189 emit_zeroreg(hr);
4190 }
4191 else {
4192 emit_movimm(value,hr);
4193 }
4194 }
4195 }
4196 }
4197 // Load 64-bit regs
4198 for(hr=0;hr<HOST_REGS;hr++) {
4199 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4200 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4201 if((is32>>(regmap[hr]&63))&1) {
4202 int lr=get_reg(regmap,regmap[hr]-64);
4203 assert(lr>=0);
4204 emit_sarimm(lr,31,hr);
4205 }
4206 else
4207 {
4208 int value=constmap[i][hr];
4209 if(value==0) {
4210 emit_zeroreg(hr);
4211 }
4212 else {
4213 emit_movimm(value,hr);
4214 }
4215 }
4216 }
4217 }
4218 }
4219}
4220
4221// Write out all dirty registers (except cycle count)
4222static void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4223{
4224 int hr;
4225 for(hr=0;hr<HOST_REGS;hr++) {
4226 if(hr!=EXCLUDE_REG) {
4227 if(i_regmap[hr]>0) {
4228 if(i_regmap[hr]!=CCREG) {
4229 if((i_dirty>>hr)&1) {
4230 if(i_regmap[hr]<64) {
4231 emit_storereg(i_regmap[hr],hr);
4232 if( ((i_is32>>i_regmap[hr])&1) ) {
4233 #ifdef DESTRUCTIVE_WRITEBACK
4234 emit_sarimm(hr,31,hr);
4235 emit_storereg(i_regmap[hr]|64,hr);
4236 #else
4237 emit_sarimm(hr,31,HOST_TEMPREG);
4238 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4239 #endif
4240 }
4241 }else{
4242 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4243 emit_storereg(i_regmap[hr],hr);
4244 }
4245 }
4246 }
4247 }
4248 }
4249 }
4250 }
4251}
4252// Write out dirty registers that we need to reload (pair with load_needed_regs)
4253// This writes the registers not written by store_regs_bt
4254static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4255{
4256 int hr;
4257 int t=(addr-start)>>2;
4258 for(hr=0;hr<HOST_REGS;hr++) {
4259 if(hr!=EXCLUDE_REG) {
4260 if(i_regmap[hr]>0) {
4261 if(i_regmap[hr]!=CCREG) {
4262 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4263 if((i_dirty>>hr)&1) {
4264 if(i_regmap[hr]<64) {
4265 emit_storereg(i_regmap[hr],hr);
4266 if( ((i_is32>>i_regmap[hr])&1) ) {
4267 #ifdef DESTRUCTIVE_WRITEBACK
4268 emit_sarimm(hr,31,hr);
4269 emit_storereg(i_regmap[hr]|64,hr);
4270 #else
4271 emit_sarimm(hr,31,HOST_TEMPREG);
4272 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4273 #endif
4274 }
4275 }else{
4276 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4277 emit_storereg(i_regmap[hr],hr);
4278 }
4279 }
4280 }
4281 }
4282 }
4283 }
4284 }
4285 }
4286}
4287
4288// Load all registers (except cycle count)
4289static void load_all_regs(signed char i_regmap[])
4290{
4291 int hr;
4292 for(hr=0;hr<HOST_REGS;hr++) {
4293 if(hr!=EXCLUDE_REG) {
4294 if(i_regmap[hr]==0) {
4295 emit_zeroreg(hr);
4296 }
4297 else
4298 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4299 {
4300 emit_loadreg(i_regmap[hr],hr);
4301 }
4302 }
4303 }
4304}
4305
4306// Load all current registers also needed by next instruction
4307static void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4308{
4309 int hr;
4310 for(hr=0;hr<HOST_REGS;hr++) {
4311 if(hr!=EXCLUDE_REG) {
4312 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4313 if(i_regmap[hr]==0) {
4314 emit_zeroreg(hr);
4315 }
4316 else
4317 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4318 {
4319 emit_loadreg(i_regmap[hr],hr);
4320 }
4321 }
4322 }
4323 }
4324}
4325
4326// Load all regs, storing cycle count if necessary
4327static void load_regs_entry(int t)
4328{
4329 int hr;
4330 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4331 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4332 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4333 emit_storereg(CCREG,HOST_CCREG);
4334 }
4335 // Load 32-bit regs
4336 for(hr=0;hr<HOST_REGS;hr++) {
4337 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4338 if(regs[t].regmap_entry[hr]==0) {
4339 emit_zeroreg(hr);
4340 }
4341 else if(regs[t].regmap_entry[hr]!=CCREG)
4342 {
4343 emit_loadreg(regs[t].regmap_entry[hr],hr);
4344 }
4345 }
4346 }
4347 // Load 64-bit regs
4348 for(hr=0;hr<HOST_REGS;hr++) {
4349 if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4350 assert(regs[t].regmap_entry[hr]!=64);
4351 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4352 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4353 if(lr<0) {
4354 emit_loadreg(regs[t].regmap_entry[hr],hr);
4355 }
4356 else
4357 {
4358 emit_sarimm(lr,31,hr);
4359 }
4360 }
4361 else
4362 {
4363 emit_loadreg(regs[t].regmap_entry[hr],hr);
4364 }
4365 }
4366 }
4367}
4368
4369// Store dirty registers prior to branch
4370static void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4371{
4372 if(internal_branch(i_is32,addr))
4373 {
4374 int t=(addr-start)>>2;
4375 int hr;
4376 for(hr=0;hr<HOST_REGS;hr++) {
4377 if(hr!=EXCLUDE_REG) {
4378 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4379 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4380 if((i_dirty>>hr)&1) {
4381 if(i_regmap[hr]<64) {
4382 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4383 emit_storereg(i_regmap[hr],hr);
4384 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4385 #ifdef DESTRUCTIVE_WRITEBACK
4386 emit_sarimm(hr,31,hr);
4387 emit_storereg(i_regmap[hr]|64,hr);
4388 #else
4389 emit_sarimm(hr,31,HOST_TEMPREG);
4390 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4391 #endif
4392 }
4393 }
4394 }else{
4395 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4396 emit_storereg(i_regmap[hr],hr);
4397 }
4398 }
4399 }
4400 }
4401 }
4402 }
4403 }
4404 }
4405 else
4406 {
4407 // Branch out of this block, write out all dirty regs
4408 wb_dirtys(i_regmap,i_is32,i_dirty);
4409 }
4410}
4411
4412// Load all needed registers for branch target
4413static void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4414{
4415 //if(addr>=start && addr<(start+slen*4))
4416 if(internal_branch(i_is32,addr))
4417 {
4418 int t=(addr-start)>>2;
4419 int hr;
4420 // Store the cycle count before loading something else
4421 if(i_regmap[HOST_CCREG]!=CCREG) {
4422 assert(i_regmap[HOST_CCREG]==-1);
4423 }
4424 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4425 emit_storereg(CCREG,HOST_CCREG);
4426 }
4427 // Load 32-bit regs
4428 for(hr=0;hr<HOST_REGS;hr++) {
4429 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4430 #ifdef DESTRUCTIVE_WRITEBACK
4431 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4432 #else
4433 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4434 #endif
4435 if(regs[t].regmap_entry[hr]==0) {
4436 emit_zeroreg(hr);
4437 }
4438 else if(regs[t].regmap_entry[hr]!=CCREG)
4439 {
4440 emit_loadreg(regs[t].regmap_entry[hr],hr);
4441 }
4442 }
4443 }
4444 }
4445 //Load 64-bit regs
4446 for(hr=0;hr<HOST_REGS;hr++) {
4447 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4448 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4449 assert(regs[t].regmap_entry[hr]!=64);
4450 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4451 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4452 if(lr<0) {
4453 emit_loadreg(regs[t].regmap_entry[hr],hr);
4454 }
4455 else
4456 {
4457 emit_sarimm(lr,31,hr);
4458 }
4459 }
4460 else
4461 {
4462 emit_loadreg(regs[t].regmap_entry[hr],hr);
4463 }
4464 }
4465 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4466 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4467 assert(lr>=0);
4468 emit_sarimm(lr,31,hr);
4469 }
4470 }
4471 }
4472 }
4473}
4474
4475static int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4476{
4477 if(addr>=start && addr<start+slen*4-4)
4478 {
4479 int t=(addr-start)>>2;
4480 int hr;
4481 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4482 for(hr=0;hr<HOST_REGS;hr++)
4483 {
4484 if(hr!=EXCLUDE_REG)
4485 {
4486 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4487 {
4488 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4489 {
4490 return 0;
4491 }
4492 else
4493 if((i_dirty>>hr)&1)
4494 {
4495 if(i_regmap[hr]<TEMPREG)
4496 {
4497 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4498 return 0;
4499 }
4500 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4501 {
4502 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4503 return 0;
4504 }
4505 }
4506 }
4507 else // Same register but is it 32-bit or dirty?
4508 if(i_regmap[hr]>=0)
4509 {
4510 if(!((regs[t].dirty>>hr)&1))
4511 {
4512 if((i_dirty>>hr)&1)
4513 {
4514 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4515 {
4516 //DebugMessage(M64MSG_VERBOSE, "%x: dirty no match",addr);
4517 return 0;
4518 }
4519 }
4520 }
4521 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4522 {
4523 //DebugMessage(M64MSG_VERBOSE, "%x: is32 no match",addr);
4524 return 0;
4525 }
4526 }
4527 }
4528 }
4529 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4530 if(requires_32bit[t]&~i_is32) return 0;
4531 // Delay slots are not valid branch targets
4532 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4533 // Delay slots require additional processing, so do not match
4534 if(is_ds[t]) return 0;
4535 }
4536 else
4537 {
4538 int hr;
4539 for(hr=0;hr<HOST_REGS;hr++)
4540 {
4541 if(hr!=EXCLUDE_REG)
4542 {
4543 if(i_regmap[hr]>=0)
4544 {
4545 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4546 {
4547 if((i_dirty>>hr)&1)
4548 {
4549 return 0;
4550 }
4551 }
4552 }
4553 }
4554 }
4555 }
4556 return 1;
4557}
4558
4559// Used when a branch jumps into the delay slot of another branch
4560static void ds_assemble_entry(int i)
4561{
4562 int t=(ba[i]-start)>>2;
4563 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4564 assem_debug("Assemble delay slot at %x",ba[i]);
4565 assem_debug("<->");
4566 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4567 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4568 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4569 address_generation(t,&regs[t],regs[t].regmap_entry);
4570 if(itype[t]==LOAD||itype[t]==LOADLR||itype[t]==STORE||itype[t]==STORELR||itype[t]==C1LS)
4571 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,MMREG,ROREG);
4572 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39)
4573 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4574 cop1_usable=0;
4575 is_delayslot=0;
4576 switch(itype[t]) {
4577 case ALU:
4578 alu_assemble(t,&regs[t]);break;
4579 case IMM16:
4580 imm16_assemble(t,&regs[t]);break;
4581 case SHIFT:
4582 shift_assemble(t,&regs[t]);break;
4583 case SHIFTIMM:
4584 shiftimm_assemble(t,&regs[t]);break;
4585 case LOAD:
4586 load_assemble(t,&regs[t]);break;
4587 case LOADLR:
4588 loadlr_assemble(t,&regs[t]);break;
4589 case STORE:
4590 store_assemble(t,&regs[t]);break;
4591 case STORELR:
4592 storelr_assemble(t,&regs[t]);break;
4593 case COP0:
4594 cop0_assemble(t,&regs[t]);break;
4595 case COP1:
4596 cop1_assemble(t,&regs[t]);break;
4597 case C1LS:
4598 c1ls_assemble(t,&regs[t]);break;
4599 case FCONV:
4600 fconv_assemble(t,&regs[t]);break;
4601 case FLOAT:
4602 float_assemble(t,&regs[t]);break;
4603 case FCOMP:
4604 fcomp_assemble(t,&regs[t]);break;
4605 case MULTDIV:
4606 multdiv_assemble(t,&regs[t]);break;
4607 case MOV:
4608 mov_assemble(t,&regs[t]);break;
4609 case SYSCALL:
4610 case SPAN:
4611 case UJUMP:
4612 case RJUMP:
4613 case CJUMP:
4614 case SJUMP:
4615 case FJUMP:
4616 DebugMessage(M64MSG_VERBOSE, "Jump in the delay slot. This is probably a bug.");
4617 }
4618 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4619 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4620 if(internal_branch(regs[t].is32,ba[i]+4))
4621 assem_debug("branch: internal");
4622 else
4623 assem_debug("branch: external");
4624 assert(internal_branch(regs[t].is32,ba[i]+4));
4625 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4626 emit_jmp(0);
4627}
4628
4629static void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4630{
4631 int count;
4632 int jaddr;
4633 int idle=0;
4634 if(itype[i]==RJUMP)
4635 {
4636 *adj=0;
4637 }
4638 //if(ba[i]>=start && ba[i]<(start+slen*4))
4639 if(internal_branch(branch_regs[i].is32,ba[i]))
4640 {
4641 int t=(ba[i]-start)>>2;
4642 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4643 else *adj=ccadj[t];
4644 }
4645 else
4646 {
4647 *adj=0;
4648 }
4649 count=ccadj[i];
4650 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4651 // Idle loop
4652 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4653 idle=(int)out;
4654 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4655 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4656 jaddr=(int)out;
4657 emit_jmp(0);
4658 }
4659 else if(*adj==0||invert) {
4660 emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4661 jaddr=(int)out;
4662 emit_jns(0);
4663 }
4664 else
4665 {
4666 emit_cmpimm(HOST_CCREG,-CLOCK_DIVIDER*(count+2));
4667 jaddr=(int)out;
4668 emit_jns(0);
4669 }
4670 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4671}
4672
4673static void do_ccstub(int n)
4674{
4675 literal_pool(256);
4676 assem_debug("do_ccstub %x",start+stubs[n][4]*4);
4677 set_jump_target(stubs[n][1],(int)out);
4678 int i=stubs[n][4];
4679 if(stubs[n][6]==NULLDS) {
4680 // Delay slot instruction is nullified ("likely" branch)
4681 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4682 }
4683 else if(stubs[n][6]!=TAKEN) {
4684 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4685 }
4686 else {
4687 if(internal_branch(branch_regs[i].is32,ba[i]))
4688 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4689 }
4690 if(stubs[n][5]!=-1)
4691 {
4692 // Save PC as return address
4693 emit_movimm(stubs[n][5],EAX);
4694 emit_writeword(EAX,(int)&pcaddr);
4695 }
4696 else
4697 {
4698 // Return address depends on which way the branch goes
4699 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4700 {
4701 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4702 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4703 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4704 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4705 if(rs1[i]==0)
4706 {
4707 s1l=s2l;s1h=s2h;
4708 s2l=s2h=-1;
4709 }
4710 else if(rs2[i]==0)
4711 {
4712 s2l=s2h=-1;
4713 }
4714 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4715 s1h=s2h=-1;
4716 }
4717 assert(s1l>=0);
4718 #ifdef DESTRUCTIVE_WRITEBACK
4719 if(rs1[i]) {
4720 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4721 emit_loadreg(rs1[i],s1l);
4722 }
4723 else {
4724 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4725 emit_loadreg(rs2[i],s1l);
4726 }
4727 if(s2l>=0)
4728 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4729 emit_loadreg(rs2[i],s2l);
4730 #endif
4731 int hr=0;
4732 int addr,alt,ntaddr;
4733 while(hr<HOST_REGS)
4734 {
4735 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4736 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4737 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4738 {
4739 addr=hr++;break;
4740 }
4741 hr++;
4742 }
4743 while(hr<HOST_REGS)
4744 {
4745 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4746 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4747 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4748 {
4749 alt=hr++;break;
4750 }
4751 hr++;
4752 }
4753 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4754 {
4755 while(hr<HOST_REGS)
4756 {
4757 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4758 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4759 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4760 {
4761 ntaddr=hr;break;
4762 }
4763 hr++;
4764 }
4765 assert(hr<HOST_REGS);
4766 }
4767 if((opcode[i]&0x2f)==4) // BEQ
4768 {
4769 #ifdef HAVE_CMOV_IMM
4770 if(s1h<0) {
4771 if(s2l>=0) emit_cmp(s1l,s2l);
4772 else emit_test(s1l,s1l);
4773 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4774 }
4775 else
4776 #endif
4777 {
4778 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4779 if(s1h>=0) {
4780 if(s2h>=0) emit_cmp(s1h,s2h);
4781 else emit_test(s1h,s1h);
4782 emit_cmovne_reg(alt,addr);
4783 }
4784 if(s2l>=0) emit_cmp(s1l,s2l);
4785 else emit_test(s1l,s1l);
4786 emit_cmovne_reg(alt,addr);
4787 }
4788 }
4789 if((opcode[i]&0x2f)==5) // BNE
4790 {
4791 #ifdef HAVE_CMOV_IMM
4792 if(s1h<0) {
4793 if(s2l>=0) emit_cmp(s1l,s2l);
4794 else emit_test(s1l,s1l);
4795 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4796 }
4797 else
4798 #endif
4799 {
4800 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4801 if(s1h>=0) {
4802 if(s2h>=0) emit_cmp(s1h,s2h);
4803 else emit_test(s1h,s1h);
4804 emit_cmovne_reg(alt,addr);
4805 }
4806 if(s2l>=0) emit_cmp(s1l,s2l);
4807 else emit_test(s1l,s1l);
4808 emit_cmovne_reg(alt,addr);
4809 }
4810 }
4811 if((opcode[i]&0x2f)==6) // BLEZ
4812 {
4813 //emit_movimm(ba[i],alt);
4814 //emit_movimm(start+i*4+8,addr);
4815 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4816 emit_cmpimm(s1l,1);
4817 if(s1h>=0) emit_mov(addr,ntaddr);
4818 emit_cmovl_reg(alt,addr);
4819 if(s1h>=0) {
4820 emit_test(s1h,s1h);
4821 emit_cmovne_reg(ntaddr,addr);
4822 emit_cmovs_reg(alt,addr);
4823 }
4824 }
4825 if((opcode[i]&0x2f)==7) // BGTZ
4826 {
4827 //emit_movimm(ba[i],addr);
4828 //emit_movimm(start+i*4+8,ntaddr);
4829 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4830 emit_cmpimm(s1l,1);
4831 if(s1h>=0) emit_mov(addr,alt);
4832 emit_cmovl_reg(ntaddr,addr);
4833 if(s1h>=0) {
4834 emit_test(s1h,s1h);
4835 emit_cmovne_reg(alt,addr);
4836 emit_cmovs_reg(ntaddr,addr);
4837 }
4838 }
4839 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4840 {
4841 //emit_movimm(ba[i],alt);
4842 //emit_movimm(start+i*4+8,addr);
4843 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4844 if(s1h>=0) emit_test(s1h,s1h);
4845 else emit_test(s1l,s1l);
4846 emit_cmovs_reg(alt,addr);
4847 }
4848 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4849 {
4850 //emit_movimm(ba[i],addr);
4851 //emit_movimm(start+i*4+8,alt);
4852 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4853 if(s1h>=0) emit_test(s1h,s1h);
4854 else emit_test(s1l,s1l);
4855 emit_cmovs_reg(alt,addr);
4856 }
4857 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4858 if(source[i]&0x10000) // BC1T
4859 {
4860 //emit_movimm(ba[i],alt);
4861 //emit_movimm(start+i*4+8,addr);
4862 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4863 emit_testimm(s1l,0x800000);
4864 emit_cmovne_reg(alt,addr);
4865 }
4866 else // BC1F
4867 {
4868 //emit_movimm(ba[i],addr);
4869 //emit_movimm(start+i*4+8,alt);
4870 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4871 emit_testimm(s1l,0x800000);
4872 emit_cmovne_reg(alt,addr);
4873 }
4874 }
4875 emit_writeword(addr,(int)&pcaddr);
4876 }
4877 else
4878 if(itype[i]==RJUMP)
4879 {
4880 int r=get_reg(branch_regs[i].regmap,rs1[i]);
4881 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4882 r=get_reg(branch_regs[i].regmap,RTEMP);
4883 }
4884 emit_writeword(r,(int)&pcaddr);
4885 }
4886 else {DebugMessage(M64MSG_ERROR, "Unknown branch type in do_ccstub");exit(1);}
4887 }
4888 // Update cycle count
4889 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4890 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4891 emit_call((int)cc_interrupt);
4892 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4893 if(stubs[n][6]==TAKEN) {
4894 if(internal_branch(branch_regs[i].is32,ba[i]))
4895 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4896 else if(itype[i]==RJUMP) {
4897 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4898 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4899 else
4900 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4901 }
4902 }else if(stubs[n][6]==NOTTAKEN) {
4903 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4904 else load_all_regs(branch_regs[i].regmap);
4905 }else if(stubs[n][6]==NULLDS) {
4906 // Delay slot instruction is nullified ("likely" branch)
4907 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4908 else load_all_regs(regs[i].regmap);
4909 }else{
4910 load_all_regs(branch_regs[i].regmap);
4911 }
4912 emit_jmp(stubs[n][2]); // return address
4913
4914 /* This works but uses a lot of memory...
4915 emit_readword((int)&last_count,ECX);
4916 emit_add(HOST_CCREG,ECX,EAX);
4917 emit_writeword(EAX,(int)&Count);
4918 emit_call((int)gen_interupt);
4919 emit_readword((int)&Count,HOST_CCREG);
4920 emit_readword((int)&next_interupt,EAX);
4921 emit_readword((int)&pending_exception,EBX);
4922 emit_writeword(EAX,(int)&last_count);
4923 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
4924 emit_test(EBX,EBX);
4925 int jne_instr=(int)out;
4926 emit_jne(0);
4927 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
4928 load_all_regs(branch_regs[i].regmap);
4929 emit_jmp(stubs[n][2]); // return address
4930 set_jump_target(jne_instr,(int)out);
4931 emit_readword((int)&pcaddr,EAX);
4932 // Call get_addr_ht instead of doing the hash table here.
4933 // This code is executed infrequently and takes up a lot of space
4934 // so smaller is better.
4935 emit_storereg(CCREG,HOST_CCREG);
4936 emit_pushreg(EAX);
4937 emit_call((int)get_addr_ht);
4938 emit_loadreg(CCREG,HOST_CCREG);
4939 emit_addimm(ESP,4,ESP);
4940 emit_jmpreg(EAX);*/
4941}
4942
4943static void add_to_linker(int addr,int target,int ext)
4944{
4945 link_addr[linkcount][0]=addr;
4946 link_addr[linkcount][1]=target;
4947 link_addr[linkcount][2]=ext;
4948 linkcount++;
4949}
4950
4951static void ujump_assemble(int i,struct regstat *i_regs)
4952{
4953 #ifdef REG_PREFETCH
4954 signed char *i_regmap=i_regs->regmap;
4955 #endif
4956 if(i==(ba[i]-start)>>2) assem_debug("idle loop");
4957 address_generation(i+1,i_regs,regs[i].regmap_entry);
4958 #ifdef REG_PREFETCH
4959 int temp=get_reg(branch_regs[i].regmap,PTEMP);
4960 if(rt1[i]==31&&temp>=0)
4961 {
4962 int return_address=start+i*4+8;
4963 if(get_reg(branch_regs[i].regmap,31)>0)
4964 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4965 }
4966 #endif
4967 ds_assemble(i+1,i_regs);
4968 uint64_t bc_unneeded=branch_regs[i].u;
4969 uint64_t bc_unneeded_upper=branch_regs[i].uu;
4970 bc_unneeded|=1|(1LL<<rt1[i]);
4971 bc_unneeded_upper|=1|(1LL<<rt1[i]);
4972 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4973 bc_unneeded,bc_unneeded_upper);
4974 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
4975 if(rt1[i]==31) {
4976 int rt;
4977 unsigned int return_address;
4978 assert(rt1[i+1]!=31);
4979 assert(rt2[i+1]!=31);
4980 rt=get_reg(branch_regs[i].regmap,31);
4981 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4982 //assert(rt>=0);
4983 return_address=start+i*4+8;
4984 if(rt>=0) {
4985 #ifdef USE_MINI_HT
4986 if(internal_branch(branch_regs[i].is32,return_address)) {
4987 int temp=rt+1;
4988 if(temp==EXCLUDE_REG||temp>=HOST_REGS||
4989 branch_regs[i].regmap[temp]>=0)
4990 {
4991 temp=get_reg(branch_regs[i].regmap,-1);
4992 }
4993 #ifdef HOST_TEMPREG
4994 if(temp<0) temp=HOST_TEMPREG;
4995 #endif
4996 if(temp>=0) do_miniht_insert(return_address,rt,temp);
4997 else emit_movimm(return_address,rt);
4998 }
4999 else
5000 #endif
5001 {
5002 #ifdef REG_PREFETCH
5003 if(temp>=0)
5004 {
5005 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5006 }
5007 #endif
5008 emit_movimm(return_address,rt); // PC into link register
5009 #ifdef IMM_PREFETCH
5010 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5011 #endif
5012 }
5013 }
5014 }
5015 int cc,adj;
5016 cc=get_reg(branch_regs[i].regmap,CCREG);
5017 assert(cc==HOST_CCREG);
5018 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5019 #ifdef REG_PREFETCH
5020 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5021 #endif
5022 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5023 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5024 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5025 if(internal_branch(branch_regs[i].is32,ba[i]))
5026 assem_debug("branch: internal");
5027 else
5028 assem_debug("branch: external");
5029 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5030 ds_assemble_entry(i);
5031 }
5032 else {
5033 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5034 emit_jmp(0);
5035 }
5036}
5037
5038static void rjump_assemble(int i,struct regstat *i_regs)
5039{
5040 #ifdef REG_PREFETCH
5041 signed char *i_regmap=i_regs->regmap;
5042 #endif
5043 int temp;
5044 int rs,cc;
5045 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5046 assert(rs>=0);
5047 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5048 // Delay slot abuse, make a copy of the branch address register
5049 temp=get_reg(branch_regs[i].regmap,RTEMP);
5050 assert(temp>=0);
5051 assert(regs[i].regmap[temp]==RTEMP);
5052 emit_mov(rs,temp);
5053 rs=temp;
5054 }
5055 address_generation(i+1,i_regs,regs[i].regmap_entry);
5056 #ifdef REG_PREFETCH
5057 if(rt1[i]==31)
5058 {
5059 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5060 int return_address=start+i*4+8;
5061 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5062 }
5063 }
5064 #endif
5065 #ifdef USE_MINI_HT
5066 if(rs1[i]==31) {
5067 int rh=get_reg(regs[i].regmap,RHASH);
5068 if(rh>=0) do_preload_rhash(rh);
5069 }
5070 #endif
5071 ds_assemble(i+1,i_regs);
5072 uint64_t bc_unneeded=branch_regs[i].u;
5073 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5074 bc_unneeded|=1|(1LL<<rt1[i]);
5075 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5076 bc_unneeded&=~(1LL<<rs1[i]);
5077 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5078 bc_unneeded,bc_unneeded_upper);
5079 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5080 if(rt1[i]!=0) {
5081 int rt,return_address;
5082 assert(rt1[i+1]!=rt1[i]);
5083 assert(rt2[i+1]!=rt1[i]);
5084 rt=get_reg(branch_regs[i].regmap,rt1[i]);
5085 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5086 assert(rt>=0);
5087 return_address=start+i*4+8;
5088 #ifdef REG_PREFETCH
5089 if(temp>=0)
5090 {
5091 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5092 }
5093 #endif
5094 emit_movimm(return_address,rt); // PC into link register
5095 #ifdef IMM_PREFETCH
5096 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5097 #endif
5098 }
5099 cc=get_reg(branch_regs[i].regmap,CCREG);
5100 assert(cc==HOST_CCREG);
5101 #ifdef USE_MINI_HT
5102 int rh=get_reg(branch_regs[i].regmap,RHASH);
5103 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5104 if(rs1[i]==31) {
5105 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5106 do_preload_rhtbl(ht);
5107 do_rhash(rs,rh);
5108 }
5109 #endif
5110 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5111 #ifdef DESTRUCTIVE_WRITEBACK
5112 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5113 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5114 emit_loadreg(rs1[i],rs);
5115 }
5116 }
5117 #endif
5118 #ifdef REG_PREFETCH
5119 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5120 #endif
5121 #ifdef USE_MINI_HT
5122 if(rs1[i]==31) {
5123 do_miniht_load(ht,rh);
5124 }
5125 #endif
5126 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5127 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5128 //assert(adj==0);
5129 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5130 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5131 emit_jns(0);
5132 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5133 #ifdef USE_MINI_HT
5134 if(rs1[i]==31) {
5135 do_miniht_jump(rs,rh,ht);
5136 }
5137 else
5138 #endif
5139 {
5140 //if(rs!=EAX) emit_mov(rs,EAX);
5141 //emit_jmp((int)jump_vaddr_eax);
5142 emit_jmp(jump_vaddr_reg[rs]);
5143 }
5144 /* Check hash table
5145 temp=!rs;
5146 emit_mov(rs,temp);
5147 emit_shrimm(rs,16,rs);
5148 emit_xor(temp,rs,rs);
5149 emit_movzwl_reg(rs,rs);
5150 emit_shlimm(rs,4,rs);
5151 emit_cmpmem_indexed((int)hash_table,rs,temp);
5152 emit_jne((int)out+14);
5153 emit_readword_indexed((int)hash_table+4,rs,rs);
5154 emit_jmpreg(rs);
5155 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5156 emit_addimm_no_flags(8,rs);
5157 emit_jeq((int)out-17);
5158 // No hit on hash table, call compiler
5159 emit_pushreg(temp);
5160//DEBUG >
5161#ifdef DEBUG_CYCLE_COUNT
5162 emit_readword((int)&last_count,ECX);
5163 emit_add(HOST_CCREG,ECX,HOST_CCREG);
5164 emit_readword((int)&next_interupt,ECX);
5165 emit_writeword(HOST_CCREG,(int)&Count);
5166 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5167 emit_writeword(ECX,(int)&last_count);
5168#endif
5169//DEBUG <
5170 emit_storereg(CCREG,HOST_CCREG);
5171 emit_call((int)get_addr);
5172 emit_loadreg(CCREG,HOST_CCREG);
5173 emit_addimm(ESP,4,ESP);
5174 emit_jmpreg(EAX);*/
5175 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5176 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5177 #endif
5178}
5179
5180static void cjump_assemble(int i,struct regstat *i_regs)
5181{
5182 signed char *i_regmap=i_regs->regmap;
5183 int cc;
5184 int match;
5185 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5186 assem_debug("match=%d",match);
5187 int s1h,s1l,s2h,s2l;
5188 int prev_cop1_usable=cop1_usable;
5189 int unconditional=0,nop=0;
5190 int only32=0;
5191 int invert=0;
5192 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5193 if(i==(ba[i]-start)>>2) assem_debug("idle loop");
5194 if(!match) invert=1;
5195 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5196 if(i>(ba[i]-start)>>2) invert=1;
5197 #endif
5198
5199 if(ooo[i]) {
5200 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5201 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5202 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5203 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5204 }
5205 else {
5206 s1l=get_reg(i_regmap,rs1[i]);
5207 s1h=get_reg(i_regmap,rs1[i]|64);
5208 s2l=get_reg(i_regmap,rs2[i]);
5209 s2h=get_reg(i_regmap,rs2[i]|64);
5210 }
5211 if(rs1[i]==0&&rs2[i]==0)
5212 {
5213 if(opcode[i]&1) nop=1;
5214 else unconditional=1;
5215 //assert(opcode[i]!=5);
5216 //assert(opcode[i]!=7);
5217 //assert(opcode[i]!=0x15);
5218 //assert(opcode[i]!=0x17);
5219 }
5220 else if(rs1[i]==0)
5221 {
5222 s1l=s2l;s1h=s2h;
5223 s2l=s2h=-1;
5224 only32=(regs[i].was32>>rs2[i])&1;
5225 }
5226 else if(rs2[i]==0)
5227 {
5228 s2l=s2h=-1;
5229 only32=(regs[i].was32>>rs1[i])&1;
5230 }
5231 else {
5232 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5233 }
5234
5235 if(ooo[i]) {
5236 // Out of order execution (delay slot first)
5237 //DebugMessage(M64MSG_VERBOSE, "OOOE");
5238 address_generation(i+1,i_regs,regs[i].regmap_entry);
5239 ds_assemble(i+1,i_regs);
5240 int adj;
5241 uint64_t bc_unneeded=branch_regs[i].u;
5242 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5243 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5244 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5245 bc_unneeded|=1;
5246 bc_unneeded_upper|=1;
5247 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5248 bc_unneeded,bc_unneeded_upper);
5249 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5250 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5251 cc=get_reg(branch_regs[i].regmap,CCREG);
5252 assert(cc==HOST_CCREG);
5253 if(unconditional)
5254 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5255 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5256 //assem_debug("cycle count (adj)");
5257 if(unconditional) {
5258 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5259 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5260 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5261 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5262 if(internal)
5263 assem_debug("branch: internal");
5264 else
5265 assem_debug("branch: external");
5266 if(internal&&is_ds[(ba[i]-start)>>2]) {
5267 ds_assemble_entry(i);
5268 }
5269 else {
5270 add_to_linker((int)out,ba[i],internal);
5271 emit_jmp(0);
5272 }
5273 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5274 if(((u_int)out)&7) emit_addnop(0);
5275 #endif
5276 }
5277 }
5278 else if(nop) {
5279 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5280 int jaddr=(int)out;
5281 emit_jns(0);
5282 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5283 }
5284 else {
5285 int taken=0,nottaken=0,nottaken1=0;
5286 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5287 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5288 if(!only32)
5289 {
5290 assert(s1h>=0);
5291 if(opcode[i]==4) // BEQ
5292 {
5293 if(s2h>=0) emit_cmp(s1h,s2h);
5294 else emit_test(s1h,s1h);
5295 nottaken1=(int)out;
5296 emit_jne(1);
5297 }
5298 if(opcode[i]==5) // BNE
5299 {
5300 if(s2h>=0) emit_cmp(s1h,s2h);
5301 else emit_test(s1h,s1h);
5302 if(invert) taken=(int)out;
5303 else add_to_linker((int)out,ba[i],internal);
5304 emit_jne(0);
5305 }
5306 if(opcode[i]==6) // BLEZ
5307 {
5308 emit_test(s1h,s1h);
ce68e3b9 5309// emit_testimm(s1h,0);
451ab91e 5310 if(invert) taken=(int)out;
5311 else add_to_linker((int)out,ba[i],internal);
5312 emit_js(0);
5313 nottaken1=(int)out;
5314 emit_jne(1);
5315 }
5316 if(opcode[i]==7) // BGTZ
5317 {
5318 emit_test(s1h,s1h);
ce68e3b9 5319// emit_testimm(s1h,0);
451ab91e 5320 nottaken1=(int)out;
5321 emit_js(1);
5322 if(invert) taken=(int)out;
5323 else add_to_linker((int)out,ba[i],internal);
5324 emit_jne(0);
5325 }
5326 } // if(!only32)
5327
5328 //DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5329 assert(s1l>=0);
5330 if(opcode[i]==4) // BEQ
5331 {
5332 if(s2l>=0) emit_cmp(s1l,s2l);
5333 else emit_test(s1l,s1l);
5334 if(invert){
5335 nottaken=(int)out;
5336 emit_jne(1);
5337 }else{
5338 add_to_linker((int)out,ba[i],internal);
5339 emit_jeq(0);
5340 }
5341 }
5342 if(opcode[i]==5) // BNE
5343 {
5344 if(s2l>=0) emit_cmp(s1l,s2l);
5345 else emit_test(s1l,s1l);
5346 if(invert){
5347 nottaken=(int)out;
5348 emit_jeq(1);
5349 }else{
5350 add_to_linker((int)out,ba[i],internal);
5351 emit_jne(0);
5352 }
5353 }
5354 if(opcode[i]==6) // BLEZ
5355 {
5356 emit_cmpimm(s1l,1);
5357 if(invert){
5358 nottaken=(int)out;
5359 emit_jge(1);
5360 }else{
5361 add_to_linker((int)out,ba[i],internal);
5362 emit_jl(0);
5363 }
5364 }
5365 if(opcode[i]==7) // BGTZ
5366 {
5367 emit_cmpimm(s1l,1);
5368 if(invert){
5369 nottaken=(int)out;
5370 emit_jl(1);
5371 }else{
5372 add_to_linker((int)out,ba[i],internal);
5373 emit_jge(0);
5374 }
5375 }
5376 if(invert) {
5377 if(taken) set_jump_target(taken,(int)out);
5378 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5379 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5380 if(adj) {
5381 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5382 add_to_linker((int)out,ba[i],internal);
5383 }else{
5384 emit_addnop(13);
5385 add_to_linker((int)out,ba[i],internal*2);
5386 }
5387 emit_jmp(0);
5388 }else
5389 #endif
5390 {
5391 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5392 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5393 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5394 if(internal)
5395 assem_debug("branch: internal");
5396 else
5397 assem_debug("branch: external");
5398 if(internal&&is_ds[(ba[i]-start)>>2]) {
5399 ds_assemble_entry(i);
5400 }
5401 else {
5402 add_to_linker((int)out,ba[i],internal);
5403 emit_jmp(0);
5404 }
5405 }
5406 set_jump_target(nottaken,(int)out);
5407 }
5408
5409 if(nottaken1) set_jump_target(nottaken1,(int)out);
5410 if(adj) {
5411 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5412 }
5413 } // (!unconditional)
5414 } // if(ooo)
5415 else
5416 {
5417 // In-order execution (branch first)
5418 //if(likely[i]) DebugMessage(M64MSG_VERBOSE, "IOL");
5419 //else
5420 //DebugMessage(M64MSG_VERBOSE, "IOE");
5421 int taken=0,nottaken=0,nottaken1=0;
5422 if(!unconditional&&!nop) {
5423 if(!only32)
5424 {
5425 assert(s1h>=0);
5426 if((opcode[i]&0x2f)==4) // BEQ
5427 {
5428 if(s2h>=0) emit_cmp(s1h,s2h);
5429 else emit_test(s1h,s1h);
5430 nottaken1=(int)out;
5431 emit_jne(2);
5432 }
5433 if((opcode[i]&0x2f)==5) // BNE
5434 {
5435 if(s2h>=0) emit_cmp(s1h,s2h);
5436 else emit_test(s1h,s1h);
5437 taken=(int)out;
5438 emit_jne(1);
5439 }
5440 if((opcode[i]&0x2f)==6) // BLEZ
5441 {
5442 emit_test(s1h,s1h);
5443 taken=(int)out;
5444 emit_js(1);
5445 nottaken1=(int)out;
5446 emit_jne(2);
5447 }
5448 if((opcode[i]&0x2f)==7) // BGTZ
5449 {
5450 emit_test(s1h,s1h);
5451 nottaken1=(int)out;
5452 emit_js(2);
5453 taken=(int)out;
5454 emit_jne(1);
5455 }
5456 } // if(!only32)
5457
5458 //DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5459 assert(s1l>=0);
5460 if((opcode[i]&0x2f)==4) // BEQ
5461 {
5462 if(s2l>=0) emit_cmp(s1l,s2l);
5463 else emit_test(s1l,s1l);
5464 nottaken=(int)out;
5465 emit_jne(2);
5466 }
5467 if((opcode[i]&0x2f)==5) // BNE
5468 {
5469 if(s2l>=0) emit_cmp(s1l,s2l);
5470 else emit_test(s1l,s1l);
5471 nottaken=(int)out;
5472 emit_jeq(2);
5473 }
5474 if((opcode[i]&0x2f)==6) // BLEZ
5475 {
5476 emit_cmpimm(s1l,1);
5477 nottaken=(int)out;
5478 emit_jge(2);
5479 }
5480 if((opcode[i]&0x2f)==7) // BGTZ
5481 {
5482 emit_cmpimm(s1l,1);
5483 nottaken=(int)out;
5484 emit_jl(2);
5485 }
5486 } // if(!unconditional)
5487 int adj;
5488 uint64_t ds_unneeded=branch_regs[i].u;
5489 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5490 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5491 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5492 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5493 ds_unneeded|=1;
5494 ds_unneeded_upper|=1;
5495 // branch taken
5496 if(!nop) {
5497 if(taken) set_jump_target(taken,(int)out);
5498 assem_debug("1:");
5499 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5500 ds_unneeded,ds_unneeded_upper);
5501 // load regs
5502 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5503 address_generation(i+1,&branch_regs[i],0);
5504 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5505 ds_assemble(i+1,&branch_regs[i]);
5506 cc=get_reg(branch_regs[i].regmap,CCREG);
5507 if(cc==-1) {
5508 emit_loadreg(CCREG,cc=HOST_CCREG);
5509 // CHECK: Is the following instruction (fall thru) allocated ok?
5510 }
5511 assert(cc==HOST_CCREG);
5512 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5513 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5514 assem_debug("cycle count (adj)");
5515 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5516 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5517 if(internal)
5518 assem_debug("branch: internal");
5519 else
5520 assem_debug("branch: external");
5521 if(internal&&is_ds[(ba[i]-start)>>2]) {
5522 ds_assemble_entry(i);
5523 }
5524 else {
5525 add_to_linker((int)out,ba[i],internal);
5526 emit_jmp(0);
5527 }
5528 }
5529 // branch not taken
5530 cop1_usable=prev_cop1_usable;
5531 if(!unconditional) {
5532 if(nottaken1) set_jump_target(nottaken1,(int)out);
5533 set_jump_target(nottaken,(int)out);
5534 assem_debug("2:");
5535 if(!likely[i]) {
5536 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5537 ds_unneeded,ds_unneeded_upper);
5538 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5539 address_generation(i+1,&branch_regs[i],0);
5540 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5541 ds_assemble(i+1,&branch_regs[i]);
5542 }
5543 cc=get_reg(branch_regs[i].regmap,CCREG);
5544 if(cc==-1&&!likely[i]) {
5545 // Cycle count isn't in a register, temporarily load it then write it out
5546 emit_loadreg(CCREG,HOST_CCREG);
5547 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5548 int jaddr=(int)out;
5549 emit_jns(0);
5550 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5551 emit_storereg(CCREG,HOST_CCREG);
5552 }
5553 else{
5554 cc=get_reg(i_regmap,CCREG);
5555 assert(cc==HOST_CCREG);
5556 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5557 int jaddr=(int)out;
5558 emit_jns(0);
5559 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5560 }
5561 }
5562 }
5563}
5564
5565static void sjump_assemble(int i,struct regstat *i_regs)
5566{
5567 signed char *i_regmap=i_regs->regmap;
5568 int cc;
5569 int match;
5570 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5571 assem_debug("smatch=%d",match);
5572 int s1h,s1l;
5573 int prev_cop1_usable=cop1_usable;
5574 int unconditional=0,nevertaken=0;
5575 int only32=0;
5576 int invert=0;
5577 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5578 if(i==(ba[i]-start)>>2) assem_debug("idle loop");
5579 if(!match) invert=1;
5580 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5581 if(i>(ba[i]-start)>>2) invert=1;
5582 #endif
5583
5584 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5585 assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5586
5587 if(ooo[i]) {
5588 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5589 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5590 }
5591 else {
5592 s1l=get_reg(i_regmap,rs1[i]);
5593 s1h=get_reg(i_regmap,rs1[i]|64);
5594 }
5595 if(rs1[i]==0)
5596 {
5597 if(opcode2[i]&1) unconditional=1;
5598 else nevertaken=1;
5599 // These are never taken (r0 is never less than zero)
5600 //assert(opcode2[i]!=0);
5601 //assert(opcode2[i]!=2);
5602 //assert(opcode2[i]!=0x10);
5603 //assert(opcode2[i]!=0x12);
5604 }
5605 else {
5606 only32=(regs[i].was32>>rs1[i])&1;
5607 }
5608
5609 if(ooo[i]) {
5610 // Out of order execution (delay slot first)
5611 //DebugMessage(M64MSG_VERBOSE, "OOOE");
5612 address_generation(i+1,i_regs,regs[i].regmap_entry);
5613 ds_assemble(i+1,i_regs);
5614 int adj;
5615 uint64_t bc_unneeded=branch_regs[i].u;
5616 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5617 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5618 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5619 bc_unneeded|=1;
5620 bc_unneeded_upper|=1;
5621 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5622 bc_unneeded,bc_unneeded_upper);
5623 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5624 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5625 if(rt1[i]==31) {
5626 int rt,return_address;
5627 assert(rt1[i+1]!=31);
5628 assert(rt2[i+1]!=31);
5629 rt=get_reg(branch_regs[i].regmap,31);
5630 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5631 if(rt>=0) {
5632 // Save the PC even if the branch is not taken
5633 return_address=start+i*4+8;
5634 emit_movimm(return_address,rt); // PC into link register
5635 #ifdef IMM_PREFETCH
5636 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5637 #endif
5638 }
5639 }
5640 cc=get_reg(branch_regs[i].regmap,CCREG);
5641 assert(cc==HOST_CCREG);
5642 if(unconditional)
5643 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5644 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5645 assem_debug("cycle count (adj)");
5646 if(unconditional) {
5647 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5648 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5649 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5650 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5651 if(internal)
5652 assem_debug("branch: internal");
5653 else
5654 assem_debug("branch: external");
5655 if(internal&&is_ds[(ba[i]-start)>>2]) {
5656 ds_assemble_entry(i);
5657 }
5658 else {
5659 add_to_linker((int)out,ba[i],internal);
5660 emit_jmp(0);
5661 }
5662 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5663 if(((u_int)out)&7) emit_addnop(0);
5664 #endif
5665 }
5666 }
5667 else if(nevertaken) {
5668 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5669 int jaddr=(int)out;
5670 emit_jns(0);
5671 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5672 }
5673 else {
5674 int nottaken=0;
5675 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5676 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5677 if(!only32)
5678 {
5679 assert(s1h>=0);
5680 if(opcode2[i]==0) // BLTZ
5681 {
5682 emit_test(s1h,s1h);
5683 if(invert){
5684 nottaken=(int)out;
5685 emit_jns(1);
5686 }else{
5687 add_to_linker((int)out,ba[i],internal);
5688 emit_js(0);
5689 }
5690 }
5691 if(opcode2[i]==1) // BGEZ
5692 {
5693 emit_test(s1h,s1h);
5694 if(invert){
5695 nottaken=(int)out;
5696 emit_js(1);
5697 }else{
5698 add_to_linker((int)out,ba[i],internal);
5699 emit_jns(0);
5700 }
5701 }
5702 } // if(!only32)
5703 else
5704 {
5705 assert(s1l>=0);
5706 if(opcode2[i]==0) // BLTZ
5707 {
5708 emit_test(s1l,s1l);
5709 if(invert){
5710 nottaken=(int)out;
5711 emit_jns(1);
5712 }else{
5713 add_to_linker((int)out,ba[i],internal);
5714 emit_js(0);
5715 }
5716 }
5717 if(opcode2[i]==1) // BGEZ
5718 {
5719 emit_test(s1l,s1l);
5720 if(invert){
5721 nottaken=(int)out;
5722 emit_js(1);
5723 }else{
5724 add_to_linker((int)out,ba[i],internal);
5725 emit_jns(0);
5726 }
5727 }
5728 } // if(!only32)
5729
5730 if(invert) {
5731 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5732 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5733 if(adj) {
5734 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5735 add_to_linker((int)out,ba[i],internal);
5736 }else{
5737 emit_addnop(13);
5738 add_to_linker((int)out,ba[i],internal*2);
5739 }
5740 emit_jmp(0);
5741 }else
5742 #endif
5743 {
5744 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5745 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5746 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5747 if(internal)
5748 assem_debug("branch: internal");
5749 else
5750 assem_debug("branch: external");
5751 if(internal&&is_ds[(ba[i]-start)>>2]) {
5752 ds_assemble_entry(i);
5753 }
5754 else {
5755 add_to_linker((int)out,ba[i],internal);
5756 emit_jmp(0);
5757 }
5758 }
5759 set_jump_target(nottaken,(int)out);
5760 }
5761
5762 if(adj) {
5763 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5764 }
5765 } // (!unconditional)
5766 } // if(ooo)
5767 else
5768 {
5769 // In-order execution (branch first)
5770 //DebugMessage(M64MSG_VERBOSE, "IOE");
5771 int nottaken=0;
5772 if(!unconditional) {
5773 //DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5774 if(!only32)
5775 {
5776 assert(s1h>=0);
5777 if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5778 {
5779 emit_test(s1h,s1h);
5780 nottaken=(int)out;
5781 emit_jns(1);
5782 }
5783 if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5784 {
5785 emit_test(s1h,s1h);
5786 nottaken=(int)out;
5787 emit_js(1);
5788 }
5789 } // if(!only32)
5790 else
5791 {
5792 assert(s1l>=0);
5793 if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5794 {
5795 emit_test(s1l,s1l);
5796 nottaken=(int)out;
5797 emit_jns(1);
5798 }
5799 if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5800 {
5801 emit_test(s1l,s1l);
5802 nottaken=(int)out;
5803 emit_js(1);
5804 }
5805 }
5806 } // if(!unconditional)
5807 int adj;
5808 uint64_t ds_unneeded=branch_regs[i].u;
5809 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5810 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5811 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5812 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5813 ds_unneeded|=1;
5814 ds_unneeded_upper|=1;
5815 // branch taken
5816 if(!nevertaken) {
5817 //assem_debug("1:");
5818 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5819 ds_unneeded,ds_unneeded_upper);
5820 // load regs
5821 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5822 address_generation(i+1,&branch_regs[i],0);
5823 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5824 ds_assemble(i+1,&branch_regs[i]);
5825 cc=get_reg(branch_regs[i].regmap,CCREG);
5826 if(cc==-1) {
5827 emit_loadreg(CCREG,cc=HOST_CCREG);
5828 // CHECK: Is the following instruction (fall thru) allocated ok?
5829 }
5830 assert(cc==HOST_CCREG);
5831 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5832 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5833 assem_debug("cycle count (adj)");
5834 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5835 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5836 if(internal)
5837 assem_debug("branch: internal");
5838 else
5839 assem_debug("branch: external");
5840 if(internal&&is_ds[(ba[i]-start)>>2]) {
5841 ds_assemble_entry(i);
5842 }
5843 else {
5844 add_to_linker((int)out,ba[i],internal);
5845 emit_jmp(0);
5846 }
5847 }
5848 // branch not taken
5849 cop1_usable=prev_cop1_usable;
5850 if(!unconditional) {
5851 set_jump_target(nottaken,(int)out);
5852 assem_debug("1:");
5853 if(!likely[i]) {
5854 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5855 ds_unneeded,ds_unneeded_upper);
5856 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5857 address_generation(i+1,&branch_regs[i],0);
5858 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5859 ds_assemble(i+1,&branch_regs[i]);
5860 }
5861 cc=get_reg(branch_regs[i].regmap,CCREG);
5862 if(cc==-1&&!likely[i]) {
5863 // Cycle count isn't in a register, temporarily load it then write it out
5864 emit_loadreg(CCREG,HOST_CCREG);
5865 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5866 int jaddr=(int)out;
5867 emit_jns(0);
5868 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5869 emit_storereg(CCREG,HOST_CCREG);
5870 }
5871 else{
5872 cc=get_reg(i_regmap,CCREG);
5873 assert(cc==HOST_CCREG);
5874 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5875 int jaddr=(int)out;
5876 emit_jns(0);
5877 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5878 }
5879 }
5880 }
5881}
5882
5883static void fjump_assemble(int i,struct regstat *i_regs)
5884{
5885 signed char *i_regmap=i_regs->regmap;
5886 int cc;
5887 int match;
5888 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5889 assem_debug("fmatch=%d",match);
5890 int fs,cs;
5891 int eaddr;
5892 int invert=0;
5893 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5894 if(i==(ba[i]-start)>>2) assem_debug("idle loop");
5895 if(!match) invert=1;
5896 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5897 if(i>(ba[i]-start)>>2) invert=1;
5898 #endif
5899
5900 if(ooo[i]) {
5901 fs=get_reg(branch_regs[i].regmap,FSREG);
5902 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
5903 }
5904 else {
5905 fs=get_reg(i_regmap,FSREG);
5906 }
5907
5908 // Check cop1 unusable
5909 if(!cop1_usable) {
5910 cs=get_reg(i_regmap,CSREG);
5911 assert(cs>=0);
5912 emit_testimm(cs,0x20000000);
5913 eaddr=(int)out;
5914 emit_jeq(0);
5915 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
5916 cop1_usable=1;
5917 }
5918
5919 if(ooo[i]) {
5920 // Out of order execution (delay slot first)
5921 //DebugMessage(M64MSG_VERBOSE, "OOOE");
5922 ds_assemble(i+1,i_regs);
5923 int adj;
5924 uint64_t bc_unneeded=branch_regs[i].u;
5925 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5926 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5927 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5928 bc_unneeded|=1;
5929 bc_unneeded_upper|=1;
5930 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5931 bc_unneeded,bc_unneeded_upper);
5932 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5933 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5934 cc=get_reg(branch_regs[i].regmap,CCREG);
5935 assert(cc==HOST_CCREG);
5936 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5937 assem_debug("cycle count (adj)");
5938 if(1) {
5939 int nottaken=0;
5940 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5941 if(1) {
5942 assert(fs>=0);
5943 emit_testimm(fs,0x800000);
5944 if(source[i]&0x10000) // BC1T
5945 {
5946 if(invert){
5947 nottaken=(int)out;
5948 emit_jeq(1);
5949 }else{
5950 add_to_linker((int)out,ba[i],internal);
5951 emit_jne(0);
5952 }
5953 }
5954 else // BC1F
5955 if(invert){
5956 nottaken=(int)out;
5957 emit_jne(1);
5958 }else{
5959 add_to_linker((int)out,ba[i],internal);
5960 emit_jeq(0);
5961 }
5962 {
5963 }
5964 } // if(!only32)
5965
5966 if(invert) {
5967 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5968 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5969 else if(match) emit_addnop(13);
5970 #endif
5971 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5972 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5973 if(internal)
5974 assem_debug("branch: internal");
5975 else
5976 assem_debug("branch: external");
5977 if(internal&&is_ds[(ba[i]-start)>>2]) {
5978 ds_assemble_entry(i);
5979 }
5980 else {
5981 add_to_linker((int)out,ba[i],internal);
5982 emit_jmp(0);
5983 }
5984 set_jump_target(nottaken,(int)out);
5985 }
5986
5987 if(adj) {
5988 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5989 }
5990 } // (!unconditional)
5991 } // if(ooo)
5992 else
5993 {
5994 // In-order execution (branch first)
5995 //DebugMessage(M64MSG_VERBOSE, "IOE");
5996 int nottaken=0;
5997 if(1) {
5998 //DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5999 if(1) {
6000 assert(fs>=0);
6001 emit_testimm(fs,0x800000);
6002 if(source[i]&0x10000) // BC1T
6003 {
6004 nottaken=(int)out;
6005 emit_jeq(1);
6006 }
6007 else // BC1F
6008 {
6009 nottaken=(int)out;
6010 emit_jne(1);
6011 }
6012 }
6013 } // if(!unconditional)
6014 int adj;
6015 uint64_t ds_unneeded=branch_regs[i].u;
6016 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6017 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6018 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6019 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6020 ds_unneeded|=1;
6021 ds_unneeded_upper|=1;
6022 // branch taken
6023 //assem_debug("1:");
6024 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6025 ds_unneeded,ds_unneeded_upper);
6026 // load regs
6027 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6028 address_generation(i+1,&branch_regs[i],0);
6029 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6030 ds_assemble(i+1,&branch_regs[i]);
6031 cc=get_reg(branch_regs[i].regmap,CCREG);
6032 if(cc==-1) {
6033 emit_loadreg(CCREG,cc=HOST_CCREG);
6034 // CHECK: Is the following instruction (fall thru) allocated ok?
6035 }
6036 assert(cc==HOST_CCREG);
6037 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6038 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6039 assem_debug("cycle count (adj)");
6040 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6041 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6042 if(internal)
6043 assem_debug("branch: internal");
6044 else
6045 assem_debug("branch: external");
6046 if(internal&&is_ds[(ba[i]-start)>>2]) {
6047 ds_assemble_entry(i);
6048 }
6049 else {
6050 add_to_linker((int)out,ba[i],internal);
6051 emit_jmp(0);
6052 }
6053
6054 // branch not taken
6055 if(1) { // <- FIXME (don't need this)
6056 set_jump_target(nottaken,(int)out);
6057 assem_debug("1:");
6058 if(!likely[i]) {
6059 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6060 ds_unneeded,ds_unneeded_upper);
6061 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6062 address_generation(i+1,&branch_regs[i],0);
6063 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6064 ds_assemble(i+1,&branch_regs[i]);
6065 }
6066 cc=get_reg(branch_regs[i].regmap,CCREG);
6067 if(cc==-1&&!likely[i]) {
6068 // Cycle count isn't in a register, temporarily load it then write it out
6069 emit_loadreg(CCREG,HOST_CCREG);
6070 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6071 int jaddr=(int)out;
6072 emit_jns(0);
6073 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6074 emit_storereg(CCREG,HOST_CCREG);
6075 }
6076 else{
6077 cc=get_reg(i_regmap,CCREG);
6078 assert(cc==HOST_CCREG);
6079 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6080 int jaddr=(int)out;
6081 emit_jns(0);
6082 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6083 }
6084 }
6085 }
6086}
6087
6088static void pagespan_assemble(int i,struct regstat *i_regs)
6089{
6090 int s1l=get_reg(i_regs->regmap,rs1[i]);
6091 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6092 int s2l=get_reg(i_regs->regmap,rs2[i]);
6093 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6094 int taken=0;
6095 int nottaken=0;
6096 int unconditional=0;
6097 if(rs1[i]==0)
6098 {
6099 s1l=s2l;s1h=s2h;
6100 s2l=s2h=-1;
6101 }
6102 else if(rs2[i]==0)
6103 {
6104 s2l=s2h=-1;
6105 }
6106 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6107 s1h=s2h=-1;
6108 }
6109 int hr=0;
6110 int addr,alt,ntaddr;
6111 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6112 else {
6113 while(hr<HOST_REGS)
6114 {
6115 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6116 (i_regs->regmap[hr]&63)!=rs1[i] &&
6117 (i_regs->regmap[hr]&63)!=rs2[i] )
6118 {
6119 addr=hr++;break;
6120 }
6121 hr++;
6122 }
6123 }
6124 while(hr<HOST_REGS)
6125 {
6126 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6127 (i_regs->regmap[hr]&63)!=rs1[i] &&
6128 (i_regs->regmap[hr]&63)!=rs2[i] )
6129 {
6130 alt=hr++;break;
6131 }
6132 hr++;
6133 }
6134 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6135 {
6136 while(hr<HOST_REGS)
6137 {
6138 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6139 (i_regs->regmap[hr]&63)!=rs1[i] &&
6140 (i_regs->regmap[hr]&63)!=rs2[i] )
6141 {
6142 ntaddr=hr;break;
6143 }
6144 hr++;
6145 }
6146 }
6147 assert(hr<HOST_REGS);
6148 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6149 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6150 }
6151 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6152 if(opcode[i]==2) // J
6153 {
6154 unconditional=1;
6155 }
6156 if(opcode[i]==3) // JAL
6157 {
6158 // TODO: mini_ht
6159 int rt=get_reg(i_regs->regmap,31);
6160 emit_movimm(start+i*4+8,rt);
6161 unconditional=1;
6162 }
6163 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6164 {
6165 emit_mov(s1l,addr);
6166 if(opcode2[i]==9) // JALR
6167 {
6168 int rt=get_reg(i_regs->regmap,rt1[i]);
6169 emit_movimm(start+i*4+8,rt);
6170 }
6171 }
6172 if((opcode[i]&0x3f)==4) // BEQ
6173 {
6174 if(rs1[i]==rs2[i])
6175 {
6176 unconditional=1;
6177 }
6178 else
6179 #ifdef HAVE_CMOV_IMM
6180 if(s1h<0) {
6181 if(s2l>=0) emit_cmp(s1l,s2l);
6182 else emit_test(s1l,s1l);
6183 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6184 }
6185 else
6186 #endif
6187 {
6188 assert(s1l>=0);
6189 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6190 if(s1h>=0) {
6191 if(s2h>=0) emit_cmp(s1h,s2h);
6192 else emit_test(s1h,s1h);
6193 emit_cmovne_reg(alt,addr);
6194 }
6195 if(s2l>=0) emit_cmp(s1l,s2l);
6196 else emit_test(s1l,s1l);
6197 emit_cmovne_reg(alt,addr);
6198 }
6199 }
6200 if((opcode[i]&0x3f)==5) // BNE
6201 {
6202 #ifdef HAVE_CMOV_IMM
6203 if(s1h<0) {
6204 if(s2l>=0) emit_cmp(s1l,s2l);
6205 else emit_test(s1l,s1l);
6206 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6207 }
6208 else
6209 #endif
6210 {
6211 assert(s1l>=0);
6212 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6213 if(s1h>=0) {
6214 if(s2h>=0) emit_cmp(s1h,s2h);
6215 else emit_test(s1h,s1h);
6216 emit_cmovne_reg(alt,addr);
6217 }
6218 if(s2l>=0) emit_cmp(s1l,s2l);
6219 else emit_test(s1l,s1l);
6220 emit_cmovne_reg(alt,addr);
6221 }
6222 }
6223 if((opcode[i]&0x3f)==0x14) // BEQL
6224 {
6225 if(s1h>=0) {
6226 if(s2h>=0) emit_cmp(s1h,s2h);
6227 else emit_test(s1h,s1h);
6228 nottaken=(int)out;
6229 emit_jne(0);
6230 }
6231 if(s2l>=0) emit_cmp(s1l,s2l);
6232 else emit_test(s1l,s1l);
6233 if(nottaken) set_jump_target(nottaken,(int)out);
6234 nottaken=(int)out;
6235 emit_jne(0);
6236 }
6237 if((opcode[i]&0x3f)==0x15) // BNEL
6238 {
6239 if(s1h>=0) {
6240 if(s2h>=0) emit_cmp(s1h,s2h);
6241 else emit_test(s1h,s1h);
6242 taken=(int)out;
6243 emit_jne(0);
6244 }
6245 if(s2l>=0) emit_cmp(s1l,s2l);
6246 else emit_test(s1l,s1l);
6247 nottaken=(int)out;
6248 emit_jeq(0);
6249 if(taken) set_jump_target(taken,(int)out);
6250 }
6251 if((opcode[i]&0x3f)==6) // BLEZ
6252 {
6253 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6254 emit_cmpimm(s1l,1);
6255 if(s1h>=0) emit_mov(addr,ntaddr);
6256 emit_cmovl_reg(alt,addr);
6257 if(s1h>=0) {
6258 emit_test(s1h,s1h);
6259 emit_cmovne_reg(ntaddr,addr);
6260 emit_cmovs_reg(alt,addr);
6261 }
6262 }
6263 if((opcode[i]&0x3f)==7) // BGTZ
6264 {
6265 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6266 emit_cmpimm(s1l,1);
6267 if(s1h>=0) emit_mov(addr,alt);
6268 emit_cmovl_reg(ntaddr,addr);
6269 if(s1h>=0) {
6270 emit_test(s1h,s1h);
6271 emit_cmovne_reg(alt,addr);
6272 emit_cmovs_reg(ntaddr,addr);
6273 }
6274 }
6275 if((opcode[i]&0x3f)==0x16) // BLEZL
6276 {
6277 assert((opcode[i]&0x3f)!=0x16);
6278 }
6279 if((opcode[i]&0x3f)==0x17) // BGTZL
6280 {
6281 assert((opcode[i]&0x3f)!=0x17);
6282 }
6283 assert(opcode[i]!=1); // BLTZ/BGEZ
6284
6285 //FIXME: Check CSREG
6286 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6287 if((source[i]&0x30000)==0) // BC1F
6288 {
6289 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6290 emit_testimm(s1l,0x800000);
6291 emit_cmovne_reg(alt,addr);
6292 }
6293 if((source[i]&0x30000)==0x10000) // BC1T
6294 {
6295 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6296 emit_testimm(s1l,0x800000);
6297 emit_cmovne_reg(alt,addr);
6298 }
6299 if((source[i]&0x30000)==0x20000) // BC1FL
6300 {
6301 emit_testimm(s1l,0x800000);
6302 nottaken=(int)out;
6303 emit_jne(0);
6304 }
6305 if((source[i]&0x30000)==0x30000) // BC1TL
6306 {
6307 emit_testimm(s1l,0x800000);
6308 nottaken=(int)out;
6309 emit_jeq(0);
6310 }
6311 }
6312
6313 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6314 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6315 if(likely[i]||unconditional)
6316 {
6317 emit_movimm(ba[i],HOST_BTREG);
6318 }
6319 else if(addr!=HOST_BTREG)
6320 {
6321 emit_mov(addr,HOST_BTREG);
6322 }
6323 void *branch_addr=out;
6324 emit_jmp(0);
6325 int target_addr=start+i*4+5;
6326 void *stub=out;
6327 void *compiled_target_addr=check_addr(target_addr);
6328 emit_extjump_ds((int)branch_addr,target_addr);
6329 if(compiled_target_addr) {
6330 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6331 add_link(target_addr,stub);
6332 }
6333 else set_jump_target((int)branch_addr,(int)stub);
6334 if(likely[i]) {
6335 // Not-taken path
6336 set_jump_target((int)nottaken,(int)out);
6337 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6338 void *branch_addr=out;
6339 emit_jmp(0);
6340 int target_addr=start+i*4+8;
6341 void *stub=out;
6342 void *compiled_target_addr=check_addr(target_addr);
6343 emit_extjump_ds((int)branch_addr,target_addr);
6344 if(compiled_target_addr) {
6345 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6346 add_link(target_addr,stub);
6347 }
6348 else set_jump_target((int)branch_addr,(int)stub);
6349 }
6350}
6351
6352// Assemble the delay slot for the above
6353static void pagespan_ds()
6354{
6355 assem_debug("initial delay slot:");
6356 u_int vaddr=start+1;
6357 u_int page=(0x80000000^vaddr)>>12;
6358 u_int vpage=page;
6359 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[page^0x80000]^0x80000000)>>12;
6360 if(page>2048) page=2048+(page&2047);
6361 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
6362 if(vpage>2048) vpage=2048+(vpage&2047);
6363 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6364 do_dirty_stub_ds();
6365 ll_add(jump_in+page,vaddr,(void *)out);
6366 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6367 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6368 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6369 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6370 emit_writeword(HOST_BTREG,(int)&branch_target);
6371 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6372 address_generation(0,&regs[0],regs[0].regmap_entry);
6373 if(itype[0]==LOAD||itype[0]==LOADLR||itype[0]==STORE||itype[0]==STORELR||itype[0]==C1LS)
6374 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,MMREG,ROREG);
6375 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39)
6376 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6377 cop1_usable=0;
6378 is_delayslot=0;
6379 switch(itype[0]) {
6380 case ALU:
6381 alu_assemble(0,&regs[0]);break;
6382 case IMM16:
6383 imm16_assemble(0,&regs[0]);break;
6384 case SHIFT:
6385 shift_assemble(0,&regs[0]);break;
6386 case SHIFTIMM:
6387 shiftimm_assemble(0,&regs[0]);break;
6388 case LOAD:
6389 load_assemble(0,&regs[0]);break;
6390 case LOADLR:
6391 loadlr_assemble(0,&regs[0]);break;
6392 case STORE:
6393 store_assemble(0,&regs[0]);break;
6394 case STORELR:
6395 storelr_assemble(0,&regs[0]);break;
6396 case COP0:
6397 cop0_assemble(0,&regs[0]);break;
6398 case COP1:
6399 cop1_assemble(0,&regs[0]);break;
6400 case C1LS:
6401 c1ls_assemble(0,&regs[0]);break;
6402 case FCONV:
6403 fconv_assemble(0,&regs[0]);break;
6404 case FLOAT:
6405 float_assemble(0,&regs[0]);break;
6406 case FCOMP:
6407 fcomp_assemble(0,&regs[0]);break;
6408 case MULTDIV:
6409 multdiv_assemble(0,&regs[0]);break;
6410 case MOV:
6411 mov_assemble(0,&regs[0]);break;
6412 case SYSCALL:
6413 case SPAN:
6414 case UJUMP:
6415 case RJUMP:
6416 case CJUMP:
6417 case SJUMP:
6418 case FJUMP:
6419 DebugMessage(M64MSG_VERBOSE, "Jump in the delay slot. This is probably a bug.");
6420 }
6421 int btaddr=get_reg(regs[0].regmap,BTREG);
6422 if(btaddr<0) {
6423 btaddr=get_reg(regs[0].regmap,-1);
6424 emit_readword((int)&branch_target,btaddr);
6425 }
6426 assert(btaddr!=HOST_CCREG);
6427 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6428#ifdef HOST_IMM8
6429 emit_movimm(start+4,HOST_TEMPREG);
6430 emit_cmp(btaddr,HOST_TEMPREG);
6431#else
6432 emit_cmpimm(btaddr,start+4);
6433#endif
6434 int branch=(int)out;
6435 emit_jeq(0);
6436 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6437 emit_jmp(jump_vaddr_reg[btaddr]);
6438 set_jump_target(branch,(int)out);
6439 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6440 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6441}
6442
6443// Basic liveness analysis for MIPS registers
6444static void unneeded_registers(int istart,int iend,int r)
6445{
6446 int i;
6447 uint64_t u,uu,b,bu;
6448 uint64_t temp_u,temp_uu;
6449 uint64_t tdep;
6450 if(iend==slen-1) {
6451 u=1;uu=1;
6452 }else{
6453 u=unneeded_reg[iend+1];
6454 uu=unneeded_reg_upper[iend+1];
6455 u=1;uu=1;
6456 }
6457 for (i=iend;i>=istart;i--)
6458 {
6459 //DebugMessage(M64MSG_VERBOSE, "unneeded registers i=%d (%d,%d) r=%d",i,istart,iend,r);
6460 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6461 {
6462 // If subroutine call, flag return address as a possible branch target
6463 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6464
6465 if(ba[i]<start || ba[i]>=(start+slen*4))
6466 {
6467 // Branch out of this block, flush all regs
6468 u=1;
6469 uu=1;
6470 /* Hexagon hack
6471 if(itype[i]==UJUMP&&rt1[i]==31)
6472 {
6473 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6474 }
6475 if(itype[i]==RJUMP&&rs1[i]==31)
6476 {
6477 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6478 }
6479 if(start>0x80000400&&start<0x80800000) {
6480 if(itype[i]==UJUMP&&rt1[i]==31)
6481 {
6482 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6483 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6484 }
6485 if(itype[i]==RJUMP&&rs1[i]==31)
6486 {
6487 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6488 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6489 }
6490 }*/
6491 branch_unneeded_reg[i]=u;
6492 branch_unneeded_reg_upper[i]=uu;
6493 // Merge in delay slot
6494 tdep=(~uu>>rt1[i+1])&1;
6495 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6496 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6497 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6498 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6499 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6500 u|=1;uu|=1;
6501 // If branch is "likely" (and conditional)
6502 // then we skip the delay slot on the fall-thru path
6503 if(likely[i]) {
6504 if(i<slen-1) {
6505 u&=unneeded_reg[i+2];
6506 uu&=unneeded_reg_upper[i+2];
6507 }
6508 else
6509 {
6510 u=1;
6511 uu=1;
6512 }
6513 }
6514 }
6515 else
6516 {
6517 // Internal branch, flag target
6518 bt[(ba[i]-start)>>2]=1;
6519 if(ba[i]<=start+i*4) {
6520 // Backward branch
6521 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6522 {
6523 // Unconditional branch
6524 temp_u=1;temp_uu=1;
6525 } else {
6526 // Conditional branch (not taken case)
6527 temp_u=unneeded_reg[i+2];
6528 temp_uu=unneeded_reg_upper[i+2];
6529 }
6530 // Merge in delay slot
6531 tdep=(~temp_uu>>rt1[i+1])&1;
6532 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6533 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6534 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6535 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6536 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6537 temp_u|=1;temp_uu|=1;
6538 // If branch is "likely" (and conditional)
6539 // then we skip the delay slot on the fall-thru path
6540 if(likely[i]) {
6541 if(i<slen-1) {
6542 temp_u&=unneeded_reg[i+2];
6543 temp_uu&=unneeded_reg_upper[i+2];
6544 }
6545 else
6546 {
6547 temp_u=1;
6548 temp_uu=1;
6549 }
6550 }
6551 tdep=(~temp_uu>>rt1[i])&1;
6552 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6553 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6554 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6555 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6556 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6557 temp_u|=1;temp_uu|=1;
6558 unneeded_reg[i]=temp_u;
6559 unneeded_reg_upper[i]=temp_uu;
6560 // Only go three levels deep. This recursion can take an
6561 // excessive amount of time if there are a lot of nested loops.
6562 if(r<2) {
6563 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6564 }else{
6565 unneeded_reg[(ba[i]-start)>>2]=1;
6566 unneeded_reg_upper[(ba[i]-start)>>2]=1;
6567 }
6568 } /*else*/ if(1) {
6569 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6570 {
6571 // Unconditional branch
6572 u=unneeded_reg[(ba[i]-start)>>2];
6573 uu=unneeded_reg_upper[(ba[i]-start)>>2];
6574 branch_unneeded_reg[i]=u;
6575 branch_unneeded_reg_upper[i]=uu;
6576 //u=1;
6577 //uu=1;
6578 //branch_unneeded_reg[i]=u;
6579 //branch_unneeded_reg_upper[i]=uu;
6580 // Merge in delay slot
6581 tdep=(~uu>>rt1[i+1])&1;
6582 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6583 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6584 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6585 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6586 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6587 u|=1;uu|=1;
6588 } else {
6589 // Conditional branch
6590 b=unneeded_reg[(ba[i]-start)>>2];
6591 bu=unneeded_reg_upper[(ba[i]-start)>>2];
6592 branch_unneeded_reg[i]=b;
6593 branch_unneeded_reg_upper[i]=bu;
6594 //b=1;
6595 //bu=1;
6596 //branch_unneeded_reg[i]=b;
6597 //branch_unneeded_reg_upper[i]=bu;
6598 // Branch delay slot
6599 tdep=(~uu>>rt1[i+1])&1;
6600 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6601 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6602 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6603 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6604 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6605 b|=1;bu|=1;
6606 // If branch is "likely" then we skip the
6607 // delay slot on the fall-thru path
6608 if(likely[i]) {
6609 u=b;
6610 uu=bu;
6611 if(i<slen-1) {
6612 u&=unneeded_reg[i+2];
6613 uu&=unneeded_reg_upper[i+2];
6614 //u=1;
6615 //uu=1;
6616 }
6617 } else {
6618 u&=b;
6619 uu&=bu;
6620 //u=1;
6621 //uu=1;
6622 }
6623 if(i<slen-1) {
6624 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6625 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6626 //branch_unneeded_reg[i]=1;
6627 //branch_unneeded_reg_upper[i]=1;
6628 } else {
6629 branch_unneeded_reg[i]=1;
6630 branch_unneeded_reg_upper[i]=1;
6631 }
6632 }
6633 }
6634 }
6635 }
6636 else if(itype[i]==SYSCALL)
6637 {
6638 // SYSCALL instruction (software interrupt)
6639 u=1;
6640 uu=1;
6641 }
6642 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6643 {
6644 // ERET instruction (return from interrupt)
6645 u=1;
6646 uu=1;
6647 }
6648 //u=uu=1; // DEBUG
6649 tdep=(~uu>>rt1[i])&1;
6650 // Written registers are unneeded
6651 u|=1LL<<rt1[i];
6652 u|=1LL<<rt2[i];
6653 uu|=1LL<<rt1[i];
6654 uu|=1LL<<rt2[i];
6655 // Accessed registers are needed
6656 u&=~(1LL<<rs1[i]);
6657 u&=~(1LL<<rs2[i]);
6658 uu&=~(1LL<<us1[i]);
6659 uu&=~(1LL<<us2[i]);
6660 // Source-target dependencies
6661 uu&=~(tdep<<dep1[i]);
6662 uu&=~(tdep<<dep2[i]);
6663 // R0 is always unneeded
6664 u|=1;uu|=1;
6665 // Save it
6666 unneeded_reg[i]=u;
6667 unneeded_reg_upper[i]=uu;
6668 /*
6669 DebugMessage(M64MSG_VERBOSE, "ur (%d,%d) %x: ",istart,iend,start+i*4);
6670 DebugMessage(M64MSG_VERBOSE, "U:");
6671 int r;
6672 for(r=1;r<=CCREG;r++) {
6673 if((unneeded_reg[i]>>r)&1) {
6674 if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
6675 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
6676 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
6677 }
6678 }
6679 DebugMessage(M64MSG_VERBOSE, " UU:");
6680 for(r=1;r<=CCREG;r++) {
6681 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6682 if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
6683 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
6684 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
6685 }
6686 }*/
6687 }
6688}
6689
6690// Identify registers which are likely to contain 32-bit values
6691// This is used to predict whether any branches will jump to a
6692// location with 64-bit values in registers.
6693static void provisional_32bit()
6694{
6695 int i,j;
6696 uint64_t is32=1;
6697 uint64_t lastbranch=1;
6698
6699 for(i=0;i<slen;i++)
6700 {
6701 if(i>0) {
6702 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6703 if(i>1) is32=lastbranch;
6704 else is32=1;
6705 }
6706 }
6707 if(i>1)
6708 {
6709 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6710 if(likely[i-2]) {
6711 if(i>2) is32=lastbranch;
6712 else is32=1;
6713 }
6714 }
6715 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6716 {
6717 if(rs1[i-2]==0||rs2[i-2]==0)
6718 {
6719 if(rs1[i-2]) {
6720 is32|=1LL<<rs1[i-2];
6721 }
6722 if(rs2[i-2]) {
6723 is32|=1LL<<rs2[i-2];
6724 }
6725 }
6726 }
6727 }
6728 // If something jumps here with 64-bit values
6729 // then promote those registers to 64 bits
6730 if(bt[i])
6731 {
6732 uint64_t temp_is32=is32;
6733 for(j=i-1;j>=0;j--)
6734 {
6735 if(ba[j]==start+i*4)
6736 //temp_is32&=branch_regs[j].is32;
6737 temp_is32&=p32[j];
6738 }
6739 for(j=i;j<slen;j++)
6740 {
6741 if(ba[j]==start+i*4)
6742 temp_is32=1;
6743 }
6744 is32=temp_is32;
6745 }
6746 int type=itype[i];
6747 int op=opcode[i];
6748 int op2=opcode2[i];
6749 int rt=rt1[i];
6750 int s1=rs1[i];
6751 int s2=rs2[i];
6752 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6753 // Branches don't write registers, consider the delay slot instead.
6754 type=itype[i+1];
6755 op=opcode[i+1];
6756 op2=opcode2[i+1];
6757 rt=rt1[i+1];
6758 s1=rs1[i+1];
6759 s2=rs2[i+1];
6760 lastbranch=is32;
6761 }
6762 switch(type) {
6763 case LOAD:
6764 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6765 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6766 is32&=~(1LL<<rt);
6767 else
6768 is32|=1LL<<rt;
6769 break;
6770 case STORE:
6771 case STORELR:
6772 break;
6773 case LOADLR:
6774 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6775 if(op==0x22) is32|=1LL<<rt; // LWL
6776 break;
6777 case IMM16:
6778 if (op==0x08||op==0x09|| // ADDI/ADDIU
6779 op==0x0a||op==0x0b|| // SLTI/SLTIU
6780 op==0x0c|| // ANDI
6781 op==0x0f) // LUI
6782 {
6783 is32|=1LL<<rt;
6784 }
6785 if(op==0x18||op==0x19) { // DADDI/DADDIU
6786 is32&=~(1LL<<rt);
6787 //if(imm[i]==0)
6788 // is32|=((is32>>s1)&1LL)<<rt;
6789 }
6790 if(op==0x0d||op==0x0e) { // ORI/XORI
6791 uint64_t sr=((is32>>s1)&1LL);
6792 is32&=~(1LL<<rt);
6793 is32|=sr<<rt;
6794 }
6795 break;
6796 case UJUMP:
6797 break;
6798 case RJUMP:
6799 break;
6800 case CJUMP:
6801 break;
6802 case SJUMP:
6803 break;
6804 case FJUMP:
6805 break;
6806 case ALU:
6807 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6808 is32|=1LL<<rt;
6809 }
6810 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6811 is32|=1LL<<rt;
6812 }
6813 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6814 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6815 is32&=~(1LL<<rt);
6816 is32|=sr<<rt;
6817 }
6818 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6819 if(s1==0&&s2==0) {
6820 is32|=1LL<<rt;
6821 }
6822 else if(s2==0) {
6823 uint64_t sr=((is32>>s1)&1LL);
6824 is32&=~(1LL<<rt);
6825 is32|=sr<<rt;
6826 }
6827 else if(s1==0) {
6828 uint64_t sr=((is32>>s2)&1LL);
6829 is32&=~(1LL<<rt);
6830 is32|=sr<<rt;
6831 }
6832 else {
6833 is32&=~(1LL<<rt);
6834 }
6835 }
6836 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
6837 if(s1==0&&s2==0) {
6838 is32|=1LL<<rt;
6839 }
6840 else if(s2==0) {
6841 uint64_t sr=((is32>>s1)&1LL);
6842 is32&=~(1LL<<rt);
6843 is32|=sr<<rt;
6844 }
6845 else {
6846 is32&=~(1LL<<rt);
6847 }
6848 }
6849 break;
6850 case MULTDIV:
6851 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
6852 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
6853 }
6854 else {
6855 is32|=(1LL<<HIREG)|(1LL<<LOREG);
6856 }
6857 break;
6858 case MOV:
6859 {
6860 uint64_t sr=((is32>>s1)&1LL);
6861 is32&=~(1LL<<rt);
6862 is32|=sr<<rt;
6863 }
6864 break;
6865 case SHIFT:
6866 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
6867 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
6868 break;
6869 case SHIFTIMM:
6870 is32|=1LL<<rt;
6871 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
6872 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
6873 break;
6874 case COP0:
6875 if(op2==0) is32|=1LL<<rt; // MFC0
6876 break;
6877 case COP1:
6878 if(op2==0) is32|=1LL<<rt; // MFC1
6879 if(op2==1) is32&=~(1LL<<rt); // DMFC1
6880 if(op2==2) is32|=1LL<<rt; // CFC1
6881 break;
6882 case C1LS:
6883 break;
6884 case FLOAT:
6885 case FCONV:
6886 break;
6887 case FCOMP:
6888 break;
6889 case SYSCALL:
6890 break;
6891 default:
6892 break;
6893 }
6894 is32|=1;
6895 p32[i]=is32;
6896
6897 if(i>0)
6898 {
6899 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
6900 {
6901 if(rt1[i-1]==31) // JAL/JALR
6902 {
6903 // Subroutine call will return here, don't alloc any registers
6904 is32=1;
6905 }
6906 else if(i+1<slen)
6907 {
6908 // Internal branch will jump here, match registers to caller
6909 is32=0x3FFFFFFFFLL;
6910 }
6911 }
6912 }
6913 }
6914}
6915
6916// Identify registers which may be assumed to contain 32-bit values
6917// and where optimizations will rely on this.
6918// This is used to determine whether backward branches can safely
6919// jump to a location with 64-bit values in registers.
6920static void provisional_r32()
6921{
6922 u_int r32=0;
6923 int i;
6924
6925 for (i=slen-1;i>=0;i--)
6926 {
6927 int hr;
6928 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6929 {
6930 if(ba[i]<start || ba[i]>=(start+slen*4))
6931 {
6932 // Branch out of this block, don't need anything
6933 r32=0;
6934 }
6935 else
6936 {
6937 // Internal branch
6938 // Need whatever matches the target
6939 // (and doesn't get overwritten by the delay slot instruction)
6940 r32=0;
6941 int t=(ba[i]-start)>>2;
6942 if(ba[i]>start+i*4) {
6943 // Forward branch
6944 //if(!(requires_32bit[t]&~regs[i].was32))
6945 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
6946 if(!(pr32[t]&~regs[i].was32))
6947 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
6948 }else{
6949 // Backward branch
6950 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
6951 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
6952 }
6953 }
6954 // Conditional branch may need registers for following instructions
6955 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
6956 {
6957 if(i<slen-2) {
6958 //r32|=requires_32bit[i+2];
6959 r32|=pr32[i+2];
6960 r32&=regs[i].was32;
6961 // Mark this address as a branch target since it may be called
6962 // upon return from interrupt
6963 //bt[i+2]=1;
6964 }
6965 }
6966 // Merge in delay slot
6967 if(!likely[i]) {
6968 // These are overwritten unless the branch is "likely"
6969 // and the delay slot is nullified if not taken
6970 r32&=~(1LL<<rt1[i+1]);
6971 r32&=~(1LL<<rt2[i+1]);
6972 }
6973 // Assume these are needed (delay slot)
6974 if(us1[i+1]>0)
6975 {
6976 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
6977 }
6978 if(us2[i+1]>0)
6979 {
6980 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
6981 }
6982 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
6983 {
6984 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
6985 }
6986 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
6987 {
6988 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
6989 }
6990 }
6991 else if(itype[i]==SYSCALL)
6992 {
6993 // SYSCALL instruction (software interrupt)
6994 r32=0;
6995 }
6996 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6997 {
6998 // ERET instruction (return from interrupt)
6999 r32=0;
7000 }
7001 // Check 32 bits
7002 r32&=~(1LL<<rt1[i]);
7003 r32&=~(1LL<<rt2[i]);
7004 if(us1[i]>0)
7005 {
7006 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7007 }
7008 if(us2[i]>0)
7009 {
7010 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7011 }
7012 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7013 {
7014 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7015 }
7016 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7017 {
7018 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7019 }
7020 //requires_32bit[i]=r32;
7021 pr32[i]=r32;
7022
7023 // Dirty registers which are 32-bit, require 32-bit input
7024 // as they will be written as 32-bit values
7025 for(hr=0;hr<HOST_REGS;hr++)
7026 {
7027 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7028 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7029 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7030 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7031 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7032 }
7033 }
7034 }
7035 }
7036}
7037
7038// Write back dirty registers as soon as we will no longer modify them,
7039// so that we don't end up with lots of writes at the branches.
7040static void clean_registers(int istart,int iend,int wr)
7041{
7042 int i;
7043 int r;
7044 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7045 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7046 if(iend==slen-1) {
7047 will_dirty_i=will_dirty_next=0;
7048 wont_dirty_i=wont_dirty_next=0;
7049 }else{
7050 will_dirty_i=will_dirty_next=will_dirty[iend+1];
7051 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7052 }
7053 for (i=iend;i>=istart;i--)
7054 {
7055 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7056 {
7057 if(ba[i]<start || ba[i]>=(start+slen*4))
7058 {
7059 // Branch out of this block, flush all regs
7060 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7061 {
7062 // Unconditional branch
7063 will_dirty_i=0;
7064 wont_dirty_i=0;
7065 // Merge in delay slot (will dirty)
7066 for(r=0;r<HOST_REGS;r++) {
7067 if(r!=EXCLUDE_REG) {
7068 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7069 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7070 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7071 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7072 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7073 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7074 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7075 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7076 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7077 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7078 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7079 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7080 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7081 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7082 }
7083 }
7084 }
7085 else
7086 {
7087 // Conditional branch
7088 will_dirty_i=0;
7089 wont_dirty_i=wont_dirty_next;
7090 // Merge in delay slot (will dirty)
7091 for(r=0;r<HOST_REGS;r++) {
7092 if(r!=EXCLUDE_REG) {
7093 if(!likely[i]) {
7094 // Might not dirty if likely branch is not taken
7095 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7096 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7097 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7098 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7099 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7100 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7101 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7102 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7103 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7104 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7105 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7106 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7107 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7108 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7109 }
7110 }
7111 }
7112 }
7113 // Merge in delay slot (wont dirty)
7114 for(r=0;r<HOST_REGS;r++) {
7115 if(r!=EXCLUDE_REG) {
7116 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7117 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7118 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7119 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7120 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7121 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7122 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7123 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7124 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7125 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7126 }
7127 }
7128 if(wr) {
7129 #ifndef DESTRUCTIVE_WRITEBACK
7130 branch_regs[i].dirty&=wont_dirty_i;
7131 #endif
7132 branch_regs[i].dirty|=will_dirty_i;
7133 }
7134 }
7135 else
7136 {
7137 // Internal branch
7138 if(ba[i]<=start+i*4) {
7139 // Backward branch
7140 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7141 {
7142 // Unconditional branch
7143 temp_will_dirty=0;
7144 temp_wont_dirty=0;
7145 // Merge in delay slot (will dirty)
7146 for(r=0;r<HOST_REGS;r++) {
7147 if(r!=EXCLUDE_REG) {
7148 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7149 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7150 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7151 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7152 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7153 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7154 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7155 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7156 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7157 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7158 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7159 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7160 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7161 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7162 }
7163 }
7164 } else {
7165 // Conditional branch (not taken case)
7166 temp_will_dirty=will_dirty_next;
7167 temp_wont_dirty=wont_dirty_next;
7168 // Merge in delay slot (will dirty)
7169 for(r=0;r<HOST_REGS;r++) {
7170 if(r!=EXCLUDE_REG) {
7171 if(!likely[i]) {
7172 // Will not dirty if likely branch is not taken
7173 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7174 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7175 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7176 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7177 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7178 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7179 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7180 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7181 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7182 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7183 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7184 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7185 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7186 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7187 }
7188 }
7189 }
7190 }
7191 // Merge in delay slot (wont dirty)
7192 for(r=0;r<HOST_REGS;r++) {
7193 if(r!=EXCLUDE_REG) {
7194 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7195 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7196 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7197 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7198 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7199 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7200 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7201 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7202 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7203 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7204 }
7205 }
7206 // Deal with changed mappings
7207 if(i<iend) {
7208 for(r=0;r<HOST_REGS;r++) {
7209 if(r!=EXCLUDE_REG) {
7210 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7211 temp_will_dirty&=~(1<<r);
7212 temp_wont_dirty&=~(1<<r);
7213 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7214 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7215 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7216 } else {
7217 temp_will_dirty|=1<<r;
7218 temp_wont_dirty|=1<<r;
7219 }
7220 }
7221 }
7222 }
7223 }
7224 if(wr) {
7225 will_dirty[i]=temp_will_dirty;
7226 wont_dirty[i]=temp_wont_dirty;
7227 clean_registers((ba[i]-start)>>2,i-1,0);
7228 }else{
7229 // Limit recursion. It can take an excessive amount
7230 // of time if there are a lot of nested loops.
7231 will_dirty[(ba[i]-start)>>2]=0;
7232 wont_dirty[(ba[i]-start)>>2]=-1;
7233 }
7234 }
7235 /*else*/ if(1)
7236 {
7237 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7238 {
7239 // Unconditional branch
7240 will_dirty_i=0;
7241 wont_dirty_i=0;
7242 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7243 for(r=0;r<HOST_REGS;r++) {
7244 if(r!=EXCLUDE_REG) {
7245 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7246 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7247 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7248 }
7249 if(branch_regs[i].regmap[r]>=0) {
7250 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7251 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7252 }
7253 }
7254 }
7255 //}
7256 // Merge in delay slot
7257 for(r=0;r<HOST_REGS;r++) {
7258 if(r!=EXCLUDE_REG) {
7259 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7260 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7261 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7262 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7263 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7264 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7265 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7266 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7267 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7268 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7269 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7270 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7271 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7272 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7273 }
7274 }
7275 } else {
7276 // Conditional branch
7277 will_dirty_i=will_dirty_next;
7278 wont_dirty_i=wont_dirty_next;
7279 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7280 for(r=0;r<HOST_REGS;r++) {
7281 if(r!=EXCLUDE_REG) {
7282 signed char target_reg=branch_regs[i].regmap[r];
7283 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7284 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7285 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7286 }
7287 else if(target_reg>=0) {
7288 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7289 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7290 }
7291 // Treat delay slot as part of branch too
7292 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7293 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7294 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7295 }
7296 else
7297 {
7298 will_dirty[i+1]&=~(1<<r);
7299 }*/
7300 }
7301 }
7302 //}
7303 // Merge in delay slot
7304 for(r=0;r<HOST_REGS;r++) {
7305 if(r!=EXCLUDE_REG) {
7306 if(!likely[i]) {
7307 // Might not dirty if likely branch is not taken
7308 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7309 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7310 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7311 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7312 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7313 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7314 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7315 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7316 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7317 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7318 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7319 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7320 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7321 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7322 }
7323 }
7324 }
7325 }
7326 // Merge in delay slot (won't dirty)
7327 for(r=0;r<HOST_REGS;r++) {
7328 if(r!=EXCLUDE_REG) {
7329 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7330 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7331 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7332 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7333 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7334 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7335 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7336 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7337 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7338 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7339 }
7340 }
7341 if(wr) {
7342 #ifndef DESTRUCTIVE_WRITEBACK
7343 branch_regs[i].dirty&=wont_dirty_i;
7344 #endif
7345 branch_regs[i].dirty|=will_dirty_i;
7346 }
7347 }
7348 }
7349 }
7350 else if(itype[i]==SYSCALL)
7351 {
7352 // SYSCALL instruction (software interrupt)
7353 will_dirty_i=0;
7354 wont_dirty_i=0;
7355 }
7356 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7357 {
7358 // ERET instruction (return from interrupt)
7359 will_dirty_i=0;
7360 wont_dirty_i=0;
7361 }
7362 will_dirty_next=will_dirty_i;
7363 wont_dirty_next=wont_dirty_i;
7364 for(r=0;r<HOST_REGS;r++) {
7365 if(r!=EXCLUDE_REG) {
7366 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7367 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7368 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7369 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7370 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7371 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7372 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7373 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7374 if(i>istart) {
7375 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7376 {
7377 // Don't store a register immediately after writing it,
7378 // may prevent dual-issue.
7379 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7380 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7381 }
7382 }
7383 }
7384 }
7385 // Save it
7386 will_dirty[i]=will_dirty_i;
7387 wont_dirty[i]=wont_dirty_i;
7388 // Mark registers that won't be dirtied as not dirty
7389 if(wr) {
7390 /*DebugMessage(M64MSG_VERBOSE, "wr (%d,%d) %x will:",istart,iend,start+i*4);
7391 for(r=0;r<HOST_REGS;r++) {
7392 if((will_dirty_i>>r)&1) {
7393 DebugMessage(M64MSG_VERBOSE, " r%d",r);
7394 }
7395 }*/
7396
7397 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7398 regs[i].dirty|=will_dirty_i;
7399 #ifndef DESTRUCTIVE_WRITEBACK
7400 regs[i].dirty&=wont_dirty_i;
7401 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7402 {
7403 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7404 for(r=0;r<HOST_REGS;r++) {
7405 if(r!=EXCLUDE_REG) {
7406 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7407 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7408 }else {/*DebugMessage(M64MSG_VERBOSE, "i: %x (%d) mismatch(+2): %d",start+i*4,i,r); / *assert(!((wont_dirty_i>>r)&1));*/}
7409 }
7410 }
7411 }
7412 }
7413 else
7414 {
7415 if(i<iend) {
7416 for(r=0;r<HOST_REGS;r++) {
7417 if(r!=EXCLUDE_REG) {
7418 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7419 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7420 }else {/*DebugMessage(M64MSG_VERBOSE, "i: %x (%d) mismatch(+1): %d",start+i*4,i,r);/ *assert(!((wont_dirty_i>>r)&1));*/}
7421 }
7422 }
7423 }
7424 }
7425 #endif
7426 //}
7427 }
7428 // Deal with changed mappings
7429 temp_will_dirty=will_dirty_i;
7430 temp_wont_dirty=wont_dirty_i;
7431 for(r=0;r<HOST_REGS;r++) {
7432 if(r!=EXCLUDE_REG) {
7433 int nr;
7434 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7435 if(wr) {
7436 #ifndef DESTRUCTIVE_WRITEBACK
7437 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7438 #endif
7439 regs[i].wasdirty|=will_dirty_i&(1<<r);
7440 }
7441 }
7442 else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7443 // Register moved to a different register
7444 will_dirty_i&=~(1<<r);
7445 wont_dirty_i&=~(1<<r);
7446 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7447 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7448 if(wr) {
7449 #ifndef DESTRUCTIVE_WRITEBACK
7450 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7451 #endif
7452 regs[i].wasdirty|=will_dirty_i&(1<<r);
7453 }
7454 }
7455 else {
7456 will_dirty_i&=~(1<<r);
7457 wont_dirty_i&=~(1<<r);
7458 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7459 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7460 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7461 } else {
7462 wont_dirty_i|=1<<r;
7463 /*DebugMessage(M64MSG_VERBOSE, "i: %x (%d) mismatch: %d",start+i*4,i,r);/ *assert(!((will_dirty>>r)&1));*/
7464 }
7465 }
7466 }
7467 }
7468 }
7469}
7470
7471#ifdef ASSEM_DEBUG
7472 /* disassembly */
7473static void disassemble_inst(int i)
7474{
7475 if (bt[i]) DebugMessage(M64MSG_VERBOSE, "*"); else DebugMessage(M64MSG_VERBOSE, " ");
7476 switch(itype[i]) {
7477 case UJUMP:
7478 printf (" %x: %s %8x",start+i*4,insn[i],ba[i]);break;
7479 case CJUMP:
7480 printf (" %x: %s r%d,r%d,%8x",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7481 case SJUMP:
7482 printf (" %x: %s r%d,%8x",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7483 case FJUMP:
7484 printf (" %x: %s %8x",start+i*4,insn[i],ba[i]);break;
7485 case RJUMP:
7486 if ((opcode2[i]&1)&&rt1[i]!=31)
7487 printf (" %x: %s r%d,r%d",start+i*4,insn[i],rt1[i],rs1[i]);
7488 else
7489 printf (" %x: %s r%d",start+i*4,insn[i],rs1[i]);
7490 break;
7491 case SPAN:
7492 printf (" %x: %s (pagespan) r%d,r%d,%8x",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7493 case IMM16:
7494 if(opcode[i]==0xf) //LUI
7495 printf (" %x: %s r%d,%4x0000",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7496 else
7497 printf (" %x: %s r%d,r%d,%d",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7498 break;
7499 case LOAD:
7500 case LOADLR:
7501 printf (" %x: %s r%d,r%d+%x",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7502 break;
7503 case STORE:
7504 case STORELR:
7505 printf (" %x: %s r%d,r%d+%x",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7506 break;
7507 case ALU:
7508 case SHIFT:
7509 printf (" %x: %s r%d,r%d,r%d",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7510 break;
7511 case MULTDIV:
7512 printf (" %x: %s r%d,r%d",start+i*4,insn[i],rs1[i],rs2[i]);
7513 break;
7514 case SHIFTIMM:
7515 printf (" %x: %s r%d,r%d,%d",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7516 break;
7517 case MOV:
7518 if((opcode2[i]&0x1d)==0x10)
7519 printf (" %x: %s r%d",start+i*4,insn[i],rt1[i]);
7520 else if((opcode2[i]&0x1d)==0x11)
7521 printf (" %x: %s r%d",start+i*4,insn[i],rs1[i]);
7522 else
7523 printf (" %x: %s",start+i*4,insn[i]);
7524 break;
7525 case COP0:
7526 if(opcode2[i]==0)
7527 printf (" %x: %s r%d,cpr0[%d]",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7528 else if(opcode2[i]==4)
7529 printf (" %x: %s r%d,cpr0[%d]",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7530 else printf (" %x: %s",start+i*4,insn[i]);
7531 break;
7532 case COP1:
7533 if(opcode2[i]<3)
7534 printf (" %x: %s r%d,cpr1[%d]",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7535 else if(opcode2[i]>3)
7536 printf (" %x: %s r%d,cpr1[%d]",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7537 else printf (" %x: %s",start+i*4,insn[i]);
7538 break;
7539 case C1LS:
7540 printf (" %x: %s cpr1[%d],r%d+%x",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7541 break;
7542 default:
7543 //printf (" %s %8x",insn[i],source[i]);
7544 printf (" %x: %s",start+i*4,insn[i]);
7545 }
7546}
7547#endif
7548
7549void new_dynarec_init()
7550{
7551 DebugMessage(M64MSG_INFO, "Init new dynarec");
7552
7553#if NEW_DYNAREC == NEW_DYNAREC_ARM
7554 if ((base_addr = mmap ((u_char *)BASE_ADDR, 1<<TARGET_SIZE_2,
7555 PROT_READ | PROT_WRITE | PROT_EXEC,
7556 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7557 -1, 0)) <= 0) {DebugMessage(M64MSG_ERROR, "mmap() failed");}
7558#else
7559 if ((base_addr = mmap (NULL, 1<<TARGET_SIZE_2,
7560 PROT_READ | PROT_WRITE | PROT_EXEC,
7561 MAP_PRIVATE | MAP_ANONYMOUS,
7562 -1, 0)) <= 0) {DebugMessage(M64MSG_ERROR, "mmap() failed");}
7563#endif
7564 out=(u_char *)base_addr;
7565
7566 rdword=&readmem_dword;
7567 fake_pc.f.r.rs=(long long int *)&readmem_dword;
7568 fake_pc.f.r.rt=(long long int *)&readmem_dword;
7569 fake_pc.f.r.rd=(long long int *)&readmem_dword;
7570 int n;
7571 for(n=0x80000;n<0x80800;n++)
7572 invalid_code[n]=1;
7573 for(n=0;n<65536;n++)
7574 hash_table[n][0]=hash_table[n][2]=-1;
7575 memset(mini_ht,-1,sizeof(mini_ht));
7576 memset(restore_candidate,0,sizeof(restore_candidate));
7577 copy=shadow;
7578 expirep=16384; // Expiry pointer, +2 blocks
7579 pending_exception=0;
7580 literalcount=0;
7581#ifdef HOST_IMM8
7582 // Copy this into local area so we don't have to put it in every literal pool
7583 invc_ptr=invalid_code;
7584#endif
7585 stop_after_jal=0;
7586 // TLB
7587 using_tlb=0;
7588 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7589 memory_map[n]=-1;
7590 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7591 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7592 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7593 memory_map[n]=-1;
7594 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7595 writemem[n] = write_nomem_new;
7596 writememb[n] = write_nomemb_new;
7597 writememh[n] = write_nomemh_new;
7598 writememd[n] = write_nomemd_new;
7599 readmem[n] = read_nomem_new;
7600 readmemb[n] = read_nomemb_new;
7601 readmemh[n] = read_nomemh_new;
7602 readmemd[n] = read_nomemd_new;
7603 }
7604 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7605 writemem[n] = write_rdram_new;
7606 writememb[n] = write_rdramb_new;
7607 writememh[n] = write_rdramh_new;
7608 writememd[n] = write_rdramd_new;
7609 }
7610 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7611 writemem[n] = write_nomem_new;
7612 writememb[n] = write_nomemb_new;
7613 writememh[n] = write_nomemh_new;
7614 writememd[n] = write_nomemd_new;
7615 readmem[n] = read_nomem_new;
7616 readmemb[n] = read_nomemb_new;
7617 readmemh[n] = read_nomemh_new;
7618 readmemd[n] = read_nomemd_new;
7619 }
7620 tlb_hacks();
7621 arch_init();
7622}
7623
7624void new_dynarec_cleanup()
7625{
7626 int n;
7627 if (munmap (base_addr, 1<<TARGET_SIZE_2) < 0) {DebugMessage(M64MSG_ERROR, "munmap() failed");}
7628 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7629 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7630 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7631 #ifdef ROM_COPY
7632 if (munmap (ROM_COPY, 67108864) < 0) {DebugMessage(M64MSG_ERROR, "munmap() failed");}
7633 #endif
7634}
7635
7636int new_recompile_block(int addr)
7637{
7638/*
7639 if(addr==0x800cd050) {
7640 int block;
7641 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7642 int n;
7643 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7644 }
7645*/
7646 //if(Count==365117028) tracedebug=1;
7647 assem_debug("NOTCOMPILED: addr = %x -> %x", (int)addr, (int)out);
7648#if defined (COUNT_NOTCOMPILEDS )
7649 notcompiledCount++;
7650 log_message( "notcompiledCount=%i", notcompiledCount );
7651#endif
7652 //DebugMessage(M64MSG_VERBOSE, "NOTCOMPILED: addr = %x -> %x", (int)addr, (int)out);
7653 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (compile %x)",Count,next_interupt,addr);
7654 //if(debug)
7655 //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x)",Count,next_interupt,mchecksum());
7656 //DebugMessage(M64MSG_VERBOSE, "fpu mapping=%x enabled=%x",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7657 /*if(Count>=312978186) {
7658 rlist();
7659 }*/
7660 //rlist();
7661 start = (u_int)addr&~3;
7662 //assert(((u_int)addr&1)==0);
7663 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7664 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7665 pagelimit = 0xa4001000;
7666 }
7667 else if ((int)addr >= 0x80000000 && (int)addr < 0x80800000) {
7668 source = (u_int *)((u_int)rdram+start-0x80000000);
7669 pagelimit = 0x80800000;
7670 }
7671 else if ((signed int)addr >= (signed int)0xC0000000) {
7672 //DebugMessage(M64MSG_VERBOSE, "addr=%x mm=%x",(u_int)addr,(memory_map[start>>12]<<2));
7673 //if(tlb_LUT_r[start>>12])
7674 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7675 if((signed int)memory_map[start>>12]>=0) {
7676 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7677 pagelimit=(start+4096)&0xFFFFF000;
7678 int map=memory_map[start>>12];
7679 int i;
7680 for(i=0;i<5;i++) {
7681 //DebugMessage(M64MSG_VERBOSE, "start: %x next: %x",map,memory_map[pagelimit>>12]);
7682 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7683 }
7684 assem_debug("pagelimit=%x",pagelimit);
7685 assem_debug("mapping=%x (%x)",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7686 }
7687 else {
7688 assem_debug("Compile at unmapped memory address: %x ", (int)addr);
7689 //assem_debug("start: %x next: %x",memory_map[start>>12],memory_map[(start+4096)>>12]);
7690 return 1; // Caller will invoke exception handler
7691 }
7692 //DebugMessage(M64MSG_VERBOSE, "source= %x",(int)source);
7693 }
7694 else {
7695 //DebugMessage(M64MSG_VERBOSE, "Compile at bogus memory address: %x ", (int)addr);
7696 log_message("Compile at bogus memory address: %x", (int)addr);
7697 exit(1);
7698 }
7699
7700 /* Pass 1: disassemble */
7701 /* Pass 2: register dependencies, branch targets */
7702 /* Pass 3: register allocation */
7703 /* Pass 4: branch dependencies */
7704 /* Pass 5: pre-alloc */
7705 /* Pass 6: optimize clean/dirty state */
7706 /* Pass 7: flag 32-bit registers */
7707 /* Pass 8: assembly */
7708 /* Pass 9: linker */
7709 /* Pass 10: garbage collection / free memory */
7710
7711 int i,j;
7712 int done=0;
7713 unsigned int type,op,op2;
7714
7715 //DebugMessage(M64MSG_VERBOSE, "addr = %x source = %x %x", addr,source,source[0]);
7716
7717 /* Pass 1 disassembly */
7718
7719 for(i=0;!done;i++) {
7720 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7721 minimum_free_regs[i]=0;
7722 opcode[i]=op=source[i]>>26;
7723 switch(op)
7724 {
7725 case 0x00: strcpy(insn[i],"special"); type=NI;
7726 op2=source[i]&0x3f;
7727 switch(op2)
7728 {
7729 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7730 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7731 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7732 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7733 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7734 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7735 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7736 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7737 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7738 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7739 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7740 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7741 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7742 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7743 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7744 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7745 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7746 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7747 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7748 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7749 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7750 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7751 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7752 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7753 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7754 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7755 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7756 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7757 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7758 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7759 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7760 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7761 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7762 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7763 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7764 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7765 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7766 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7767 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7768 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7769 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7770 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7771 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7772 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7773 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7774 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7775 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7776 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7777 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7778 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7779 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7780 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7781 }
7782 break;
7783 case 0x01: strcpy(insn[i],"regimm"); type=NI;
7784 op2=(source[i]>>16)&0x1f;
7785 switch(op2)
7786 {
7787 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7788 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7789 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7790 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7791 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7792 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7793 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7794 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7795 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7796 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7797 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7798 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7799 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7800 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7801 }
7802 break;
7803 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7804 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7805 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7806 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7807 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7808 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7809 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7810 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7811 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7812 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7813 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7814 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7815 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7816 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7817 case 0x10: strcpy(insn[i],"cop0"); type=NI;
7818 op2=(source[i]>>21)&0x1f;
7819 switch(op2)
7820 {
7821 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7822 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7823 case 0x10: strcpy(insn[i],"tlb"); type=NI;
7824 switch(source[i]&0x3f)
7825 {
7826 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
7827 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
7828 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
7829 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
7830 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
7831 }
7832 }
7833 break;
7834 case 0x11: strcpy(insn[i],"cop1"); type=NI;
7835 op2=(source[i]>>21)&0x1f;
7836 switch(op2)
7837 {
7838 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
7839 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
7840 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
7841 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
7842 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
7843 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
7844 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
7845 switch((source[i]>>16)&0x3)
7846 {
7847 case 0x00: strcpy(insn[i],"BC1F"); break;
7848 case 0x01: strcpy(insn[i],"BC1T"); break;
7849 case 0x02: strcpy(insn[i],"BC1FL"); break;
7850 case 0x03: strcpy(insn[i],"BC1TL"); break;
7851 }
7852 break;
7853 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
7854 switch(source[i]&0x3f)
7855 {
7856 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
7857 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
7858 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
7859 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
7860 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
7861 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
7862 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
7863 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
7864 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
7865 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
7866 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
7867 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
7868 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
7869 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
7870 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
7871 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
7872 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
7873 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
7874 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
7875 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
7876 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
7877 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
7878 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
7879 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
7880 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
7881 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
7882 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
7883 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
7884 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
7885 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
7886 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
7887 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
7888 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
7889 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
7890 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
7891 }
7892 break;
7893 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
7894 switch(source[i]&0x3f)
7895 {
7896 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
7897 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
7898 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
7899 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
7900 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
7901 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
7902 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
7903 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
7904 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
7905 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
7906 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
7907 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
7908 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
7909 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
7910 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
7911 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
7912 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
7913 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
7914 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
7915 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
7916 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
7917 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
7918 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
7919 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
7920 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
7921 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
7922 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
7923 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
7924 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
7925 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
7926 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
7927 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
7928 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
7929 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
7930 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
7931 }
7932 break;
7933 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
7934 switch(source[i]&0x3f)
7935 {
7936 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
7937 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
7938 }
7939 break;
7940 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
7941 switch(source[i]&0x3f)
7942 {
7943 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
7944 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
7945 }
7946 break;
7947 }
7948 break;
7949 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
7950 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
7951 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
7952 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
7953 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
7954 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
7955 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
7956 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
7957 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
7958 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
7959 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
7960 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
7961 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
7962 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
7963 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
7964 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
7965 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
7966 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
7967 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
7968 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
7969 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
7970 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
7971 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
7972 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
7973 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
7974 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
7975 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
7976 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
7977 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
7978 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
7979 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
7980 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
7981 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
7982 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
7983 default: strcpy(insn[i],"???"); type=NI; break;
7984 }
7985 itype[i]=type;
7986 opcode2[i]=op2;
7987 /* Get registers/immediates */
7988 lt1[i]=0;
7989 us1[i]=0;
7990 us2[i]=0;
7991 dep1[i]=0;
7992 dep2[i]=0;
7993 switch(type) {
7994 case LOAD:
7995 rs1[i]=(source[i]>>21)&0x1f;
7996 rs2[i]=0;
7997 rt1[i]=(source[i]>>16)&0x1f;
7998 rt2[i]=0;
7999 imm[i]=(short)source[i];
8000 break;
8001 case STORE:
8002 case STORELR:
8003 rs1[i]=(source[i]>>21)&0x1f;
8004 rs2[i]=(source[i]>>16)&0x1f;
8005 rt1[i]=0;
8006 rt2[i]=0;
8007 imm[i]=(short)source[i];
8008 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8009 break;
8010 case LOADLR:
8011 // LWL/LWR only load part of the register,
8012 // therefore the target register must be treated as a source too
8013 rs1[i]=(source[i]>>21)&0x1f;
8014 rs2[i]=(source[i]>>16)&0x1f;
8015 rt1[i]=(source[i]>>16)&0x1f;
8016 rt2[i]=0;
8017 imm[i]=(short)source[i];
8018 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8019 if(op==0x26) dep1[i]=rt1[i]; // LWR
8020 break;
8021 case IMM16:
8022 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8023 else rs1[i]=(source[i]>>21)&0x1f;
8024 rs2[i]=0;
8025 rt1[i]=(source[i]>>16)&0x1f;
8026 rt2[i]=0;
8027 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8028 imm[i]=(unsigned short)source[i];
8029 }else{
8030 imm[i]=(short)source[i];
8031 }
8032 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8033 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8034 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8035 break;
8036 case UJUMP:
8037 rs1[i]=0;
8038 rs2[i]=0;
8039 rt1[i]=0;
8040 rt2[i]=0;
8041 // The JAL instruction writes to r31.
8042 if (op&1) {
8043 rt1[i]=31;
8044 }
8045 rs2[i]=CCREG;
8046 break;
8047 case RJUMP:
8048 rs1[i]=(source[i]>>21)&0x1f;
8049 rs2[i]=0;
8050 rt1[i]=0;
8051 rt2[i]=0;
8052 // The JALR instruction writes to rd.
8053 if (op2&1) {
8054 rt1[i]=(source[i]>>11)&0x1f;
8055 }
8056 rs2[i]=CCREG;
8057 break;
8058 case CJUMP:
8059 rs1[i]=(source[i]>>21)&0x1f;
8060 rs2[i]=(source[i]>>16)&0x1f;
8061 rt1[i]=0;
8062 rt2[i]=0;
8063 if(op&2) { // BGTZ/BLEZ
8064 rs2[i]=0;
8065 }
8066 us1[i]=rs1[i];
8067 us2[i]=rs2[i];
8068 likely[i]=op>>4;
8069 break;
8070 case SJUMP:
8071 rs1[i]=(source[i]>>21)&0x1f;
8072 rs2[i]=CCREG;
8073 rt1[i]=0;
8074 rt2[i]=0;
8075 us1[i]=rs1[i];
8076 if(op2&0x10) { // BxxAL
8077 rt1[i]=31;
8078 // NOTE: If the branch is not taken, r31 is still overwritten
8079 }
8080 likely[i]=(op2&2)>>1;
8081 break;
8082 case FJUMP:
8083 rs1[i]=FSREG;
8084 rs2[i]=CSREG;
8085 rt1[i]=0;
8086 rt2[i]=0;
8087 likely[i]=((source[i])>>17)&1;
8088 break;
8089 case ALU:
8090 rs1[i]=(source[i]>>21)&0x1f; // source
8091 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8092 rt1[i]=(source[i]>>11)&0x1f; // destination
8093 rt2[i]=0;
8094 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8095 us1[i]=rs1[i];us2[i]=rs2[i];
8096 }
8097 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8098 dep1[i]=rs1[i];dep2[i]=rs2[i];
8099 }
8100 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8101 dep1[i]=rs1[i];dep2[i]=rs2[i];
8102 }
8103 break;
8104 case MULTDIV:
8105 rs1[i]=(source[i]>>21)&0x1f; // source
8106 rs2[i]=(source[i]>>16)&0x1f; // divisor
8107 rt1[i]=HIREG;
8108 rt2[i]=LOREG;
8109 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8110 us1[i]=rs1[i];us2[i]=rs2[i];
8111 }
8112 break;
8113 case MOV:
8114 rs1[i]=0;
8115 rs2[i]=0;
8116 rt1[i]=0;
8117 rt2[i]=0;
8118 if(op2==0x10) rs1[i]=HIREG; // MFHI
8119 if(op2==0x11) rt1[i]=HIREG; // MTHI
8120 if(op2==0x12) rs1[i]=LOREG; // MFLO
8121 if(op2==0x13) rt1[i]=LOREG; // MTLO
8122 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8123 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8124 dep1[i]=rs1[i];
8125 break;
8126 case SHIFT:
8127 rs1[i]=(source[i]>>16)&0x1f; // target of shift
8128 rs2[i]=(source[i]>>21)&0x1f; // shift amount
8129 rt1[i]=(source[i]>>11)&0x1f; // destination
8130 rt2[i]=0;
8131 // DSLLV/DSRLV/DSRAV are 64-bit
8132 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8133 break;
8134 case SHIFTIMM:
8135 rs1[i]=(source[i]>>16)&0x1f;
8136 rs2[i]=0;
8137 rt1[i]=(source[i]>>11)&0x1f;
8138 rt2[i]=0;
8139 imm[i]=(source[i]>>6)&0x1f;
8140 // DSxx32 instructions
8141 if(op2>=0x3c) imm[i]|=0x20;
8142 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8143 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8144 break;
8145 case COP0:
8146 rs1[i]=0;
8147 rs2[i]=0;
8148 rt1[i]=0;
8149 rt2[i]=0;
8150 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8151 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8152 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8153 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8154 break;
8155 case COP1:
8156 rs1[i]=0;
8157 rs2[i]=0;
8158 rt1[i]=0;
8159 rt2[i]=0;
8160 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8161 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8162 if(op2==5) us1[i]=rs1[i]; // DMTC1
8163 rs2[i]=CSREG;
8164 break;
8165 case C1LS:
8166 rs1[i]=(source[i]>>21)&0x1F;
8167 rs2[i]=CSREG;
8168 rt1[i]=0;
8169 rt2[i]=0;
8170 imm[i]=(short)source[i];
8171 break;
8172 case FLOAT:
8173 case FCONV:
8174 rs1[i]=0;
8175 rs2[i]=CSREG;
8176 rt1[i]=0;
8177 rt2[i]=0;
8178 break;
8179 case FCOMP:
8180 rs1[i]=FSREG;
8181 rs2[i]=CSREG;
8182 rt1[i]=FSREG;
8183 rt2[i]=0;
8184 break;
8185 case SYSCALL:
8186 rs1[i]=CCREG;
8187 rs2[i]=0;
8188 rt1[i]=0;
8189 rt2[i]=0;
8190 break;
8191 default:
8192 rs1[i]=0;
8193 rs2[i]=0;
8194 rt1[i]=0;
8195 rt2[i]=0;
8196 }
8197 /* Calculate branch target addresses */
8198 if(type==UJUMP)
8199 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8200 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8201 ba[i]=start+i*4+8; // Ignore never taken branch
8202 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8203 ba[i]=start+i*4+8; // Ignore never taken branch
8204 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8205 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8206 else ba[i]=-1;
8207 /* Is this the end of the block? */
8208 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8209 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8210 done=1;
8211 // Does the block continue due to a branch?
8212 for(j=i-1;j>=0;j--)
8213 {
8214 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
8215 if(ba[j]==start+i*4+4) done=j=0;
8216 if(ba[j]==start+i*4+8) done=j=0;
8217 }
8218 }
8219 else {
8220 if(stop_after_jal) done=1;
8221 // Stop on BREAK
8222 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8223 }
8224 // Don't recompile stuff that's already compiled
8225 if(check_addr(start+i*4+4)) done=1;
8226 // Don't get too close to the limit
8227 if(i>MAXBLOCK/2) done=1;
8228 }
8229 if(i>0&&itype[i-1]==SYSCALL&&stop_after_jal) done=1;
8230 assert(i<MAXBLOCK-1);
8231 if(start+i*4==pagelimit-4) done=1;
8232 assert(start+i*4<pagelimit);
8233 if (i==MAXBLOCK-1) done=1;
8234 // Stop if we're compiling junk
8235 if(itype[i]==NI&&opcode[i]==0x11) {
8236 done=stop_after_jal=1;
8237 DebugMessage(M64MSG_VERBOSE, "Disabled speculative precompilation");
8238 }
8239 }
8240 slen=i;
8241 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8242 if(start+i*4==pagelimit) {
8243 itype[i-1]=SPAN;
8244 }
8245 }
8246 assert(slen>0);
8247
8248 /* Pass 2 - Register dependencies and branch targets */
8249
8250 unneeded_registers(0,slen-1,0);
8251
8252 /* Pass 3 - Register allocation */
8253
8254 struct regstat current; // Current register allocations/status
8255 current.is32=1;
8256 current.dirty=0;
8257 current.u=unneeded_reg[0];
8258 current.uu=unneeded_reg_upper[0];
8259 clear_all_regs(current.regmap);
8260 alloc_reg(&current,0,CCREG);
8261 dirty_reg(&current,CCREG);
8262 current.isconst=0;
8263 current.wasconst=0;
8264 int ds=0;
8265 int cc=0;
8266 int hr;
8267
8268 provisional_32bit();
8269
8270 if((u_int)addr&1) {
8271 // First instruction is delay slot
8272 cc=-1;
8273 bt[1]=1;
8274 ds=1;
8275 unneeded_reg[0]=1;
8276 unneeded_reg_upper[0]=1;
8277 current.regmap[HOST_BTREG]=BTREG;
8278 }
8279
8280 for(i=0;i<slen;i++)
8281 {
8282 if(bt[i])
8283 {
8284 int hr;
8285 for(hr=0;hr<HOST_REGS;hr++)
8286 {
8287 // Is this really necessary?
8288 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8289 }
8290 current.isconst=0;
8291 }
8292 if(i>1)
8293 {
8294 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8295 {
8296 if(rs1[i-2]==0||rs2[i-2]==0)
8297 {
8298 if(rs1[i-2]) {
8299 current.is32|=1LL<<rs1[i-2];
8300 int hr=get_reg(current.regmap,rs1[i-2]|64);
8301 if(hr>=0) current.regmap[hr]=-1;
8302 }
8303 if(rs2[i-2]) {
8304 current.is32|=1LL<<rs2[i-2];
8305 int hr=get_reg(current.regmap,rs2[i-2]|64);
8306 if(hr>=0) current.regmap[hr]=-1;
8307 }
8308 }
8309 }
8310 }
8311 // If something jumps here with 64-bit values
8312 // then promote those registers to 64 bits
8313 if(bt[i])
8314 {
8315 uint64_t temp_is32=current.is32;
8316 for(j=i-1;j>=0;j--)
8317 {
8318 if(ba[j]==start+i*4)
8319 temp_is32&=branch_regs[j].is32;
8320 }
8321 for(j=i;j<slen;j++)
8322 {
8323 if(ba[j]==start+i*4)
8324 //temp_is32=1;
8325 temp_is32&=p32[j];
8326 }
8327 if(temp_is32!=current.is32) {
8328 //DebugMessage(M64MSG_VERBOSE, "dumping 32-bit regs (%x)",start+i*4);
8329 #ifndef DESTRUCTIVE_WRITEBACK
8330 if(ds)
8331 #endif
8332 for(hr=0;hr<HOST_REGS;hr++)
8333 {
8334 int r=current.regmap[hr];
8335 if(r>0&&r<64)
8336 {
8337 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8338 temp_is32|=1LL<<r;
8339 //DebugMessage(M64MSG_VERBOSE, "restore %d",r);
8340 }
8341 }
8342 }
8343 current.is32=temp_is32;
8344 }
8345 }
8346 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8347 regs[i].wasconst=current.isconst;
8348 regs[i].was32=current.is32;
8349 regs[i].wasdirty=current.dirty;
8350 #ifdef DESTRUCTIVE_WRITEBACK
8351 // To change a dirty register from 32 to 64 bits, we must write
8352 // it out during the previous cycle (for branches, 2 cycles)
8353 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8354 {
8355 uint64_t temp_is32=current.is32;
8356 for(j=i-1;j>=0;j--)
8357 {
8358 if(ba[j]==start+i*4+4)
8359 temp_is32&=branch_regs[j].is32;
8360 }
8361 for(j=i;j<slen;j++)
8362 {
8363 if(ba[j]==start+i*4+4)
8364 //temp_is32=1;
8365 temp_is32&=p32[j];
8366 }
8367 if(temp_is32!=current.is32) {
8368 //DebugMessage(M64MSG_VERBOSE, "pre-dumping 32-bit regs (%x)",start+i*4);
8369 for(hr=0;hr<HOST_REGS;hr++)
8370 {
8371 int r=current.regmap[hr];
8372 if(r>0)
8373 {
8374 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8375 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8376 {
8377 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8378 {
8379 //DebugMessage(M64MSG_VERBOSE, "dump %d/r%d",hr,r);
8380 current.regmap[hr]=-1;
8381 if(get_reg(current.regmap,r|64)>=0)
8382 current.regmap[get_reg(current.regmap,r|64)]=-1;
8383 }
8384 }
8385 }
8386 }
8387 }
8388 }
8389 }
8390 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8391 {
8392 uint64_t temp_is32=current.is32;
8393 for(j=i-1;j>=0;j--)
8394 {
8395 if(ba[j]==start+i*4+8)
8396 temp_is32&=branch_regs[j].is32;
8397 }
8398 for(j=i;j<slen;j++)
8399 {
8400 if(ba[j]==start+i*4+8)
8401 //temp_is32=1;
8402 temp_is32&=p32[j];
8403 }
8404 if(temp_is32!=current.is32) {
8405 //DebugMessage(M64MSG_VERBOSE, "pre-dumping 32-bit regs (%x)",start+i*4);
8406 for(hr=0;hr<HOST_REGS;hr++)
8407 {
8408 int r=current.regmap[hr];
8409 if(r>0)
8410 {
8411 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8412 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8413 {
8414 //DebugMessage(M64MSG_VERBOSE, "dump %d/r%d",hr,r);
8415 current.regmap[hr]=-1;
8416 if(get_reg(current.regmap,r|64)>=0)
8417 current.regmap[get_reg(current.regmap,r|64)]=-1;
8418 }
8419 }
8420 }
8421 }
8422 }
8423 }
8424 #endif
8425 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8426 if(i+1<slen) {
8427 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8428 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8429 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8430 current.u|=1;
8431 current.uu|=1;
8432 } else {
8433 current.u=1;
8434 current.uu=1;
8435 }
8436 } else {
8437 if(i+1<slen) {
8438 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8439 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8440 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8441 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8442 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8443 current.u|=1;
8444 current.uu|=1;
8445 } else { DebugMessage(M64MSG_ERROR, "oops, branch at end of block with no delay slot");exit(1); }
8446 }
8447 is_ds[i]=ds;
8448 if(ds) {
8449 ds=0; // Skip delay slot, already allocated as part of branch
8450 // ...but we need to alloc it in case something jumps here
8451 if(i+1<slen) {
8452 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8453 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8454 }else{
8455 current.u=branch_unneeded_reg[i-1];
8456 current.uu=branch_unneeded_reg_upper[i-1];
8457 }
8458 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8459 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8460 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8461 current.u|=1;
8462 current.uu|=1;
8463 struct regstat temp;
8464 memcpy(&temp,&current,sizeof(current));
8465 temp.wasdirty=temp.dirty;
8466 temp.was32=temp.is32;
8467 // TODO: Take into account unconditional branches, as below
8468 delayslot_alloc(&temp,i);
8469 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8470 regs[i].wasdirty=temp.wasdirty;
8471 regs[i].was32=temp.was32;
8472 regs[i].dirty=temp.dirty;
8473 regs[i].is32=temp.is32;
8474 regs[i].isconst=0;
8475 regs[i].wasconst=0;
8476 current.isconst=0;
8477 // Create entry (branch target) regmap
8478 for(hr=0;hr<HOST_REGS;hr++)
8479 {
8480 int r=temp.regmap[hr];
8481 if(r>=0) {
8482 if(r!=regmap_pre[i][hr]) {
8483 regs[i].regmap_entry[hr]=-1;
8484 }
8485 else
8486 {
8487 if(r<64){
8488 if((current.u>>r)&1) {
8489 regs[i].regmap_entry[hr]=-1;
8490 regs[i].regmap[hr]=-1;
8491 //Don't clear regs in the delay slot as the branch might need them
8492 //current.regmap[hr]=-1;
8493 }else
8494 regs[i].regmap_entry[hr]=r;
8495 }
8496 else {
8497 if((current.uu>>(r&63))&1) {
8498 regs[i].regmap_entry[hr]=-1;
8499 regs[i].regmap[hr]=-1;
8500 //Don't clear regs in the delay slot as the branch might need them
8501 //current.regmap[hr]=-1;
8502 }else
8503 regs[i].regmap_entry[hr]=r;
8504 }
8505 }
8506 } else {
8507 // First instruction expects CCREG to be allocated
8508 if(i==0&&hr==HOST_CCREG)
8509 regs[i].regmap_entry[hr]=CCREG;
8510 else
8511 regs[i].regmap_entry[hr]=-1;
8512 }
8513 }
8514 }
8515 else { // Not delay slot
8516 switch(itype[i]) {
8517 case UJUMP:
8518 //current.isconst=0; // DEBUG
8519 //current.wasconst=0; // DEBUG
8520 //regs[i].wasconst=0; // DEBUG
8521 clear_const(&current,rt1[i]);
8522 alloc_cc(&current,i);
8523 dirty_reg(&current,CCREG);
8524 if (rt1[i]==31) {
8525 alloc_reg(&current,i,31);
8526 dirty_reg(&current,31);
8527 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8528 #ifdef REG_PREFETCH
8529 alloc_reg(&current,i,PTEMP);
8530 #endif
8531 //current.is32|=1LL<<rt1[i];
8532 }
8533 ooo[i]=1;
8534 delayslot_alloc(&current,i+1);
8535 //current.isconst=0; // DEBUG
8536 ds=1;
8537 //DebugMessage(M64MSG_VERBOSE, "i=%d, isconst=%x",i,current.isconst);
8538 break;
8539 case RJUMP:
8540 //current.isconst=0;
8541 //current.wasconst=0;
8542 //regs[i].wasconst=0;
8543 clear_const(&current,rs1[i]);
8544 clear_const(&current,rt1[i]);
8545 alloc_cc(&current,i);
8546 dirty_reg(&current,CCREG);
8547 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8548 alloc_reg(&current,i,rs1[i]);
8549 if (rt1[i]!=0) {
8550 alloc_reg(&current,i,rt1[i]);
8551 dirty_reg(&current,rt1[i]);
8552 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8553 #ifdef REG_PREFETCH
8554 alloc_reg(&current,i,PTEMP);
8555 #endif
8556 }
8557 #ifdef USE_MINI_HT
8558 if(rs1[i]==31) { // JALR
8559 alloc_reg(&current,i,RHASH);
8560 #ifndef HOST_IMM_ADDR32
8561 alloc_reg(&current,i,RHTBL);
8562 #endif
8563 }
8564 #endif
8565 delayslot_alloc(&current,i+1);
8566 } else {
8567 // The delay slot overwrites our source register,
8568 // allocate a temporary register to hold the old value.
8569 current.isconst=0;
8570 current.wasconst=0;
8571 regs[i].wasconst=0;
8572 delayslot_alloc(&current,i+1);
8573 current.isconst=0;
8574 alloc_reg(&current,i,RTEMP);
8575 }
8576 //current.isconst=0; // DEBUG
8577 ooo[i]=1;
8578 ds=1;
8579 break;
8580 case CJUMP:
8581 //current.isconst=0;
8582 //current.wasconst=0;
8583 //regs[i].wasconst=0;
8584 clear_const(&current,rs1[i]);
8585 clear_const(&current,rs2[i]);
8586 if((opcode[i]&0x3E)==4) // BEQ/BNE
8587 {
8588 alloc_cc(&current,i);
8589 dirty_reg(&current,CCREG);
8590 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8591 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8592 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8593 {
8594 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8595 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8596 }
8597 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8598 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8599 // The delay slot overwrites one of our conditions.
8600 // Allocate the branch condition registers instead.
8601 current.isconst=0;
8602 current.wasconst=0;
8603 regs[i].wasconst=0;
8604 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8605 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8606 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8607 {
8608 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8609 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8610 }
8611 }
8612 else
8613 {
8614 ooo[i]=1;
8615 delayslot_alloc(&current,i+1);
8616 }
8617 }
8618 else
8619 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8620 {
8621 alloc_cc(&current,i);
8622 dirty_reg(&current,CCREG);
8623 alloc_reg(&current,i,rs1[i]);
8624 if(!(current.is32>>rs1[i]&1))
8625 {
8626 alloc_reg64(&current,i,rs1[i]);
8627 }
8628 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8629 // The delay slot overwrites one of our conditions.
8630 // Allocate the branch condition registers instead.
8631 current.isconst=0;
8632 current.wasconst=0;
8633 regs[i].wasconst=0;
8634 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8635 if(!((current.is32>>rs1[i])&1))
8636 {
8637 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8638 }
8639 }
8640 else
8641 {
8642 ooo[i]=1;
8643 delayslot_alloc(&current,i+1);
8644 }
8645 }
8646 else
8647 // Don't alloc the delay slot yet because we might not execute it
8648 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8649 {
8650 current.isconst=0;
8651 current.wasconst=0;
8652 regs[i].wasconst=0;
8653 alloc_cc(&current,i);
8654 dirty_reg(&current,CCREG);
8655 alloc_reg(&current,i,rs1[i]);
8656 alloc_reg(&current,i,rs2[i]);
8657 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8658 {
8659 alloc_reg64(&current,i,rs1[i]);
8660 alloc_reg64(&current,i,rs2[i]);
8661 }
8662 }
8663 else
8664 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8665 {
8666 current.isconst=0;
8667 current.wasconst=0;
8668 regs[i].wasconst=0;
8669 alloc_cc(&current,i);
8670 dirty_reg(&current,CCREG);
8671 alloc_reg(&current,i,rs1[i]);
8672 if(!(current.is32>>rs1[i]&1))
8673 {
8674 alloc_reg64(&current,i,rs1[i]);
8675 }
8676 }
8677 ds=1;
8678 //current.isconst=0;
8679 break;
8680 case SJUMP:
8681 //current.isconst=0;
8682 //current.wasconst=0;
8683 //regs[i].wasconst=0;
8684 clear_const(&current,rs1[i]);
8685 clear_const(&current,rt1[i]);
8686 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8687 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8688 {
8689 alloc_cc(&current,i);
8690 dirty_reg(&current,CCREG);
8691 alloc_reg(&current,i,rs1[i]);
8692 if(!(current.is32>>rs1[i]&1))
8693 {
8694 alloc_reg64(&current,i,rs1[i]);
8695 }
8696 if (rt1[i]==31) { // BLTZAL/BGEZAL
8697 alloc_reg(&current,i,31);
8698 dirty_reg(&current,31);
8699 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8700 //#ifdef REG_PREFETCH
8701 //alloc_reg(&current,i,PTEMP);
8702 //#endif
8703 //current.is32|=1LL<<rt1[i];
8704 }
8705 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8706 // The delay slot overwrites the branch condition.
8707 // Allocate the branch condition registers instead.
8708 current.isconst=0;
8709 current.wasconst=0;
8710 regs[i].wasconst=0;
8711 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8712 if(!((current.is32>>rs1[i])&1))
8713 {
8714 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8715 }
8716 }
8717 else
8718 {
8719 ooo[i]=1;
8720 delayslot_alloc(&current,i+1);
8721 }
8722 }
8723 else
8724 // Don't alloc the delay slot yet because we might not execute it
8725 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8726 {
8727 current.isconst=0;
8728 current.wasconst=0;
8729 regs[i].wasconst=0;
8730 alloc_cc(&current,i);
8731 dirty_reg(&current,CCREG);
8732 alloc_reg(&current,i,rs1[i]);
8733 if(!(current.is32>>rs1[i]&1))
8734 {
8735 alloc_reg64(&current,i,rs1[i]);
8736 }
8737 }
8738 ds=1;
8739 //current.isconst=0;
8740 break;
8741 case FJUMP:
8742 current.isconst=0;
8743 current.wasconst=0;
8744 regs[i].wasconst=0;
8745 if(likely[i]==0) // BC1F/BC1T
8746 {
8747 // TODO: Theoretically we can run out of registers here on x86.
8748 // The delay slot can allocate up to six, and we need to check
8749 // CSREG before executing the delay slot. Possibly we can drop
8750 // the cycle count and then reload it after checking that the
8751 // FPU is in a usable state, or don't do out-of-order execution.
8752 alloc_cc(&current,i);
8753 dirty_reg(&current,CCREG);
8754 alloc_reg(&current,i,FSREG);
8755 alloc_reg(&current,i,CSREG);
8756 if(itype[i+1]==FCOMP) {
8757 // The delay slot overwrites the branch condition.
8758 // Allocate the branch condition registers instead.
8759 alloc_cc(&current,i);
8760 dirty_reg(&current,CCREG);
8761 alloc_reg(&current,i,CSREG);
8762 alloc_reg(&current,i,FSREG);
8763 }
8764 else {
8765 ooo[i]=1;
8766 delayslot_alloc(&current,i+1);
8767 alloc_reg(&current,i+1,CSREG);
8768 }
8769 }
8770 else
8771 // Don't alloc the delay slot yet because we might not execute it
8772 if(likely[i]) // BC1FL/BC1TL
8773 {
8774 alloc_cc(&current,i);
8775 dirty_reg(&current,CCREG);
8776 alloc_reg(&current,i,CSREG);
8777 alloc_reg(&current,i,FSREG);
8778 }
8779 ds=1;
8780 current.isconst=0;
8781 break;
8782 case IMM16:
8783 imm16_alloc(&current,i);
8784 break;
8785 case LOAD:
8786 case LOADLR:
8787 load_alloc(&current,i);
8788 break;
8789 case STORE:
8790 case STORELR:
8791 store_alloc(&current,i);
8792 break;
8793 case ALU:
8794 alu_alloc(&current,i);
8795 break;
8796 case SHIFT:
8797 shift_alloc(&current,i);
8798 break;
8799 case MULTDIV:
8800 multdiv_alloc(&current,i);
8801 break;
8802 case SHIFTIMM:
8803 shiftimm_alloc(&current,i);
8804 break;
8805 case MOV:
8806 mov_alloc(&current,i);
8807 break;
8808 case COP0:
8809 cop0_alloc(&current,i);
8810 break;
8811 case COP1:
8812 cop1_alloc(&current,i);
8813 break;
8814 case C1LS:
8815 c1ls_alloc(&current,i);
8816 break;
8817 case FCONV:
8818 fconv_alloc(&current,i);
8819 break;
8820 case FLOAT:
8821 float_alloc(&current,i);
8822 break;
8823 case FCOMP:
8824 fcomp_alloc(&current,i);
8825 break;
8826 case SYSCALL:
8827 syscall_alloc(&current,i);
8828 break;
8829 case SPAN:
8830 pagespan_alloc(&current,i);
8831 break;
8832 }
8833
8834 // Drop the upper half of registers that have become 32-bit
8835 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
8836 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8837 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8838 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8839 current.uu|=1;
8840 } else {
8841 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
8842 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8843 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8844 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8845 current.uu|=1;
8846 }
8847
8848 // Create entry (branch target) regmap
8849 for(hr=0;hr<HOST_REGS;hr++)
8850 {
8851 int r,or;
8852 r=current.regmap[hr];
8853 if(r>=0) {
8854 if(r!=regmap_pre[i][hr]) {
8855 // TODO: delay slot (?)
8856 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
8857 if(or<0||(r&63)>=TEMPREG){
8858 regs[i].regmap_entry[hr]=-1;
8859 }
8860 else
8861 {
8862 // Just move it to a different register
8863 regs[i].regmap_entry[hr]=r;
8864 // If it was dirty before, it's still dirty
8865 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
8866 }
8867 }
8868 else
8869 {
8870 // Unneeded
8871 if(r==0){
8872 regs[i].regmap_entry[hr]=0;
8873 }
8874 else
8875 if(r<64){
8876 if((current.u>>r)&1) {
8877 regs[i].regmap_entry[hr]=-1;
8878 //regs[i].regmap[hr]=-1;
8879 current.regmap[hr]=-1;
8880 }else
8881 regs[i].regmap_entry[hr]=r;
8882 }
8883 else {
8884 if((current.uu>>(r&63))&1) {
8885 regs[i].regmap_entry[hr]=-1;
8886 //regs[i].regmap[hr]=-1;
8887 current.regmap[hr]=-1;
8888 }else
8889 regs[i].regmap_entry[hr]=r;
8890 }
8891 }
8892 } else {
8893 // Branches expect CCREG to be allocated at the target
8894 if(regmap_pre[i][hr]==CCREG)
8895 regs[i].regmap_entry[hr]=CCREG;
8896 else
8897 regs[i].regmap_entry[hr]=-1;
8898 }
8899 }
8900 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
8901 }
8902 /* Branch post-alloc */
8903 if(i>0)
8904 {
8905 current.was32=current.is32;
8906 current.wasdirty=current.dirty;
8907 switch(itype[i-1]) {
8908 case UJUMP:
8909 memcpy(&branch_regs[i-1],&current,sizeof(current));
8910 branch_regs[i-1].isconst=0;
8911 branch_regs[i-1].wasconst=0;
8912 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8913 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8914 alloc_cc(&branch_regs[i-1],i-1);
8915 dirty_reg(&branch_regs[i-1],CCREG);
8916 if(rt1[i-1]==31) { // JAL
8917 alloc_reg(&branch_regs[i-1],i-1,31);
8918 dirty_reg(&branch_regs[i-1],31);
8919 branch_regs[i-1].is32|=1LL<<31;
8920 }
8921 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8922 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8923 break;
8924 case RJUMP:
8925 memcpy(&branch_regs[i-1],&current,sizeof(current));
8926 branch_regs[i-1].isconst=0;
8927 branch_regs[i-1].wasconst=0;
8928 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8929 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8930 alloc_cc(&branch_regs[i-1],i-1);
8931 dirty_reg(&branch_regs[i-1],CCREG);
8932 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
8933 if(rt1[i-1]!=0) { // JALR
8934 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
8935 dirty_reg(&branch_regs[i-1],rt1[i-1]);
8936 branch_regs[i-1].is32|=1LL<<rt1[i-1];
8937 }
8938 #ifdef USE_MINI_HT
8939 if(rs1[i-1]==31) { // JALR
8940 alloc_reg(&branch_regs[i-1],i-1,RHASH);
8941 #ifndef HOST_IMM_ADDR32
8942 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
8943 #endif
8944 }
8945 #endif
8946 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8947 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8948 break;
8949 case CJUMP:
8950 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
8951 {
8952 alloc_cc(&current,i-1);
8953 dirty_reg(&current,CCREG);
8954 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
8955 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
8956 // The delay slot overwrote one of our conditions
8957 // Delay slot goes after the test (in order)
8958 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8959 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8960 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8961 current.u|=1;
8962 current.uu|=1;
8963 delayslot_alloc(&current,i);
8964 current.isconst=0;
8965 }
8966 else
8967 {
8968 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8969 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8970 // Alloc the branch condition registers
8971 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
8972 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
8973 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
8974 {
8975 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
8976 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
8977 }
8978 }
8979 memcpy(&branch_regs[i-1],&current,sizeof(current));
8980 branch_regs[i-1].isconst=0;
8981 branch_regs[i-1].wasconst=0;
8982 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8983 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8984 }
8985 else
8986 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
8987 {
8988 alloc_cc(&current,i-1);
8989 dirty_reg(&current,CCREG);
8990 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8991 // The delay slot overwrote the branch condition
8992 // Delay slot goes after the test (in order)
8993 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8994 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8995 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8996 current.u|=1;
8997 current.uu|=1;
8998 delayslot_alloc(&current,i);
8999 current.isconst=0;
9000 }
9001 else
9002 {
9003 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9004 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9005 // Alloc the branch condition register
9006 alloc_reg(&current,i-1,rs1[i-1]);
9007 if(!(current.is32>>rs1[i-1]&1))
9008 {
9009 alloc_reg64(&current,i-1,rs1[i-1]);
9010 }
9011 }
9012 memcpy(&branch_regs[i-1],&current,sizeof(current));
9013 branch_regs[i-1].isconst=0;
9014 branch_regs[i-1].wasconst=0;
9015 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9016 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9017 }
9018 else
9019 // Alloc the delay slot in case the branch is taken
9020 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9021 {
9022 memcpy(&branch_regs[i-1],&current,sizeof(current));
9023 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9024 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9025 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9026 alloc_cc(&branch_regs[i-1],i);
9027 dirty_reg(&branch_regs[i-1],CCREG);
9028 delayslot_alloc(&branch_regs[i-1],i);
9029 branch_regs[i-1].isconst=0;
9030 alloc_reg(&current,i,CCREG); // Not taken path
9031 dirty_reg(&current,CCREG);
9032 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9033 }
9034 else
9035 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9036 {
9037 memcpy(&branch_regs[i-1],&current,sizeof(current));
9038 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9039 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9040 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9041 alloc_cc(&branch_regs[i-1],i);
9042 dirty_reg(&branch_regs[i-1],CCREG);
9043 delayslot_alloc(&branch_regs[i-1],i);
9044 branch_regs[i-1].isconst=0;
9045 alloc_reg(&current,i,CCREG); // Not taken path
9046 dirty_reg(&current,CCREG);
9047 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9048 }
9049 break;
9050 case SJUMP:
9051 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9052 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9053 {
9054 alloc_cc(&current,i-1);
9055 dirty_reg(&current,CCREG);
9056 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9057 // The delay slot overwrote the branch condition
9058 // Delay slot goes after the test (in order)
9059 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9060 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9061 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9062 current.u|=1;
9063 current.uu|=1;
9064 delayslot_alloc(&current,i);
9065 current.isconst=0;
9066 }
9067 else
9068 {
9069 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9070 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9071 // Alloc the branch condition register
9072 alloc_reg(&current,i-1,rs1[i-1]);
9073 if(!(current.is32>>rs1[i-1]&1))
9074 {
9075 alloc_reg64(&current,i-1,rs1[i-1]);
9076 }
9077 }
9078 memcpy(&branch_regs[i-1],&current,sizeof(current));
9079 branch_regs[i-1].isconst=0;
9080 branch_regs[i-1].wasconst=0;
9081 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9082 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9083 }
9084 else
9085 // Alloc the delay slot in case the branch is taken
9086 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9087 {
9088 memcpy(&branch_regs[i-1],&current,sizeof(current));
9089 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9090 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9091 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9092 alloc_cc(&branch_regs[i-1],i);
9093 dirty_reg(&branch_regs[i-1],CCREG);
9094 delayslot_alloc(&branch_regs[i-1],i);
9095 branch_regs[i-1].isconst=0;
9096 alloc_reg(&current,i,CCREG); // Not taken path
9097 dirty_reg(&current,CCREG);
9098 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9099 }
9100 // FIXME: BLTZAL/BGEZAL
9101 if(opcode2[i-1]&0x10) { // BxxZAL
9102 alloc_reg(&branch_regs[i-1],i-1,31);
9103 dirty_reg(&branch_regs[i-1],31);
9104 branch_regs[i-1].is32|=1LL<<31;
9105 }
9106 break;
9107 case FJUMP:
9108 if(likely[i-1]==0) // BC1F/BC1T
9109 {
9110 alloc_cc(&current,i-1);
9111 dirty_reg(&current,CCREG);
9112 if(itype[i]==FCOMP) {
9113 // The delay slot overwrote the branch condition
9114 // Delay slot goes after the test (in order)
9115 delayslot_alloc(&current,i);
9116 current.isconst=0;
9117 }
9118 else
9119 {
9120 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9121 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9122 // Alloc the branch condition register
9123 alloc_reg(&current,i-1,FSREG);
9124 }
9125 memcpy(&branch_regs[i-1],&current,sizeof(current));
9126 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9127 }
9128 else // BC1FL/BC1TL
9129 {
9130 // Alloc the delay slot in case the branch is taken
9131 memcpy(&branch_regs[i-1],&current,sizeof(current));
9132 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9133 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9134 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9135 alloc_cc(&branch_regs[i-1],i);
9136 dirty_reg(&branch_regs[i-1],CCREG);
9137 delayslot_alloc(&branch_regs[i-1],i);
9138 branch_regs[i-1].isconst=0;
9139 alloc_reg(&current,i,CCREG); // Not taken path
9140 dirty_reg(&current,CCREG);
9141 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9142 }
9143 break;
9144 }
9145
9146 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9147 {
9148 if(rt1[i-1]==31) // JAL/JALR
9149 {
9150 // Subroutine call will return here, don't alloc any registers
9151 current.is32=1;
9152 current.dirty=0;
9153 clear_all_regs(current.regmap);
9154 alloc_reg(&current,i,CCREG);
9155 dirty_reg(&current,CCREG);
9156 }
9157 else if(i+1<slen)
9158 {
9159 // Internal branch will jump here, match registers to caller
9160 current.is32=0x3FFFFFFFFLL;
9161 current.dirty=0;
9162 clear_all_regs(current.regmap);
9163 alloc_reg(&current,i,CCREG);
9164 dirty_reg(&current,CCREG);
9165 for(j=i-1;j>=0;j--)
9166 {
9167 if(ba[j]==start+i*4+4) {
9168 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9169 current.is32=branch_regs[j].is32;
9170 current.dirty=branch_regs[j].dirty;
9171 break;
9172 }
9173 }
9174 while(j>=0) {
9175 if(ba[j]==start+i*4+4) {
9176 for(hr=0;hr<HOST_REGS;hr++) {
9177 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9178 current.regmap[hr]=-1;
9179 }
9180 current.is32&=branch_regs[j].is32;
9181 current.dirty&=branch_regs[j].dirty;
9182 }
9183 }
9184 j--;
9185 }
9186 }
9187 }
9188 }
9189
9190 // Count cycles in between branches
9191 ccadj[i]=cc;
9192 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL))
9193 {
9194 cc=0;
9195 }
9196 else
9197 {
9198 cc++;
9199 }
9200
9201 flush_dirty_uppers(&current);
9202 if(!is_ds[i]) {
9203 regs[i].is32=current.is32;
9204 regs[i].dirty=current.dirty;
9205 regs[i].isconst=current.isconst;
9206 memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9207 }
9208 for(hr=0;hr<HOST_REGS;hr++) {
9209 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9210 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9211 regs[i].wasconst&=~(1<<hr);
9212 }
9213 }
9214 }
9215 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9216 }
9217
9218 /* Pass 4 - Cull unused host registers */
9219
9220 uint64_t nr=0;
9221
9222 for (i=slen-1;i>=0;i--)
9223 {
9224 int hr;
9225 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9226 {
9227 if(ba[i]<start || ba[i]>=(start+slen*4))
9228 {
9229 // Branch out of this block, don't need anything
9230 nr=0;
9231 }
9232 else
9233 {
9234 // Internal branch
9235 // Need whatever matches the target
9236 nr=0;
9237 int t=(ba[i]-start)>>2;
9238 for(hr=0;hr<HOST_REGS;hr++)
9239 {
9240 if(regs[i].regmap_entry[hr]>=0) {
9241 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9242 }
9243 }
9244 }
9245 // Conditional branch may need registers for following instructions
9246 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9247 {
9248 if(i<slen-2) {
9249 nr|=needed_reg[i+2];
9250 for(hr=0;hr<HOST_REGS;hr++)
9251 {
9252 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9253 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) DebugMessage(M64MSG_VERBOSE, "%x-bogus(%d=%d)",start+i*4,hr,regmap_entry[i+2][hr]);
9254 }
9255 }
9256 }
9257 // Don't need stuff which is overwritten
9258 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
ce68e3b9 9259 if(regs[i].regmap[hr]<0) nr&=~(1<<hr); //moved...
451ab91e 9260 // Merge in delay slot
9261 for(hr=0;hr<HOST_REGS;hr++)
9262 {
ce68e3b9 9263 // Don't need stuff which is overwritten
9264/* if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr); //*SEB* Moved here
9265 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);*/
9266
451ab91e 9267 if(!likely[i]) {
9268 // These are overwritten unless the branch is "likely"
9269 // and the delay slot is nullified if not taken
9270 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9271 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9272 }
9273 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9274 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9275 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9276 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9277 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9278 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9279 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9280 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9281 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9282 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9283 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9284 }
9285 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9286 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9287 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9288 }
9289 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39) {
9290 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9291 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9292 }
9293 }
9294 }
9295 else if(itype[i]==SYSCALL)
9296 {
9297 // SYSCALL instruction (software interrupt)
9298 nr=0;
9299 }
9300 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9301 {
9302 // ERET instruction (return from interrupt)
9303 nr=0;
9304 }
9305 else // Non-branch
9306 {
9307 if(i<slen-1) {
9308 for(hr=0;hr<HOST_REGS;hr++) {
9309 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9310 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9311 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9312 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9313 }
9314 }
9315 }
9316 for(hr=0;hr<HOST_REGS;hr++)
9317 {
9318 // Overwritten registers are not needed
9319 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9320 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9321 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9322 // Source registers are needed
9323 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9324 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9325 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9326 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9327 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9328 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9329 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9330 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9331 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9332 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9333 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9334 }
9335 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9336 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9337 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9338 }
9339 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39) {
9340 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9341 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9342 }
9343 // Don't store a register immediately after writing it,
9344 // may prevent dual-issue.
9345 // But do so if this is a branch target, otherwise we
9346 // might have to load the register before the branch.
9347 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9348 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9349 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9350 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9351 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9352 }
9353 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9354 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9355 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9356 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9357 }
9358 }
9359 }
9360 // Cycle count is needed at branches. Assume it is needed at the target too.
9361 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9362 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9363 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9364 }
9365 // Save it
9366 needed_reg[i]=nr;
9367
9368 // Deallocate unneeded registers
9369 for(hr=0;hr<HOST_REGS;hr++)
9370 {
9371 if(!((nr>>hr)&1)) {
9372 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9373 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9374 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9375 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9376 {
9377 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9378 {
9379 if(likely[i]) {
9380 regs[i].regmap[hr]=-1;
9381 regs[i].isconst&=~(1<<hr);
9382 if(i<slen-2) {
9383 regmap_pre[i+2][hr]=-1;
9384 regs[i+2].wasconst&=~(1<<hr);
9385 }
9386 }
9387 }
9388 }
9389 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9390 {
9391 int d1=0,d2=0,map=0,temp=0;
9392 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9393 {
9394 d1=dep1[i+1];
9395 d2=dep2[i+1];
9396 }
9397 if(using_tlb) {
9398 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9399 itype[i+1]==STORE || itype[i+1]==STORELR ||
9400 itype[i+1]==C1LS )
9401 map=TLREG;
9402 } else
9403 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39) {
9404 map=INVCP;
9405 }
9406 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9407 itype[i+1]==C1LS )
9408 temp=FTEMP;
9409 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9410 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9411 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9412 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9413 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9414 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9415 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9416 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9417 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9418 regs[i].regmap[hr]!=map )
9419 {
9420 regs[i].regmap[hr]=-1;
9421 regs[i].isconst&=~(1<<hr);
9422 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9423 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9424 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9425 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9426 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9427 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9428 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9429 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9430 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9431 branch_regs[i].regmap[hr]!=map)
9432 {
9433 branch_regs[i].regmap[hr]=-1;
9434 branch_regs[i].regmap_entry[hr]=-1;
9435 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9436 {
9437 if(!likely[i]&&i<slen-2) {
9438 regmap_pre[i+2][hr]=-1;
9439 regs[i+2].wasconst&=~(1<<hr);
9440 }
9441 }
9442 }
9443 }
9444 }
9445 else
9446 {
9447 // Non-branch
9448 if(i>0)
9449 {
9450 int d1=0,d2=0,map=-1,temp=-1;
9451 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9452 {
9453 d1=dep1[i];
9454 d2=dep2[i];
9455 }
9456 if(using_tlb) {
9457 if(itype[i]==LOAD || itype[i]==LOADLR ||
9458 itype[i]==STORE || itype[i]==STORELR ||
9459 itype[i]==C1LS )
9460 map=TLREG;
9461 } else if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39) {
9462 map=INVCP;
9463 }
9464 if(itype[i]==LOADLR || itype[i]==STORELR ||
9465 itype[i]==C1LS )
9466 temp=FTEMP;
9467 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9468 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9469 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9470 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9471 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9472 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9473 {
9474 if(i<slen-1&&!is_ds[i]) {
9475 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9476 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9477 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9478 {
9479 DebugMessage(M64MSG_VERBOSE, "fail: %x (%d %d!=%d)",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9480 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9481 }
9482 regmap_pre[i+1][hr]=-1;
9483 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9484 regs[i+1].wasconst&=~(1<<hr);
9485 }
9486 regs[i].regmap[hr]=-1;
9487 regs[i].isconst&=~(1<<hr);
9488 }
9489 }
9490 }
9491 }
9492 }
9493 }
9494
9495 /* Pass 5 - Pre-allocate registers */
9496
9497 // If a register is allocated during a loop, try to allocate it for the
9498 // entire loop, if possible. This avoids loading/storing registers
9499 // inside of the loop.
9500
9501 signed char f_regmap[HOST_REGS];
9502 clear_all_regs(f_regmap);
9503 for(i=0;i<slen-1;i++)
9504 {
9505 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9506 {
9507 if(ba[i]>=start && ba[i]<(start+i*4))
9508 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9509 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9510 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9511 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9512 ||itype[i+1]==FCOMP||itype[i+1]==FCONV)
9513 {
9514 int t=(ba[i]-start)>>2;
9515 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9516 if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
9517 for(hr=0;hr<HOST_REGS;hr++)
9518 {
9519 if(regs[i].regmap[hr]>64) {
9520 if(!((regs[i].dirty>>hr)&1))
9521 f_regmap[hr]=regs[i].regmap[hr];
9522 else f_regmap[hr]=-1;
9523 }
9524 else if(regs[i].regmap[hr]>=0) {
9525 if(f_regmap[hr]!=regs[i].regmap[hr]) {
9526 // dealloc old register
9527 int n;
9528 for(n=0;n<HOST_REGS;n++)
9529 {
9530 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9531 }
9532 // and alloc new one
9533 f_regmap[hr]=regs[i].regmap[hr];
9534 }
9535 }
9536 if(branch_regs[i].regmap[hr]>64) {
9537 if(!((branch_regs[i].dirty>>hr)&1))
9538 f_regmap[hr]=branch_regs[i].regmap[hr];
9539 else f_regmap[hr]=-1;
9540 }
9541 else if(branch_regs[i].regmap[hr]>=0) {
9542 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9543 // dealloc old register
9544 int n;
9545 for(n=0;n<HOST_REGS;n++)
9546 {
9547 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9548 }
9549 // and alloc new one
9550 f_regmap[hr]=branch_regs[i].regmap[hr];
9551 }
9552 }
9553 if(ooo[i]) {
9554 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
9555 f_regmap[hr]=branch_regs[i].regmap[hr];
9556 }else{
9557 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
9558 f_regmap[hr]=branch_regs[i].regmap[hr];
9559 }
9560 // Avoid dirty->clean transition
9561 #ifdef DESTRUCTIVE_WRITEBACK
9562 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9563 #endif
9564 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
9565 // case above, however it's always a good idea. We can't hoist the
9566 // load if the register was already allocated, so there's no point
9567 // wasting time analyzing most of these cases. It only "succeeds"
9568 // when the mapping was different and the load can be replaced with
9569 // a mov, which is of negligible benefit. So such cases are
9570 // skipped below.
9571 if(f_regmap[hr]>0) {
9572 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
9573 int r=f_regmap[hr];
9574 for(j=t;j<=i;j++)
9575 {
9576 //DebugMessage(M64MSG_VERBOSE, "Test %x -> %x, %x %d/%d",start+i*4,ba[i],start+j*4,hr,r);
9577 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9578 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9579 if(r>63) {
9580 // NB This can exclude the case where the upper-half
9581 // register is lower numbered than the lower-half
9582 // register. Not sure if it's worth fixing...
9583 if(get_reg(regs[j].regmap,r&63)<0) break;
9584 if(get_reg(regs[j].regmap_entry,r&63)<0) break;
9585 if(regs[j].is32&(1LL<<(r&63))) break;
9586 }
9587 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9588 //DebugMessage(M64MSG_VERBOSE, "Hit %x -> %x, %x %d/%d",start+i*4,ba[i],start+j*4,hr,r);
9589 int k;
9590 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9591 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9592 if(r>63) {
9593 if(get_reg(regs[i].regmap,r&63)<0) break;
9594 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9595 }
9596 k=i;
9597 while(k>1&&regs[k-1].regmap[hr]==-1) {
9598 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9599 //DebugMessage(M64MSG_VERBOSE, "no free regs for store %x",start+(k-1)*4);
9600 break;
9601 }
9602 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9603 //DebugMessage(M64MSG_VERBOSE, "no-match due to different register");
9604 break;
9605 }
9606 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9607 //DebugMessage(M64MSG_VERBOSE, "no-match due to branch");
9608 break;
9609 }
9610 // call/ret fast path assumes no registers allocated
9611 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
9612 break;
9613 }
9614 if(r>63) {
9615 // NB This can exclude the case where the upper-half
9616 // register is lower numbered than the lower-half
9617 // register. Not sure if it's worth fixing...
9618 if(get_reg(regs[k-1].regmap,r&63)<0) break;
9619 if(regs[k-1].is32&(1LL<<(r&63))) break;
9620 }
9621 k--;
9622 }
9623 if(i<slen-1) {
9624 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9625 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9626 //DebugMessage(M64MSG_VERBOSE, "bad match after branch");
9627 break;
9628 }
9629 }
9630 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9631 //DebugMessage(M64MSG_VERBOSE, "Extend r%d, %x ->",hr,start+k*4);
9632 while(k<i) {
9633 regs[k].regmap_entry[hr]=f_regmap[hr];
9634 regs[k].regmap[hr]=f_regmap[hr];
9635 regmap_pre[k+1][hr]=f_regmap[hr];
9636 regs[k].wasdirty&=~(1<<hr);
9637 regs[k].dirty&=~(1<<hr);
9638 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9639 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9640 regs[k].wasconst&=~(1<<hr);
9641 regs[k].isconst&=~(1<<hr);
9642 k++;
9643 }
9644 }
9645 else {
9646 //DebugMessage(M64MSG_VERBOSE, "Fail Extend r%d, %x ->",hr,start+k*4);
9647 break;
9648 }
9649 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9650 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9651 //DebugMessage(M64MSG_VERBOSE, "OK fill %x (r%d)",start+i*4,hr);
9652 regs[i].regmap_entry[hr]=f_regmap[hr];
9653 regs[i].regmap[hr]=f_regmap[hr];
9654 regs[i].wasdirty&=~(1<<hr);
9655 regs[i].dirty&=~(1<<hr);
9656 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9657 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9658 regs[i].wasconst&=~(1<<hr);
9659 regs[i].isconst&=~(1<<hr);
9660 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9661 branch_regs[i].wasdirty&=~(1<<hr);
9662 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9663 branch_regs[i].regmap[hr]=f_regmap[hr];
9664 branch_regs[i].dirty&=~(1<<hr);
9665 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9666 branch_regs[i].wasconst&=~(1<<hr);
9667 branch_regs[i].isconst&=~(1<<hr);
9668 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9669 regmap_pre[i+2][hr]=f_regmap[hr];
9670 regs[i+2].wasdirty&=~(1<<hr);
9671 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9672 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9673 (regs[i+2].was32&(1LL<<f_regmap[hr])));
9674 }
9675 }
9676 }
9677 for(k=t;k<j;k++) {
9678 // Alloc register clean at beginning of loop,
9679 // but may dirty it in pass 6
9680 regs[k].regmap_entry[hr]=f_regmap[hr];
9681 regs[k].regmap[hr]=f_regmap[hr];
9682 regs[k].dirty&=~(1<<hr);
9683 regs[k].wasconst&=~(1<<hr);
9684 regs[k].isconst&=~(1<<hr);
9685 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
9686 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
9687 branch_regs[k].regmap[hr]=f_regmap[hr];
9688 branch_regs[k].dirty&=~(1<<hr);
9689 branch_regs[k].wasconst&=~(1<<hr);
9690 branch_regs[k].isconst&=~(1<<hr);
9691 if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
9692 regmap_pre[k+2][hr]=f_regmap[hr];
9693 regs[k+2].wasdirty&=~(1<<hr);
9694 assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
9695 (regs[k+2].was32&(1LL<<f_regmap[hr])));
9696 }
9697 }
9698 else
9699 {
9700 regmap_pre[k+1][hr]=f_regmap[hr];
9701 regs[k+1].wasdirty&=~(1<<hr);
9702 }
9703 }
9704 if(regs[j].regmap[hr]==f_regmap[hr])
9705 regs[j].regmap_entry[hr]=f_regmap[hr];
9706 break;
9707 }
9708 if(j==i) break;
9709 if(regs[j].regmap[hr]>=0)
9710 break;
9711 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9712 //DebugMessage(M64MSG_VERBOSE, "no-match due to different register");
9713 break;
9714 }
9715 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9716 //DebugMessage(M64MSG_VERBOSE, "32/64 mismatch %x %d",start+j*4,hr);
9717 break;
9718 }
9719 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
9720 {
9721 // Stop on unconditional branch
9722 break;
9723 }
9724 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
9725 {
9726 if(ooo[j]) {
9727 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
9728 break;
9729 }else{
9730 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
9731 break;
9732 }
9733 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
9734 //DebugMessage(M64MSG_VERBOSE, "no-match due to different register (branch)");
9735 break;
9736 }
9737 }
9738 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
9739 //DebugMessage(M64MSG_VERBOSE, "No free regs for store %x",start+j*4);
9740 break;
9741 }
9742 if(f_regmap[hr]>=64) {
9743 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
9744 break;
9745 }
9746 else
9747 {
9748 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
9749 break;
9750 }
9751 }
9752 }
9753 }
9754 }
9755 }
9756 }
9757 }
9758 }else{
9759 // Non branch or undetermined branch target
9760 for(hr=0;hr<HOST_REGS;hr++)
9761 {
9762 if(hr!=EXCLUDE_REG) {
9763 if(regs[i].regmap[hr]>64) {
9764 if(!((regs[i].dirty>>hr)&1))
9765 f_regmap[hr]=regs[i].regmap[hr];
9766 }
9767 else if(regs[i].regmap[hr]>=0) {
9768 if(f_regmap[hr]!=regs[i].regmap[hr]) {
9769 // dealloc old register
9770 int n;
9771 for(n=0;n<HOST_REGS;n++)
9772 {
9773 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9774 }
9775 // and alloc new one
9776 f_regmap[hr]=regs[i].regmap[hr];
9777 }
9778 }
9779 }
9780 }
9781 // Try to restore cycle count at branch targets
9782 if(bt[i]) {
9783 for(j=i;j<slen-1;j++) {
9784 if(regs[j].regmap[HOST_CCREG]!=-1) break;
9785 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
9786 //DebugMessage(M64MSG_VERBOSE, "no free regs for store %x",start+j*4);
9787 break;
9788 }
9789 }
9790 if(regs[j].regmap[HOST_CCREG]==CCREG) {
9791 int k=i;
9792 //DebugMessage(M64MSG_VERBOSE, "Extend CC, %x -> %x",start+k*4,start+j*4);
9793 while(k<j) {
9794 regs[k].regmap_entry[HOST_CCREG]=CCREG;
9795 regs[k].regmap[HOST_CCREG]=CCREG;
9796 regmap_pre[k+1][HOST_CCREG]=CCREG;
9797 regs[k+1].wasdirty|=1<<HOST_CCREG;
9798 regs[k].dirty|=1<<HOST_CCREG;
9799 regs[k].wasconst&=~(1<<HOST_CCREG);
9800 regs[k].isconst&=~(1<<HOST_CCREG);
9801 k++;
9802 }
9803 regs[j].regmap_entry[HOST_CCREG]=CCREG;
9804 }
9805 // Work backwards from the branch target
9806 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
9807 {
9808 //DebugMessage(M64MSG_VERBOSE, "Extend backwards");
9809 int k;
9810 k=i;
9811 while(regs[k-1].regmap[HOST_CCREG]==-1) {
9812 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9813 //DebugMessage(M64MSG_VERBOSE, "no free regs for store %x",start+(k-1)*4);
9814 break;
9815 }
9816 k--;
9817 }
9818 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
9819 //DebugMessage(M64MSG_VERBOSE, "Extend CC, %x ->",start+k*4);
9820 while(k<=i) {
9821 regs[k].regmap_entry[HOST_CCREG]=CCREG;
9822 regs[k].regmap[HOST_CCREG]=CCREG;
9823 regmap_pre[k+1][HOST_CCREG]=CCREG;
9824 regs[k+1].wasdirty|=1<<HOST_CCREG;
9825 regs[k].dirty|=1<<HOST_CCREG;
9826 regs[k].wasconst&=~(1<<HOST_CCREG);
9827 regs[k].isconst&=~(1<<HOST_CCREG);
9828 k++;
9829 }
9830 }
9831 else {
9832 //DebugMessage(M64MSG_VERBOSE, "Fail Extend CC, %x ->",start+k*4);
9833 }
9834 }
9835 }
9836 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
9837 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
9838 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
9839 itype[i]!=FCONV&&itype[i]!=FCOMP)
9840 {
9841 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
9842 }
9843 }
9844 }
9845
9846 // Cache memory offset or tlb map pointer if a register is available
9847 #ifndef HOST_IMM_ADDR32
9848 #ifndef RAM_OFFSET
9849 if(using_tlb)
9850 #endif
9851 {
9852 int earliest_available[HOST_REGS];
9853 int loop_start[HOST_REGS];
9854 int score[HOST_REGS];
9855 int end[HOST_REGS];
9856 int reg=using_tlb?MMREG:ROREG;
9857
9858 // Init
9859 for(hr=0;hr<HOST_REGS;hr++) {
9860 score[hr]=0;earliest_available[hr]=0;
9861 loop_start[hr]=MAXBLOCK;
9862 }
9863 for(i=0;i<slen-1;i++)
9864 {
9865 // Can't do anything if no registers are available
9866 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
9867 for(hr=0;hr<HOST_REGS;hr++) {
9868 score[hr]=0;earliest_available[hr]=i+1;
9869 loop_start[hr]=MAXBLOCK;
9870 }
9871 }
9872 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9873 if(!ooo[i]) {
9874 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
9875 for(hr=0;hr<HOST_REGS;hr++) {
9876 score[hr]=0;earliest_available[hr]=i+1;
9877 loop_start[hr]=MAXBLOCK;
9878 }
9879 }
9880 }else{
9881 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
9882 for(hr=0;hr<HOST_REGS;hr++) {
9883 score[hr]=0;earliest_available[hr]=i+1;
9884 loop_start[hr]=MAXBLOCK;
9885 }
9886 }
9887 }
9888 }
9889 // Mark unavailable registers
9890 for(hr=0;hr<HOST_REGS;hr++) {
9891 if(regs[i].regmap[hr]>=0) {
9892 score[hr]=0;earliest_available[hr]=i+1;
9893 loop_start[hr]=MAXBLOCK;
9894 }
9895 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9896 if(branch_regs[i].regmap[hr]>=0) {
9897 score[hr]=0;earliest_available[hr]=i+2;
9898 loop_start[hr]=MAXBLOCK;
9899 }
9900 }
9901 }
9902 // No register allocations after unconditional jumps
9903 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
9904 {
9905 for(hr=0;hr<HOST_REGS;hr++) {
9906 score[hr]=0;earliest_available[hr]=i+2;
9907 loop_start[hr]=MAXBLOCK;
9908 }
9909 i++; // Skip delay slot too
9910 //DebugMessage(M64MSG_VERBOSE, "skip delay slot: %x",start+i*4);
9911 }
9912 else
9913 // Possible match
9914 if(itype[i]==LOAD||itype[i]==LOADLR||
9915 itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
9916 for(hr=0;hr<HOST_REGS;hr++) {
9917 if(hr!=EXCLUDE_REG) {
9918 end[hr]=i-1;
9919 for(j=i;j<slen-1;j++) {
9920 if(regs[j].regmap[hr]>=0) break;
9921 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9922 if(branch_regs[j].regmap[hr]>=0) break;
9923 if(ooo[j]) {
9924 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
9925 }else{
9926 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
9927 }
9928 }
9929 else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
9930 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9931 int t=(ba[j]-start)>>2;
9932 if(t<j&&t>=earliest_available[hr]) {
9933 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
9934 // Score a point for hoisting loop invariant
9935 if(t<loop_start[hr]) loop_start[hr]=t;
9936 //DebugMessage(M64MSG_VERBOSE, "set loop_start: i=%x j=%x (%x)",start+i*4,start+j*4,start+t*4);
9937 score[hr]++;
9938 end[hr]=j;
9939 }
9940 }
9941 else if(t<j) {
9942 if(regs[t].regmap[hr]==reg) {
9943 // Score a point if the branch target matches this register
9944 score[hr]++;
9945 end[hr]=j;
9946 }
9947 }
9948 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
9949 itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
9950 score[hr]++;
9951 end[hr]=j;
9952 }
9953 }
9954 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
9955 {
9956 // Stop on unconditional branch
9957 break;
9958 }
9959 else
9960 if(itype[j]==LOAD||itype[j]==LOADLR||
9961 itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
9962 score[hr]++;
9963 end[hr]=j;
9964 }
9965 }
9966 }
9967 }
9968 // Find highest score and allocate that register
9969 int maxscore=0;
9970 for(hr=0;hr<HOST_REGS;hr++) {
9971 if(hr!=EXCLUDE_REG) {
9972 if(score[hr]>score[maxscore]) {
9973 maxscore=hr;
9974 //DebugMessage(M64MSG_VERBOSE, "highest score: %d %d (%x->%x)",score[hr],hr,start+i*4,start+end[hr]*4);
9975 }
9976 }
9977 }
9978 if(score[maxscore]>1)
9979 {
9980 if(i<loop_start[maxscore]) loop_start[maxscore]=i;
9981 for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
9982 //if(regs[j].regmap[maxscore]>=0) {DebugMessage(M64MSG_ERROR, "oops: %x %x was %d=%d",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
9983 assert(regs[j].regmap[maxscore]<0);
9984 if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
9985 regs[j].regmap[maxscore]=reg;
9986 regs[j].dirty&=~(1<<maxscore);
9987 regs[j].wasconst&=~(1<<maxscore);
9988 regs[j].isconst&=~(1<<maxscore);
9989 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9990 branch_regs[j].regmap[maxscore]=reg;
9991 branch_regs[j].wasdirty&=~(1<<maxscore);
9992 branch_regs[j].dirty&=~(1<<maxscore);
9993 branch_regs[j].wasconst&=~(1<<maxscore);
9994 branch_regs[j].isconst&=~(1<<maxscore);
9995 if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
9996 regmap_pre[j+2][maxscore]=reg;
9997 regs[j+2].wasdirty&=~(1<<maxscore);
9998 }
9999 // loop optimization (loop_preload)
10000 int t=(ba[j]-start)>>2;
10001 if(t==loop_start[maxscore]) {
10002 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
10003 regs[t].regmap_entry[maxscore]=reg;
10004 }
10005 }
10006 else
10007 {
10008 if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
10009 regmap_pre[j+1][maxscore]=reg;
10010 regs[j+1].wasdirty&=~(1<<maxscore);
10011 }
10012 }
10013 }
10014 i=j-1;
10015 if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
10016 for(hr=0;hr<HOST_REGS;hr++) {
10017 score[hr]=0;earliest_available[hr]=i+i;
10018 loop_start[hr]=MAXBLOCK;
10019 }
10020 }
10021 }
10022 }
10023 }
10024 #endif
10025
10026 // This allocates registers (if possible) one instruction prior
10027 // to use, which can avoid a load-use penalty on certain CPUs.
10028 for(i=0;i<slen-1;i++)
10029 {
10030 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10031 {
10032 if(!bt[i+1])
10033 {
10034 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16||(itype[i]==COP1&&opcode2[i]<3))
10035 {
10036 if(rs1[i+1]) {
10037 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10038 {
10039 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10040 {
10041 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10042 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10043 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10044 regs[i].isconst&=~(1<<hr);
10045 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10046 constmap[i][hr]=constmap[i+1][hr];
10047 regs[i+1].wasdirty&=~(1<<hr);
10048 regs[i].dirty&=~(1<<hr);
10049 }
10050 }
10051 }
10052 if(rs2[i+1]) {
10053 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10054 {
10055 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10056 {
10057 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10058 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10059 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10060 regs[i].isconst&=~(1<<hr);
10061 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10062 constmap[i][hr]=constmap[i+1][hr];
10063 regs[i+1].wasdirty&=~(1<<hr);
10064 regs[i].dirty&=~(1<<hr);
10065 }
10066 }
10067 }
10068 // Preload target address for load instruction (non-constant)
10069 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10070 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10071 {
10072 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10073 {
10074 regs[i].regmap[hr]=rs1[i+1];
10075 regmap_pre[i+1][hr]=rs1[i+1];
10076 regs[i+1].regmap_entry[hr]=rs1[i+1];
10077 regs[i].isconst&=~(1<<hr);
10078 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10079 constmap[i][hr]=constmap[i+1][hr];
10080 regs[i+1].wasdirty&=~(1<<hr);
10081 regs[i].dirty&=~(1<<hr);
10082 }
10083 }
10084 }
10085 // Load source into target register
10086 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10087 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10088 {
10089 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10090 {
10091 regs[i].regmap[hr]=rs1[i+1];
10092 regmap_pre[i+1][hr]=rs1[i+1];
10093 regs[i+1].regmap_entry[hr]=rs1[i+1];
10094 regs[i].isconst&=~(1<<hr);
10095 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10096 constmap[i][hr]=constmap[i+1][hr];
10097 regs[i+1].wasdirty&=~(1<<hr);
10098 regs[i].dirty&=~(1<<hr);
10099 }
10100 }
10101 }
10102 // Preload map address
10103 #ifndef HOST_IMM_ADDR32
10104 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS) {
10105 hr=get_reg(regs[i+1].regmap,TLREG);
10106 if(hr>=0) {
10107 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10108 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10109 int nr;
10110 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10111 {
10112 regs[i].regmap[hr]=MGEN1+((i+1)&1);
10113 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10114 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10115 regs[i].isconst&=~(1<<hr);
10116 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10117 constmap[i][hr]=constmap[i+1][hr];
10118 regs[i+1].wasdirty&=~(1<<hr);
10119 regs[i].dirty&=~(1<<hr);
10120 }
10121 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10122 {
10123 // move it to another register
10124 regs[i+1].regmap[hr]=-1;
10125 regmap_pre[i+2][hr]=-1;
10126 regs[i+1].regmap[nr]=TLREG;
10127 regmap_pre[i+2][nr]=TLREG;
10128 regs[i].regmap[nr]=MGEN1+((i+1)&1);
10129 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10130 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10131 regs[i].isconst&=~(1<<nr);
10132 regs[i+1].isconst&=~(1<<nr);
10133 regs[i].dirty&=~(1<<nr);
10134 regs[i+1].wasdirty&=~(1<<nr);
10135 regs[i+1].dirty&=~(1<<nr);
10136 regs[i+2].wasdirty&=~(1<<nr);
10137 }
10138 }
10139 }
10140 }
10141 #endif
10142 // Address for store instruction (non-constant)
10143 if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) { // SB/SH/SW/SD/SWC1/SDC1
10144 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10145 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10146 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10147 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10148 assert(hr>=0);
10149 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10150 {
10151 regs[i].regmap[hr]=rs1[i+1];
10152 regmap_pre[i+1][hr]=rs1[i+1];
10153 regs[i+1].regmap_entry[hr]=rs1[i+1];
10154 regs[i].isconst&=~(1<<hr);
10155 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10156 constmap[i][hr]=constmap[i+1][hr];
10157 regs[i+1].wasdirty&=~(1<<hr);
10158 regs[i].dirty&=~(1<<hr);
10159 }
10160 }
10161 }
10162 if(itype[i+1]==LOADLR||opcode[i+1]==0x31||opcode[i+1]==0x35) { // LWC1/LDC1
10163 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10164 int nr;
10165 hr=get_reg(regs[i+1].regmap,FTEMP);
10166 assert(hr>=0);
10167 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10168 {
10169 regs[i].regmap[hr]=rs1[i+1];
10170 regmap_pre[i+1][hr]=rs1[i+1];
10171 regs[i+1].regmap_entry[hr]=rs1[i+1];
10172 regs[i].isconst&=~(1<<hr);
10173 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10174 constmap[i][hr]=constmap[i+1][hr];
10175 regs[i+1].wasdirty&=~(1<<hr);
10176 regs[i].dirty&=~(1<<hr);
10177 }
10178 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10179 {
10180 // move it to another register
10181 regs[i+1].regmap[hr]=-1;
10182 regmap_pre[i+2][hr]=-1;
10183 regs[i+1].regmap[nr]=FTEMP;
10184 regmap_pre[i+2][nr]=FTEMP;
10185 regs[i].regmap[nr]=rs1[i+1];
10186 regmap_pre[i+1][nr]=rs1[i+1];
10187 regs[i+1].regmap_entry[nr]=rs1[i+1];
10188 regs[i].isconst&=~(1<<nr);
10189 regs[i+1].isconst&=~(1<<nr);
10190 regs[i].dirty&=~(1<<nr);
10191 regs[i+1].wasdirty&=~(1<<nr);
10192 regs[i+1].dirty&=~(1<<nr);
10193 regs[i+2].wasdirty&=~(1<<nr);
10194 }
10195 }
10196 }
10197 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS*/) {
10198 if(itype[i+1]==LOAD)
10199 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10200 if(itype[i+1]==LOADLR||opcode[i+1]==0x31||opcode[i+1]==0x35) // LWC1/LDC1
10201 hr=get_reg(regs[i+1].regmap,FTEMP);
10202 if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) { // SWC1/SDC1
10203 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10204 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10205 }
10206 if(hr>=0&&regs[i].regmap[hr]<0) {
10207 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10208 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10209 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10210 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10211 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10212 regs[i].isconst&=~(1<<hr);
10213 regs[i+1].wasdirty&=~(1<<hr);
10214 regs[i].dirty&=~(1<<hr);
10215 }
10216 }
10217 }
10218 }
10219 }
10220 }
10221 }
10222
10223 /* Pass 6 - Optimize clean/dirty state */
10224 clean_registers(0,slen-1,1);
10225
10226 /* Pass 7 - Identify 32-bit registers */
10227
10228 provisional_r32();
10229
10230 u_int r32=0;
10231
10232 for (i=slen-1;i>=0;i--)
10233 {
10234 int hr;
10235 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10236 {
10237 if(ba[i]<start || ba[i]>=(start+slen*4))
10238 {
10239 // Branch out of this block, don't need anything
10240 r32=0;
10241 }
10242 else
10243 {
10244 // Internal branch
10245 // Need whatever matches the target
10246 // (and doesn't get overwritten by the delay slot instruction)
10247 r32=0;
10248 int t=(ba[i]-start)>>2;
10249 if(ba[i]>start+i*4) {
10250 // Forward branch
10251 if(!(requires_32bit[t]&~regs[i].was32))
10252 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10253 }else{
10254 // Backward branch
10255 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10256 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10257 if(!(pr32[t]&~regs[i].was32))
10258 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10259 }
10260 }
10261 // Conditional branch may need registers for following instructions
10262 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10263 {
10264 if(i<slen-2) {
10265 r32|=requires_32bit[i+2];
10266 r32&=regs[i].was32;
10267 // Mark this address as a branch target since it may be called
10268 // upon return from interrupt
10269 bt[i+2]=1;
10270 }
10271 }
10272 // Merge in delay slot
10273 if(!likely[i]) {
10274 // These are overwritten unless the branch is "likely"
10275 // and the delay slot is nullified if not taken
10276 r32&=~(1LL<<rt1[i+1]);
10277 r32&=~(1LL<<rt2[i+1]);
10278 }
10279 // Assume these are needed (delay slot)
10280 if(us1[i+1]>0)
10281 {
10282 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10283 }
10284 if(us2[i+1]>0)
10285 {
10286 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10287 }
10288 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10289 {
10290 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10291 }
10292 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10293 {
10294 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10295 }
10296 }
10297 else if(itype[i]==SYSCALL)
10298 {
10299 // SYSCALL instruction (software interrupt)
10300 r32=0;
10301 }
10302 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10303 {
10304 // ERET instruction (return from interrupt)
10305 r32=0;
10306 }
10307 // Check 32 bits
10308 r32&=~(1LL<<rt1[i]);
10309 r32&=~(1LL<<rt2[i]);
10310 if(us1[i]>0)
10311 {
10312 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10313 }
10314 if(us2[i]>0)
10315 {
10316 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10317 }
10318 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10319 {
10320 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10321 }
10322 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10323 {
10324 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10325 }
10326 requires_32bit[i]=r32;
10327
10328 // Dirty registers which are 32-bit, require 32-bit input
10329 // as they will be written as 32-bit values
10330 for(hr=0;hr<HOST_REGS;hr++)
10331 {
10332 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10333 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10334 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10335 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10336 }
10337 }
10338 }
10339 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10340 }
10341
10342 if(itype[slen-1]==SPAN) {
10343 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10344 }
10345
10346 /* Debug/disassembly */
10347// if((void*)assem_debug==(void*)printf)
10348#if defined( ASSEM_DEBUG )
10349 for(i=0;i<slen;i++)
10350 {
10351 DebugMessage(M64MSG_VERBOSE, "U:");
10352 int r;
10353 for(r=1;r<=CCREG;r++) {
10354 if((unneeded_reg[i]>>r)&1) {
10355 if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10356 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10357 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10358 }
10359 }
10360 DebugMessage(M64MSG_VERBOSE, " UU:");
10361 for(r=1;r<=CCREG;r++) {
10362 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10363 if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10364 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10365 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10366 }
10367 }
10368 DebugMessage(M64MSG_VERBOSE, " 32:");
10369 for(r=0;r<=CCREG;r++) {
10370 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10371 if((regs[i].was32>>r)&1) {
10372 if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
10373 else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10374 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10375 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10376 }
10377 }
10378 #if NEW_DYNAREC == NEW_DYNAREC_X86
10379 DebugMessage(M64MSG_VERBOSE, "pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10380 #endif
10381 #if NEW_DYNAREC == NEW_DYNAREC_ARM
10382 DebugMessage(M64MSG_VERBOSE, "pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10383 #endif
10384 DebugMessage(M64MSG_VERBOSE, "needs: ");
10385 if(needed_reg[i]&1) DebugMessage(M64MSG_VERBOSE, "eax ");
10386 if((needed_reg[i]>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx ");
10387 if((needed_reg[i]>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx ");
10388 if((needed_reg[i]>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx ");
10389 if((needed_reg[i]>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp ");
10390 if((needed_reg[i]>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi ");
10391 if((needed_reg[i]>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi ");
10392 DebugMessage(M64MSG_VERBOSE, "r:");
10393 for(r=0;r<=CCREG;r++) {
10394 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10395 if((requires_32bit[i]>>r)&1) {
10396 if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
10397 else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10398 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10399 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10400 }
10401 }
10402 /*DebugMessage(M64MSG_VERBOSE, "pr:");
10403 for(r=0;r<=CCREG;r++) {
10404 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10405 if((pr32[i]>>r)&1) {
10406 if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
10407 else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10408 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10409 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10410 }
10411 }
10412 if(pr32[i]!=requires_32bit[i]) DebugMessage(M64MSG_ERROR, " OOPS");*/
10413 #if NEW_DYNAREC == NEW_DYNAREC_X86
10414 DebugMessage(M64MSG_VERBOSE, "entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10415 DebugMessage(M64MSG_VERBOSE, "dirty: ");
10416 if(regs[i].wasdirty&1) DebugMessage(M64MSG_VERBOSE, "eax ");
10417 if((regs[i].wasdirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx ");
10418 if((regs[i].wasdirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx ");
10419 if((regs[i].wasdirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx ");
10420 if((regs[i].wasdirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp ");
10421 if((regs[i].wasdirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi ");
10422 if((regs[i].wasdirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi ");
10423 #endif
10424 #if NEW_DYNAREC == NEW_DYNAREC_ARM
10425 DebugMessage(M64MSG_VERBOSE, "entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10426 DebugMessage(M64MSG_VERBOSE, "dirty: ");
10427 if(regs[i].wasdirty&1) DebugMessage(M64MSG_VERBOSE, "r0 ");
10428 if((regs[i].wasdirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "r1 ");
10429 if((regs[i].wasdirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "r2 ");
10430 if((regs[i].wasdirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "r3 ");
10431 if((regs[i].wasdirty>>4)&1) DebugMessage(M64MSG_VERBOSE, "r4 ");
10432 if((regs[i].wasdirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "r5 ");
10433 if((regs[i].wasdirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "r6 ");
10434 if((regs[i].wasdirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "r7 ");
10435 if((regs[i].wasdirty>>8)&1) DebugMessage(M64MSG_VERBOSE, "r8 ");
10436 if((regs[i].wasdirty>>9)&1) DebugMessage(M64MSG_VERBOSE, "r9 ");
10437 if((regs[i].wasdirty>>10)&1) DebugMessage(M64MSG_VERBOSE, "r10 ");
10438 if((regs[i].wasdirty>>12)&1) DebugMessage(M64MSG_VERBOSE, "r12 ");
10439 #endif
10440 disassemble_inst(i);
10441 //printf ("ccadj[%d] = %d",i,ccadj[i]);
10442 #if NEW_DYNAREC == NEW_DYNAREC_X86
10443 DebugMessage(M64MSG_VERBOSE, "eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10444 if(regs[i].dirty&1) DebugMessage(M64MSG_VERBOSE, "eax ");
10445 if((regs[i].dirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx ");
10446 if((regs[i].dirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx ");
10447 if((regs[i].dirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx ");
10448 if((regs[i].dirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp ");
10449 if((regs[i].dirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi ");
10450 if((regs[i].dirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi ");
10451 #endif
10452 #if NEW_DYNAREC == NEW_DYNAREC_ARM
10453 DebugMessage(M64MSG_VERBOSE, "r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10454 if(regs[i].dirty&1) DebugMessage(M64MSG_VERBOSE, "r0 ");
10455 if((regs[i].dirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "r1 ");
10456 if((regs[i].dirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "r2 ");
10457 if((regs[i].dirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "r3 ");
10458 if((regs[i].dirty>>4)&1) DebugMessage(M64MSG_VERBOSE, "r4 ");
10459 if((regs[i].dirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "r5 ");
10460 if((regs[i].dirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "r6 ");
10461 if((regs[i].dirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "r7 ");
10462 if((regs[i].dirty>>8)&1) DebugMessage(M64MSG_VERBOSE, "r8 ");
10463 if((regs[i].dirty>>9)&1) DebugMessage(M64MSG_VERBOSE, "r9 ");
10464 if((regs[i].dirty>>10)&1) DebugMessage(M64MSG_VERBOSE, "r10 ");
10465 if((regs[i].dirty>>12)&1) DebugMessage(M64MSG_VERBOSE, "r12 ");
10466 #endif
10467 if(regs[i].isconst) {
10468 DebugMessage(M64MSG_VERBOSE, "constants: ");
10469 #if NEW_DYNAREC == NEW_DYNAREC_X86
10470 if(regs[i].isconst&1) DebugMessage(M64MSG_VERBOSE, "eax=%x ",(int)constmap[i][0]);
10471 if((regs[i].isconst>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx=%x ",(int)constmap[i][1]);
10472 if((regs[i].isconst>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx=%x ",(int)constmap[i][2]);
10473 if((regs[i].isconst>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx=%x ",(int)constmap[i][3]);
10474 if((regs[i].isconst>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp=%x ",(int)constmap[i][5]);
10475 if((regs[i].isconst>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi=%x ",(int)constmap[i][6]);
10476 if((regs[i].isconst>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi=%x ",(int)constmap[i][7]);
10477 #endif
10478 #if NEW_DYNAREC == NEW_DYNAREC_ARM
10479 if(regs[i].isconst&1) DebugMessage(M64MSG_VERBOSE, "r0=%x ",(int)constmap[i][0]);
10480 if((regs[i].isconst>>1)&1) DebugMessage(M64MSG_VERBOSE, "r1=%x ",(int)constmap[i][1]);
10481 if((regs[i].isconst>>2)&1) DebugMessage(M64MSG_VERBOSE, "r2=%x ",(int)constmap[i][2]);
10482 if((regs[i].isconst>>3)&1) DebugMessage(M64MSG_VERBOSE, "r3=%x ",(int)constmap[i][3]);
10483 if((regs[i].isconst>>4)&1) DebugMessage(M64MSG_VERBOSE, "r4=%x ",(int)constmap[i][4]);
10484 if((regs[i].isconst>>5)&1) DebugMessage(M64MSG_VERBOSE, "r5=%x ",(int)constmap[i][5]);
10485 if((regs[i].isconst>>6)&1) DebugMessage(M64MSG_VERBOSE, "r6=%x ",(int)constmap[i][6]);
10486 if((regs[i].isconst>>7)&1) DebugMessage(M64MSG_VERBOSE, "r7=%x ",(int)constmap[i][7]);
10487 if((regs[i].isconst>>8)&1) DebugMessage(M64MSG_VERBOSE, "r8=%x ",(int)constmap[i][8]);
10488 if((regs[i].isconst>>9)&1) DebugMessage(M64MSG_VERBOSE, "r9=%x ",(int)constmap[i][9]);
10489 if((regs[i].isconst>>10)&1) DebugMessage(M64MSG_VERBOSE, "r10=%x ",(int)constmap[i][10]);
10490 if((regs[i].isconst>>12)&1) DebugMessage(M64MSG_VERBOSE, "r12=%x ",(int)constmap[i][12]);
10491 #endif
10492 }
10493 DebugMessage(M64MSG_VERBOSE, " 32:");
10494 for(r=0;r<=CCREG;r++) {
10495 if((regs[i].is32>>r)&1) {
10496 if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
10497 else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10498 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10499 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10500 }
10501 }
10502 /*DebugMessage(M64MSG_VERBOSE, " p32:");
10503 for(r=0;r<=CCREG;r++) {
10504 if((p32[i]>>r)&1) {
10505 if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
10506 else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10507 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10508 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10509 }
10510 }
10511 if(p32[i]!=regs[i].is32) DebugMessage(M64MSG_VERBOSE, " NO MATCH");*/
10512 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10513 #if NEW_DYNAREC == NEW_DYNAREC_X86
10514 DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10515 if(branch_regs[i].dirty&1) DebugMessage(M64MSG_VERBOSE, "eax ");
10516 if((branch_regs[i].dirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx ");
10517 if((branch_regs[i].dirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx ");
10518 if((branch_regs[i].dirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx ");
10519 if((branch_regs[i].dirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp ");
10520 if((branch_regs[i].dirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi ");
10521 if((branch_regs[i].dirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi ");
10522 #endif
10523 #if NEW_DYNAREC == NEW_DYNAREC_ARM
10524 DebugMessage(M64MSG_VERBOSE, "branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10525 if(branch_regs[i].dirty&1) DebugMessage(M64MSG_VERBOSE, "r0 ");
10526 if((branch_regs[i].dirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "r1 ");
10527 if((branch_regs[i].dirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "r2 ");
10528 if((branch_regs[i].dirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "r3 ");
10529 if((branch_regs[i].dirty>>4)&1) DebugMessage(M64MSG_VERBOSE, "r4 ");
10530 if((branch_regs[i].dirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "r5 ");
10531 if((branch_regs[i].dirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "r6 ");
10532 if((branch_regs[i].dirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "r7 ");
10533 if((branch_regs[i].dirty>>8)&1) DebugMessage(M64MSG_VERBOSE, "r8 ");
10534 if((branch_regs[i].dirty>>9)&1) DebugMessage(M64MSG_VERBOSE, "r9 ");
10535 if((branch_regs[i].dirty>>10)&1) DebugMessage(M64MSG_VERBOSE, "r10 ");
10536 if((branch_regs[i].dirty>>12)&1) DebugMessage(M64MSG_VERBOSE, "r12 ");
10537 #endif
10538 DebugMessage(M64MSG_VERBOSE, " 32:");
10539 for(r=0;r<=CCREG;r++) {
10540 if((branch_regs[i].is32>>r)&1) {
10541 if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
10542 else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10543 else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10544 else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10545 }
10546 }
10547 }
10548 }
10549#endif
10550
10551 /* Pass 8 - Assembly */
10552 linkcount=0;stubcount=0;
10553 ds=0;is_delayslot=0;
10554 cop1_usable=0;
10555 #ifndef DESTRUCTIVE_WRITEBACK
10556 uint64_t is32_pre=0;
10557 u_int dirty_pre=0;
10558 #endif
10559 u_int beginning=(u_int)out;
10560 if((u_int)addr&1) {
10561 ds=1;
10562 pagespan_ds();
10563 }
10564 for(i=0;i<slen;i++)
10565 {
10566 //if(ds) DebugMessage(M64MSG_VERBOSE, "ds: ");
10567// if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10568#if defined( ASSEM_DEBUG )
10569 disassemble_inst(i);
10570#endif
10571 if(ds) {
10572 ds=0; // Skip delay slot
10573 if(bt[i]) assem_debug("OOPS - branch into delay slot");
10574 instr_addr[i]=0;
10575 } else {
10576 #ifndef DESTRUCTIVE_WRITEBACK
10577 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10578 {
10579 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10580 unneeded_reg[i],unneeded_reg_upper[i]);
10581 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10582 unneeded_reg[i],unneeded_reg_upper[i]);
10583 }
10584 is32_pre=regs[i].is32;
10585 dirty_pre=regs[i].dirty;
10586 #endif
10587 // write back
10588 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10589 {
10590 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10591 unneeded_reg[i],unneeded_reg_upper[i]);
10592 loop_preload(regmap_pre[i],regs[i].regmap_entry);
10593 }
10594 // branch target entry point
10595 instr_addr[i]=(u_int)out;
10596 assem_debug("<->");
10597 // load regs
10598 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10599 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10600 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10601 address_generation(i,&regs[i],regs[i].regmap_entry);
10602 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10603 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10604 {
10605 // Load the delay slot registers if necessary
10606 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10607 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10608 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10609 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10610 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39)
10611 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10612 }
10613 else if(i+1<slen)
10614 {
10615 // Preload registers for following instruction
10616 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10617 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10618 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10619 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10620 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10621 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10622 }
10623 // TODO: if(is_ooo(i)) address_generation(i+1);
10624 if(itype[i]==CJUMP||itype[i]==FJUMP)
10625 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10626 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS)
10627 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,MMREG,ROREG);
10628 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39)
10629 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10630 if(bt[i]) cop1_usable=0;
10631 // assemble
10632 switch(itype[i]) {
10633 case ALU:
10634 alu_assemble(i,&regs[i]);break;
10635 case IMM16:
10636 imm16_assemble(i,&regs[i]);break;
10637 case SHIFT:
10638 shift_assemble(i,&regs[i]);break;
10639 case SHIFTIMM:
10640 shiftimm_assemble(i,&regs[i]);break;
10641 case LOAD:
10642 load_assemble(i,&regs[i]);break;
10643 case LOADLR:
10644 loadlr_assemble(i,&regs[i]);break;
10645 case STORE:
10646 store_assemble(i,&regs[i]);break;
10647 case STORELR:
10648 storelr_assemble(i,&regs[i]);break;
10649 case COP0:
10650 cop0_assemble(i,&regs[i]);break;
10651 case COP1:
10652 cop1_assemble(i,&regs[i]);break;
10653 case C1LS:
10654 c1ls_assemble(i,&regs[i]);break;
10655 case FCONV:
10656 fconv_assemble(i,&regs[i]);break;
10657 case FLOAT:
10658 float_assemble(i,&regs[i]);break;
10659 case FCOMP:
10660 fcomp_assemble(i,&regs[i]);break;
10661 case MULTDIV:
10662 multdiv_assemble(i,&regs[i]);break;
10663 case MOV:
10664 mov_assemble(i,&regs[i]);break;
10665 case SYSCALL:
10666 syscall_assemble(i,&regs[i]);break;
10667 case UJUMP:
10668 ujump_assemble(i,&regs[i]);ds=1;break;
10669 case RJUMP:
10670 rjump_assemble(i,&regs[i]);ds=1;break;
10671 case CJUMP:
10672 cjump_assemble(i,&regs[i]);ds=1;break;
10673 case SJUMP:
10674 sjump_assemble(i,&regs[i]);ds=1;break;
10675 case FJUMP:
10676 fjump_assemble(i,&regs[i]);ds=1;break;
10677 case SPAN:
10678 pagespan_assemble(i,&regs[i]);break;
10679 }
10680 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10681 literal_pool(1024);
10682 else
10683 literal_pool_jumpover(256);
10684 }
10685 }
10686 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10687 // If the block did not end with an unconditional branch,
10688 // add a jump to the next instruction.
10689 if(i>1) {
10690 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10691 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10692 assert(i==slen);
10693 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10694 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10695 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10696 emit_loadreg(CCREG,HOST_CCREG);
10697 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10698 }
10699 else if(!likely[i-2])
10700 {
10701 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10702 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10703 }
10704 else
10705 {
10706 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10707 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10708 }
10709 add_to_linker((int)out,start+i*4,0);
10710 emit_jmp(0);
10711 }
10712 }
10713 else
10714 {
10715 assert(i>0);
10716 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10717 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10718 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10719 emit_loadreg(CCREG,HOST_CCREG);
10720 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10721 add_to_linker((int)out,start+i*4,0);
10722 emit_jmp(0);
10723 }
10724
10725 // TODO: delay slot stubs?
10726 // Stubs
10727 for(i=0;i<stubcount;i++)
10728 {
10729 switch(stubs[i][0])
10730 {
10731 case LOADB_STUB:
10732 case LOADH_STUB:
10733 case LOADW_STUB:
10734 case LOADD_STUB:
10735 case LOADBU_STUB:
10736 case LOADHU_STUB:
10737 do_readstub(i);break;
10738 case STOREB_STUB:
10739 case STOREH_STUB:
10740 case STOREW_STUB:
10741 case STORED_STUB:
10742 do_writestub(i);break;
10743 case CC_STUB:
10744 do_ccstub(i);break;
10745 case INVCODE_STUB:
10746 do_invstub(i);break;
10747 case FP_STUB:
10748 do_cop1stub(i);break;
10749 case STORELR_STUB:
10750 do_unalignedwritestub(i);break;
10751 }
10752 }
10753
10754 /* Pass 9 - Linker */
10755 for(i=0;i<linkcount;i++)
10756 {
10757 assem_debug("%8x -> %8x",link_addr[i][0],link_addr[i][1]);
10758 literal_pool(64);
10759 if(!link_addr[i][2])
10760 {
10761 void *stub=out;
10762 void *addr=check_addr(link_addr[i][1]);
10763 emit_extjump(link_addr[i][0],link_addr[i][1]);
10764 if(addr) {
10765 set_jump_target(link_addr[i][0],(int)addr);
10766 add_link(link_addr[i][1],stub);
10767 }
10768 else set_jump_target(link_addr[i][0],(int)stub);
10769 }
10770 else
10771 {
10772 // Internal branch
10773 int target=(link_addr[i][1]-start)>>2;
10774 assert(target>=0&&target<slen);
10775 assert(instr_addr[target]);
10776 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10777 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10778 //#else
10779 set_jump_target(link_addr[i][0],instr_addr[target]);
10780 //#endif
10781 }
10782 }
10783 // External Branch Targets (jump_in)
10784 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10785 for(i=0;i<slen;i++)
10786 {
10787 if(bt[i]||i==0)
10788 {
10789 if(instr_addr[i]) // TODO - delay slots (=null)
10790 {
10791 u_int vaddr=start+i*4;
10792 u_int page=(0x80000000^vaddr)>>12;
10793 u_int vpage=page;
10794 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[page^0x80000]^0x80000000)>>12;
10795 if(page>2048) page=2048+(page&2047);
10796 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
10797 if(vpage>2048) vpage=2048+(vpage&2047);
10798 literal_pool(256);
10799 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
10800 if(!requires_32bit[i])
10801 {
10802 assem_debug("%8x (%d) <- %8x",instr_addr[i],i,start+i*4);
10803 assem_debug("jump_in: %x",start+i*4);
10804 ll_add(jump_dirty+vpage,vaddr,(void *)out);
10805 int entry_point=do_dirty_stub(i);
10806 ll_add(jump_in+page,vaddr,(void *)entry_point);
10807 // If there was an existing entry in the hash table,
10808 // replace it with the new address.
10809 // Don't add new entries. We'll insert the
10810 // ones that actually get used in check_addr().
10811 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10812 if(ht_bin[0]==vaddr) {
10813 ht_bin[1]=entry_point;
10814 }
10815 if(ht_bin[2]==vaddr) {
10816 ht_bin[3]=entry_point;
10817 }
10818 }
10819 else
10820 {
10821 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10822 assem_debug("%8x (%d) <- %8x",instr_addr[i],i,start+i*4);
10823 assem_debug("jump_in: %x (restricted - %x)",start+i*4,r);
10824 //int entry_point=(int)out;
10825 ////assem_debug("entry_point: %x",entry_point);
10826 //load_regs_entry(i);
10827 //if(entry_point==(int)out)
10828 // entry_point=instr_addr[i];
10829 //else
10830 // emit_jmp(instr_addr[i]);
10831 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10832 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
10833 int entry_point=do_dirty_stub(i);
10834 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10835 }
10836 }
10837 }
10838 }
10839 // Write out the literal pool if necessary
10840 literal_pool(0);
10841 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10842 // Align code
10843 if(((u_int)out)&7) emit_addnop(13);
10844 #endif
10845 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10846 //DebugMessage(M64MSG_VERBOSE, "shadow buffer: %x-%x",(int)copy,(int)copy+slen*4);
10847 memcpy(copy,source,slen*4);
10848 copy+=slen*4;
10849
10850 #if NEW_DYNAREC == NEW_DYNAREC_ARM
10851 __clear_cache((void *)beginning,out);
10852 //cacheflush((void *)beginning,out,0);
10853 #endif
10854
10855 // If we're within 256K of the end of the buffer,
10856 // start over from the beginning. (Is 256K enough?)
10857 if(out > (u_char *)(base_addr+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE-JUMP_TABLE_SIZE))
10858 out=(u_char *)base_addr;
10859
10860 // Trap writes to any of the pages we compiled
10861 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10862 invalid_code[i]=0;
10863 memory_map[i]|=0x40000000;
10864 if((signed int)start>=(signed int)0xC0000000) {
10865 assert(using_tlb);
10866 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
10867 invalid_code[j]=0;
10868 memory_map[j]|=0x40000000;
10869 //DebugMessage(M64MSG_VERBOSE, "write protect physical page: %x (virtual %x)",j<<12,start);
10870 }
10871 }
10872
10873 /* Pass 10 - Free memory by expiring oldest blocks */
10874
10875 int end=((((intptr_t)out-(intptr_t)base_addr)>>(TARGET_SIZE_2-16))+16384)&65535;
10876 while(expirep!=end)
10877 {
10878 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
10879 int base=(int)base_addr+((expirep>>13)<<shift); // Base address of this block
10880 inv_debug("EXP: Phase %d\n",expirep);
10881 switch((expirep>>11)&3)
10882 {
10883 case 0:
10884 // Clear jump_in and jump_dirty
10885 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
10886 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
10887 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
10888 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
10889 break;
10890 case 1:
10891 // Clear pointers
10892 ll_kill_pointers(jump_out[expirep&2047],base,shift);
10893 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
10894 break;
10895 case 2:
10896 // Clear hash table
10897 for(i=0;i<32;i++) {
10898 u_int *ht_bin=hash_table[((expirep&2047)<<5)+i];
10899 if((ht_bin[3]>>shift)==(base>>shift) ||
10900 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10901 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
10902 ht_bin[2]=ht_bin[3]=-1;
10903 }
10904 if((ht_bin[1]>>shift)==(base>>shift) ||
10905 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10906 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
10907 ht_bin[0]=ht_bin[2];
10908 ht_bin[1]=ht_bin[3];
10909 ht_bin[2]=ht_bin[3]=-1;
10910 }
10911 }
10912 break;
10913 case 3:
10914 // Clear jump_out
10915 #if NEW_DYNAREC == NEW_DYNAREC_ARM
10916 if((expirep&2047)==0)
10917 do_clear_cache();
10918 #endif
10919 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
10920 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
10921 break;
10922 }
10923 expirep=(expirep+1)&65535;
10924 }
10925 return 0;
10926}
10927
10928void TLBWI_new(void)
10929{
10930 unsigned int i;
10931 /* Remove old entries */
10932 unsigned int old_start_even=tlb_e[Index&0x3F].start_even;
10933 unsigned int old_end_even=tlb_e[Index&0x3F].end_even;
10934 unsigned int old_start_odd=tlb_e[Index&0x3F].start_odd;
10935 unsigned int old_end_odd=tlb_e[Index&0x3F].end_odd;
10936 for (i=old_start_even>>12; i<=old_end_even>>12; i++)
10937 {
10938 if(i<0x80000||i>0xBFFFF)
10939 {
10940 invalidate_block(i);
10941 memory_map[i]=-1;
10942 }
10943 }
10944 for (i=old_start_odd>>12; i<=old_end_odd>>12; i++)
10945 {
10946 if(i<0x80000||i>0xBFFFF)
10947 {
10948 invalidate_block(i);
10949 memory_map[i]=-1;
10950 }
10951 }
10952 cached_interpreter_table.TLBWI();
10953 //DebugMessage(M64MSG_VERBOSE, "TLBWI: index=%d",Index);
10954 //DebugMessage(M64MSG_VERBOSE, "TLBWI: start_even=%x end_even=%x phys_even=%x v=%d d=%d",tlb_e[Index&0x3F].start_even,tlb_e[Index&0x3F].end_even,tlb_e[Index&0x3F].phys_even,tlb_e[Index&0x3F].v_even,tlb_e[Index&0x3F].d_even);
10955 //DebugMessage(M64MSG_VERBOSE, "TLBWI: start_odd=%x end_odd=%x phys_odd=%x v=%d d=%d",tlb_e[Index&0x3F].start_odd,tlb_e[Index&0x3F].end_odd,tlb_e[Index&0x3F].phys_odd,tlb_e[Index&0x3F].v_odd,tlb_e[Index&0x3F].d_odd);
10956 /* Combine tlb_LUT_r, tlb_LUT_w, and invalid_code into a single table
10957 for fast look up. */
10958 for (i=tlb_e[Index&0x3F].start_even>>12; i<=tlb_e[Index&0x3F].end_even>>12; i++)
10959 {
10960 //DebugMessage(M64MSG_VERBOSE, "%x: r:%8x w:%8x",i,tlb_LUT_r[i],tlb_LUT_w[i]);
10961 if(i<0x80000||i>0xBFFFF)
10962 {
10963 if(tlb_LUT_r[i]) {
10964 memory_map[i]=((tlb_LUT_r[i]&0xFFFFF000)-(i<<12)+(unsigned int)rdram-0x80000000)>>2;
10965 // FIXME: should make sure the physical page is invalid too
10966 if(!tlb_LUT_w[i]||!invalid_code[i]) {
10967 memory_map[i]|=0x40000000; // Write protect
10968 }else{
10969 assert(tlb_LUT_r[i]==tlb_LUT_w[i]);
10970 }
10971 if(!using_tlb) DebugMessage(M64MSG_VERBOSE, "Enabled TLB");
10972 // Tell the dynamic recompiler to generate tlb lookup code
10973 using_tlb=1;
10974 }
10975 else memory_map[i]=-1;
10976 }
10977 //DebugMessage(M64MSG_VERBOSE, "memory_map[%x]: %8x (+%8x)",i,memory_map[i],memory_map[i]<<2);
10978 }
10979 for (i=tlb_e[Index&0x3F].start_odd>>12; i<=tlb_e[Index&0x3F].end_odd>>12; i++)
10980 {
10981 //DebugMessage(M64MSG_VERBOSE, "%x: r:%8x w:%8x",i,tlb_LUT_r[i],tlb_LUT_w[i]);
10982 if(i<0x80000||i>0xBFFFF)
10983 {
10984 if(tlb_LUT_r[i]) {
10985 memory_map[i]=((tlb_LUT_r[i]&0xFFFFF000)-(i<<12)+(unsigned int)rdram-0x80000000)>>2;
10986 // FIXME: should make sure the physical page is invalid too
10987 if(!tlb_LUT_w[i]||!invalid_code[i]) {
10988 memory_map[i]|=0x40000000; // Write protect
10989 }else{
10990 assert(tlb_LUT_r[i]==tlb_LUT_w[i]);
10991 }
10992 if(!using_tlb) DebugMessage(M64MSG_VERBOSE, "Enabled TLB");
10993 // Tell the dynamic recompiler to generate tlb lookup code
10994 using_tlb=1;
10995 }
10996 else memory_map[i]=-1;
10997 }
10998 //DebugMessage(M64MSG_VERBOSE, "memory_map[%x]: %8x (+%8x)",i,memory_map[i],memory_map[i]<<2);
10999 }
11000}
11001
11002void TLBWR_new(void)
11003{
11004 unsigned int i;
11005 Random = (Count/2 % (32 - Wired)) + Wired;
11006 /* Remove old entries */
11007 unsigned int old_start_even=tlb_e[Random&0x3F].start_even;
11008 unsigned int old_end_even=tlb_e[Random&0x3F].end_even;
11009 unsigned int old_start_odd=tlb_e[Random&0x3F].start_odd;
11010 unsigned int old_end_odd=tlb_e[Random&0x3F].end_odd;
11011 for (i=old_start_even>>12; i<=old_end_even>>12; i++)
11012 {
11013 if(i<0x80000||i>0xBFFFF)
11014 {
11015 invalidate_block(i);
11016 memory_map[i]=-1;
11017 }
11018 }
11019 for (i=old_start_odd>>12; i<=old_end_odd>>12; i++)
11020 {
11021 if(i<0x80000||i>0xBFFFF)
11022 {
11023 invalidate_block(i);
11024 memory_map[i]=-1;
11025 }
11026 }
11027 cached_interpreter_table.TLBWR();
11028 /* Combine tlb_LUT_r, tlb_LUT_w, and invalid_code into a single table
11029 for fast look up. */
11030 for (i=tlb_e[Random&0x3F].start_even>>12; i<=tlb_e[Random&0x3F].end_even>>12; i++)
11031 {
11032 //DebugMessage(M64MSG_VERBOSE, "%x: r:%8x w:%8x",i,tlb_LUT_r[i],tlb_LUT_w[i]);
11033 if(i<0x80000||i>0xBFFFF)
11034 {
11035 if(tlb_LUT_r[i]) {
11036 memory_map[i]=((tlb_LUT_r[i]&0xFFFFF000)-(i<<12)+(unsigned int)rdram-0x80000000)>>2;
11037 // FIXME: should make sure the physical page is invalid too
11038 if(!tlb_LUT_w[i]||!invalid_code[i]) {
11039 memory_map[i]|=0x40000000; // Write protect
11040 }else{
11041 assert(tlb_LUT_r[i]==tlb_LUT_w[i]);
11042 }
11043 if(!using_tlb) DebugMessage(M64MSG_VERBOSE, "Enabled TLB");
11044 // Tell the dynamic recompiler to generate tlb lookup code
11045 using_tlb=1;
11046 }
11047 else memory_map[i]=-1;
11048 }
11049 //DebugMessage(M64MSG_VERBOSE, "memory_map[%x]: %8x (+%8x)",i,memory_map[i],memory_map[i]<<2);
11050 }
11051 for (i=tlb_e[Random&0x3F].start_odd>>12; i<=tlb_e[Random&0x3F].end_odd>>12; i++)
11052 {
11053 //DebugMessage(M64MSG_VERBOSE, "%x: r:%8x w:%8x",i,tlb_LUT_r[i],tlb_LUT_w[i]);
11054 if(i<0x80000||i>0xBFFFF)
11055 {
11056 if(tlb_LUT_r[i]) {
11057 memory_map[i]=((tlb_LUT_r[i]&0xFFFFF000)-(i<<12)+(unsigned int)rdram-0x80000000)>>2;
11058 // FIXME: should make sure the physical page is invalid too
11059 if(!tlb_LUT_w[i]||!invalid_code[i]) {
11060 memory_map[i]|=0x40000000; // Write protect
11061 }else{
11062 assert(tlb_LUT_r[i]==tlb_LUT_w[i]);
11063 }
11064 if(!using_tlb) DebugMessage(M64MSG_VERBOSE, "Enabled TLB");
11065 // Tell the dynamic recompiler to generate tlb lookup code
11066 using_tlb=1;
11067 }
11068 else memory_map[i]=-1;
11069 }
11070 //DebugMessage(M64MSG_VERBOSE, "memory_map[%x]: %8x (+%8x)",i,memory_map[i],memory_map[i]<<2);
11071 }
11072}