9a5226ea96efbc540ef986e4263b664ebbbd4e80
[mupen64plus-pandora.git] / source / mupen64plus-core / src / r4300 / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2011 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdio.h>
22 #include <string.h>
23 #include <stdarg.h>
24 #include <stdlib.h>
25 #include <stdint.h> //include for uint64_t
26 //#include <assert.h>
27 #define assert(a)       {}
28
29 #include "../recomp.h"
30 #include "../recomph.h" //include for function prototypes
31 #include "../macros.h"
32 #include "../r4300.h"
33 #include "../ops.h"
34 #include "../interupt.h"
35 #include "new_dynarec.h"
36
37 #include "../../memory/memory.h"
38 #include "../../main/rom.h"
39
40 #include <sys/mman.h>
41
42 #if NEW_DYNAREC == NEW_DYNAREC_X86
43 #include "assem_x86.h"
44 #elif NEW_DYNAREC == NEW_DYNAREC_ARM
45 #include "assem_arm.h"
46 #else
47 #error Unsupported dynarec architecture
48 #endif
49
50 #define MAXBLOCK 4096
51 #define MAX_OUTPUT_BLOCK_SIZE 262144
52 #define CLOCK_DIVIDER 2
53
54 void *base_addr;
55
56 struct regstat
57 {
58   signed char regmap_entry[HOST_REGS];
59   signed char regmap[HOST_REGS];
60   uint64_t was32;
61   uint64_t is32;
62   uint64_t wasdirty;
63   uint64_t dirty;
64   uint64_t u;
65   uint64_t uu;
66   u_int wasconst;
67   u_int isconst;
68   uint64_t constmap[HOST_REGS];
69 };
70
71 struct ll_entry
72 {
73   u_int vaddr;
74   u_int reg32;
75   void *addr;
76   struct ll_entry *next;
77 };
78
79 static u_int start;
80 static u_int *source;
81 static u_int pagelimit;
82 static char insn[MAXBLOCK][10];
83 static u_char itype[MAXBLOCK];
84 static u_char opcode[MAXBLOCK];
85 static u_char opcode2[MAXBLOCK];
86 static u_char bt[MAXBLOCK];
87 static u_char rs1[MAXBLOCK];
88 static u_char rs2[MAXBLOCK];
89 static u_char rt1[MAXBLOCK];
90 static u_char rt2[MAXBLOCK];
91 static u_char us1[MAXBLOCK];
92 static u_char us2[MAXBLOCK];
93 static u_char dep1[MAXBLOCK];
94 static u_char dep2[MAXBLOCK];
95 static u_char lt1[MAXBLOCK];
96 static int imm[MAXBLOCK];
97 static u_int ba[MAXBLOCK];
98 static char likely[MAXBLOCK];
99 static char is_ds[MAXBLOCK];
100 static char ooo[MAXBLOCK];
101 static uint64_t unneeded_reg[MAXBLOCK];
102 static uint64_t unneeded_reg_upper[MAXBLOCK];
103 static uint64_t branch_unneeded_reg[MAXBLOCK];
104 static uint64_t branch_unneeded_reg_upper[MAXBLOCK];
105 static uint64_t p32[MAXBLOCK];
106 static uint64_t pr32[MAXBLOCK];
107 static signed char regmap_pre[MAXBLOCK][HOST_REGS];
108 #ifdef ASSEM_DEBUG
109 static signed char regmap[MAXBLOCK][HOST_REGS];
110 static signed char regmap_entry[MAXBLOCK][HOST_REGS];
111 #endif
112 static uint64_t constmap[MAXBLOCK][HOST_REGS];
113 static struct regstat regs[MAXBLOCK];
114 static struct regstat branch_regs[MAXBLOCK];
115 static signed char minimum_free_regs[MAXBLOCK];
116 static u_int needed_reg[MAXBLOCK];
117 static uint64_t requires_32bit[MAXBLOCK];
118 static u_int wont_dirty[MAXBLOCK];
119 static u_int will_dirty[MAXBLOCK];
120 static int ccadj[MAXBLOCK];
121 static int slen;
122 static u_int instr_addr[MAXBLOCK];
123 static u_int link_addr[MAXBLOCK][3];
124 static int linkcount;
125 static u_int stubs[MAXBLOCK*3][8];
126 static int stubcount;
127 static int literalcount;
128 static int is_delayslot;
129 static int cop1_usable;
130 u_char *out;
131 struct ll_entry *jump_in[4096];
132 static struct ll_entry *jump_out[4096];
133 struct ll_entry *jump_dirty[4096];
134 u_int hash_table[65536][4]  __attribute__((aligned(16)));
135 static char shadow[2097152]  __attribute__((aligned(16)));
136 static void *copy;
137 static int expirep;
138 u_int using_tlb;
139 static u_int stop_after_jal;
140 extern u_char restore_candidate[512];
141 extern int cycle_count;
142
143   /* registers that may be allocated */
144   /* 1-31 gpr */
145 #define HIREG 32 // hi
146 #define LOREG 33 // lo
147 #define FSREG 34 // FPU status (FCSR)
148 #define CSREG 35 // Coprocessor status
149 #define CCREG 36 // Cycle count
150 #define INVCP 37 // Pointer to invalid_code
151 #define MMREG 38 // Pointer to memory_map
152 #define ROREG 39 // ram offset (if rdram!=0x80000000)
153 #define TEMPREG 40
154 #define FTEMP 40 // FPU temporary register
155 #define PTEMP 41 // Prefetch temporary register
156 #define TLREG 42 // TLB mapping offset
157 #define RHASH 43 // Return address hash
158 #define RHTBL 44 // Return address hash table address
159 #define RTEMP 45 // JR/JALR address register
160 #define MAXREG 45
161 #define AGEN1 46 // Address generation temporary register
162 #define AGEN2 47 // Address generation temporary register
163 #define MGEN1 48 // Maptable address generation temporary register
164 #define MGEN2 49 // Maptable address generation temporary register
165 #define BTREG 50 // Branch target temporary register
166
167   /* instruction types */
168 #define NOP 0     // No operation
169 #define LOAD 1    // Load
170 #define STORE 2   // Store
171 #define LOADLR 3  // Unaligned load
172 #define STORELR 4 // Unaligned store
173 #define MOV 5     // Move 
174 #define ALU 6     // Arithmetic/logic
175 #define MULTDIV 7 // Multiply/divide
176 #define SHIFT 8   // Shift by register
177 #define SHIFTIMM 9// Shift by immediate
178 #define IMM16 10  // 16-bit immediate
179 #define RJUMP 11  // Unconditional jump to register
180 #define UJUMP 12  // Unconditional jump
181 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
182 #define SJUMP 14  // Conditional branch (regimm format)
183 #define COP0 15   // Coprocessor 0
184 #define COP1 16   // Coprocessor 1
185 #define C1LS 17   // Coprocessor 1 load/store
186 #define FJUMP 18  // Conditional branch (floating point)
187 #define FLOAT 19  // Floating point unit
188 #define FCONV 20  // Convert integer to float
189 #define FCOMP 21  // Floating point compare (sets FSREG)
190 #define SYSCALL 22// SYSCALL
191 #define OTHER 23  // Other
192 #define SPAN 24   // Branch/delay slot spans 2 pages
193 #define NI 25     // Not implemented
194
195   /* stubs */
196 #define CC_STUB 1
197 #define FP_STUB 2
198 #define LOADB_STUB 3
199 #define LOADH_STUB 4
200 #define LOADW_STUB 5
201 #define LOADD_STUB 6
202 #define LOADBU_STUB 7
203 #define LOADHU_STUB 8
204 #define STOREB_STUB 9
205 #define STOREH_STUB 10
206 #define STOREW_STUB 11
207 #define STORED_STUB 12
208 #define STORELR_STUB 13
209 #define INVCODE_STUB 14
210
211   /* branch codes */
212 #define TAKEN 1
213 #define NOTTAKEN 2
214 #define NULLDS 3
215
216 /* bug-fix to implement __clear_cache (missing in Android; http://code.google.com/p/android/issues/detail?id=1803) */
217 void __clear_cache_bugfix(char* begin, char *end);
218 #ifdef ANDROID
219         #define __clear_cache __clear_cache_bugfix
220 #endif
221
222 // asm linkage
223 int new_recompile_block(int addr);
224 void *get_addr_ht(u_int vaddr);
225 static void remove_hash(int vaddr);
226 void dyna_linker();
227 void dyna_linker_ds();
228 void verify_code();
229 void verify_code_vm();
230 void verify_code_ds();
231 void cc_interrupt();
232 void fp_exception();
233 void fp_exception_ds();
234 void jump_syscall();
235 void jump_eret();
236 #if NEW_DYNAREC == NEW_DYNAREC_ARM
237 static void invalidate_addr(u_int addr);
238 #endif
239
240 // TLB
241 void TLBWI_new();
242 void TLBWR_new();
243 void read_nomem_new();
244 void read_nomemb_new();
245 void read_nomemh_new();
246 void read_nomemd_new();
247 void write_nomem_new();
248 void write_nomemb_new();
249 void write_nomemh_new();
250 void write_nomemd_new();
251 void write_rdram_new();
252 void write_rdramb_new();
253 void write_rdramh_new();
254 void write_rdramd_new();
255 extern u_int memory_map[1048576];
256
257 // Needed by assembler
258 static void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
259 static void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
260 static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
261 static void load_all_regs(signed char i_regmap[]);
262 static void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
263 static void load_regs_entry(int t);
264 static void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
265
266 static void add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e);
267 static void add_to_linker(int addr,int target,int ext);
268 static int verify_dirty(void *addr);
269
270 //static int tracedebug=0;
271
272 //#define DEBUG_CYCLE_COUNT 1
273
274 // Uncomment these two lines to generate debug output:
275 //#define ASSEM_DEBUG 1
276 //#define INV_DEBUG 1
277
278 // Uncomment this line to output the number of NOTCOMPILED blocks as they occur:
279 //#define COUNT_NOTCOMPILEDS 1
280
281 #if defined (COUNT_NOTCOMPILEDS )
282         int notcompiledCount = 0;
283 #endif
284 static void nullf() {}
285
286 #if defined( ASSEM_DEBUG )
287     #define assem_debug(...) DebugMessage(M64MSG_VERBOSE, __VA_ARGS__)
288 #else
289     #define assem_debug nullf
290 #endif
291 #if defined( INV_DEBUG )
292     #define inv_debug(...) DebugMessage(M64MSG_VERBOSE, __VA_ARGS__)
293 #else
294     #define inv_debug nullf
295 #endif
296
297 #define log_message(...) DebugMessage(M64MSG_VERBOSE, __VA_ARGS__)
298
299 static void tlb_hacks()
300 {
301   // Goldeneye hack
302   if (strncmp((char *) ROM_HEADER.Name, "GOLDENEYE",9) == 0)
303   {
304     u_int addr;
305     int n;
306     switch (ROM_HEADER.Country_code&0xFF) 
307     {
308       case 0x45: // U
309         addr=0x34b30;
310         break;                   
311       case 0x4A: // J 
312         addr=0x34b70;    
313         break;    
314       case 0x50: // E 
315         addr=0x329f0;
316         break;                        
317       default: 
318         // Unknown country code
319         addr=0;
320         break;
321     }
322     u_int rom_addr=(u_int)rom;
323     #ifdef ROM_COPY
324     // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
325     // in the lower 4G of memory to use this hack.  Copy it if necessary.
326     if((void *)rom>(void *)0xffffffff) {
327       munmap(ROM_COPY, 67108864);
328       if(mmap(ROM_COPY, 12582912,
329               PROT_READ | PROT_WRITE,
330               MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
331               -1, 0) <= 0) {DebugMessage(M64MSG_ERROR, "mmap() failed");}
332       memcpy(ROM_COPY,rom,12582912);
333       rom_addr=(u_int)ROM_COPY;
334     }
335     #endif
336     if(addr) {
337       for(n=0x7F000;n<0x80000;n++) {
338         memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
339       }
340     }
341   }
342 }
343
344 // Get address from virtual address
345 // This is called from the recompiled JR/JALR instructions
346 void *get_addr(u_int vaddr)
347 {
348   u_int page=(vaddr^0x80000000)>>12;
349   u_int vpage=page;
350   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
351   if(page>2048) page=2048+(page&2047);
352   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
353   if(vpage>2048) vpage=2048+(vpage&2047);
354   struct ll_entry *head;
355   //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr %x,page %d)",Count,next_interupt,vaddr,page);
356   head=jump_in[page];
357   while(head!=NULL) {
358     if(head->vaddr==vaddr&&head->reg32==0) {
359   //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr match %x: %x)",Count,next_interupt,vaddr,(int)head->addr);
360       u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
361       ht_bin[3]=ht_bin[1];
362       ht_bin[2]=ht_bin[0];
363       ht_bin[1]=(int)head->addr;
364       ht_bin[0]=vaddr;
365       return head->addr;
366     }
367     head=head->next;
368   }
369   head=jump_dirty[vpage];
370   while(head!=NULL) {
371     if(head->vaddr==vaddr&&head->reg32==0) {
372       //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr match dirty %x: %x)",Count,next_interupt,vaddr,(int)head->addr);
373       // Don't restore blocks which are about to expire from the cache
374       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
375       if(verify_dirty(head->addr)) {
376         //DebugMessage(M64MSG_VERBOSE, "restore candidate: %x (%d) d=%d",vaddr,page,invalid_code[vaddr>>12]);
377         invalid_code[vaddr>>12]=0;
378         memory_map[vaddr>>12]|=0x40000000;
379         if(vpage<2048) {
380           if(tlb_LUT_r[vaddr>>12]) {
381             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
382             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
383           }
384           restore_candidate[vpage>>3]|=1<<(vpage&7);
385         }
386         else restore_candidate[page>>3]|=1<<(page&7);
387         u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
388         if(ht_bin[0]==vaddr) {
389           ht_bin[1]=(int)head->addr; // Replace existing entry
390         }
391         else
392         {
393           ht_bin[3]=ht_bin[1];
394           ht_bin[2]=ht_bin[0];
395           ht_bin[1]=(int)head->addr;
396           ht_bin[0]=vaddr;
397         }
398         return head->addr;
399       }
400     }
401     head=head->next;
402   }
403   //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr no-match %x)",Count,next_interupt,vaddr);
404   int r=new_recompile_block(vaddr);
405   if(r==0) return get_addr(vaddr);
406   // Execute in unmapped page, generate pagefault execption
407   Status|=2;
408   Cause=(vaddr<<31)|0x8;
409   EPC=(vaddr&1)?vaddr-5:vaddr;
410   BadVAddr=(vaddr&~1);
411   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
412   EntryHi=BadVAddr&0xFFFFE000;
413   return get_addr_ht(0x80000000);
414 }
415 // Look up address in hash table first
416 void *get_addr_ht(u_int vaddr)
417 {
418   //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_ht %x)",Count,next_interupt,vaddr);
419   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
420   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
421   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
422   return get_addr(vaddr);
423 }
424
425 void *get_addr_32(u_int vaddr,u_int flags)
426 {
427   //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_32 %x,flags %x)",Count,next_interupt,vaddr,flags);
428   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
429   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
430   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
431   u_int page=(vaddr^0x80000000)>>12;
432   u_int vpage=page;
433   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
434   if(page>2048) page=2048+(page&2047);
435   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
436   if(vpage>2048) vpage=2048+(vpage&2047);
437   struct ll_entry *head;
438   head=jump_in[page];
439   while(head!=NULL) {
440     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
441       //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_32 match %x: %x)",Count,next_interupt,vaddr,(int)head->addr);
442       if(head->reg32==0) {
443         u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
444         if(ht_bin[0]==-1) {
445           ht_bin[1]=(int)head->addr;
446           ht_bin[0]=vaddr;
447         }else if(ht_bin[2]==-1) {
448           ht_bin[3]=(int)head->addr;
449           ht_bin[2]=vaddr;
450         }
451         //ht_bin[3]=ht_bin[1];
452         //ht_bin[2]=ht_bin[0];
453         //ht_bin[1]=(int)head->addr;
454         //ht_bin[0]=vaddr;
455       }
456       return head->addr;
457     }
458     head=head->next;
459   }
460   head=jump_dirty[vpage];
461   while(head!=NULL) {
462     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
463       //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)",Count,next_interupt,vaddr,(int)head->addr);
464       // Don't restore blocks which are about to expire from the cache
465       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
466       if(verify_dirty(head->addr)) {
467         //DebugMessage(M64MSG_VERBOSE, "restore candidate: %x (%d) d=%d",vaddr,page,invalid_code[vaddr>>12]);
468         invalid_code[vaddr>>12]=0;
469         memory_map[vaddr>>12]|=0x40000000;
470         if(vpage<2048) {
471           if(tlb_LUT_r[vaddr>>12]) {
472             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
473             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
474           }
475           restore_candidate[vpage>>3]|=1<<(vpage&7);
476         }
477         else restore_candidate[page>>3]|=1<<(page&7);
478         if(head->reg32==0) {
479           u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
480           if(ht_bin[0]==-1) {
481             ht_bin[1]=(int)head->addr;
482             ht_bin[0]=vaddr;
483           }else if(ht_bin[2]==-1) {
484             ht_bin[3]=(int)head->addr;
485             ht_bin[2]=vaddr;
486           }
487           //ht_bin[3]=ht_bin[1];
488           //ht_bin[2]=ht_bin[0];
489           //ht_bin[1]=(int)head->addr;
490           //ht_bin[0]=vaddr;
491         }
492         return head->addr;
493       }
494     }
495     head=head->next;
496   }
497   //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)",Count,next_interupt,vaddr,flags);
498   int r=new_recompile_block(vaddr);
499   if(r==0) return get_addr(vaddr);
500   // Execute in unmapped page, generate pagefault execption
501   Status|=2;
502   Cause=(vaddr<<31)|0x8;
503   EPC=(vaddr&1)?vaddr-5:vaddr;
504   BadVAddr=(vaddr&~1);
505   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
506   EntryHi=BadVAddr&0xFFFFE000;
507   return get_addr_ht(0x80000000);
508 }
509
510 static void clear_all_regs(signed char regmap[])
511 {
512   int hr;
513   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
514 }
515
516 static signed char get_reg(signed char regmap[],int r)
517 {
518   int hr;
519   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
520   return -1;
521 }
522
523 // Find a register that is available for two consecutive cycles
524 static signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
525 {
526   int hr;
527   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
528   return -1;
529 }
530
531 static int count_free_regs(signed char regmap[])
532 {
533   int count=0;
534   int hr;
535   for(hr=0;hr<HOST_REGS;hr++)
536   {
537     if(hr!=EXCLUDE_REG) {
538       if(regmap[hr]<0) count++;
539     }
540   }
541   return count;
542 }
543
544 static void dirty_reg(struct regstat *cur,signed char reg)
545 {
546   int hr;
547   if(!reg) return;
548   for (hr=0;hr<HOST_REGS;hr++) {
549     if((cur->regmap[hr]&63)==reg) {
550       cur->dirty|=1<<hr;
551     }
552   }
553 }
554
555 // If we dirty the lower half of a 64 bit register which is now being
556 // sign-extended, we need to dump the upper half.
557 // Note: Do this only after completion of the instruction, because
558 // some instructions may need to read the full 64-bit value even if
559 // overwriting it (eg SLTI, DSRA32).
560 static void flush_dirty_uppers(struct regstat *cur)
561 {
562   int hr,reg;
563   for (hr=0;hr<HOST_REGS;hr++) {
564     if((cur->dirty>>hr)&1) {
565       reg=cur->regmap[hr];
566       if(reg>=64) 
567         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
568     }
569   }
570 }
571
572 static void set_const(struct regstat *cur,signed char reg,uint64_t value)
573 {
574   int hr;
575   if(!reg) return;
576   for (hr=0;hr<HOST_REGS;hr++) {
577     if(cur->regmap[hr]==reg) {
578       cur->isconst|=1<<hr;
579       cur->constmap[hr]=value;
580     }
581     else if((cur->regmap[hr]^64)==reg) {
582       cur->isconst|=1<<hr;
583       cur->constmap[hr]=value>>32;
584     }
585   }
586 }
587
588 static void clear_const(struct regstat *cur,signed char reg)
589 {
590   int hr;
591   if(!reg) return;
592   for (hr=0;hr<HOST_REGS;hr++) {
593     if((cur->regmap[hr]&63)==reg) {
594       cur->isconst&=~(1<<hr);
595     }
596   }
597 }
598
599 static int is_const(struct regstat *cur,signed char reg)
600 {
601   int hr;
602   if(reg<0) return 0;
603   if(!reg) return 1;
604   for (hr=0;hr<HOST_REGS;hr++) {
605     if((cur->regmap[hr]&63)==reg) {
606       return (cur->isconst>>hr)&1;
607     }
608   }
609   return 0;
610 }
611 static uint64_t get_const(struct regstat *cur,signed char reg)
612 {
613   int hr;
614   if(!reg) return 0;
615   for (hr=0;hr<HOST_REGS;hr++) {
616     if(cur->regmap[hr]==reg) {
617       return cur->constmap[hr];
618     }
619   }
620   DebugMessage(M64MSG_ERROR, "Unknown constant in r%d",reg);
621   exit(1);
622 }
623
624 // Least soon needed registers
625 // Look at the next ten instructions and see which registers
626 // will be used.  Try not to reallocate these.
627 static void lsn(u_char hsn[], int i, int *preferred_reg)
628 {
629   int j;
630   int b=-1;
631   for(j=0;j<9;j++)
632   {
633     if(i+j>=slen) {
634       j=slen-i-1;
635       break;
636     }
637     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
638     {
639       // Don't go past an unconditonal jump
640       j++;
641       break;
642     }
643   }
644   for(;j>=0;j--)
645   {
646     if(rs1[i+j]) hsn[rs1[i+j]]=j;
647     if(rs2[i+j]) hsn[rs2[i+j]]=j;
648     if(rt1[i+j]) hsn[rt1[i+j]]=j;
649     if(rt2[i+j]) hsn[rt2[i+j]]=j;
650     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
651       // Stores can allocate zero
652       hsn[rs1[i+j]]=j;
653       hsn[rs2[i+j]]=j;
654     }
655     // On some architectures stores need invc_ptr
656     #if defined(HOST_IMM8)
657     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39) {
658       hsn[INVCP]=j;
659     }
660     #endif
661     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
662     {
663       hsn[CCREG]=j;
664       b=j;
665     }
666   }
667   if(b>=0)
668   {
669     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
670     {
671       // Follow first branch
672       int t=(ba[i+b]-start)>>2;
673       j=7-b;if(t+j>=slen) j=slen-t-1;
674       for(;j>=0;j--)
675       {
676         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
677         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
678         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
679         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
680       }
681     }
682     // TODO: preferred register based on backward branch
683   }
684   // Delay slot should preferably not overwrite branch conditions or cycle count
685   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
686     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
687     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
688     hsn[CCREG]=1;
689     // ...or hash tables
690     hsn[RHASH]=1;
691     hsn[RHTBL]=1;
692   }
693   // Coprocessor load/store needs FTEMP, even if not declared
694   if(itype[i]==C1LS) {
695     hsn[FTEMP]=0;
696   }
697   // Load L/R also uses FTEMP as a temporary register
698   if(itype[i]==LOADLR) {
699     hsn[FTEMP]=0;
700   }
701   // Also 64-bit SDL/SDR
702   if(opcode[i]==0x2c||opcode[i]==0x2d) {
703     hsn[FTEMP]=0;
704   }
705   // Don't remove the TLB registers either
706   if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS ) {
707     hsn[TLREG]=0;
708   }
709   // Don't remove the miniht registers
710   if(itype[i]==UJUMP||itype[i]==RJUMP)
711   {
712     hsn[RHASH]=0;
713     hsn[RHTBL]=0;
714   }
715 }
716
717 // We only want to allocate registers if we're going to use them again soon
718 static int needed_again(int r, int i)
719 {
720   int j;
721   /*int b=-1;*/
722   int rn=10;
723   
724   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
725   {
726     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
727       return 0; // Don't need any registers if exiting the block
728   }
729   for(j=0;j<9;j++)
730   {
731     if(i+j>=slen) {
732       j=slen-i-1;
733       break;
734     }
735     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
736     {
737       // Don't go past an unconditonal jump
738       j++;
739       break;
740     }
741     if(itype[i+j]==SYSCALL||((source[i+j]&0xfc00003f)==0x0d))
742     {
743       break;
744     }
745   }
746   for(;j>=1;j--)
747   {
748     if(rs1[i+j]==r) rn=j;
749     if(rs2[i+j]==r) rn=j;
750     if((unneeded_reg[i+j]>>r)&1) rn=10;
751     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
752     {
753       /*b=j;*/
754     }
755   }
756   /*
757   if(b>=0)
758   {
759     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
760     {
761       // Follow first branch
762       int o=rn;
763       int t=(ba[i+b]-start)>>2;
764       j=7-b;if(t+j>=slen) j=slen-t-1;
765       for(;j>=0;j--)
766       {
767         if(!((unneeded_reg[t+j]>>r)&1)) {
768           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
769           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
770         }
771         else rn=o;
772       }
773     }
774   }*/
775   if(rn<10) return 1;
776   return 0;
777 }
778
779 // Try to match register allocations at the end of a loop with those
780 // at the beginning
781 static int loop_reg(int i, int r, int hr)
782 {
783   int j,k;
784   for(j=0;j<9;j++)
785   {
786     if(i+j>=slen) {
787       j=slen-i-1;
788       break;
789     }
790     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
791     {
792       // Don't go past an unconditonal jump
793       j++;
794       break;
795     }
796   }
797   k=0;
798   if(i>0){
799     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
800       k--;
801   }
802   for(;k<j;k++)
803   {
804     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
805     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
806     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
807     {
808       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
809       {
810         int t=(ba[i+k]-start)>>2;
811         int reg=get_reg(regs[t].regmap_entry,r);
812         if(reg>=0) return reg;
813         //reg=get_reg(regs[t+1].regmap_entry,r);
814         //if(reg>=0) return reg;
815       }
816     }
817   }
818   return hr;
819 }
820
821
822 // Allocate every register, preserving source/target regs
823 static void alloc_all(struct regstat *cur,int i)
824 {
825   int hr;
826   
827   for(hr=0;hr<HOST_REGS;hr++) {
828     if(hr!=EXCLUDE_REG) {
829       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
830          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
831       {
832         cur->regmap[hr]=-1;
833         cur->dirty&=~(1<<hr);
834       }
835       // Don't need zeros
836       if((cur->regmap[hr]&63)==0)
837       {
838         cur->regmap[hr]=-1;
839         cur->dirty&=~(1<<hr);
840       }
841     }
842   }
843 }
844
845
846 static void div64(int64_t dividend,int64_t divisor)
847 {
848   lo=dividend/divisor;
849   hi=dividend%divisor;
850   //DebugMessage(M64MSG_VERBOSE, "TRACE: ddiv %8x%8x %8x%8x" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
851   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
852 }
853 static void divu64(uint64_t dividend,uint64_t divisor)
854 {
855   lo=dividend/divisor;
856   hi=dividend%divisor;
857   //DebugMessage(M64MSG_VERBOSE, "TRACE: ddivu %8x%8x %8x%8x",(int)reg[HIREG],(int)(reg[HIREG]>>32)
858   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
859 }
860
861 static void mult64(int64_t m1,int64_t m2)
862 {
863    unsigned long long int op1, op2, op3, op4;
864    unsigned long long int result1, result2, result3, result4;
865    unsigned long long int temp1, temp2, temp3, temp4;
866    int sign = 0;
867    
868    if (m1 < 0)
869      {
870     op2 = -m1;
871     sign = 1 - sign;
872      }
873    else op2 = m1;
874    if (m2 < 0)
875      {
876     op4 = -m2;
877     sign = 1 - sign;
878      }
879    else op4 = m2;
880    
881    op1 = op2 & 0xFFFFFFFF;
882    op2 = (op2 >> 32) & 0xFFFFFFFF;
883    op3 = op4 & 0xFFFFFFFF;
884    op4 = (op4 >> 32) & 0xFFFFFFFF;
885    
886    temp1 = op1 * op3;
887    temp2 = (temp1 >> 32) + op1 * op4;
888    temp3 = op2 * op3;
889    temp4 = (temp3 >> 32) + op2 * op4;
890    
891    result1 = temp1 & 0xFFFFFFFF;
892    result2 = temp2 + (temp3 & 0xFFFFFFFF);
893    result3 = (result2 >> 32) + temp4;
894    result4 = (result3 >> 32);
895    
896    lo = result1 | (result2 << 32);
897    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
898    if (sign)
899      {
900     hi = ~hi;
901     if (!lo) hi++;
902     else lo = ~lo + 1;
903      }
904 }
905
906 #if NEW_DYNAREC == NEW_DYNAREC_ARM
907 static void multu64(uint64_t m1,uint64_t m2)
908 {
909    unsigned long long int op1, op2, op3, op4;
910    unsigned long long int result1, result2, result3, result4;
911    unsigned long long int temp1, temp2, temp3, temp4;
912    
913    op1 = m1 & 0xFFFFFFFF;
914    op2 = (m1 >> 32) & 0xFFFFFFFF;
915    op3 = m2 & 0xFFFFFFFF;
916    op4 = (m2 >> 32) & 0xFFFFFFFF;
917    
918    temp1 = op1 * op3;
919    temp2 = (temp1 >> 32) + op1 * op4;
920    temp3 = op2 * op3;
921    temp4 = (temp3 >> 32) + op2 * op4;
922    
923    result1 = temp1 & 0xFFFFFFFF;
924    result2 = temp2 + (temp3 & 0xFFFFFFFF);
925    result3 = (result2 >> 32) + temp4;
926    result4 = (result3 >> 32);
927    
928    lo = result1 | (result2 << 32);
929    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
930    
931   //DebugMessage(M64MSG_VERBOSE, "TRACE: dmultu %8x%8x %8x%8x",(int)reg[HIREG],(int)(reg[HIREG]>>32)
932   //                                      ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
933 }
934 #endif
935
936 static uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
937 {
938   if(bits) {
939     original<<=64-bits;
940     original>>=64-bits;
941     loaded<<=bits;
942     original|=loaded;
943   }
944   else original=loaded;
945   return original;
946 }
947 static uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
948 {
949   if(bits^56) {
950     original>>=64-(bits^56);
951     original<<=64-(bits^56);
952     loaded>>=bits^56;
953     original|=loaded;
954   }
955   else original=loaded;
956   return original;
957 }
958
959 #if NEW_DYNAREC == NEW_DYNAREC_X86
960 #include "assem_x86.c"
961 #elif NEW_DYNAREC == NEW_DYNAREC_ARM
962 #include "assem_arm.c"
963 #else
964 #error Unsupported dynarec architecture
965 #endif
966
967 // Add virtual address mapping to linked list
968 static void ll_add(struct ll_entry **head,int vaddr,void *addr)
969 {
970   struct ll_entry *new_entry;
971   new_entry=malloc(sizeof(struct ll_entry));
972   assert(new_entry!=NULL);
973   new_entry->vaddr=vaddr;
974   new_entry->reg32=0;
975   new_entry->addr=addr;
976   new_entry->next=*head;
977   *head=new_entry;
978 }
979
980 // Add virtual address mapping for 32-bit compiled block
981 static void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
982 {
983   struct ll_entry *new_entry;
984   new_entry=malloc(sizeof(struct ll_entry));
985   assert(new_entry!=NULL);
986   new_entry->vaddr=vaddr;
987   new_entry->reg32=reg32;
988   new_entry->addr=addr;
989   new_entry->next=*head;
990   *head=new_entry;
991 }
992
993 // Check if an address is already compiled
994 // but don't return addresses which are about to expire from the cache
995 static void *check_addr(u_int vaddr)
996 {
997   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
998   if(ht_bin[0]==vaddr) {
999     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1000       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1001   }
1002   if(ht_bin[2]==vaddr) {
1003     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1004       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1005   }
1006   u_int page=(vaddr^0x80000000)>>12;
1007   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
1008   if(page>2048) page=2048+(page&2047);
1009   struct ll_entry *head;
1010   head=jump_in[page];
1011   while(head!=NULL) {
1012     if(head->vaddr==vaddr&&head->reg32==0) {
1013       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1014         // Update existing entry with current address
1015         if(ht_bin[0]==vaddr) {
1016           ht_bin[1]=(int)head->addr;
1017           return head->addr;
1018         }
1019         if(ht_bin[2]==vaddr) {
1020           ht_bin[3]=(int)head->addr;
1021           return head->addr;
1022         }
1023         // Insert into hash table with low priority.
1024         // Don't evict existing entries, as they are probably
1025         // addresses that are being accessed frequently.
1026         if(ht_bin[0]==-1) {
1027           ht_bin[1]=(int)head->addr;
1028           ht_bin[0]=vaddr;
1029         }else if(ht_bin[2]==-1) {
1030           ht_bin[3]=(int)head->addr;
1031           ht_bin[2]=vaddr;
1032         }
1033         return head->addr;
1034       }
1035     }
1036     head=head->next;
1037   }
1038   return 0;
1039 }
1040
1041 static void remove_hash(int vaddr)
1042 {
1043   //DebugMessage(M64MSG_VERBOSE, "remove hash: %x",vaddr);
1044   u_int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1045   if(ht_bin[2]==vaddr) {
1046     ht_bin[2]=ht_bin[3]=-1;
1047   }
1048   if(ht_bin[0]==vaddr) {
1049     ht_bin[0]=ht_bin[2];
1050     ht_bin[1]=ht_bin[3];
1051     ht_bin[2]=ht_bin[3]=-1;
1052   }
1053 }
1054
1055 static void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1056 {
1057   struct ll_entry *next;
1058   while(*head) {
1059     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) || 
1060        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1061     {
1062       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1063       remove_hash((*head)->vaddr);
1064       next=(*head)->next;
1065       free(*head);
1066       *head=next;
1067     }
1068     else
1069     {
1070       head=&((*head)->next);
1071     }
1072   }
1073 }
1074
1075 // Remove all entries from linked list
1076 static void ll_clear(struct ll_entry **head)
1077 {
1078   struct ll_entry *cur;
1079   struct ll_entry *next;
1080   if((cur=*head)) {
1081     *head=0;
1082     while(cur) {
1083       next=cur->next;
1084       free(cur);
1085       cur=next;
1086     }
1087   }
1088 }
1089
1090 // Dereference the pointers and remove if it matches
1091 static void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1092 {
1093   while(head) {
1094     int ptr=get_pointer(head->addr);
1095     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1096     if(((ptr>>shift)==(addr>>shift)) ||
1097        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1098     {
1099       inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1100       u_int host_addr=(int)kill_pointer(head->addr);
1101       #if NEW_DYNAREC == NEW_DYNAREC_ARM
1102         needs_clear_cache[(host_addr-(u_int)base_addr)>>17]|=1<<(((host_addr-(u_int)base_addr)>>12)&31);
1103       #endif
1104     }
1105     head=head->next;
1106   }
1107 }
1108
1109 // This is called when we write to a compiled block (see do_invstub)
1110 static void invalidate_page(u_int page)
1111 {
1112   struct ll_entry *head;
1113   struct ll_entry *next;
1114   head=jump_in[page];
1115   jump_in[page]=0;
1116   while(head!=NULL) {
1117     inv_debug("INVALIDATE: %x\n",head->vaddr);
1118     remove_hash(head->vaddr);
1119     next=head->next;
1120     free(head);
1121     head=next;
1122   }
1123   head=jump_out[page];
1124   jump_out[page]=0;
1125   while(head!=NULL) {
1126     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1127     u_int host_addr=(int)kill_pointer(head->addr);
1128     #if NEW_DYNAREC == NEW_DYNAREC_ARM
1129       needs_clear_cache[(host_addr-(u_int)base_addr)>>17]|=1<<(((host_addr-(u_int)base_addr)>>12)&31);
1130     #endif
1131     next=head->next;
1132     free(head);
1133     head=next;
1134   }
1135 }
1136 void invalidate_block(u_int block)
1137 {
1138   u_int page,vpage;
1139   page=vpage=block^0x80000;
1140   if(page>262143&&tlb_LUT_r[block]) page=(tlb_LUT_r[block]^0x80000000)>>12;
1141   if(page>2048) page=2048+(page&2047);
1142   if(vpage>262143&&tlb_LUT_r[block]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
1143   if(vpage>2048) vpage=2048+(vpage&2047);
1144   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1145   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1146   u_int first,last;
1147   first=last=page;
1148   struct ll_entry *head;
1149   head=jump_dirty[vpage];
1150   //DebugMessage(M64MSG_VERBOSE, "page=%d vpage=%d",page,vpage);
1151   while(head!=NULL) {
1152     u_int start,end;
1153     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1154       get_bounds((int)head->addr,&start,&end);
1155       //DebugMessage(M64MSG_VERBOSE, "start: %x end: %x",start,end);
1156       if(page<2048&&start>=0x80000000&&end<0x80800000) {
1157         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1158           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1159           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1160         }
1161       }
1162       if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1163         if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1164           if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1165           if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1166         }
1167       }
1168     }
1169     head=head->next;
1170   }
1171   //DebugMessage(M64MSG_VERBOSE, "first=%d last=%d",first,last);
1172   invalidate_page(page);
1173   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1174   assert(last<page+5);
1175   // Invalidate the adjacent pages if a block crosses a 4K boundary
1176   while(first<page) {
1177     invalidate_page(first);
1178     first++;
1179   }
1180   for(first=page+1;first<last;first++) {
1181     invalidate_page(first);
1182   }
1183   #if NEW_DYNAREC == NEW_DYNAREC_ARM
1184     do_clear_cache();
1185   #endif
1186   
1187   // Don't trap writes
1188   invalid_code[block]=1;
1189   // If there is a valid TLB entry for this page, remove write protect
1190   if(tlb_LUT_w[block]) {
1191     assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1192     // CHECK: Is this right?
1193     memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1194     u_int real_block=tlb_LUT_w[block]>>12;
1195     invalid_code[real_block]=1;
1196     if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1197   }
1198   else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1199   #ifdef USE_MINI_HT
1200   memset(mini_ht,-1,sizeof(mini_ht));
1201   #endif
1202 }
1203
1204 #if NEW_DYNAREC == NEW_DYNAREC_ARM
1205 static void invalidate_addr(u_int addr)
1206 {
1207   invalidate_block(addr>>12);
1208 }
1209 #endif
1210
1211 // This is called when loading a save state.
1212 // Anything could have changed, so invalidate everything.
1213 void invalidate_all_pages()
1214 {
1215   u_int page;
1216   for(page=0;page<4096;page++)
1217     invalidate_page(page);
1218   for(page=0;page<1048576;page++)
1219     if(!invalid_code[page]) {
1220       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1221       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1222     }
1223   #if NEW_DYNAREC == NEW_DYNAREC_ARM
1224   __clear_cache((void *)base_addr,(void *)base_addr+(1<<TARGET_SIZE_2));
1225   //cacheflush((void *)base_addr,(void *)base_addr+(1<<TARGET_SIZE_2),0);
1226   #endif
1227   #ifdef USE_MINI_HT
1228   memset(mini_ht,-1,sizeof(mini_ht));
1229   #endif
1230   // TLB
1231   for(page=0;page<0x100000;page++) {
1232     if(tlb_LUT_r[page]) {
1233       memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1234       if(!tlb_LUT_w[page]||!invalid_code[page])
1235         memory_map[page]|=0x40000000; // Write protect
1236     }
1237     else memory_map[page]=-1;
1238     if(page==0x80000) page=0xC0000;
1239   }
1240   tlb_hacks();
1241 }
1242
1243 // Add an entry to jump_out after making a link
1244 void add_link(u_int vaddr,void *src)
1245 {
1246   u_int page=(vaddr^0x80000000)>>12;
1247   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
1248   if(page>4095) page=2048+(page&2047);
1249   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1250   ll_add(jump_out+page,vaddr,src);
1251   //int ptr=get_pointer(src);
1252   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1253 }
1254
1255 // If a code block was found to be unmodified (bit was set in
1256 // restore_candidate) and it remains unmodified (bit is clear
1257 // in invalid_code) then move the entries for that 4K page from
1258 // the dirty list to the clean list.
1259 void clean_blocks(u_int page)
1260 {
1261   struct ll_entry *head;
1262   inv_debug("INV: clean_blocks page=%d\n",page);
1263   head=jump_dirty[page];
1264   while(head!=NULL) {
1265     if(!invalid_code[head->vaddr>>12]) {
1266       // Don't restore blocks which are about to expire from the cache
1267       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1268         u_int start,end;
1269         if(verify_dirty(head->addr)) {
1270           //DebugMessage(M64MSG_VERBOSE, "Possibly Restore %x (%x)",head->vaddr, (int)head->addr);
1271           u_int i;
1272           u_int inv=0;
1273           get_bounds((int)head->addr,&start,&end);
1274           if(start-(u_int)rdram<0x800000) {
1275             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1276               inv|=invalid_code[i];
1277             }
1278           }
1279           if((signed int)head->vaddr>=(signed int)0xC0000000) {
1280             u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1281             //DebugMessage(M64MSG_VERBOSE, "addr=%x start=%x end=%x",addr,start,end);
1282             if(addr<start||addr>=end) inv=1;
1283           }
1284           else if((signed int)head->vaddr>=(signed int)0x80800000) {
1285             inv=1;
1286           }
1287           if(!inv) {
1288             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1289             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1290               u_int ppage=page;
1291               if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1292               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1293               //DebugMessage(M64MSG_VERBOSE, "page=%x, addr=%x",page,head->vaddr);
1294               //assert(head->vaddr>>12==(page|0x80000));
1295               ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1296               u_int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1297               if(!head->reg32) {
1298                 if(ht_bin[0]==head->vaddr) {
1299                   ht_bin[1]=(int)clean_addr; // Replace existing entry
1300                 }
1301                 if(ht_bin[2]==head->vaddr) {
1302                   ht_bin[3]=(int)clean_addr; // Replace existing entry
1303                 }
1304               }
1305             }
1306           }
1307         }
1308       }
1309     }
1310     head=head->next;
1311   }
1312 }
1313
1314
1315 static void mov_alloc(struct regstat *current,int i)
1316 {
1317   // Note: Don't need to actually alloc the source registers
1318   if((~current->is32>>rs1[i])&1) {
1319     //alloc_reg64(current,i,rs1[i]);
1320     alloc_reg64(current,i,rt1[i]);
1321     current->is32&=~(1LL<<rt1[i]);
1322   } else {
1323     //alloc_reg(current,i,rs1[i]);
1324     alloc_reg(current,i,rt1[i]);
1325     current->is32|=(1LL<<rt1[i]);
1326   }
1327   clear_const(current,rs1[i]);
1328   clear_const(current,rt1[i]);
1329   dirty_reg(current,rt1[i]);
1330 }
1331
1332 static void shiftimm_alloc(struct regstat *current,int i)
1333 {
1334   clear_const(current,rs1[i]);
1335   clear_const(current,rt1[i]);
1336   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1337   {
1338     if(rt1[i]) {
1339       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1340       else lt1[i]=rs1[i];
1341       alloc_reg(current,i,rt1[i]);
1342       current->is32|=1LL<<rt1[i];
1343       dirty_reg(current,rt1[i]);
1344     }
1345   }
1346   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1347   {
1348     if(rt1[i]) {
1349       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1350       alloc_reg64(current,i,rt1[i]);
1351       current->is32&=~(1LL<<rt1[i]);
1352       dirty_reg(current,rt1[i]);
1353     }
1354   }
1355   if(opcode2[i]==0x3c) // DSLL32
1356   {
1357     if(rt1[i]) {
1358       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1359       alloc_reg64(current,i,rt1[i]);
1360       current->is32&=~(1LL<<rt1[i]);
1361       dirty_reg(current,rt1[i]);
1362     }
1363   }
1364   if(opcode2[i]==0x3e) // DSRL32
1365   {
1366     if(rt1[i]) {
1367       alloc_reg64(current,i,rs1[i]);
1368       if(imm[i]==32) {
1369         alloc_reg64(current,i,rt1[i]);
1370         current->is32&=~(1LL<<rt1[i]);
1371       } else {
1372         alloc_reg(current,i,rt1[i]);
1373         current->is32|=1LL<<rt1[i];
1374       }
1375       dirty_reg(current,rt1[i]);
1376     }
1377   }
1378   if(opcode2[i]==0x3f) // DSRA32
1379   {
1380     if(rt1[i]) {
1381       alloc_reg64(current,i,rs1[i]);
1382       alloc_reg(current,i,rt1[i]);
1383       current->is32|=1LL<<rt1[i];
1384       dirty_reg(current,rt1[i]);
1385     }
1386   }
1387 }
1388
1389 static void shift_alloc(struct regstat *current,int i)
1390 {
1391   if(rt1[i]) {
1392     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1393     {
1394       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1395       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1396       alloc_reg(current,i,rt1[i]);
1397       if(rt1[i]==rs2[i]) {
1398         alloc_reg_temp(current,i,-1);
1399         minimum_free_regs[i]=1;
1400       }
1401       current->is32|=1LL<<rt1[i];
1402     } else { // DSLLV/DSRLV/DSRAV
1403       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1404       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1405       alloc_reg64(current,i,rt1[i]);
1406       current->is32&=~(1LL<<rt1[i]);
1407       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1408       {
1409         alloc_reg_temp(current,i,-1);
1410         minimum_free_regs[i]=1;
1411       }
1412     }
1413     clear_const(current,rs1[i]);
1414     clear_const(current,rs2[i]);
1415     clear_const(current,rt1[i]);
1416     dirty_reg(current,rt1[i]);
1417   }
1418 }
1419
1420 static void alu_alloc(struct regstat *current,int i)
1421 {
1422   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1423     if(rt1[i]) {
1424       if(rs1[i]&&rs2[i]) {
1425         alloc_reg(current,i,rs1[i]);
1426         alloc_reg(current,i,rs2[i]);
1427       }
1428       else {
1429         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1430         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1431       }
1432       alloc_reg(current,i,rt1[i]);
1433     }
1434     current->is32|=1LL<<rt1[i];
1435   }
1436   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1437     if(rt1[i]) {
1438       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1439       {
1440         alloc_reg64(current,i,rs1[i]);
1441         alloc_reg64(current,i,rs2[i]);
1442         alloc_reg(current,i,rt1[i]);
1443       } else {
1444         alloc_reg(current,i,rs1[i]);
1445         alloc_reg(current,i,rs2[i]);
1446         alloc_reg(current,i,rt1[i]);
1447       }
1448     }
1449     current->is32|=1LL<<rt1[i];
1450   }
1451   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1452     if(rt1[i]) {
1453       if(rs1[i]&&rs2[i]) {
1454         alloc_reg(current,i,rs1[i]);
1455         alloc_reg(current,i,rs2[i]);
1456       }
1457       else
1458       {
1459         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1460         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1461       }
1462       alloc_reg(current,i,rt1[i]);
1463       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1464       {
1465         if(!((current->uu>>rt1[i])&1)) {
1466           alloc_reg64(current,i,rt1[i]);
1467         }
1468         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1469           if(rs1[i]&&rs2[i]) {
1470             alloc_reg64(current,i,rs1[i]);
1471             alloc_reg64(current,i,rs2[i]);
1472           }
1473           else
1474           {
1475             // Is is really worth it to keep 64-bit values in registers?
1476             #ifdef NATIVE_64BIT
1477             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1478             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1479             #endif
1480           }
1481         }
1482         current->is32&=~(1LL<<rt1[i]);
1483       } else {
1484         current->is32|=1LL<<rt1[i];
1485       }
1486     }
1487   }
1488   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1489     if(rt1[i]) {
1490       if(rs1[i]&&rs2[i]) {
1491         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1492           alloc_reg64(current,i,rs1[i]);
1493           alloc_reg64(current,i,rs2[i]);
1494           alloc_reg64(current,i,rt1[i]);
1495         } else {
1496           alloc_reg(current,i,rs1[i]);
1497           alloc_reg(current,i,rs2[i]);
1498           alloc_reg(current,i,rt1[i]);
1499         }
1500       }
1501       else {
1502         alloc_reg(current,i,rt1[i]);
1503         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1504           // DADD used as move, or zeroing
1505           // If we have a 64-bit source, then make the target 64 bits too
1506           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1507             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1508             alloc_reg64(current,i,rt1[i]);
1509           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1510             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1511             alloc_reg64(current,i,rt1[i]);
1512           }
1513           if(opcode2[i]>=0x2e&&rs2[i]) {
1514             // DSUB used as negation - 64-bit result
1515             // If we have a 32-bit register, extend it to 64 bits
1516             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1517             alloc_reg64(current,i,rt1[i]);
1518           }
1519         }
1520       }
1521       if(rs1[i]&&rs2[i]) {
1522         current->is32&=~(1LL<<rt1[i]);
1523       } else if(rs1[i]) {
1524         current->is32&=~(1LL<<rt1[i]);
1525         if((current->is32>>rs1[i])&1)
1526           current->is32|=1LL<<rt1[i];
1527       } else if(rs2[i]) {
1528         current->is32&=~(1LL<<rt1[i]);
1529         if((current->is32>>rs2[i])&1)
1530           current->is32|=1LL<<rt1[i];
1531       } else {
1532         current->is32|=1LL<<rt1[i];
1533       }
1534     }
1535   }
1536   clear_const(current,rs1[i]);
1537   clear_const(current,rs2[i]);
1538   clear_const(current,rt1[i]);
1539   dirty_reg(current,rt1[i]);
1540 }
1541
1542 static void imm16_alloc(struct regstat *current,int i)
1543 {
1544   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1545   else lt1[i]=rs1[i];
1546   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1547   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1548     current->is32&=~(1LL<<rt1[i]);
1549     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1550       // TODO: Could preserve the 32-bit flag if the immediate is zero
1551       alloc_reg64(current,i,rt1[i]);
1552       alloc_reg64(current,i,rs1[i]);
1553     }
1554     clear_const(current,rs1[i]);
1555     clear_const(current,rt1[i]);
1556   }
1557   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1558     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1559     current->is32|=1LL<<rt1[i];
1560     clear_const(current,rs1[i]);
1561     clear_const(current,rt1[i]);
1562   }
1563   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1564     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1565       if(rs1[i]!=rt1[i]) {
1566         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1567         alloc_reg64(current,i,rt1[i]);
1568         current->is32&=~(1LL<<rt1[i]);
1569       }
1570     }
1571     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1572     if(is_const(current,rs1[i])) {
1573       int v=get_const(current,rs1[i]);
1574       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1575       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1576       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1577     }
1578     else clear_const(current,rt1[i]);
1579   }
1580   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1581     if(is_const(current,rs1[i])) {
1582       int v=get_const(current,rs1[i]);
1583       set_const(current,rt1[i],v+imm[i]);
1584     }
1585     else clear_const(current,rt1[i]);
1586     current->is32|=1LL<<rt1[i];
1587   }
1588   else {
1589     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1590     current->is32|=1LL<<rt1[i];
1591   }
1592   dirty_reg(current,rt1[i]);
1593 }
1594
1595 static void load_alloc(struct regstat *current,int i)
1596 {
1597   clear_const(current,rt1[i]);
1598   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1599   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1600   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1601   if(rt1[i]&&!((current->u>>rt1[i])&1)) {
1602     alloc_reg(current,i,rt1[i]);
1603     assert(get_reg(current->regmap,rt1[i])>=0);
1604     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1605     {
1606       current->is32&=~(1LL<<rt1[i]);
1607       alloc_reg64(current,i,rt1[i]);
1608     }
1609     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1610     {
1611       current->is32&=~(1LL<<rt1[i]);
1612       alloc_reg64(current,i,rt1[i]);
1613       alloc_all(current,i);
1614       alloc_reg64(current,i,FTEMP);
1615       minimum_free_regs[i]=HOST_REGS;
1616     }
1617     else current->is32|=1LL<<rt1[i];
1618     dirty_reg(current,rt1[i]);
1619     // If using TLB, need a register for pointer to the mapping table
1620     if(using_tlb) alloc_reg(current,i,TLREG);
1621     // LWL/LWR need a temporary register for the old value
1622     if(opcode[i]==0x22||opcode[i]==0x26)
1623     {
1624       alloc_reg(current,i,FTEMP);
1625       alloc_reg_temp(current,i,-1);
1626       minimum_free_regs[i]=1;
1627     }
1628   }
1629   else
1630   {
1631     // Load to r0 or unneeded register (dummy load)
1632     // but we still need a register to calculate the address
1633     if(opcode[i]==0x22||opcode[i]==0x26)
1634     {
1635       alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1636     }
1637     // If using TLB, need a register for pointer to the mapping table
1638     if(using_tlb) alloc_reg(current,i,TLREG);
1639     alloc_reg_temp(current,i,-1);
1640     minimum_free_regs[i]=1;
1641     if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1642     {
1643       alloc_all(current,i);
1644       alloc_reg64(current,i,FTEMP);
1645       minimum_free_regs[i]=HOST_REGS;
1646     }
1647   }
1648 }
1649
1650 static void store_alloc(struct regstat *current,int i)
1651 {
1652   clear_const(current,rs2[i]);
1653   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1654   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1655   alloc_reg(current,i,rs2[i]);
1656   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1657     alloc_reg64(current,i,rs2[i]);
1658     if(rs2[i]) alloc_reg(current,i,FTEMP);
1659   }
1660   // If using TLB, need a register for pointer to the mapping table
1661   if(using_tlb) alloc_reg(current,i,TLREG);
1662   #if defined(HOST_IMM8)
1663   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1664   else alloc_reg(current,i,INVCP);
1665   #endif
1666   if(opcode[i]==0x2c||opcode[i]==0x2d) { // 64-bit SDL/SDR
1667     alloc_reg(current,i,FTEMP);
1668   }
1669   // We need a temporary register for address generation
1670   alloc_reg_temp(current,i,-1);
1671   minimum_free_regs[i]=1;
1672 }
1673
1674 static void c1ls_alloc(struct regstat *current,int i)
1675 {
1676   //clear_const(current,rs1[i]); // FIXME
1677   clear_const(current,rt1[i]);
1678   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1679   alloc_reg(current,i,CSREG); // Status
1680   alloc_reg(current,i,FTEMP);
1681   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1682     alloc_reg64(current,i,FTEMP);
1683   }
1684   // If using TLB, need a register for pointer to the mapping table
1685   if(using_tlb) alloc_reg(current,i,TLREG);
1686   #if defined(HOST_IMM8)
1687   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1688   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1689     alloc_reg(current,i,INVCP);
1690   #endif
1691   // We need a temporary register for address generation
1692   alloc_reg_temp(current,i,-1);
1693   minimum_free_regs[i]=1;
1694 }
1695
1696 #ifndef multdiv_alloc
1697 void multdiv_alloc(struct regstat *current,int i)
1698 {
1699   //  case 0x18: MULT
1700   //  case 0x19: MULTU
1701   //  case 0x1A: DIV
1702   //  case 0x1B: DIVU
1703   //  case 0x1C: DMULT
1704   //  case 0x1D: DMULTU
1705   //  case 0x1E: DDIV
1706   //  case 0x1F: DDIVU
1707   clear_const(current,rs1[i]);
1708   clear_const(current,rs2[i]);
1709   if(rs1[i]&&rs2[i])
1710   {
1711     if((opcode2[i]&4)==0) // 32-bit
1712     {
1713       current->u&=~(1LL<<HIREG);
1714       current->u&=~(1LL<<LOREG);
1715       alloc_reg(current,i,HIREG);
1716       alloc_reg(current,i,LOREG);
1717       alloc_reg(current,i,rs1[i]);
1718       alloc_reg(current,i,rs2[i]);
1719       current->is32|=1LL<<HIREG;
1720       current->is32|=1LL<<LOREG;
1721       dirty_reg(current,HIREG);
1722       dirty_reg(current,LOREG);
1723     }
1724     else // 64-bit
1725     {
1726       current->u&=~(1LL<<HIREG);
1727       current->u&=~(1LL<<LOREG);
1728       current->uu&=~(1LL<<HIREG);
1729       current->uu&=~(1LL<<LOREG);
1730       alloc_reg64(current,i,HIREG);
1731       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);  //*SEB* Why commenting this line? uncommenting make SM64 freeze after title (before mario head and spinning stars)
1732       alloc_reg64(current,i,rs1[i]);
1733       alloc_reg64(current,i,rs2[i]);
1734       alloc_all(current,i);
1735       current->is32&=~(1LL<<HIREG);
1736       current->is32&=~(1LL<<LOREG);
1737       dirty_reg(current,HIREG);
1738       dirty_reg(current,LOREG);
1739       minimum_free_regs[i]=HOST_REGS;
1740     }
1741   }
1742   else
1743   {
1744     // Multiply by zero is zero.
1745     // MIPS does not have a divide by zero exception.
1746     // The result is undefined, we return zero.
1747         alloc_reg(current,i,HIREG);
1748         alloc_reg(current,i,LOREG);
1749         current->is32|=1LL<<HIREG;
1750         current->is32|=1LL<<LOREG;
1751         dirty_reg(current,HIREG);
1752         dirty_reg(current,LOREG);
1753   }
1754 }
1755 #endif
1756
1757 static void cop0_alloc(struct regstat *current,int i)
1758 {
1759   if(opcode2[i]==0) // MFC0
1760   {
1761     if(rt1[i]) {
1762       clear_const(current,rt1[i]);
1763       alloc_all(current,i);
1764       alloc_reg(current,i,rt1[i]);
1765       current->is32|=1LL<<rt1[i];
1766       dirty_reg(current,rt1[i]);
1767     }
1768   }
1769   else if(opcode2[i]==4) // MTC0
1770   {
1771     if(rs1[i]){
1772       clear_const(current,rs1[i]);
1773       alloc_reg(current,i,rs1[i]);
1774       alloc_all(current,i);
1775     }
1776     else {
1777       alloc_all(current,i); // FIXME: Keep r0
1778       current->u&=~1LL;
1779       alloc_reg(current,i,0);
1780     }
1781   }
1782   else
1783   {
1784     // TLBR/TLBWI/TLBWR/TLBP/ERET
1785     assert(opcode2[i]==0x10);
1786     alloc_all(current,i);
1787   }
1788   minimum_free_regs[i]=HOST_REGS;
1789 }
1790
1791 static void cop1_alloc(struct regstat *current,int i)
1792 {
1793   alloc_reg(current,i,CSREG); // Load status
1794   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1795   {
1796     assert(rt1[i]);
1797     clear_const(current,rt1[i]);
1798     if(opcode2[i]==1) {
1799       alloc_reg64(current,i,rt1[i]); // DMFC1
1800       current->is32&=~(1LL<<rt1[i]);
1801     }else{
1802       alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1803       current->is32|=1LL<<rt1[i];
1804     }
1805     dirty_reg(current,rt1[i]);
1806     alloc_reg_temp(current,i,-1);
1807   }
1808   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1809   {
1810     if(rs1[i]){
1811       clear_const(current,rs1[i]);
1812       if(opcode2[i]==5)
1813         alloc_reg64(current,i,rs1[i]); // DMTC1
1814       else
1815         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1816       alloc_reg_temp(current,i,-1);
1817     }
1818     else {
1819       current->u&=~1LL;
1820       alloc_reg(current,i,0);
1821       alloc_reg_temp(current,i,-1);
1822     }
1823   }
1824   minimum_free_regs[i]=1;
1825 }
1826 static void fconv_alloc(struct regstat *current,int i)
1827 {
1828   alloc_reg(current,i,CSREG); // Load status
1829   alloc_reg_temp(current,i,-1);
1830   minimum_free_regs[i]=1;
1831 }
1832 static void float_alloc(struct regstat *current,int i)
1833 {
1834   alloc_reg(current,i,CSREG); // Load status
1835   alloc_reg_temp(current,i,-1);
1836   minimum_free_regs[i]=1;
1837 }
1838 static void fcomp_alloc(struct regstat *current,int i)
1839 {
1840   alloc_reg(current,i,CSREG); // Load status
1841   alloc_reg(current,i,FSREG); // Load flags
1842   dirty_reg(current,FSREG); // Flag will be modified
1843   alloc_reg_temp(current,i,-1);
1844   minimum_free_regs[i]=1;
1845 }
1846
1847 static void syscall_alloc(struct regstat *current,int i)
1848 {
1849   alloc_cc(current,i);
1850   dirty_reg(current,CCREG);
1851   alloc_all(current,i);
1852   minimum_free_regs[i]=HOST_REGS;
1853   current->isconst=0;
1854 }
1855
1856 static void delayslot_alloc(struct regstat *current,int i)
1857 {
1858   switch(itype[i]) {
1859     case UJUMP:
1860     case CJUMP:
1861     case SJUMP:
1862     case RJUMP:
1863     case FJUMP:
1864     case SYSCALL:
1865     case SPAN:
1866       assem_debug("jump in the delay slot.  this shouldn't happen.");//exit(1);
1867       DebugMessage(M64MSG_VERBOSE, "Disabled speculative precompilation");
1868       stop_after_jal=1;
1869       break;
1870     case IMM16:
1871       imm16_alloc(current,i);
1872       break;
1873     case LOAD:
1874     case LOADLR:
1875       load_alloc(current,i);
1876       break;
1877     case STORE:
1878     case STORELR:
1879       store_alloc(current,i);
1880       break;
1881     case ALU:
1882       alu_alloc(current,i);
1883       break;
1884     case SHIFT:
1885       shift_alloc(current,i);
1886       break;
1887     case MULTDIV:
1888       multdiv_alloc(current,i);
1889       break;
1890     case SHIFTIMM:
1891       shiftimm_alloc(current,i);
1892       break;
1893     case MOV:
1894       mov_alloc(current,i);
1895       break;
1896     case COP0:
1897       cop0_alloc(current,i);
1898       break;
1899     case COP1:
1900       cop1_alloc(current,i);
1901       break;
1902     case C1LS:
1903       c1ls_alloc(current,i);
1904       break;
1905     case FCONV:
1906       fconv_alloc(current,i);
1907       break;
1908     case FLOAT:
1909       float_alloc(current,i);
1910       break;
1911     case FCOMP:
1912       fcomp_alloc(current,i);
1913       break;
1914   }
1915 }
1916
1917 // Special case where a branch and delay slot span two pages in virtual memory
1918 static void pagespan_alloc(struct regstat *current,int i)
1919 {
1920   current->isconst=0;
1921   current->wasconst=0;
1922   regs[i].wasconst=0;
1923   minimum_free_regs[i]=HOST_REGS;
1924   alloc_all(current,i);
1925   alloc_cc(current,i);
1926   dirty_reg(current,CCREG);
1927   if(opcode[i]==3) // JAL
1928   {
1929     alloc_reg(current,i,31);
1930     dirty_reg(current,31);
1931   }
1932   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1933   {
1934     alloc_reg(current,i,rs1[i]);
1935     if (rt1[i]!=0) {
1936       alloc_reg(current,i,rt1[i]);
1937       dirty_reg(current,rt1[i]);
1938     }
1939   }
1940   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1941   {
1942     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1943     if(rs2[i]) alloc_reg(current,i,rs2[i]);
1944     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1945     {
1946       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1947       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1948     }
1949   }
1950   else
1951   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1952   {
1953     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1954     if(!((current->is32>>rs1[i])&1))
1955     {
1956       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1957     }
1958   }
1959   else
1960   if(opcode[i]==0x11) // BC1
1961   {
1962     alloc_reg(current,i,FSREG);
1963     alloc_reg(current,i,CSREG);
1964   }
1965   //else ...
1966 }
1967
1968 static void add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1969 {
1970   stubs[stubcount][0]=type;
1971   stubs[stubcount][1]=addr;
1972   stubs[stubcount][2]=retaddr;
1973   stubs[stubcount][3]=a;
1974   stubs[stubcount][4]=b;
1975   stubs[stubcount][5]=c;
1976   stubs[stubcount][6]=d;
1977   stubs[stubcount][7]=e;
1978   stubcount++;
1979 }
1980
1981 // Write out a single register
1982 static void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1983 {
1984   int hr;
1985   for(hr=0;hr<HOST_REGS;hr++) {
1986     if(hr!=EXCLUDE_REG) {
1987       if((regmap[hr]&63)==r) {
1988         if((dirty>>hr)&1) {
1989           if(regmap[hr]<64) {
1990             emit_storereg(r,hr);
1991             if((is32>>regmap[hr])&1) {
1992               emit_sarimm(hr,31,hr);
1993               emit_storereg(r|64,hr);
1994             }
1995           }else{
1996             emit_storereg(r|64,hr);
1997           }
1998         }
1999       }
2000     }
2001   }
2002 }
2003 #if 0
2004 static int mchecksum()
2005 {
2006   //if(!tracedebug) return 0;
2007   int i;
2008   int sum=0;
2009   for(i=0;i<2097152;i++) {
2010     unsigned int temp=sum;
2011     sum<<=1;
2012     sum|=(~temp)>>31;
2013     sum^=((u_int *)rdram)[i];
2014   }
2015   return sum;
2016 }
2017
2018 static int rchecksum()
2019 {
2020   int i;
2021   int sum=0;
2022   for(i=0;i<64;i++)
2023     sum^=((u_int *)reg)[i];
2024   return sum;
2025 }
2026
2027 static void rlist()
2028 {
2029   int i;
2030   DebugMessage(M64MSG_VERBOSE, "TRACE: ");
2031   for(i=0;i<32;i++)
2032     DebugMessage(M64MSG_VERBOSE, "r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2033   DebugMessage(M64MSG_VERBOSE, "TRACE: ");
2034   for(i=0;i<32;i++)
2035     DebugMessage(M64MSG_VERBOSE, "f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2036 }
2037
2038 static void enabletrace()
2039 {
2040   tracedebug=1;
2041 }
2042
2043
2044 static void memdebug(int i)
2045 {
2046   //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x) lo=%8x%8x",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2047   //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (rchecksum %x)",Count,next_interupt,rchecksum());
2048   //rlist();
2049   //if(tracedebug) {
2050   //if(Count>=-2084597794) {
2051   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2052   //if(0) {
2053     DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x)",Count,next_interupt,mchecksum());
2054     //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x) Status=%x",Count,next_interupt,mchecksum(),Status);
2055     //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x) hi=%8x%8x",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2056     rlist();
2057     #if NEW_DYNAREC == NEW_DYNAREC_X86
2058     DebugMessage(M64MSG_VERBOSE, "TRACE: %x",(&i)[-1]);
2059     #endif
2060     #if NEW_DYNAREC == NEW_DYNAREC_ARM
2061     int j;
2062     DebugMessage(M64MSG_VERBOSE, "TRACE: %x ",(&j)[10]);
2063     DebugMessage(M64MSG_VERBOSE, "TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2064     #endif
2065     //fflush(stdout);
2066   }
2067   //DebugMessage(M64MSG_VERBOSE, "TRACE: %x",(&i)[-1]);
2068 }
2069 #endif
2070
2071 /* Debug:
2072 static void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2073 {
2074   DebugMessage(M64MSG_VERBOSE, "TLB Exception: instruction=%x addr=%x cause=%x",iaddr, addr, cause);
2075 }
2076 end debug */
2077
2078 static void alu_assemble(int i,struct regstat *i_regs)
2079 {
2080   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2081     if(rt1[i]) {
2082       signed char s1,s2,t;
2083       t=get_reg(i_regs->regmap,rt1[i]);
2084       if(t>=0) {
2085         s1=get_reg(i_regs->regmap,rs1[i]);
2086         s2=get_reg(i_regs->regmap,rs2[i]);
2087         if(rs1[i]&&rs2[i]) {
2088           assert(s1>=0);
2089           assert(s2>=0);
2090           if(opcode2[i]&2) emit_sub(s1,s2,t);
2091           else emit_add(s1,s2,t);
2092         }
2093         else if(rs1[i]) {
2094           if(s1>=0) emit_mov(s1,t);
2095           else emit_loadreg(rs1[i],t);
2096         }
2097         else if(rs2[i]) {
2098           if(s2>=0) {
2099             if(opcode2[i]&2) emit_neg(s2,t);
2100             else emit_mov(s2,t);
2101           }
2102           else {
2103             emit_loadreg(rs2[i],t);
2104             if(opcode2[i]&2) emit_neg(t,t);
2105           }
2106         }
2107         else emit_zeroreg(t);
2108       }
2109     }
2110   }
2111   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2112     if(rt1[i]) {
2113       signed char s1l,s2l,s1h,s2h,tl,th;
2114       tl=get_reg(i_regs->regmap,rt1[i]);
2115       th=get_reg(i_regs->regmap,rt1[i]|64);
2116       if(tl>=0) {
2117         s1l=get_reg(i_regs->regmap,rs1[i]);
2118         s2l=get_reg(i_regs->regmap,rs2[i]);
2119         s1h=get_reg(i_regs->regmap,rs1[i]|64);
2120         s2h=get_reg(i_regs->regmap,rs2[i]|64);
2121         if(rs1[i]&&rs2[i]) {
2122           assert(s1l>=0);
2123           assert(s2l>=0);
2124           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2125           else emit_adds(s1l,s2l,tl);
2126           if(th>=0) {
2127             #ifdef INVERTED_CARRY
2128             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2129             #else
2130             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2131             #endif
2132             else emit_add(s1h,s2h,th);
2133           }
2134         }
2135         else if(rs1[i]) {
2136           if(s1l>=0) emit_mov(s1l,tl);
2137           else emit_loadreg(rs1[i],tl);
2138           if(th>=0) {
2139             if(s1h>=0) emit_mov(s1h,th);
2140             else emit_loadreg(rs1[i]|64,th);
2141           }
2142         }
2143         else if(rs2[i]) {
2144           if(s2l>=0) {
2145             if(opcode2[i]&2) emit_negs(s2l,tl);
2146             else emit_mov(s2l,tl);
2147           }
2148           else {
2149             emit_loadreg(rs2[i],tl);
2150             if(opcode2[i]&2) emit_negs(tl,tl);
2151           }
2152           if(th>=0) {
2153             #ifdef INVERTED_CARRY
2154             if(s2h>=0) emit_mov(s2h,th);
2155             else emit_loadreg(rs2[i]|64,th);
2156             if(opcode2[i]&2) {
2157               emit_adcimm(-1,th); // x86 has inverted carry flag
2158               emit_not(th,th);
2159             }
2160             #else
2161             if(opcode2[i]&2) {
2162               if(s2h>=0) emit_rscimm(s2h,0,th);
2163               else {
2164                 emit_loadreg(rs2[i]|64,th);
2165                 emit_rscimm(th,0,th);
2166               }
2167             }else{
2168               if(s2h>=0) emit_mov(s2h,th);
2169               else emit_loadreg(rs2[i]|64,th);
2170             }
2171             #endif
2172           }
2173         }
2174         else {
2175           emit_zeroreg(tl);
2176           if(th>=0) emit_zeroreg(th);
2177         }
2178       }
2179     }
2180   }
2181   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2182     if(rt1[i]) {
2183       signed char s1l,s1h,s2l,s2h,t;
2184       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2185       {
2186         t=get_reg(i_regs->regmap,rt1[i]);
2187         //assert(t>=0);
2188         if(t>=0) {
2189           s1l=get_reg(i_regs->regmap,rs1[i]);
2190           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2191           s2l=get_reg(i_regs->regmap,rs2[i]);
2192           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2193           if(rs2[i]==0) // rx<r0
2194           {
2195             assert(s1h>=0);
2196             if(opcode2[i]==0x2a) // SLT
2197               emit_shrimm(s1h,31,t);
2198             else // SLTU (unsigned can not be less than zero)
2199               emit_zeroreg(t);
2200           }
2201           else if(rs1[i]==0) // r0<rx
2202           {
2203             assert(s2h>=0);
2204             if(opcode2[i]==0x2a) // SLT
2205               emit_set_gz64_32(s2h,s2l,t);
2206             else // SLTU (set if not zero)
2207               emit_set_nz64_32(s2h,s2l,t);
2208           }
2209           else {
2210             assert(s1l>=0);assert(s1h>=0);
2211             assert(s2l>=0);assert(s2h>=0);
2212             if(opcode2[i]==0x2a) // SLT
2213               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2214             else // SLTU
2215               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2216           }
2217         }
2218       } else {
2219         t=get_reg(i_regs->regmap,rt1[i]);
2220         //assert(t>=0);
2221         if(t>=0) {
2222           s1l=get_reg(i_regs->regmap,rs1[i]);
2223           s2l=get_reg(i_regs->regmap,rs2[i]);
2224           if(rs2[i]==0) // rx<r0
2225           {
2226             assert(s1l>=0);
2227             if(opcode2[i]==0x2a) // SLT
2228               emit_shrimm(s1l,31,t);
2229             else // SLTU (unsigned can not be less than zero)
2230               emit_zeroreg(t);
2231           }
2232           else if(rs1[i]==0) // r0<rx
2233           {
2234             assert(s2l>=0);
2235             if(opcode2[i]==0x2a) // SLT
2236               emit_set_gz32(s2l,t);
2237             else // SLTU (set if not zero)
2238               emit_set_nz32(s2l,t);
2239           }
2240           else{
2241             assert(s1l>=0);assert(s2l>=0);
2242             if(opcode2[i]==0x2a) // SLT
2243               emit_set_if_less32(s1l,s2l,t);
2244             else // SLTU
2245               emit_set_if_carry32(s1l,s2l,t);
2246           }
2247         }
2248       }
2249     }
2250   }
2251   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2252     if(rt1[i]) {
2253       signed char s1l,s1h,s2l,s2h,th,tl;
2254       tl=get_reg(i_regs->regmap,rt1[i]);
2255       th=get_reg(i_regs->regmap,rt1[i]|64);
2256       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2257       {
2258         assert(tl>=0);
2259         if(tl>=0) {
2260           s1l=get_reg(i_regs->regmap,rs1[i]);
2261           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2262           s2l=get_reg(i_regs->regmap,rs2[i]);
2263           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2264           if(rs1[i]&&rs2[i]) {
2265             assert(s1l>=0);assert(s1h>=0);
2266             assert(s2l>=0);assert(s2h>=0);
2267             if(opcode2[i]==0x24) { // AND
2268               emit_and(s1l,s2l,tl);
2269               emit_and(s1h,s2h,th);
2270             } else
2271             if(opcode2[i]==0x25) { // OR
2272               emit_or(s1l,s2l,tl);
2273               emit_or(s1h,s2h,th);
2274             } else
2275             if(opcode2[i]==0x26) { // XOR
2276               emit_xor(s1l,s2l,tl);
2277               emit_xor(s1h,s2h,th);
2278             } else
2279             if(opcode2[i]==0x27) { // NOR
2280               emit_or(s1l,s2l,tl);
2281               emit_or(s1h,s2h,th);
2282               emit_not(tl,tl);
2283               emit_not(th,th);
2284             }
2285           }
2286           else
2287           {
2288             if(opcode2[i]==0x24) { // AND
2289               emit_zeroreg(tl);
2290               emit_zeroreg(th);
2291             } else
2292             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2293               if(rs1[i]){
2294                 if(s1l>=0) emit_mov(s1l,tl);
2295                 else emit_loadreg(rs1[i],tl);
2296                 if(s1h>=0) emit_mov(s1h,th);
2297                 else emit_loadreg(rs1[i]|64,th);
2298               }
2299               else
2300               if(rs2[i]){
2301                 if(s2l>=0) emit_mov(s2l,tl);
2302                 else emit_loadreg(rs2[i],tl);
2303                 if(s2h>=0) emit_mov(s2h,th);
2304                 else emit_loadreg(rs2[i]|64,th);
2305               }
2306               else{
2307                 emit_zeroreg(tl);
2308                 emit_zeroreg(th);
2309               }
2310             } else
2311             if(opcode2[i]==0x27) { // NOR
2312               if(rs1[i]){
2313                 if(s1l>=0) emit_not(s1l,tl);
2314                 else{
2315                   emit_loadreg(rs1[i],tl);
2316                   emit_not(tl,tl);
2317                 }
2318                 if(s1h>=0) emit_not(s1h,th);
2319                 else{
2320                   emit_loadreg(rs1[i]|64,th);
2321                   emit_not(th,th);
2322                 }
2323               }
2324               else
2325               if(rs2[i]){
2326                 if(s2l>=0) emit_not(s2l,tl);
2327                 else{
2328                   emit_loadreg(rs2[i],tl);
2329                   emit_not(tl,tl);
2330                 }
2331                 if(s2h>=0) emit_not(s2h,th);
2332                 else{
2333                   emit_loadreg(rs2[i]|64,th);
2334                   emit_not(th,th);
2335                 }
2336               }
2337               else {
2338                 emit_movimm(-1,tl);
2339                 emit_movimm(-1,th);
2340               }
2341             }
2342           }
2343         }
2344       }
2345       else
2346       {
2347         // 32 bit
2348         if(tl>=0) {
2349           s1l=get_reg(i_regs->regmap,rs1[i]);
2350           s2l=get_reg(i_regs->regmap,rs2[i]);
2351           if(rs1[i]&&rs2[i]) {
2352             assert(s1l>=0);
2353             assert(s2l>=0);
2354             if(opcode2[i]==0x24) { // AND
2355               emit_and(s1l,s2l,tl);
2356             } else
2357             if(opcode2[i]==0x25) { // OR
2358               emit_or(s1l,s2l,tl);
2359             } else
2360             if(opcode2[i]==0x26) { // XOR
2361               emit_xor(s1l,s2l,tl);
2362             } else
2363             if(opcode2[i]==0x27) { // NOR
2364               emit_or(s1l,s2l,tl);
2365               emit_not(tl,tl);
2366             }
2367           }
2368           else
2369           {
2370             if(opcode2[i]==0x24) { // AND
2371               emit_zeroreg(tl);
2372             } else
2373             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2374               if(rs1[i]){
2375                 if(s1l>=0) emit_mov(s1l,tl);
2376                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2377               }
2378               else
2379               if(rs2[i]){
2380                 if(s2l>=0) emit_mov(s2l,tl);
2381                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2382               }
2383               else emit_zeroreg(tl);
2384             } else
2385             if(opcode2[i]==0x27) { // NOR
2386               if(rs1[i]){
2387                 if(s1l>=0) emit_not(s1l,tl);
2388                 else {
2389                   emit_loadreg(rs1[i],tl);
2390                   emit_not(tl,tl);
2391                 }
2392               }
2393               else
2394               if(rs2[i]){
2395                 if(s2l>=0) emit_not(s2l,tl);
2396                 else {
2397                   emit_loadreg(rs2[i],tl);
2398                   emit_not(tl,tl);
2399                 }
2400               }
2401               else emit_movimm(-1,tl);
2402             }
2403           }
2404         }
2405       }
2406     }
2407   }
2408 }
2409
2410 static void imm16_assemble(int i,struct regstat *i_regs)
2411 {
2412   if (opcode[i]==0x0f) { // LUI
2413     if(rt1[i]) {
2414       signed char t;
2415       t=get_reg(i_regs->regmap,rt1[i]);
2416       //assert(t>=0);
2417       if(t>=0) {
2418         if(!((i_regs->isconst>>t)&1))
2419           emit_movimm(imm[i]<<16,t);
2420       }
2421     }
2422   }
2423   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2424     if(rt1[i]) {
2425       signed char s,t;
2426       t=get_reg(i_regs->regmap,rt1[i]);
2427       s=get_reg(i_regs->regmap,rs1[i]);
2428       if(rs1[i]) {
2429         //assert(t>=0);
2430         //assert(s>=0);
2431         if(t>=0) {
2432           if(!((i_regs->isconst>>t)&1)) {
2433             if(s<0) {
2434               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2435               emit_addimm(t,imm[i],t);
2436             }else{
2437               if(!((i_regs->wasconst>>s)&1))
2438                 emit_addimm(s,imm[i],t);
2439               else
2440                 emit_movimm(constmap[i][s]+imm[i],t);
2441             }
2442           }
2443         }
2444       } else {
2445         if(t>=0) {
2446           if(!((i_regs->isconst>>t)&1))
2447             emit_movimm(imm[i],t);
2448         }
2449       }
2450     }
2451   }
2452   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2453     if(rt1[i]) {
2454       signed char sh,sl,th,tl;
2455       th=get_reg(i_regs->regmap,rt1[i]|64);
2456       tl=get_reg(i_regs->regmap,rt1[i]);
2457       sh=get_reg(i_regs->regmap,rs1[i]|64);
2458       sl=get_reg(i_regs->regmap,rs1[i]);
2459       if(tl>=0) {
2460         if(rs1[i]) {
2461           assert(sh>=0);
2462           assert(sl>=0);
2463           if(th>=0) {
2464             emit_addimm64_32(sh,sl,imm[i],th,tl);
2465           }
2466           else {
2467             emit_addimm(sl,imm[i],tl);
2468           }
2469         } else {
2470           emit_movimm(imm[i],tl);
2471           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2472         }
2473       }
2474     }
2475   }
2476   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2477     if(rt1[i]) {
2478       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2479       signed char sh,sl,t;
2480       t=get_reg(i_regs->regmap,rt1[i]);
2481       sh=get_reg(i_regs->regmap,rs1[i]|64);
2482       sl=get_reg(i_regs->regmap,rs1[i]);
2483       //assert(t>=0);
2484       if(t>=0) {
2485         if(rs1[i]>0) {
2486           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2487           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2488             if(opcode[i]==0x0a) { // SLTI
2489               if(sl<0) {
2490                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2491                 emit_slti32(t,imm[i],t);
2492               }else{
2493                 emit_slti32(sl,imm[i],t);
2494               }
2495             }
2496             else { // SLTIU
2497               if(sl<0) {
2498                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2499                 emit_sltiu32(t,imm[i],t);
2500               }else{
2501                 emit_sltiu32(sl,imm[i],t);
2502               }
2503             }
2504           }else{ // 64-bit
2505             assert(sl>=0);
2506             if(opcode[i]==0x0a) // SLTI
2507               emit_slti64_32(sh,sl,imm[i],t);
2508             else // SLTIU
2509               emit_sltiu64_32(sh,sl,imm[i],t);
2510           }
2511         }else{
2512           // SLTI(U) with r0 is just stupid,
2513           // nonetheless examples can be found
2514           if(opcode[i]==0x0a) // SLTI
2515             if(0<imm[i]) emit_movimm(1,t);
2516             else emit_zeroreg(t);
2517           else // SLTIU
2518           {
2519             if(imm[i]) emit_movimm(1,t);
2520             else emit_zeroreg(t);
2521           }
2522         }
2523       }
2524     }
2525   }
2526   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2527     if(rt1[i]) {
2528       signed char sh,sl,th,tl;
2529       th=get_reg(i_regs->regmap,rt1[i]|64);
2530       tl=get_reg(i_regs->regmap,rt1[i]);
2531       sh=get_reg(i_regs->regmap,rs1[i]|64);
2532       sl=get_reg(i_regs->regmap,rs1[i]);
2533       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2534         if(opcode[i]==0x0c) //ANDI
2535         {
2536           if(rs1[i]) {
2537             if(sl<0) {
2538               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2539               emit_andimm(tl,imm[i],tl);
2540             }else{
2541               if(!((i_regs->wasconst>>sl)&1))
2542                 emit_andimm(sl,imm[i],tl);
2543               else
2544                 emit_movimm(constmap[i][sl]&imm[i],tl);
2545             }
2546           }
2547           else
2548             emit_zeroreg(tl);
2549           if(th>=0) emit_zeroreg(th);
2550         }
2551         else
2552         {
2553           if(rs1[i]) {
2554             if(sl<0) {
2555               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2556             }
2557             if(th>=0) {
2558               if(sh<0) {
2559                 emit_loadreg(rs1[i]|64,th);
2560               }else{
2561                 emit_mov(sh,th);
2562               }
2563             }
2564             if(opcode[i]==0x0d) { //ORI
2565             if(sl<0) {
2566               emit_orimm(tl,imm[i],tl);
2567             }else{
2568               if(!((i_regs->wasconst>>sl)&1))
2569                 emit_orimm(sl,imm[i],tl);
2570               else
2571                 emit_movimm(constmap[i][sl]|imm[i],tl);
2572             }
2573             }
2574             if(opcode[i]==0x0e) { //XORI
2575             if(sl<0) {
2576               emit_xorimm(tl,imm[i],tl);
2577             }else{
2578               if(!((i_regs->wasconst>>sl)&1))
2579                 emit_xorimm(sl,imm[i],tl);
2580               else
2581                 emit_movimm(constmap[i][sl]^imm[i],tl);
2582             }
2583             }
2584           }
2585           else {
2586             emit_movimm(imm[i],tl);
2587             if(th>=0) emit_zeroreg(th);
2588           }
2589         }
2590       }
2591     }
2592   }
2593 }
2594
2595 static void shiftimm_assemble(int i,struct regstat *i_regs)
2596 {
2597   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2598   {
2599     if(rt1[i]) {
2600       signed char s,t;
2601       t=get_reg(i_regs->regmap,rt1[i]);
2602       s=get_reg(i_regs->regmap,rs1[i]);
2603       //assert(t>=0);
2604       if(t>=0){
2605         if(rs1[i]==0)
2606         {
2607           emit_zeroreg(t);
2608         }
2609         else
2610         {
2611           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2612           if(imm[i]) {
2613             if(opcode2[i]==0) // SLL
2614             {
2615               emit_shlimm(s<0?t:s,imm[i],t);
2616             }
2617             if(opcode2[i]==2) // SRL
2618             {
2619               emit_shrimm(s<0?t:s,imm[i],t);
2620             }
2621             if(opcode2[i]==3) // SRA
2622             {
2623               emit_sarimm(s<0?t:s,imm[i],t);
2624             }
2625           }else{
2626             // Shift by zero
2627             if(s>=0 && s!=t) emit_mov(s,t);
2628           }
2629         }
2630       }
2631       //emit_storereg(rt1[i],t); //DEBUG
2632     }
2633   }
2634   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2635   {
2636     if(rt1[i]) {
2637       signed char sh,sl,th,tl;
2638       th=get_reg(i_regs->regmap,rt1[i]|64);
2639       tl=get_reg(i_regs->regmap,rt1[i]);
2640       sh=get_reg(i_regs->regmap,rs1[i]|64);
2641       sl=get_reg(i_regs->regmap,rs1[i]);
2642       if(tl>=0) {
2643         if(rs1[i]==0)
2644         {
2645           emit_zeroreg(tl);
2646           if(th>=0) emit_zeroreg(th);
2647         }
2648         else
2649         {
2650           assert(sl>=0);
2651           assert(sh>=0);
2652           if(imm[i]) {
2653             if(opcode2[i]==0x38) // DSLL
2654             {
2655               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2656               emit_shlimm(sl,imm[i],tl);
2657             }
2658             if(opcode2[i]==0x3a) // DSRL
2659             {
2660               emit_shrdimm(sl,sh,imm[i],tl);
2661               if(th>=0) emit_shrimm(sh,imm[i],th);
2662             }
2663             if(opcode2[i]==0x3b) // DSRA
2664             {
2665               emit_shrdimm(sl,sh,imm[i],tl);
2666               if(th>=0) emit_sarimm(sh,imm[i],th);
2667             }
2668           }else{
2669             // Shift by zero
2670             if(sl!=tl) emit_mov(sl,tl);
2671             if(th>=0&&sh!=th) emit_mov(sh,th);
2672           }
2673         }
2674       }
2675     }
2676   }
2677   if(opcode2[i]==0x3c) // DSLL32
2678   {
2679     if(rt1[i]) {
2680       signed char sl,tl,th;
2681       tl=get_reg(i_regs->regmap,rt1[i]);
2682       th=get_reg(i_regs->regmap,rt1[i]|64);
2683       sl=get_reg(i_regs->regmap,rs1[i]);
2684       if(th>=0||tl>=0){
2685         assert(tl>=0);
2686         assert(th>=0);
2687         assert(sl>=0);
2688         emit_mov(sl,th);
2689         emit_zeroreg(tl);
2690         if(imm[i]>32)
2691         {
2692           emit_shlimm(th,imm[i]&31,th);
2693         }
2694       }
2695     }
2696   }
2697   if(opcode2[i]==0x3e) // DSRL32
2698   {
2699     if(rt1[i]) {
2700       signed char sh,tl,th;
2701       tl=get_reg(i_regs->regmap,rt1[i]);
2702       th=get_reg(i_regs->regmap,rt1[i]|64);
2703       sh=get_reg(i_regs->regmap,rs1[i]|64);
2704       if(tl>=0){
2705         assert(sh>=0);
2706         emit_mov(sh,tl);
2707         if(th>=0) emit_zeroreg(th);
2708         if(imm[i]>32)
2709         {
2710           emit_shrimm(tl,imm[i]&31,tl);
2711         }
2712       }
2713     }
2714   }
2715   if(opcode2[i]==0x3f) // DSRA32
2716   {
2717     if(rt1[i]) {
2718       signed char sh,tl;
2719       tl=get_reg(i_regs->regmap,rt1[i]);
2720       sh=get_reg(i_regs->regmap,rs1[i]|64);
2721       if(tl>=0){
2722         assert(sh>=0);
2723         emit_mov(sh,tl);
2724         if(imm[i]>32)
2725         {
2726           emit_sarimm(tl,imm[i]&31,tl);
2727         }
2728       }
2729     }
2730   }
2731 }
2732
2733 #ifndef shift_assemble
2734 void shift_assemble(int i,struct regstat *i_regs)
2735 {
2736   DebugMessage(M64MSG_ERROR, "Need shift_assemble for this architecture.");
2737   exit(1);
2738 }
2739 #endif
2740
2741 static void load_assemble(int i,struct regstat *i_regs)
2742 {
2743   int s,th,tl,addr,map=-1,cache=-1;
2744   int offset;
2745   int jaddr=0;
2746   int memtarget,c=0;
2747   u_int hr,reglist=0;
2748   th=get_reg(i_regs->regmap,rt1[i]|64);
2749   tl=get_reg(i_regs->regmap,rt1[i]);
2750   s=get_reg(i_regs->regmap,rs1[i]);
2751   offset=imm[i];
2752   for(hr=0;hr<HOST_REGS;hr++) {
2753     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2754   }
2755   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2756   if(s>=0) {
2757     c=(i_regs->wasconst>>s)&1;
2758     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
2759     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2760   }
2761   if(tl<0) tl=get_reg(i_regs->regmap,-1);
2762   if(offset||s<0||c) addr=tl;
2763   else addr=s;
2764   //DebugMessage(M64MSG_VERBOSE, "load_assemble: c=%d",c);
2765   //if(c) DebugMessage(M64MSG_VERBOSE, "load_assemble: const=%x",(int)constmap[i][s]+offset);
2766   assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2767   reglist&=~(1<<tl);
2768   if(th>=0) reglist&=~(1<<th);
2769   if(!using_tlb) {
2770     if(!c) {
2771       #ifdef RAM_OFFSET
2772       map=get_reg(i_regs->regmap,ROREG);
2773       if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2774       #endif
2775 //#define R29_HACK 1
2776       #ifdef R29_HACK
2777       // Strmnnrmn's speed hack
2778       if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
2779       #endif
2780       {
2781         emit_cmpimm(addr,0x800000);
2782         jaddr=(int)out;
2783         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2784         // Hint to branch predictor that the branch is unlikely to be taken
2785         if(rs1[i]>=28)
2786           emit_jno_unlikely(0);
2787         else
2788         #endif
2789         emit_jno(0);
2790       }
2791     }
2792   }else{ // using tlb
2793     int x=0;
2794     if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2795     if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2796     map=get_reg(i_regs->regmap,TLREG);
2797     cache=get_reg(i_regs->regmap,MMREG);
2798     assert(map>=0);
2799     reglist&=~(1<<map);
2800     map=do_tlb_r(addr,tl,map,cache,x,-1,-1,c,constmap[i][s]+offset);
2801     do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2802   }
2803   int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2804   if (opcode[i]==0x20) { // LB
2805     if(!c||memtarget) {
2806       if(!dummy) {
2807         #ifdef HOST_IMM_ADDR32
2808         if(c)
2809           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2810         else
2811         #endif
2812         {
2813           //emit_xorimm(addr,3,tl);
2814           //gen_tlb_addr_r(tl,map);
2815           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2816           int x=0;
2817           if(!c) emit_xorimm(addr,3,tl);
2818           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2819           emit_movsbl_indexed_tlb(x,tl,map,tl);
2820         }
2821       }
2822       if(jaddr)
2823         add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2824     }
2825     else
2826       inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2827   }
2828   if (opcode[i]==0x21) { // LH
2829     if(!c||memtarget) {
2830       if(!dummy) {
2831         #ifdef HOST_IMM_ADDR32
2832         if(c)
2833           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2834         else
2835         #endif
2836         {
2837           int x=0;
2838           if(!c) emit_xorimm(addr,2,tl);
2839           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2840           //#ifdef
2841           //emit_movswl_indexed_tlb(x,tl,map,tl);
2842           //else
2843           if(map>=0) {
2844             gen_tlb_addr_r(tl,map);
2845             emit_movswl_indexed(x,tl,tl);
2846           }else{
2847             #ifdef RAM_OFFSET
2848             emit_movswl_indexed(x,tl,tl);
2849             #else
2850             emit_movswl_indexed((int)rdram-0x80000000+x,tl,tl);
2851             #endif
2852           }
2853         }
2854       }
2855       if(jaddr)
2856         add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2857     }
2858     else
2859       inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2860   }
2861   if (opcode[i]==0x23) { // LW
2862     if(!c||memtarget) {
2863       if(!dummy) {
2864         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2865         #ifdef HOST_IMM_ADDR32
2866         if(c)
2867           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2868         else
2869         #endif
2870         emit_readword_indexed_tlb(0,addr,map,tl);
2871       }
2872       if(jaddr)
2873         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2874     }
2875     else
2876       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2877   }
2878   if (opcode[i]==0x24) { // LBU
2879     if(!c||memtarget) {
2880       if(!dummy) {
2881         #ifdef HOST_IMM_ADDR32
2882         if(c)
2883           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2884         else
2885         #endif
2886         {
2887           //emit_xorimm(addr,3,tl);
2888           //gen_tlb_addr_r(tl,map);
2889           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2890           int x=0;
2891           if(!c) emit_xorimm(addr,3,tl);
2892           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2893           emit_movzbl_indexed_tlb(x,tl,map,tl);
2894         }
2895       }
2896       if(jaddr)
2897         add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2898     }
2899     else
2900       inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2901   }
2902   if (opcode[i]==0x25) { // LHU
2903     if(!c||memtarget) {
2904       if(!dummy) {
2905         #ifdef HOST_IMM_ADDR32
2906         if(c)
2907           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2908         else
2909         #endif
2910         {
2911           int x=0;
2912           if(!c) emit_xorimm(addr,2,tl);
2913           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2914           //#ifdef
2915           //emit_movzwl_indexed_tlb(x,tl,map,tl);
2916           //#else
2917           if(map>=0) {
2918             gen_tlb_addr_r(tl,map);
2919             emit_movzwl_indexed(x,tl,tl);
2920           }else{
2921             #ifdef RAM_OFFSET
2922             emit_movzwl_indexed(x,tl,tl);
2923             #else
2924             emit_movzwl_indexed((int)rdram-0x80000000+x,tl,tl);
2925             #endif
2926           }
2927         }
2928       }
2929       if(jaddr)
2930         add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2931     }
2932     else
2933       inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2934   }
2935   if (opcode[i]==0x27) { // LWU
2936     assert(th>=0);
2937     if(!c||memtarget) {
2938       if(!dummy) {
2939         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2940         #ifdef HOST_IMM_ADDR32
2941         if(c)
2942           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2943         else
2944         #endif
2945         emit_readword_indexed_tlb(0,addr,map,tl);
2946       }
2947       if(jaddr)
2948         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2949     }
2950     else {
2951       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2952     }
2953     emit_zeroreg(th);
2954   }
2955   if (opcode[i]==0x37) { // LD
2956     if(!c||memtarget) {
2957       if(!dummy) {
2958         //gen_tlb_addr_r(tl,map);
2959         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2960         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2961         #ifdef HOST_IMM_ADDR32
2962         if(c)
2963           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2964         else
2965         #endif
2966         emit_readdword_indexed_tlb(0,addr,map,th,tl);
2967       }
2968       if(jaddr)
2969         add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2970     }
2971     else
2972       inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2973   }
2974   //emit_storereg(rt1[i],tl); // DEBUG
2975   //if(opcode[i]==0x23)
2976   //if(opcode[i]==0x24)
2977   //if(opcode[i]==0x23||opcode[i]==0x24)
2978   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2979   {
2980     //emit_pusha();
2981     save_regs(0x100f);
2982         emit_readword((int)&last_count,ECX);
2983         #if NEW_DYNAREC == NEW_DYNAREC_X86
2984         if(get_reg(i_regs->regmap,CCREG)<0)
2985           emit_loadreg(CCREG,HOST_CCREG);
2986         emit_add(HOST_CCREG,ECX,HOST_CCREG);
2987         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2988         emit_writeword(HOST_CCREG,(int)&Count);
2989         #endif
2990         #if NEW_DYNAREC == NEW_DYNAREC_ARM
2991         if(get_reg(i_regs->regmap,CCREG)<0)
2992           emit_loadreg(CCREG,0);
2993         else
2994           emit_mov(HOST_CCREG,0);
2995         emit_add(0,ECX,0);
2996         emit_addimm(0,2*ccadj[i],0);
2997         emit_writeword(0,(int)&Count);
2998         #endif
2999     emit_call((int)memdebug);
3000     //emit_popa();
3001     restore_regs(0x100f);
3002   }*/
3003 }
3004
3005 #ifndef loadlr_assemble
3006 static void loadlr_assemble(int i,struct regstat *i_regs)
3007 {
3008   DebugMessage(M64MSG_ERROR, "Need loadlr_assemble for this architecture.");
3009   exit(1);
3010 }
3011 #endif
3012
3013 static void store_assemble(int i,struct regstat *i_regs)
3014 {
3015   int s,th,tl,map=-1,cache=-1;
3016   int addr,temp;
3017   int offset;
3018   int jaddr=0,jaddr2,type;
3019   int memtarget,c=0;
3020   int agr=AGEN1+(i&1);
3021   u_int hr,reglist=0;
3022   th=get_reg(i_regs->regmap,rs2[i]|64);
3023   tl=get_reg(i_regs->regmap,rs2[i]);
3024   s=get_reg(i_regs->regmap,rs1[i]);
3025   temp=get_reg(i_regs->regmap,agr);
3026   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3027   offset=imm[i];
3028   if(s>=0) {
3029     c=(i_regs->wasconst>>s)&1;
3030     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
3031     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3032   }
3033   assert(tl>=0);
3034   assert(temp>=0);
3035   for(hr=0;hr<HOST_REGS;hr++) {
3036     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3037   }
3038   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3039   if(offset||s<0||c) addr=temp;
3040   else addr=s;
3041   if(!using_tlb) {
3042     #ifdef RAM_OFFSET
3043     map=get_reg(i_regs->regmap,ROREG);
3044     if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3045     #endif
3046     if(!c) {
3047       #ifdef R29_HACK
3048       // Strmnnrmn's speed hack
3049       memtarget=1;
3050       if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
3051       #endif
3052       emit_cmpimm(addr,0x800000);
3053       #ifdef DESTRUCTIVE_SHIFT
3054       if(s==addr) emit_mov(s,temp);
3055       #endif
3056       #ifdef R29_HACK
3057       if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
3058       #endif
3059       {
3060         jaddr=(int)out;
3061         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3062         // Hint to branch predictor that the branch is unlikely to be taken
3063         if(rs1[i]>=28)
3064           emit_jno_unlikely(0);
3065         else
3066         #endif
3067         emit_jno(0);
3068       }
3069     }
3070   }else{ // using tlb
3071     int x=0;
3072     if (opcode[i]==0x28) x=3; // SB
3073     if (opcode[i]==0x29) x=2; // SH
3074     map=get_reg(i_regs->regmap,TLREG);
3075     cache=get_reg(i_regs->regmap,MMREG);
3076     assert(map>=0);
3077     reglist&=~(1<<map);
3078     map=do_tlb_w(addr,temp,map,cache,x,c,constmap[i][s]+offset);
3079     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3080   }
3081
3082   if (opcode[i]==0x28) { // SB
3083     if(!c||memtarget) {
3084       int x=0;
3085       if(!c) emit_xorimm(addr,3,temp);
3086       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3087       //gen_tlb_addr_w(temp,map);
3088       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3089       emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3090     }
3091     type=STOREB_STUB;
3092   }
3093   if (opcode[i]==0x29) { // SH
3094     if(!c||memtarget) {
3095       int x=0;
3096       if(!c) emit_xorimm(addr,2,temp);
3097       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3098       //#ifdef
3099       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3100       //#else
3101       if(map>=0) {
3102         gen_tlb_addr_w(temp,map);
3103         emit_writehword_indexed(tl,x,temp);
3104       }else
3105         emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3106     }
3107     type=STOREH_STUB;
3108   }
3109   if (opcode[i]==0x2B) { // SW
3110     if(!c||memtarget)
3111       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3112       emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3113     type=STOREW_STUB;
3114   }
3115   if (opcode[i]==0x3F) { // SD
3116     if(!c||memtarget) {
3117       if(rs2[i]) {
3118         assert(th>=0);
3119         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3120         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3121         emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3122       }else{
3123         // Store zero
3124         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3125         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3126         emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3127       }
3128     }
3129     type=STORED_STUB;
3130   }
3131   if(!using_tlb) {
3132     if(!c||memtarget) {
3133       #ifdef DESTRUCTIVE_SHIFT
3134       // The x86 shift operation is 'destructive'; it overwrites the
3135       // source register, so we need to make a copy first and use that.
3136       addr=temp;
3137       #endif
3138       #if defined(HOST_IMM8)
3139       int ir=get_reg(i_regs->regmap,INVCP);
3140       assert(ir>=0);
3141       emit_cmpmem_indexedsr12_reg(ir,addr,1);
3142       #else
3143       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3144       #endif
3145       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3146       emit_callne(invalidate_addr_reg[addr]);
3147       #else
3148       jaddr2=(int)out;
3149       emit_jne(0);
3150       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3151       #endif
3152     }
3153   }
3154   if(jaddr) {
3155     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3156   } else if(c&&!memtarget) {
3157     inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3158   }
3159   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3160   //if(opcode[i]==0x2B || opcode[i]==0x28)
3161   //if(opcode[i]==0x2B || opcode[i]==0x29)
3162   //if(opcode[i]==0x2B)
3163
3164 // Uncomment for extra debug output:
3165 /*
3166   if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3167   {
3168     #if NEW_DYNAREC == NEW_DYNAREC_X86
3169     emit_pusha();
3170     #endif
3171     #if NEW_DYNAREC == NEW_DYNAREC_ARM
3172     save_regs(0x100f);
3173     #endif
3174         emit_readword((int)&last_count,ECX);
3175         #if NEW_DYNAREC == NEW_DYNAREC_X86
3176         if(get_reg(i_regs->regmap,CCREG)<0)
3177           emit_loadreg(CCREG,HOST_CCREG);
3178         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3179         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3180         emit_writeword(HOST_CCREG,(int)&Count);
3181         #endif
3182         #if NEW_DYNAREC == NEW_DYNAREC_ARM
3183         if(get_reg(i_regs->regmap,CCREG)<0)
3184           emit_loadreg(CCREG,0);
3185         else
3186           emit_mov(HOST_CCREG,0);
3187         emit_add(0,ECX,0);
3188         emit_addimm(0,2*ccadj[i],0);
3189         emit_writeword(0,(int)&Count);
3190         #endif
3191     emit_call((int)memdebug);
3192     #if NEW_DYNAREC == NEW_DYNAREC_X86
3193     emit_popa();
3194     #endif
3195     #if NEW_DYNAREC == NEW_DYNAREC_ARM
3196     restore_regs(0x100f);
3197     #endif
3198   }
3199 */
3200 }
3201
3202 static void storelr_assemble(int i,struct regstat *i_regs)
3203 {
3204   int s,th,tl;
3205   int temp;
3206   int temp2;
3207   int offset;
3208   int jaddr=0,jaddr2;
3209   int case1,case2,case3;
3210   int done0,done1,done2;
3211   int memtarget,c=0;
3212   int agr=AGEN1+(i&1);
3213   u_int hr,reglist=0;
3214   th=get_reg(i_regs->regmap,rs2[i]|64);
3215   tl=get_reg(i_regs->regmap,rs2[i]);
3216   s=get_reg(i_regs->regmap,rs1[i]);
3217   temp=get_reg(i_regs->regmap,agr);
3218   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3219   offset=imm[i];
3220   if(s>=0) {
3221     c=(i_regs->isconst>>s)&1;
3222     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
3223     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3224   }
3225   assert(tl>=0);
3226   for(hr=0;hr<HOST_REGS;hr++) {
3227     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3228   }
3229   assert(temp>=0);
3230   if(!using_tlb) {
3231     if(!c) {
3232       emit_cmpimm(s<0||offset?temp:s,0x800000);
3233       if(!offset&&s!=temp) emit_mov(s,temp);
3234       jaddr=(int)out;
3235       emit_jno(0);
3236     }
3237     else
3238     {
3239       if(!memtarget||!rs1[i]) {
3240         jaddr=(int)out;
3241         emit_jmp(0);
3242       }
3243     }
3244     #ifdef RAM_OFFSET
3245     int map=get_reg(i_regs->regmap,ROREG);
3246     if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3247     gen_tlb_addr_w(temp,map);
3248     #else
3249     if((u_int)rdram!=0x80000000) 
3250       emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3251     #endif
3252   }else{ // using tlb
3253     int map=get_reg(i_regs->regmap,TLREG);
3254     int cache=get_reg(i_regs->regmap,MMREG);
3255     assert(map>=0);
3256     reglist&=~(1<<map);
3257     map=do_tlb_w(c||s<0||offset?temp:s,temp,map,cache,0,c,constmap[i][s]+offset);
3258     if(!c&&!offset&&s>=0) emit_mov(s,temp);
3259     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3260     if(!jaddr&&!memtarget) {
3261       jaddr=(int)out;
3262       emit_jmp(0);
3263     }
3264     gen_tlb_addr_w(temp,map);
3265   }
3266
3267   if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3268     temp2=get_reg(i_regs->regmap,FTEMP);
3269     if(!rs2[i]) temp2=th=tl;
3270   }
3271
3272   emit_testimm(temp,2);
3273   case2=(int)out;
3274   emit_jne(0);
3275   emit_testimm(temp,1);
3276   case1=(int)out;
3277   emit_jne(0);
3278   // 0
3279   if (opcode[i]==0x2A) { // SWL
3280     emit_writeword_indexed(tl,0,temp);
3281   }
3282   if (opcode[i]==0x2E) { // SWR
3283     emit_writebyte_indexed(tl,3,temp);
3284   }
3285   if (opcode[i]==0x2C) { // SDL
3286     emit_writeword_indexed(th,0,temp);
3287     if(rs2[i]) emit_mov(tl,temp2);
3288   }
3289   if (opcode[i]==0x2D) { // SDR
3290     emit_writebyte_indexed(tl,3,temp);
3291     if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3292   }
3293   done0=(int)out;
3294   emit_jmp(0);
3295   // 1
3296   set_jump_target(case1,(int)out);
3297   if (opcode[i]==0x2A) { // SWL
3298     // Write 3 msb into three least significant bytes
3299     if(rs2[i]) emit_rorimm(tl,8,tl);
3300     emit_writehword_indexed(tl,-1,temp);
3301     if(rs2[i]) emit_rorimm(tl,16,tl);
3302     emit_writebyte_indexed(tl,1,temp);
3303     if(rs2[i]) emit_rorimm(tl,8,tl);
3304   }
3305   if (opcode[i]==0x2E) { // SWR
3306     // Write two lsb into two most significant bytes
3307     emit_writehword_indexed(tl,1,temp);
3308   }
3309   if (opcode[i]==0x2C) { // SDL
3310     if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3311     // Write 3 msb into three least significant bytes
3312     if(rs2[i]) emit_rorimm(th,8,th);
3313     emit_writehword_indexed(th,-1,temp);
3314     if(rs2[i]) emit_rorimm(th,16,th);
3315     emit_writebyte_indexed(th,1,temp);
3316     if(rs2[i]) emit_rorimm(th,8,th);
3317   }
3318   if (opcode[i]==0x2D) { // SDR
3319     if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3320     // Write two lsb into two most significant bytes
3321     emit_writehword_indexed(tl,1,temp);
3322   }
3323   done1=(int)out;
3324   emit_jmp(0);
3325   // 2
3326   set_jump_target(case2,(int)out);
3327   emit_testimm(temp,1);
3328   case3=(int)out;
3329   emit_jne(0);
3330   if (opcode[i]==0x2A) { // SWL
3331     // Write two msb into two least significant bytes
3332     if(rs2[i]) emit_rorimm(tl,16,tl);
3333     emit_writehword_indexed(tl,-2,temp);
3334     if(rs2[i]) emit_rorimm(tl,16,tl);
3335   }
3336   if (opcode[i]==0x2E) { // SWR
3337     // Write 3 lsb into three most significant bytes
3338     emit_writebyte_indexed(tl,-1,temp);
3339     if(rs2[i]) emit_rorimm(tl,8,tl);
3340     emit_writehword_indexed(tl,0,temp);
3341     if(rs2[i]) emit_rorimm(tl,24,tl);
3342   }
3343   if (opcode[i]==0x2C) { // SDL
3344     if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3345     // Write two msb into two least significant bytes
3346     if(rs2[i]) emit_rorimm(th,16,th);
3347     emit_writehword_indexed(th,-2,temp);
3348     if(rs2[i]) emit_rorimm(th,16,th);
3349   }
3350   if (opcode[i]==0x2D) { // SDR
3351     if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3352     // Write 3 lsb into three most significant bytes
3353     emit_writebyte_indexed(tl,-1,temp);
3354     if(rs2[i]) emit_rorimm(tl,8,tl);
3355     emit_writehword_indexed(tl,0,temp);
3356     if(rs2[i]) emit_rorimm(tl,24,tl);
3357   }
3358   done2=(int)out;
3359   emit_jmp(0);
3360   // 3
3361   set_jump_target(case3,(int)out);
3362   if (opcode[i]==0x2A) { // SWL
3363     // Write msb into least significant byte
3364     if(rs2[i]) emit_rorimm(tl,24,tl);
3365     emit_writebyte_indexed(tl,-3,temp);
3366     if(rs2[i]) emit_rorimm(tl,8,tl);
3367   }
3368   if (opcode[i]==0x2E) { // SWR
3369     // Write entire word
3370     emit_writeword_indexed(tl,-3,temp);
3371   }
3372   if (opcode[i]==0x2C) { // SDL
3373     if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3374     // Write msb into least significant byte
3375     if(rs2[i]) emit_rorimm(th,24,th);
3376     emit_writebyte_indexed(th,-3,temp);
3377     if(rs2[i]) emit_rorimm(th,8,th);
3378   }
3379   if (opcode[i]==0x2D) { // SDR
3380     if(rs2[i]) emit_mov(th,temp2);
3381     // Write entire word
3382     emit_writeword_indexed(tl,-3,temp);
3383   }
3384   set_jump_target(done0,(int)out);
3385   set_jump_target(done1,(int)out);
3386   set_jump_target(done2,(int)out);
3387   if (opcode[i]==0x2C) { // SDL
3388     emit_testimm(temp,4);
3389     done0=(int)out;
3390     emit_jne(0);
3391     emit_andimm(temp,~3,temp);
3392     emit_writeword_indexed(temp2,4,temp);
3393     set_jump_target(done0,(int)out);
3394   }
3395   if (opcode[i]==0x2D) { // SDR
3396     emit_testimm(temp,4);
3397     done0=(int)out;
3398     emit_jeq(0);
3399     emit_andimm(temp,~3,temp);
3400     emit_writeword_indexed(temp2,-4,temp);
3401     set_jump_target(done0,(int)out);
3402   }
3403   if(!c||!memtarget)
3404     add_stub(STORELR_STUB,jaddr,(int)out,0,(int)i_regs,rs2[i],ccadj[i],reglist);
3405   if(!using_tlb) {
3406     #ifdef RAM_OFFSET
3407     int map=get_reg(i_regs->regmap,ROREG);
3408     if(map<0) map=HOST_TEMPREG;
3409     gen_orig_addr_w(temp,map);
3410     #else
3411     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3412     #endif
3413     #if defined(HOST_IMM8)
3414     int ir=get_reg(i_regs->regmap,INVCP);
3415     assert(ir>=0);
3416     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3417     #else
3418     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3419     #endif
3420     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3421     emit_callne(invalidate_addr_reg[temp]);
3422     #else
3423     jaddr2=(int)out;
3424     emit_jne(0);
3425     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3426     #endif
3427   }
3428   /*
3429     emit_pusha();
3430     //save_regs(0x100f);
3431         emit_readword((int)&last_count,ECX);
3432         if(get_reg(i_regs->regmap,CCREG)<0)
3433           emit_loadreg(CCREG,HOST_CCREG);
3434         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3435         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3436         emit_writeword(HOST_CCREG,(int)&Count);
3437     emit_call((int)memdebug);
3438     emit_popa();
3439     //restore_regs(0x100f);
3440   */
3441 }
3442
3443 static void c1ls_assemble(int i,struct regstat *i_regs)
3444 {
3445   int s,th,tl;
3446   int temp,ar;
3447   int map=-1;
3448   int offset;
3449   int c=0;
3450   int jaddr,jaddr2=0,jaddr3,type;
3451   int agr=AGEN1+(i&1);
3452   u_int hr,reglist=0;
3453   th=get_reg(i_regs->regmap,FTEMP|64);
3454   tl=get_reg(i_regs->regmap,FTEMP);
3455   s=get_reg(i_regs->regmap,rs1[i]);
3456   temp=get_reg(i_regs->regmap,agr);
3457   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3458   offset=imm[i];
3459   assert(tl>=0);
3460   assert(rs1[i]>0);
3461   assert(temp>=0);
3462   for(hr=0;hr<HOST_REGS;hr++) {
3463     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3464   }
3465   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3466   if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3467   {
3468     // Loads use a temporary register which we need to save
3469     reglist|=1<<temp;
3470   }
3471   if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3472     ar=temp;
3473   else // LWC1/LDC1
3474     ar=tl;
3475   //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3476   //else c=(i_regs->wasconst>>s)&1;
3477   if(s>=0) c=(i_regs->wasconst>>s)&1;
3478   // Check cop1 unusable
3479   if(!cop1_usable) {
3480     signed char rs=get_reg(i_regs->regmap,CSREG);
3481     assert(rs>=0);
3482     emit_testimm(rs,0x20000000);
3483     jaddr=(int)out;
3484     emit_jeq(0);
3485     add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3486     cop1_usable=1;
3487   }
3488   if (opcode[i]==0x39) { // SWC1 (get float address)
3489     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3490   }
3491   if (opcode[i]==0x3D) { // SDC1 (get double address)
3492     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3493   }
3494   // Generate address + offset
3495   if(!using_tlb) {
3496     #ifdef RAM_OFFSET
3497     if (!c||opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3498     {
3499       map=get_reg(i_regs->regmap,ROREG);
3500       if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3501     }
3502     #endif
3503     if(!c) 
3504       emit_cmpimm(offset||c||s<0?ar:s,0x800000);
3505   }
3506   else
3507   {
3508     map=get_reg(i_regs->regmap,TLREG);
3509     int cache=get_reg(i_regs->regmap,MMREG);
3510     assert(map>=0);
3511     reglist&=~(1<<map);
3512     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3513       map=do_tlb_r(offset||c||s<0?ar:s,ar,map,cache,0,-1,-1,c,constmap[i][s]+offset);
3514     }
3515     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3516       map=do_tlb_w(offset||c||s<0?ar:s,ar,map,cache,0,c,constmap[i][s]+offset);
3517     }
3518   }
3519   if (opcode[i]==0x39) { // SWC1 (read float)
3520     emit_readword_indexed(0,tl,tl);
3521   }
3522   if (opcode[i]==0x3D) { // SDC1 (read double)
3523     emit_readword_indexed(4,tl,th);
3524     emit_readword_indexed(0,tl,tl);
3525   }
3526   if (opcode[i]==0x31) { // LWC1 (get target address)
3527     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3528   }
3529   if (opcode[i]==0x35) { // LDC1 (get target address)
3530     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3531   }
3532   if(!using_tlb) {
3533     if(!c) {
3534       jaddr2=(int)out;
3535       emit_jno(0);
3536     }
3537     else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80800000) {
3538       jaddr2=(int)out;
3539       emit_jmp(0); // inline_readstub/inline_writestub?  Very rare case
3540     }
3541     #ifdef DESTRUCTIVE_SHIFT
3542     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3543       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3544     }
3545     #endif
3546   }else{
3547     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3548       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3549     }
3550     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3551       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3552     }
3553   }
3554   if (opcode[i]==0x31) { // LWC1
3555     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3556     //gen_tlb_addr_r(ar,map);
3557     //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3558     #ifdef HOST_IMM_ADDR32
3559     if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3560     else
3561     #endif
3562     emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3563     type=LOADW_STUB;
3564   }
3565   if (opcode[i]==0x35) { // LDC1
3566     assert(th>=0);
3567     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3568     //gen_tlb_addr_r(ar,map);
3569     //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3570     //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3571     #ifdef HOST_IMM_ADDR32
3572     if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3573     else
3574     #endif
3575     emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3576     type=LOADD_STUB;
3577   }
3578   if (opcode[i]==0x39) { // SWC1
3579     //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3580     emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3581     type=STOREW_STUB;
3582   }
3583   if (opcode[i]==0x3D) { // SDC1
3584     assert(th>=0);
3585     //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3586     //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3587     emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3588     type=STORED_STUB;
3589   }
3590   if(!using_tlb) {
3591     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3592       #ifndef DESTRUCTIVE_SHIFT
3593       temp=offset||c||s<0?ar:s;
3594       #endif
3595       #if defined(HOST_IMM8)
3596       int ir=get_reg(i_regs->regmap,INVCP);
3597       assert(ir>=0);
3598       emit_cmpmem_indexedsr12_reg(ir,temp,1);
3599       #else
3600       emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3601       #endif
3602       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3603       emit_callne(invalidate_addr_reg[temp]);
3604       #else
3605       jaddr3=(int)out;
3606       emit_jne(0);
3607       add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3608       #endif
3609     }
3610   }
3611   if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3612   if (opcode[i]==0x31) { // LWC1 (write float)
3613     emit_writeword_indexed(tl,0,temp);
3614   }
3615   if (opcode[i]==0x35) { // LDC1 (write double)
3616     emit_writeword_indexed(th,4,temp);
3617     emit_writeword_indexed(tl,0,temp);
3618   }
3619   //if(opcode[i]==0x39)
3620   /*if(opcode[i]==0x39||opcode[i]==0x31)
3621   {
3622     emit_pusha();
3623         emit_readword((int)&last_count,ECX);
3624         if(get_reg(i_regs->regmap,CCREG)<0)
3625           emit_loadreg(CCREG,HOST_CCREG);
3626         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3627         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3628         emit_writeword(HOST_CCREG,(int)&Count);
3629     emit_call((int)memdebug);
3630     emit_popa();
3631   }*/
3632 }
3633
3634 #ifndef multdiv_assemble
3635 void multdiv_assemble(int i,struct regstat *i_regs)
3636 {
3637   DebugMessage(M64MSG_ERROR, "Need multdiv_assemble for this architecture.");
3638   exit(1);
3639 }
3640 #endif
3641
3642 static void mov_assemble(int i,struct regstat *i_regs)
3643 {
3644   //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3645   //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3646   if(rt1[i]) {
3647     signed char sh,sl,th,tl;
3648     th=get_reg(i_regs->regmap,rt1[i]|64);
3649     tl=get_reg(i_regs->regmap,rt1[i]);
3650     //assert(tl>=0);
3651     if(tl>=0) {
3652       sh=get_reg(i_regs->regmap,rs1[i]|64);
3653       sl=get_reg(i_regs->regmap,rs1[i]);
3654       if(sl>=0) emit_mov(sl,tl);
3655       else emit_loadreg(rs1[i],tl);
3656       if(th>=0) {
3657         if(sh>=0) emit_mov(sh,th);
3658         else emit_loadreg(rs1[i]|64,th);
3659       }
3660     }
3661   }
3662 }
3663
3664 #ifndef fconv_assemble
3665 void fconv_assemble(int i,struct regstat *i_regs)
3666 {
3667   DebugMessage(M64MSG_ERROR, "Need fconv_assemble for this architecture.");
3668   exit(1);
3669 }
3670 #endif
3671
3672 #if 0
3673 static void float_assemble(int i,struct regstat *i_regs)
3674 {
3675   DebugMessage(M64MSG_ERROR, "Need float_assemble for this architecture.");
3676   exit(1);
3677 }
3678 #endif
3679
3680 static void syscall_assemble(int i,struct regstat *i_regs)
3681 {
3682   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3683   assert(ccreg==HOST_CCREG);
3684   assert(!is_delayslot);
3685   emit_movimm(start+i*4,EAX); // Get PC
3686   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right?  There should probably be an extra cycle...
3687   emit_jmp((int)jump_syscall);
3688 }
3689
3690 static void ds_assemble(int i,struct regstat *i_regs)
3691 {
3692   is_delayslot=1;
3693   switch(itype[i]) {
3694     case ALU:
3695       alu_assemble(i,i_regs);break;
3696     case IMM16:
3697       imm16_assemble(i,i_regs);break;
3698     case SHIFT:
3699       shift_assemble(i,i_regs);break;
3700     case SHIFTIMM:
3701       shiftimm_assemble(i,i_regs);break;
3702     case LOAD:
3703       load_assemble(i,i_regs);break;
3704     case LOADLR:
3705       loadlr_assemble(i,i_regs);break;
3706     case STORE:
3707       store_assemble(i,i_regs);break;
3708     case STORELR:
3709       storelr_assemble(i,i_regs);break;
3710     case COP0:
3711       cop0_assemble(i,i_regs);break;
3712     case COP1:
3713       cop1_assemble(i,i_regs);break;
3714     case C1LS:
3715       c1ls_assemble(i,i_regs);break;
3716     case FCONV:
3717       fconv_assemble(i,i_regs);break;
3718     case FLOAT:
3719       float_assemble(i,i_regs);break;
3720     case FCOMP:
3721       fcomp_assemble(i,i_regs);break;
3722     case MULTDIV:
3723       multdiv_assemble(i,i_regs);break;
3724     case MOV:
3725       mov_assemble(i,i_regs);break;
3726     case SYSCALL:
3727     case SPAN:
3728     case UJUMP:
3729     case RJUMP:
3730     case CJUMP:
3731     case SJUMP:
3732     case FJUMP:
3733       DebugMessage(M64MSG_VERBOSE, "Jump in the delay slot.  This is probably a bug.");
3734   }
3735   is_delayslot=0;
3736 }
3737
3738 // Is the branch target a valid internal jump?
3739 static int internal_branch(uint64_t i_is32,int addr)
3740 {
3741   if(addr&1) return 0; // Indirect (register) jump
3742   if(addr>=start && addr<start+slen*4-4)
3743   {
3744     int t=(addr-start)>>2;
3745     // Delay slots are not valid branch targets
3746     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3747     // 64 -> 32 bit transition requires a recompile
3748     /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3749     {
3750       if(requires_32bit[t]&~i_is32) DebugMessage(M64MSG_VERBOSE, "optimizable: no");
3751       else DebugMessage(M64MSG_VERBOSE, "optimizable: yes");
3752     }*/
3753     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3754     if(requires_32bit[t]&~i_is32) return 0;
3755     else return 1;
3756   }
3757   return 0;
3758 }
3759
3760 #ifndef wb_invalidate
3761 static void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3762   uint64_t u,uint64_t uu)
3763 {
3764   int hr;
3765   for(hr=0;hr<HOST_REGS;hr++) {
3766     if(hr!=EXCLUDE_REG) {
3767       if(pre[hr]!=entry[hr]) {
3768         if(pre[hr]>=0) {
3769           if((dirty>>hr)&1) {
3770             if(get_reg(entry,pre[hr])<0) {
3771               if(pre[hr]<64) {
3772                 if(!((u>>pre[hr])&1)) {
3773                   emit_storereg(pre[hr],hr);
3774                   if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3775                     emit_sarimm(hr,31,hr);
3776                     emit_storereg(pre[hr]|64,hr);
3777                   }
3778                 }
3779               }else{
3780                 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3781                   emit_storereg(pre[hr],hr);
3782                 }
3783               }
3784             }
3785           }
3786         }
3787       }
3788     }
3789   }
3790   // Move from one register to another (no writeback)
3791   for(hr=0;hr<HOST_REGS;hr++) {
3792     if(hr!=EXCLUDE_REG) {
3793       if(pre[hr]!=entry[hr]) {
3794         if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3795           int nr;
3796           if((nr=get_reg(entry,pre[hr]))>=0) {
3797             emit_mov(hr,nr);
3798           }
3799         }
3800       }
3801     }
3802   }
3803 }
3804 #endif
3805
3806 // Load the specified registers
3807 // This only loads the registers given as arguments because
3808 // we don't want to load things that will be overwritten
3809 static void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3810 {
3811   int hr;
3812   // Load 32-bit regs
3813   for(hr=0;hr<HOST_REGS;hr++) {
3814     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3815       if(entry[hr]!=regmap[hr]) {
3816         if(regmap[hr]==rs1||regmap[hr]==rs2)
3817         {
3818           if(regmap[hr]==0) {
3819             emit_zeroreg(hr);
3820           }
3821           else
3822           {
3823             emit_loadreg(regmap[hr],hr);
3824           }
3825         }
3826       }
3827     }
3828   }
3829   //Load 64-bit regs
3830   for(hr=0;hr<HOST_REGS;hr++) {
3831     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3832       if(entry[hr]!=regmap[hr]) {
3833         if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3834         {
3835           assert(regmap[hr]!=64);
3836           if((is32>>(regmap[hr]&63))&1) {
3837             int lr=get_reg(regmap,regmap[hr]-64);
3838             if(lr>=0)
3839               emit_sarimm(lr,31,hr);
3840             else
3841               emit_loadreg(regmap[hr],hr);
3842           }
3843           else
3844           {
3845             emit_loadreg(regmap[hr],hr);
3846           }
3847         }
3848       }
3849     }
3850   }
3851 }
3852
3853 // Load registers prior to the start of a loop
3854 // so that they are not loaded within the loop
3855 static void loop_preload(signed char pre[],signed char entry[])
3856 {
3857   int hr;
3858   for(hr=0;hr<HOST_REGS;hr++) {
3859     if(hr!=EXCLUDE_REG) {
3860       if(pre[hr]!=entry[hr]) {
3861         if(entry[hr]>=0) {
3862           if(get_reg(pre,entry[hr])<0) {
3863             assem_debug("loop preload:");
3864             //DebugMessage(M64MSG_VERBOSE, "loop preload: %d",hr);
3865             if(entry[hr]==0) {
3866               emit_zeroreg(hr);
3867             }
3868             else if(entry[hr]<TEMPREG)
3869             {
3870               emit_loadreg(entry[hr],hr);
3871             }
3872             else if(entry[hr]-64<TEMPREG)
3873             {
3874               emit_loadreg(entry[hr],hr);
3875             }
3876           }
3877         }
3878       }
3879     }
3880   }
3881 }
3882
3883 // Generate address for load/store instruction
3884 static void address_generation(int i,struct regstat *i_regs,signed char entry[])
3885 {
3886   if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
3887     int ra;
3888     int agr=AGEN1+(i&1);
3889     int mgr=MGEN1+(i&1);
3890     if(itype[i]==LOAD) {
3891       ra=get_reg(i_regs->regmap,rt1[i]);
3892       if(ra<0) ra=get_reg(i_regs->regmap,-1);
3893       assert(ra>=0);
3894     }
3895     if(itype[i]==LOADLR) {
3896       ra=get_reg(i_regs->regmap,FTEMP);
3897     }
3898     if(itype[i]==STORE||itype[i]==STORELR) {
3899       ra=get_reg(i_regs->regmap,agr);
3900       if(ra<0) ra=get_reg(i_regs->regmap,-1);
3901     }
3902     if(itype[i]==C1LS) {
3903       if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3904         ra=get_reg(i_regs->regmap,FTEMP);
3905       else { // SWC1/SDC1
3906         ra=get_reg(i_regs->regmap,agr);
3907         if(ra<0) ra=get_reg(i_regs->regmap,-1);
3908       }
3909     }
3910     int rs=get_reg(i_regs->regmap,rs1[i]);
3911     int rm=get_reg(i_regs->regmap,TLREG);
3912     if(ra>=0) {
3913       int offset=imm[i];
3914       int c=(i_regs->wasconst>>rs)&1;
3915       if(rs1[i]==0) {
3916         // Using r0 as a base address
3917         /*if(rm>=0) {
3918           if(!entry||entry[rm]!=mgr) {
3919             generate_map_const(offset,rm);
3920           } // else did it in the previous cycle
3921         }*/
3922         if(!entry||entry[ra]!=agr) {
3923           if (opcode[i]==0x22||opcode[i]==0x26) {
3924             emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3925           }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3926             emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3927           }else{
3928             emit_movimm(offset,ra);
3929           }
3930         } // else did it in the previous cycle
3931       }
3932       else if(rs<0) {
3933         if(!entry||entry[ra]!=rs1[i])
3934           emit_loadreg(rs1[i],ra);
3935         //if(!entry||entry[ra]!=rs1[i])
3936         //  DebugMessage(M64MSG_VERBOSE, "poor load scheduling!");
3937       }
3938       else if(c) {
3939         if(rm>=0) {
3940           if(!entry||entry[rm]!=mgr) {
3941             if(itype[i]==STORE||itype[i]==STORELR||opcode[i]==0x39||opcode[i]==0x3D) {
3942               // Stores to memory go thru the mapper to detect self-modifying
3943               // code, loads don't.
3944               if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
3945                  (unsigned int)(constmap[i][rs]+offset)<0x80800000 )
3946                 generate_map_const(constmap[i][rs]+offset,rm);
3947             }else{
3948               if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
3949                 generate_map_const(constmap[i][rs]+offset,rm);
3950             }
3951           }
3952         }
3953         if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
3954           if(!entry||entry[ra]!=agr) {
3955             if (opcode[i]==0x22||opcode[i]==0x26) { // LWL/LWR
3956               #ifdef RAM_OFFSET
3957               if((signed int)constmap[i][rs]+offset<(signed int)0x80800000) 
3958                 emit_movimm(((constmap[i][rs]+offset)&0xFFFFFFFC)+(int)rdram-0x80000000,ra);
3959               else
3960               #endif
3961               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra);
3962             }else if (opcode[i]==0x1a||opcode[i]==0x1b) { // LDL/LDR
3963               #ifdef RAM_OFFSET
3964               if((signed int)constmap[i][rs]+offset<(signed int)0x80800000) 
3965                 emit_movimm(((constmap[i][rs]+offset)&0xFFFFFFF8)+(int)rdram-0x80000000,ra);
3966               else
3967               #endif
3968               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra);
3969             }else{
3970               #ifdef HOST_IMM_ADDR32
3971               if((itype[i]!=LOAD&&opcode[i]!=0x31&&opcode[i]!=0x35) ||
3972                  (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
3973               #endif
3974               #ifdef RAM_OFFSET
3975               if((itype[i]==LOAD||opcode[i]==0x31||opcode[i]==0x35)&&(signed int)constmap[i][rs]+offset<(signed int)0x80800000) 
3976                 emit_movimm(constmap[i][rs]+offset+(int)rdram-0x80000000,ra);
3977               else
3978               #endif
3979               emit_movimm(constmap[i][rs]+offset,ra);
3980             }
3981           } // else did it in the previous cycle
3982         } // else load_consts already did it
3983       }
3984       if(offset&&!c&&rs1[i]) {
3985         if(rs>=0) {
3986           emit_addimm(rs,offset,ra);
3987         }else{
3988           emit_addimm(ra,offset,ra);
3989         }
3990       }
3991     }
3992   }
3993   // Preload constants for next instruction
3994   if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS) {
3995     int agr,ra;
3996     #ifndef HOST_IMM_ADDR32
3997     // Mapper entry
3998     agr=MGEN1+((i+1)&1);
3999     ra=get_reg(i_regs->regmap,agr);
4000     if(ra>=0) {
4001       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4002       int offset=imm[i+1];
4003       int c=(regs[i+1].wasconst>>rs)&1;
4004       if(c) {
4005         if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) {
4006           // Stores to memory go thru the mapper to detect self-modifying
4007           // code, loads don't.
4008           if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4009              (unsigned int)(constmap[i+1][rs]+offset)<0x80800000 )
4010             generate_map_const(constmap[i+1][rs]+offset,ra);
4011         }else{
4012           if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4013             generate_map_const(constmap[i+1][rs]+offset,ra);
4014         }
4015       }
4016       /*else if(rs1[i]==0) {
4017         generate_map_const(offset,ra);
4018       }*/
4019     }
4020     #endif
4021     // Actual address
4022     agr=AGEN1+((i+1)&1);
4023     ra=get_reg(i_regs->regmap,agr);
4024     if(ra>=0) {
4025       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4026       int offset=imm[i+1];
4027       int c=(regs[i+1].wasconst>>rs)&1;
4028       if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4029         if (opcode[i+1]==0x22||opcode[i+1]==0x26) { // LWL/LWR
4030           #ifdef RAM_OFFSET
4031           if((signed int)constmap[i+1][rs]+offset<(signed int)0x80800000) 
4032             emit_movimm(((constmap[i+1][rs]+offset)&0xFFFFFFFC)+(int)rdram-0x80000000,ra);
4033           else
4034           #endif
4035           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra);
4036         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) { // LDL/LDR
4037           #ifdef RAM_OFFSET
4038           if((signed int)constmap[i+1][rs]+offset<(signed int)0x80800000) 
4039             emit_movimm(((constmap[i+1][rs]+offset)&0xFFFFFFF8)+(int)rdram-0x80000000,ra);
4040           else
4041           #endif
4042           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra);
4043         }else{
4044           #ifdef HOST_IMM_ADDR32
4045           if((itype[i+1]!=LOAD&&opcode[i+1]!=0x31&&opcode[i+1]!=0x35) ||
4046              (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4047           #endif
4048           #ifdef RAM_OFFSET
4049           if((itype[i+1]==LOAD||opcode[i+1]==0x31||opcode[i+1]==0x35)&&(signed int)constmap[i+1][rs]+offset<(signed int)0x80800000) 
4050             emit_movimm(constmap[i+1][rs]+offset+(int)rdram-0x80000000,ra);
4051           else
4052           #endif
4053           emit_movimm(constmap[i+1][rs]+offset,ra);
4054         }
4055       }
4056       else if(rs1[i+1]==0) {
4057         // Using r0 as a base address
4058         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4059           emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4060         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4061           emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4062         }else{
4063           emit_movimm(offset,ra);
4064         }
4065       }
4066     }
4067   }
4068 }
4069
4070 static int get_final_value(int hr, int i, int *value)
4071 {
4072   int reg=regs[i].regmap[hr];
4073   while(i<slen-1) {
4074     if(regs[i+1].regmap[hr]!=reg) break;
4075     if(!((regs[i+1].isconst>>hr)&1)) break;
4076     if(bt[i+1]) break;
4077     i++;
4078   }
4079   if(i<slen-1) {
4080     if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4081       *value=constmap[i][hr];
4082       return 1;
4083     }
4084     if(!bt[i+1]) {
4085       if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4086         // Load in delay slot, out-of-order execution
4087         if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4088         {
4089           #ifdef HOST_IMM_ADDR32
4090           if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4091           #endif
4092           #ifdef RAM_OFFSET
4093           if((signed int)constmap[i][hr]+imm[i+2]<(signed int)0x80800000)
4094             *value=constmap[i][hr]+imm[i+2]+(int)rdram-0x80000000;
4095           else
4096           #endif
4097           // Precompute load address
4098           *value=constmap[i][hr]+imm[i+2];
4099           return 1;
4100         }
4101       }
4102       if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4103       {
4104         #ifdef HOST_IMM_ADDR32
4105         if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4106         #endif
4107         #ifdef RAM_OFFSET
4108         if((signed int)constmap[i][hr]+imm[i+1]<(signed int)0x80800000)
4109           *value=constmap[i][hr]+imm[i+1]+(int)rdram-0x80000000;
4110         else
4111         #endif
4112         // Precompute load address
4113         *value=constmap[i][hr]+imm[i+1];
4114         //DebugMessage(M64MSG_VERBOSE, "c=%x imm=%x",(int)constmap[i][hr],imm[i+1]);
4115         return 1;
4116       }
4117     }
4118   }
4119   *value=constmap[i][hr];
4120   //DebugMessage(M64MSG_VERBOSE, "c=%x",(int)constmap[i][hr]);
4121   if(i==slen-1) return 1;
4122   if(reg<64) {
4123     return !((unneeded_reg[i+1]>>reg)&1);
4124   }else{
4125     return !((unneeded_reg_upper[i+1]>>reg)&1);
4126   }
4127 }
4128
4129 // Load registers with known constants
4130 static void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4131 {
4132   int hr;
4133   // Load 32-bit regs
4134   for(hr=0;hr<HOST_REGS;hr++) {
4135     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4136       //if(entry[hr]!=regmap[hr]) {
4137       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4138         if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4139           int value;
4140           if(get_final_value(hr,i,&value)) {
4141             if(value==0) {
4142               emit_zeroreg(hr);
4143             }
4144             else {
4145               emit_movimm(value,hr);
4146             }
4147           }
4148         }
4149       }
4150     }
4151   }
4152   // Load 64-bit regs
4153   for(hr=0;hr<HOST_REGS;hr++) {
4154     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4155       //if(entry[hr]!=regmap[hr]) {
4156       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4157         if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4158           if((is32>>(regmap[hr]&63))&1) {
4159             int lr=get_reg(regmap,regmap[hr]-64);
4160             assert(lr>=0);
4161             emit_sarimm(lr,31,hr);
4162           }
4163           else
4164           {
4165             int value;
4166             if(get_final_value(hr,i,&value)) {
4167               if(value==0) {
4168                 emit_zeroreg(hr);
4169               }
4170               else {
4171                 emit_movimm(value,hr);
4172               }
4173             }
4174           }
4175         }
4176       }
4177     }
4178   }
4179 }
4180 static void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4181 {
4182   int hr;
4183   // Load 32-bit regs
4184   for(hr=0;hr<HOST_REGS;hr++) {
4185     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4186       if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4187         int value=constmap[i][hr];
4188         if(value==0) {
4189           emit_zeroreg(hr);
4190         }
4191         else {
4192           emit_movimm(value,hr);
4193         }
4194       }
4195     }
4196   }
4197   // Load 64-bit regs
4198   for(hr=0;hr<HOST_REGS;hr++) {
4199     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4200       if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4201         if((is32>>(regmap[hr]&63))&1) {
4202           int lr=get_reg(regmap,regmap[hr]-64);
4203           assert(lr>=0);
4204           emit_sarimm(lr,31,hr);
4205         }
4206         else
4207         {
4208           int value=constmap[i][hr];
4209           if(value==0) {
4210             emit_zeroreg(hr);
4211           }
4212           else {
4213             emit_movimm(value,hr);
4214           }
4215         }
4216       }
4217     }
4218   }
4219 }
4220
4221 // Write out all dirty registers (except cycle count)
4222 static void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4223 {
4224   int hr;
4225   for(hr=0;hr<HOST_REGS;hr++) {
4226     if(hr!=EXCLUDE_REG) {
4227       if(i_regmap[hr]>0) {
4228         if(i_regmap[hr]!=CCREG) {
4229           if((i_dirty>>hr)&1) {
4230             if(i_regmap[hr]<64) {
4231               emit_storereg(i_regmap[hr],hr);
4232               if( ((i_is32>>i_regmap[hr])&1) ) {
4233                 #ifdef DESTRUCTIVE_WRITEBACK
4234                 emit_sarimm(hr,31,hr);
4235                 emit_storereg(i_regmap[hr]|64,hr);
4236                 #else
4237                 emit_sarimm(hr,31,HOST_TEMPREG);
4238                 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4239                 #endif
4240               }
4241             }else{
4242               if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4243                 emit_storereg(i_regmap[hr],hr);
4244               }
4245             }
4246           }
4247         }
4248       }
4249     }
4250   }
4251 }
4252 // Write out dirty registers that we need to reload (pair with load_needed_regs)
4253 // This writes the registers not written by store_regs_bt
4254 static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4255 {
4256   int hr;
4257   int t=(addr-start)>>2;
4258   for(hr=0;hr<HOST_REGS;hr++) {
4259     if(hr!=EXCLUDE_REG) {
4260       if(i_regmap[hr]>0) {
4261         if(i_regmap[hr]!=CCREG) {
4262           if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4263             if((i_dirty>>hr)&1) {
4264               if(i_regmap[hr]<64) {
4265                 emit_storereg(i_regmap[hr],hr);
4266                 if( ((i_is32>>i_regmap[hr])&1) ) {
4267                   #ifdef DESTRUCTIVE_WRITEBACK
4268                   emit_sarimm(hr,31,hr);
4269                   emit_storereg(i_regmap[hr]|64,hr);
4270                   #else
4271                   emit_sarimm(hr,31,HOST_TEMPREG);
4272                   emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4273                   #endif
4274                 }
4275               }else{
4276                 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4277                   emit_storereg(i_regmap[hr],hr);
4278                 }
4279               }
4280             }
4281           }
4282         }
4283       }
4284     }
4285   }
4286 }
4287
4288 // Load all registers (except cycle count)
4289 static void load_all_regs(signed char i_regmap[])
4290 {
4291   int hr;
4292   for(hr=0;hr<HOST_REGS;hr++) {
4293     if(hr!=EXCLUDE_REG) {
4294       if(i_regmap[hr]==0) {
4295         emit_zeroreg(hr);
4296       }
4297       else
4298       if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4299       {
4300         emit_loadreg(i_regmap[hr],hr);
4301       }
4302     }
4303   }
4304 }
4305
4306 // Load all current registers also needed by next instruction
4307 static void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4308 {
4309   int hr;
4310   for(hr=0;hr<HOST_REGS;hr++) {
4311     if(hr!=EXCLUDE_REG) {
4312       if(get_reg(next_regmap,i_regmap[hr])>=0) {
4313         if(i_regmap[hr]==0) {
4314           emit_zeroreg(hr);
4315         }
4316         else
4317         if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4318         {
4319           emit_loadreg(i_regmap[hr],hr);
4320         }
4321       }
4322     }
4323   }
4324 }
4325
4326 // Load all regs, storing cycle count if necessary
4327 static void load_regs_entry(int t)
4328 {
4329   int hr;
4330   if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4331   else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4332   if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4333     emit_storereg(CCREG,HOST_CCREG);
4334   }
4335   // Load 32-bit regs
4336   for(hr=0;hr<HOST_REGS;hr++) {
4337     if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4338       if(regs[t].regmap_entry[hr]==0) {
4339         emit_zeroreg(hr);
4340       }
4341       else if(regs[t].regmap_entry[hr]!=CCREG)
4342       {
4343         emit_loadreg(regs[t].regmap_entry[hr],hr);
4344       }
4345     }
4346   }
4347   // Load 64-bit regs
4348   for(hr=0;hr<HOST_REGS;hr++) {
4349     if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4350       assert(regs[t].regmap_entry[hr]!=64);
4351       if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4352         int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4353         if(lr<0) {
4354           emit_loadreg(regs[t].regmap_entry[hr],hr);
4355         }
4356         else
4357         {
4358           emit_sarimm(lr,31,hr);
4359         }
4360       }
4361       else
4362       {
4363         emit_loadreg(regs[t].regmap_entry[hr],hr);
4364       }
4365     }
4366   }
4367 }
4368
4369 // Store dirty registers prior to branch
4370 static void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4371 {
4372   if(internal_branch(i_is32,addr))
4373   {
4374     int t=(addr-start)>>2;
4375     int hr;
4376     for(hr=0;hr<HOST_REGS;hr++) {
4377       if(hr!=EXCLUDE_REG) {
4378         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4379           if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4380             if((i_dirty>>hr)&1) {
4381               if(i_regmap[hr]<64) {
4382                 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4383                   emit_storereg(i_regmap[hr],hr);
4384                   if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4385                     #ifdef DESTRUCTIVE_WRITEBACK
4386                     emit_sarimm(hr,31,hr);
4387                     emit_storereg(i_regmap[hr]|64,hr);
4388                     #else
4389                     emit_sarimm(hr,31,HOST_TEMPREG);
4390                     emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4391                     #endif
4392                   }
4393                 }
4394               }else{
4395                 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4396                   emit_storereg(i_regmap[hr],hr);
4397                 }
4398               }
4399             }
4400           }
4401         }
4402       }
4403     }
4404   }
4405   else
4406   {
4407     // Branch out of this block, write out all dirty regs
4408     wb_dirtys(i_regmap,i_is32,i_dirty);
4409   }
4410 }
4411
4412 // Load all needed registers for branch target
4413 static void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4414 {
4415   //if(addr>=start && addr<(start+slen*4))
4416   if(internal_branch(i_is32,addr))
4417   {
4418     int t=(addr-start)>>2;
4419     int hr;
4420     // Store the cycle count before loading something else
4421     if(i_regmap[HOST_CCREG]!=CCREG) {
4422       assert(i_regmap[HOST_CCREG]==-1);
4423     }
4424     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4425       emit_storereg(CCREG,HOST_CCREG);
4426     }
4427     // Load 32-bit regs
4428     for(hr=0;hr<HOST_REGS;hr++) {
4429       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4430         #ifdef DESTRUCTIVE_WRITEBACK
4431         if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4432         #else
4433         if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4434         #endif
4435           if(regs[t].regmap_entry[hr]==0) {
4436             emit_zeroreg(hr);
4437           }
4438           else if(regs[t].regmap_entry[hr]!=CCREG)
4439           {
4440             emit_loadreg(regs[t].regmap_entry[hr],hr);
4441           }
4442         }
4443       }
4444     }
4445     //Load 64-bit regs
4446     for(hr=0;hr<HOST_REGS;hr++) {
4447       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4448         if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4449           assert(regs[t].regmap_entry[hr]!=64);
4450           if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4451             int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4452             if(lr<0) {
4453               emit_loadreg(regs[t].regmap_entry[hr],hr);
4454             }
4455             else
4456             {
4457               emit_sarimm(lr,31,hr);
4458             }
4459           }
4460           else
4461           {
4462             emit_loadreg(regs[t].regmap_entry[hr],hr);
4463           }
4464         }
4465         else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4466           int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4467           assert(lr>=0);
4468           emit_sarimm(lr,31,hr);
4469         }
4470       }
4471     }
4472   }
4473 }
4474
4475 static int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4476 {
4477   if(addr>=start && addr<start+slen*4-4)
4478   {
4479     int t=(addr-start)>>2;
4480     int hr;
4481     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4482     for(hr=0;hr<HOST_REGS;hr++)
4483     {
4484       if(hr!=EXCLUDE_REG)
4485       {
4486         if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4487         {
4488           if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4489           {
4490             return 0;
4491           }
4492           else 
4493           if((i_dirty>>hr)&1)
4494           {
4495             if(i_regmap[hr]<TEMPREG)
4496             {
4497               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4498                 return 0;
4499             }
4500             else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4501             {
4502               if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4503                 return 0;
4504             }
4505           }
4506         }
4507         else // Same register but is it 32-bit or dirty?
4508         if(i_regmap[hr]>=0)
4509         {
4510           if(!((regs[t].dirty>>hr)&1))
4511           {
4512             if((i_dirty>>hr)&1)
4513             {
4514               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4515               {
4516                 //DebugMessage(M64MSG_VERBOSE, "%x: dirty no match",addr);
4517                 return 0;
4518               }
4519             }
4520           }
4521           if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4522           {
4523             //DebugMessage(M64MSG_VERBOSE, "%x: is32 no match",addr);
4524             return 0;
4525           }
4526         }
4527       }
4528     }
4529     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4530     if(requires_32bit[t]&~i_is32) return 0;
4531     // Delay slots are not valid branch targets
4532     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4533     // Delay slots require additional processing, so do not match
4534     if(is_ds[t]) return 0;
4535   }
4536   else
4537   {
4538     int hr;
4539     for(hr=0;hr<HOST_REGS;hr++)
4540     {
4541       if(hr!=EXCLUDE_REG)
4542       {
4543         if(i_regmap[hr]>=0)
4544         {
4545           if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4546           {
4547             if((i_dirty>>hr)&1)
4548             {
4549               return 0;
4550             }
4551           }
4552         }
4553       }
4554     }
4555   }
4556   return 1;
4557 }
4558
4559 // Used when a branch jumps into the delay slot of another branch
4560 static void ds_assemble_entry(int i)
4561 {
4562   int t=(ba[i]-start)>>2;
4563   if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4564   assem_debug("Assemble delay slot at %x",ba[i]);
4565   assem_debug("<->");
4566   if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4567     wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4568   load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4569   address_generation(t,&regs[t],regs[t].regmap_entry);
4570   if(itype[t]==LOAD||itype[t]==LOADLR||itype[t]==STORE||itype[t]==STORELR||itype[t]==C1LS)
4571     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,MMREG,ROREG);
4572   if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39)
4573     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4574   cop1_usable=0;
4575   is_delayslot=0;
4576   switch(itype[t]) {
4577     case ALU:
4578       alu_assemble(t,&regs[t]);break;
4579     case IMM16:
4580       imm16_assemble(t,&regs[t]);break;
4581     case SHIFT:
4582       shift_assemble(t,&regs[t]);break;
4583     case SHIFTIMM:
4584       shiftimm_assemble(t,&regs[t]);break;
4585     case LOAD:
4586       load_assemble(t,&regs[t]);break;
4587     case LOADLR:
4588       loadlr_assemble(t,&regs[t]);break;
4589     case STORE:
4590       store_assemble(t,&regs[t]);break;
4591     case STORELR:
4592       storelr_assemble(t,&regs[t]);break;
4593     case COP0:
4594       cop0_assemble(t,&regs[t]);break;
4595     case COP1:
4596       cop1_assemble(t,&regs[t]);break;
4597     case C1LS:
4598       c1ls_assemble(t,&regs[t]);break;
4599     case FCONV:
4600       fconv_assemble(t,&regs[t]);break;
4601     case FLOAT:
4602       float_assemble(t,&regs[t]);break;
4603     case FCOMP:
4604       fcomp_assemble(t,&regs[t]);break;
4605     case MULTDIV:
4606       multdiv_assemble(t,&regs[t]);break;
4607     case MOV:
4608       mov_assemble(t,&regs[t]);break;
4609     case SYSCALL:
4610     case SPAN:
4611     case UJUMP:
4612     case RJUMP:
4613     case CJUMP:
4614     case SJUMP:
4615     case FJUMP:
4616       DebugMessage(M64MSG_VERBOSE, "Jump in the delay slot.  This is probably a bug.");
4617   }
4618   store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4619   load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4620   if(internal_branch(regs[t].is32,ba[i]+4))
4621     assem_debug("branch: internal");
4622   else
4623     assem_debug("branch: external");
4624   assert(internal_branch(regs[t].is32,ba[i]+4));
4625   add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4626   emit_jmp(0);
4627 }
4628
4629 static void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4630 {
4631   int count;
4632   int jaddr;
4633   int idle=0;
4634   if(itype[i]==RJUMP)
4635   {
4636     *adj=0;
4637   }
4638   //if(ba[i]>=start && ba[i]<(start+slen*4))
4639   if(internal_branch(branch_regs[i].is32,ba[i]))
4640   {
4641     int t=(ba[i]-start)>>2;
4642     if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4643     else *adj=ccadj[t];
4644   }
4645   else
4646   {
4647     *adj=0;
4648   }
4649   count=ccadj[i];
4650   if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4651     // Idle loop
4652     if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4653     idle=(int)out;
4654     //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4655     emit_andimm(HOST_CCREG,3,HOST_CCREG);
4656     jaddr=(int)out;
4657     emit_jmp(0);
4658   }
4659   else if(*adj==0||invert) {
4660     emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4661     jaddr=(int)out;
4662     emit_jns(0);
4663   }
4664   else
4665   {
4666     emit_cmpimm(HOST_CCREG,-CLOCK_DIVIDER*(count+2));
4667     jaddr=(int)out;
4668     emit_jns(0);
4669   }
4670   add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4671 }
4672
4673 static void do_ccstub(int n)
4674 {
4675   literal_pool(256);
4676   assem_debug("do_ccstub %x",start+stubs[n][4]*4);
4677   set_jump_target(stubs[n][1],(int)out);
4678   int i=stubs[n][4];
4679   if(stubs[n][6]==NULLDS) {
4680     // Delay slot instruction is nullified ("likely" branch)
4681     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4682   }
4683   else if(stubs[n][6]!=TAKEN) {
4684     wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4685   }
4686   else {
4687     if(internal_branch(branch_regs[i].is32,ba[i]))
4688       wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4689   }
4690   if(stubs[n][5]!=-1)
4691   {
4692     // Save PC as return address
4693     emit_movimm(stubs[n][5],EAX);
4694     emit_writeword(EAX,(int)&pcaddr);
4695   }
4696   else
4697   {
4698     // Return address depends on which way the branch goes
4699     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4700     {
4701       int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4702       int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4703       int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4704       int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4705       if(rs1[i]==0)
4706       {
4707         s1l=s2l;s1h=s2h;
4708         s2l=s2h=-1;
4709       }
4710       else if(rs2[i]==0)
4711       {
4712         s2l=s2h=-1;
4713       }
4714       if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4715         s1h=s2h=-1;
4716       }
4717       assert(s1l>=0);
4718       #ifdef DESTRUCTIVE_WRITEBACK
4719       if(rs1[i]) {
4720         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4721           emit_loadreg(rs1[i],s1l);
4722       } 
4723       else {
4724         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4725           emit_loadreg(rs2[i],s1l);
4726       }
4727       if(s2l>=0)
4728         if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4729           emit_loadreg(rs2[i],s2l);
4730       #endif
4731       int hr=0;
4732       int addr,alt,ntaddr;
4733       while(hr<HOST_REGS)
4734       {
4735         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4736            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4737            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4738         {
4739           addr=hr++;break;
4740         }
4741         hr++;
4742       }
4743       while(hr<HOST_REGS)
4744       {
4745         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4746            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4747            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4748         {
4749           alt=hr++;break;
4750         }
4751         hr++;
4752       }
4753       if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4754       {
4755         while(hr<HOST_REGS)
4756         {
4757           if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4758              (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4759              (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4760           {
4761             ntaddr=hr;break;
4762           }
4763           hr++;
4764         }
4765         assert(hr<HOST_REGS);
4766       }
4767       if((opcode[i]&0x2f)==4) // BEQ
4768       {
4769         #ifdef HAVE_CMOV_IMM
4770         if(s1h<0) {
4771           if(s2l>=0) emit_cmp(s1l,s2l);
4772           else emit_test(s1l,s1l);
4773           emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4774         }
4775         else
4776         #endif
4777         {
4778           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4779           if(s1h>=0) {
4780             if(s2h>=0) emit_cmp(s1h,s2h);
4781             else emit_test(s1h,s1h);
4782             emit_cmovne_reg(alt,addr);
4783           }
4784           if(s2l>=0) emit_cmp(s1l,s2l);
4785           else emit_test(s1l,s1l);
4786           emit_cmovne_reg(alt,addr);
4787         }
4788       }
4789       if((opcode[i]&0x2f)==5) // BNE
4790       {
4791         #ifdef HAVE_CMOV_IMM
4792         if(s1h<0) {
4793           if(s2l>=0) emit_cmp(s1l,s2l);
4794           else emit_test(s1l,s1l);
4795           emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4796         }
4797         else
4798         #endif
4799         {
4800           emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4801           if(s1h>=0) {
4802             if(s2h>=0) emit_cmp(s1h,s2h);
4803             else emit_test(s1h,s1h);
4804             emit_cmovne_reg(alt,addr);
4805           }
4806           if(s2l>=0) emit_cmp(s1l,s2l);
4807           else emit_test(s1l,s1l);
4808           emit_cmovne_reg(alt,addr);
4809         }
4810       }
4811       if((opcode[i]&0x2f)==6) // BLEZ
4812       {
4813         //emit_movimm(ba[i],alt);
4814         //emit_movimm(start+i*4+8,addr);
4815         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4816         emit_cmpimm(s1l,1);
4817         if(s1h>=0) emit_mov(addr,ntaddr);
4818         emit_cmovl_reg(alt,addr);
4819         if(s1h>=0) {
4820           emit_test(s1h,s1h);
4821           emit_cmovne_reg(ntaddr,addr);
4822           emit_cmovs_reg(alt,addr);
4823         }
4824       }
4825       if((opcode[i]&0x2f)==7) // BGTZ
4826       {
4827         //emit_movimm(ba[i],addr);
4828         //emit_movimm(start+i*4+8,ntaddr);
4829         emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4830         emit_cmpimm(s1l,1);
4831         if(s1h>=0) emit_mov(addr,alt);
4832         emit_cmovl_reg(ntaddr,addr);
4833         if(s1h>=0) {
4834           emit_test(s1h,s1h);
4835           emit_cmovne_reg(alt,addr);
4836           emit_cmovs_reg(ntaddr,addr);
4837         }
4838       }
4839       if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4840       {
4841         //emit_movimm(ba[i],alt);
4842         //emit_movimm(start+i*4+8,addr);
4843         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4844         if(s1h>=0) emit_test(s1h,s1h);
4845         else emit_test(s1l,s1l);
4846         emit_cmovs_reg(alt,addr);
4847       }
4848       if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4849       {
4850         //emit_movimm(ba[i],addr);
4851         //emit_movimm(start+i*4+8,alt);
4852         emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4853         if(s1h>=0) emit_test(s1h,s1h);
4854         else emit_test(s1l,s1l);
4855         emit_cmovs_reg(alt,addr);
4856       }
4857       if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4858         if(source[i]&0x10000) // BC1T
4859         {
4860           //emit_movimm(ba[i],alt);
4861           //emit_movimm(start+i*4+8,addr);
4862           emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4863           emit_testimm(s1l,0x800000);
4864           emit_cmovne_reg(alt,addr);
4865         }
4866         else // BC1F
4867         {
4868           //emit_movimm(ba[i],addr);
4869           //emit_movimm(start+i*4+8,alt);
4870           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4871           emit_testimm(s1l,0x800000);
4872           emit_cmovne_reg(alt,addr);
4873         }
4874       }
4875       emit_writeword(addr,(int)&pcaddr);
4876     }
4877     else
4878     if(itype[i]==RJUMP)
4879     {
4880       int r=get_reg(branch_regs[i].regmap,rs1[i]);
4881       if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4882         r=get_reg(branch_regs[i].regmap,RTEMP);
4883       }
4884       emit_writeword(r,(int)&pcaddr);
4885     }
4886     else {DebugMessage(M64MSG_ERROR, "Unknown branch type in do_ccstub");exit(1);}
4887   }
4888   // Update cycle count
4889   assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4890   if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4891   emit_call((int)cc_interrupt);
4892   if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4893   if(stubs[n][6]==TAKEN) {
4894     if(internal_branch(branch_regs[i].is32,ba[i]))
4895       load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4896     else if(itype[i]==RJUMP) {
4897       if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4898         emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4899       else
4900         emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4901     }
4902   }else if(stubs[n][6]==NOTTAKEN) {
4903     if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4904     else load_all_regs(branch_regs[i].regmap);
4905   }else if(stubs[n][6]==NULLDS) {
4906     // Delay slot instruction is nullified ("likely" branch)
4907     if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4908     else load_all_regs(regs[i].regmap);
4909   }else{
4910     load_all_regs(branch_regs[i].regmap);
4911   }
4912   emit_jmp(stubs[n][2]); // return address
4913   
4914   /* This works but uses a lot of memory...
4915   emit_readword((int)&last_count,ECX);
4916   emit_add(HOST_CCREG,ECX,EAX);
4917   emit_writeword(EAX,(int)&Count);
4918   emit_call((int)gen_interupt);
4919   emit_readword((int)&Count,HOST_CCREG);
4920   emit_readword((int)&next_interupt,EAX);
4921   emit_readword((int)&pending_exception,EBX);
4922   emit_writeword(EAX,(int)&last_count);
4923   emit_sub(HOST_CCREG,EAX,HOST_CCREG);
4924   emit_test(EBX,EBX);
4925   int jne_instr=(int)out;
4926   emit_jne(0);
4927   if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
4928   load_all_regs(branch_regs[i].regmap);
4929   emit_jmp(stubs[n][2]); // return address
4930   set_jump_target(jne_instr,(int)out);
4931   emit_readword((int)&pcaddr,EAX);
4932   // Call get_addr_ht instead of doing the hash table here.
4933   // This code is executed infrequently and takes up a lot of space
4934   // so smaller is better.
4935   emit_storereg(CCREG,HOST_CCREG);
4936   emit_pushreg(EAX);
4937   emit_call((int)get_addr_ht);
4938   emit_loadreg(CCREG,HOST_CCREG);
4939   emit_addimm(ESP,4,ESP);
4940   emit_jmpreg(EAX);*/
4941 }
4942
4943 static void add_to_linker(int addr,int target,int ext)
4944 {
4945   link_addr[linkcount][0]=addr;
4946   link_addr[linkcount][1]=target;
4947   link_addr[linkcount][2]=ext;  
4948   linkcount++;
4949 }
4950
4951 static void ujump_assemble(int i,struct regstat *i_regs)
4952 {
4953   #ifdef REG_PREFETCH
4954   signed char *i_regmap=i_regs->regmap;
4955   #endif
4956   if(i==(ba[i]-start)>>2) assem_debug("idle loop");
4957   address_generation(i+1,i_regs,regs[i].regmap_entry);
4958   #ifdef REG_PREFETCH
4959   int temp=get_reg(branch_regs[i].regmap,PTEMP);
4960   if(rt1[i]==31&&temp>=0) 
4961   {
4962     int return_address=start+i*4+8;
4963     if(get_reg(branch_regs[i].regmap,31)>0) 
4964     if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4965   }
4966   #endif
4967   ds_assemble(i+1,i_regs);
4968   uint64_t bc_unneeded=branch_regs[i].u;
4969   uint64_t bc_unneeded_upper=branch_regs[i].uu;
4970   bc_unneeded|=1|(1LL<<rt1[i]);
4971   bc_unneeded_upper|=1|(1LL<<rt1[i]);
4972   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4973                 bc_unneeded,bc_unneeded_upper);
4974   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
4975   if(rt1[i]==31) {
4976     int rt;
4977     unsigned int return_address;
4978     assert(rt1[i+1]!=31);
4979     assert(rt2[i+1]!=31);
4980     rt=get_reg(branch_regs[i].regmap,31);
4981     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4982     //assert(rt>=0);
4983     return_address=start+i*4+8;
4984     if(rt>=0) {
4985       #ifdef USE_MINI_HT
4986       if(internal_branch(branch_regs[i].is32,return_address)) {
4987         int temp=rt+1;
4988         if(temp==EXCLUDE_REG||temp>=HOST_REGS||
4989            branch_regs[i].regmap[temp]>=0)
4990         {
4991           temp=get_reg(branch_regs[i].regmap,-1);
4992         }
4993         #ifdef HOST_TEMPREG
4994         if(temp<0) temp=HOST_TEMPREG;
4995         #endif
4996         if(temp>=0) do_miniht_insert(return_address,rt,temp);
4997         else emit_movimm(return_address,rt);
4998       }
4999       else
5000       #endif
5001       {
5002         #ifdef REG_PREFETCH
5003         if(temp>=0) 
5004         {
5005           if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5006         }
5007         #endif
5008         emit_movimm(return_address,rt); // PC into link register
5009         #ifdef IMM_PREFETCH
5010         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5011         #endif
5012       }
5013     }
5014   }
5015   int cc,adj;
5016   cc=get_reg(branch_regs[i].regmap,CCREG);
5017   assert(cc==HOST_CCREG);
5018   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5019   #ifdef REG_PREFETCH
5020   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5021   #endif
5022   do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5023   if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5024   load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5025   if(internal_branch(branch_regs[i].is32,ba[i]))
5026     assem_debug("branch: internal");
5027   else
5028     assem_debug("branch: external");
5029   if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5030     ds_assemble_entry(i);
5031   }
5032   else {
5033     add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5034     emit_jmp(0);
5035   }
5036 }
5037
5038 static void rjump_assemble(int i,struct regstat *i_regs)
5039 {
5040   #ifdef REG_PREFETCH
5041   signed char *i_regmap=i_regs->regmap;
5042   #endif
5043   int temp;
5044   int rs,cc;
5045   rs=get_reg(branch_regs[i].regmap,rs1[i]);
5046   assert(rs>=0);
5047   if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5048     // Delay slot abuse, make a copy of the branch address register
5049     temp=get_reg(branch_regs[i].regmap,RTEMP);
5050     assert(temp>=0);
5051     assert(regs[i].regmap[temp]==RTEMP);
5052     emit_mov(rs,temp);
5053     rs=temp;
5054   }
5055   address_generation(i+1,i_regs,regs[i].regmap_entry);
5056   #ifdef REG_PREFETCH
5057   if(rt1[i]==31) 
5058   {
5059     if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5060       int return_address=start+i*4+8;
5061       if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5062     }
5063   }
5064   #endif
5065   #ifdef USE_MINI_HT
5066   if(rs1[i]==31) {
5067     int rh=get_reg(regs[i].regmap,RHASH);
5068     if(rh>=0) do_preload_rhash(rh);
5069   }
5070   #endif
5071   ds_assemble(i+1,i_regs);
5072   uint64_t bc_unneeded=branch_regs[i].u;
5073   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5074   bc_unneeded|=1|(1LL<<rt1[i]);
5075   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5076   bc_unneeded&=~(1LL<<rs1[i]);
5077   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5078                 bc_unneeded,bc_unneeded_upper);
5079   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5080   if(rt1[i]!=0) {
5081     int rt,return_address;
5082     assert(rt1[i+1]!=rt1[i]);
5083     assert(rt2[i+1]!=rt1[i]);
5084     rt=get_reg(branch_regs[i].regmap,rt1[i]);
5085     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5086     assert(rt>=0);
5087     return_address=start+i*4+8;
5088     #ifdef REG_PREFETCH
5089     if(temp>=0) 
5090     {
5091       if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5092     }
5093     #endif
5094     emit_movimm(return_address,rt); // PC into link register
5095     #ifdef IMM_PREFETCH
5096     emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5097     #endif
5098   }
5099   cc=get_reg(branch_regs[i].regmap,CCREG);
5100   assert(cc==HOST_CCREG);
5101   #ifdef USE_MINI_HT
5102   int rh=get_reg(branch_regs[i].regmap,RHASH);
5103   int ht=get_reg(branch_regs[i].regmap,RHTBL);
5104   if(rs1[i]==31) {
5105     if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5106     do_preload_rhtbl(ht);
5107     do_rhash(rs,rh);
5108   }
5109   #endif
5110   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5111   #ifdef DESTRUCTIVE_WRITEBACK
5112   if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5113     if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5114       emit_loadreg(rs1[i],rs);
5115     }
5116   }
5117   #endif
5118   #ifdef REG_PREFETCH
5119   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5120   #endif
5121   #ifdef USE_MINI_HT
5122   if(rs1[i]==31) {
5123     do_miniht_load(ht,rh);
5124   }
5125   #endif
5126   //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5127   //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5128   //assert(adj==0);
5129   emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5130   add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5131   emit_jns(0);
5132   //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5133   #ifdef USE_MINI_HT
5134   if(rs1[i]==31) {
5135     do_miniht_jump(rs,rh,ht);
5136   }
5137   else
5138   #endif
5139   {
5140     //if(rs!=EAX) emit_mov(rs,EAX);
5141     //emit_jmp((int)jump_vaddr_eax);
5142     emit_jmp(jump_vaddr_reg[rs]);
5143   }
5144   /* Check hash table
5145   temp=!rs;
5146   emit_mov(rs,temp);
5147   emit_shrimm(rs,16,rs);
5148   emit_xor(temp,rs,rs);
5149   emit_movzwl_reg(rs,rs);
5150   emit_shlimm(rs,4,rs);
5151   emit_cmpmem_indexed((int)hash_table,rs,temp);
5152   emit_jne((int)out+14);
5153   emit_readword_indexed((int)hash_table+4,rs,rs);
5154   emit_jmpreg(rs);
5155   emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5156   emit_addimm_no_flags(8,rs);
5157   emit_jeq((int)out-17);
5158   // No hit on hash table, call compiler
5159   emit_pushreg(temp);
5160 //DEBUG >
5161 #ifdef DEBUG_CYCLE_COUNT
5162   emit_readword((int)&last_count,ECX);
5163   emit_add(HOST_CCREG,ECX,HOST_CCREG);
5164   emit_readword((int)&next_interupt,ECX);
5165   emit_writeword(HOST_CCREG,(int)&Count);
5166   emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5167   emit_writeword(ECX,(int)&last_count);
5168 #endif
5169 //DEBUG <
5170   emit_storereg(CCREG,HOST_CCREG);
5171   emit_call((int)get_addr);
5172   emit_loadreg(CCREG,HOST_CCREG);
5173   emit_addimm(ESP,4,ESP);
5174   emit_jmpreg(EAX);*/
5175   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5176   if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5177   #endif
5178 }
5179
5180 static void cjump_assemble(int i,struct regstat *i_regs)
5181 {
5182   signed char *i_regmap=i_regs->regmap;
5183   int cc;
5184   int match;
5185   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5186   assem_debug("match=%d",match);
5187   int s1h,s1l,s2h,s2l;
5188   int prev_cop1_usable=cop1_usable;
5189   int unconditional=0,nop=0;
5190   int only32=0;
5191   int invert=0;
5192   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5193   if(i==(ba[i]-start)>>2) assem_debug("idle loop");
5194   if(!match) invert=1;
5195   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5196   if(i>(ba[i]-start)>>2) invert=1;
5197   #endif
5198   
5199   if(ooo[i]) {
5200     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5201     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5202     s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5203     s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5204   }
5205   else {
5206     s1l=get_reg(i_regmap,rs1[i]);
5207     s1h=get_reg(i_regmap,rs1[i]|64);
5208     s2l=get_reg(i_regmap,rs2[i]);
5209     s2h=get_reg(i_regmap,rs2[i]|64);
5210   }
5211   if(rs1[i]==0&&rs2[i]==0)
5212   {
5213     if(opcode[i]&1) nop=1;
5214     else unconditional=1;
5215     //assert(opcode[i]!=5);
5216     //assert(opcode[i]!=7);
5217     //assert(opcode[i]!=0x15);
5218     //assert(opcode[i]!=0x17);
5219   }
5220   else if(rs1[i]==0)
5221   {
5222     s1l=s2l;s1h=s2h;
5223     s2l=s2h=-1;
5224     only32=(regs[i].was32>>rs2[i])&1;
5225   }
5226   else if(rs2[i]==0)
5227   {
5228     s2l=s2h=-1;
5229     only32=(regs[i].was32>>rs1[i])&1;
5230   }
5231   else {
5232     only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5233   }
5234
5235   if(ooo[i]) {
5236     // Out of order execution (delay slot first)
5237     //DebugMessage(M64MSG_VERBOSE, "OOOE");
5238     address_generation(i+1,i_regs,regs[i].regmap_entry);
5239     ds_assemble(i+1,i_regs);
5240     int adj;
5241     uint64_t bc_unneeded=branch_regs[i].u;
5242     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5243     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5244     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5245     bc_unneeded|=1;
5246     bc_unneeded_upper|=1;
5247     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5248                   bc_unneeded,bc_unneeded_upper);
5249     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5250     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5251     cc=get_reg(branch_regs[i].regmap,CCREG);
5252     assert(cc==HOST_CCREG);
5253     if(unconditional) 
5254       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5255     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5256     //assem_debug("cycle count (adj)");
5257     if(unconditional) {
5258       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5259       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5260         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5261         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5262         if(internal)
5263           assem_debug("branch: internal");
5264         else
5265           assem_debug("branch: external");
5266         if(internal&&is_ds[(ba[i]-start)>>2]) {
5267           ds_assemble_entry(i);
5268         }
5269         else {
5270           add_to_linker((int)out,ba[i],internal);
5271           emit_jmp(0);
5272         }
5273         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5274         if(((u_int)out)&7) emit_addnop(0);
5275         #endif
5276       }
5277     }
5278     else if(nop) {
5279       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5280       int jaddr=(int)out;
5281       emit_jns(0);
5282       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5283     }
5284     else {
5285       int taken=0,nottaken=0,nottaken1=0;
5286       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5287       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5288       if(!only32)
5289       {
5290         assert(s1h>=0);
5291         if(opcode[i]==4) // BEQ
5292         {
5293           if(s2h>=0) emit_cmp(s1h,s2h);
5294           else emit_test(s1h,s1h);
5295           nottaken1=(int)out;
5296           emit_jne(1);
5297         }
5298         if(opcode[i]==5) // BNE
5299         {
5300           if(s2h>=0) emit_cmp(s1h,s2h);
5301           else emit_test(s1h,s1h);
5302           if(invert) taken=(int)out;
5303           else add_to_linker((int)out,ba[i],internal);
5304           emit_jne(0);
5305         }
5306         if(opcode[i]==6) // BLEZ
5307         {
5308           emit_test(s1h,s1h);
5309 //          emit_testimm(s1h,0);
5310           if(invert) taken=(int)out;
5311           else add_to_linker((int)out,ba[i],internal);
5312           emit_js(0);
5313           nottaken1=(int)out;
5314           emit_jne(1);
5315         }
5316         if(opcode[i]==7) // BGTZ
5317         {
5318           emit_test(s1h,s1h);
5319 //          emit_testimm(s1h,0);
5320           nottaken1=(int)out;
5321           emit_js(1);
5322           if(invert) taken=(int)out;
5323           else add_to_linker((int)out,ba[i],internal);
5324           emit_jne(0);
5325         }
5326       } // if(!only32)
5327           
5328       //DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5329       assert(s1l>=0);
5330       if(opcode[i]==4) // BEQ
5331       {
5332         if(s2l>=0) emit_cmp(s1l,s2l);
5333         else emit_test(s1l,s1l);
5334         if(invert){
5335           nottaken=(int)out;
5336           emit_jne(1);
5337         }else{
5338           add_to_linker((int)out,ba[i],internal);
5339           emit_jeq(0);
5340         }
5341       }
5342       if(opcode[i]==5) // BNE
5343       {
5344         if(s2l>=0) emit_cmp(s1l,s2l);
5345         else emit_test(s1l,s1l);
5346         if(invert){
5347           nottaken=(int)out;
5348           emit_jeq(1);
5349         }else{
5350           add_to_linker((int)out,ba[i],internal);
5351           emit_jne(0);
5352         }
5353       }
5354       if(opcode[i]==6) // BLEZ
5355       {
5356         emit_cmpimm(s1l,1);
5357         if(invert){
5358           nottaken=(int)out;
5359           emit_jge(1);
5360         }else{
5361           add_to_linker((int)out,ba[i],internal);
5362           emit_jl(0);
5363         }
5364       }
5365       if(opcode[i]==7) // BGTZ
5366       {
5367         emit_cmpimm(s1l,1);
5368         if(invert){
5369           nottaken=(int)out;
5370           emit_jl(1);
5371         }else{
5372           add_to_linker((int)out,ba[i],internal);
5373           emit_jge(0);
5374         }
5375       }
5376       if(invert) {
5377         if(taken) set_jump_target(taken,(int)out);
5378         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5379         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5380           if(adj) {
5381             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5382             add_to_linker((int)out,ba[i],internal);
5383           }else{
5384             emit_addnop(13);
5385             add_to_linker((int)out,ba[i],internal*2);
5386           }
5387           emit_jmp(0);
5388         }else
5389         #endif
5390         {
5391           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5392           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5393           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5394           if(internal)
5395             assem_debug("branch: internal");
5396           else
5397             assem_debug("branch: external");
5398           if(internal&&is_ds[(ba[i]-start)>>2]) {
5399             ds_assemble_entry(i);
5400           }
5401           else {
5402             add_to_linker((int)out,ba[i],internal);
5403             emit_jmp(0);
5404           }
5405         }
5406         set_jump_target(nottaken,(int)out);
5407       }
5408
5409       if(nottaken1) set_jump_target(nottaken1,(int)out);
5410       if(adj) {
5411         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5412       }
5413     } // (!unconditional)
5414   } // if(ooo)
5415   else
5416   {
5417     // In-order execution (branch first)
5418     //if(likely[i]) DebugMessage(M64MSG_VERBOSE, "IOL");
5419     //else
5420     //DebugMessage(M64MSG_VERBOSE, "IOE");
5421     int taken=0,nottaken=0,nottaken1=0;
5422     if(!unconditional&&!nop) {
5423       if(!only32)
5424       {
5425         assert(s1h>=0);
5426         if((opcode[i]&0x2f)==4) // BEQ
5427         {
5428           if(s2h>=0) emit_cmp(s1h,s2h);
5429           else emit_test(s1h,s1h);
5430           nottaken1=(int)out;
5431           emit_jne(2);
5432         }
5433         if((opcode[i]&0x2f)==5) // BNE
5434         {
5435           if(s2h>=0) emit_cmp(s1h,s2h);
5436           else emit_test(s1h,s1h);
5437           taken=(int)out;
5438           emit_jne(1);
5439         }
5440         if((opcode[i]&0x2f)==6) // BLEZ
5441         {
5442           emit_test(s1h,s1h);
5443           taken=(int)out;
5444           emit_js(1);
5445           nottaken1=(int)out;
5446           emit_jne(2);
5447         }
5448         if((opcode[i]&0x2f)==7) // BGTZ
5449         {
5450           emit_test(s1h,s1h);
5451           nottaken1=(int)out;
5452           emit_js(2);
5453           taken=(int)out;
5454           emit_jne(1);
5455         }
5456       } // if(!only32)
5457           
5458       //DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5459       assert(s1l>=0);
5460       if((opcode[i]&0x2f)==4) // BEQ
5461       {
5462         if(s2l>=0) emit_cmp(s1l,s2l);
5463         else emit_test(s1l,s1l);
5464         nottaken=(int)out;
5465         emit_jne(2);
5466       }
5467       if((opcode[i]&0x2f)==5) // BNE
5468       {
5469         if(s2l>=0) emit_cmp(s1l,s2l);
5470         else emit_test(s1l,s1l);
5471         nottaken=(int)out;
5472         emit_jeq(2);
5473       }
5474       if((opcode[i]&0x2f)==6) // BLEZ
5475       {
5476         emit_cmpimm(s1l,1);
5477         nottaken=(int)out;
5478         emit_jge(2);
5479       }
5480       if((opcode[i]&0x2f)==7) // BGTZ
5481       {
5482         emit_cmpimm(s1l,1);
5483         nottaken=(int)out;
5484         emit_jl(2);
5485       }
5486     } // if(!unconditional)
5487     int adj;
5488     uint64_t ds_unneeded=branch_regs[i].u;
5489     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5490     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5491     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5492     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5493     ds_unneeded|=1;
5494     ds_unneeded_upper|=1;
5495     // branch taken
5496     if(!nop) {
5497       if(taken) set_jump_target(taken,(int)out);
5498       assem_debug("1:");
5499       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5500                     ds_unneeded,ds_unneeded_upper);
5501       // load regs
5502       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5503       address_generation(i+1,&branch_regs[i],0);
5504       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5505       ds_assemble(i+1,&branch_regs[i]);
5506       cc=get_reg(branch_regs[i].regmap,CCREG);
5507       if(cc==-1) {
5508         emit_loadreg(CCREG,cc=HOST_CCREG);
5509         // CHECK: Is the following instruction (fall thru) allocated ok?
5510       }
5511       assert(cc==HOST_CCREG);
5512       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5513       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5514       assem_debug("cycle count (adj)");
5515       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5516       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5517       if(internal)
5518         assem_debug("branch: internal");
5519       else
5520         assem_debug("branch: external");
5521       if(internal&&is_ds[(ba[i]-start)>>2]) {
5522         ds_assemble_entry(i);
5523       }
5524       else {
5525         add_to_linker((int)out,ba[i],internal);
5526         emit_jmp(0);
5527       }
5528     }
5529     // branch not taken
5530     cop1_usable=prev_cop1_usable;
5531     if(!unconditional) {
5532       if(nottaken1) set_jump_target(nottaken1,(int)out);
5533       set_jump_target(nottaken,(int)out);
5534       assem_debug("2:");
5535       if(!likely[i]) {
5536         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5537                       ds_unneeded,ds_unneeded_upper);
5538         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5539         address_generation(i+1,&branch_regs[i],0);
5540         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5541         ds_assemble(i+1,&branch_regs[i]);
5542       }
5543       cc=get_reg(branch_regs[i].regmap,CCREG);
5544       if(cc==-1&&!likely[i]) {
5545         // Cycle count isn't in a register, temporarily load it then write it out
5546         emit_loadreg(CCREG,HOST_CCREG);
5547         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5548         int jaddr=(int)out;
5549         emit_jns(0);
5550         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5551         emit_storereg(CCREG,HOST_CCREG);
5552       }
5553       else{
5554         cc=get_reg(i_regmap,CCREG);
5555         assert(cc==HOST_CCREG);
5556         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5557         int jaddr=(int)out;
5558         emit_jns(0);
5559         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5560       }
5561     }
5562   }
5563 }
5564
5565 static void sjump_assemble(int i,struct regstat *i_regs)
5566 {
5567   signed char *i_regmap=i_regs->regmap;
5568   int cc;
5569   int match;
5570   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5571   assem_debug("smatch=%d",match);
5572   int s1h,s1l;
5573   int prev_cop1_usable=cop1_usable;
5574   int unconditional=0,nevertaken=0;
5575   int only32=0;
5576   int invert=0;
5577   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5578   if(i==(ba[i]-start)>>2) assem_debug("idle loop");
5579   if(!match) invert=1;
5580   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5581   if(i>(ba[i]-start)>>2) invert=1;
5582   #endif
5583
5584   //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5585   assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5586   
5587   if(ooo[i]) {
5588     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5589     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5590   }
5591   else {
5592     s1l=get_reg(i_regmap,rs1[i]);
5593     s1h=get_reg(i_regmap,rs1[i]|64);
5594   }
5595   if(rs1[i]==0)
5596   {
5597     if(opcode2[i]&1) unconditional=1;
5598     else nevertaken=1;
5599     // These are never taken (r0 is never less than zero)
5600     //assert(opcode2[i]!=0);
5601     //assert(opcode2[i]!=2);
5602     //assert(opcode2[i]!=0x10);
5603     //assert(opcode2[i]!=0x12);
5604   }
5605   else {
5606     only32=(regs[i].was32>>rs1[i])&1;
5607   }
5608
5609   if(ooo[i]) {
5610     // Out of order execution (delay slot first)
5611     //DebugMessage(M64MSG_VERBOSE, "OOOE");
5612     address_generation(i+1,i_regs,regs[i].regmap_entry);
5613     ds_assemble(i+1,i_regs);
5614     int adj;
5615     uint64_t bc_unneeded=branch_regs[i].u;
5616     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5617     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5618     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5619     bc_unneeded|=1;
5620     bc_unneeded_upper|=1;
5621     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5622                   bc_unneeded,bc_unneeded_upper);
5623     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5624     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5625     if(rt1[i]==31) {
5626       int rt,return_address;
5627       assert(rt1[i+1]!=31);
5628       assert(rt2[i+1]!=31);
5629       rt=get_reg(branch_regs[i].regmap,31);
5630       assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5631       if(rt>=0) {
5632         // Save the PC even if the branch is not taken
5633         return_address=start+i*4+8;
5634         emit_movimm(return_address,rt); // PC into link register
5635         #ifdef IMM_PREFETCH
5636         if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5637         #endif
5638       }
5639     }
5640     cc=get_reg(branch_regs[i].regmap,CCREG);
5641     assert(cc==HOST_CCREG);
5642     if(unconditional) 
5643       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5644     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5645     assem_debug("cycle count (adj)");
5646     if(unconditional) {
5647       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5648       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5649         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5650         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5651         if(internal)
5652           assem_debug("branch: internal");
5653         else
5654           assem_debug("branch: external");
5655         if(internal&&is_ds[(ba[i]-start)>>2]) {
5656           ds_assemble_entry(i);
5657         }
5658         else {
5659           add_to_linker((int)out,ba[i],internal);
5660           emit_jmp(0);
5661         }
5662         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5663         if(((u_int)out)&7) emit_addnop(0);
5664         #endif
5665       }
5666     }
5667     else if(nevertaken) {
5668       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5669       int jaddr=(int)out;
5670       emit_jns(0);
5671       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5672     }
5673     else {
5674       int nottaken=0;
5675       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5676       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5677       if(!only32)
5678       {
5679         assert(s1h>=0);
5680         if(opcode2[i]==0) // BLTZ
5681         {
5682           emit_test(s1h,s1h);
5683           if(invert){
5684             nottaken=(int)out;
5685             emit_jns(1);
5686           }else{
5687             add_to_linker((int)out,ba[i],internal);
5688             emit_js(0);
5689           }
5690         }
5691         if(opcode2[i]==1) // BGEZ
5692         {
5693           emit_test(s1h,s1h);
5694           if(invert){
5695             nottaken=(int)out;
5696             emit_js(1);
5697           }else{
5698             add_to_linker((int)out,ba[i],internal);
5699             emit_jns(0);
5700           }
5701         }
5702       } // if(!only32)
5703       else
5704       {
5705         assert(s1l>=0);
5706         if(opcode2[i]==0) // BLTZ
5707         {
5708           emit_test(s1l,s1l);
5709           if(invert){
5710             nottaken=(int)out;
5711             emit_jns(1);
5712           }else{
5713             add_to_linker((int)out,ba[i],internal);
5714             emit_js(0);
5715           }
5716         }
5717         if(opcode2[i]==1) // BGEZ
5718         {
5719           emit_test(s1l,s1l);
5720           if(invert){
5721             nottaken=(int)out;
5722             emit_js(1);
5723           }else{
5724             add_to_linker((int)out,ba[i],internal);
5725             emit_jns(0);
5726           }
5727         }
5728       } // if(!only32)
5729           
5730       if(invert) {
5731         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5732         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5733           if(adj) {
5734             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5735             add_to_linker((int)out,ba[i],internal);
5736           }else{
5737             emit_addnop(13);
5738             add_to_linker((int)out,ba[i],internal*2);
5739           }
5740           emit_jmp(0);
5741         }else
5742         #endif
5743         {
5744           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5745           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5746           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5747           if(internal)
5748             assem_debug("branch: internal");
5749           else
5750             assem_debug("branch: external");
5751           if(internal&&is_ds[(ba[i]-start)>>2]) {
5752             ds_assemble_entry(i);
5753           }
5754           else {
5755             add_to_linker((int)out,ba[i],internal);
5756             emit_jmp(0);
5757           }
5758         }
5759         set_jump_target(nottaken,(int)out);
5760       }
5761
5762       if(adj) {
5763         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5764       }
5765     } // (!unconditional)
5766   } // if(ooo)
5767   else
5768   {
5769     // In-order execution (branch first)
5770     //DebugMessage(M64MSG_VERBOSE, "IOE");
5771     int nottaken=0;
5772     if(!unconditional) {
5773       //DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5774       if(!only32)
5775       {
5776         assert(s1h>=0);
5777         if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5778         {
5779           emit_test(s1h,s1h);
5780           nottaken=(int)out;
5781           emit_jns(1);
5782         }
5783         if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5784         {
5785           emit_test(s1h,s1h);
5786           nottaken=(int)out;
5787           emit_js(1);
5788         }
5789       } // if(!only32)
5790       else
5791       {
5792         assert(s1l>=0);
5793         if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5794         {
5795           emit_test(s1l,s1l);
5796           nottaken=(int)out;
5797           emit_jns(1);
5798         }
5799         if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5800         {
5801           emit_test(s1l,s1l);
5802           nottaken=(int)out;
5803           emit_js(1);
5804         }
5805       }
5806     } // if(!unconditional)
5807     int adj;
5808     uint64_t ds_unneeded=branch_regs[i].u;
5809     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5810     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5811     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5812     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5813     ds_unneeded|=1;
5814     ds_unneeded_upper|=1;
5815     // branch taken
5816     if(!nevertaken) {
5817       //assem_debug("1:");
5818       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5819                     ds_unneeded,ds_unneeded_upper);
5820       // load regs
5821       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5822       address_generation(i+1,&branch_regs[i],0);
5823       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5824       ds_assemble(i+1,&branch_regs[i]);
5825       cc=get_reg(branch_regs[i].regmap,CCREG);
5826       if(cc==-1) {
5827         emit_loadreg(CCREG,cc=HOST_CCREG);
5828         // CHECK: Is the following instruction (fall thru) allocated ok?
5829       }
5830       assert(cc==HOST_CCREG);
5831       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5832       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5833       assem_debug("cycle count (adj)");
5834       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5835       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5836       if(internal)
5837         assem_debug("branch: internal");
5838       else
5839         assem_debug("branch: external");
5840       if(internal&&is_ds[(ba[i]-start)>>2]) {
5841         ds_assemble_entry(i);
5842       }
5843       else {
5844         add_to_linker((int)out,ba[i],internal);
5845         emit_jmp(0);
5846       }
5847     }
5848     // branch not taken
5849     cop1_usable=prev_cop1_usable;
5850     if(!unconditional) {
5851       set_jump_target(nottaken,(int)out);
5852       assem_debug("1:");
5853       if(!likely[i]) {
5854         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5855                       ds_unneeded,ds_unneeded_upper);
5856         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5857         address_generation(i+1,&branch_regs[i],0);
5858         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5859         ds_assemble(i+1,&branch_regs[i]);
5860       }
5861       cc=get_reg(branch_regs[i].regmap,CCREG);
5862       if(cc==-1&&!likely[i]) {
5863         // Cycle count isn't in a register, temporarily load it then write it out
5864         emit_loadreg(CCREG,HOST_CCREG);
5865         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5866         int jaddr=(int)out;
5867         emit_jns(0);
5868         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5869         emit_storereg(CCREG,HOST_CCREG);
5870       }
5871       else{
5872         cc=get_reg(i_regmap,CCREG);
5873         assert(cc==HOST_CCREG);
5874         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5875         int jaddr=(int)out;
5876         emit_jns(0);
5877         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5878       }
5879     }
5880   }
5881 }
5882
5883 static void fjump_assemble(int i,struct regstat *i_regs)
5884 {
5885   signed char *i_regmap=i_regs->regmap;
5886   int cc;
5887   int match;
5888   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5889   assem_debug("fmatch=%d",match);
5890   int fs,cs;
5891   int eaddr;
5892   int invert=0;
5893   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5894   if(i==(ba[i]-start)>>2) assem_debug("idle loop");
5895   if(!match) invert=1;
5896   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5897   if(i>(ba[i]-start)>>2) invert=1;
5898   #endif
5899
5900   if(ooo[i]) {
5901     fs=get_reg(branch_regs[i].regmap,FSREG);
5902     address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
5903   }
5904   else {
5905     fs=get_reg(i_regmap,FSREG);
5906   }
5907
5908   // Check cop1 unusable
5909   if(!cop1_usable) {
5910     cs=get_reg(i_regmap,CSREG);
5911     assert(cs>=0);
5912     emit_testimm(cs,0x20000000);
5913     eaddr=(int)out;
5914     emit_jeq(0);
5915     add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
5916     cop1_usable=1;
5917   }
5918
5919   if(ooo[i]) {
5920     // Out of order execution (delay slot first)
5921     //DebugMessage(M64MSG_VERBOSE, "OOOE");
5922     ds_assemble(i+1,i_regs);
5923     int adj;
5924     uint64_t bc_unneeded=branch_regs[i].u;
5925     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5926     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5927     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5928     bc_unneeded|=1;
5929     bc_unneeded_upper|=1;
5930     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5931                   bc_unneeded,bc_unneeded_upper);
5932     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5933     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5934     cc=get_reg(branch_regs[i].regmap,CCREG);
5935     assert(cc==HOST_CCREG);
5936     do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5937     assem_debug("cycle count (adj)");
5938     if(1) {
5939       int nottaken=0;
5940       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5941       if(1) {
5942         assert(fs>=0);
5943         emit_testimm(fs,0x800000);
5944         if(source[i]&0x10000) // BC1T
5945         {
5946           if(invert){
5947             nottaken=(int)out;
5948             emit_jeq(1);
5949           }else{
5950             add_to_linker((int)out,ba[i],internal);
5951             emit_jne(0);
5952           }
5953         }
5954         else // BC1F
5955           if(invert){
5956             nottaken=(int)out;
5957             emit_jne(1);
5958           }else{
5959             add_to_linker((int)out,ba[i],internal);
5960             emit_jeq(0);
5961           }
5962         {
5963         }
5964       } // if(!only32)
5965           
5966       if(invert) {
5967         if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5968         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5969         else if(match) emit_addnop(13);
5970         #endif
5971         store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5972         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5973         if(internal)
5974           assem_debug("branch: internal");
5975         else
5976           assem_debug("branch: external");
5977         if(internal&&is_ds[(ba[i]-start)>>2]) {
5978           ds_assemble_entry(i);
5979         }
5980         else {
5981           add_to_linker((int)out,ba[i],internal);
5982           emit_jmp(0);
5983         }
5984         set_jump_target(nottaken,(int)out);
5985       }
5986
5987       if(adj) {
5988         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5989       }
5990     } // (!unconditional)
5991   } // if(ooo)
5992   else
5993   {
5994     // In-order execution (branch first)
5995     //DebugMessage(M64MSG_VERBOSE, "IOE");
5996     int nottaken=0;
5997     if(1) {
5998       //DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5999       if(1) {
6000         assert(fs>=0);
6001         emit_testimm(fs,0x800000);
6002         if(source[i]&0x10000) // BC1T
6003         {
6004           nottaken=(int)out;
6005           emit_jeq(1);
6006         }
6007         else // BC1F
6008         {
6009           nottaken=(int)out;
6010           emit_jne(1);
6011         }
6012       }
6013     } // if(!unconditional)
6014     int adj;
6015     uint64_t ds_unneeded=branch_regs[i].u;
6016     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6017     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6018     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6019     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6020     ds_unneeded|=1;
6021     ds_unneeded_upper|=1;
6022     // branch taken
6023     //assem_debug("1:");
6024     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6025                   ds_unneeded,ds_unneeded_upper);
6026     // load regs
6027     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6028     address_generation(i+1,&branch_regs[i],0);
6029     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6030     ds_assemble(i+1,&branch_regs[i]);
6031     cc=get_reg(branch_regs[i].regmap,CCREG);
6032     if(cc==-1) {
6033       emit_loadreg(CCREG,cc=HOST_CCREG);
6034       // CHECK: Is the following instruction (fall thru) allocated ok?
6035     }
6036     assert(cc==HOST_CCREG);
6037     store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6038     do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6039     assem_debug("cycle count (adj)");
6040     if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6041     load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6042     if(internal)
6043       assem_debug("branch: internal");
6044     else
6045       assem_debug("branch: external");
6046     if(internal&&is_ds[(ba[i]-start)>>2]) {
6047       ds_assemble_entry(i);
6048     }
6049     else {
6050       add_to_linker((int)out,ba[i],internal);
6051       emit_jmp(0);
6052     }
6053
6054     // branch not taken
6055     if(1) { // <- FIXME (don't need this)
6056       set_jump_target(nottaken,(int)out);
6057       assem_debug("1:");
6058       if(!likely[i]) {
6059         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6060                       ds_unneeded,ds_unneeded_upper);
6061         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6062         address_generation(i+1,&branch_regs[i],0);
6063         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6064         ds_assemble(i+1,&branch_regs[i]);
6065       }
6066       cc=get_reg(branch_regs[i].regmap,CCREG);
6067       if(cc==-1&&!likely[i]) {
6068         // Cycle count isn't in a register, temporarily load it then write it out
6069         emit_loadreg(CCREG,HOST_CCREG);
6070         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6071         int jaddr=(int)out;
6072         emit_jns(0);
6073         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6074         emit_storereg(CCREG,HOST_CCREG);
6075       }
6076       else{
6077         cc=get_reg(i_regmap,CCREG);
6078         assert(cc==HOST_CCREG);
6079         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6080         int jaddr=(int)out;
6081         emit_jns(0);
6082         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6083       }
6084     }
6085   }
6086 }
6087
6088 static void pagespan_assemble(int i,struct regstat *i_regs)
6089 {
6090   int s1l=get_reg(i_regs->regmap,rs1[i]);
6091   int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6092   int s2l=get_reg(i_regs->regmap,rs2[i]);
6093   int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6094   int taken=0;
6095   int nottaken=0;
6096   int unconditional=0;
6097   if(rs1[i]==0)
6098   {
6099     s1l=s2l;s1h=s2h;
6100     s2l=s2h=-1;
6101   }
6102   else if(rs2[i]==0)
6103   {
6104     s2l=s2h=-1;
6105   }
6106   if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6107     s1h=s2h=-1;
6108   }
6109   int hr=0;
6110   int addr,alt,ntaddr;
6111   if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6112   else {
6113     while(hr<HOST_REGS)
6114     {
6115       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6116          (i_regs->regmap[hr]&63)!=rs1[i] &&
6117          (i_regs->regmap[hr]&63)!=rs2[i] )
6118       {
6119         addr=hr++;break;
6120       }
6121       hr++;
6122     }
6123   }
6124   while(hr<HOST_REGS)
6125   {
6126     if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6127        (i_regs->regmap[hr]&63)!=rs1[i] &&
6128        (i_regs->regmap[hr]&63)!=rs2[i] )
6129     {
6130       alt=hr++;break;
6131     }
6132     hr++;
6133   }
6134   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6135   {
6136     while(hr<HOST_REGS)
6137     {
6138       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6139          (i_regs->regmap[hr]&63)!=rs1[i] &&
6140          (i_regs->regmap[hr]&63)!=rs2[i] )
6141       {
6142         ntaddr=hr;break;
6143       }
6144       hr++;
6145     }
6146   }
6147   assert(hr<HOST_REGS);
6148   if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6149     load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6150   }
6151   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6152   if(opcode[i]==2) // J
6153   {
6154     unconditional=1;
6155   }
6156   if(opcode[i]==3) // JAL
6157   {
6158     // TODO: mini_ht
6159     int rt=get_reg(i_regs->regmap,31);
6160     emit_movimm(start+i*4+8,rt);
6161     unconditional=1;
6162   }
6163   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6164   {
6165     emit_mov(s1l,addr);
6166     if(opcode2[i]==9) // JALR
6167     {
6168       int rt=get_reg(i_regs->regmap,rt1[i]);
6169       emit_movimm(start+i*4+8,rt);
6170     }
6171   }
6172   if((opcode[i]&0x3f)==4) // BEQ
6173   {
6174     if(rs1[i]==rs2[i])
6175     {
6176       unconditional=1;
6177     }
6178     else
6179     #ifdef HAVE_CMOV_IMM
6180     if(s1h<0) {
6181       if(s2l>=0) emit_cmp(s1l,s2l);
6182       else emit_test(s1l,s1l);
6183       emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6184     }
6185     else
6186     #endif
6187     {
6188       assert(s1l>=0);
6189       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6190       if(s1h>=0) {
6191         if(s2h>=0) emit_cmp(s1h,s2h);
6192         else emit_test(s1h,s1h);
6193         emit_cmovne_reg(alt,addr);
6194       }
6195       if(s2l>=0) emit_cmp(s1l,s2l);
6196       else emit_test(s1l,s1l);
6197       emit_cmovne_reg(alt,addr);
6198     }
6199   }
6200   if((opcode[i]&0x3f)==5) // BNE
6201   {
6202     #ifdef HAVE_CMOV_IMM
6203     if(s1h<0) {
6204       if(s2l>=0) emit_cmp(s1l,s2l);
6205       else emit_test(s1l,s1l);
6206       emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6207     }
6208     else
6209     #endif
6210     {
6211       assert(s1l>=0);
6212       emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6213       if(s1h>=0) {
6214         if(s2h>=0) emit_cmp(s1h,s2h);
6215         else emit_test(s1h,s1h);
6216         emit_cmovne_reg(alt,addr);
6217       }
6218       if(s2l>=0) emit_cmp(s1l,s2l);
6219       else emit_test(s1l,s1l);
6220       emit_cmovne_reg(alt,addr);
6221     }
6222   }
6223   if((opcode[i]&0x3f)==0x14) // BEQL
6224   {
6225     if(s1h>=0) {
6226       if(s2h>=0) emit_cmp(s1h,s2h);
6227       else emit_test(s1h,s1h);
6228       nottaken=(int)out;
6229       emit_jne(0);
6230     }
6231     if(s2l>=0) emit_cmp(s1l,s2l);
6232     else emit_test(s1l,s1l);
6233     if(nottaken) set_jump_target(nottaken,(int)out);
6234     nottaken=(int)out;
6235     emit_jne(0);
6236   }
6237   if((opcode[i]&0x3f)==0x15) // BNEL
6238   {
6239     if(s1h>=0) {
6240       if(s2h>=0) emit_cmp(s1h,s2h);
6241       else emit_test(s1h,s1h);
6242       taken=(int)out;
6243       emit_jne(0);
6244     }
6245     if(s2l>=0) emit_cmp(s1l,s2l);
6246     else emit_test(s1l,s1l);
6247     nottaken=(int)out;
6248     emit_jeq(0);
6249     if(taken) set_jump_target(taken,(int)out);
6250   }
6251   if((opcode[i]&0x3f)==6) // BLEZ
6252   {
6253     emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6254     emit_cmpimm(s1l,1);
6255     if(s1h>=0) emit_mov(addr,ntaddr);
6256     emit_cmovl_reg(alt,addr);
6257     if(s1h>=0) {
6258       emit_test(s1h,s1h);
6259       emit_cmovne_reg(ntaddr,addr);
6260       emit_cmovs_reg(alt,addr);
6261     }
6262   }
6263   if((opcode[i]&0x3f)==7) // BGTZ
6264   {
6265     emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6266     emit_cmpimm(s1l,1);
6267     if(s1h>=0) emit_mov(addr,alt);
6268     emit_cmovl_reg(ntaddr,addr);
6269     if(s1h>=0) {
6270       emit_test(s1h,s1h);
6271       emit_cmovne_reg(alt,addr);
6272       emit_cmovs_reg(ntaddr,addr);
6273     }
6274   }
6275   if((opcode[i]&0x3f)==0x16) // BLEZL
6276   {
6277     assert((opcode[i]&0x3f)!=0x16);
6278   }
6279   if((opcode[i]&0x3f)==0x17) // BGTZL
6280   {
6281     assert((opcode[i]&0x3f)!=0x17);
6282   }
6283   assert(opcode[i]!=1); // BLTZ/BGEZ
6284
6285   //FIXME: Check CSREG
6286   if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6287     if((source[i]&0x30000)==0) // BC1F
6288     {
6289       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6290       emit_testimm(s1l,0x800000);
6291       emit_cmovne_reg(alt,addr);
6292     }
6293     if((source[i]&0x30000)==0x10000) // BC1T
6294     {
6295       emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6296       emit_testimm(s1l,0x800000);
6297       emit_cmovne_reg(alt,addr);
6298     }
6299     if((source[i]&0x30000)==0x20000) // BC1FL
6300     {
6301       emit_testimm(s1l,0x800000);
6302       nottaken=(int)out;
6303       emit_jne(0);
6304     }
6305     if((source[i]&0x30000)==0x30000) // BC1TL
6306     {
6307       emit_testimm(s1l,0x800000);
6308       nottaken=(int)out;
6309       emit_jeq(0);
6310     }
6311   }
6312
6313   assert(i_regs->regmap[HOST_CCREG]==CCREG);
6314   wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6315   if(likely[i]||unconditional)
6316   {
6317     emit_movimm(ba[i],HOST_BTREG);
6318   }
6319   else if(addr!=HOST_BTREG)
6320   {
6321     emit_mov(addr,HOST_BTREG);
6322   }
6323   void *branch_addr=out;
6324   emit_jmp(0);
6325   int target_addr=start+i*4+5;
6326   void *stub=out;
6327   void *compiled_target_addr=check_addr(target_addr);
6328   emit_extjump_ds((int)branch_addr,target_addr);
6329   if(compiled_target_addr) {
6330     set_jump_target((int)branch_addr,(int)compiled_target_addr);
6331     add_link(target_addr,stub);
6332   }
6333   else set_jump_target((int)branch_addr,(int)stub);
6334   if(likely[i]) {
6335     // Not-taken path
6336     set_jump_target((int)nottaken,(int)out);
6337     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6338     void *branch_addr=out;
6339     emit_jmp(0);
6340     int target_addr=start+i*4+8;
6341     void *stub=out;
6342     void *compiled_target_addr=check_addr(target_addr);
6343     emit_extjump_ds((int)branch_addr,target_addr);
6344     if(compiled_target_addr) {
6345       set_jump_target((int)branch_addr,(int)compiled_target_addr);
6346       add_link(target_addr,stub);
6347     }
6348     else set_jump_target((int)branch_addr,(int)stub);
6349   }
6350 }
6351
6352 // Assemble the delay slot for the above
6353 static void pagespan_ds()
6354 {
6355   assem_debug("initial delay slot:");
6356   u_int vaddr=start+1;
6357   u_int page=(0x80000000^vaddr)>>12;
6358   u_int vpage=page;
6359   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[page^0x80000]^0x80000000)>>12;
6360   if(page>2048) page=2048+(page&2047);
6361   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
6362   if(vpage>2048) vpage=2048+(vpage&2047);
6363   ll_add(jump_dirty+vpage,vaddr,(void *)out);
6364   do_dirty_stub_ds();
6365   ll_add(jump_in+page,vaddr,(void *)out);
6366   assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6367   if(regs[0].regmap[HOST_CCREG]!=CCREG)
6368     wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6369   if(regs[0].regmap[HOST_BTREG]!=BTREG)
6370     emit_writeword(HOST_BTREG,(int)&branch_target);
6371   load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6372   address_generation(0,&regs[0],regs[0].regmap_entry);
6373   if(itype[0]==LOAD||itype[0]==LOADLR||itype[0]==STORE||itype[0]==STORELR||itype[0]==C1LS)
6374     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,MMREG,ROREG);
6375   if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39)
6376     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6377   cop1_usable=0;
6378   is_delayslot=0;
6379   switch(itype[0]) {
6380     case ALU:
6381       alu_assemble(0,&regs[0]);break;
6382     case IMM16:
6383       imm16_assemble(0,&regs[0]);break;
6384     case SHIFT:
6385       shift_assemble(0,&regs[0]);break;
6386     case SHIFTIMM:
6387       shiftimm_assemble(0,&regs[0]);break;
6388     case LOAD:
6389       load_assemble(0,&regs[0]);break;
6390     case LOADLR:
6391       loadlr_assemble(0,&regs[0]);break;
6392     case STORE:
6393       store_assemble(0,&regs[0]);break;
6394     case STORELR:
6395       storelr_assemble(0,&regs[0]);break;
6396     case COP0:
6397       cop0_assemble(0,&regs[0]);break;
6398     case COP1:
6399       cop1_assemble(0,&regs[0]);break;
6400     case C1LS:
6401       c1ls_assemble(0,&regs[0]);break;
6402     case FCONV:
6403       fconv_assemble(0,&regs[0]);break;
6404     case FLOAT:
6405       float_assemble(0,&regs[0]);break;
6406     case FCOMP:
6407       fcomp_assemble(0,&regs[0]);break;
6408     case MULTDIV:
6409       multdiv_assemble(0,&regs[0]);break;
6410     case MOV:
6411       mov_assemble(0,&regs[0]);break;
6412     case SYSCALL:
6413     case SPAN:
6414     case UJUMP:
6415     case RJUMP:
6416     case CJUMP:
6417     case SJUMP:
6418     case FJUMP:
6419       DebugMessage(M64MSG_VERBOSE, "Jump in the delay slot.  This is probably a bug.");
6420   }
6421   int btaddr=get_reg(regs[0].regmap,BTREG);
6422   if(btaddr<0) {
6423     btaddr=get_reg(regs[0].regmap,-1);
6424     emit_readword((int)&branch_target,btaddr);
6425   }
6426   assert(btaddr!=HOST_CCREG);
6427   if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6428 #ifdef HOST_IMM8
6429   emit_movimm(start+4,HOST_TEMPREG);
6430   emit_cmp(btaddr,HOST_TEMPREG);
6431 #else
6432   emit_cmpimm(btaddr,start+4);
6433 #endif
6434   int branch=(int)out;
6435   emit_jeq(0);
6436   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6437   emit_jmp(jump_vaddr_reg[btaddr]);
6438   set_jump_target(branch,(int)out);
6439   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6440   load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6441 }
6442
6443 // Basic liveness analysis for MIPS registers
6444 static void unneeded_registers(int istart,int iend,int r)
6445 {
6446   int i;
6447   uint64_t u,uu,b,bu;
6448   uint64_t temp_u,temp_uu;
6449   uint64_t tdep;
6450   if(iend==slen-1) {
6451     u=1;uu=1;
6452   }else{
6453     u=unneeded_reg[iend+1];
6454     uu=unneeded_reg_upper[iend+1];
6455     u=1;uu=1;
6456   }
6457   for (i=iend;i>=istart;i--)
6458   {
6459     //DebugMessage(M64MSG_VERBOSE, "unneeded registers i=%d (%d,%d) r=%d",i,istart,iend,r);
6460     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6461     {
6462       // If subroutine call, flag return address as a possible branch target
6463       if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6464       
6465       if(ba[i]<start || ba[i]>=(start+slen*4))
6466       {
6467         // Branch out of this block, flush all regs
6468         u=1;
6469         uu=1;
6470         /* Hexagon hack 
6471         if(itype[i]==UJUMP&&rt1[i]==31)
6472         {
6473           uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6474         }
6475         if(itype[i]==RJUMP&&rs1[i]==31)
6476         {
6477           uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6478         }
6479         if(start>0x80000400&&start<0x80800000) {
6480           if(itype[i]==UJUMP&&rt1[i]==31)
6481           {
6482             //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6483             uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6484           }
6485           if(itype[i]==RJUMP&&rs1[i]==31)
6486           {
6487             //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6488             uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6489           }
6490         }*/
6491         branch_unneeded_reg[i]=u;
6492         branch_unneeded_reg_upper[i]=uu;
6493         // Merge in delay slot
6494         tdep=(~uu>>rt1[i+1])&1;
6495         u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6496         uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6497         u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6498         uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6499         uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6500         u|=1;uu|=1;
6501         // If branch is "likely" (and conditional)
6502         // then we skip the delay slot on the fall-thru path
6503         if(likely[i]) {
6504           if(i<slen-1) {
6505             u&=unneeded_reg[i+2];
6506             uu&=unneeded_reg_upper[i+2];
6507           }
6508           else
6509           {
6510             u=1;
6511             uu=1;
6512           }
6513         }
6514       }
6515       else
6516       {
6517         // Internal branch, flag target
6518         bt[(ba[i]-start)>>2]=1;
6519         if(ba[i]<=start+i*4) {
6520           // Backward branch
6521           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6522           {
6523             // Unconditional branch
6524             temp_u=1;temp_uu=1;
6525           } else {
6526             // Conditional branch (not taken case)
6527             temp_u=unneeded_reg[i+2];
6528             temp_uu=unneeded_reg_upper[i+2];
6529           }
6530           // Merge in delay slot
6531           tdep=(~temp_uu>>rt1[i+1])&1;
6532           temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6533           temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6534           temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6535           temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6536           temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6537           temp_u|=1;temp_uu|=1;
6538           // If branch is "likely" (and conditional)
6539           // then we skip the delay slot on the fall-thru path
6540           if(likely[i]) {
6541             if(i<slen-1) {
6542               temp_u&=unneeded_reg[i+2];
6543               temp_uu&=unneeded_reg_upper[i+2];
6544             }
6545             else
6546             {
6547               temp_u=1;
6548               temp_uu=1;
6549             }
6550           }
6551           tdep=(~temp_uu>>rt1[i])&1;
6552           temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6553           temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6554           temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6555           temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6556           temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6557           temp_u|=1;temp_uu|=1;
6558           unneeded_reg[i]=temp_u;
6559           unneeded_reg_upper[i]=temp_uu;
6560           // Only go three levels deep.  This recursion can take an
6561           // excessive amount of time if there are a lot of nested loops.
6562           if(r<2) {
6563             unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6564           }else{
6565             unneeded_reg[(ba[i]-start)>>2]=1;
6566             unneeded_reg_upper[(ba[i]-start)>>2]=1;
6567           }
6568         } /*else*/ if(1) {
6569           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6570           {
6571             // Unconditional branch
6572             u=unneeded_reg[(ba[i]-start)>>2];
6573             uu=unneeded_reg_upper[(ba[i]-start)>>2];
6574             branch_unneeded_reg[i]=u;
6575             branch_unneeded_reg_upper[i]=uu;
6576         //u=1;
6577         //uu=1;
6578         //branch_unneeded_reg[i]=u;
6579         //branch_unneeded_reg_upper[i]=uu;
6580             // Merge in delay slot
6581             tdep=(~uu>>rt1[i+1])&1;
6582             u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6583             uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6584             u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6585             uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6586             uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6587             u|=1;uu|=1;
6588           } else {
6589             // Conditional branch
6590             b=unneeded_reg[(ba[i]-start)>>2];
6591             bu=unneeded_reg_upper[(ba[i]-start)>>2];
6592             branch_unneeded_reg[i]=b;
6593             branch_unneeded_reg_upper[i]=bu;
6594         //b=1;
6595         //bu=1;
6596         //branch_unneeded_reg[i]=b;
6597         //branch_unneeded_reg_upper[i]=bu;
6598             // Branch delay slot
6599             tdep=(~uu>>rt1[i+1])&1;
6600             b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6601             bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6602             b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6603             bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6604             bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6605             b|=1;bu|=1;
6606             // If branch is "likely" then we skip the
6607             // delay slot on the fall-thru path
6608             if(likely[i]) {
6609               u=b;
6610               uu=bu;
6611               if(i<slen-1) {
6612                 u&=unneeded_reg[i+2];
6613                 uu&=unneeded_reg_upper[i+2];
6614         //u=1;
6615         //uu=1;
6616               }
6617             } else {
6618               u&=b;
6619               uu&=bu;
6620         //u=1;
6621         //uu=1;
6622             }
6623             if(i<slen-1) {
6624               branch_unneeded_reg[i]&=unneeded_reg[i+2];
6625               branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6626         //branch_unneeded_reg[i]=1;
6627         //branch_unneeded_reg_upper[i]=1;
6628             } else {
6629               branch_unneeded_reg[i]=1;
6630               branch_unneeded_reg_upper[i]=1;
6631             }
6632           }
6633         }
6634       }
6635     }
6636     else if(itype[i]==SYSCALL)
6637     {
6638       // SYSCALL instruction (software interrupt)
6639       u=1;
6640       uu=1;
6641     }
6642     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6643     {
6644       // ERET instruction (return from interrupt)
6645       u=1;
6646       uu=1;
6647     }
6648     //u=uu=1; // DEBUG
6649     tdep=(~uu>>rt1[i])&1;
6650     // Written registers are unneeded
6651     u|=1LL<<rt1[i];
6652     u|=1LL<<rt2[i];
6653     uu|=1LL<<rt1[i];
6654     uu|=1LL<<rt2[i];
6655     // Accessed registers are needed
6656     u&=~(1LL<<rs1[i]);
6657     u&=~(1LL<<rs2[i]);
6658     uu&=~(1LL<<us1[i]);
6659     uu&=~(1LL<<us2[i]);
6660     // Source-target dependencies
6661     uu&=~(tdep<<dep1[i]);
6662     uu&=~(tdep<<dep2[i]);
6663     // R0 is always unneeded
6664     u|=1;uu|=1;
6665     // Save it
6666     unneeded_reg[i]=u;
6667     unneeded_reg_upper[i]=uu;
6668     /*
6669     DebugMessage(M64MSG_VERBOSE, "ur (%d,%d) %x: ",istart,iend,start+i*4);
6670     DebugMessage(M64MSG_VERBOSE, "U:");
6671     int r;
6672     for(r=1;r<=CCREG;r++) {
6673       if((unneeded_reg[i]>>r)&1) {
6674         if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
6675         else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
6676         else DebugMessage(M64MSG_VERBOSE, " r%d",r);
6677       }
6678     }
6679     DebugMessage(M64MSG_VERBOSE, " UU:");
6680     for(r=1;r<=CCREG;r++) {
6681       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6682         if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
6683         else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
6684         else DebugMessage(M64MSG_VERBOSE, " r%d",r);
6685       }
6686     }*/
6687   }
6688 }
6689
6690 // Identify registers which are likely to contain 32-bit values
6691 // This is used to predict whether any branches will jump to a
6692 // location with 64-bit values in registers.
6693 static void provisional_32bit()
6694 {
6695   int i,j;
6696   uint64_t is32=1;
6697   uint64_t lastbranch=1;
6698   
6699   for(i=0;i<slen;i++)
6700   {
6701     if(i>0) {
6702       if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6703         if(i>1) is32=lastbranch;
6704         else is32=1;
6705       }
6706     }
6707     if(i>1)
6708     {
6709       if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6710         if(likely[i-2]) {
6711           if(i>2) is32=lastbranch;
6712           else is32=1;
6713         }
6714       }
6715       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6716       {
6717         if(rs1[i-2]==0||rs2[i-2]==0)
6718         {
6719           if(rs1[i-2]) {
6720             is32|=1LL<<rs1[i-2];
6721           }
6722           if(rs2[i-2]) {
6723             is32|=1LL<<rs2[i-2];
6724           }
6725         }
6726       }
6727     }
6728     // If something jumps here with 64-bit values
6729     // then promote those registers to 64 bits
6730     if(bt[i])
6731     {
6732       uint64_t temp_is32=is32;
6733       for(j=i-1;j>=0;j--)
6734       {
6735         if(ba[j]==start+i*4) 
6736           //temp_is32&=branch_regs[j].is32;
6737           temp_is32&=p32[j];
6738       }
6739       for(j=i;j<slen;j++)
6740       {
6741         if(ba[j]==start+i*4) 
6742           temp_is32=1;
6743       }
6744       is32=temp_is32;
6745     }
6746     int type=itype[i];
6747     int op=opcode[i];
6748     int op2=opcode2[i];
6749     int rt=rt1[i];
6750     int s1=rs1[i];
6751     int s2=rs2[i];
6752     if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6753       // Branches don't write registers, consider the delay slot instead.
6754       type=itype[i+1];
6755       op=opcode[i+1];
6756       op2=opcode2[i+1];
6757       rt=rt1[i+1];
6758       s1=rs1[i+1];
6759       s2=rs2[i+1];
6760       lastbranch=is32;
6761     }
6762     switch(type) {
6763       case LOAD:
6764         if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6765            opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6766           is32&=~(1LL<<rt);
6767         else
6768           is32|=1LL<<rt;
6769         break;
6770       case STORE:
6771       case STORELR:
6772         break;
6773       case LOADLR:
6774         if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6775         if(op==0x22) is32|=1LL<<rt; // LWL
6776         break;
6777       case IMM16:
6778         if (op==0x08||op==0x09|| // ADDI/ADDIU
6779             op==0x0a||op==0x0b|| // SLTI/SLTIU
6780             op==0x0c|| // ANDI
6781             op==0x0f)  // LUI
6782         {
6783           is32|=1LL<<rt;
6784         }
6785         if(op==0x18||op==0x19) { // DADDI/DADDIU
6786           is32&=~(1LL<<rt);
6787           //if(imm[i]==0)
6788           //  is32|=((is32>>s1)&1LL)<<rt;
6789         }
6790         if(op==0x0d||op==0x0e) { // ORI/XORI
6791           uint64_t sr=((is32>>s1)&1LL);
6792           is32&=~(1LL<<rt);
6793           is32|=sr<<rt;
6794         }
6795         break;
6796       case UJUMP:
6797         break;
6798       case RJUMP:
6799         break;
6800       case CJUMP:
6801         break;
6802       case SJUMP:
6803         break;
6804       case FJUMP:
6805         break;
6806       case ALU:
6807         if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6808           is32|=1LL<<rt;
6809         }
6810         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6811           is32|=1LL<<rt;
6812         }
6813         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6814           uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6815           is32&=~(1LL<<rt);
6816           is32|=sr<<rt;
6817         }
6818         else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6819           if(s1==0&&s2==0) {
6820             is32|=1LL<<rt;
6821           }
6822           else if(s2==0) {
6823             uint64_t sr=((is32>>s1)&1LL);
6824             is32&=~(1LL<<rt);
6825             is32|=sr<<rt;
6826           }
6827           else if(s1==0) {
6828             uint64_t sr=((is32>>s2)&1LL);
6829             is32&=~(1LL<<rt);
6830             is32|=sr<<rt;
6831           }
6832           else {
6833             is32&=~(1LL<<rt);
6834           }
6835         }
6836         else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
6837           if(s1==0&&s2==0) {
6838             is32|=1LL<<rt;
6839           }
6840           else if(s2==0) {
6841             uint64_t sr=((is32>>s1)&1LL);
6842             is32&=~(1LL<<rt);
6843             is32|=sr<<rt;
6844           }
6845           else {
6846             is32&=~(1LL<<rt);
6847           }
6848         }
6849         break;
6850       case MULTDIV:
6851         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
6852           is32&=~((1LL<<HIREG)|(1LL<<LOREG));
6853         }
6854         else {
6855           is32|=(1LL<<HIREG)|(1LL<<LOREG);
6856         }
6857         break;
6858       case MOV:
6859         {
6860           uint64_t sr=((is32>>s1)&1LL);
6861           is32&=~(1LL<<rt);
6862           is32|=sr<<rt;
6863         }
6864         break;
6865       case SHIFT:
6866         if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
6867         else is32|=1LL<<rt; // SLLV/SRLV/SRAV
6868         break;
6869       case SHIFTIMM:
6870         is32|=1LL<<rt;
6871         // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
6872         if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
6873         break;
6874       case COP0:
6875         if(op2==0) is32|=1LL<<rt; // MFC0
6876         break;
6877       case COP1:
6878         if(op2==0) is32|=1LL<<rt; // MFC1
6879         if(op2==1) is32&=~(1LL<<rt); // DMFC1
6880         if(op2==2) is32|=1LL<<rt; // CFC1
6881         break;
6882       case C1LS:
6883         break;
6884       case FLOAT:
6885       case FCONV:
6886         break;
6887       case FCOMP:
6888         break;
6889       case SYSCALL:
6890         break;
6891       default:
6892         break;
6893     }
6894     is32|=1;
6895     p32[i]=is32;
6896
6897     if(i>0)
6898     {
6899       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
6900       {
6901         if(rt1[i-1]==31) // JAL/JALR
6902         {
6903           // Subroutine call will return here, don't alloc any registers
6904           is32=1;
6905         }
6906         else if(i+1<slen)
6907         {
6908           // Internal branch will jump here, match registers to caller
6909           is32=0x3FFFFFFFFLL;
6910         }
6911       }
6912     }
6913   }
6914 }
6915
6916 // Identify registers which may be assumed to contain 32-bit values
6917 // and where optimizations will rely on this.
6918 // This is used to determine whether backward branches can safely
6919 // jump to a location with 64-bit values in registers.
6920 static void provisional_r32()
6921 {
6922   u_int r32=0;
6923   int i;
6924   
6925   for (i=slen-1;i>=0;i--)
6926   {
6927     int hr;
6928     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6929     {
6930       if(ba[i]<start || ba[i]>=(start+slen*4))
6931       {
6932         // Branch out of this block, don't need anything
6933         r32=0;
6934       }
6935       else
6936       {
6937         // Internal branch
6938         // Need whatever matches the target
6939         // (and doesn't get overwritten by the delay slot instruction)
6940         r32=0;
6941         int t=(ba[i]-start)>>2;
6942         if(ba[i]>start+i*4) {
6943           // Forward branch
6944           //if(!(requires_32bit[t]&~regs[i].was32))
6945           //  r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
6946           if(!(pr32[t]&~regs[i].was32))
6947             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
6948         }else{
6949           // Backward branch
6950           if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
6951             r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
6952         }
6953       }
6954       // Conditional branch may need registers for following instructions
6955       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
6956       {
6957         if(i<slen-2) {
6958           //r32|=requires_32bit[i+2];
6959           r32|=pr32[i+2];
6960           r32&=regs[i].was32;
6961           // Mark this address as a branch target since it may be called
6962           // upon return from interrupt
6963           //bt[i+2]=1;
6964         }
6965       }
6966       // Merge in delay slot
6967       if(!likely[i]) {
6968         // These are overwritten unless the branch is "likely"
6969         // and the delay slot is nullified if not taken
6970         r32&=~(1LL<<rt1[i+1]);
6971         r32&=~(1LL<<rt2[i+1]);
6972       }
6973       // Assume these are needed (delay slot)
6974       if(us1[i+1]>0)
6975       {
6976         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
6977       }
6978       if(us2[i+1]>0)
6979       {
6980         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
6981       }
6982       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
6983       {
6984         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
6985       }
6986       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
6987       {
6988         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
6989       }
6990     }
6991     else if(itype[i]==SYSCALL)
6992     {
6993       // SYSCALL instruction (software interrupt)
6994       r32=0;
6995     }
6996     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6997     {
6998       // ERET instruction (return from interrupt)
6999       r32=0;
7000     }
7001     // Check 32 bits
7002     r32&=~(1LL<<rt1[i]);
7003     r32&=~(1LL<<rt2[i]);
7004     if(us1[i]>0)
7005     {
7006       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7007     }
7008     if(us2[i]>0)
7009     {
7010       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7011     }
7012     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7013     {
7014       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7015     }
7016     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7017     {
7018       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7019     }
7020     //requires_32bit[i]=r32;
7021     pr32[i]=r32;
7022     
7023     // Dirty registers which are 32-bit, require 32-bit input
7024     // as they will be written as 32-bit values
7025     for(hr=0;hr<HOST_REGS;hr++)
7026     {
7027       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7028         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7029           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7030           pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7031           //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7032         }
7033       }
7034     }
7035   }
7036 }
7037
7038 // Write back dirty registers as soon as we will no longer modify them,
7039 // so that we don't end up with lots of writes at the branches.
7040 static void clean_registers(int istart,int iend,int wr)
7041 {
7042   int i;
7043   int r;
7044   u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7045   u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7046   if(iend==slen-1) {
7047     will_dirty_i=will_dirty_next=0;
7048     wont_dirty_i=wont_dirty_next=0;
7049   }else{
7050     will_dirty_i=will_dirty_next=will_dirty[iend+1];
7051     wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7052   }
7053   for (i=iend;i>=istart;i--)
7054   {
7055     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7056     {
7057       if(ba[i]<start || ba[i]>=(start+slen*4))
7058       {
7059         // Branch out of this block, flush all regs
7060         if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7061         {
7062           // Unconditional branch
7063           will_dirty_i=0;
7064           wont_dirty_i=0;
7065           // Merge in delay slot (will dirty)
7066           for(r=0;r<HOST_REGS;r++) {
7067             if(r!=EXCLUDE_REG) {
7068               if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7069               if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7070               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7071               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7072               if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7073               if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7074               if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7075               if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7076               if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7077               if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7078               if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7079               if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7080               if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7081               if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7082             }
7083           }
7084         }
7085         else
7086         {
7087           // Conditional branch
7088           will_dirty_i=0;
7089           wont_dirty_i=wont_dirty_next;
7090           // Merge in delay slot (will dirty)
7091           for(r=0;r<HOST_REGS;r++) {
7092             if(r!=EXCLUDE_REG) {
7093               if(!likely[i]) {
7094                 // Might not dirty if likely branch is not taken
7095                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7096                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7097                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7098                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7099                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7100                 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7101                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7102                 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7103                 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7104                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7105                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7106                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7107                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7108                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7109               }
7110             }
7111           }
7112         }
7113         // Merge in delay slot (wont dirty)
7114         for(r=0;r<HOST_REGS;r++) {
7115           if(r!=EXCLUDE_REG) {
7116             if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7117             if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7118             if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7119             if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7120             if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7121             if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7122             if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7123             if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7124             if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7125             if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7126           }
7127         }
7128         if(wr) {
7129           #ifndef DESTRUCTIVE_WRITEBACK
7130           branch_regs[i].dirty&=wont_dirty_i;
7131           #endif
7132           branch_regs[i].dirty|=will_dirty_i;
7133         }
7134       }
7135       else
7136       {
7137         // Internal branch
7138         if(ba[i]<=start+i*4) {
7139           // Backward branch
7140           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7141           {
7142             // Unconditional branch
7143             temp_will_dirty=0;
7144             temp_wont_dirty=0;
7145             // Merge in delay slot (will dirty)
7146             for(r=0;r<HOST_REGS;r++) {
7147               if(r!=EXCLUDE_REG) {
7148                 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7149                 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7150                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7151                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7152                 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7153                 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7154                 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7155                 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7156                 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7157                 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7158                 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7159                 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7160                 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7161                 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7162               }
7163             }
7164           } else {
7165             // Conditional branch (not taken case)
7166             temp_will_dirty=will_dirty_next;
7167             temp_wont_dirty=wont_dirty_next;
7168             // Merge in delay slot (will dirty)
7169             for(r=0;r<HOST_REGS;r++) {
7170               if(r!=EXCLUDE_REG) {
7171                 if(!likely[i]) {
7172                   // Will not dirty if likely branch is not taken
7173                   if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7174                   if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7175                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7176                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7177                   if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7178                   if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7179                   if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7180                   //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7181                   //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7182                   if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7183                   if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7184                   if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7185                   if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7186                   if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7187                 }
7188               }
7189             }
7190           }
7191           // Merge in delay slot (wont dirty)
7192           for(r=0;r<HOST_REGS;r++) {
7193             if(r!=EXCLUDE_REG) {
7194               if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7195               if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7196               if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7197               if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7198               if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7199               if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7200               if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7201               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7202               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7203               if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7204             }
7205           }
7206           // Deal with changed mappings
7207           if(i<iend) {
7208             for(r=0;r<HOST_REGS;r++) {
7209               if(r!=EXCLUDE_REG) {
7210                 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7211                   temp_will_dirty&=~(1<<r);
7212                   temp_wont_dirty&=~(1<<r);
7213                   if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7214                     temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7215                     temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7216                   } else {
7217                     temp_will_dirty|=1<<r;
7218                     temp_wont_dirty|=1<<r;
7219                   }
7220                 }
7221               }
7222             }
7223           }
7224           if(wr) {
7225             will_dirty[i]=temp_will_dirty;
7226             wont_dirty[i]=temp_wont_dirty;
7227             clean_registers((ba[i]-start)>>2,i-1,0);
7228           }else{
7229             // Limit recursion.  It can take an excessive amount
7230             // of time if there are a lot of nested loops.
7231             will_dirty[(ba[i]-start)>>2]=0;
7232             wont_dirty[(ba[i]-start)>>2]=-1;
7233           }
7234         }
7235         /*else*/ if(1)
7236         {
7237           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7238           {
7239             // Unconditional branch
7240             will_dirty_i=0;
7241             wont_dirty_i=0;
7242           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7243             for(r=0;r<HOST_REGS;r++) {
7244               if(r!=EXCLUDE_REG) {
7245                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7246                   will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7247                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7248                 }
7249                 if(branch_regs[i].regmap[r]>=0) {
7250                   will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7251                   wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7252                 }
7253               }
7254             }
7255           //}
7256             // Merge in delay slot
7257             for(r=0;r<HOST_REGS;r++) {
7258               if(r!=EXCLUDE_REG) {
7259                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7260                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7261                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7262                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7263                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7264                 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7265                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7266                 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7267                 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7268                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7269                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7270                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7271                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7272                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7273               }
7274             }
7275           } else {
7276             // Conditional branch
7277             will_dirty_i=will_dirty_next;
7278             wont_dirty_i=wont_dirty_next;
7279           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7280             for(r=0;r<HOST_REGS;r++) {
7281               if(r!=EXCLUDE_REG) {
7282                 signed char target_reg=branch_regs[i].regmap[r];
7283                 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7284                   will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7285                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7286                 }
7287                 else if(target_reg>=0) {
7288                   will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7289                   wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7290                 }
7291                 // Treat delay slot as part of branch too
7292                 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7293                   will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7294                   wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7295                 }
7296                 else
7297                 {
7298                   will_dirty[i+1]&=~(1<<r);
7299                 }*/
7300               }
7301             }
7302           //}
7303             // Merge in delay slot
7304             for(r=0;r<HOST_REGS;r++) {
7305               if(r!=EXCLUDE_REG) {
7306                 if(!likely[i]) {
7307                   // Might not dirty if likely branch is not taken
7308                   if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7309                   if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7310                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7311                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7312                   if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7313                   if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7314                   if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7315                   //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7316                   //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7317                   if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7318                   if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7319                   if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7320                   if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7321                   if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7322                 }
7323               }
7324             }
7325           }
7326           // Merge in delay slot (won't dirty)
7327           for(r=0;r<HOST_REGS;r++) {
7328             if(r!=EXCLUDE_REG) {
7329               if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7330               if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7331               if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7332               if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7333               if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7334               if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7335               if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7336               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7337               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7338               if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7339             }
7340           }
7341           if(wr) {
7342             #ifndef DESTRUCTIVE_WRITEBACK
7343             branch_regs[i].dirty&=wont_dirty_i;
7344             #endif
7345             branch_regs[i].dirty|=will_dirty_i;
7346           }
7347         }
7348       }
7349     }
7350     else if(itype[i]==SYSCALL)
7351     {
7352       // SYSCALL instruction (software interrupt)
7353       will_dirty_i=0;
7354       wont_dirty_i=0;
7355     }
7356     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7357     {
7358       // ERET instruction (return from interrupt)
7359       will_dirty_i=0;
7360       wont_dirty_i=0;
7361     }
7362     will_dirty_next=will_dirty_i;
7363     wont_dirty_next=wont_dirty_i;
7364     for(r=0;r<HOST_REGS;r++) {
7365       if(r!=EXCLUDE_REG) {
7366         if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7367         if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7368         if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7369         if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7370         if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7371         if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7372         if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7373         if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7374         if(i>istart) {
7375           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP) 
7376           {
7377             // Don't store a register immediately after writing it,
7378             // may prevent dual-issue.
7379             if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7380             if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7381           }
7382         }
7383       }
7384     }
7385     // Save it
7386     will_dirty[i]=will_dirty_i;
7387     wont_dirty[i]=wont_dirty_i;
7388     // Mark registers that won't be dirtied as not dirty
7389     if(wr) {
7390       /*DebugMessage(M64MSG_VERBOSE, "wr (%d,%d) %x will:",istart,iend,start+i*4);
7391       for(r=0;r<HOST_REGS;r++) {
7392         if((will_dirty_i>>r)&1) {
7393           DebugMessage(M64MSG_VERBOSE, " r%d",r);
7394         }
7395       }*/
7396
7397       //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7398         regs[i].dirty|=will_dirty_i;
7399         #ifndef DESTRUCTIVE_WRITEBACK
7400         regs[i].dirty&=wont_dirty_i;
7401         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7402         {
7403           if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7404             for(r=0;r<HOST_REGS;r++) {
7405               if(r!=EXCLUDE_REG) {
7406                 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7407                   regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7408                 }else {/*DebugMessage(M64MSG_VERBOSE, "i: %x (%d) mismatch(+2): %d",start+i*4,i,r); / *assert(!((wont_dirty_i>>r)&1));*/}
7409               }
7410             }
7411           }
7412         }
7413         else
7414         {
7415           if(i<iend) {
7416             for(r=0;r<HOST_REGS;r++) {
7417               if(r!=EXCLUDE_REG) {
7418                 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7419                   regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7420                 }else {/*DebugMessage(M64MSG_VERBOSE, "i: %x (%d) mismatch(+1): %d",start+i*4,i,r);/ *assert(!((wont_dirty_i>>r)&1));*/}
7421               }
7422             }
7423           }
7424         }
7425         #endif
7426       //}
7427     }
7428     // Deal with changed mappings
7429     temp_will_dirty=will_dirty_i;
7430     temp_wont_dirty=wont_dirty_i;
7431     for(r=0;r<HOST_REGS;r++) {
7432       if(r!=EXCLUDE_REG) {
7433         int nr;
7434         if(regs[i].regmap[r]==regmap_pre[i][r]) {
7435           if(wr) {
7436             #ifndef DESTRUCTIVE_WRITEBACK
7437             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7438             #endif
7439             regs[i].wasdirty|=will_dirty_i&(1<<r);
7440           }
7441         }
7442         else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7443           // Register moved to a different register
7444           will_dirty_i&=~(1<<r);
7445           wont_dirty_i&=~(1<<r);
7446           will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7447           wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7448           if(wr) {
7449             #ifndef DESTRUCTIVE_WRITEBACK
7450             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7451             #endif
7452             regs[i].wasdirty|=will_dirty_i&(1<<r);
7453           }
7454         }
7455         else {
7456           will_dirty_i&=~(1<<r);
7457           wont_dirty_i&=~(1<<r);
7458           if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7459             will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7460             wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7461           } else {
7462             wont_dirty_i|=1<<r;
7463             /*DebugMessage(M64MSG_VERBOSE, "i: %x (%d) mismatch: %d",start+i*4,i,r);/ *assert(!((will_dirty>>r)&1));*/
7464           }
7465         }
7466       }
7467     }
7468   }
7469 }
7470
7471 #ifdef ASSEM_DEBUG
7472   /* disassembly */
7473 static void disassemble_inst(int i)
7474 {
7475     if (bt[i]) DebugMessage(M64MSG_VERBOSE, "*"); else DebugMessage(M64MSG_VERBOSE, " ");
7476     switch(itype[i]) {
7477       case UJUMP:
7478         printf (" %x: %s %8x",start+i*4,insn[i],ba[i]);break;
7479       case CJUMP:
7480         printf (" %x: %s r%d,r%d,%8x",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7481       case SJUMP:
7482         printf (" %x: %s r%d,%8x",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7483       case FJUMP:
7484         printf (" %x: %s %8x",start+i*4,insn[i],ba[i]);break;
7485       case RJUMP:
7486         if ((opcode2[i]&1)&&rt1[i]!=31)
7487           printf (" %x: %s r%d,r%d",start+i*4,insn[i],rt1[i],rs1[i]);
7488         else
7489           printf (" %x: %s r%d",start+i*4,insn[i],rs1[i]);
7490         break;
7491       case SPAN:
7492         printf (" %x: %s (pagespan) r%d,r%d,%8x",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7493       case IMM16:
7494         if(opcode[i]==0xf) //LUI
7495           printf (" %x: %s r%d,%4x0000",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7496         else
7497           printf (" %x: %s r%d,r%d,%d",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7498         break;
7499       case LOAD:
7500       case LOADLR:
7501         printf (" %x: %s r%d,r%d+%x",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7502         break;
7503       case STORE:
7504       case STORELR:
7505         printf (" %x: %s r%d,r%d+%x",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7506         break;
7507       case ALU:
7508       case SHIFT:
7509         printf (" %x: %s r%d,r%d,r%d",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7510         break;
7511       case MULTDIV:
7512         printf (" %x: %s r%d,r%d",start+i*4,insn[i],rs1[i],rs2[i]);
7513         break;
7514       case SHIFTIMM:
7515         printf (" %x: %s r%d,r%d,%d",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7516         break;
7517       case MOV:
7518         if((opcode2[i]&0x1d)==0x10)
7519           printf (" %x: %s r%d",start+i*4,insn[i],rt1[i]);
7520         else if((opcode2[i]&0x1d)==0x11)
7521           printf (" %x: %s r%d",start+i*4,insn[i],rs1[i]);
7522         else
7523           printf (" %x: %s",start+i*4,insn[i]);
7524         break;
7525       case COP0:
7526         if(opcode2[i]==0)
7527           printf (" %x: %s r%d,cpr0[%d]",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7528         else if(opcode2[i]==4)
7529           printf (" %x: %s r%d,cpr0[%d]",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7530         else printf (" %x: %s",start+i*4,insn[i]);
7531         break;
7532       case COP1:
7533         if(opcode2[i]<3)
7534           printf (" %x: %s r%d,cpr1[%d]",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7535         else if(opcode2[i]>3)
7536           printf (" %x: %s r%d,cpr1[%d]",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7537         else printf (" %x: %s",start+i*4,insn[i]);
7538         break;
7539       case C1LS:
7540         printf (" %x: %s cpr1[%d],r%d+%x",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7541         break;
7542       default:
7543         //printf (" %s %8x",insn[i],source[i]);
7544         printf (" %x: %s",start+i*4,insn[i]);
7545     }
7546 }
7547 #endif
7548
7549 void new_dynarec_init()
7550 {
7551   DebugMessage(M64MSG_INFO, "Init new dynarec");
7552
7553 #if NEW_DYNAREC == NEW_DYNAREC_ARM
7554   if ((base_addr = mmap ((u_char *)BASE_ADDR, 1<<TARGET_SIZE_2,
7555             PROT_READ | PROT_WRITE | PROT_EXEC,
7556             MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7557             -1, 0)) <= 0) {DebugMessage(M64MSG_ERROR, "mmap() failed");}
7558 #else
7559   if ((base_addr = mmap (NULL, 1<<TARGET_SIZE_2,
7560             PROT_READ | PROT_WRITE | PROT_EXEC,
7561             MAP_PRIVATE | MAP_ANONYMOUS,
7562             -1, 0)) <= 0) {DebugMessage(M64MSG_ERROR, "mmap() failed");}
7563 #endif
7564   out=(u_char *)base_addr;
7565
7566   rdword=&readmem_dword;
7567   fake_pc.f.r.rs=(long long int *)&readmem_dword;
7568   fake_pc.f.r.rt=(long long int *)&readmem_dword;
7569   fake_pc.f.r.rd=(long long int *)&readmem_dword;
7570   int n;
7571   for(n=0x80000;n<0x80800;n++)
7572     invalid_code[n]=1;
7573   for(n=0;n<65536;n++)
7574     hash_table[n][0]=hash_table[n][2]=-1;
7575   memset(mini_ht,-1,sizeof(mini_ht));
7576   memset(restore_candidate,0,sizeof(restore_candidate));
7577   copy=shadow;
7578   expirep=16384; // Expiry pointer, +2 blocks
7579   pending_exception=0;
7580   literalcount=0;
7581 #ifdef HOST_IMM8
7582   // Copy this into local area so we don't have to put it in every literal pool
7583   invc_ptr=invalid_code;
7584 #endif
7585   stop_after_jal=0;
7586   // TLB
7587   using_tlb=0;
7588   for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7589     memory_map[n]=-1;
7590   for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7591     memory_map[n]=((u_int)rdram-0x80000000)>>2;
7592   for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7593     memory_map[n]=-1;
7594   for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7595     writemem[n] = write_nomem_new;
7596     writememb[n] = write_nomemb_new;
7597     writememh[n] = write_nomemh_new;
7598     writememd[n] = write_nomemd_new;
7599     readmem[n] = read_nomem_new;
7600     readmemb[n] = read_nomemb_new;
7601     readmemh[n] = read_nomemh_new;
7602     readmemd[n] = read_nomemd_new;
7603   }
7604   for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7605     writemem[n] = write_rdram_new;
7606     writememb[n] = write_rdramb_new;
7607     writememh[n] = write_rdramh_new;
7608     writememd[n] = write_rdramd_new;
7609   }
7610   for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7611     writemem[n] = write_nomem_new;
7612     writememb[n] = write_nomemb_new;
7613     writememh[n] = write_nomemh_new;
7614     writememd[n] = write_nomemd_new;
7615     readmem[n] = read_nomem_new;
7616     readmemb[n] = read_nomemb_new;
7617     readmemh[n] = read_nomemh_new;
7618     readmemd[n] = read_nomemd_new;
7619   }
7620   tlb_hacks();
7621   arch_init();
7622 }
7623
7624 void new_dynarec_cleanup()
7625 {
7626   int n;
7627   if (munmap (base_addr, 1<<TARGET_SIZE_2) < 0) {DebugMessage(M64MSG_ERROR, "munmap() failed");}
7628   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7629   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7630   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7631   #ifdef ROM_COPY
7632   if (munmap (ROM_COPY, 67108864) < 0) {DebugMessage(M64MSG_ERROR, "munmap() failed");}
7633   #endif
7634 }
7635
7636 int new_recompile_block(int addr)
7637 {
7638 /*
7639   if(addr==0x800cd050) {
7640     int block;
7641     for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7642     int n;
7643     for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7644   }
7645 */
7646   //if(Count==365117028) tracedebug=1;
7647   assem_debug("NOTCOMPILED: addr = %x -> %x", (int)addr, (int)out);
7648 #if defined (COUNT_NOTCOMPILEDS )
7649   notcompiledCount++;
7650   log_message( "notcompiledCount=%i", notcompiledCount );
7651 #endif
7652   //DebugMessage(M64MSG_VERBOSE, "NOTCOMPILED: addr = %x -> %x", (int)addr, (int)out);
7653   //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (compile %x)",Count,next_interupt,addr);
7654   //if(debug) 
7655   //DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x)",Count,next_interupt,mchecksum());
7656   //DebugMessage(M64MSG_VERBOSE, "fpu mapping=%x enabled=%x",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7657   /*if(Count>=312978186) {
7658     rlist();
7659   }*/
7660   //rlist();
7661   start = (u_int)addr&~3;
7662   //assert(((u_int)addr&1)==0);
7663   if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7664     source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7665     pagelimit = 0xa4001000;
7666   }
7667   else if ((int)addr >= 0x80000000 && (int)addr < 0x80800000) {
7668     source = (u_int *)((u_int)rdram+start-0x80000000);
7669     pagelimit = 0x80800000;
7670   }
7671   else if ((signed int)addr >= (signed int)0xC0000000) {
7672     //DebugMessage(M64MSG_VERBOSE, "addr=%x mm=%x",(u_int)addr,(memory_map[start>>12]<<2));
7673     //if(tlb_LUT_r[start>>12])
7674       //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7675     if((signed int)memory_map[start>>12]>=0) {
7676       source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7677       pagelimit=(start+4096)&0xFFFFF000;
7678       int map=memory_map[start>>12];
7679       int i;
7680       for(i=0;i<5;i++) {
7681         //DebugMessage(M64MSG_VERBOSE, "start: %x next: %x",map,memory_map[pagelimit>>12]);
7682         if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7683       }
7684       assem_debug("pagelimit=%x",pagelimit);
7685       assem_debug("mapping=%x (%x)",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7686     }
7687     else {
7688       assem_debug("Compile at unmapped memory address: %x ", (int)addr);
7689       //assem_debug("start: %x next: %x",memory_map[start>>12],memory_map[(start+4096)>>12]);
7690       return 1; // Caller will invoke exception handler
7691     }
7692     //DebugMessage(M64MSG_VERBOSE, "source= %x",(int)source);
7693   }
7694   else {
7695     //DebugMessage(M64MSG_VERBOSE, "Compile at bogus memory address: %x ", (int)addr);
7696     log_message("Compile at bogus memory address: %x", (int)addr);
7697     exit(1);
7698   }
7699
7700   /* Pass 1: disassemble */
7701   /* Pass 2: register dependencies, branch targets */
7702   /* Pass 3: register allocation */
7703   /* Pass 4: branch dependencies */
7704   /* Pass 5: pre-alloc */
7705   /* Pass 6: optimize clean/dirty state */
7706   /* Pass 7: flag 32-bit registers */
7707   /* Pass 8: assembly */
7708   /* Pass 9: linker */
7709   /* Pass 10: garbage collection / free memory */
7710
7711   int i,j;
7712   int done=0;
7713   unsigned int type,op,op2;
7714
7715   //DebugMessage(M64MSG_VERBOSE, "addr = %x source = %x %x", addr,source,source[0]);
7716   
7717   /* Pass 1 disassembly */
7718
7719   for(i=0;!done;i++) {
7720     bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7721     minimum_free_regs[i]=0;
7722     opcode[i]=op=source[i]>>26;
7723     switch(op)
7724     {
7725       case 0x00: strcpy(insn[i],"special"); type=NI;
7726         op2=source[i]&0x3f;
7727         switch(op2)
7728         {
7729           case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7730           case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7731           case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7732           case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7733           case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7734           case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7735           case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7736           case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7737           case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7738           case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7739           case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7740           case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7741           case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7742           case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7743           case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7744           case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7745           case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7746           case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7747           case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7748           case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7749           case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7750           case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7751           case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7752           case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7753           case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7754           case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7755           case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7756           case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7757           case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7758           case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7759           case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7760           case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7761           case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7762           case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7763           case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7764           case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7765           case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7766           case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7767           case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7768           case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7769           case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7770           case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7771           case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7772           case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7773           case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7774           case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7775           case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7776           case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7777           case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7778           case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7779           case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7780           case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7781         }
7782         break;
7783       case 0x01: strcpy(insn[i],"regimm"); type=NI;
7784         op2=(source[i]>>16)&0x1f;
7785         switch(op2)
7786         {
7787           case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7788           case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7789           case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7790           case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7791           case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7792           case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7793           case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7794           case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7795           case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7796           case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7797           case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7798           case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7799           case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7800           case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7801         }
7802         break;
7803       case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7804       case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7805       case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7806       case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7807       case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7808       case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7809       case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7810       case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7811       case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7812       case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7813       case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7814       case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7815       case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7816       case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7817       case 0x10: strcpy(insn[i],"cop0"); type=NI;
7818         op2=(source[i]>>21)&0x1f;
7819         switch(op2)
7820         {
7821           case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7822           case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7823           case 0x10: strcpy(insn[i],"tlb"); type=NI;
7824           switch(source[i]&0x3f)
7825           {
7826             case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
7827             case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
7828             case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
7829             case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
7830             case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
7831           }
7832         }
7833         break;
7834       case 0x11: strcpy(insn[i],"cop1"); type=NI;
7835         op2=(source[i]>>21)&0x1f;
7836         switch(op2)
7837         {
7838           case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
7839           case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
7840           case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
7841           case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
7842           case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
7843           case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
7844           case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
7845           switch((source[i]>>16)&0x3)
7846           {
7847             case 0x00: strcpy(insn[i],"BC1F"); break;
7848             case 0x01: strcpy(insn[i],"BC1T"); break;
7849             case 0x02: strcpy(insn[i],"BC1FL"); break;
7850             case 0x03: strcpy(insn[i],"BC1TL"); break;
7851           }
7852           break;
7853           case 0x10: strcpy(insn[i],"C1.S"); type=NI;
7854           switch(source[i]&0x3f)
7855           {
7856             case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
7857             case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
7858             case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
7859             case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
7860             case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
7861             case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
7862             case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
7863             case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
7864             case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
7865             case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
7866             case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
7867             case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
7868             case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
7869             case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
7870             case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
7871             case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
7872             case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
7873             case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
7874             case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
7875             case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
7876             case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
7877             case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
7878             case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
7879             case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
7880             case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
7881             case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
7882             case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
7883             case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
7884             case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
7885             case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
7886             case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
7887             case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
7888             case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
7889             case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
7890             case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
7891           }
7892           break;
7893           case 0x11: strcpy(insn[i],"C1.D"); type=NI;
7894           switch(source[i]&0x3f)
7895           {
7896             case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
7897             case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
7898             case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
7899             case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
7900             case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
7901             case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
7902             case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
7903             case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
7904             case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
7905             case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
7906             case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
7907             case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
7908             case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
7909             case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
7910             case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
7911             case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
7912             case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
7913             case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
7914             case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
7915             case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
7916             case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
7917             case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
7918             case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
7919             case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
7920             case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
7921             case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
7922             case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
7923             case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
7924             case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
7925             case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
7926             case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
7927             case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
7928             case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
7929             case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
7930             case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
7931           }
7932           break;
7933           case 0x14: strcpy(insn[i],"C1.W"); type=NI;
7934           switch(source[i]&0x3f)
7935           {
7936             case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
7937             case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
7938           }
7939           break;
7940           case 0x15: strcpy(insn[i],"C1.L"); type=NI;
7941           switch(source[i]&0x3f)
7942           {
7943             case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
7944             case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
7945           }
7946           break;
7947         }
7948         break;
7949       case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
7950       case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
7951       case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
7952       case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
7953       case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
7954       case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
7955       case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
7956       case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
7957       case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
7958       case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
7959       case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
7960       case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
7961       case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
7962       case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
7963       case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
7964       case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
7965       case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
7966       case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
7967       case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
7968       case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
7969       case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
7970       case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
7971       case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
7972       case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
7973       case 0x30: strcpy(insn[i],"LL"); type=NI; break;
7974       case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
7975       case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
7976       case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
7977       case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
7978       case 0x38: strcpy(insn[i],"SC"); type=NI; break;
7979       case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
7980       case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
7981       case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
7982       case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
7983       default: strcpy(insn[i],"???"); type=NI; break;
7984     }
7985     itype[i]=type;
7986     opcode2[i]=op2;
7987     /* Get registers/immediates */
7988     lt1[i]=0;
7989     us1[i]=0;
7990     us2[i]=0;
7991     dep1[i]=0;
7992     dep2[i]=0;
7993     switch(type) {
7994       case LOAD:
7995         rs1[i]=(source[i]>>21)&0x1f;
7996         rs2[i]=0;
7997         rt1[i]=(source[i]>>16)&0x1f;
7998         rt2[i]=0;
7999         imm[i]=(short)source[i];
8000         break;
8001       case STORE:
8002       case STORELR:
8003         rs1[i]=(source[i]>>21)&0x1f;
8004         rs2[i]=(source[i]>>16)&0x1f;
8005         rt1[i]=0;
8006         rt2[i]=0;
8007         imm[i]=(short)source[i];
8008         if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8009         break;
8010       case LOADLR:
8011         // LWL/LWR only load part of the register,
8012         // therefore the target register must be treated as a source too
8013         rs1[i]=(source[i]>>21)&0x1f;
8014         rs2[i]=(source[i]>>16)&0x1f;
8015         rt1[i]=(source[i]>>16)&0x1f;
8016         rt2[i]=0;
8017         imm[i]=(short)source[i];
8018         if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8019         if(op==0x26) dep1[i]=rt1[i]; // LWR
8020         break;
8021       case IMM16:
8022         if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8023         else rs1[i]=(source[i]>>21)&0x1f;
8024         rs2[i]=0;
8025         rt1[i]=(source[i]>>16)&0x1f;
8026         rt2[i]=0;
8027         if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8028           imm[i]=(unsigned short)source[i];
8029         }else{
8030           imm[i]=(short)source[i];
8031         }
8032         if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8033         if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8034         if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8035         break;
8036       case UJUMP:
8037         rs1[i]=0;
8038         rs2[i]=0;
8039         rt1[i]=0;
8040         rt2[i]=0;
8041         // The JAL instruction writes to r31.
8042         if (op&1) {
8043           rt1[i]=31;
8044         }
8045         rs2[i]=CCREG;
8046         break;
8047       case RJUMP:
8048         rs1[i]=(source[i]>>21)&0x1f;
8049         rs2[i]=0;
8050         rt1[i]=0;
8051         rt2[i]=0;
8052         // The JALR instruction writes to rd.
8053         if (op2&1) {
8054           rt1[i]=(source[i]>>11)&0x1f;
8055         }
8056         rs2[i]=CCREG;
8057         break;
8058       case CJUMP:
8059         rs1[i]=(source[i]>>21)&0x1f;
8060         rs2[i]=(source[i]>>16)&0x1f;
8061         rt1[i]=0;
8062         rt2[i]=0;
8063         if(op&2) { // BGTZ/BLEZ
8064           rs2[i]=0;
8065         }
8066         us1[i]=rs1[i];
8067         us2[i]=rs2[i];
8068         likely[i]=op>>4;
8069         break;
8070       case SJUMP:
8071         rs1[i]=(source[i]>>21)&0x1f;
8072         rs2[i]=CCREG;
8073         rt1[i]=0;
8074         rt2[i]=0;
8075         us1[i]=rs1[i];
8076         if(op2&0x10) { // BxxAL
8077           rt1[i]=31;
8078           // NOTE: If the branch is not taken, r31 is still overwritten
8079         }
8080         likely[i]=(op2&2)>>1;
8081         break;
8082       case FJUMP:
8083         rs1[i]=FSREG;
8084         rs2[i]=CSREG;
8085         rt1[i]=0;
8086         rt2[i]=0;
8087         likely[i]=((source[i])>>17)&1;
8088         break;
8089       case ALU:
8090         rs1[i]=(source[i]>>21)&0x1f; // source
8091         rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8092         rt1[i]=(source[i]>>11)&0x1f; // destination
8093         rt2[i]=0;
8094         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8095           us1[i]=rs1[i];us2[i]=rs2[i];
8096         }
8097         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8098           dep1[i]=rs1[i];dep2[i]=rs2[i];
8099         }
8100         else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8101           dep1[i]=rs1[i];dep2[i]=rs2[i];
8102         }
8103         break;
8104       case MULTDIV:
8105         rs1[i]=(source[i]>>21)&0x1f; // source
8106         rs2[i]=(source[i]>>16)&0x1f; // divisor
8107         rt1[i]=HIREG;
8108         rt2[i]=LOREG;
8109         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8110           us1[i]=rs1[i];us2[i]=rs2[i];
8111         }
8112         break;
8113       case MOV:
8114         rs1[i]=0;
8115         rs2[i]=0;
8116         rt1[i]=0;
8117         rt2[i]=0;
8118         if(op2==0x10) rs1[i]=HIREG; // MFHI
8119         if(op2==0x11) rt1[i]=HIREG; // MTHI
8120         if(op2==0x12) rs1[i]=LOREG; // MFLO
8121         if(op2==0x13) rt1[i]=LOREG; // MTLO
8122         if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8123         if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8124         dep1[i]=rs1[i];
8125         break;
8126       case SHIFT:
8127         rs1[i]=(source[i]>>16)&0x1f; // target of shift
8128         rs2[i]=(source[i]>>21)&0x1f; // shift amount
8129         rt1[i]=(source[i]>>11)&0x1f; // destination
8130         rt2[i]=0;
8131         // DSLLV/DSRLV/DSRAV are 64-bit
8132         if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8133         break;
8134       case SHIFTIMM:
8135         rs1[i]=(source[i]>>16)&0x1f;
8136         rs2[i]=0;
8137         rt1[i]=(source[i]>>11)&0x1f;
8138         rt2[i]=0;
8139         imm[i]=(source[i]>>6)&0x1f;
8140         // DSxx32 instructions
8141         if(op2>=0x3c) imm[i]|=0x20;
8142         // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8143         if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8144         break;
8145       case COP0:
8146         rs1[i]=0;
8147         rs2[i]=0;
8148         rt1[i]=0;
8149         rt2[i]=0;
8150         if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8151         if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8152         if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8153         if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8154         break;
8155       case COP1:
8156         rs1[i]=0;
8157         rs2[i]=0;
8158         rt1[i]=0;
8159         rt2[i]=0;
8160         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8161         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8162         if(op2==5) us1[i]=rs1[i]; // DMTC1
8163         rs2[i]=CSREG;
8164         break;
8165       case C1LS:
8166         rs1[i]=(source[i]>>21)&0x1F;
8167         rs2[i]=CSREG;
8168         rt1[i]=0;
8169         rt2[i]=0;
8170         imm[i]=(short)source[i];
8171         break;
8172       case FLOAT:
8173       case FCONV:
8174         rs1[i]=0;
8175         rs2[i]=CSREG;
8176         rt1[i]=0;
8177         rt2[i]=0;
8178         break;
8179       case FCOMP:
8180         rs1[i]=FSREG;
8181         rs2[i]=CSREG;
8182         rt1[i]=FSREG;
8183         rt2[i]=0;
8184         break;
8185       case SYSCALL:
8186         rs1[i]=CCREG;
8187         rs2[i]=0;
8188         rt1[i]=0;
8189         rt2[i]=0;
8190         break;
8191       default:
8192         rs1[i]=0;
8193         rs2[i]=0;
8194         rt1[i]=0;
8195         rt2[i]=0;
8196     }
8197     /* Calculate branch target addresses */
8198     if(type==UJUMP)
8199       ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8200     else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8201       ba[i]=start+i*4+8; // Ignore never taken branch
8202     else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8203       ba[i]=start+i*4+8; // Ignore never taken branch
8204     else if(type==CJUMP||type==SJUMP||type==FJUMP)
8205       ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8206     else ba[i]=-1;
8207     /* Is this the end of the block? */
8208     if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8209       if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8210         done=1;
8211         // Does the block continue due to a branch?
8212         for(j=i-1;j>=0;j--)
8213         {
8214           if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
8215           if(ba[j]==start+i*4+4) done=j=0;
8216           if(ba[j]==start+i*4+8) done=j=0;
8217         }
8218       }
8219       else {
8220         if(stop_after_jal) done=1;
8221         // Stop on BREAK
8222         if((source[i+1]&0xfc00003f)==0x0d) done=1;
8223       }
8224       // Don't recompile stuff that's already compiled
8225       if(check_addr(start+i*4+4)) done=1;
8226       // Don't get too close to the limit
8227       if(i>MAXBLOCK/2) done=1;
8228     }
8229     if(i>0&&itype[i-1]==SYSCALL&&stop_after_jal) done=1;
8230     assert(i<MAXBLOCK-1);
8231     if(start+i*4==pagelimit-4) done=1;
8232     assert(start+i*4<pagelimit);
8233     if (i==MAXBLOCK-1) done=1;
8234     // Stop if we're compiling junk
8235     if(itype[i]==NI&&opcode[i]==0x11) {
8236       done=stop_after_jal=1;
8237       DebugMessage(M64MSG_VERBOSE, "Disabled speculative precompilation");
8238     }
8239   }
8240   slen=i;
8241   if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8242     if(start+i*4==pagelimit) {
8243       itype[i-1]=SPAN;
8244     }
8245   }
8246   assert(slen>0);
8247
8248   /* Pass 2 - Register dependencies and branch targets */
8249
8250   unneeded_registers(0,slen-1,0);
8251   
8252   /* Pass 3 - Register allocation */
8253
8254   struct regstat current; // Current register allocations/status
8255   current.is32=1;
8256   current.dirty=0;
8257   current.u=unneeded_reg[0];
8258   current.uu=unneeded_reg_upper[0];
8259   clear_all_regs(current.regmap);
8260   alloc_reg(&current,0,CCREG);
8261   dirty_reg(&current,CCREG);
8262   current.isconst=0;
8263   current.wasconst=0;
8264   int ds=0;
8265   int cc=0;
8266   int hr;
8267   
8268   provisional_32bit();
8269   
8270   if((u_int)addr&1) {
8271     // First instruction is delay slot
8272     cc=-1;
8273     bt[1]=1;
8274     ds=1;
8275     unneeded_reg[0]=1;
8276     unneeded_reg_upper[0]=1;
8277     current.regmap[HOST_BTREG]=BTREG;
8278   }
8279   
8280   for(i=0;i<slen;i++)
8281   {
8282     if(bt[i])
8283     {
8284       int hr;
8285       for(hr=0;hr<HOST_REGS;hr++)
8286       {
8287         // Is this really necessary?
8288         if(current.regmap[hr]==0) current.regmap[hr]=-1;
8289       }
8290       current.isconst=0;
8291     }
8292     if(i>1)
8293     {
8294       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8295       {
8296         if(rs1[i-2]==0||rs2[i-2]==0)
8297         {
8298           if(rs1[i-2]) {
8299             current.is32|=1LL<<rs1[i-2];
8300             int hr=get_reg(current.regmap,rs1[i-2]|64);
8301             if(hr>=0) current.regmap[hr]=-1;
8302           }
8303           if(rs2[i-2]) {
8304             current.is32|=1LL<<rs2[i-2];
8305             int hr=get_reg(current.regmap,rs2[i-2]|64);
8306             if(hr>=0) current.regmap[hr]=-1;
8307           }
8308         }
8309       }
8310     }
8311     // If something jumps here with 64-bit values
8312     // then promote those registers to 64 bits
8313     if(bt[i])
8314     {
8315       uint64_t temp_is32=current.is32;
8316       for(j=i-1;j>=0;j--)
8317       {
8318         if(ba[j]==start+i*4) 
8319           temp_is32&=branch_regs[j].is32;
8320       }
8321       for(j=i;j<slen;j++)
8322       {
8323         if(ba[j]==start+i*4) 
8324           //temp_is32=1;
8325           temp_is32&=p32[j];
8326       }
8327       if(temp_is32!=current.is32) {
8328         //DebugMessage(M64MSG_VERBOSE, "dumping 32-bit regs (%x)",start+i*4);
8329         #ifndef DESTRUCTIVE_WRITEBACK
8330         if(ds)
8331         #endif
8332         for(hr=0;hr<HOST_REGS;hr++)
8333         {
8334           int r=current.regmap[hr];
8335           if(r>0&&r<64)
8336           {
8337             if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8338               temp_is32|=1LL<<r;
8339               //DebugMessage(M64MSG_VERBOSE, "restore %d",r);
8340             }
8341           }
8342         }
8343         current.is32=temp_is32;
8344       }
8345     }
8346     memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8347     regs[i].wasconst=current.isconst;
8348     regs[i].was32=current.is32;
8349     regs[i].wasdirty=current.dirty;
8350     #ifdef DESTRUCTIVE_WRITEBACK
8351     // To change a dirty register from 32 to 64 bits, we must write
8352     // it out during the previous cycle (for branches, 2 cycles)
8353     if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8354     {
8355       uint64_t temp_is32=current.is32;
8356       for(j=i-1;j>=0;j--)
8357       {
8358         if(ba[j]==start+i*4+4) 
8359           temp_is32&=branch_regs[j].is32;
8360       }
8361       for(j=i;j<slen;j++)
8362       {
8363         if(ba[j]==start+i*4+4) 
8364           //temp_is32=1;
8365           temp_is32&=p32[j];
8366       }
8367       if(temp_is32!=current.is32) {
8368         //DebugMessage(M64MSG_VERBOSE, "pre-dumping 32-bit regs (%x)",start+i*4);
8369         for(hr=0;hr<HOST_REGS;hr++)
8370         {
8371           int r=current.regmap[hr];
8372           if(r>0)
8373           {
8374             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8375               if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8376               {
8377                 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8378                 {
8379                   //DebugMessage(M64MSG_VERBOSE, "dump %d/r%d",hr,r);
8380                   current.regmap[hr]=-1;
8381                   if(get_reg(current.regmap,r|64)>=0) 
8382                     current.regmap[get_reg(current.regmap,r|64)]=-1;
8383                 }
8384               }
8385             }
8386           }
8387         }
8388       }
8389     }
8390     else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8391     {
8392       uint64_t temp_is32=current.is32;
8393       for(j=i-1;j>=0;j--)
8394       {
8395         if(ba[j]==start+i*4+8) 
8396           temp_is32&=branch_regs[j].is32;
8397       }
8398       for(j=i;j<slen;j++)
8399       {
8400         if(ba[j]==start+i*4+8) 
8401           //temp_is32=1;
8402           temp_is32&=p32[j];
8403       }
8404       if(temp_is32!=current.is32) {
8405         //DebugMessage(M64MSG_VERBOSE, "pre-dumping 32-bit regs (%x)",start+i*4);
8406         for(hr=0;hr<HOST_REGS;hr++)
8407         {
8408           int r=current.regmap[hr];
8409           if(r>0)
8410           {
8411             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8412               if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8413               {
8414                 //DebugMessage(M64MSG_VERBOSE, "dump %d/r%d",hr,r);
8415                 current.regmap[hr]=-1;
8416                 if(get_reg(current.regmap,r|64)>=0) 
8417                   current.regmap[get_reg(current.regmap,r|64)]=-1;
8418               }
8419             }
8420           }
8421         }
8422       }
8423     }
8424     #endif
8425     if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8426       if(i+1<slen) {
8427         current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8428         current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8429         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8430         current.u|=1;
8431         current.uu|=1;
8432       } else {
8433         current.u=1;
8434         current.uu=1;
8435       }
8436     } else {
8437       if(i+1<slen) {
8438         current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8439         current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8440         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8441         current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8442         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8443         current.u|=1;
8444         current.uu|=1;
8445       } else { DebugMessage(M64MSG_ERROR, "oops, branch at end of block with no delay slot");exit(1); }
8446     }
8447     is_ds[i]=ds;
8448     if(ds) {
8449       ds=0; // Skip delay slot, already allocated as part of branch
8450       // ...but we need to alloc it in case something jumps here
8451       if(i+1<slen) {
8452         current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8453         current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8454       }else{
8455         current.u=branch_unneeded_reg[i-1];
8456         current.uu=branch_unneeded_reg_upper[i-1];
8457       }
8458       current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8459       current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8460       if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8461       current.u|=1;
8462       current.uu|=1;
8463       struct regstat temp;
8464       memcpy(&temp,&current,sizeof(current));
8465       temp.wasdirty=temp.dirty;
8466       temp.was32=temp.is32;
8467       // TODO: Take into account unconditional branches, as below
8468       delayslot_alloc(&temp,i);
8469       memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8470       regs[i].wasdirty=temp.wasdirty;
8471       regs[i].was32=temp.was32;
8472       regs[i].dirty=temp.dirty;
8473       regs[i].is32=temp.is32;
8474       regs[i].isconst=0;
8475       regs[i].wasconst=0;
8476       current.isconst=0;
8477       // Create entry (branch target) regmap
8478       for(hr=0;hr<HOST_REGS;hr++)
8479       {
8480         int r=temp.regmap[hr];
8481         if(r>=0) {
8482           if(r!=regmap_pre[i][hr]) {
8483             regs[i].regmap_entry[hr]=-1;
8484           }
8485           else
8486           {
8487             if(r<64){
8488               if((current.u>>r)&1) {
8489                 regs[i].regmap_entry[hr]=-1;
8490                 regs[i].regmap[hr]=-1;
8491                 //Don't clear regs in the delay slot as the branch might need them
8492                 //current.regmap[hr]=-1;
8493               }else
8494                 regs[i].regmap_entry[hr]=r;
8495             }
8496             else {
8497               if((current.uu>>(r&63))&1) {
8498                 regs[i].regmap_entry[hr]=-1;
8499                 regs[i].regmap[hr]=-1;
8500                 //Don't clear regs in the delay slot as the branch might need them
8501                 //current.regmap[hr]=-1;
8502               }else
8503                 regs[i].regmap_entry[hr]=r;
8504             }
8505           }
8506         } else {
8507           // First instruction expects CCREG to be allocated
8508           if(i==0&&hr==HOST_CCREG) 
8509             regs[i].regmap_entry[hr]=CCREG;
8510           else
8511             regs[i].regmap_entry[hr]=-1;
8512         }
8513       }
8514     }
8515     else { // Not delay slot
8516       switch(itype[i]) {
8517         case UJUMP:
8518           //current.isconst=0; // DEBUG
8519           //current.wasconst=0; // DEBUG
8520           //regs[i].wasconst=0; // DEBUG
8521           clear_const(&current,rt1[i]);
8522           alloc_cc(&current,i);
8523           dirty_reg(&current,CCREG);
8524           if (rt1[i]==31) {
8525             alloc_reg(&current,i,31);
8526             dirty_reg(&current,31);
8527             assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8528             #ifdef REG_PREFETCH
8529             alloc_reg(&current,i,PTEMP);
8530             #endif
8531             //current.is32|=1LL<<rt1[i];
8532           }
8533           ooo[i]=1;
8534           delayslot_alloc(&current,i+1);
8535           //current.isconst=0; // DEBUG
8536           ds=1;
8537           //DebugMessage(M64MSG_VERBOSE, "i=%d, isconst=%x",i,current.isconst);
8538           break;
8539         case RJUMP:
8540           //current.isconst=0;
8541           //current.wasconst=0;
8542           //regs[i].wasconst=0;
8543           clear_const(&current,rs1[i]);
8544           clear_const(&current,rt1[i]);
8545           alloc_cc(&current,i);
8546           dirty_reg(&current,CCREG);
8547           if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8548             alloc_reg(&current,i,rs1[i]);
8549             if (rt1[i]!=0) {
8550               alloc_reg(&current,i,rt1[i]);
8551               dirty_reg(&current,rt1[i]);
8552               assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8553               #ifdef REG_PREFETCH
8554               alloc_reg(&current,i,PTEMP);
8555               #endif
8556             }
8557             #ifdef USE_MINI_HT
8558             if(rs1[i]==31) { // JALR
8559               alloc_reg(&current,i,RHASH);
8560               #ifndef HOST_IMM_ADDR32
8561               alloc_reg(&current,i,RHTBL);
8562               #endif
8563             }
8564             #endif
8565             delayslot_alloc(&current,i+1);
8566           } else {
8567             // The delay slot overwrites our source register,
8568             // allocate a temporary register to hold the old value.
8569             current.isconst=0;
8570             current.wasconst=0;
8571             regs[i].wasconst=0;
8572             delayslot_alloc(&current,i+1);
8573             current.isconst=0;
8574             alloc_reg(&current,i,RTEMP);
8575           }
8576           //current.isconst=0; // DEBUG
8577           ooo[i]=1;
8578           ds=1;
8579           break;
8580         case CJUMP:
8581           //current.isconst=0;
8582           //current.wasconst=0;
8583           //regs[i].wasconst=0;
8584           clear_const(&current,rs1[i]);
8585           clear_const(&current,rs2[i]);
8586           if((opcode[i]&0x3E)==4) // BEQ/BNE
8587           {
8588             alloc_cc(&current,i);
8589             dirty_reg(&current,CCREG);
8590             if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8591             if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8592             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8593             {
8594               if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8595               if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8596             }
8597             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8598                (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8599               // The delay slot overwrites one of our conditions.
8600               // Allocate the branch condition registers instead.
8601               current.isconst=0;
8602               current.wasconst=0;
8603               regs[i].wasconst=0;
8604               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8605               if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8606               if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8607               {
8608                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8609                 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8610               }
8611             }
8612             else
8613             {
8614               ooo[i]=1;
8615               delayslot_alloc(&current,i+1);
8616             }
8617           }
8618           else
8619           if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8620           {
8621             alloc_cc(&current,i);
8622             dirty_reg(&current,CCREG);
8623             alloc_reg(&current,i,rs1[i]);
8624             if(!(current.is32>>rs1[i]&1))
8625             {
8626               alloc_reg64(&current,i,rs1[i]);
8627             }
8628             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8629               // The delay slot overwrites one of our conditions.
8630               // Allocate the branch condition registers instead.
8631               current.isconst=0;
8632               current.wasconst=0;
8633               regs[i].wasconst=0;
8634               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8635               if(!((current.is32>>rs1[i])&1))
8636               {
8637                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8638               }
8639             }
8640             else
8641             {
8642               ooo[i]=1;
8643               delayslot_alloc(&current,i+1);
8644             }
8645           }
8646           else
8647           // Don't alloc the delay slot yet because we might not execute it
8648           if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8649           {
8650             current.isconst=0;
8651             current.wasconst=0;
8652             regs[i].wasconst=0;
8653             alloc_cc(&current,i);
8654             dirty_reg(&current,CCREG);
8655             alloc_reg(&current,i,rs1[i]);
8656             alloc_reg(&current,i,rs2[i]);
8657             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8658             {
8659               alloc_reg64(&current,i,rs1[i]);
8660               alloc_reg64(&current,i,rs2[i]);
8661             }
8662           }
8663           else
8664           if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8665           {
8666             current.isconst=0;
8667             current.wasconst=0;
8668             regs[i].wasconst=0;
8669             alloc_cc(&current,i);
8670             dirty_reg(&current,CCREG);
8671             alloc_reg(&current,i,rs1[i]);
8672             if(!(current.is32>>rs1[i]&1))
8673             {
8674               alloc_reg64(&current,i,rs1[i]);
8675             }
8676           }
8677           ds=1;
8678           //current.isconst=0;
8679           break;
8680         case SJUMP:
8681           //current.isconst=0;
8682           //current.wasconst=0;
8683           //regs[i].wasconst=0;
8684           clear_const(&current,rs1[i]);
8685           clear_const(&current,rt1[i]);
8686           //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8687           if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8688           {
8689             alloc_cc(&current,i);
8690             dirty_reg(&current,CCREG);
8691             alloc_reg(&current,i,rs1[i]);
8692             if(!(current.is32>>rs1[i]&1))
8693             {
8694               alloc_reg64(&current,i,rs1[i]);
8695             }
8696             if (rt1[i]==31) { // BLTZAL/BGEZAL
8697               alloc_reg(&current,i,31);
8698               dirty_reg(&current,31);
8699               assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8700               //#ifdef REG_PREFETCH
8701               //alloc_reg(&current,i,PTEMP);
8702               //#endif
8703               //current.is32|=1LL<<rt1[i];
8704             }
8705             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8706               // The delay slot overwrites the branch condition.
8707               // Allocate the branch condition registers instead.
8708               current.isconst=0;
8709               current.wasconst=0;
8710               regs[i].wasconst=0;
8711               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8712               if(!((current.is32>>rs1[i])&1))
8713               {
8714                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8715               }
8716             }
8717             else
8718             {
8719               ooo[i]=1;
8720               delayslot_alloc(&current,i+1);
8721             }
8722           }
8723           else
8724           // Don't alloc the delay slot yet because we might not execute it
8725           if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8726           {
8727             current.isconst=0;
8728             current.wasconst=0;
8729             regs[i].wasconst=0;
8730             alloc_cc(&current,i);
8731             dirty_reg(&current,CCREG);
8732             alloc_reg(&current,i,rs1[i]);
8733             if(!(current.is32>>rs1[i]&1))
8734             {
8735               alloc_reg64(&current,i,rs1[i]);
8736             }
8737           }
8738           ds=1;
8739           //current.isconst=0;
8740           break;
8741         case FJUMP:
8742           current.isconst=0;
8743           current.wasconst=0;
8744           regs[i].wasconst=0;
8745           if(likely[i]==0) // BC1F/BC1T
8746           {
8747             // TODO: Theoretically we can run out of registers here on x86.
8748             // The delay slot can allocate up to six, and we need to check
8749             // CSREG before executing the delay slot.  Possibly we can drop
8750             // the cycle count and then reload it after checking that the
8751             // FPU is in a usable state, or don't do out-of-order execution.
8752             alloc_cc(&current,i);
8753             dirty_reg(&current,CCREG);
8754             alloc_reg(&current,i,FSREG);
8755             alloc_reg(&current,i,CSREG);
8756             if(itype[i+1]==FCOMP) {
8757               // The delay slot overwrites the branch condition.
8758               // Allocate the branch condition registers instead.
8759               alloc_cc(&current,i);
8760               dirty_reg(&current,CCREG);
8761               alloc_reg(&current,i,CSREG);
8762               alloc_reg(&current,i,FSREG);
8763             }
8764             else {
8765               ooo[i]=1;
8766               delayslot_alloc(&current,i+1);
8767               alloc_reg(&current,i+1,CSREG);
8768             }
8769           }
8770           else
8771           // Don't alloc the delay slot yet because we might not execute it
8772           if(likely[i]) // BC1FL/BC1TL
8773           {
8774             alloc_cc(&current,i);
8775             dirty_reg(&current,CCREG);
8776             alloc_reg(&current,i,CSREG);
8777             alloc_reg(&current,i,FSREG);
8778           }
8779           ds=1;
8780           current.isconst=0;
8781           break;
8782         case IMM16:
8783           imm16_alloc(&current,i);
8784           break;
8785         case LOAD:
8786         case LOADLR:
8787           load_alloc(&current,i);
8788           break;
8789         case STORE:
8790         case STORELR:
8791           store_alloc(&current,i);
8792           break;
8793         case ALU:
8794           alu_alloc(&current,i);
8795           break;
8796         case SHIFT:
8797           shift_alloc(&current,i);
8798           break;
8799         case MULTDIV:
8800           multdiv_alloc(&current,i);
8801           break;
8802         case SHIFTIMM:
8803           shiftimm_alloc(&current,i);
8804           break;
8805         case MOV:
8806           mov_alloc(&current,i);
8807           break;
8808         case COP0:
8809           cop0_alloc(&current,i);
8810           break;
8811         case COP1:
8812           cop1_alloc(&current,i);
8813           break;
8814         case C1LS:
8815           c1ls_alloc(&current,i);
8816           break;
8817         case FCONV:
8818           fconv_alloc(&current,i);
8819           break;
8820         case FLOAT:
8821           float_alloc(&current,i);
8822           break;
8823         case FCOMP:
8824           fcomp_alloc(&current,i);
8825           break;
8826         case SYSCALL:
8827           syscall_alloc(&current,i);
8828           break;
8829         case SPAN:
8830           pagespan_alloc(&current,i);
8831           break;
8832       }
8833       
8834       // Drop the upper half of registers that have become 32-bit
8835       current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
8836       if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8837         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8838         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8839         current.uu|=1;
8840       } else {
8841         current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
8842         current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8843         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8844         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8845         current.uu|=1;
8846       }
8847
8848       // Create entry (branch target) regmap
8849       for(hr=0;hr<HOST_REGS;hr++)
8850       {
8851         int r,or;
8852         r=current.regmap[hr];
8853         if(r>=0) {
8854           if(r!=regmap_pre[i][hr]) {
8855             // TODO: delay slot (?)
8856             or=get_reg(regmap_pre[i],r); // Get old mapping for this register
8857             if(or<0||(r&63)>=TEMPREG){
8858               regs[i].regmap_entry[hr]=-1;
8859             }
8860             else
8861             {
8862               // Just move it to a different register
8863               regs[i].regmap_entry[hr]=r;
8864               // If it was dirty before, it's still dirty
8865               if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
8866             }
8867           }
8868           else
8869           {
8870             // Unneeded
8871             if(r==0){
8872               regs[i].regmap_entry[hr]=0;
8873             }
8874             else
8875             if(r<64){
8876               if((current.u>>r)&1) {
8877                 regs[i].regmap_entry[hr]=-1;
8878                 //regs[i].regmap[hr]=-1;
8879                 current.regmap[hr]=-1;
8880               }else
8881                 regs[i].regmap_entry[hr]=r;
8882             }
8883             else {
8884               if((current.uu>>(r&63))&1) {
8885                 regs[i].regmap_entry[hr]=-1;
8886                 //regs[i].regmap[hr]=-1;
8887                 current.regmap[hr]=-1;
8888               }else
8889                 regs[i].regmap_entry[hr]=r;
8890             }
8891           }
8892         } else {
8893           // Branches expect CCREG to be allocated at the target
8894           if(regmap_pre[i][hr]==CCREG) 
8895             regs[i].regmap_entry[hr]=CCREG;
8896           else
8897             regs[i].regmap_entry[hr]=-1;
8898         }
8899       }
8900       memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
8901     }
8902     /* Branch post-alloc */
8903     if(i>0)
8904     {
8905       current.was32=current.is32;
8906       current.wasdirty=current.dirty;
8907       switch(itype[i-1]) {
8908         case UJUMP:
8909           memcpy(&branch_regs[i-1],&current,sizeof(current));
8910           branch_regs[i-1].isconst=0;
8911           branch_regs[i-1].wasconst=0;
8912           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8913           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8914           alloc_cc(&branch_regs[i-1],i-1);
8915           dirty_reg(&branch_regs[i-1],CCREG);
8916           if(rt1[i-1]==31) { // JAL
8917             alloc_reg(&branch_regs[i-1],i-1,31);
8918             dirty_reg(&branch_regs[i-1],31);
8919             branch_regs[i-1].is32|=1LL<<31;
8920           }
8921           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8922           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8923           break;
8924         case RJUMP:
8925           memcpy(&branch_regs[i-1],&current,sizeof(current));
8926           branch_regs[i-1].isconst=0;
8927           branch_regs[i-1].wasconst=0;
8928           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8929           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8930           alloc_cc(&branch_regs[i-1],i-1);
8931           dirty_reg(&branch_regs[i-1],CCREG);
8932           alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
8933           if(rt1[i-1]!=0) { // JALR
8934             alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
8935             dirty_reg(&branch_regs[i-1],rt1[i-1]);
8936             branch_regs[i-1].is32|=1LL<<rt1[i-1];
8937           }
8938           #ifdef USE_MINI_HT
8939           if(rs1[i-1]==31) { // JALR
8940             alloc_reg(&branch_regs[i-1],i-1,RHASH);
8941             #ifndef HOST_IMM_ADDR32
8942             alloc_reg(&branch_regs[i-1],i-1,RHTBL);
8943             #endif
8944           }
8945           #endif
8946           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8947           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8948           break;
8949         case CJUMP:
8950           if((opcode[i-1]&0x3E)==4) // BEQ/BNE
8951           {
8952             alloc_cc(&current,i-1);
8953             dirty_reg(&current,CCREG);
8954             if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
8955                (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
8956               // The delay slot overwrote one of our conditions
8957               // Delay slot goes after the test (in order)
8958               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8959               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8960               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8961               current.u|=1;
8962               current.uu|=1;
8963               delayslot_alloc(&current,i);
8964               current.isconst=0;
8965             }
8966             else
8967             {
8968               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8969               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8970               // Alloc the branch condition registers
8971               if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
8972               if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
8973               if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
8974               {
8975                 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
8976                 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
8977               }
8978             }
8979             memcpy(&branch_regs[i-1],&current,sizeof(current));
8980             branch_regs[i-1].isconst=0;
8981             branch_regs[i-1].wasconst=0;
8982             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8983             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
8984           }
8985           else
8986           if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
8987           {
8988             alloc_cc(&current,i-1);
8989             dirty_reg(&current,CCREG);
8990             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8991               // The delay slot overwrote the branch condition
8992               // Delay slot goes after the test (in order)
8993               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8994               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8995               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8996               current.u|=1;
8997               current.uu|=1;
8998               delayslot_alloc(&current,i);
8999               current.isconst=0;
9000             }
9001             else
9002             {
9003               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9004               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9005               // Alloc the branch condition register
9006               alloc_reg(&current,i-1,rs1[i-1]);
9007               if(!(current.is32>>rs1[i-1]&1))
9008               {
9009                 alloc_reg64(&current,i-1,rs1[i-1]);
9010               }
9011             }
9012             memcpy(&branch_regs[i-1],&current,sizeof(current));
9013             branch_regs[i-1].isconst=0;
9014             branch_regs[i-1].wasconst=0;
9015             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9016             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9017           }
9018           else
9019           // Alloc the delay slot in case the branch is taken
9020           if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9021           {
9022             memcpy(&branch_regs[i-1],&current,sizeof(current));
9023             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9024             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9025             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9026             alloc_cc(&branch_regs[i-1],i);
9027             dirty_reg(&branch_regs[i-1],CCREG);
9028             delayslot_alloc(&branch_regs[i-1],i);
9029             branch_regs[i-1].isconst=0;
9030             alloc_reg(&current,i,CCREG); // Not taken path
9031             dirty_reg(&current,CCREG);
9032             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9033           }
9034           else
9035           if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9036           {
9037             memcpy(&branch_regs[i-1],&current,sizeof(current));
9038             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9039             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9040             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9041             alloc_cc(&branch_regs[i-1],i);
9042             dirty_reg(&branch_regs[i-1],CCREG);
9043             delayslot_alloc(&branch_regs[i-1],i);
9044             branch_regs[i-1].isconst=0;
9045             alloc_reg(&current,i,CCREG); // Not taken path
9046             dirty_reg(&current,CCREG);
9047             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9048           }
9049           break;
9050         case SJUMP:
9051           //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9052           if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9053           {
9054             alloc_cc(&current,i-1);
9055             dirty_reg(&current,CCREG);
9056             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9057               // The delay slot overwrote the branch condition
9058               // Delay slot goes after the test (in order)
9059               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9060               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9061               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9062               current.u|=1;
9063               current.uu|=1;
9064               delayslot_alloc(&current,i);
9065               current.isconst=0;
9066             }
9067             else
9068             {
9069               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9070               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9071               // Alloc the branch condition register
9072               alloc_reg(&current,i-1,rs1[i-1]);
9073               if(!(current.is32>>rs1[i-1]&1))
9074               {
9075                 alloc_reg64(&current,i-1,rs1[i-1]);
9076               }
9077             }
9078             memcpy(&branch_regs[i-1],&current,sizeof(current));
9079             branch_regs[i-1].isconst=0;
9080             branch_regs[i-1].wasconst=0;
9081             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9082             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9083           }
9084           else
9085           // Alloc the delay slot in case the branch is taken
9086           if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9087           {
9088             memcpy(&branch_regs[i-1],&current,sizeof(current));
9089             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9090             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9091             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9092             alloc_cc(&branch_regs[i-1],i);
9093             dirty_reg(&branch_regs[i-1],CCREG);
9094             delayslot_alloc(&branch_regs[i-1],i);
9095             branch_regs[i-1].isconst=0;
9096             alloc_reg(&current,i,CCREG); // Not taken path
9097             dirty_reg(&current,CCREG);
9098             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9099           }
9100           // FIXME: BLTZAL/BGEZAL
9101           if(opcode2[i-1]&0x10) { // BxxZAL
9102             alloc_reg(&branch_regs[i-1],i-1,31);
9103             dirty_reg(&branch_regs[i-1],31);
9104             branch_regs[i-1].is32|=1LL<<31;
9105           }
9106           break;
9107         case FJUMP:
9108           if(likely[i-1]==0) // BC1F/BC1T
9109           {
9110             alloc_cc(&current,i-1);
9111             dirty_reg(&current,CCREG);
9112             if(itype[i]==FCOMP) {
9113               // The delay slot overwrote the branch condition
9114               // Delay slot goes after the test (in order)
9115               delayslot_alloc(&current,i);
9116               current.isconst=0;
9117             }
9118             else
9119             {
9120               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9121               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9122               // Alloc the branch condition register
9123               alloc_reg(&current,i-1,FSREG);
9124             }
9125             memcpy(&branch_regs[i-1],&current,sizeof(current));
9126             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9127           }
9128           else // BC1FL/BC1TL
9129           {
9130             // Alloc the delay slot in case the branch is taken
9131             memcpy(&branch_regs[i-1],&current,sizeof(current));
9132             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9133             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9134             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9135             alloc_cc(&branch_regs[i-1],i);
9136             dirty_reg(&branch_regs[i-1],CCREG);
9137             delayslot_alloc(&branch_regs[i-1],i);
9138             branch_regs[i-1].isconst=0;
9139             alloc_reg(&current,i,CCREG); // Not taken path
9140             dirty_reg(&current,CCREG);
9141             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9142           }
9143           break;
9144       }
9145
9146       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9147       {
9148         if(rt1[i-1]==31) // JAL/JALR
9149         {
9150           // Subroutine call will return here, don't alloc any registers
9151           current.is32=1;
9152           current.dirty=0;
9153           clear_all_regs(current.regmap);
9154           alloc_reg(&current,i,CCREG);
9155           dirty_reg(&current,CCREG);
9156         }
9157         else if(i+1<slen)
9158         {
9159           // Internal branch will jump here, match registers to caller
9160           current.is32=0x3FFFFFFFFLL;
9161           current.dirty=0;
9162           clear_all_regs(current.regmap);
9163           alloc_reg(&current,i,CCREG);
9164           dirty_reg(&current,CCREG);
9165           for(j=i-1;j>=0;j--)
9166           {
9167             if(ba[j]==start+i*4+4) {
9168               memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9169               current.is32=branch_regs[j].is32;
9170               current.dirty=branch_regs[j].dirty;
9171               break;
9172             }
9173           }
9174           while(j>=0) {
9175             if(ba[j]==start+i*4+4) {
9176               for(hr=0;hr<HOST_REGS;hr++) {
9177                 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9178                   current.regmap[hr]=-1;
9179                 }
9180                 current.is32&=branch_regs[j].is32;
9181                 current.dirty&=branch_regs[j].dirty;
9182               }
9183             }
9184             j--;
9185           }
9186         }
9187       }
9188     }
9189
9190     // Count cycles in between branches
9191     ccadj[i]=cc;
9192     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL))
9193     {
9194       cc=0;
9195     }
9196     else
9197     {
9198       cc++;
9199     }
9200
9201     flush_dirty_uppers(&current);
9202     if(!is_ds[i]) {
9203       regs[i].is32=current.is32;
9204       regs[i].dirty=current.dirty;
9205       regs[i].isconst=current.isconst;
9206       memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9207     }
9208     for(hr=0;hr<HOST_REGS;hr++) {
9209       if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9210         if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9211           regs[i].wasconst&=~(1<<hr);
9212         }
9213       }
9214     }
9215     if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9216   }
9217   
9218   /* Pass 4 - Cull unused host registers */
9219   
9220   uint64_t nr=0;
9221   
9222   for (i=slen-1;i>=0;i--)
9223   {
9224     int hr;
9225     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9226     {
9227       if(ba[i]<start || ba[i]>=(start+slen*4))
9228       {
9229         // Branch out of this block, don't need anything
9230         nr=0;
9231       }
9232       else
9233       {
9234         // Internal branch
9235         // Need whatever matches the target
9236         nr=0;
9237         int t=(ba[i]-start)>>2;
9238         for(hr=0;hr<HOST_REGS;hr++)
9239         {
9240           if(regs[i].regmap_entry[hr]>=0) {
9241             if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9242           }
9243         }
9244       }
9245       // Conditional branch may need registers for following instructions
9246       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9247       {
9248         if(i<slen-2) {
9249           nr|=needed_reg[i+2];
9250           for(hr=0;hr<HOST_REGS;hr++)
9251           {
9252             if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9253             //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) DebugMessage(M64MSG_VERBOSE, "%x-bogus(%d=%d)",start+i*4,hr,regmap_entry[i+2][hr]);
9254           }
9255         }
9256       }
9257       // Don't need stuff which is overwritten
9258       if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9259       if(regs[i].regmap[hr]<0) nr&=~(1<<hr);    //moved...
9260       // Merge in delay slot
9261       for(hr=0;hr<HOST_REGS;hr++)
9262       {
9263                 // Don't need stuff which is overwritten
9264 /*              if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr); //*SEB* Moved here
9265                 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);*/
9266
9267         if(!likely[i]) {
9268           // These are overwritten unless the branch is "likely"
9269           // and the delay slot is nullified if not taken
9270           if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9271           if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9272         }
9273         if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9274         if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9275         if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9276         if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9277         if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9278         if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9279         if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9280         if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9281         if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9282           if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9283           if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9284         }
9285         if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9286           if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9287           if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9288         }
9289         if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39) {
9290           if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9291           if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9292         }
9293       }
9294     }
9295     else if(itype[i]==SYSCALL)
9296     {
9297       // SYSCALL instruction (software interrupt)
9298       nr=0;
9299     }
9300     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9301     {
9302       // ERET instruction (return from interrupt)
9303       nr=0;
9304     }
9305     else // Non-branch
9306     {
9307       if(i<slen-1) {
9308         for(hr=0;hr<HOST_REGS;hr++) {
9309           if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9310           if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9311           if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9312           if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9313         }
9314       }
9315     }
9316     for(hr=0;hr<HOST_REGS;hr++)
9317     {
9318       // Overwritten registers are not needed
9319       if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9320       if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9321       if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9322       // Source registers are needed
9323       if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9324       if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9325       if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9326       if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9327       if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9328       if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9329       if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9330       if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9331       if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9332         if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9333         if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9334       }
9335       if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9336         if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9337         if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9338       }
9339       if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39) {
9340         if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9341         if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9342       }
9343       // Don't store a register immediately after writing it,
9344       // may prevent dual-issue.
9345       // But do so if this is a branch target, otherwise we
9346       // might have to load the register before the branch.
9347       if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9348         if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9349            (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9350           if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9351           if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9352         }
9353         if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9354            (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9355           if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9356           if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9357         }
9358       }
9359     }
9360     // Cycle count is needed at branches.  Assume it is needed at the target too.
9361     if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9362       if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9363       if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9364     }
9365     // Save it
9366     needed_reg[i]=nr;
9367     
9368     // Deallocate unneeded registers
9369     for(hr=0;hr<HOST_REGS;hr++)
9370     {
9371       if(!((nr>>hr)&1)) {
9372         if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9373         if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9374            (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9375            (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9376         {
9377           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9378           {
9379             if(likely[i]) {
9380               regs[i].regmap[hr]=-1;
9381               regs[i].isconst&=~(1<<hr);
9382               if(i<slen-2) {
9383                 regmap_pre[i+2][hr]=-1;
9384                 regs[i+2].wasconst&=~(1<<hr);
9385               }
9386             }
9387           }
9388         }
9389         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9390         {
9391           int d1=0,d2=0,map=0,temp=0;
9392           if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9393           {
9394             d1=dep1[i+1];
9395             d2=dep2[i+1];
9396           }
9397           if(using_tlb) {
9398             if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9399                itype[i+1]==STORE || itype[i+1]==STORELR ||
9400                itype[i+1]==C1LS )
9401             map=TLREG;
9402           } else
9403           if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39) {
9404             map=INVCP;
9405           }
9406           if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9407              itype[i+1]==C1LS )
9408             temp=FTEMP;
9409           if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9410              (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9411              (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9412              (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9413              (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9414              regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9415              (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9416              regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9417              regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9418              regs[i].regmap[hr]!=map )
9419           {
9420             regs[i].regmap[hr]=-1;
9421             regs[i].isconst&=~(1<<hr);
9422             if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9423                (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9424                (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9425                (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9426                (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9427                branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9428                (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9429                branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9430                branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9431                branch_regs[i].regmap[hr]!=map)
9432             {
9433               branch_regs[i].regmap[hr]=-1;
9434               branch_regs[i].regmap_entry[hr]=-1;
9435               if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9436               {
9437                 if(!likely[i]&&i<slen-2) {
9438                   regmap_pre[i+2][hr]=-1;
9439                   regs[i+2].wasconst&=~(1<<hr);
9440                 }
9441               }
9442             }
9443           }
9444         }
9445         else
9446         {
9447           // Non-branch
9448           if(i>0)
9449           {
9450             int d1=0,d2=0,map=-1,temp=-1;
9451             if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9452             {
9453               d1=dep1[i];
9454               d2=dep2[i];
9455             }
9456             if(using_tlb) {
9457               if(itype[i]==LOAD || itype[i]==LOADLR ||
9458                  itype[i]==STORE || itype[i]==STORELR ||
9459                  itype[i]==C1LS )
9460               map=TLREG;
9461             } else if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39) {
9462               map=INVCP;
9463             }
9464             if(itype[i]==LOADLR || itype[i]==STORELR ||
9465                itype[i]==C1LS )
9466               temp=FTEMP;
9467             if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9468                (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9469                (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9470                regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9471                (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9472                (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9473             {
9474               if(i<slen-1&&!is_ds[i]) {
9475                 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9476                 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9477                 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9478                 {
9479                   DebugMessage(M64MSG_VERBOSE, "fail: %x (%d %d!=%d)",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9480                   assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9481                 }
9482                 regmap_pre[i+1][hr]=-1;
9483                 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9484                 regs[i+1].wasconst&=~(1<<hr);
9485               }
9486               regs[i].regmap[hr]=-1;
9487               regs[i].isconst&=~(1<<hr);
9488             }
9489           }
9490         }
9491       }
9492     }
9493   }
9494   
9495   /* Pass 5 - Pre-allocate registers */
9496   
9497   // If a register is allocated during a loop, try to allocate it for the
9498   // entire loop, if possible.  This avoids loading/storing registers
9499   // inside of the loop.
9500   
9501   signed char f_regmap[HOST_REGS];
9502   clear_all_regs(f_regmap);
9503   for(i=0;i<slen-1;i++)
9504   {
9505     if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9506     {
9507       if(ba[i]>=start && ba[i]<(start+i*4)) 
9508       if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9509       ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9510       ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9511       ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9512       ||itype[i+1]==FCOMP||itype[i+1]==FCONV)
9513       {
9514         int t=(ba[i]-start)>>2;
9515         if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9516         if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
9517         for(hr=0;hr<HOST_REGS;hr++)
9518         {
9519           if(regs[i].regmap[hr]>64) {
9520             if(!((regs[i].dirty>>hr)&1))
9521               f_regmap[hr]=regs[i].regmap[hr];
9522             else f_regmap[hr]=-1;
9523           }
9524           else if(regs[i].regmap[hr]>=0) {
9525             if(f_regmap[hr]!=regs[i].regmap[hr]) {
9526               // dealloc old register
9527               int n;
9528               for(n=0;n<HOST_REGS;n++)
9529               {
9530                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9531               }
9532               // and alloc new one
9533               f_regmap[hr]=regs[i].regmap[hr];
9534             }
9535           }
9536           if(branch_regs[i].regmap[hr]>64) {
9537             if(!((branch_regs[i].dirty>>hr)&1))
9538               f_regmap[hr]=branch_regs[i].regmap[hr];
9539             else f_regmap[hr]=-1;
9540           }
9541           else if(branch_regs[i].regmap[hr]>=0) {
9542             if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9543               // dealloc old register
9544               int n;
9545               for(n=0;n<HOST_REGS;n++)
9546               {
9547                 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9548               }
9549               // and alloc new one
9550               f_regmap[hr]=branch_regs[i].regmap[hr];
9551             }
9552           }
9553           if(ooo[i]) {
9554             if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) 
9555               f_regmap[hr]=branch_regs[i].regmap[hr];
9556           }else{
9557             if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) 
9558               f_regmap[hr]=branch_regs[i].regmap[hr];
9559           }
9560           // Avoid dirty->clean transition
9561           #ifdef DESTRUCTIVE_WRITEBACK
9562           if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9563           #endif
9564           // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
9565           // case above, however it's always a good idea.  We can't hoist the
9566           // load if the register was already allocated, so there's no point
9567           // wasting time analyzing most of these cases.  It only "succeeds"
9568           // when the mapping was different and the load can be replaced with
9569           // a mov, which is of negligible benefit.  So such cases are
9570           // skipped below.
9571           if(f_regmap[hr]>0) {
9572             if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
9573               int r=f_regmap[hr];
9574               for(j=t;j<=i;j++)
9575               {
9576                 //DebugMessage(M64MSG_VERBOSE, "Test %x -> %x, %x %d/%d",start+i*4,ba[i],start+j*4,hr,r);
9577                 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9578                 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9579                 if(r>63) {
9580                   // NB This can exclude the case where the upper-half
9581                   // register is lower numbered than the lower-half
9582                   // register.  Not sure if it's worth fixing...
9583                   if(get_reg(regs[j].regmap,r&63)<0) break;
9584                   if(get_reg(regs[j].regmap_entry,r&63)<0) break;
9585                   if(regs[j].is32&(1LL<<(r&63))) break;
9586                 }
9587                 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9588                   //DebugMessage(M64MSG_VERBOSE, "Hit %x -> %x, %x %d/%d",start+i*4,ba[i],start+j*4,hr,r);
9589                   int k;
9590                   if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9591                     if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9592                     if(r>63) {
9593                       if(get_reg(regs[i].regmap,r&63)<0) break;
9594                       if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9595                     }
9596                     k=i;
9597                     while(k>1&&regs[k-1].regmap[hr]==-1) {
9598                       if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9599                         //DebugMessage(M64MSG_VERBOSE, "no free regs for store %x",start+(k-1)*4);
9600                         break;
9601                       }
9602                       if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9603                         //DebugMessage(M64MSG_VERBOSE, "no-match due to different register");
9604                         break;
9605                       }
9606                       if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9607                         //DebugMessage(M64MSG_VERBOSE, "no-match due to branch");
9608                         break;
9609                       }
9610                       // call/ret fast path assumes no registers allocated
9611                       if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
9612                         break;
9613                       }
9614                       if(r>63) {
9615                         // NB This can exclude the case where the upper-half
9616                         // register is lower numbered than the lower-half
9617                         // register.  Not sure if it's worth fixing...
9618                         if(get_reg(regs[k-1].regmap,r&63)<0) break;
9619                         if(regs[k-1].is32&(1LL<<(r&63))) break;
9620                       }
9621                       k--;
9622                     }
9623                     if(i<slen-1) {
9624                       if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9625                         (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9626                         //DebugMessage(M64MSG_VERBOSE, "bad match after branch");
9627                         break;
9628                       }
9629                     }
9630                     if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9631                       //DebugMessage(M64MSG_VERBOSE, "Extend r%d, %x ->",hr,start+k*4);
9632                       while(k<i) {
9633                         regs[k].regmap_entry[hr]=f_regmap[hr];
9634                         regs[k].regmap[hr]=f_regmap[hr];
9635                         regmap_pre[k+1][hr]=f_regmap[hr];
9636                         regs[k].wasdirty&=~(1<<hr);
9637                         regs[k].dirty&=~(1<<hr);
9638                         regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9639                         regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9640                         regs[k].wasconst&=~(1<<hr);
9641                         regs[k].isconst&=~(1<<hr);
9642                         k++;
9643                       }
9644                     }
9645                     else {
9646                       //DebugMessage(M64MSG_VERBOSE, "Fail Extend r%d, %x ->",hr,start+k*4);
9647                       break;
9648                     }
9649                     assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9650                     if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9651                       //DebugMessage(M64MSG_VERBOSE, "OK fill %x (r%d)",start+i*4,hr);
9652                       regs[i].regmap_entry[hr]=f_regmap[hr];
9653                       regs[i].regmap[hr]=f_regmap[hr];
9654                       regs[i].wasdirty&=~(1<<hr);
9655                       regs[i].dirty&=~(1<<hr);
9656                       regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9657                       regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9658                       regs[i].wasconst&=~(1<<hr);
9659                       regs[i].isconst&=~(1<<hr);
9660                       branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9661                       branch_regs[i].wasdirty&=~(1<<hr);
9662                       branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9663                       branch_regs[i].regmap[hr]=f_regmap[hr];
9664                       branch_regs[i].dirty&=~(1<<hr);
9665                       branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9666                       branch_regs[i].wasconst&=~(1<<hr);
9667                       branch_regs[i].isconst&=~(1<<hr);
9668                       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9669                         regmap_pre[i+2][hr]=f_regmap[hr];
9670                         regs[i+2].wasdirty&=~(1<<hr);
9671                         regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9672                         assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9673                           (regs[i+2].was32&(1LL<<f_regmap[hr])));
9674                       }
9675                     }
9676                   }
9677                   for(k=t;k<j;k++) {
9678                     // Alloc register clean at beginning of loop,
9679                     // but may dirty it in pass 6
9680                     regs[k].regmap_entry[hr]=f_regmap[hr];
9681                     regs[k].regmap[hr]=f_regmap[hr];
9682                     regs[k].dirty&=~(1<<hr);
9683                     regs[k].wasconst&=~(1<<hr);
9684                     regs[k].isconst&=~(1<<hr);
9685                     if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
9686                       branch_regs[k].regmap_entry[hr]=f_regmap[hr];
9687                       branch_regs[k].regmap[hr]=f_regmap[hr];
9688                       branch_regs[k].dirty&=~(1<<hr);
9689                       branch_regs[k].wasconst&=~(1<<hr);
9690                       branch_regs[k].isconst&=~(1<<hr);
9691                       if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
9692                         regmap_pre[k+2][hr]=f_regmap[hr];
9693                         regs[k+2].wasdirty&=~(1<<hr);
9694                         assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
9695                           (regs[k+2].was32&(1LL<<f_regmap[hr])));
9696                       }
9697                     }
9698                     else
9699                     {
9700                       regmap_pre[k+1][hr]=f_regmap[hr];
9701                       regs[k+1].wasdirty&=~(1<<hr);
9702                     }
9703                   }
9704                   if(regs[j].regmap[hr]==f_regmap[hr])
9705                     regs[j].regmap_entry[hr]=f_regmap[hr];
9706                   break;
9707                 }
9708                 if(j==i) break;
9709                 if(regs[j].regmap[hr]>=0)
9710                   break;
9711                 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9712                   //DebugMessage(M64MSG_VERBOSE, "no-match due to different register");
9713                   break;
9714                 }
9715                 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9716                   //DebugMessage(M64MSG_VERBOSE, "32/64 mismatch %x %d",start+j*4,hr);
9717                   break;
9718                 }
9719                 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
9720                 {
9721                   // Stop on unconditional branch
9722                   break;
9723                 }
9724                 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
9725                 {
9726                   if(ooo[j]) {
9727                     if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) 
9728                       break;
9729                   }else{
9730                     if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) 
9731                       break;
9732                   }
9733                   if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
9734                     //DebugMessage(M64MSG_VERBOSE, "no-match due to different register (branch)");
9735                     break;
9736                   }
9737                 }
9738                 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
9739                   //DebugMessage(M64MSG_VERBOSE, "No free regs for store %x",start+j*4);
9740                   break;
9741                 }
9742                 if(f_regmap[hr]>=64) {
9743                   if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
9744                     break;
9745                   }
9746                   else
9747                   {
9748                     if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
9749                       break;
9750                     }
9751                   }
9752                 }
9753               }
9754             }
9755           }
9756         }
9757       }
9758     }else{
9759       // Non branch or undetermined branch target
9760       for(hr=0;hr<HOST_REGS;hr++)
9761       {
9762         if(hr!=EXCLUDE_REG) {
9763           if(regs[i].regmap[hr]>64) {
9764             if(!((regs[i].dirty>>hr)&1))
9765               f_regmap[hr]=regs[i].regmap[hr];
9766           }
9767           else if(regs[i].regmap[hr]>=0) {
9768             if(f_regmap[hr]!=regs[i].regmap[hr]) {
9769               // dealloc old register
9770               int n;
9771               for(n=0;n<HOST_REGS;n++)
9772               {
9773                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9774               }
9775               // and alloc new one
9776               f_regmap[hr]=regs[i].regmap[hr];
9777             }
9778           }
9779         }
9780       }
9781       // Try to restore cycle count at branch targets
9782       if(bt[i]) {
9783         for(j=i;j<slen-1;j++) {
9784           if(regs[j].regmap[HOST_CCREG]!=-1) break;
9785           if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
9786             //DebugMessage(M64MSG_VERBOSE, "no free regs for store %x",start+j*4);
9787             break;
9788           }
9789         }
9790         if(regs[j].regmap[HOST_CCREG]==CCREG) {
9791           int k=i;
9792           //DebugMessage(M64MSG_VERBOSE, "Extend CC, %x -> %x",start+k*4,start+j*4);
9793           while(k<j) {
9794             regs[k].regmap_entry[HOST_CCREG]=CCREG;
9795             regs[k].regmap[HOST_CCREG]=CCREG;
9796             regmap_pre[k+1][HOST_CCREG]=CCREG;
9797             regs[k+1].wasdirty|=1<<HOST_CCREG;
9798             regs[k].dirty|=1<<HOST_CCREG;
9799             regs[k].wasconst&=~(1<<HOST_CCREG);
9800             regs[k].isconst&=~(1<<HOST_CCREG);
9801             k++;
9802           }
9803           regs[j].regmap_entry[HOST_CCREG]=CCREG;          
9804         }
9805         // Work backwards from the branch target
9806         if(j>i&&f_regmap[HOST_CCREG]==CCREG)
9807         {
9808           //DebugMessage(M64MSG_VERBOSE, "Extend backwards");
9809           int k;
9810           k=i;
9811           while(regs[k-1].regmap[HOST_CCREG]==-1) {
9812             if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9813               //DebugMessage(M64MSG_VERBOSE, "no free regs for store %x",start+(k-1)*4);
9814               break;
9815             }
9816             k--;
9817           }
9818           if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
9819             //DebugMessage(M64MSG_VERBOSE, "Extend CC, %x ->",start+k*4);
9820             while(k<=i) {
9821               regs[k].regmap_entry[HOST_CCREG]=CCREG;
9822               regs[k].regmap[HOST_CCREG]=CCREG;
9823               regmap_pre[k+1][HOST_CCREG]=CCREG;
9824               regs[k+1].wasdirty|=1<<HOST_CCREG;
9825               regs[k].dirty|=1<<HOST_CCREG;
9826               regs[k].wasconst&=~(1<<HOST_CCREG);
9827               regs[k].isconst&=~(1<<HOST_CCREG);
9828               k++;
9829             }
9830           }
9831           else {
9832             //DebugMessage(M64MSG_VERBOSE, "Fail Extend CC, %x ->",start+k*4);
9833           }
9834         }
9835       }
9836       if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
9837          itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
9838          itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
9839          itype[i]!=FCONV&&itype[i]!=FCOMP)
9840       {
9841         memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
9842       }
9843     }
9844   }
9845   
9846   // Cache memory offset or tlb map pointer if a register is available
9847   #ifndef HOST_IMM_ADDR32
9848   #ifndef RAM_OFFSET
9849   if(using_tlb)
9850   #endif
9851   {
9852     int earliest_available[HOST_REGS];
9853     int loop_start[HOST_REGS];
9854     int score[HOST_REGS];
9855     int end[HOST_REGS];
9856     int reg=using_tlb?MMREG:ROREG;
9857
9858     // Init
9859     for(hr=0;hr<HOST_REGS;hr++) {
9860       score[hr]=0;earliest_available[hr]=0;
9861       loop_start[hr]=MAXBLOCK;
9862     }
9863     for(i=0;i<slen-1;i++)
9864     {
9865       // Can't do anything if no registers are available
9866       if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
9867         for(hr=0;hr<HOST_REGS;hr++) {
9868           score[hr]=0;earliest_available[hr]=i+1;
9869           loop_start[hr]=MAXBLOCK;
9870         }
9871       }
9872       if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9873         if(!ooo[i]) {
9874           if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
9875             for(hr=0;hr<HOST_REGS;hr++) {
9876               score[hr]=0;earliest_available[hr]=i+1;
9877               loop_start[hr]=MAXBLOCK;
9878             }
9879           }
9880         }else{
9881           if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
9882             for(hr=0;hr<HOST_REGS;hr++) {
9883               score[hr]=0;earliest_available[hr]=i+1;
9884               loop_start[hr]=MAXBLOCK;
9885             }
9886           }
9887         }
9888       }
9889       // Mark unavailable registers
9890       for(hr=0;hr<HOST_REGS;hr++) {
9891         if(regs[i].regmap[hr]>=0) {
9892           score[hr]=0;earliest_available[hr]=i+1;
9893           loop_start[hr]=MAXBLOCK;
9894         }
9895         if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9896           if(branch_regs[i].regmap[hr]>=0) {
9897             score[hr]=0;earliest_available[hr]=i+2;
9898             loop_start[hr]=MAXBLOCK;
9899           }
9900         }
9901       }
9902       // No register allocations after unconditional jumps
9903       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
9904       {
9905         for(hr=0;hr<HOST_REGS;hr++) {
9906           score[hr]=0;earliest_available[hr]=i+2;
9907           loop_start[hr]=MAXBLOCK;
9908         }
9909         i++; // Skip delay slot too
9910         //DebugMessage(M64MSG_VERBOSE, "skip delay slot: %x",start+i*4);
9911       }
9912       else
9913       // Possible match
9914       if(itype[i]==LOAD||itype[i]==LOADLR||
9915          itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
9916         for(hr=0;hr<HOST_REGS;hr++) {
9917           if(hr!=EXCLUDE_REG) {
9918             end[hr]=i-1;
9919             for(j=i;j<slen-1;j++) {
9920               if(regs[j].regmap[hr]>=0) break;
9921               if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9922                 if(branch_regs[j].regmap[hr]>=0) break;
9923                 if(ooo[j]) {
9924                   if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
9925                 }else{
9926                   if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
9927                 }
9928               }
9929               else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
9930               if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9931                 int t=(ba[j]-start)>>2;
9932                 if(t<j&&t>=earliest_available[hr]) {
9933                   if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
9934                     // Score a point for hoisting loop invariant
9935                     if(t<loop_start[hr]) loop_start[hr]=t;
9936                     //DebugMessage(M64MSG_VERBOSE, "set loop_start: i=%x j=%x (%x)",start+i*4,start+j*4,start+t*4);
9937                     score[hr]++;
9938                     end[hr]=j;
9939                   }
9940                 }
9941                 else if(t<j) {
9942                   if(regs[t].regmap[hr]==reg) {
9943                     // Score a point if the branch target matches this register
9944                     score[hr]++;
9945                     end[hr]=j;
9946                   }
9947                 }
9948                 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
9949                    itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
9950                   score[hr]++;
9951                   end[hr]=j;
9952                 }
9953               }
9954               if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
9955               {
9956                 // Stop on unconditional branch
9957                 break;
9958               }
9959               else
9960               if(itype[j]==LOAD||itype[j]==LOADLR||
9961                  itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
9962                 score[hr]++;
9963                 end[hr]=j;
9964               }
9965             }
9966           }
9967         }
9968         // Find highest score and allocate that register
9969         int maxscore=0;
9970         for(hr=0;hr<HOST_REGS;hr++) {
9971           if(hr!=EXCLUDE_REG) {
9972             if(score[hr]>score[maxscore]) {
9973               maxscore=hr;
9974               //DebugMessage(M64MSG_VERBOSE, "highest score: %d %d (%x->%x)",score[hr],hr,start+i*4,start+end[hr]*4);
9975             }
9976           }
9977         }
9978         if(score[maxscore]>1)
9979         {
9980           if(i<loop_start[maxscore]) loop_start[maxscore]=i;
9981           for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
9982             //if(regs[j].regmap[maxscore]>=0) {DebugMessage(M64MSG_ERROR, "oops: %x %x was %d=%d",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
9983             assert(regs[j].regmap[maxscore]<0);
9984             if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
9985             regs[j].regmap[maxscore]=reg;
9986             regs[j].dirty&=~(1<<maxscore);
9987             regs[j].wasconst&=~(1<<maxscore);
9988             regs[j].isconst&=~(1<<maxscore);
9989             if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9990               branch_regs[j].regmap[maxscore]=reg;
9991               branch_regs[j].wasdirty&=~(1<<maxscore);
9992               branch_regs[j].dirty&=~(1<<maxscore);
9993               branch_regs[j].wasconst&=~(1<<maxscore);
9994               branch_regs[j].isconst&=~(1<<maxscore);
9995               if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
9996                 regmap_pre[j+2][maxscore]=reg;
9997                 regs[j+2].wasdirty&=~(1<<maxscore);
9998               }
9999               // loop optimization (loop_preload)
10000               int t=(ba[j]-start)>>2;
10001               if(t==loop_start[maxscore]) {
10002                 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
10003                   regs[t].regmap_entry[maxscore]=reg;
10004               }
10005             }
10006             else
10007             {
10008               if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
10009                 regmap_pre[j+1][maxscore]=reg;
10010                 regs[j+1].wasdirty&=~(1<<maxscore);
10011               }
10012             }
10013           }
10014           i=j-1;
10015           if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
10016           for(hr=0;hr<HOST_REGS;hr++) {
10017             score[hr]=0;earliest_available[hr]=i+i;
10018             loop_start[hr]=MAXBLOCK;
10019           }
10020         }
10021       }
10022     }
10023   }
10024   #endif
10025   
10026   // This allocates registers (if possible) one instruction prior
10027   // to use, which can avoid a load-use penalty on certain CPUs.
10028   for(i=0;i<slen-1;i++)
10029   {
10030     if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10031     {
10032       if(!bt[i+1])
10033       {
10034         if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16||(itype[i]==COP1&&opcode2[i]<3))
10035         {
10036           if(rs1[i+1]) {
10037             if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10038             {
10039               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10040               {
10041                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10042                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10043                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10044                 regs[i].isconst&=~(1<<hr);
10045                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10046                 constmap[i][hr]=constmap[i+1][hr];
10047                 regs[i+1].wasdirty&=~(1<<hr);
10048                 regs[i].dirty&=~(1<<hr);
10049               }
10050             }
10051           }
10052           if(rs2[i+1]) {
10053             if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10054             {
10055               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10056               {
10057                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10058                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10059                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10060                 regs[i].isconst&=~(1<<hr);
10061                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10062                 constmap[i][hr]=constmap[i+1][hr];
10063                 regs[i+1].wasdirty&=~(1<<hr);
10064                 regs[i].dirty&=~(1<<hr);
10065               }
10066             }
10067           }
10068           // Preload target address for load instruction (non-constant)
10069           if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10070             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10071             {
10072               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10073               {
10074                 regs[i].regmap[hr]=rs1[i+1];
10075                 regmap_pre[i+1][hr]=rs1[i+1];
10076                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10077                 regs[i].isconst&=~(1<<hr);
10078                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10079                 constmap[i][hr]=constmap[i+1][hr];
10080                 regs[i+1].wasdirty&=~(1<<hr);
10081                 regs[i].dirty&=~(1<<hr);
10082               }
10083             }
10084           }
10085           // Load source into target register 
10086           if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10087             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10088             {
10089               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10090               {
10091                 regs[i].regmap[hr]=rs1[i+1];
10092                 regmap_pre[i+1][hr]=rs1[i+1];
10093                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10094                 regs[i].isconst&=~(1<<hr);
10095                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10096                 constmap[i][hr]=constmap[i+1][hr];
10097                 regs[i+1].wasdirty&=~(1<<hr);
10098                 regs[i].dirty&=~(1<<hr);
10099               }
10100             }
10101           }
10102           // Preload map address
10103           #ifndef HOST_IMM_ADDR32
10104           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS) {
10105             hr=get_reg(regs[i+1].regmap,TLREG);
10106             if(hr>=0) {
10107               int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10108               if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10109                 int nr;
10110                 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10111                 {
10112                   regs[i].regmap[hr]=MGEN1+((i+1)&1);
10113                   regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10114                   regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10115                   regs[i].isconst&=~(1<<hr);
10116                   regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10117                   constmap[i][hr]=constmap[i+1][hr];
10118                   regs[i+1].wasdirty&=~(1<<hr);
10119                   regs[i].dirty&=~(1<<hr);
10120                 }
10121                 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10122                 {
10123                   // move it to another register
10124                   regs[i+1].regmap[hr]=-1;
10125                   regmap_pre[i+2][hr]=-1;
10126                   regs[i+1].regmap[nr]=TLREG;
10127                   regmap_pre[i+2][nr]=TLREG;
10128                   regs[i].regmap[nr]=MGEN1+((i+1)&1);
10129                   regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10130                   regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10131                   regs[i].isconst&=~(1<<nr);
10132                   regs[i+1].isconst&=~(1<<nr);
10133                   regs[i].dirty&=~(1<<nr);
10134                   regs[i+1].wasdirty&=~(1<<nr);
10135                   regs[i+1].dirty&=~(1<<nr);
10136                   regs[i+2].wasdirty&=~(1<<nr);
10137                 }
10138               }
10139             }
10140           }
10141           #endif
10142           // Address for store instruction (non-constant)
10143           if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) { // SB/SH/SW/SD/SWC1/SDC1
10144             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10145               hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10146               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10147               else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10148               assert(hr>=0);
10149               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10150               {
10151                 regs[i].regmap[hr]=rs1[i+1];
10152                 regmap_pre[i+1][hr]=rs1[i+1];
10153                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10154                 regs[i].isconst&=~(1<<hr);
10155                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10156                 constmap[i][hr]=constmap[i+1][hr];
10157                 regs[i+1].wasdirty&=~(1<<hr);
10158                 regs[i].dirty&=~(1<<hr);
10159               }
10160             }
10161           }
10162           if(itype[i+1]==LOADLR||opcode[i+1]==0x31||opcode[i+1]==0x35) { // LWC1/LDC1
10163             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10164               int nr;
10165               hr=get_reg(regs[i+1].regmap,FTEMP);
10166               assert(hr>=0);
10167               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10168               {
10169                 regs[i].regmap[hr]=rs1[i+1];
10170                 regmap_pre[i+1][hr]=rs1[i+1];
10171                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10172                 regs[i].isconst&=~(1<<hr);
10173                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10174                 constmap[i][hr]=constmap[i+1][hr];
10175                 regs[i+1].wasdirty&=~(1<<hr);
10176                 regs[i].dirty&=~(1<<hr);
10177               }
10178               else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10179               {
10180                 // move it to another register
10181                 regs[i+1].regmap[hr]=-1;
10182                 regmap_pre[i+2][hr]=-1;
10183                 regs[i+1].regmap[nr]=FTEMP;
10184                 regmap_pre[i+2][nr]=FTEMP;
10185                 regs[i].regmap[nr]=rs1[i+1];
10186                 regmap_pre[i+1][nr]=rs1[i+1];
10187                 regs[i+1].regmap_entry[nr]=rs1[i+1];
10188                 regs[i].isconst&=~(1<<nr);
10189                 regs[i+1].isconst&=~(1<<nr);
10190                 regs[i].dirty&=~(1<<nr);
10191                 regs[i+1].wasdirty&=~(1<<nr);
10192                 regs[i+1].dirty&=~(1<<nr);
10193                 regs[i+2].wasdirty&=~(1<<nr);
10194               }
10195             }
10196           }
10197           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS*/) {
10198             if(itype[i+1]==LOAD) 
10199               hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10200             if(itype[i+1]==LOADLR||opcode[i+1]==0x31||opcode[i+1]==0x35) // LWC1/LDC1
10201               hr=get_reg(regs[i+1].regmap,FTEMP);
10202             if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) { // SWC1/SDC1
10203               hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10204               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10205             }
10206             if(hr>=0&&regs[i].regmap[hr]<0) {
10207               int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10208               if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10209                 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10210                 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10211                 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10212                 regs[i].isconst&=~(1<<hr);
10213                 regs[i+1].wasdirty&=~(1<<hr);
10214                 regs[i].dirty&=~(1<<hr);
10215               }
10216             }
10217           }
10218         }
10219       }
10220     }
10221   }
10222   
10223   /* Pass 6 - Optimize clean/dirty state */
10224   clean_registers(0,slen-1,1);
10225   
10226   /* Pass 7 - Identify 32-bit registers */
10227   
10228   provisional_r32();
10229
10230   u_int r32=0;
10231   
10232   for (i=slen-1;i>=0;i--)
10233   {
10234     int hr;
10235     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10236     {
10237       if(ba[i]<start || ba[i]>=(start+slen*4))
10238       {
10239         // Branch out of this block, don't need anything
10240         r32=0;
10241       }
10242       else
10243       {
10244         // Internal branch
10245         // Need whatever matches the target
10246         // (and doesn't get overwritten by the delay slot instruction)
10247         r32=0;
10248         int t=(ba[i]-start)>>2;
10249         if(ba[i]>start+i*4) {
10250           // Forward branch
10251           if(!(requires_32bit[t]&~regs[i].was32))
10252             r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10253         }else{
10254           // Backward branch
10255           //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10256           //  r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10257           if(!(pr32[t]&~regs[i].was32))
10258             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10259         }
10260       }
10261       // Conditional branch may need registers for following instructions
10262       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10263       {
10264         if(i<slen-2) {
10265           r32|=requires_32bit[i+2];
10266           r32&=regs[i].was32;
10267           // Mark this address as a branch target since it may be called
10268           // upon return from interrupt
10269           bt[i+2]=1;
10270         }
10271       }
10272       // Merge in delay slot
10273       if(!likely[i]) {
10274         // These are overwritten unless the branch is "likely"
10275         // and the delay slot is nullified if not taken
10276         r32&=~(1LL<<rt1[i+1]);
10277         r32&=~(1LL<<rt2[i+1]);
10278       }
10279       // Assume these are needed (delay slot)
10280       if(us1[i+1]>0)
10281       {
10282         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10283       }
10284       if(us2[i+1]>0)
10285       {
10286         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10287       }
10288       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10289       {
10290         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10291       }
10292       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10293       {
10294         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10295       }
10296     }
10297     else if(itype[i]==SYSCALL)
10298     {
10299       // SYSCALL instruction (software interrupt)
10300       r32=0;
10301     }
10302     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10303     {
10304       // ERET instruction (return from interrupt)
10305       r32=0;
10306     }
10307     // Check 32 bits
10308     r32&=~(1LL<<rt1[i]);
10309     r32&=~(1LL<<rt2[i]);
10310     if(us1[i]>0)
10311     {
10312       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10313     }
10314     if(us2[i]>0)
10315     {
10316       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10317     }
10318     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10319     {
10320       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10321     }
10322     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10323     {
10324       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10325     }
10326     requires_32bit[i]=r32;
10327     
10328     // Dirty registers which are 32-bit, require 32-bit input
10329     // as they will be written as 32-bit values
10330     for(hr=0;hr<HOST_REGS;hr++)
10331     {
10332       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10333         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10334           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10335           requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10336         }
10337       }
10338     }
10339     //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10340   }
10341
10342   if(itype[slen-1]==SPAN) {
10343     bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10344   }
10345   
10346   /* Debug/disassembly */
10347 //  if((void*)assem_debug==(void*)printf)
10348 #if defined( ASSEM_DEBUG )
10349   for(i=0;i<slen;i++)
10350   {
10351     DebugMessage(M64MSG_VERBOSE, "U:");
10352     int r;
10353     for(r=1;r<=CCREG;r++) {
10354       if((unneeded_reg[i]>>r)&1) {
10355         if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10356         else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10357         else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10358       }
10359     }
10360     DebugMessage(M64MSG_VERBOSE, " UU:");
10361     for(r=1;r<=CCREG;r++) {
10362       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10363         if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10364         else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10365         else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10366       }
10367     }
10368     DebugMessage(M64MSG_VERBOSE, " 32:");
10369     for(r=0;r<=CCREG;r++) {
10370       //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10371       if((regs[i].was32>>r)&1) {
10372         if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
10373         else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10374         else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10375         else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10376       }
10377     }
10378     #if NEW_DYNAREC == NEW_DYNAREC_X86
10379     DebugMessage(M64MSG_VERBOSE, "pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10380     #endif
10381     #if NEW_DYNAREC == NEW_DYNAREC_ARM
10382     DebugMessage(M64MSG_VERBOSE, "pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10383     #endif
10384     DebugMessage(M64MSG_VERBOSE, "needs: ");
10385     if(needed_reg[i]&1) DebugMessage(M64MSG_VERBOSE, "eax ");
10386     if((needed_reg[i]>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx ");
10387     if((needed_reg[i]>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx ");
10388     if((needed_reg[i]>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx ");
10389     if((needed_reg[i]>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp ");
10390     if((needed_reg[i]>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi ");
10391     if((needed_reg[i]>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi ");
10392     DebugMessage(M64MSG_VERBOSE, "r:");
10393     for(r=0;r<=CCREG;r++) {
10394       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10395       if((requires_32bit[i]>>r)&1) {
10396         if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
10397         else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10398         else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10399         else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10400       }
10401     }
10402     /*DebugMessage(M64MSG_VERBOSE, "pr:");
10403     for(r=0;r<=CCREG;r++) {
10404       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10405       if((pr32[i]>>r)&1) {
10406         if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
10407         else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10408         else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10409         else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10410       }
10411     }
10412     if(pr32[i]!=requires_32bit[i]) DebugMessage(M64MSG_ERROR, " OOPS");*/
10413     #if NEW_DYNAREC == NEW_DYNAREC_X86
10414     DebugMessage(M64MSG_VERBOSE, "entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10415     DebugMessage(M64MSG_VERBOSE, "dirty: ");
10416     if(regs[i].wasdirty&1) DebugMessage(M64MSG_VERBOSE, "eax ");
10417     if((regs[i].wasdirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx ");
10418     if((regs[i].wasdirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx ");
10419     if((regs[i].wasdirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx ");
10420     if((regs[i].wasdirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp ");
10421     if((regs[i].wasdirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi ");
10422     if((regs[i].wasdirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi ");
10423     #endif
10424     #if NEW_DYNAREC == NEW_DYNAREC_ARM
10425     DebugMessage(M64MSG_VERBOSE, "entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10426     DebugMessage(M64MSG_VERBOSE, "dirty: ");
10427     if(regs[i].wasdirty&1) DebugMessage(M64MSG_VERBOSE, "r0 ");
10428     if((regs[i].wasdirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "r1 ");
10429     if((regs[i].wasdirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "r2 ");
10430     if((regs[i].wasdirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "r3 ");
10431     if((regs[i].wasdirty>>4)&1) DebugMessage(M64MSG_VERBOSE, "r4 ");
10432     if((regs[i].wasdirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "r5 ");
10433     if((regs[i].wasdirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "r6 ");
10434     if((regs[i].wasdirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "r7 ");
10435     if((regs[i].wasdirty>>8)&1) DebugMessage(M64MSG_VERBOSE, "r8 ");
10436     if((regs[i].wasdirty>>9)&1) DebugMessage(M64MSG_VERBOSE, "r9 ");
10437     if((regs[i].wasdirty>>10)&1) DebugMessage(M64MSG_VERBOSE, "r10 ");
10438     if((regs[i].wasdirty>>12)&1) DebugMessage(M64MSG_VERBOSE, "r12 ");
10439     #endif
10440     disassemble_inst(i);
10441     //printf ("ccadj[%d] = %d",i,ccadj[i]);
10442     #if NEW_DYNAREC == NEW_DYNAREC_X86
10443     DebugMessage(M64MSG_VERBOSE, "eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10444     if(regs[i].dirty&1) DebugMessage(M64MSG_VERBOSE, "eax ");
10445     if((regs[i].dirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx ");
10446     if((regs[i].dirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx ");
10447     if((regs[i].dirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx ");
10448     if((regs[i].dirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp ");
10449     if((regs[i].dirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi ");
10450     if((regs[i].dirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi ");
10451     #endif
10452     #if NEW_DYNAREC == NEW_DYNAREC_ARM
10453     DebugMessage(M64MSG_VERBOSE, "r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10454     if(regs[i].dirty&1) DebugMessage(M64MSG_VERBOSE, "r0 ");
10455     if((regs[i].dirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "r1 ");
10456     if((regs[i].dirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "r2 ");
10457     if((regs[i].dirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "r3 ");
10458     if((regs[i].dirty>>4)&1) DebugMessage(M64MSG_VERBOSE, "r4 ");
10459     if((regs[i].dirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "r5 ");
10460     if((regs[i].dirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "r6 ");
10461     if((regs[i].dirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "r7 ");
10462     if((regs[i].dirty>>8)&1) DebugMessage(M64MSG_VERBOSE, "r8 ");
10463     if((regs[i].dirty>>9)&1) DebugMessage(M64MSG_VERBOSE, "r9 ");
10464     if((regs[i].dirty>>10)&1) DebugMessage(M64MSG_VERBOSE, "r10 ");
10465     if((regs[i].dirty>>12)&1) DebugMessage(M64MSG_VERBOSE, "r12 ");
10466     #endif
10467     if(regs[i].isconst) {
10468       DebugMessage(M64MSG_VERBOSE, "constants: ");
10469       #if NEW_DYNAREC == NEW_DYNAREC_X86
10470       if(regs[i].isconst&1) DebugMessage(M64MSG_VERBOSE, "eax=%x ",(int)constmap[i][0]);
10471       if((regs[i].isconst>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx=%x ",(int)constmap[i][1]);
10472       if((regs[i].isconst>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx=%x ",(int)constmap[i][2]);
10473       if((regs[i].isconst>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx=%x ",(int)constmap[i][3]);
10474       if((regs[i].isconst>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp=%x ",(int)constmap[i][5]);
10475       if((regs[i].isconst>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi=%x ",(int)constmap[i][6]);
10476       if((regs[i].isconst>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi=%x ",(int)constmap[i][7]);
10477       #endif
10478       #if NEW_DYNAREC == NEW_DYNAREC_ARM
10479       if(regs[i].isconst&1) DebugMessage(M64MSG_VERBOSE, "r0=%x ",(int)constmap[i][0]);
10480       if((regs[i].isconst>>1)&1) DebugMessage(M64MSG_VERBOSE, "r1=%x ",(int)constmap[i][1]);
10481       if((regs[i].isconst>>2)&1) DebugMessage(M64MSG_VERBOSE, "r2=%x ",(int)constmap[i][2]);
10482       if((regs[i].isconst>>3)&1) DebugMessage(M64MSG_VERBOSE, "r3=%x ",(int)constmap[i][3]);
10483       if((regs[i].isconst>>4)&1) DebugMessage(M64MSG_VERBOSE, "r4=%x ",(int)constmap[i][4]);
10484       if((regs[i].isconst>>5)&1) DebugMessage(M64MSG_VERBOSE, "r5=%x ",(int)constmap[i][5]);
10485       if((regs[i].isconst>>6)&1) DebugMessage(M64MSG_VERBOSE, "r6=%x ",(int)constmap[i][6]);
10486       if((regs[i].isconst>>7)&1) DebugMessage(M64MSG_VERBOSE, "r7=%x ",(int)constmap[i][7]);
10487       if((regs[i].isconst>>8)&1) DebugMessage(M64MSG_VERBOSE, "r8=%x ",(int)constmap[i][8]);
10488       if((regs[i].isconst>>9)&1) DebugMessage(M64MSG_VERBOSE, "r9=%x ",(int)constmap[i][9]);
10489       if((regs[i].isconst>>10)&1) DebugMessage(M64MSG_VERBOSE, "r10=%x ",(int)constmap[i][10]);
10490       if((regs[i].isconst>>12)&1) DebugMessage(M64MSG_VERBOSE, "r12=%x ",(int)constmap[i][12]);
10491       #endif
10492     }
10493     DebugMessage(M64MSG_VERBOSE, " 32:");
10494     for(r=0;r<=CCREG;r++) {
10495       if((regs[i].is32>>r)&1) {
10496         if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
10497         else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10498         else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10499         else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10500       }
10501     }
10502     /*DebugMessage(M64MSG_VERBOSE, " p32:");
10503     for(r=0;r<=CCREG;r++) {
10504       if((p32[i]>>r)&1) {
10505         if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
10506         else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10507         else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10508         else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10509       }
10510     }
10511     if(p32[i]!=regs[i].is32) DebugMessage(M64MSG_VERBOSE, " NO MATCH");*/
10512     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10513       #if NEW_DYNAREC == NEW_DYNAREC_X86
10514       DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10515       if(branch_regs[i].dirty&1) DebugMessage(M64MSG_VERBOSE, "eax ");
10516       if((branch_regs[i].dirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx ");
10517       if((branch_regs[i].dirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx ");
10518       if((branch_regs[i].dirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx ");
10519       if((branch_regs[i].dirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp ");
10520       if((branch_regs[i].dirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi ");
10521       if((branch_regs[i].dirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi ");
10522       #endif
10523       #if NEW_DYNAREC == NEW_DYNAREC_ARM
10524       DebugMessage(M64MSG_VERBOSE, "branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10525       if(branch_regs[i].dirty&1) DebugMessage(M64MSG_VERBOSE, "r0 ");
10526       if((branch_regs[i].dirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "r1 ");
10527       if((branch_regs[i].dirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "r2 ");
10528       if((branch_regs[i].dirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "r3 ");
10529       if((branch_regs[i].dirty>>4)&1) DebugMessage(M64MSG_VERBOSE, "r4 ");
10530       if((branch_regs[i].dirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "r5 ");
10531       if((branch_regs[i].dirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "r6 ");
10532       if((branch_regs[i].dirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "r7 ");
10533       if((branch_regs[i].dirty>>8)&1) DebugMessage(M64MSG_VERBOSE, "r8 ");
10534       if((branch_regs[i].dirty>>9)&1) DebugMessage(M64MSG_VERBOSE, "r9 ");
10535       if((branch_regs[i].dirty>>10)&1) DebugMessage(M64MSG_VERBOSE, "r10 ");
10536       if((branch_regs[i].dirty>>12)&1) DebugMessage(M64MSG_VERBOSE, "r12 ");
10537       #endif
10538       DebugMessage(M64MSG_VERBOSE, " 32:");
10539       for(r=0;r<=CCREG;r++) {
10540         if((branch_regs[i].is32>>r)&1) {
10541           if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
10542           else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
10543           else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
10544           else DebugMessage(M64MSG_VERBOSE, " r%d",r);
10545         }
10546       }
10547     }
10548   }
10549 #endif
10550
10551   /* Pass 8 - Assembly */
10552   linkcount=0;stubcount=0;
10553   ds=0;is_delayslot=0;
10554   cop1_usable=0;
10555   #ifndef DESTRUCTIVE_WRITEBACK
10556   uint64_t is32_pre=0;
10557   u_int dirty_pre=0;
10558   #endif
10559   u_int beginning=(u_int)out;
10560   if((u_int)addr&1) {
10561     ds=1;
10562     pagespan_ds();
10563   }
10564   for(i=0;i<slen;i++)
10565   {
10566     //if(ds) DebugMessage(M64MSG_VERBOSE, "ds: ");
10567 //    if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10568 #if defined( ASSEM_DEBUG )
10569           disassemble_inst(i);
10570 #endif
10571     if(ds) {
10572       ds=0; // Skip delay slot
10573       if(bt[i]) assem_debug("OOPS - branch into delay slot");
10574       instr_addr[i]=0;
10575     } else {
10576       #ifndef DESTRUCTIVE_WRITEBACK
10577       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10578       {
10579         wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10580               unneeded_reg[i],unneeded_reg_upper[i]);
10581         wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10582               unneeded_reg[i],unneeded_reg_upper[i]);
10583       }
10584       is32_pre=regs[i].is32;
10585       dirty_pre=regs[i].dirty;
10586       #endif
10587       // write back
10588       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10589       {
10590         wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10591                       unneeded_reg[i],unneeded_reg_upper[i]);
10592         loop_preload(regmap_pre[i],regs[i].regmap_entry);
10593       }
10594       // branch target entry point
10595       instr_addr[i]=(u_int)out;
10596       assem_debug("<->");
10597       // load regs
10598       if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10599         wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10600       load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10601       address_generation(i,&regs[i],regs[i].regmap_entry);
10602       load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10603       if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10604       {
10605         // Load the delay slot registers if necessary
10606         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10607           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10608         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10609           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10610         if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39)
10611           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10612       }
10613       else if(i+1<slen)
10614       {
10615         // Preload registers for following instruction
10616         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10617           if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10618             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10619         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10620           if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10621             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10622       }
10623       // TODO: if(is_ooo(i)) address_generation(i+1);
10624       if(itype[i]==CJUMP||itype[i]==FJUMP)
10625         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10626       if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS)
10627         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,MMREG,ROREG);
10628       if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39)
10629         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10630       if(bt[i]) cop1_usable=0;
10631       // assemble
10632       switch(itype[i]) {
10633         case ALU:
10634           alu_assemble(i,&regs[i]);break;
10635         case IMM16:
10636           imm16_assemble(i,&regs[i]);break;
10637         case SHIFT:
10638           shift_assemble(i,&regs[i]);break;
10639         case SHIFTIMM:
10640           shiftimm_assemble(i,&regs[i]);break;
10641         case LOAD:
10642           load_assemble(i,&regs[i]);break;
10643         case LOADLR:
10644           loadlr_assemble(i,&regs[i]);break;
10645         case STORE:
10646           store_assemble(i,&regs[i]);break;
10647         case STORELR:
10648           storelr_assemble(i,&regs[i]);break;
10649         case COP0:
10650           cop0_assemble(i,&regs[i]);break;
10651         case COP1:
10652           cop1_assemble(i,&regs[i]);break;
10653         case C1LS:
10654           c1ls_assemble(i,&regs[i]);break;
10655         case FCONV:
10656           fconv_assemble(i,&regs[i]);break;
10657         case FLOAT:
10658           float_assemble(i,&regs[i]);break;
10659         case FCOMP:
10660           fcomp_assemble(i,&regs[i]);break;
10661         case MULTDIV:
10662           multdiv_assemble(i,&regs[i]);break;
10663         case MOV:
10664           mov_assemble(i,&regs[i]);break;
10665         case SYSCALL:
10666           syscall_assemble(i,&regs[i]);break;
10667         case UJUMP:
10668           ujump_assemble(i,&regs[i]);ds=1;break;
10669         case RJUMP:
10670           rjump_assemble(i,&regs[i]);ds=1;break;
10671         case CJUMP:
10672           cjump_assemble(i,&regs[i]);ds=1;break;
10673         case SJUMP:
10674           sjump_assemble(i,&regs[i]);ds=1;break;
10675         case FJUMP:
10676           fjump_assemble(i,&regs[i]);ds=1;break;
10677         case SPAN:
10678           pagespan_assemble(i,&regs[i]);break;
10679       }
10680       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10681         literal_pool(1024);
10682       else
10683         literal_pool_jumpover(256);
10684     }
10685   }
10686   //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10687   // If the block did not end with an unconditional branch,
10688   // add a jump to the next instruction.
10689   if(i>1) {
10690     if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10691       assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10692       assert(i==slen);
10693       if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10694         store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10695         if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10696           emit_loadreg(CCREG,HOST_CCREG);
10697         emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10698       }
10699       else if(!likely[i-2])
10700       {
10701         store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10702         assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10703       }
10704       else
10705       {
10706         store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10707         assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10708       }
10709       add_to_linker((int)out,start+i*4,0);
10710       emit_jmp(0);
10711     }
10712   }
10713   else
10714   {
10715     assert(i>0);
10716     assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10717     store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10718     if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10719       emit_loadreg(CCREG,HOST_CCREG);
10720     emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10721     add_to_linker((int)out,start+i*4,0);
10722     emit_jmp(0);
10723   }
10724
10725   // TODO: delay slot stubs?
10726   // Stubs
10727   for(i=0;i<stubcount;i++)
10728   {
10729     switch(stubs[i][0])
10730     {
10731       case LOADB_STUB:
10732       case LOADH_STUB:
10733       case LOADW_STUB:
10734       case LOADD_STUB:
10735       case LOADBU_STUB:
10736       case LOADHU_STUB:
10737         do_readstub(i);break;
10738       case STOREB_STUB:
10739       case STOREH_STUB:
10740       case STOREW_STUB:
10741       case STORED_STUB:
10742         do_writestub(i);break;
10743       case CC_STUB:
10744         do_ccstub(i);break;
10745       case INVCODE_STUB:
10746         do_invstub(i);break;
10747       case FP_STUB:
10748         do_cop1stub(i);break;
10749       case STORELR_STUB:
10750         do_unalignedwritestub(i);break;
10751     }
10752   }
10753
10754   /* Pass 9 - Linker */
10755   for(i=0;i<linkcount;i++)
10756   {
10757     assem_debug("%8x -> %8x",link_addr[i][0],link_addr[i][1]);
10758     literal_pool(64);
10759     if(!link_addr[i][2])
10760     {
10761       void *stub=out;
10762       void *addr=check_addr(link_addr[i][1]);
10763       emit_extjump(link_addr[i][0],link_addr[i][1]);
10764       if(addr) {
10765         set_jump_target(link_addr[i][0],(int)addr);
10766         add_link(link_addr[i][1],stub);
10767       }
10768       else set_jump_target(link_addr[i][0],(int)stub);
10769     }
10770     else
10771     {
10772       // Internal branch
10773       int target=(link_addr[i][1]-start)>>2;
10774       assert(target>=0&&target<slen);
10775       assert(instr_addr[target]);
10776       //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10777       //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10778       //#else
10779       set_jump_target(link_addr[i][0],instr_addr[target]);
10780       //#endif
10781     }
10782   }
10783   // External Branch Targets (jump_in)
10784   if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10785   for(i=0;i<slen;i++)
10786   {
10787     if(bt[i]||i==0)
10788     {
10789       if(instr_addr[i]) // TODO - delay slots (=null)
10790       {
10791         u_int vaddr=start+i*4;
10792         u_int page=(0x80000000^vaddr)>>12;
10793         u_int vpage=page;
10794         if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[page^0x80000]^0x80000000)>>12;
10795         if(page>2048) page=2048+(page&2047);
10796         if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
10797         if(vpage>2048) vpage=2048+(vpage&2047);
10798         literal_pool(256);
10799         //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
10800         if(!requires_32bit[i])
10801         {
10802           assem_debug("%8x (%d) <- %8x",instr_addr[i],i,start+i*4);
10803           assem_debug("jump_in: %x",start+i*4);
10804           ll_add(jump_dirty+vpage,vaddr,(void *)out);
10805           int entry_point=do_dirty_stub(i);
10806           ll_add(jump_in+page,vaddr,(void *)entry_point);
10807           // If there was an existing entry in the hash table,
10808           // replace it with the new address.
10809           // Don't add new entries.  We'll insert the
10810           // ones that actually get used in check_addr().
10811           u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10812           if(ht_bin[0]==vaddr) {
10813             ht_bin[1]=entry_point;
10814           }
10815           if(ht_bin[2]==vaddr) {
10816             ht_bin[3]=entry_point;
10817           }
10818         }
10819         else
10820         {
10821           u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10822           assem_debug("%8x (%d) <- %8x",instr_addr[i],i,start+i*4);
10823           assem_debug("jump_in: %x (restricted - %x)",start+i*4,r);
10824           //int entry_point=(int)out;
10825           ////assem_debug("entry_point: %x",entry_point);
10826           //load_regs_entry(i);
10827           //if(entry_point==(int)out)
10828           //  entry_point=instr_addr[i];
10829           //else
10830           //  emit_jmp(instr_addr[i]);
10831           //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10832           ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
10833           int entry_point=do_dirty_stub(i);
10834           ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10835         }
10836       }
10837     }
10838   }
10839   // Write out the literal pool if necessary
10840   literal_pool(0);
10841   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10842   // Align code
10843   if(((u_int)out)&7) emit_addnop(13);
10844   #endif
10845   assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10846   //DebugMessage(M64MSG_VERBOSE, "shadow buffer: %x-%x",(int)copy,(int)copy+slen*4);
10847   memcpy(copy,source,slen*4);
10848   copy+=slen*4;
10849
10850   #if NEW_DYNAREC == NEW_DYNAREC_ARM
10851   __clear_cache((void *)beginning,out);
10852   //cacheflush((void *)beginning,out,0);
10853   #endif
10854
10855   // If we're within 256K of the end of the buffer,
10856   // start over from the beginning. (Is 256K enough?)
10857   if(out > (u_char *)(base_addr+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE-JUMP_TABLE_SIZE))
10858     out=(u_char *)base_addr;
10859   
10860   // Trap writes to any of the pages we compiled
10861   for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10862     invalid_code[i]=0;
10863     memory_map[i]|=0x40000000;
10864     if((signed int)start>=(signed int)0xC0000000) {
10865       assert(using_tlb);
10866       j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
10867       invalid_code[j]=0;
10868       memory_map[j]|=0x40000000;
10869       //DebugMessage(M64MSG_VERBOSE, "write protect physical page: %x (virtual %x)",j<<12,start);
10870     }
10871   }
10872   
10873   /* Pass 10 - Free memory by expiring oldest blocks */
10874   
10875   int end=((((intptr_t)out-(intptr_t)base_addr)>>(TARGET_SIZE_2-16))+16384)&65535;
10876   while(expirep!=end)
10877   {
10878     int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
10879     int base=(int)base_addr+((expirep>>13)<<shift); // Base address of this block
10880     inv_debug("EXP: Phase %d\n",expirep);
10881     switch((expirep>>11)&3)
10882     {
10883       case 0:
10884         // Clear jump_in and jump_dirty
10885         ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
10886         ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
10887         ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
10888         ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
10889         break;
10890       case 1:
10891         // Clear pointers
10892         ll_kill_pointers(jump_out[expirep&2047],base,shift);
10893         ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
10894         break;
10895       case 2:
10896         // Clear hash table
10897         for(i=0;i<32;i++) {
10898           u_int *ht_bin=hash_table[((expirep&2047)<<5)+i];
10899           if((ht_bin[3]>>shift)==(base>>shift) ||
10900              ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10901             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
10902             ht_bin[2]=ht_bin[3]=-1;
10903           }
10904           if((ht_bin[1]>>shift)==(base>>shift) ||
10905              ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10906             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
10907             ht_bin[0]=ht_bin[2];
10908             ht_bin[1]=ht_bin[3];
10909             ht_bin[2]=ht_bin[3]=-1;
10910           }
10911         }
10912         break;
10913       case 3:
10914         // Clear jump_out
10915         #if NEW_DYNAREC == NEW_DYNAREC_ARM
10916         if((expirep&2047)==0) 
10917           do_clear_cache();
10918         #endif
10919         ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
10920         ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
10921         break;
10922     }
10923     expirep=(expirep+1)&65535;
10924   }
10925   return 0;
10926 }
10927
10928 void TLBWI_new(void)
10929 {
10930   unsigned int i;
10931   /* Remove old entries */
10932   unsigned int old_start_even=tlb_e[Index&0x3F].start_even;
10933   unsigned int old_end_even=tlb_e[Index&0x3F].end_even;
10934   unsigned int old_start_odd=tlb_e[Index&0x3F].start_odd;
10935   unsigned int old_end_odd=tlb_e[Index&0x3F].end_odd;
10936   for (i=old_start_even>>12; i<=old_end_even>>12; i++)
10937   {
10938     if(i<0x80000||i>0xBFFFF)
10939     {
10940       invalidate_block(i);
10941       memory_map[i]=-1;
10942     }
10943   }
10944   for (i=old_start_odd>>12; i<=old_end_odd>>12; i++)
10945   {
10946     if(i<0x80000||i>0xBFFFF)
10947     {
10948       invalidate_block(i);
10949       memory_map[i]=-1;
10950     }
10951   }
10952   cached_interpreter_table.TLBWI();
10953   //DebugMessage(M64MSG_VERBOSE, "TLBWI: index=%d",Index);
10954   //DebugMessage(M64MSG_VERBOSE, "TLBWI: start_even=%x end_even=%x phys_even=%x v=%d d=%d",tlb_e[Index&0x3F].start_even,tlb_e[Index&0x3F].end_even,tlb_e[Index&0x3F].phys_even,tlb_e[Index&0x3F].v_even,tlb_e[Index&0x3F].d_even);
10955   //DebugMessage(M64MSG_VERBOSE, "TLBWI: start_odd=%x end_odd=%x phys_odd=%x v=%d d=%d",tlb_e[Index&0x3F].start_odd,tlb_e[Index&0x3F].end_odd,tlb_e[Index&0x3F].phys_odd,tlb_e[Index&0x3F].v_odd,tlb_e[Index&0x3F].d_odd);
10956   /* Combine tlb_LUT_r, tlb_LUT_w, and invalid_code into a single table
10957      for fast look up. */
10958   for (i=tlb_e[Index&0x3F].start_even>>12; i<=tlb_e[Index&0x3F].end_even>>12; i++)
10959   {
10960     //DebugMessage(M64MSG_VERBOSE, "%x: r:%8x w:%8x",i,tlb_LUT_r[i],tlb_LUT_w[i]);
10961     if(i<0x80000||i>0xBFFFF)
10962     {
10963       if(tlb_LUT_r[i]) {
10964         memory_map[i]=((tlb_LUT_r[i]&0xFFFFF000)-(i<<12)+(unsigned int)rdram-0x80000000)>>2;
10965         // FIXME: should make sure the physical page is invalid too
10966         if(!tlb_LUT_w[i]||!invalid_code[i]) {
10967           memory_map[i]|=0x40000000; // Write protect
10968         }else{
10969           assert(tlb_LUT_r[i]==tlb_LUT_w[i]);
10970         }
10971         if(!using_tlb) DebugMessage(M64MSG_VERBOSE, "Enabled TLB");
10972         // Tell the dynamic recompiler to generate tlb lookup code
10973         using_tlb=1;
10974       }
10975       else memory_map[i]=-1;
10976     }
10977     //DebugMessage(M64MSG_VERBOSE, "memory_map[%x]: %8x (+%8x)",i,memory_map[i],memory_map[i]<<2);
10978   }
10979   for (i=tlb_e[Index&0x3F].start_odd>>12; i<=tlb_e[Index&0x3F].end_odd>>12; i++)
10980   {
10981     //DebugMessage(M64MSG_VERBOSE, "%x: r:%8x w:%8x",i,tlb_LUT_r[i],tlb_LUT_w[i]);
10982     if(i<0x80000||i>0xBFFFF)
10983     {
10984       if(tlb_LUT_r[i]) {
10985         memory_map[i]=((tlb_LUT_r[i]&0xFFFFF000)-(i<<12)+(unsigned int)rdram-0x80000000)>>2;
10986         // FIXME: should make sure the physical page is invalid too
10987         if(!tlb_LUT_w[i]||!invalid_code[i]) {
10988           memory_map[i]|=0x40000000; // Write protect
10989         }else{
10990           assert(tlb_LUT_r[i]==tlb_LUT_w[i]);
10991         }
10992         if(!using_tlb) DebugMessage(M64MSG_VERBOSE, "Enabled TLB");
10993         // Tell the dynamic recompiler to generate tlb lookup code
10994         using_tlb=1;
10995       }
10996       else memory_map[i]=-1;
10997     }
10998     //DebugMessage(M64MSG_VERBOSE, "memory_map[%x]: %8x (+%8x)",i,memory_map[i],memory_map[i]<<2);
10999   }
11000 }
11001
11002 void TLBWR_new(void)
11003 {
11004   unsigned int i;
11005   Random = (Count/2 % (32 - Wired)) + Wired;
11006   /* Remove old entries */
11007   unsigned int old_start_even=tlb_e[Random&0x3F].start_even;
11008   unsigned int old_end_even=tlb_e[Random&0x3F].end_even;
11009   unsigned int old_start_odd=tlb_e[Random&0x3F].start_odd;
11010   unsigned int old_end_odd=tlb_e[Random&0x3F].end_odd;
11011   for (i=old_start_even>>12; i<=old_end_even>>12; i++)
11012   {
11013     if(i<0x80000||i>0xBFFFF)
11014     {
11015       invalidate_block(i);
11016       memory_map[i]=-1;
11017     }
11018   }
11019   for (i=old_start_odd>>12; i<=old_end_odd>>12; i++)
11020   {
11021     if(i<0x80000||i>0xBFFFF)
11022     {
11023       invalidate_block(i);
11024       memory_map[i]=-1;
11025     }
11026   }
11027   cached_interpreter_table.TLBWR();
11028   /* Combine tlb_LUT_r, tlb_LUT_w, and invalid_code into a single table
11029      for fast look up. */
11030   for (i=tlb_e[Random&0x3F].start_even>>12; i<=tlb_e[Random&0x3F].end_even>>12; i++)
11031   {
11032     //DebugMessage(M64MSG_VERBOSE, "%x: r:%8x w:%8x",i,tlb_LUT_r[i],tlb_LUT_w[i]);
11033     if(i<0x80000||i>0xBFFFF)
11034     {
11035       if(tlb_LUT_r[i]) {
11036         memory_map[i]=((tlb_LUT_r[i]&0xFFFFF000)-(i<<12)+(unsigned int)rdram-0x80000000)>>2;
11037         // FIXME: should make sure the physical page is invalid too
11038         if(!tlb_LUT_w[i]||!invalid_code[i]) {
11039           memory_map[i]|=0x40000000; // Write protect
11040         }else{
11041           assert(tlb_LUT_r[i]==tlb_LUT_w[i]);
11042         }
11043         if(!using_tlb) DebugMessage(M64MSG_VERBOSE, "Enabled TLB");
11044         // Tell the dynamic recompiler to generate tlb lookup code
11045         using_tlb=1;
11046       }
11047       else memory_map[i]=-1;
11048     }
11049     //DebugMessage(M64MSG_VERBOSE, "memory_map[%x]: %8x (+%8x)",i,memory_map[i],memory_map[i]<<2);
11050   }
11051   for (i=tlb_e[Random&0x3F].start_odd>>12; i<=tlb_e[Random&0x3F].end_odd>>12; i++)
11052   {
11053     //DebugMessage(M64MSG_VERBOSE, "%x: r:%8x w:%8x",i,tlb_LUT_r[i],tlb_LUT_w[i]);
11054     if(i<0x80000||i>0xBFFFF)
11055     {
11056       if(tlb_LUT_r[i]) {
11057         memory_map[i]=((tlb_LUT_r[i]&0xFFFFF000)-(i<<12)+(unsigned int)rdram-0x80000000)>>2;
11058         // FIXME: should make sure the physical page is invalid too
11059         if(!tlb_LUT_w[i]||!invalid_code[i]) {
11060           memory_map[i]|=0x40000000; // Write protect
11061         }else{
11062           assert(tlb_LUT_r[i]==tlb_LUT_w[i]);
11063         }
11064         if(!using_tlb) DebugMessage(M64MSG_VERBOSE, "Enabled TLB");
11065         // Tell the dynamic recompiler to generate tlb lookup code
11066         using_tlb=1;
11067       }
11068       else memory_map[i]=-1;
11069     }
11070     //DebugMessage(M64MSG_VERBOSE, "memory_map[%x]: %8x (+%8x)",i,memory_map[i],memory_map[i]<<2);
11071   }
11072 }