eeprom crash fix, PacMan2 hack
[picodrive.git] / Pico / sound / ym2612.c
CommitLineData
cc68a136 1/*\r
4f265db7 2** This is a bunch of remains of original fm.c from MAME project. All stuff\r
cc68a136 3** unrelated to ym2612 was removed, multiple chip support was removed,\r
4** some parts of code were slightly rewritten and tied to the emulator.\r
5**\r
6** SSG-EG was also removed, because it's rarely used, Sega2.doc even does not\r
7** document it ("proprietary") and tells to write 0 to SSG-EG control register.\r
8*/\r
9\r
10/*\r
11**\r
12** File: fm.c -- software implementation of Yamaha FM sound generator\r
13**\r
14** Copyright (C) 2001, 2002, 2003 Jarek Burczynski (bujar at mame dot net)\r
15** Copyright (C) 1998 Tatsuyuki Satoh , MultiArcadeMachineEmulator development\r
16**\r
17** Version 1.4 (final beta)\r
18**\r
19*/\r
20\r
21/*\r
22** History:\r
23**\r
24** 03-08-2003 Jarek Burczynski:\r
25** - fixed YM2608 initial values (after the reset)\r
26** - fixed flag and irqmask handling (YM2608)\r
27** - fixed BUFRDY flag handling (YM2608)\r
28**\r
29** 14-06-2003 Jarek Burczynski:\r
30** - implemented all of the YM2608 status register flags\r
31** - implemented support for external memory read/write via YM2608\r
32** - implemented support for deltat memory limit register in YM2608 emulation\r
33**\r
34** 22-05-2003 Jarek Burczynski:\r
35** - fixed LFO PM calculations (copy&paste bugfix)\r
36**\r
37** 08-05-2003 Jarek Burczynski:\r
38** - fixed SSG support\r
39**\r
40** 22-04-2003 Jarek Burczynski:\r
41** - implemented 100% correct LFO generator (verified on real YM2610 and YM2608)\r
42**\r
43** 15-04-2003 Jarek Burczynski:\r
44** - added support for YM2608's register 0x110 - status mask\r
45**\r
46** 01-12-2002 Jarek Burczynski:\r
47** - fixed register addressing in YM2608, YM2610, YM2610B chips. (verified on real YM2608)\r
48** The addressing patch used for early Neo-Geo games can be removed now.\r
49**\r
50** 26-11-2002 Jarek Burczynski, Nicola Salmoria:\r
51** - recreated YM2608 ADPCM ROM using data from real YM2608's output which leads to:\r
52** - added emulation of YM2608 drums.\r
53** - output of YM2608 is two times lower now - same as YM2610 (verified on real YM2608)\r
54**\r
55** 16-08-2002 Jarek Burczynski:\r
56** - binary exact Envelope Generator (verified on real YM2203);\r
57** identical to YM2151\r
58** - corrected 'off by one' error in feedback calculations (when feedback is off)\r
59** - corrected connection (algorithm) calculation (verified on real YM2203 and YM2610)\r
60**\r
61** 18-12-2001 Jarek Burczynski:\r
62** - added SSG-EG support (verified on real YM2203)\r
63**\r
64** 12-08-2001 Jarek Burczynski:\r
65** - corrected ym_sin_tab and ym_tl_tab data (verified on real chip)\r
66** - corrected feedback calculations (verified on real chip)\r
67** - corrected phase generator calculations (verified on real chip)\r
68** - corrected envelope generator calculations (verified on real chip)\r
69** - corrected FM volume level (YM2610 and YM2610B).\r
70** - changed YMxxxUpdateOne() functions (YM2203, YM2608, YM2610, YM2610B, YM2612) :\r
71** this was needed to calculate YM2610 FM channels output correctly.\r
72** (Each FM channel is calculated as in other chips, but the output of the channel\r
73** gets shifted right by one *before* sending to accumulator. That was impossible to do\r
74** with previous implementation).\r
75**\r
76** 23-07-2001 Jarek Burczynski, Nicola Salmoria:\r
77** - corrected YM2610 ADPCM type A algorithm and tables (verified on real chip)\r
78**\r
79** 11-06-2001 Jarek Burczynski:\r
80** - corrected end of sample bug in ADPCMA_calc_cha().\r
81** Real YM2610 checks for equality between current and end addresses (only 20 LSB bits).\r
82**\r
83** 08-12-98 hiro-shi:\r
84** rename ADPCMA -> ADPCMB, ADPCMB -> ADPCMA\r
85** move ROM limit check.(CALC_CH? -> 2610Write1/2)\r
86** test program (ADPCMB_TEST)\r
87** move ADPCM A/B end check.\r
88** ADPCMB repeat flag(no check)\r
89** change ADPCM volume rate (8->16) (32->48).\r
90**\r
91** 09-12-98 hiro-shi:\r
92** change ADPCM volume. (8->16, 48->64)\r
93** replace ym2610 ch0/3 (YM-2610B)\r
94** change ADPCM_SHIFT (10->8) missing bank change 0x4000-0xffff.\r
95** add ADPCM_SHIFT_MASK\r
96** change ADPCMA_DECODE_MIN/MAX.\r
97*/\r
98\r
99\r
100\r
101\r
102/************************************************************************/\r
103/* comment of hiro-shi(Hiromitsu Shioya) */\r
104/* YM2610(B) = OPN-B */\r
105/* YM2610 : PSG:3ch FM:4ch ADPCM(18.5KHz):6ch DeltaT ADPCM:1ch */\r
106/* YM2610B : PSG:3ch FM:6ch ADPCM(18.5KHz):6ch DeltaT ADPCM:1ch */\r
107/************************************************************************/\r
108\r
109//#include <stdio.h>\r
110\r
111#include <string.h>\r
112#include <math.h>\r
113\r
114#include "ym2612.h"\r
115\r
116#ifndef EXTERNAL_YM2612\r
117#include <stdlib.h>\r
118// let it be 1 global to simplify things\r
119static YM2612 ym2612;\r
120\r
121#else\r
122extern YM2612 *ym2612_940;\r
cc68a136 123#define ym2612 (*ym2612_940)\r
124\r
125#endif\r
126\r
cea65903 127void memset32(int *dest, int c, int count);\r
128\r
cc68a136 129\r
130#ifndef __GNUC__\r
131#pragma warning (disable:4100) // unreferenced formal parameter\r
132#pragma warning (disable:4244)\r
133#pragma warning (disable:4245) // signed/unsigned in conversion\r
134#pragma warning (disable:4710)\r
135#pragma warning (disable:4018) // signed/unsigned\r
136#endif\r
137\r
138#ifndef INLINE\r
139#define INLINE static __inline\r
140#endif\r
141\r
142#ifndef M_PI\r
143#define M_PI 3.14159265358979323846\r
144#endif\r
145\r
146\r
147/* globals */\r
148\r
149#define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */\r
150#define EG_SH 16 /* 16.16 fixed point (envelope generator timing) */\r
151#define LFO_SH 25 /* 7.25 fixed point (LFO calculations) */\r
152#define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */\r
153\r
154#define ENV_BITS 10\r
155#define ENV_LEN (1<<ENV_BITS)\r
156#define ENV_STEP (128.0/ENV_LEN)\r
157\r
158#define MAX_ATT_INDEX (ENV_LEN-1) /* 1023 */\r
159#define MIN_ATT_INDEX (0) /* 0 */\r
160\r
161#define EG_ATT 4\r
162#define EG_DEC 3\r
163#define EG_SUS 2\r
164#define EG_REL 1\r
165#define EG_OFF 0\r
166\r
167#define SIN_BITS 10\r
168#define SIN_LEN (1<<SIN_BITS)\r
169#define SIN_MASK (SIN_LEN-1)\r
170\r
171#define TL_RES_LEN (256) /* 8 bits addressing (real chip) */\r
172\r
173#define EG_TIMER_OVERFLOW (3*(1<<EG_SH)) /* envelope generator timer overflows every 3 samples (on real chip) */\r
174\r
175#define MAXOUT (+32767)\r
176#define MINOUT (-32768)\r
177\r
178/* limitter */\r
179#define Limit(val, max,min) { \\r
180 if ( val > max ) val = max; \\r
181 else if ( val < min ) val = min; \\r
182}\r
183\r
184\r
185/* TL_TAB_LEN is calculated as:\r
186* 13 - sinus amplitude bits (Y axis)\r
187* 2 - sinus sign bit (Y axis)\r
188* TL_RES_LEN - sinus resolution (X axis)\r
189*/\r
190//#define TL_TAB_LEN (13*2*TL_RES_LEN)\r
191#define TL_TAB_LEN (13*TL_RES_LEN*256/8) // 106496*2\r
192UINT16 ym_tl_tab[TL_TAB_LEN];\r
193\r
194/* ~3K wasted but oh well */\r
195UINT16 ym_tl_tab2[13*TL_RES_LEN];\r
196\r
197#define ENV_QUIET (2*13*TL_RES_LEN/8)\r
198\r
199/* sin waveform table in 'decibel' scale (use only period/4 values) */\r
200static UINT16 ym_sin_tab[256];\r
201\r
202/* sustain level table (3dB per step) */\r
203/* bit0, bit1, bit2, bit3, bit4, bit5, bit6 */\r
204/* 1, 2, 4, 8, 16, 32, 64 (value)*/\r
205/* 0.75, 1.5, 3, 6, 12, 24, 48 (dB)*/\r
206\r
207/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/\r
208#define SC(db) (UINT32) ( db * (4.0/ENV_STEP) )\r
209static const UINT32 sl_table[16]={\r
210 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),\r
211 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)\r
212};\r
213#undef SC\r
214\r
215\r
216#if 0\r
217#define RATE_STEPS (8)\r
218static const UINT8 eg_inc[19*RATE_STEPS]={\r
219\r
220/*cycle:0 1 2 3 4 5 6 7*/\r
221\r
222/* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..11 0 (increment by 0 or 1) */\r
223/* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..11 1 */\r
224/* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..11 2 */\r
225/* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..11 3 */\r
226\r
227/* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 12 0 (increment by 1) */\r
228/* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 12 1 */\r
229/* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 12 2 */\r
230/* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 12 3 */\r
231\r
232/* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 13 0 (increment by 2) */\r
233/* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 13 1 */\r
234/*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 13 2 */\r
235/*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 13 3 */\r
236\r
237/*12 */ 4,4, 4,4, 4,4, 4,4, /* rate 14 0 (increment by 4) */\r
238/*13 */ 4,4, 4,8, 4,4, 4,8, /* rate 14 1 */\r
239/*14 */ 4,8, 4,8, 4,8, 4,8, /* rate 14 2 */\r
240/*15 */ 4,8, 8,8, 4,8, 8,8, /* rate 14 3 */\r
241\r
242/*16 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 8) */\r
243/*17 */ 16,16,16,16,16,16,16,16, /* rates 15 2, 15 3 for attack */\r
244/*18 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */\r
245};\r
246#endif\r
247\r
248\r
249#define PACK(a0,a1,a2,a3,a4,a5,a6,a7) ((a7<<21)|(a6<<18)|(a5<<15)|(a4<<12)|(a3<<9)|(a2<<6)|(a1<<3)|(a0<<0))\r
250static const UINT32 eg_inc_pack[19] =\r
251{\r
252/* 0 */ PACK(0,1,0,1,0,1,0,1), /* rates 00..11 0 (increment by 0 or 1) */\r
253/* 1 */ PACK(0,1,0,1,1,1,0,1), /* rates 00..11 1 */\r
254/* 2 */ PACK(0,1,1,1,0,1,1,1), /* rates 00..11 2 */\r
255/* 3 */ PACK(0,1,1,1,1,1,1,1), /* rates 00..11 3 */\r
256\r
257/* 4 */ PACK(1,1,1,1,1,1,1,1), /* rate 12 0 (increment by 1) */\r
258/* 5 */ PACK(1,1,1,2,1,1,1,2), /* rate 12 1 */\r
259/* 6 */ PACK(1,2,1,2,1,2,1,2), /* rate 12 2 */\r
260/* 7 */ PACK(1,2,2,2,1,2,2,2), /* rate 12 3 */\r
261\r
262/* 8 */ PACK(2,2,2,2,2,2,2,2), /* rate 13 0 (increment by 2) */\r
263/* 9 */ PACK(2,2,2,3,2,2,2,3), /* rate 13 1 */\r
264/*10 */ PACK(2,3,2,3,2,3,2,3), /* rate 13 2 */\r
265/*11 */ PACK(2,3,3,3,2,3,3,3), /* rate 13 3 */\r
266\r
267/*12 */ PACK(3,3,3,3,3,3,3,3), /* rate 14 0 (increment by 4) */\r
268/*13 */ PACK(3,3,3,4,3,3,3,4), /* rate 14 1 */\r
269/*14 */ PACK(3,4,3,4,3,4,3,4), /* rate 14 2 */\r
270/*15 */ PACK(3,4,4,4,3,4,4,4), /* rate 14 3 */\r
271\r
272/*16 */ PACK(4,4,4,4,4,4,4,4), /* rates 15 0, 15 1, 15 2, 15 3 (increment by 8) */\r
273/*17 */ PACK(5,5,5,5,5,5,5,5), /* rates 15 2, 15 3 for attack */\r
274/*18 */ PACK(0,0,0,0,0,0,0,0), /* infinity rates for attack and decay(s) */\r
275};\r
276\r
277\r
278//#define O(a) (a*RATE_STEPS)\r
279#define O(a) a\r
280\r
281/*note that there is no O(17) in this table - it's directly in the code */\r
282static const UINT8 eg_rate_select[32+64+32]={ /* Envelope Generator rates (32 + 64 rates + 32 RKS) */\r
283/* 32 infinite time rates */\r
284O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),\r
285O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),\r
286O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),\r
287O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),\r
288\r
289/* rates 00-11 */\r
290O( 0),O( 1),O( 2),O( 3),\r
291O( 0),O( 1),O( 2),O( 3),\r
292O( 0),O( 1),O( 2),O( 3),\r
293O( 0),O( 1),O( 2),O( 3),\r
294O( 0),O( 1),O( 2),O( 3),\r
295O( 0),O( 1),O( 2),O( 3),\r
296O( 0),O( 1),O( 2),O( 3),\r
297O( 0),O( 1),O( 2),O( 3),\r
298O( 0),O( 1),O( 2),O( 3),\r
299O( 0),O( 1),O( 2),O( 3),\r
300O( 0),O( 1),O( 2),O( 3),\r
301O( 0),O( 1),O( 2),O( 3),\r
302\r
303/* rate 12 */\r
304O( 4),O( 5),O( 6),O( 7),\r
305\r
306/* rate 13 */\r
307O( 8),O( 9),O(10),O(11),\r
308\r
309/* rate 14 */\r
310O(12),O(13),O(14),O(15),\r
311\r
312/* rate 15 */\r
313O(16),O(16),O(16),O(16),\r
314\r
315/* 32 dummy rates (same as 15 3) */\r
316O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),\r
317O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),\r
318O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),\r
319O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16)\r
320\r
321};\r
322#undef O\r
323\r
324/*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15*/\r
325/*shift 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0 */\r
326/*mask 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0, 0 */\r
327\r
328#define O(a) (a*1)\r
329static const UINT8 eg_rate_shift[32+64+32]={ /* Envelope Generator counter shifts (32 + 64 rates + 32 RKS) */\r
330/* 32 infinite time rates */\r
331O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),\r
332O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),\r
333O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),\r
334O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),\r
335\r
336/* rates 00-11 */\r
337O(11),O(11),O(11),O(11),\r
338O(10),O(10),O(10),O(10),\r
339O( 9),O( 9),O( 9),O( 9),\r
340O( 8),O( 8),O( 8),O( 8),\r
341O( 7),O( 7),O( 7),O( 7),\r
342O( 6),O( 6),O( 6),O( 6),\r
343O( 5),O( 5),O( 5),O( 5),\r
344O( 4),O( 4),O( 4),O( 4),\r
345O( 3),O( 3),O( 3),O( 3),\r
346O( 2),O( 2),O( 2),O( 2),\r
347O( 1),O( 1),O( 1),O( 1),\r
348O( 0),O( 0),O( 0),O( 0),\r
349\r
350/* rate 12 */\r
351O( 0),O( 0),O( 0),O( 0),\r
352\r
353/* rate 13 */\r
354O( 0),O( 0),O( 0),O( 0),\r
355\r
356/* rate 14 */\r
357O( 0),O( 0),O( 0),O( 0),\r
358\r
359/* rate 15 */\r
360O( 0),O( 0),O( 0),O( 0),\r
361\r
362/* 32 dummy rates (same as 15 3) */\r
363O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),\r
364O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),\r
365O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),\r
366O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0)\r
367\r
368};\r
369#undef O\r
370\r
371static const UINT8 dt_tab[4 * 32]={\r
372/* this is YM2151 and YM2612 phase increment data (in 10.10 fixed point format)*/\r
373/* FD=0 */\r
374 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r
375 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r
376/* FD=1 */\r
377 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,\r
378 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8,\r
379/* FD=2 */\r
380 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,\r
381 5, 6, 6, 7, 8, 8, 9,10,11,12,13,14,16,16,16,16,\r
382/* FD=3 */\r
383 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7,\r
384 8 , 8, 9,10,11,12,13,14,16,17,19,20,22,22,22,22\r
385};\r
386\r
387\r
388/* OPN key frequency number -> key code follow table */\r
389/* fnum higher 4bit -> keycode lower 2bit */\r
390static const UINT8 opn_fktable[16] = {0,0,0,0,0,0,0,1,2,3,3,3,3,3,3,3};\r
391\r
392\r
393/* 8 LFO speed parameters */\r
394/* each value represents number of samples that one LFO level will last for */\r
395static const UINT32 lfo_samples_per_step[8] = {108, 77, 71, 67, 62, 44, 8, 5};\r
396\r
397\r
398\r
399/*There are 4 different LFO AM depths available, they are:\r
400 0 dB, 1.4 dB, 5.9 dB, 11.8 dB\r
401 Here is how it is generated (in EG steps):\r
402\r
403 11.8 dB = 0, 2, 4, 6, 8, 10,12,14,16...126,126,124,122,120,118,....4,2,0\r
404 5.9 dB = 0, 1, 2, 3, 4, 5, 6, 7, 8....63, 63, 62, 61, 60, 59,.....2,1,0\r
405 1.4 dB = 0, 0, 0, 0, 1, 1, 1, 1, 2,...15, 15, 15, 15, 14, 14,.....0,0,0\r
406\r
407 (1.4 dB is loosing precision as you can see)\r
408\r
409 It's implemented as generator from 0..126 with step 2 then a shift\r
410 right N times, where N is:\r
411 8 for 0 dB\r
412 3 for 1.4 dB\r
413 1 for 5.9 dB\r
414 0 for 11.8 dB\r
415*/\r
416static const UINT8 lfo_ams_depth_shift[4] = {8, 3, 1, 0};\r
417\r
418\r
419\r
420/*There are 8 different LFO PM depths available, they are:\r
421 0, 3.4, 6.7, 10, 14, 20, 40, 80 (cents)\r
422\r
423 Modulation level at each depth depends on F-NUMBER bits: 4,5,6,7,8,9,10\r
424 (bits 8,9,10 = FNUM MSB from OCT/FNUM register)\r
425\r
426 Here we store only first quarter (positive one) of full waveform.\r
427 Full table (lfo_pm_table) containing all 128 waveforms is build\r
428 at run (init) time.\r
429\r
430 One value in table below represents 4 (four) basic LFO steps\r
431 (1 PM step = 4 AM steps).\r
432\r
433 For example:\r
434 at LFO SPEED=0 (which is 108 samples per basic LFO step)\r
435 one value from "lfo_pm_output" table lasts for 432 consecutive\r
436 samples (4*108=432) and one full LFO waveform cycle lasts for 13824\r
437 samples (32*432=13824; 32 because we store only a quarter of whole\r
438 waveform in the table below)\r
439*/\r
440static const UINT8 lfo_pm_output[7*8][8]={ /* 7 bits meaningful (of F-NUMBER), 8 LFO output levels per one depth (out of 32), 8 LFO depths */\r
441/* FNUM BIT 4: 000 0001xxxx */\r
442/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
443/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
444/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
445/* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
446/* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
447/* DEPTH 5 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
448/* DEPTH 6 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
449/* DEPTH 7 */ {0, 0, 0, 0, 1, 1, 1, 1},\r
450\r
451/* FNUM BIT 5: 000 0010xxxx */\r
452/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
453/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
454/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
455/* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
456/* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
457/* DEPTH 5 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
458/* DEPTH 6 */ {0, 0, 0, 0, 1, 1, 1, 1},\r
459/* DEPTH 7 */ {0, 0, 1, 1, 2, 2, 2, 3},\r
460\r
461/* FNUM BIT 6: 000 0100xxxx */\r
462/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
463/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
464/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
465/* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
466/* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 1},\r
467/* DEPTH 5 */ {0, 0, 0, 0, 1, 1, 1, 1},\r
468/* DEPTH 6 */ {0, 0, 1, 1, 2, 2, 2, 3},\r
469/* DEPTH 7 */ {0, 0, 2, 3, 4, 4, 5, 6},\r
470\r
471/* FNUM BIT 7: 000 1000xxxx */\r
472/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
473/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
474/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 1, 1},\r
475/* DEPTH 3 */ {0, 0, 0, 0, 1, 1, 1, 1},\r
476/* DEPTH 4 */ {0, 0, 0, 1, 1, 1, 1, 2},\r
477/* DEPTH 5 */ {0, 0, 1, 1, 2, 2, 2, 3},\r
478/* DEPTH 6 */ {0, 0, 2, 3, 4, 4, 5, 6},\r
479/* DEPTH 7 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},\r
480\r
481/* FNUM BIT 8: 001 0000xxxx */\r
482/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
483/* DEPTH 1 */ {0, 0, 0, 0, 1, 1, 1, 1},\r
484/* DEPTH 2 */ {0, 0, 0, 1, 1, 1, 2, 2},\r
485/* DEPTH 3 */ {0, 0, 1, 1, 2, 2, 3, 3},\r
486/* DEPTH 4 */ {0, 0, 1, 2, 2, 2, 3, 4},\r
487/* DEPTH 5 */ {0, 0, 2, 3, 4, 4, 5, 6},\r
488/* DEPTH 6 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},\r
489/* DEPTH 7 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},\r
490\r
491/* FNUM BIT 9: 010 0000xxxx */\r
492/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
493/* DEPTH 1 */ {0, 0, 0, 0, 2, 2, 2, 2},\r
494/* DEPTH 2 */ {0, 0, 0, 2, 2, 2, 4, 4},\r
495/* DEPTH 3 */ {0, 0, 2, 2, 4, 4, 6, 6},\r
496/* DEPTH 4 */ {0, 0, 2, 4, 4, 4, 6, 8},\r
497/* DEPTH 5 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},\r
498/* DEPTH 6 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},\r
499/* DEPTH 7 */ {0, 0,0x10,0x18,0x20,0x20,0x28,0x30},\r
500\r
501/* FNUM BIT10: 100 0000xxxx */\r
502/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},\r
503/* DEPTH 1 */ {0, 0, 0, 0, 4, 4, 4, 4},\r
504/* DEPTH 2 */ {0, 0, 0, 4, 4, 4, 8, 8},\r
505/* DEPTH 3 */ {0, 0, 4, 4, 8, 8, 0xc, 0xc},\r
506/* DEPTH 4 */ {0, 0, 4, 8, 8, 8, 0xc,0x10},\r
507/* DEPTH 5 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},\r
508/* DEPTH 6 */ {0, 0,0x10,0x18,0x20,0x20,0x28,0x30},\r
509/* DEPTH 7 */ {0, 0,0x20,0x30,0x40,0x40,0x50,0x60},\r
510\r
511};\r
512\r
513/* all 128 LFO PM waveforms */\r
514static INT32 lfo_pm_table[128*8*32]; /* 128 combinations of 7 bits meaningful (of F-NUMBER), 8 LFO depths, 32 LFO output levels per one depth */\r
515\r
516/* there are 2048 FNUMs that can be generated using FNUM/BLK registers\r
517 but LFO works with one more bit of a precision so we really need 4096 elements */\r
518static UINT32 fn_table[4096]; /* fnumber->increment counter */\r
519\r
520static int g_lfo_ampm = 0;\r
521\r
522/* register number to channel number , slot offset */\r
523#define OPN_CHAN(N) (N&3)\r
524#define OPN_SLOT(N) ((N>>2)&3)\r
525\r
526/* slot number */\r
527#define SLOT1 0\r
528#define SLOT2 2\r
529#define SLOT3 1\r
530#define SLOT4 3\r
531\r
532\r
533/* OPN Mode Register Write */\r
534INLINE void set_timers( int v )\r
535{\r
536 /* b7 = CSM MODE */\r
537 /* b6 = 3 slot mode */\r
538 /* b5 = reset b */\r
539 /* b4 = reset a */\r
540 /* b3 = timer enable b */\r
541 /* b2 = timer enable a */\r
542 /* b1 = load b */\r
543 /* b0 = load a */\r
544 ym2612.OPN.ST.mode = v;\r
545\r
546 /* reset Timer b flag */\r
547 if( v & 0x20 )\r
548 ym2612.OPN.ST.status &= ~2;\r
549\r
550 /* reset Timer a flag */\r
551 if( v & 0x10 )\r
552 ym2612.OPN.ST.status &= ~1;\r
553}\r
554\r
555\r
b542be46 556INLINE void FM_KEYON(int c , int s )\r
cc68a136 557{\r
b542be46 558 FM_SLOT *SLOT = &ym2612.CH[c].SLOT[s];\r
cc68a136 559 if( !SLOT->key )\r
560 {\r
561 SLOT->key = 1;\r
562 SLOT->phase = 0; /* restart Phase Generator */\r
563 SLOT->state = EG_ATT; /* phase -> Attack */\r
b542be46 564 ym2612.slot_mask |= (1<<s) << (c*4);\r
cc68a136 565 }\r
566}\r
567\r
b542be46 568INLINE void FM_KEYOFF(int c , int s )\r
cc68a136 569{\r
b542be46 570 FM_SLOT *SLOT = &ym2612.CH[c].SLOT[s];\r
cc68a136 571 if( SLOT->key )\r
572 {\r
573 SLOT->key = 0;\r
574 if (SLOT->state>EG_REL)\r
575 SLOT->state = EG_REL;/* phase -> Release */\r
576 }\r
577}\r
578\r
579\r
580/* set detune & multiple */\r
581INLINE void set_det_mul(FM_CH *CH, FM_SLOT *SLOT, int v)\r
582{\r
583 SLOT->mul = (v&0x0f)? (v&0x0f)*2 : 1;\r
584 SLOT->DT = ym2612.OPN.ST.dt_tab[(v>>4)&7];\r
585 CH->SLOT[SLOT1].Incr=-1;\r
586}\r
587\r
588/* set total level */\r
589INLINE void set_tl(FM_SLOT *SLOT, int v)\r
590{\r
591 SLOT->tl = (v&0x7f)<<(ENV_BITS-7); /* 7bit TL */\r
592}\r
593\r
594/* set attack rate & key scale */\r
595INLINE void set_ar_ksr(FM_CH *CH, FM_SLOT *SLOT, int v)\r
596{\r
597 UINT8 old_KSR = SLOT->KSR;\r
598\r
599 SLOT->ar = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;\r
600\r
601 SLOT->KSR = 3-(v>>6);\r
602 if (SLOT->KSR != old_KSR)\r
603 {\r
604 CH->SLOT[SLOT1].Incr=-1;\r
605 }\r
606 else\r
607 {\r
608 int eg_sh_ar, eg_sel_ar;\r
609\r
610 /* refresh Attack rate */\r
611 if ((SLOT->ar + SLOT->ksr) < 32+62)\r
612 {\r
613 eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];\r
614 eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];\r
615 }\r
616 else\r
617 {\r
618 eg_sh_ar = 0;\r
619 eg_sel_ar = 17;\r
620 }\r
621\r
622 SLOT->eg_pack_ar = eg_inc_pack[eg_sel_ar] | (eg_sh_ar<<24);\r
623 }\r
624}\r
625\r
626/* set decay rate */\r
627INLINE void set_dr(FM_SLOT *SLOT, int v)\r
628{\r
629 int eg_sh_d1r, eg_sel_d1r;\r
630\r
631 SLOT->d1r = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;\r
632\r
633 eg_sh_d1r = eg_rate_shift [SLOT->d1r + SLOT->ksr];\r
634 eg_sel_d1r= eg_rate_select[SLOT->d1r + SLOT->ksr];\r
635\r
636 SLOT->eg_pack_d1r = eg_inc_pack[eg_sel_d1r] | (eg_sh_d1r<<24);\r
637}\r
638\r
639/* set sustain rate */\r
640INLINE void set_sr(FM_SLOT *SLOT, int v)\r
641{\r
642 int eg_sh_d2r, eg_sel_d2r;\r
643\r
644 SLOT->d2r = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;\r
645\r
646 eg_sh_d2r = eg_rate_shift [SLOT->d2r + SLOT->ksr];\r
647 eg_sel_d2r= eg_rate_select[SLOT->d2r + SLOT->ksr];\r
648\r
649 SLOT->eg_pack_d2r = eg_inc_pack[eg_sel_d2r] | (eg_sh_d2r<<24);\r
650}\r
651\r
652/* set release rate */\r
653INLINE void set_sl_rr(FM_SLOT *SLOT, int v)\r
654{\r
655 int eg_sh_rr, eg_sel_rr;\r
656\r
657 SLOT->sl = sl_table[ v>>4 ];\r
658\r
659 SLOT->rr = 34 + ((v&0x0f)<<2);\r
660\r
661 eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr];\r
662 eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr];\r
663\r
664 SLOT->eg_pack_rr = eg_inc_pack[eg_sel_rr] | (eg_sh_rr<<24);\r
665}\r
666\r
667\r
668\r
669INLINE signed int op_calc(UINT32 phase, unsigned int env, signed int pm)\r
670{\r
671 int ret, sin = (phase>>16) + (pm>>1);\r
672 int neg = sin & 0x200;\r
673 if (sin & 0x100) sin ^= 0xff;\r
674 sin&=0xff;\r
675 env&=~1;\r
676\r
677 // this was already checked\r
678 // if (env >= ENV_QUIET) // 384\r
679 // return 0;\r
680\r
681 ret = ym_tl_tab[sin | (env<<7)];\r
682\r
683 return neg ? -ret : ret;\r
684}\r
685\r
686INLINE signed int op_calc1(UINT32 phase, unsigned int env, signed int pm)\r
687{\r
688 int ret, sin = (phase+pm)>>16;\r
689 int neg = sin & 0x200;\r
690 if (sin & 0x100) sin ^= 0xff;\r
691 sin&=0xff;\r
692 env&=~1;\r
693\r
694 // if (env >= ENV_QUIET) // 384\r
695 // return 0;\r
696\r
697 ret = ym_tl_tab[sin | (env<<7)];\r
698\r
699 return neg ? -ret : ret;\r
700}\r
701\r
702#if !defined(_ASM_YM2612_C) || defined(EXTERNAL_YM2612)\r
703/* advance LFO to next sample */\r
704INLINE int advance_lfo(int lfo_ampm, UINT32 lfo_cnt_old, UINT32 lfo_cnt)\r
705{\r
706 UINT8 pos;\r
707 UINT8 prev_pos;\r
708\r
709 prev_pos = (lfo_cnt_old >> LFO_SH) & 127;\r
710\r
711 pos = (lfo_cnt >> LFO_SH) & 127;\r
712\r
713 /* update AM when LFO output changes */\r
714\r
715 if (prev_pos != pos)\r
716 {\r
717 lfo_ampm &= 0xff;\r
718 /* triangle */\r
719 /* AM: 0 to 126 step +2, 126 to 0 step -2 */\r
720 if (pos<64)\r
721 lfo_ampm |= ((pos&63) * 2) << 8; /* 0 - 126 */\r
722 else\r
723 lfo_ampm |= (126 - (pos&63)*2) << 8;\r
724 }\r
725 else\r
726 {\r
727 return lfo_ampm;\r
728 }\r
729\r
730 /* PM works with 4 times slower clock */\r
731 prev_pos >>= 2;\r
732 pos >>= 2;\r
733 /* update PM when LFO output changes */\r
734 if (prev_pos != pos)\r
735 {\r
736 lfo_ampm &= ~0xff;\r
737 lfo_ampm |= pos; /* 0 - 32 */\r
738 }\r
739 return lfo_ampm;\r
740}\r
741\r
742#define EG_INC_VAL() \\r
743 ((1 << ((pack >> ((eg_cnt>>shift)&7)*3)&7)) >> 1)\r
744\r
745INLINE UINT32 update_eg_phase(FM_SLOT *SLOT, UINT32 eg_cnt)\r
746{\r
747 INT32 volume = SLOT->volume;\r
748\r
749 switch(SLOT->state)\r
750 {\r
751 case EG_ATT: /* attack phase */\r
752 {\r
753 UINT32 pack = SLOT->eg_pack_ar;\r
754 UINT32 shift = pack>>24;\r
755 if ( !(eg_cnt & ((1<<shift)-1) ) )\r
756 {\r
757 volume += ( ~volume * EG_INC_VAL() ) >>4;\r
758\r
759 if (volume <= MIN_ATT_INDEX)\r
760 {\r
761 volume = MIN_ATT_INDEX;\r
762 SLOT->state = EG_DEC;\r
763 }\r
764 }\r
765 break;\r
766 }\r
767\r
768 case EG_DEC: /* decay phase */\r
769 {\r
770 UINT32 pack = SLOT->eg_pack_d1r;\r
771 UINT32 shift = pack>>24;\r
772 if ( !(eg_cnt & ((1<<shift)-1) ) )\r
773 {\r
774 volume += EG_INC_VAL();\r
775\r
776 if ( volume >= (INT32) SLOT->sl )\r
777 SLOT->state = EG_SUS;\r
778 }\r
779 break;\r
780 }\r
781\r
782 case EG_SUS: /* sustain phase */\r
783 {\r
784 UINT32 pack = SLOT->eg_pack_d2r;\r
785 UINT32 shift = pack>>24;\r
786 if ( !(eg_cnt & ((1<<shift)-1) ) )\r
787 {\r
788 volume += EG_INC_VAL();\r
789\r
790 if ( volume >= MAX_ATT_INDEX )\r
791 {\r
792 volume = MAX_ATT_INDEX;\r
793 /* do not change SLOT->state (verified on real chip) */\r
794 }\r
795 }\r
796 break;\r
797 }\r
798\r
799 case EG_REL: /* release phase */\r
800 {\r
801 UINT32 pack = SLOT->eg_pack_rr;\r
802 UINT32 shift = pack>>24;\r
803 if ( !(eg_cnt & ((1<<shift)-1) ) )\r
804 {\r
805 volume += EG_INC_VAL();\r
806\r
807 if ( volume >= MAX_ATT_INDEX )\r
808 {\r
809 volume = MAX_ATT_INDEX;\r
810 SLOT->state = EG_OFF;\r
811 }\r
812 }\r
813 break;\r
814 }\r
815 }\r
816\r
817 SLOT->volume = volume;\r
818 return SLOT->tl + ((UINT32)volume); /* tl is 7bit<<3, volume 0-1023 (0-2039 total) */\r
819}\r
820#endif\r
821\r
822\r
823typedef struct\r
824{\r
825 UINT16 vol_out1; /* 00: current output from EG circuit (without AM from LFO) */\r
826 UINT16 vol_out2;\r
827 UINT16 vol_out3;\r
828 UINT16 vol_out4;\r
829 UINT32 pad[2];\r
830 UINT32 phase1; /* 10 */\r
831 UINT32 phase2;\r
832 UINT32 phase3;\r
833 UINT32 phase4;\r
834 UINT32 incr1; /* 20: phase step */\r
835 UINT32 incr2;\r
836 UINT32 incr3;\r
837 UINT32 incr4;\r
838 UINT32 lfo_cnt; /* 30 */\r
839 UINT32 lfo_inc;\r
840 INT32 mem; /* one sample delay memory */\r
841 UINT32 eg_cnt; /* envelope generator counter */\r
842 FM_CH *CH; /* 40: envelope generator counter */\r
843 UINT32 eg_timer;\r
844 UINT32 eg_timer_add;\r
845 UINT32 pack; // 4c: stereo, lastchan, disabled, lfo_enabled | pan_r, pan_l, ams[2] | AMmasks[4] | FB[4] | lfo_ampm[16]\r
85f8e929 846 UINT32 algo; /* 50: algo[3], was_update */\r
cc68a136 847 INT32 op1_out;\r
b542be46 848#ifdef _MIPS_ARCH_ALLEGREX\r
849 UINT32 pad1[3+8];\r
850#endif\r
cc68a136 851} chan_rend_context;\r
852\r
853\r
854#if !defined(_ASM_YM2612_C) || defined(EXTERNAL_YM2612)\r
855static void chan_render_loop(chan_rend_context *ct, int *buffer, int length)\r
856{\r
857 int scounter; /* sample counter */\r
858\r
859 /* sample generating loop */\r
860 for (scounter = 0; scounter < length; scounter++)\r
861 {\r
862 int smp = 0; /* produced sample */\r
863 unsigned int eg_out, eg_out2, eg_out4;\r
864\r
865 if (ct->pack & 8) { /* LFO enabled ? (test Earthworm Jim in between demo 1 and 2) */\r
866 ct->pack = (ct->pack&0xffff) | (advance_lfo(ct->pack >> 16, ct->lfo_cnt, ct->lfo_cnt + ct->lfo_inc) << 16);\r
867 ct->lfo_cnt += ct->lfo_inc;\r
868 }\r
869\r
870 ct->eg_timer += ct->eg_timer_add;\r
871 while (ct->eg_timer >= EG_TIMER_OVERFLOW)\r
872 {\r
873 ct->eg_timer -= EG_TIMER_OVERFLOW;\r
874 ct->eg_cnt++;\r
875\r
876 if (ct->CH->SLOT[SLOT1].state != EG_OFF) ct->vol_out1 = update_eg_phase(&ct->CH->SLOT[SLOT1], ct->eg_cnt);\r
877 if (ct->CH->SLOT[SLOT2].state != EG_OFF) ct->vol_out2 = update_eg_phase(&ct->CH->SLOT[SLOT2], ct->eg_cnt);\r
878 if (ct->CH->SLOT[SLOT3].state != EG_OFF) ct->vol_out3 = update_eg_phase(&ct->CH->SLOT[SLOT3], ct->eg_cnt);\r
879 if (ct->CH->SLOT[SLOT4].state != EG_OFF) ct->vol_out4 = update_eg_phase(&ct->CH->SLOT[SLOT4], ct->eg_cnt);\r
880 }\r
881\r
882 if (ct->pack & 4) continue; /* output disabled */\r
883\r
884 /* calculate channel sample */\r
885 eg_out = ct->vol_out1;\r
886 if ( (ct->pack & 8) && (ct->pack&(1<<(SLOT1+8))) ) eg_out += ct->pack >> (((ct->pack&0xc0)>>6)+24);\r
887\r
888 if( eg_out < ENV_QUIET ) /* SLOT 1 */\r
889 {\r
890 int out = 0;\r
891\r
892 if (ct->pack&0xf000) out = ((ct->op1_out>>16) + (ct->op1_out<<16>>16)) << ((ct->pack&0xf000)>>12); /* op1_out0 + op1_out1 */\r
893 ct->op1_out <<= 16;\r
894 ct->op1_out |= (unsigned short)op_calc1(ct->phase1, eg_out, out);\r
895 } else {\r
896 ct->op1_out <<= 16; /* op1_out0 = op1_out1; op1_out1 = 0; */\r
897 }\r
898\r
899 eg_out = ct->vol_out3; // volume_calc(&CH->SLOT[SLOT3]);\r
900 eg_out2 = ct->vol_out2; // volume_calc(&CH->SLOT[SLOT2]);\r
901 eg_out4 = ct->vol_out4; // volume_calc(&CH->SLOT[SLOT4]);\r
902\r
903 if (ct->pack & 8) {\r
904 unsigned int add = ct->pack >> (((ct->pack&0xc0)>>6)+24);\r
905 if (ct->pack & (1<<(SLOT3+8))) eg_out += add;\r
906 if (ct->pack & (1<<(SLOT2+8))) eg_out2 += add;\r
907 if (ct->pack & (1<<(SLOT4+8))) eg_out4 += add;\r
908 }\r
909\r
910 switch( ct->CH->ALGO )\r
911 {\r
cc68a136 912 case 0:\r
913 {\r
914 /* M1---C1---MEM---M2---C2---OUT */\r
915 int m2,c1,c2=0; /* Phase Modulation input for operators 2,3,4 */\r
916 m2 = ct->mem;\r
917 c1 = ct->op1_out>>16;\r
918 if( eg_out < ENV_QUIET ) { /* SLOT 3 */\r
919 c2 = op_calc(ct->phase3, eg_out, m2);\r
920 }\r
921 if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */\r
922 ct->mem = op_calc(ct->phase2, eg_out2, c1);\r
923 }\r
924 else ct->mem = 0;\r
925 if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */\r
926 smp = op_calc(ct->phase4, eg_out4, c2);\r
927 }\r
928 break;\r
929 }\r
930 case 1:\r
931 {\r
932 /* M1------+-MEM---M2---C2---OUT */\r
933 /* C1-+ */\r
934 int m2,c2=0;\r
935 m2 = ct->mem;\r
936 ct->mem = ct->op1_out>>16;\r
937 if( eg_out < ENV_QUIET ) { /* SLOT 3 */\r
938 c2 = op_calc(ct->phase3, eg_out, m2);\r
939 }\r
940 if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */\r
941 ct->mem+= op_calc(ct->phase2, eg_out2, 0);\r
942 }\r
943 if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */\r
944 smp = op_calc(ct->phase4, eg_out4, c2);\r
945 }\r
946 break;\r
947 }\r
948 case 2:\r
949 {\r
950 /* M1-----------------+-C2---OUT */\r
951 /* C1---MEM---M2-+ */\r
952 int m2,c2;\r
953 m2 = ct->mem;\r
954 c2 = ct->op1_out>>16;\r
955 if( eg_out < ENV_QUIET ) { /* SLOT 3 */\r
956 c2 += op_calc(ct->phase3, eg_out, m2);\r
957 }\r
958 if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */\r
959 ct->mem = op_calc(ct->phase2, eg_out2, 0);\r
960 }\r
961 else ct->mem = 0;\r
962 if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */\r
963 smp = op_calc(ct->phase4, eg_out4, c2);\r
964 }\r
965 break;\r
966 }\r
967 case 3:\r
968 {\r
969 /* M1---C1---MEM------+-C2---OUT */\r
970 /* M2-+ */\r
971 int c1,c2;\r
972 c2 = ct->mem;\r
973 c1 = ct->op1_out>>16;\r
974 if( eg_out < ENV_QUIET ) { /* SLOT 3 */\r
975 c2 += op_calc(ct->phase3, eg_out, 0);\r
976 }\r
977 if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */\r
978 ct->mem = op_calc(ct->phase2, eg_out2, c1);\r
979 }\r
980 else ct->mem = 0;\r
981 if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */\r
982 smp = op_calc(ct->phase4, eg_out4, c2);\r
983 }\r
984 break;\r
985 }\r
986 case 4:\r
987 {\r
988 /* M1---C1-+-OUT */\r
989 /* M2---C2-+ */\r
990 /* MEM: not used */\r
991 int c1,c2=0;\r
992 c1 = ct->op1_out>>16;\r
993 if( eg_out < ENV_QUIET ) { /* SLOT 3 */\r
994 c2 = op_calc(ct->phase3, eg_out, 0);\r
995 }\r
996 if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */\r
997 smp = op_calc(ct->phase2, eg_out2, c1);\r
998 }\r
999 if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */\r
1000 smp+= op_calc(ct->phase4, eg_out4, c2);\r
1001 }\r
1002 break;\r
1003 }\r
1004 case 5:\r
1005 {\r
1006 /* +----C1----+ */\r
1007 /* M1-+-MEM---M2-+-OUT */\r
1008 /* +----C2----+ */\r
1009 int m2,c1,c2;\r
1010 m2 = ct->mem;\r
1011 ct->mem = c1 = c2 = ct->op1_out>>16;\r
1012 if( eg_out < ENV_QUIET ) { /* SLOT 3 */\r
1013 smp = op_calc(ct->phase3, eg_out, m2);\r
1014 }\r
1015 if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */\r
1016 smp+= op_calc(ct->phase2, eg_out2, c1);\r
1017 }\r
1018 if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */\r
1019 smp+= op_calc(ct->phase4, eg_out4, c2);\r
1020 }\r
1021 break;\r
1022 }\r
1023 case 6:\r
1024 {\r
1025 /* M1---C1-+ */\r
1026 /* M2-+-OUT */\r
1027 /* C2-+ */\r
1028 /* MEM: not used */\r
1029 int c1;\r
1030 c1 = ct->op1_out>>16;\r
1031 if( eg_out < ENV_QUIET ) { /* SLOT 3 */\r
1032 smp = op_calc(ct->phase3, eg_out, 0);\r
1033 }\r
1034 if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */\r
1035 smp+= op_calc(ct->phase2, eg_out2, c1);\r
1036 }\r
1037 if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */\r
1038 smp+= op_calc(ct->phase4, eg_out4, 0);\r
1039 }\r
1040 break;\r
1041 }\r
1042 case 7:\r
1043 {\r
1044 /* M1-+ */\r
1045 /* C1-+-OUT */\r
1046 /* M2-+ */\r
1047 /* C2-+ */\r
1048 /* MEM: not used*/\r
1049 smp = ct->op1_out>>16;\r
1050 if( eg_out < ENV_QUIET ) { /* SLOT 3 */\r
1051 smp += op_calc(ct->phase3, eg_out, 0);\r
1052 }\r
1053 if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */\r
1054 smp += op_calc(ct->phase2, eg_out2, 0);\r
1055 }\r
1056 if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */\r
1057 smp += op_calc(ct->phase4, eg_out4, 0);\r
1058 }\r
1059 break;\r
1060 }\r
cc68a136 1061 }\r
1062 /* done calculating channel sample */\r
1063\r
1064 /* mix sample to output buffer */\r
1065 if (smp) {\r
1066 if (ct->pack & 1) { /* stereo */\r
1067 if (ct->pack & 0x20) /* L */ /* TODO: check correctness */\r
1068 buffer[scounter*2] += smp;\r
1069 if (ct->pack & 0x10) /* R */\r
1070 buffer[scounter*2+1] += smp;\r
1071 } else {\r
1072 buffer[scounter] += smp;\r
1073 }\r
85f8e929 1074 ct->algo = 8; // algo is only used in asm, here only bit3 is used\r
cc68a136 1075 }\r
1076\r
1077 /* update phase counters AFTER output calculations */\r
1078 ct->phase1 += ct->incr1;\r
1079 ct->phase2 += ct->incr2;\r
1080 ct->phase3 += ct->incr3;\r
1081 ct->phase4 += ct->incr4;\r
1082 }\r
1083}\r
1084#else\r
1085void chan_render_loop(chan_rend_context *ct, int *buffer, unsigned short length);\r
1086#endif\r
1087\r
dca310c4 1088static chan_rend_context crct;\r
cc68a136 1089\r
b542be46 1090static int chan_render(int *buffer, int length, int c, UINT32 flags) // flags: stereo, ?, disabled, ?, pan_r, pan_l\r
cc68a136 1091{\r
b542be46 1092 crct.CH = &ym2612.CH[c];\r
1093 crct.mem = crct.CH->mem_value; /* one sample delay memory */\r
1094 crct.lfo_cnt = ym2612.OPN.lfo_cnt;\r
1095 crct.lfo_inc = ym2612.OPN.lfo_inc;\r
cc68a136 1096\r
b542be46 1097 flags &= 0x35;\r
cc68a136 1098\r
b542be46 1099 if (crct.lfo_inc) {\r
cc68a136 1100 flags |= 8;\r
1101 flags |= g_lfo_ampm << 16;\r
b542be46 1102 flags |= crct.CH->AMmasks << 8;\r
1103 if (crct.CH->ams == 8) // no ams\r
1104 flags &= ~0xf00;\r
1105 else flags |= (crct.CH->ams&3)<<6;\r
cc68a136 1106 }\r
b542be46 1107 flags |= (crct.CH->FB&0xf)<<12; /* feedback shift */\r
1108 crct.pack = flags;\r
cc68a136 1109\r
b542be46 1110 crct.eg_cnt = ym2612.OPN.eg_cnt; /* envelope generator counter */\r
1111 crct.eg_timer = ym2612.OPN.eg_timer;\r
1112 crct.eg_timer_add = ym2612.OPN.eg_timer_add;\r
cc68a136 1113\r
1114 /* precalculate phase modulation incr */\r
b542be46 1115 crct.phase1 = crct.CH->SLOT[SLOT1].phase;\r
1116 crct.phase2 = crct.CH->SLOT[SLOT2].phase;\r
1117 crct.phase3 = crct.CH->SLOT[SLOT3].phase;\r
1118 crct.phase4 = crct.CH->SLOT[SLOT4].phase;\r
cc68a136 1119\r
1120 /* current output from EG circuit (without AM from LFO) */\r
b542be46 1121 crct.vol_out1 = crct.CH->SLOT[SLOT1].tl + ((UINT32)crct.CH->SLOT[SLOT1].volume);\r
1122 crct.vol_out2 = crct.CH->SLOT[SLOT2].tl + ((UINT32)crct.CH->SLOT[SLOT2].volume);\r
1123 crct.vol_out3 = crct.CH->SLOT[SLOT3].tl + ((UINT32)crct.CH->SLOT[SLOT3].volume);\r
1124 crct.vol_out4 = crct.CH->SLOT[SLOT4].tl + ((UINT32)crct.CH->SLOT[SLOT4].volume);\r
cc68a136 1125\r
b542be46 1126 crct.op1_out = crct.CH->op1_out;\r
1127 crct.algo = crct.CH->ALGO & 7;\r
cc68a136 1128\r
b542be46 1129 if(crct.CH->pms)\r
cc68a136 1130 {\r
1131 /* add support for 3 slot mode */\r
b542be46 1132 UINT32 block_fnum = crct.CH->block_fnum;\r
cc68a136 1133\r
1134 UINT32 fnum_lfo = ((block_fnum & 0x7f0) >> 4) * 32 * 8;\r
b542be46 1135 INT32 lfo_fn_table_index_offset = lfo_pm_table[ fnum_lfo + crct.CH->pms + ((crct.pack>>16)&0xff) ];\r
cc68a136 1136\r
1137 if (lfo_fn_table_index_offset) /* LFO phase modulation active */\r
1138 {\r
1139 UINT8 blk;\r
1140 UINT32 fn;\r
1141 int kc,fc;\r
1142\r
1143 block_fnum = block_fnum*2 + lfo_fn_table_index_offset;\r
1144\r
1145 blk = (block_fnum&0x7000) >> 12;\r
1146 fn = block_fnum & 0xfff;\r
1147\r
1148 /* keyscale code */\r
1149 kc = (blk<<2) | opn_fktable[fn >> 8];\r
1150 /* phase increment counter */\r
1151 fc = fn_table[fn]>>(7-blk);\r
1152\r
b542be46 1153 crct.incr1 = ((fc+crct.CH->SLOT[SLOT1].DT[kc])*crct.CH->SLOT[SLOT1].mul) >> 1;\r
1154 crct.incr2 = ((fc+crct.CH->SLOT[SLOT2].DT[kc])*crct.CH->SLOT[SLOT2].mul) >> 1;\r
1155 crct.incr3 = ((fc+crct.CH->SLOT[SLOT3].DT[kc])*crct.CH->SLOT[SLOT3].mul) >> 1;\r
1156 crct.incr4 = ((fc+crct.CH->SLOT[SLOT4].DT[kc])*crct.CH->SLOT[SLOT4].mul) >> 1;\r
cc68a136 1157 }\r
1158 else /* LFO phase modulation = zero */\r
1159 {\r
b542be46 1160 crct.incr1 = crct.CH->SLOT[SLOT1].Incr;\r
1161 crct.incr2 = crct.CH->SLOT[SLOT2].Incr;\r
1162 crct.incr3 = crct.CH->SLOT[SLOT3].Incr;\r
1163 crct.incr4 = crct.CH->SLOT[SLOT4].Incr;\r
cc68a136 1164 }\r
1165 }\r
1166 else /* no LFO phase modulation */\r
1167 {\r
b542be46 1168 crct.incr1 = crct.CH->SLOT[SLOT1].Incr;\r
1169 crct.incr2 = crct.CH->SLOT[SLOT2].Incr;\r
1170 crct.incr3 = crct.CH->SLOT[SLOT3].Incr;\r
1171 crct.incr4 = crct.CH->SLOT[SLOT4].Incr;\r
cc68a136 1172 }\r
1173\r
b542be46 1174 chan_render_loop(&crct, buffer, length);\r
cc68a136 1175\r
b542be46 1176 crct.CH->op1_out = crct.op1_out;\r
1177 crct.CH->mem_value = crct.mem;\r
1178 if (crct.CH->SLOT[SLOT1].state | crct.CH->SLOT[SLOT2].state | crct.CH->SLOT[SLOT3].state | crct.CH->SLOT[SLOT4].state)\r
1179 {\r
1180 crct.CH->SLOT[SLOT1].phase = crct.phase1;\r
1181 crct.CH->SLOT[SLOT2].phase = crct.phase2;\r
1182 crct.CH->SLOT[SLOT3].phase = crct.phase3;\r
1183 crct.CH->SLOT[SLOT4].phase = crct.phase4;\r
cc68a136 1184 }\r
b542be46 1185 else\r
1186 ym2612.slot_mask &= ~(0xf << (c*4));\r
cc68a136 1187\r
b542be46 1188 // if this the last call, write back persistent stuff:\r
1189 if ((ym2612.slot_mask >> ((c+1)*4)) == 0)\r
1190 {\r
1191 ym2612.OPN.eg_cnt = crct.eg_cnt;\r
1192 ym2612.OPN.eg_timer = crct.eg_timer;\r
1193 g_lfo_ampm = crct.pack >> 16;\r
1194 ym2612.OPN.lfo_cnt = crct.lfo_cnt;\r
1195 }\r
85f8e929 1196\r
b542be46 1197 return (crct.algo & 8) >> 3; // had output\r
cc68a136 1198}\r
1199\r
1200/* update phase increment and envelope generator */\r
1201INLINE void refresh_fc_eg_slot(FM_SLOT *SLOT, int fc, int kc)\r
1202{\r
1203 int ksr;\r
1204\r
1205 /* (frequency) phase increment counter */\r
1206 SLOT->Incr = ((fc+SLOT->DT[kc])*SLOT->mul) >> 1;\r
1207\r
1208 ksr = kc >> SLOT->KSR;\r
1209 if( SLOT->ksr != ksr )\r
1210 {\r
1211 int eg_sh, eg_sel;\r
1212 SLOT->ksr = ksr;\r
1213\r
1214 /* calculate envelope generator rates */\r
1215 if ((SLOT->ar + SLOT->ksr) < 32+62)\r
1216 {\r
1217 eg_sh = eg_rate_shift [SLOT->ar + SLOT->ksr ];\r
1218 eg_sel = eg_rate_select[SLOT->ar + SLOT->ksr ];\r
1219 }\r
1220 else\r
1221 {\r
1222 eg_sh = 0;\r
1223 eg_sel = 17;\r
1224 }\r
1225\r
1226 SLOT->eg_pack_ar = eg_inc_pack[eg_sel] | (eg_sh<<24);\r
1227\r
1228 eg_sh = eg_rate_shift [SLOT->d1r + SLOT->ksr];\r
1229 eg_sel = eg_rate_select[SLOT->d1r + SLOT->ksr];\r
1230\r
1231 SLOT->eg_pack_d1r = eg_inc_pack[eg_sel] | (eg_sh<<24);\r
1232\r
1233 eg_sh = eg_rate_shift [SLOT->d2r + SLOT->ksr];\r
1234 eg_sel = eg_rate_select[SLOT->d2r + SLOT->ksr];\r
1235\r
1236 SLOT->eg_pack_d2r = eg_inc_pack[eg_sel] | (eg_sh<<24);\r
1237\r
1238 eg_sh = eg_rate_shift [SLOT->rr + SLOT->ksr];\r
1239 eg_sel = eg_rate_select[SLOT->rr + SLOT->ksr];\r
1240\r
1241 SLOT->eg_pack_rr = eg_inc_pack[eg_sel] | (eg_sh<<24);\r
1242 }\r
1243}\r
1244\r
1245/* update phase increment counters */\r
1246INLINE void refresh_fc_eg_chan(FM_CH *CH)\r
1247{\r
1248 if( CH->SLOT[SLOT1].Incr==-1){\r
1249 int fc = CH->fc;\r
1250 int kc = CH->kcode;\r
1251 refresh_fc_eg_slot(&CH->SLOT[SLOT1] , fc , kc );\r
1252 refresh_fc_eg_slot(&CH->SLOT[SLOT2] , fc , kc );\r
1253 refresh_fc_eg_slot(&CH->SLOT[SLOT3] , fc , kc );\r
1254 refresh_fc_eg_slot(&CH->SLOT[SLOT4] , fc , kc );\r
1255 }\r
1256}\r
1257\r
1258/* initialize time tables */\r
1259static void init_timetables(const UINT8 *dttable)\r
1260{\r
1261 int i,d;\r
1262 double rate;\r
1263\r
1264 /* DeTune table */\r
1265 for (d = 0;d <= 3;d++){\r
1266 for (i = 0;i <= 31;i++){\r
1267 rate = ((double)dttable[d*32 + i]) * SIN_LEN * ym2612.OPN.ST.freqbase * (1<<FREQ_SH) / ((double)(1<<20));\r
1268 ym2612.OPN.ST.dt_tab[d][i] = (INT32) rate;\r
1269 ym2612.OPN.ST.dt_tab[d+4][i] = -ym2612.OPN.ST.dt_tab[d][i];\r
1270 }\r
1271 }\r
1272}\r
1273\r
1274\r
b542be46 1275static void reset_channels(FM_CH *CH)\r
cc68a136 1276{\r
1277 int c,s;\r
1278\r
1279 ym2612.OPN.ST.mode = 0; /* normal mode */\r
1280 ym2612.OPN.ST.TA = 0;\r
1281 ym2612.OPN.ST.TAC = 0;\r
1282 ym2612.OPN.ST.TB = 0;\r
1283 ym2612.OPN.ST.TBC = 0;\r
1284\r
b542be46 1285 for( c = 0 ; c < 6 ; c++ )\r
cc68a136 1286 {\r
1287 CH[c].fc = 0;\r
1288 for(s = 0 ; s < 4 ; s++ )\r
1289 {\r
1290 CH[c].SLOT[s].state= EG_OFF;\r
1291 CH[c].SLOT[s].volume = MAX_ATT_INDEX;\r
1292 }\r
1293 }\r
b542be46 1294 ym2612.slot_mask = 0;\r
cc68a136 1295}\r
1296\r
1297/* initialize generic tables */\r
1298static void init_tables(void)\r
1299{\r
1300 signed int i,x,y,p;\r
1301 signed int n;\r
1302 double o,m;\r
1303\r
1304 for (i=0; i < 256; i++)\r
1305 {\r
1306 /* non-standard sinus */\r
1307 m = sin( ((i*2)+1) * M_PI / SIN_LEN ); /* checked against the real chip */\r
1308\r
1309 /* we never reach zero here due to ((i*2)+1) */\r
1310\r
1311 if (m>0.0)\r
1312 o = 8*log(1.0/m)/log(2); /* convert to 'decibels' */\r
1313 else\r
1314 o = 8*log(-1.0/m)/log(2); /* convert to 'decibels' */\r
1315\r
1316 o = o / (ENV_STEP/4);\r
1317\r
1318 n = (int)(2.0*o);\r
1319 if (n&1) /* round to nearest */\r
1320 n = (n>>1)+1;\r
1321 else\r
1322 n = n>>1;\r
1323\r
1324 ym_sin_tab[ i ] = n;\r
1325 //dprintf("FM.C: sin [%4i]= %4i", i, ym_sin_tab[i]);\r
1326 }\r
1327\r
1328 //dprintf("FM.C: ENV_QUIET= %08x", ENV_QUIET );\r
1329\r
1330\r
1331 for (x=0; x < TL_RES_LEN; x++)\r
1332 {\r
1333 m = (1<<16) / pow(2, (x+1) * (ENV_STEP/4.0) / 8.0);\r
1334 m = floor(m);\r
1335\r
1336 /* we never reach (1<<16) here due to the (x+1) */\r
1337 /* result fits within 16 bits at maximum */\r
1338\r
1339 n = (int)m; /* 16 bits here */\r
1340 n >>= 4; /* 12 bits here */\r
1341 if (n&1) /* round to nearest */\r
1342 n = (n>>1)+1;\r
1343 else\r
1344 n = n>>1;\r
1345 /* 11 bits here (rounded) */\r
1346 n <<= 2; /* 13 bits here (as in real chip) */\r
1347 ym_tl_tab2[ x ] = n;\r
1348\r
1349 for (i=1; i < 13; i++)\r
1350 {\r
1351 ym_tl_tab2[ x + i*TL_RES_LEN ] = n >> i;\r
1352 }\r
1353 }\r
1354\r
1355 for (x=0; x < 256; x++)\r
1356 {\r
1357 int sin = ym_sin_tab[ x ];\r
1358\r
1359 for (y=0; y < 2*13*TL_RES_LEN/8; y+=2)\r
1360 {\r
1361 p = (y<<2) + sin;\r
1362 if (p >= 13*TL_RES_LEN)\r
1363 ym_tl_tab[(y<<7) | x] = 0;\r
1364 else ym_tl_tab[(y<<7) | x] = ym_tl_tab2[p];\r
1365 }\r
1366 }\r
1367\r
1368\r
1369 /* build LFO PM modulation table */\r
1370 for(i = 0; i < 8; i++) /* 8 PM depths */\r
1371 {\r
1372 UINT8 fnum;\r
1373 for (fnum=0; fnum<128; fnum++) /* 7 bits meaningful of F-NUMBER */\r
1374 {\r
1375 UINT8 value;\r
1376 UINT8 step;\r
1377 UINT32 offset_depth = i;\r
1378 UINT32 offset_fnum_bit;\r
1379 UINT32 bit_tmp;\r
1380\r
1381 for (step=0; step<8; step++)\r
1382 {\r
1383 value = 0;\r
1384 for (bit_tmp=0; bit_tmp<7; bit_tmp++) /* 7 bits */\r
1385 {\r
1386 if (fnum & (1<<bit_tmp)) /* only if bit "bit_tmp" is set */\r
1387 {\r
1388 offset_fnum_bit = bit_tmp * 8;\r
1389 value += lfo_pm_output[offset_fnum_bit + offset_depth][step];\r
1390 }\r
1391 }\r
1392 lfo_pm_table[(fnum*32*8) + (i*32) + step + 0] = value;\r
1393 lfo_pm_table[(fnum*32*8) + (i*32) +(step^7)+ 8] = value;\r
1394 lfo_pm_table[(fnum*32*8) + (i*32) + step +16] = -value;\r
1395 lfo_pm_table[(fnum*32*8) + (i*32) +(step^7)+24] = -value;\r
1396 }\r
1397 }\r
1398 }\r
1399}\r
1400\r
1401\r
1402/* CSM Key Controll */\r
b542be46 1403#if 0\r
cc68a136 1404INLINE void CSMKeyControll(FM_CH *CH)\r
1405{\r
1406 /* this is wrong, atm */\r
1407\r
1408 /* all key on */\r
1409 FM_KEYON(CH,SLOT1);\r
1410 FM_KEYON(CH,SLOT2);\r
1411 FM_KEYON(CH,SLOT3);\r
1412 FM_KEYON(CH,SLOT4);\r
1413}\r
b542be46 1414#endif\r
cc68a136 1415\r
1416\r
1417/* prescaler set (and make time tables) */\r
1418static void OPNSetPres(int pres)\r
1419{\r
1420 int i;\r
1421\r
1422 /* frequency base */\r
1423 ym2612.OPN.ST.freqbase = (ym2612.OPN.ST.rate) ? ((double)ym2612.OPN.ST.clock / ym2612.OPN.ST.rate) / pres : 0;\r
1424\r
1425 ym2612.OPN.eg_timer_add = (1<<EG_SH) * ym2612.OPN.ST.freqbase;\r
1426\r
1427\r
1428 /* make time tables */\r
1429 init_timetables( dt_tab );\r
1430\r
1431 /* there are 2048 FNUMs that can be generated using FNUM/BLK registers\r
1432 but LFO works with one more bit of a precision so we really need 4096 elements */\r
1433 /* calculate fnumber -> increment counter table */\r
1434 for(i = 0; i < 4096; i++)\r
1435 {\r
1436 /* freq table for octave 7 */\r
1437 /* OPN phase increment counter = 20bit */\r
1438 fn_table[i] = (UINT32)( (double)i * 32 * ym2612.OPN.ST.freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */\r
1439 }\r
1440\r
1441 /* LFO freq. table */\r
1442 for(i = 0; i < 8; i++)\r
1443 {\r
1444 /* Amplitude modulation: 64 output levels (triangle waveform); 1 level lasts for one of "lfo_samples_per_step" samples */\r
1445 /* Phase modulation: one entry from lfo_pm_output lasts for one of 4 * "lfo_samples_per_step" samples */\r
1446 ym2612.OPN.lfo_freq[i] = (1.0 / lfo_samples_per_step[i]) * (1<<LFO_SH) * ym2612.OPN.ST.freqbase;\r
1447 }\r
1448}\r
1449\r
1450\r
1451/* write a OPN register (0x30-0xff) */\r
1452static int OPNWriteReg(int r, int v)\r
1453{\r
1454 int ret = 1;\r
1455 FM_CH *CH;\r
1456 FM_SLOT *SLOT;\r
1457\r
1458 UINT8 c = OPN_CHAN(r);\r
1459\r
1460 if (c == 3) return 0; /* 0xX3,0xX7,0xXB,0xXF */\r
1461\r
1462 if (r >= 0x100) c+=3;\r
1463\r
1464 CH = &ym2612.CH[c];\r
1465\r
1466 SLOT = &(CH->SLOT[OPN_SLOT(r)]);\r
1467\r
1468 switch( r & 0xf0 ) {\r
1469 case 0x30: /* DET , MUL */\r
1470 set_det_mul(CH,SLOT,v);\r
1471 break;\r
1472\r
1473 case 0x40: /* TL */\r
1474 set_tl(SLOT,v);\r
1475 break;\r
1476\r
1477 case 0x50: /* KS, AR */\r
1478 set_ar_ksr(CH,SLOT,v);\r
1479 break;\r
1480\r
1481 case 0x60: /* bit7 = AM ENABLE, DR */\r
1482 set_dr(SLOT,v);\r
1483 if(v&0x80) CH->AMmasks |= 1<<OPN_SLOT(r);\r
1484 else CH->AMmasks &= ~(1<<OPN_SLOT(r));\r
1485 break;\r
1486\r
1487 case 0x70: /* SR */\r
1488 set_sr(SLOT,v);\r
1489 break;\r
1490\r
1491 case 0x80: /* SL, RR */\r
1492 set_sl_rr(SLOT,v);\r
1493 break;\r
1494\r
1495 case 0x90: /* SSG-EG */\r
1496 // removed.\r
1497 ret = 0;\r
1498 break;\r
1499\r
1500 case 0xa0:\r
1501 switch( OPN_SLOT(r) ){\r
1502 case 0: /* 0xa0-0xa2 : FNUM1 */\r
1503 {\r
1504 UINT32 fn = (((UINT32)( (ym2612.OPN.ST.fn_h)&7))<<8) + v;\r
1505 UINT8 blk = ym2612.OPN.ST.fn_h>>3;\r
1506 /* keyscale code */\r
1507 CH->kcode = (blk<<2) | opn_fktable[fn >> 7];\r
1508 /* phase increment counter */\r
1509 CH->fc = fn_table[fn*2]>>(7-blk);\r
1510\r
1511 /* store fnum in clear form for LFO PM calculations */\r
1512 CH->block_fnum = (blk<<11) | fn;\r
1513\r
1514 CH->SLOT[SLOT1].Incr=-1;\r
1515 }\r
1516 break;\r
1517 case 1: /* 0xa4-0xa6 : FNUM2,BLK */\r
1518 ym2612.OPN.ST.fn_h = v&0x3f;\r
1519 ret = 0;\r
1520 break;\r
1521 case 2: /* 0xa8-0xaa : 3CH FNUM1 */\r
1522 if(r < 0x100)\r
1523 {\r
1524 UINT32 fn = (((UINT32)(ym2612.OPN.SL3.fn_h&7))<<8) + v;\r
1525 UINT8 blk = ym2612.OPN.SL3.fn_h>>3;\r
1526 /* keyscale code */\r
1527 ym2612.OPN.SL3.kcode[c]= (blk<<2) | opn_fktable[fn >> 7];\r
1528 /* phase increment counter */\r
1529 ym2612.OPN.SL3.fc[c] = fn_table[fn*2]>>(7-blk);\r
1530 ym2612.OPN.SL3.block_fnum[c] = fn;\r
1531 ym2612.CH[2].SLOT[SLOT1].Incr=-1;\r
1532 }\r
1533 break;\r
1534 case 3: /* 0xac-0xae : 3CH FNUM2,BLK */\r
1535 if(r < 0x100)\r
1536 ym2612.OPN.SL3.fn_h = v&0x3f;\r
1537 ret = 0;\r
1538 break;\r
1539 default:\r
1540 ret = 0;\r
1541 break;\r
1542 }\r
1543 break;\r
1544\r
1545 case 0xb0:\r
1546 switch( OPN_SLOT(r) ){\r
1547 case 0: /* 0xb0-0xb2 : FB,ALGO */\r
1548 {\r
1549 int feedback = (v>>3)&7;\r
1550 CH->ALGO = v&7;\r
1551 CH->FB = feedback ? feedback+6 : 0;\r
1552 }\r
1553 break;\r
1554 case 1: /* 0xb4-0xb6 : L , R , AMS , PMS (YM2612/YM2610B/YM2610/YM2608) */\r
1555 {\r
1556 int panshift = c<<1;\r
1557\r
1558 /* b0-2 PMS */\r
1559 CH->pms = (v & 7) * 32; /* CH->pms = PM depth * 32 (index in lfo_pm_table) */\r
1560\r
1561 /* b4-5 AMS */\r
1562 CH->ams = lfo_ams_depth_shift[(v>>4) & 3];\r
1563\r
1564 /* PAN : b7 = L, b6 = R */\r
1565 ym2612.OPN.pan &= ~(3<<panshift);\r
1566 ym2612.OPN.pan |= ((v & 0xc0) >> 6) << panshift; // ..LRLR\r
1567 }\r
1568 break;\r
1569 default:\r
1570 ret = 0;\r
1571 break;\r
1572 }\r
1573 break;\r
1574 default:\r
1575 ret = 0;\r
1576 break;\r
1577 }\r
1578\r
1579 return ret;\r
1580}\r
1581\r
1582\r
1583/*******************************************************************************/\r
1584/* YM2612 local section */\r
1585/*******************************************************************************/\r
1586\r
1587int *ym2612_dacen;\r
1588INT32 *ym2612_dacout;\r
b542be46 1589FM_ST *ym2612_st;\r
cc68a136 1590\r
1591\r
1592/* Generate samples for YM2612 */\r
4f265db7 1593int YM2612UpdateOne_(int *buffer, int length, int stereo, int is_buf_empty)\r
cc68a136 1594{\r
1595 int pan;\r
85f8e929 1596 int active_chs = 0;\r
4f265db7 1597\r
1598 // if !is_buf_empty, it means it has valid samples to mix with, else it may contain trash\r
1599 if (is_buf_empty) memset32(buffer, 0, length<<stereo);\r
cc68a136 1600\r
b542be46 1601/*\r
1602 {\r
1603 int c, s;\r
1604 ppp();\r
1605 for (c = 0; c < 6; c++) {\r
1606 int slr = 0, slm;\r
1607 printf("%i: ", c);\r
1608 for (s = 0; s < 4; s++) {\r
1609 if (ym2612.CH[c].SLOT[s].state != EG_OFF) slr = 1;\r
1610 printf(" %i", ym2612.CH[c].SLOT[s].state != EG_OFF);\r
1611 }\r
1612 slm = (ym2612.slot_mask&(0xf<<(c*4))) ? 1 : 0;\r
1613 printf(" | %i", slm);\r
1614 printf(" | %i\n", ym2612.CH[c].SLOT[SLOT1].Incr==-1);\r
1615 if (slr != slm) exit(1);\r
1616 }\r
1617 }\r
1618*/\r
cc68a136 1619 /* refresh PG and EG */\r
1620 refresh_fc_eg_chan( &ym2612.CH[0] );\r
1621 refresh_fc_eg_chan( &ym2612.CH[1] );\r
1622 if( (ym2612.OPN.ST.mode & 0xc0) )\r
1623 {\r
1624 /* 3SLOT MODE */\r
1625 if( ym2612.CH[2].SLOT[SLOT1].Incr==-1)\r
1626 {\r
1627 refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT1], ym2612.OPN.SL3.fc[1], ym2612.OPN.SL3.kcode[1] );\r
1628 refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT2], ym2612.OPN.SL3.fc[2], ym2612.OPN.SL3.kcode[2] );\r
1629 refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT3], ym2612.OPN.SL3.fc[0], ym2612.OPN.SL3.kcode[0] );\r
1630 refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT4], ym2612.CH[2].fc , ym2612.CH[2].kcode );\r
1631 }\r
1632 } else refresh_fc_eg_chan( &ym2612.CH[2] );\r
1633 refresh_fc_eg_chan( &ym2612.CH[3] );\r
1634 refresh_fc_eg_chan( &ym2612.CH[4] );\r
1635 refresh_fc_eg_chan( &ym2612.CH[5] );\r
1636\r
1637 pan = ym2612.OPN.pan;\r
1638 if (stereo) stereo = 1;\r
1639\r
4f265db7 1640 /* mix to 32bit dest */\r
b542be46 1641 // flags: stereo, ?, disabled, ?, pan_r, pan_l\r
1642 if (ym2612.slot_mask & 0x00000f) active_chs |= chan_render(buffer, length, 0, stereo|((pan&0x003)<<4)) << 0;\r
1643 if (ym2612.slot_mask & 0x0000f0) active_chs |= chan_render(buffer, length, 1, stereo|((pan&0x00c)<<2)) << 1;\r
1644 if (ym2612.slot_mask & 0x000f00) active_chs |= chan_render(buffer, length, 2, stereo|((pan&0x030) )) << 2;\r
1645 if (ym2612.slot_mask & 0x00f000) active_chs |= chan_render(buffer, length, 3, stereo|((pan&0x0c0)>>2)) << 3;\r
1646 if (ym2612.slot_mask & 0x0f0000) active_chs |= chan_render(buffer, length, 4, stereo|((pan&0x300)>>4)) << 4;\r
1647 if (ym2612.slot_mask & 0xf00000) active_chs |= chan_render(buffer, length, 5, stereo|((pan&0xc00)>>6)|(ym2612.dacen<<2)) << 5;\r
85f8e929 1648\r
1649 return active_chs; // 1 if buffer updated\r
cc68a136 1650}\r
1651\r
1652\r
1653/* initialize YM2612 emulator */\r
1654void YM2612Init_(int clock, int rate)\r
1655{\r
1656 // notaz\r
1657 ym2612_dacen = &ym2612.dacen;\r
1658 ym2612_dacout = &ym2612.dacout;\r
b542be46 1659 ym2612_st = &ym2612.OPN.ST;\r
cc68a136 1660\r
5f8c85be 1661 memset(&ym2612, 0, sizeof(ym2612));\r
cc68a136 1662 init_tables();\r
1663\r
1664 ym2612.OPN.ST.clock = clock;\r
1665 ym2612.OPN.ST.rate = rate;\r
1666\r
1667 /* Extend handler */\r
1668 YM2612ResetChip_();\r
1669}\r
1670\r
1671\r
1672/* reset */\r
1673void YM2612ResetChip_(void)\r
1674{\r
1675 int i;\r
1676\r
5f8c85be 1677 memset(ym2612.REGS, 0, sizeof(ym2612.REGS));\r
1678\r
cc68a136 1679 OPNSetPres( 6*24 );\r
1680 set_timers( 0x30 ); /* mode 0 , timer reset */\r
5f8c85be 1681 ym2612.REGS[0x27] = 0x30;\r
cc68a136 1682\r
1683 ym2612.OPN.eg_timer = 0;\r
1684 ym2612.OPN.eg_cnt = 0;\r
1685 ym2612.OPN.ST.status = 0;\r
1686\r
b542be46 1687 reset_channels( &ym2612.CH[0] );\r
cc68a136 1688 for(i = 0xb6 ; i >= 0xb4 ; i-- )\r
1689 {\r
1690 OPNWriteReg(i ,0xc0);\r
1691 OPNWriteReg(i|0x100,0xc0);\r
5f8c85be 1692 ym2612.REGS[i ] = 0xc0;\r
1693 ym2612.REGS[i|0x100] = 0xc0;\r
cc68a136 1694 }\r
1695 for(i = 0xb2 ; i >= 0x30 ; i-- )\r
1696 {\r
1697 OPNWriteReg(i ,0);\r
1698 OPNWriteReg(i|0x100,0);\r
1699 }\r
1700 for(i = 0x26 ; i >= 0x20 ; i-- ) OPNWriteReg(i,0);\r
1701 /* DAC mode clear */\r
1702 ym2612.dacen = 0;\r
5f8c85be 1703 ym2612.addr_A1 = 0;\r
cc68a136 1704}\r
1705\r
1706\r
1707/* YM2612 write */\r
1708/* a = address */\r
1709/* v = value */\r
1710/* returns 1 if sample affecting state changed */\r
1711int YM2612Write_(unsigned int a, unsigned int v)\r
1712{\r
1713 int addr, ret=1;\r
1714\r
1715 v &= 0xff; /* adjust to 8 bit bus */\r
1716\r
1717 switch( a&3){\r
1718 case 0: /* address port 0 */\r
1719 ym2612.OPN.ST.address = v;\r
1720 ym2612.addr_A1 = 0;\r
1721 ret=0;\r
1722 break;\r
1723\r
1724 case 1: /* data port 0 */\r
1725 if (ym2612.addr_A1 != 0) {\r
1726 ret=0;\r
1727 break; /* verified on real YM2608 */\r
1728 }\r
1729\r
1730 addr = ym2612.OPN.ST.address;\r
2433f409 1731#ifndef EXTERNAL_YM2612\r
cc68a136 1732 ym2612.REGS[addr] = v;\r
2433f409 1733#endif\r
cc68a136 1734\r
1735 switch( addr & 0xf0 )\r
1736 {\r
1737 case 0x20: /* 0x20-0x2f Mode */\r
1738 switch( addr )\r
1739 {\r
1740 case 0x22: /* LFO FREQ (YM2608/YM2610/YM2610B/YM2612) */\r
1741 if (v&0x08) /* LFO enabled ? */\r
1742 {\r
1743 ym2612.OPN.lfo_inc = ym2612.OPN.lfo_freq[v&7];\r
1744 }\r
1745 else\r
1746 {\r
1747 ym2612.OPN.lfo_inc = 0;\r
1748 }\r
1749 break;\r
1750 case 0x24: { // timer A High 8\r
1751 int TAnew = (ym2612.OPN.ST.TA & 0x03)|(((int)v)<<2);\r
1752 if(ym2612.OPN.ST.TA != TAnew) {\r
1753 // we should reset ticker only if new value is written. Outrun requires this.\r
1754 ym2612.OPN.ST.TA = TAnew;\r
1755 ym2612.OPN.ST.TAC = (1024-TAnew)*18;\r
1756 ym2612.OPN.ST.TAT = 0;\r
1757 }\r
1758 }\r
1759 ret=0;\r
1760 break;\r
1761 case 0x25: { // timer A Low 2\r
1762 int TAnew = (ym2612.OPN.ST.TA & 0x3fc)|(v&3);\r
1763 if(ym2612.OPN.ST.TA != TAnew) {\r
1764 ym2612.OPN.ST.TA = TAnew;\r
1765 ym2612.OPN.ST.TAC = (1024-TAnew)*18;\r
1766 ym2612.OPN.ST.TAT = 0;\r
1767 }\r
1768 }\r
1769 ret=0;\r
1770 break;\r
1771 case 0x26: // timer B\r
1772 if(ym2612.OPN.ST.TB != v) {\r
1773 ym2612.OPN.ST.TB = v;\r
1774 ym2612.OPN.ST.TBC = (256-v)<<4;\r
1775 ym2612.OPN.ST.TBC *= 18;\r
1776 ym2612.OPN.ST.TBT = 0;\r
1777 }\r
1778 ret=0;\r
1779 break;\r
1780 case 0x27: /* mode, timer control */\r
1781 set_timers( v );\r
1782 ret=0;\r
1783 break;\r
1784 case 0x28: /* key on / off */\r
1785 {\r
1786 UINT8 c;\r
cc68a136 1787\r
1788 c = v & 0x03;\r
1789 if( c == 3 ) { ret=0; break; }\r
1790 if( v&0x04 ) c+=3;\r
b542be46 1791 if(v&0x10) FM_KEYON(c,SLOT1); else FM_KEYOFF(c,SLOT1);\r
1792 if(v&0x20) FM_KEYON(c,SLOT2); else FM_KEYOFF(c,SLOT2);\r
1793 if(v&0x40) FM_KEYON(c,SLOT3); else FM_KEYOFF(c,SLOT3);\r
1794 if(v&0x80) FM_KEYON(c,SLOT4); else FM_KEYOFF(c,SLOT4);\r
cc68a136 1795 break;\r
1796 }\r
1797 case 0x2a: /* DAC data (YM2612) */\r
1798 ym2612.dacout = ((int)v - 0x80) << 6; /* level unknown (notaz: 8 seems to be too much) */\r
1799 ret=0;\r
1800 break;\r
1801 case 0x2b: /* DAC Sel (YM2612) */\r
1802 /* b7 = dac enable */\r
1803 ym2612.dacen = v & 0x80;\r
1804 ret=0;\r
1805 break;\r
1806 default:\r
1807 break;\r
1808 }\r
1809 break;\r
1810 default: /* 0x30-0xff OPN section */\r
1811 /* write register */\r
1812 ret = OPNWriteReg(addr,v);\r
1813 }\r
1814 break;\r
1815\r
1816 case 2: /* address port 1 */\r
1817 ym2612.OPN.ST.address = v;\r
1818 ym2612.addr_A1 = 1;\r
1819 ret=0;\r
1820 break;\r
1821\r
1822 case 3: /* data port 1 */\r
1823 if (ym2612.addr_A1 != 1) {\r
1824 ret=0;\r
1825 break; /* verified on real YM2608 */\r
1826 }\r
1827\r
1828 addr = ym2612.OPN.ST.address | 0x100;\r
2433f409 1829#ifndef EXTERNAL_YM2612\r
cc68a136 1830 ym2612.REGS[addr] = v;\r
2433f409 1831#endif\r
cc68a136 1832\r
1833 ret = OPNWriteReg(addr, v);\r
1834 break;\r
1835 }\r
1836/*\r
1837 if(ret) {\r
1838 extern int Scanline;\r
1839 dprintf("ymw [%i]", Scanline);\r
1840 }\r
1841*/\r
1842 return ret;\r
1843}\r
1844\r
b542be46 1845#if 0\r
cc68a136 1846UINT8 YM2612Read_(void)\r
1847{\r
1848 return ym2612.OPN.ST.status;\r
1849}\r
1850\r
cc68a136 1851int YM2612PicoTick_(int n)\r
1852{\r
1853 int ret = 0;\r
1854\r
1855 // timer A\r
1856 if(ym2612.OPN.ST.mode & 0x01 && (ym2612.OPN.ST.TAT+=64*n) >= ym2612.OPN.ST.TAC) {\r
1857 ym2612.OPN.ST.TAT -= ym2612.OPN.ST.TAC;\r
1858 if(ym2612.OPN.ST.mode & 0x04) ym2612.OPN.ST.status |= 1;\r
1859 // CSM mode total level latch and auto key on\r
1860 if(ym2612.OPN.ST.mode & 0x80) {\r
1861 CSMKeyControll( &(ym2612.CH[2]) ); // Vectorman2, etc.\r
1862 ret = 1;\r
1863 }\r
1864 }\r
1865\r
1866 // timer B\r
1867 if(ym2612.OPN.ST.mode & 0x02 && (ym2612.OPN.ST.TBT+=64*n) >= ym2612.OPN.ST.TBC) {\r
1868 ym2612.OPN.ST.TBT -= ym2612.OPN.ST.TBC;\r
1869 if(ym2612.OPN.ST.mode & 0x08) ym2612.OPN.ST.status |= 2;\r
1870 }\r
1871\r
1872 return ret;\r
1873}\r
b542be46 1874#endif\r
cc68a136 1875\r
1876void YM2612PicoStateLoad_(void)\r
1877{\r
1878#ifndef EXTERNAL_YM2612\r
5f8c85be 1879 int i, real_A1 = ym2612.addr_A1;\r
cc68a136 1880\r
b542be46 1881 reset_channels( &ym2612.CH[0] );\r
cc68a136 1882\r
1883 // feed all the registers and update internal state\r
1884 for(i = 0; i < 0x100; i++) {\r
1885 YM2612Write_(0, i);\r
1886 YM2612Write_(1, ym2612.REGS[i]);\r
1887 }\r
5f8c85be 1888\r
cc68a136 1889 for(i = 0; i < 0x100; i++) {\r
1890 YM2612Write_(2, i);\r
1891 YM2612Write_(3, ym2612.REGS[i|0x100]);\r
1892 }\r
1893\r
5f8c85be 1894 ym2612.addr_A1 = real_A1;\r
cc68a136 1895#else\r
b542be46 1896 reset_channels( &ym2612.CH[0] );\r
cc68a136 1897#endif\r
1898}\r
1899\r
2433f409 1900#ifndef EXTERNAL_YM2612\r
cc68a136 1901void *YM2612GetRegs(void)\r
1902{\r
1903 return ym2612.REGS;\r
1904}\r
2433f409 1905#endif\r
1906\r