Merge pull request #243 from retro-wertz/unai_fixes
[pcsx_rearmed.git] / deps / deflate.c
CommitLineData
7795edd6
JAS
1/* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/*
7 * ALGORITHM
8 *
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
12 *
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
30 *
31 * ACKNOWLEDGEMENTS
32 *
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
36 *
37 * REFERENCES
38 *
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://tools.ietf.org/html/rfc1951
41 *
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50/* @(#) $Id$ */
51
52#include "deflate.h"
53
54const char deflate_copyright[] =
55" deflate 1.2.8 Copyright 1995-2013 Jean-loup Gailly and Mark Adler ";
56/*
57 If you use the zlib library in a product, an acknowledgment is welcome
58 in the documentation of your product. If for some reason you cannot
59 include such an acknowledgment, I would appreciate that you keep this
60 copyright string in the executable of your product.
61 */
62
63/* ===========================================================================
64 * Function prototypes.
65 */
66typedef enum {
67 need_more, /* block not completed, need more input or more output */
68 block_done, /* block flush performed */
69 finish_started, /* finish started, need only more output at next deflate */
70 finish_done /* finish done, accept no more input or output */
71} block_state;
72
73typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74/* Compression function. Returns the block state after the call. */
75
76local void fill_window OF((deflate_state *s));
77local block_state deflate_stored OF((deflate_state *s, int flush));
78local block_state deflate_fast OF((deflate_state *s, int flush));
79#ifndef FASTEST
80local block_state deflate_slow OF((deflate_state *s, int flush));
81#endif
82local block_state deflate_rle OF((deflate_state *s, int flush));
83local block_state deflate_huff OF((deflate_state *s, int flush));
84local void lm_init OF((deflate_state *s));
85local void putShortMSB OF((deflate_state *s, uInt b));
86local void flush_pending OF((z_streamp strm));
87local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
88#ifdef ASMV
89void match_init OF((void)); /* asm code initialization */
90uInt longest_match OF((deflate_state *s, IPos cur_match));
91#else
92local uInt longest_match OF((deflate_state *s, IPos cur_match));
93#endif
94
95#ifdef DEBUG
96local void check_match OF((deflate_state *s, IPos start, IPos match,
97 int length));
98#endif
99
100/* ===========================================================================
101 * Local data
102 */
103
104#define NIL 0
105/* Tail of hash chains */
106
107#ifndef TOO_FAR
108# define TOO_FAR 4096
109#endif
110/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
111
112/* Values for max_lazy_match, good_match and max_chain_length, depending on
113 * the desired pack level (0..9). The values given below have been tuned to
114 * exclude worst case performance for pathological files. Better values may be
115 * found for specific files.
116 */
117typedef struct config_s {
118 ush good_length; /* reduce lazy search above this match length */
119 ush max_lazy; /* do not perform lazy search above this match length */
120 ush nice_length; /* quit search above this match length */
121 ush max_chain;
122 compress_func func;
123} config;
124
125#ifdef FASTEST
126local const config configuration_table[2] = {
127 /* good lazy nice chain */
128 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
129 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
130#else
131local const config configuration_table[10] = {
132 /* good lazy nice chain */
133 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
134 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
135 /* 2 */ {4, 5, 16, 8, deflate_fast},
136 /* 3 */ {4, 6, 32, 32, deflate_fast},
137
138 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
139 /* 5 */ {8, 16, 32, 32, deflate_slow},
140 /* 6 */ {8, 16, 128, 128, deflate_slow},
141 /* 7 */ {8, 32, 128, 256, deflate_slow},
142 /* 8 */ {32, 128, 258, 1024, deflate_slow},
143 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
144#endif
145
146/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
147 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
148 * meaning.
149 */
150
151#define EQUAL 0
152/* result of memcmp for equal strings */
153
154/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
155#define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0))
156
157/* ===========================================================================
158 * Update a hash value with the given input byte
159 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
160 * input characters, so that a running hash key can be computed from the
161 * previous key instead of complete recalculation each time.
162 */
163#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
164
165
166/* ===========================================================================
167 * Insert string str in the dictionary and set match_head to the previous head
168 * of the hash chain (the most recent string with same hash key). Return
169 * the previous length of the hash chain.
170 * If this file is compiled with -DFASTEST, the compression level is forced
171 * to 1, and no hash chains are maintained.
172 * IN assertion: all calls to to INSERT_STRING are made with consecutive
173 * input characters and the first MIN_MATCH bytes of str are valid
174 * (except for the last MIN_MATCH-1 bytes of the input file).
175 */
176#ifdef FASTEST
177#define INSERT_STRING(s, str, match_head) \
178 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
179 match_head = s->head[s->ins_h], \
180 s->head[s->ins_h] = (Pos)(str))
181#else
182#define INSERT_STRING(s, str, match_head) \
183 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
184 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
185 s->head[s->ins_h] = (Pos)(str))
186#endif
187
188/* ===========================================================================
189 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
190 * prev[] will be initialized on the fly.
191 */
192#define CLEAR_HASH(s) \
193 s->head[s->hash_size-1] = NIL; \
194zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
195
196int ZEXPORT deflateResetKeep (z_streamp strm);
197
198int ZEXPORT deflatePending (z_streamp strm, unsigned *pending, int *bits);
199
200/* ========================================================================= */
201int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version, int stream_size)
202{
203 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
204 Z_DEFAULT_STRATEGY, version, stream_size);
205 /* To do: ignore strm->next_in if we use it as window */
206}
207
208/* ========================================================================= */
209int ZEXPORT deflateInit2_(z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy,
210 const char *version, int stream_size)
211{
212 deflate_state *s;
213 int wrap = 1;
214 static const char my_version[] = ZLIB_VERSION;
215
216 ushf *overlay;
217 /* We overlay pending_buf and d_buf+l_buf. This works since the average
218 * output size for (length,distance) codes is <= 24 bits.
219 */
220
221 if (version == Z_NULL || version[0] != my_version[0] ||
222 stream_size != sizeof(z_stream)) {
223 return Z_VERSION_ERROR;
224 }
225 if (strm == Z_NULL) return Z_STREAM_ERROR;
226
227 strm->msg = Z_NULL;
228 if (strm->zalloc == (alloc_func)0) {
229#ifdef Z_SOLO
230 return Z_STREAM_ERROR;
231#else
232 strm->zalloc = zcalloc;
233 strm->opaque = (voidpf)0;
234#endif
235 }
236 if (strm->zfree == NULL)
237#ifdef Z_SOLO
238 return Z_STREAM_ERROR;
239#else
240 strm->zfree = zcfree;
241#endif
242
243#ifdef FASTEST
244 if (level != 0) level = 1;
245#else
246 if (level == Z_DEFAULT_COMPRESSION) level = 6;
247#endif
248
249 if (windowBits < 0) { /* suppress zlib wrapper */
250 wrap = 0;
251 windowBits = -windowBits;
252 }
253#ifdef GZIP
254 else if (windowBits > 15) {
255 wrap = 2; /* write gzip wrapper instead */
256 windowBits -= 16;
257 }
258#endif
259 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
260 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
261 strategy < 0 || strategy > Z_FIXED) {
262 return Z_STREAM_ERROR;
263 }
264 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
265 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
266 if (s == Z_NULL) return Z_MEM_ERROR;
267 strm->state = (struct internal_state*)s;
268 s->strm = strm;
269
270 s->wrap = wrap;
271 s->gzhead = Z_NULL;
272 s->w_bits = windowBits;
273 s->w_size = 1 << s->w_bits;
274 s->w_mask = s->w_size - 1;
275
276 s->hash_bits = memLevel + 7;
277 s->hash_size = 1 << s->hash_bits;
278 s->hash_mask = s->hash_size - 1;
279 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
280
281 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
282 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
283 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
284
285 s->high_water = 0; /* nothing written to s->window yet */
286
287 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
288
289 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
290 s->pending_buf = (uchf *) overlay;
291 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
292
293 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
294 s->pending_buf == Z_NULL) {
295 s->status = FINISH_STATE;
296 strm->msg = ERR_MSG(Z_MEM_ERROR);
297 deflateEnd (strm);
298 return Z_MEM_ERROR;
299 }
300 s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
301 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
302
303 s->level = level;
304 s->strategy = strategy;
305 s->method = (Byte)method;
306
307 return deflateReset(strm);
308}
309
310/* ========================================================================= */
311int ZEXPORT deflateSetDictionary (z_streamp strm, const Bytef *dictionary, uInt dictLength)
312{
313 deflate_state *s;
314 uInt str, n;
315 int wrap;
316 unsigned avail;
317 unsigned char *next;
318
319 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
320 return Z_STREAM_ERROR;
321 s = (deflate_state*)strm->state;
322 wrap = s->wrap;
323 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
324 return Z_STREAM_ERROR;
325
326 /* when using zlib wrappers, compute Adler-32 for provided dictionary */
327 if (wrap == 1)
328 strm->adler = adler32(strm->adler, dictionary, dictLength);
329 s->wrap = 0; /* avoid computing Adler-32 in read_buf */
330
331 /* if dictionary would fill window, just replace the history */
332 if (dictLength >= s->w_size) {
333 if (wrap == 0) { /* already empty otherwise */
334 CLEAR_HASH(s);
335 s->strstart = 0;
336 s->block_start = 0L;
337 s->insert = 0;
338 }
339 dictionary += dictLength - s->w_size; /* use the tail */
340 dictLength = s->w_size;
341 }
342
343 /* insert dictionary into window and hash */
344 avail = strm->avail_in;
345 next = strm->next_in;
346 strm->avail_in = dictLength;
347 strm->next_in = (Bytef *)dictionary;
348 fill_window(s);
349 while (s->lookahead >= MIN_MATCH) {
350 str = s->strstart;
351 n = s->lookahead - (MIN_MATCH-1);
352 do {
353 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
354#ifndef FASTEST
355 s->prev[str & s->w_mask] = s->head[s->ins_h];
356#endif
357 s->head[s->ins_h] = (Pos)str;
358 str++;
359 } while (--n);
360 s->strstart = str;
361 s->lookahead = MIN_MATCH-1;
362 fill_window(s);
363 }
364 s->strstart += s->lookahead;
365 s->block_start = (long)s->strstart;
366 s->insert = s->lookahead;
367 s->lookahead = 0;
368 s->match_length = s->prev_length = MIN_MATCH-1;
369 s->match_available = 0;
370 strm->next_in = next;
371 strm->avail_in = avail;
372 s->wrap = wrap;
373 return Z_OK;
374}
375
376/* ========================================================================= */
377int ZEXPORT deflateResetKeep (z_streamp strm)
378{
379 deflate_state *s;
380
381 if (strm == Z_NULL || strm->state == Z_NULL ||
382 strm->zalloc == Z_NULL || strm->zfree == Z_NULL) {
383 return Z_STREAM_ERROR;
384 }
385
386 strm->total_in = strm->total_out = 0;
387 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
388 strm->data_type = Z_UNKNOWN;
389
390 s = (deflate_state *)strm->state;
391 s->pending = 0;
392 s->pending_out = s->pending_buf;
393
394 if (s->wrap < 0) {
395 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
396 }
397 s->status = s->wrap ? INIT_STATE : BUSY_STATE;
398 strm->adler =
399#ifdef GZIP
400 s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
401#endif
402 adler32(0L, Z_NULL, 0);
403 s->last_flush = Z_NO_FLUSH;
404
405 _tr_init(s);
406
407 return Z_OK;
408}
409
410/* ========================================================================= */
411int ZEXPORT deflateReset (z_streamp strm)
412{
413 int ret;
414
415 ret = deflateResetKeep(strm);
416 if (ret == Z_OK)
417 lm_init((deflate_state*)strm->state);
418 return ret;
419}
420
421/* ========================================================================= */
422int ZEXPORT deflateSetHeader (z_streamp strm, gz_headerp head)
423{
424 struct internal_state_deflate *state = (struct internal_state_deflate*)strm->state;
425 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
426 if (state->wrap != 2)
427 return Z_STREAM_ERROR;
428 state->gzhead = head;
429 return Z_OK;
430}
431
432/* ========================================================================= */
433int ZEXPORT deflatePending (z_streamp strm, unsigned *pending, int *bits)
434{
435 struct internal_state_deflate *state = (struct internal_state_deflate*)strm->state;
436 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
437 if (pending != Z_NULL)
438 *pending = state->pending;
439 if (bits != Z_NULL)
440 *bits = state->bi_valid;
441 return Z_OK;
442}
443
444/* ========================================================================= */
445int ZEXPORT deflatePrime (z_streamp strm, int bits, int value)
446{
447 deflate_state *s;
448 int put;
449
450 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
451 s = (deflate_state*)strm->state;
452 if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
453 return Z_BUF_ERROR;
454 do {
455 put = Buf_size - s->bi_valid;
456 if (put > bits)
457 put = bits;
458 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
459 s->bi_valid += put;
460 _tr_flush_bits(s);
461 value >>= put;
462 bits -= put;
463 } while (bits);
464 return Z_OK;
465}
466
467/* ========================================================================= */
468int ZEXPORT deflateParams(z_streamp strm, int level, int strategy)
469{
470 deflate_state *s;
471 compress_func func;
472 int err = Z_OK;
473
474 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
475 s = (deflate_state*)strm->state;
476
477#ifdef FASTEST
478 if (level != 0) level = 1;
479#else
480 if (level == Z_DEFAULT_COMPRESSION) level = 6;
481#endif
482 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
483 return Z_STREAM_ERROR;
484 }
485 func = configuration_table[s->level].func;
486
487 if ((strategy != s->strategy || func != configuration_table[level].func) &&
488 strm->total_in != 0) {
489 /* Flush the last buffer: */
490 err = deflate(strm, Z_BLOCK);
491 if (err == Z_BUF_ERROR && s->pending == 0)
492 err = Z_OK;
493 }
494 if (s->level != level) {
495 s->level = level;
496 s->max_lazy_match = configuration_table[level].max_lazy;
497 s->good_match = configuration_table[level].good_length;
498 s->nice_match = configuration_table[level].nice_length;
499 s->max_chain_length = configuration_table[level].max_chain;
500 }
501 s->strategy = strategy;
502 return err;
503}
504
505/* ========================================================================= */
506int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy, int nice_length, int max_chain)
507{
508 deflate_state *s;
509
510 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
511 s = (deflate_state*)strm->state;
512 s->good_match = good_length;
513 s->max_lazy_match = max_lazy;
514 s->nice_match = nice_length;
515 s->max_chain_length = max_chain;
516 return Z_OK;
517}
518
519/* =========================================================================
520 * For the default windowBits of 15 and memLevel of 8, this function returns
521 * a close to exact, as well as small, upper bound on the compressed size.
522 * They are coded as constants here for a reason--if the #define's are
523 * changed, then this function needs to be changed as well. The return
524 * value for 15 and 8 only works for those exact settings.
525 *
526 * For any setting other than those defaults for windowBits and memLevel,
527 * the value returned is a conservative worst case for the maximum expansion
528 * resulting from using fixed blocks instead of stored blocks, which deflate
529 * can emit on compressed data for some combinations of the parameters.
530 *
531 * This function could be more sophisticated to provide closer upper bounds for
532 * every combination of windowBits and memLevel. But even the conservative
533 * upper bound of about 14% expansion does not seem onerous for output buffer
534 * allocation.
535 */
536uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen)
537{
538 deflate_state *s;
539 uLong complen, wraplen;
540 Bytef *str;
541
542 /* conservative upper bound for compressed data */
543 complen = sourceLen +
544 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
545
546 /* if can't get parameters, return conservative bound plus zlib wrapper */
547 if (strm == Z_NULL || strm->state == Z_NULL)
548 return complen + 6;
549
550 /* compute wrapper length */
551 s = (deflate_state*)strm->state;
552 switch (s->wrap) {
553 case 0: /* raw deflate */
554 wraplen = 0;
555 break;
556 case 1: /* zlib wrapper */
557 wraplen = 6 + (s->strstart ? 4 : 0);
558 break;
559 case 2: /* gzip wrapper */
560 wraplen = 18;
561 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
562 if (s->gzhead->extra != Z_NULL)
563 wraplen += 2 + s->gzhead->extra_len;
564 str = s->gzhead->name;
565 if (str != Z_NULL)
566 do {
567 wraplen++;
568 } while (*str++);
569 str = s->gzhead->comment;
570 if (str != Z_NULL)
571 do {
572 wraplen++;
573 } while (*str++);
574 if (s->gzhead->hcrc)
575 wraplen += 2;
576 }
577 break;
578 default: /* for compiler happiness */
579 wraplen = 6;
580 }
581
582 /* if not default parameters, return conservative bound */
583 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
584 return complen + wraplen;
585
586 /* default settings: return tight bound for that case */
587 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
588 (sourceLen >> 25) + 13 - 6 + wraplen;
589}
590
591/* =========================================================================
592 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
593 * IN assertion: the stream state is correct and there is enough room in
594 * pending_buf.
595 */
596local void putShortMSB (deflate_state *s, uInt b)
597{
598 put_byte(s, (Byte)(b >> 8));
599 put_byte(s, (Byte)(b & 0xff));
600}
601
602/* =========================================================================
603 * Flush as much pending output as possible. All deflate() output goes
604 * through this function so some applications may wish to modify it
605 * to avoid allocating a large strm->next_out buffer and copying into it.
606 * (See also read_buf()).
607 */
608local void flush_pending(z_streamp strm)
609{
610 unsigned len;
611 deflate_state *s = (deflate_state*)strm->state;
612
613 _tr_flush_bits(s);
614 len = s->pending;
615 if (len > strm->avail_out) len = strm->avail_out;
616 if (len == 0) return;
617
618 zmemcpy(strm->next_out, s->pending_out, len);
619 strm->next_out += len;
620 s->pending_out += len;
621 strm->total_out += len;
622 strm->avail_out -= len;
623 s->pending -= len;
624 if (s->pending == 0) {
625 s->pending_out = s->pending_buf;
626 }
627}
628
629/* ========================================================================= */
630int ZEXPORT deflate (z_streamp strm, int flush)
631{
632 int old_flush; /* value of flush param for previous deflate call */
633 deflate_state *s;
634
635 if (strm == Z_NULL || strm->state == Z_NULL ||
636 flush > Z_BLOCK || flush < 0) {
637 return Z_STREAM_ERROR;
638 }
639 s = (deflate_state*)strm->state;
640
641 if (strm->next_out == Z_NULL ||
642 (strm->next_in == Z_NULL && strm->avail_in != 0) ||
643 (s->status == FINISH_STATE && flush != Z_FINISH)) {
644 ERR_RETURN(strm, Z_STREAM_ERROR);
645 }
646 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
647
648 s->strm = strm; /* just in case */
649 old_flush = s->last_flush;
650 s->last_flush = flush;
651
652 /* Write the header */
653 if (s->status == INIT_STATE) {
654#ifdef GZIP
655 if (s->wrap == 2) {
656 strm->adler = crc32(0L, Z_NULL, 0);
657 put_byte(s, 31);
658 put_byte(s, 139);
659 put_byte(s, 8);
660 if (s->gzhead == Z_NULL) {
661 put_byte(s, 0);
662 put_byte(s, 0);
663 put_byte(s, 0);
664 put_byte(s, 0);
665 put_byte(s, 0);
666 put_byte(s, s->level == 9 ? 2 :
667 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
668 4 : 0));
669 put_byte(s, OS_CODE);
670 s->status = BUSY_STATE;
671 }
672 else {
673 put_byte(s, (s->gzhead->text ? 1 : 0) +
674 (s->gzhead->hcrc ? 2 : 0) +
675 (s->gzhead->extra == Z_NULL ? 0 : 4) +
676 (s->gzhead->name == Z_NULL ? 0 : 8) +
677 (s->gzhead->comment == Z_NULL ? 0 : 16)
678 );
679 put_byte(s, (Byte)(s->gzhead->time & 0xff));
680 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
681 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
682 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
683 put_byte(s, s->level == 9 ? 2 :
684 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
685 4 : 0));
686 put_byte(s, s->gzhead->os & 0xff);
687 if (s->gzhead->extra != Z_NULL) {
688 put_byte(s, s->gzhead->extra_len & 0xff);
689 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
690 }
691 if (s->gzhead->hcrc)
692 strm->adler = crc32(strm->adler, s->pending_buf,
693 s->pending);
694 s->gzindex = 0;
695 s->status = EXTRA_STATE;
696 }
697 }
698 else
699#endif
700 {
701 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
702 uInt level_flags;
703
704 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
705 level_flags = 0;
706 else if (s->level < 6)
707 level_flags = 1;
708 else if (s->level == 6)
709 level_flags = 2;
710 else
711 level_flags = 3;
712 header |= (level_flags << 6);
713 if (s->strstart != 0) header |= PRESET_DICT;
714 header += 31 - (header % 31);
715
716 s->status = BUSY_STATE;
717 putShortMSB(s, header);
718
719 /* Save the adler32 of the preset dictionary: */
720 if (s->strstart != 0) {
721 putShortMSB(s, (uInt)(strm->adler >> 16));
722 putShortMSB(s, (uInt)(strm->adler & 0xffff));
723 }
724 strm->adler = adler32(0L, Z_NULL, 0);
725 }
726 }
727#ifdef GZIP
728 if (s->status == EXTRA_STATE) {
729 if (s->gzhead->extra != Z_NULL) {
730 uInt beg = s->pending; /* start of bytes to update crc */
731
732 while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
733 if (s->pending == s->pending_buf_size) {
734 if (s->gzhead->hcrc && s->pending > beg)
735 strm->adler = crc32(strm->adler, s->pending_buf + beg,
736 s->pending - beg);
737 flush_pending(strm);
738 beg = s->pending;
739 if (s->pending == s->pending_buf_size)
740 break;
741 }
742 put_byte(s, s->gzhead->extra[s->gzindex]);
743 s->gzindex++;
744 }
745 if (s->gzhead->hcrc && s->pending > beg)
746 strm->adler = crc32(strm->adler, s->pending_buf + beg,
747 s->pending - beg);
748 if (s->gzindex == s->gzhead->extra_len) {
749 s->gzindex = 0;
750 s->status = NAME_STATE;
751 }
752 }
753 else
754 s->status = NAME_STATE;
755 }
756 if (s->status == NAME_STATE) {
757 if (s->gzhead->name != Z_NULL) {
758 uInt beg = s->pending; /* start of bytes to update crc */
759 int val;
760
761 do {
762 if (s->pending == s->pending_buf_size) {
763 if (s->gzhead->hcrc && s->pending > beg)
764 strm->adler = crc32(strm->adler, s->pending_buf + beg,
765 s->pending - beg);
766 flush_pending(strm);
767 beg = s->pending;
768 if (s->pending == s->pending_buf_size) {
769 val = 1;
770 break;
771 }
772 }
773 val = s->gzhead->name[s->gzindex++];
774 put_byte(s, val);
775 } while (val != 0);
776 if (s->gzhead->hcrc && s->pending > beg)
777 strm->adler = crc32(strm->adler, s->pending_buf + beg,
778 s->pending - beg);
779 if (val == 0) {
780 s->gzindex = 0;
781 s->status = COMMENT_STATE;
782 }
783 }
784 else
785 s->status = COMMENT_STATE;
786 }
787 if (s->status == COMMENT_STATE) {
788 if (s->gzhead->comment != Z_NULL) {
789 uInt beg = s->pending; /* start of bytes to update crc */
790 int val;
791
792 do {
793 if (s->pending == s->pending_buf_size) {
794 if (s->gzhead->hcrc && s->pending > beg)
795 strm->adler = crc32(strm->adler, s->pending_buf + beg,
796 s->pending - beg);
797 flush_pending(strm);
798 beg = s->pending;
799 if (s->pending == s->pending_buf_size) {
800 val = 1;
801 break;
802 }
803 }
804 val = s->gzhead->comment[s->gzindex++];
805 put_byte(s, val);
806 } while (val != 0);
807 if (s->gzhead->hcrc && s->pending > beg)
808 strm->adler = crc32(strm->adler, s->pending_buf + beg,
809 s->pending - beg);
810 if (val == 0)
811 s->status = HCRC_STATE;
812 }
813 else
814 s->status = HCRC_STATE;
815 }
816 if (s->status == HCRC_STATE) {
817 if (s->gzhead->hcrc) {
818 if (s->pending + 2 > s->pending_buf_size)
819 flush_pending(strm);
820 if (s->pending + 2 <= s->pending_buf_size) {
821 put_byte(s, (Byte)(strm->adler & 0xff));
822 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
823 strm->adler = crc32(0L, Z_NULL, 0);
824 s->status = BUSY_STATE;
825 }
826 }
827 else
828 s->status = BUSY_STATE;
829 }
830#endif
831
832 /* Flush as much pending output as possible */
833 if (s->pending != 0) {
834 flush_pending(strm);
835 if (strm->avail_out == 0) {
836 /* Since avail_out is 0, deflate will be called again with
837 * more output space, but possibly with both pending and
838 * avail_in equal to zero. There won't be anything to do,
839 * but this is not an error situation so make sure we
840 * return OK instead of BUF_ERROR at next call of deflate:
841 */
842 s->last_flush = -1;
843 return Z_OK;
844 }
845
846 /* Make sure there is something to do and avoid duplicate consecutive
847 * flushes. For repeated and useless calls with Z_FINISH, we keep
848 * returning Z_STREAM_END instead of Z_BUF_ERROR.
849 */
850 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
851 flush != Z_FINISH) {
852 ERR_RETURN(strm, Z_BUF_ERROR);
853 }
854
855 /* User must not provide more input after the first FINISH: */
856 if (s->status == FINISH_STATE && strm->avail_in != 0) {
857 ERR_RETURN(strm, Z_BUF_ERROR);
858 }
859
860 /* Start a new block or continue the current one.
861 */
862 if (strm->avail_in != 0 || s->lookahead != 0 ||
863 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
864 block_state bstate;
865
866 bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
867 (s->strategy == Z_RLE ? deflate_rle(s, flush) :
868 (*(configuration_table[s->level].func))(s, flush));
869
870 if (bstate == finish_started || bstate == finish_done) {
871 s->status = FINISH_STATE;
872 }
873 if (bstate == need_more || bstate == finish_started) {
874 if (strm->avail_out == 0) {
875 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
876 }
877 return Z_OK;
878 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
879 * of deflate should use the same flush parameter to make sure
880 * that the flush is complete. So we don't have to output an
881 * empty block here, this will be done at next call. This also
882 * ensures that for a very small output buffer, we emit at most
883 * one empty block.
884 */
885 }
886 if (bstate == block_done) {
887 if (flush == Z_PARTIAL_FLUSH) {
888 _tr_align(s);
889 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
890 _tr_stored_block(s, (char*)0, 0L, 0);
891 /* For a full flush, this empty block will be recognized
892 * as a special marker by inflate_sync().
893 */
894 if (flush == Z_FULL_FLUSH) {
895 CLEAR_HASH(s); /* forget history */
896 if (s->lookahead == 0) {
897 s->strstart = 0;
898 s->block_start = 0L;
899 s->insert = 0;
900 }
901 }
902 }
903 flush_pending(strm);
904 if (strm->avail_out == 0) {
905 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
906 return Z_OK;
907 }
908 }
909 }
910 Assert(strm->avail_out > 0, "bug2");
911
912 if (flush != Z_FINISH) return Z_OK;
913 if (s->wrap <= 0) return Z_STREAM_END;
914
915 /* Write the trailer */
916#ifdef GZIP
917 if (s->wrap == 2) {
918 put_byte(s, (Byte)(strm->adler & 0xff));
919 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
920 put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
921 put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
922 put_byte(s, (Byte)(strm->total_in & 0xff));
923 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
924 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
925 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
926 }
927 else
928#endif
929 {
930 putShortMSB(s, (uInt)(strm->adler >> 16));
931 putShortMSB(s, (uInt)(strm->adler & 0xffff));
932 }
933 flush_pending(strm);
934 /* If avail_out is zero, the application will call deflate again
935 * to flush the rest.
936 */
937 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
938 return s->pending != 0 ? Z_OK : Z_STREAM_END;
939}
940
941/* ========================================================================= */
942int ZEXPORT deflateEnd (z_streamp strm)
943{
944 struct internal_state_deflate *state;
945 int status;
946
947 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
948 state = (struct internal_state_deflate*)strm->state;
949
950 status = state->status;
951 if (status != INIT_STATE &&
952 status != EXTRA_STATE &&
953 status != NAME_STATE &&
954 status != COMMENT_STATE &&
955 status != HCRC_STATE &&
956 status != BUSY_STATE &&
957 status != FINISH_STATE) {
958 return Z_STREAM_ERROR;
959 }
960
961 /* Deallocate in reverse order of allocations: */
962 TRY_FREE(strm, state->pending_buf);
963 TRY_FREE(strm, state->head);
964 TRY_FREE(strm, state->prev);
965 TRY_FREE(strm, state->window);
966
967 ZFREE(strm, state);
968 state = Z_NULL;
969
970 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
971}
972
973/* =========================================================================
974 * Copy the source state to the destination state.
975 * To simplify the source, this is not supported for 16-bit MSDOS (which
976 * doesn't have enough memory anyway to duplicate compression states).
977 */
978int ZEXPORT deflateCopy (z_streamp dest, z_streamp source)
979{
980#ifdef MAXSEG_64K
981 return Z_STREAM_ERROR;
982#else
983 deflate_state *ds;
984 deflate_state *ss;
985 ushf *overlay;
986
987
988 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
989 return Z_STREAM_ERROR;
990 }
991
992 ss = (deflate_state*)source->state;
993
994 zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
995
996 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
997 if (ds == Z_NULL) return Z_MEM_ERROR;
998 dest->state = (struct internal_state FAR *) ds;
999 zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1000 ds->strm = dest;
1001
1002 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1003 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1004 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1005 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1006 ds->pending_buf = (uchf *) overlay;
1007
1008 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1009 ds->pending_buf == Z_NULL) {
1010 deflateEnd (dest);
1011 return Z_MEM_ERROR;
1012 }
1013 /* following zmemcpy do not work for 16-bit MSDOS */
1014 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1015 zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1016 zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1017 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1018
1019 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1020 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1021 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1022
1023 ds->l_desc.dyn_tree = ds->dyn_ltree;
1024 ds->d_desc.dyn_tree = ds->dyn_dtree;
1025 ds->bl_desc.dyn_tree = ds->bl_tree;
1026
1027 return Z_OK;
1028#endif /* MAXSEG_64K */
1029}
1030
1031/* ===========================================================================
1032 * Read a new buffer from the current input stream, update the adler32
1033 * and total number of bytes read. All deflate() input goes through
1034 * this function so some applications may wish to modify it to avoid
1035 * allocating a large strm->next_in buffer and copying from it.
1036 * (See also flush_pending()).
1037 */
1038local int read_buf(z_streamp strm, Bytef *buf, unsigned size)
1039{
1040 struct internal_state_deflate *state = (struct internal_state_deflate*)strm->state;
1041 unsigned len = strm->avail_in;
1042
1043 if (len > size) len = size;
1044 if (len == 0) return 0;
1045
1046 strm->avail_in -= len;
1047
1048 zmemcpy(buf, strm->next_in, len);
1049 if (state->wrap == 1) {
1050 strm->adler = adler32(strm->adler, buf, len);
1051 }
1052#ifdef GZIP
1053 else if (state->wrap == 2) {
1054 strm->adler = crc32(strm->adler, buf, len);
1055 }
1056#endif
1057 strm->next_in += len;
1058 strm->total_in += len;
1059
1060 return (int)len;
1061}
1062
1063/* ===========================================================================
1064 * Initialize the "longest match" routines for a new zlib stream
1065 */
1066local void lm_init (deflate_state *s)
1067{
1068 s->window_size = (ulg)2L*s->w_size;
1069
1070 CLEAR_HASH(s);
1071
1072 /* Set the default configuration parameters:
1073 */
1074 s->max_lazy_match = configuration_table[s->level].max_lazy;
1075 s->good_match = configuration_table[s->level].good_length;
1076 s->nice_match = configuration_table[s->level].nice_length;
1077 s->max_chain_length = configuration_table[s->level].max_chain;
1078
1079 s->strstart = 0;
1080 s->block_start = 0L;
1081 s->lookahead = 0;
1082 s->insert = 0;
1083 s->match_length = s->prev_length = MIN_MATCH-1;
1084 s->match_available = 0;
1085 s->ins_h = 0;
1086#ifndef FASTEST
1087#ifdef ASMV
1088 match_init(); /* initialize the asm code */
1089#endif
1090#endif
1091}
1092
1093#ifndef FASTEST
1094/* ===========================================================================
1095 * Set match_start to the longest match starting at the given string and
1096 * return its length. Matches shorter or equal to prev_length are discarded,
1097 * in which case the result is equal to prev_length and match_start is
1098 * garbage.
1099 * IN assertions: cur_match is the head of the hash chain for the current
1100 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1101 * OUT assertion: the match length is not greater than s->lookahead.
1102 */
1103#ifndef ASMV
1104/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1105 * match.S. The code will be functionally equivalent.
1106 */
1107local uInt longest_match(deflate_state *s, IPos cur_match)
1108{
1109 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1110 register Bytef *scan = s->window + s->strstart; /* current string */
1111 register Bytef *match; /* matched string */
1112 register int len; /* length of current match */
1113 int best_len = s->prev_length; /* best match length so far */
1114 int nice_match = s->nice_match; /* stop if match long enough */
1115 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1116 s->strstart - (IPos)MAX_DIST(s) : NIL;
1117 /* Stop when cur_match becomes <= limit. To simplify the code,
1118 * we prevent matches with the string of window index 0.
1119 */
1120 Posf *prev = s->prev;
1121 uInt wmask = s->w_mask;
1122
1123#ifdef UNALIGNED_OK
1124 /* Compare two bytes at a time. Note: this is not always beneficial.
1125 * Try with and without -DUNALIGNED_OK to check.
1126 */
1127 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1128 register ush scan_start = *(ushf*)scan;
1129 register ush scan_end = *(ushf*)(scan+best_len-1);
1130#else
1131 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1132 register Byte scan_end1 = scan[best_len-1];
1133 register Byte scan_end = scan[best_len];
1134#endif
1135
1136 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1137 * It is easy to get rid of this optimization if necessary.
1138 */
1139 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1140
1141 /* Do not waste too much time if we already have a good match: */
1142 if (s->prev_length >= s->good_match) {
1143 chain_length >>= 2;
1144 }
1145 /* Do not look for matches beyond the end of the input. This is necessary
1146 * to make deflate deterministic.
1147 */
1148 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1149
1150 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1151
1152 do {
1153 Assert(cur_match < s->strstart, "no future");
1154 match = s->window + cur_match;
1155
1156 /* Skip to next match if the match length cannot increase
1157 * or if the match length is less than 2. Note that the checks below
1158 * for insufficient lookahead only occur occasionally for performance
1159 * reasons. Therefore uninitialized memory will be accessed, and
1160 * conditional jumps will be made that depend on those values.
1161 * However the length of the match is limited to the lookahead, so
1162 * the output of deflate is not affected by the uninitialized values.
1163 */
1164#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1165 /* This code assumes sizeof(unsigned short) == 2. Do not use
1166 * UNALIGNED_OK if your compiler uses a different size.
1167 */
1168 if (*(ushf*)(match+best_len-1) != scan_end ||
1169 *(ushf*)match != scan_start) continue;
1170
1171 /* It is not necessary to compare scan[2] and match[2] since they are
1172 * always equal when the other bytes match, given that the hash keys
1173 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1174 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1175 * lookahead only every 4th comparison; the 128th check will be made
1176 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1177 * necessary to put more guard bytes at the end of the window, or
1178 * to check more often for insufficient lookahead.
1179 */
1180 Assert(scan[2] == match[2], "scan[2]?");
1181 scan++, match++;
1182 do {
1183 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1184 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1185 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1186 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1187 scan < strend);
1188 /* The funny "do {}" generates better code on most compilers */
1189
1190 /* Here, scan <= window+strstart+257 */
1191 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1192 if (*scan == *match) scan++;
1193
1194 len = (MAX_MATCH - 1) - (int)(strend-scan);
1195 scan = strend - (MAX_MATCH-1);
1196
1197#else /* UNALIGNED_OK */
1198
1199 if (match[best_len] != scan_end ||
1200 match[best_len-1] != scan_end1 ||
1201 *match != *scan ||
1202 *++match != scan[1]) continue;
1203
1204 /* The check at best_len-1 can be removed because it will be made
1205 * again later. (This heuristic is not always a win.)
1206 * It is not necessary to compare scan[2] and match[2] since they
1207 * are always equal when the other bytes match, given that
1208 * the hash keys are equal and that HASH_BITS >= 8.
1209 */
1210 scan += 2, match++;
1211 Assert(*scan == *match, "match[2]?");
1212
1213 /* We check for insufficient lookahead only every 8th comparison;
1214 * the 256th check will be made at strstart+258.
1215 */
1216 do {
1217 } while (*++scan == *++match && *++scan == *++match &&
1218 *++scan == *++match && *++scan == *++match &&
1219 *++scan == *++match && *++scan == *++match &&
1220 *++scan == *++match && *++scan == *++match &&
1221 scan < strend);
1222
1223 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1224
1225 len = MAX_MATCH - (int)(strend - scan);
1226 scan = strend - MAX_MATCH;
1227
1228#endif /* UNALIGNED_OK */
1229
1230 if (len > best_len) {
1231 s->match_start = cur_match;
1232 best_len = len;
1233 if (len >= nice_match) break;
1234#ifdef UNALIGNED_OK
1235 scan_end = *(ushf*)(scan+best_len-1);
1236#else
1237 scan_end1 = scan[best_len-1];
1238 scan_end = scan[best_len];
1239#endif
1240 }
1241 } while ((cur_match = prev[cur_match & wmask]) > limit
1242 && --chain_length != 0);
1243
1244 if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1245 return s->lookahead;
1246}
1247#endif /* ASMV */
1248
1249#else /* FASTEST */
1250
1251/* ---------------------------------------------------------------------------
1252 * Optimized version for FASTEST only
1253 */
1254local uInt longest_match(s, cur_match)
1255 deflate_state *s;
1256 IPos cur_match; /* current match */
1257{
1258 register Bytef *scan = s->window + s->strstart; /* current string */
1259 register Bytef *match; /* matched string */
1260 register int len; /* length of current match */
1261 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1262
1263 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1264 * It is easy to get rid of this optimization if necessary.
1265 */
1266 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1267
1268 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1269
1270 Assert(cur_match < s->strstart, "no future");
1271
1272 match = s->window + cur_match;
1273
1274 /* Return failure if the match length is less than 2:
1275 */
1276 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1277
1278 /* The check at best_len-1 can be removed because it will be made
1279 * again later. (This heuristic is not always a win.)
1280 * It is not necessary to compare scan[2] and match[2] since they
1281 * are always equal when the other bytes match, given that
1282 * the hash keys are equal and that HASH_BITS >= 8.
1283 */
1284 scan += 2, match += 2;
1285 Assert(*scan == *match, "match[2]?");
1286
1287 /* We check for insufficient lookahead only every 8th comparison;
1288 * the 256th check will be made at strstart+258.
1289 */
1290 do {
1291 } while (*++scan == *++match && *++scan == *++match &&
1292 *++scan == *++match && *++scan == *++match &&
1293 *++scan == *++match && *++scan == *++match &&
1294 *++scan == *++match && *++scan == *++match &&
1295 scan < strend);
1296
1297 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1298
1299 len = MAX_MATCH - (int)(strend - scan);
1300
1301 if (len < MIN_MATCH) return MIN_MATCH - 1;
1302
1303 s->match_start = cur_match;
1304 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1305}
1306
1307#endif /* FASTEST */
1308
1309#ifdef DEBUG
1310/* ===========================================================================
1311 * Check that the match at match_start is indeed a match.
1312 */
1313local void check_match(s, start, match, length)
1314 deflate_state *s;
1315 IPos start, match;
1316 int length;
1317{
1318 /* check that the match is indeed a match */
1319 if (zmemcmp(s->window + match,
1320 s->window + start, length) != EQUAL) {
1321 fprintf(stderr, " start %u, match %u, length %d\n",
1322 start, match, length);
1323 do {
1324 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1325 } while (--length != 0);
1326 z_error("invalid match");
1327 }
1328 if (z_verbose > 1) {
1329 fprintf(stderr,"\\[%d,%d]", start-match, length);
1330 do { putc(s->window[start++], stderr); } while (--length != 0);
1331 }
1332}
1333#else
1334# define check_match(s, start, match, length)
1335#endif /* DEBUG */
1336
1337/* ===========================================================================
1338 * Fill the window when the lookahead becomes insufficient.
1339 * Updates strstart and lookahead.
1340 *
1341 * IN assertion: lookahead < MIN_LOOKAHEAD
1342 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1343 * At least one byte has been read, or avail_in == 0; reads are
1344 * performed for at least two bytes (required for the zip translate_eol
1345 * option -- not supported here).
1346 */
1347local void fill_window(deflate_state *s)
1348{
1349 register unsigned n, m;
1350 register Posf *p;
1351 unsigned more; /* Amount of free space at the end of the window. */
1352 uInt wsize = s->w_size;
1353
1354 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1355
1356 do {
1357 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1358
1359 /* Deal with !@#$% 64K limit: */
1360 if (sizeof(int) <= 2) {
1361 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1362 more = wsize;
1363
1364 } else if (more == (unsigned)(-1)) {
1365 /* Very unlikely, but possible on 16 bit machine if
1366 * strstart == 0 && lookahead == 1 (input done a byte at time)
1367 */
1368 more--;
1369 }
1370 }
1371
1372 /* If the window is almost full and there is insufficient lookahead,
1373 * move the upper half to the lower one to make room in the upper half.
1374 */
1375 if (s->strstart >= wsize+MAX_DIST(s)) {
1376
1377 zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1378 s->match_start -= wsize;
1379 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1380 s->block_start -= (long) wsize;
1381
1382 /* Slide the hash table (could be avoided with 32 bit values
1383 at the expense of memory usage). We slide even when level == 0
1384 to keep the hash table consistent if we switch back to level > 0
1385 later. (Using level 0 permanently is not an optimal usage of
1386 zlib, so we don't care about this pathological case.)
1387 */
1388 n = s->hash_size;
1389 p = &s->head[n];
1390 do {
1391 m = *--p;
1392 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1393 } while (--n);
1394
1395 n = wsize;
1396#ifndef FASTEST
1397 p = &s->prev[n];
1398 do {
1399 m = *--p;
1400 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1401 /* If n is not on any hash chain, prev[n] is garbage but
1402 * its value will never be used.
1403 */
1404 } while (--n);
1405#endif
1406 more += wsize;
1407 }
1408 if (s->strm->avail_in == 0) break;
1409
1410 /* If there was no sliding:
1411 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1412 * more == window_size - lookahead - strstart
1413 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1414 * => more >= window_size - 2*WSIZE + 2
1415 * In the BIG_MEM or MMAP case (not yet supported),
1416 * window_size == input_size + MIN_LOOKAHEAD &&
1417 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1418 * Otherwise, window_size == 2*WSIZE so more >= 2.
1419 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1420 */
1421 Assert(more >= 2, "more < 2");
1422
1423 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1424 s->lookahead += n;
1425
1426 /* Initialize the hash value now that we have some input: */
1427 if (s->lookahead + s->insert >= MIN_MATCH) {
1428 uInt str = s->strstart - s->insert;
1429 s->ins_h = s->window[str];
1430 UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1431#if MIN_MATCH != 3
1432 Call UPDATE_HASH() MIN_MATCH-3 more times
1433#endif
1434 while (s->insert) {
1435 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1436#ifndef FASTEST
1437 s->prev[str & s->w_mask] = s->head[s->ins_h];
1438#endif
1439 s->head[s->ins_h] = (Pos)str;
1440 str++;
1441 s->insert--;
1442 if (s->lookahead + s->insert < MIN_MATCH)
1443 break;
1444 }
1445 }
1446 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1447 * but this is not important since only literal bytes will be emitted.
1448 */
1449
1450 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1451
1452 /* If the WIN_INIT bytes after the end of the current data have never been
1453 * written, then zero those bytes in order to avoid memory check reports of
1454 * the use of uninitialized (or uninitialised as Julian writes) bytes by
1455 * the longest match routines. Update the high water mark for the next
1456 * time through here. WIN_INIT is set to MAX_MATCH since the longest match
1457 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1458 */
1459 if (s->high_water < s->window_size) {
1460 ulg curr = s->strstart + (ulg)(s->lookahead);
1461 ulg init;
1462
1463 if (s->high_water < curr) {
1464 /* Previous high water mark below current data -- zero WIN_INIT
1465 * bytes or up to end of window, whichever is less.
1466 */
1467 init = s->window_size - curr;
1468 if (init > WIN_INIT)
1469 init = WIN_INIT;
1470 zmemzero(s->window + curr, (unsigned)init);
1471 s->high_water = curr + init;
1472 }
1473 else if (s->high_water < (ulg)curr + WIN_INIT) {
1474 /* High water mark at or above current data, but below current data
1475 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1476 * to end of window, whichever is less.
1477 */
1478 init = (ulg)curr + WIN_INIT - s->high_water;
1479 if (init > s->window_size - s->high_water)
1480 init = s->window_size - s->high_water;
1481 zmemzero(s->window + s->high_water, (unsigned)init);
1482 s->high_water += init;
1483 }
1484 }
1485
1486 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1487 "not enough room for search");
1488}
1489
1490/* ===========================================================================
1491 * Flush the current block, with given end-of-file flag.
1492 * IN assertion: strstart is set to the end of the current match.
1493 */
1494#define FLUSH_BLOCK_ONLY(s, last) { \
1495 _tr_flush_block(s, (s->block_start >= 0L ? \
1496 (charf *)&s->window[(unsigned)s->block_start] : \
1497 (charf *)Z_NULL), \
1498 (ulg)((long)s->strstart - s->block_start), \
1499 (last)); \
1500 s->block_start = s->strstart; \
1501 flush_pending(s->strm); \
1502 Tracev((stderr,"[FLUSH]")); \
1503}
1504
1505/* Same but force premature exit if necessary. */
1506#define FLUSH_BLOCK(s, last) { \
1507 FLUSH_BLOCK_ONLY(s, last); \
1508 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1509}
1510
1511/* ===========================================================================
1512 * Copy without compression as much as possible from the input stream, return
1513 * the current block state.
1514 * This function does not insert new strings in the dictionary since
1515 * uncompressible data is probably not useful. This function is used
1516 * only for the level=0 compression option.
1517 * NOTE: this function should be optimized to avoid extra copying from
1518 * window to pending_buf.
1519 */
1520local block_state deflate_stored(deflate_state *s, int flush)
1521{
1522 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1523 * to pending_buf_size, and each stored block has a 5 byte header:
1524 */
1525 ulg max_block_size = 0xffff;
1526 ulg max_start;
1527
1528 if (max_block_size > s->pending_buf_size - 5) {
1529 max_block_size = s->pending_buf_size - 5;
1530 }
1531
1532 /* Copy as much as possible from input to output: */
1533 for (;;) {
1534 /* Fill the window as much as possible: */
1535 if (s->lookahead <= 1) {
1536
1537 Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1538 s->block_start >= (long)s->w_size, "slide too late");
1539
1540 fill_window(s);
1541 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1542
1543 if (s->lookahead == 0) break; /* flush the current block */
1544 }
1545 Assert(s->block_start >= 0L, "block gone");
1546
1547 s->strstart += s->lookahead;
1548 s->lookahead = 0;
1549
1550 /* Emit a stored block if pending_buf will be full: */
1551 max_start = s->block_start + max_block_size;
1552 if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1553 /* strstart == 0 is possible when wraparound on 16-bit machine */
1554 s->lookahead = (uInt)(s->strstart - max_start);
1555 s->strstart = (uInt)max_start;
1556 FLUSH_BLOCK(s, 0);
1557 }
1558 /* Flush if we may have to slide, otherwise block_start may become
1559 * negative and the data will be gone:
1560 */
1561 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1562 FLUSH_BLOCK(s, 0);
1563 }
1564 }
1565 s->insert = 0;
1566 if (flush == Z_FINISH) {
1567 FLUSH_BLOCK(s, 1);
1568 return finish_done;
1569 }
1570 if ((long)s->strstart > s->block_start)
1571 FLUSH_BLOCK(s, 0);
1572 return block_done;
1573}
1574
1575/* ===========================================================================
1576 * Compress as much as possible from the input stream, return the current
1577 * block state.
1578 * This function does not perform lazy evaluation of matches and inserts
1579 * new strings in the dictionary only for unmatched strings or for short
1580 * matches. It is used only for the fast compression options.
1581 */
1582local block_state deflate_fast(deflate_state *s, int flush)
1583{
1584 IPos hash_head; /* head of the hash chain */
1585 int bflush; /* set if current block must be flushed */
1586
1587 for (;;) {
1588 /* Make sure that we always have enough lookahead, except
1589 * at the end of the input file. We need MAX_MATCH bytes
1590 * for the next match, plus MIN_MATCH bytes to insert the
1591 * string following the next match.
1592 */
1593 if (s->lookahead < MIN_LOOKAHEAD) {
1594 fill_window(s);
1595 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1596 return need_more;
1597 }
1598 if (s->lookahead == 0) break; /* flush the current block */
1599 }
1600
1601 /* Insert the string window[strstart .. strstart+2] in the
1602 * dictionary, and set hash_head to the head of the hash chain:
1603 */
1604 hash_head = NIL;
1605 if (s->lookahead >= MIN_MATCH) {
1606 INSERT_STRING(s, s->strstart, hash_head);
1607 }
1608
1609 /* Find the longest match, discarding those <= prev_length.
1610 * At this point we have always match_length < MIN_MATCH
1611 */
1612 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1613 /* To simplify the code, we prevent matches with the string
1614 * of window index 0 (in particular we have to avoid a match
1615 * of the string with itself at the start of the input file).
1616 */
1617 s->match_length = longest_match (s, hash_head);
1618 /* longest_match() sets match_start */
1619 }
1620 if (s->match_length >= MIN_MATCH) {
1621 check_match(s, s->strstart, s->match_start, s->match_length);
1622
1623 _tr_tally_dist(s, s->strstart - s->match_start,
1624 s->match_length - MIN_MATCH, bflush);
1625
1626 s->lookahead -= s->match_length;
1627
1628 /* Insert new strings in the hash table only if the match length
1629 * is not too large. This saves time but degrades compression.
1630 */
1631#ifndef FASTEST
1632 if (s->match_length <= s->max_insert_length &&
1633 s->lookahead >= MIN_MATCH) {
1634 s->match_length--; /* string at strstart already in table */
1635 do {
1636 s->strstart++;
1637 INSERT_STRING(s, s->strstart, hash_head);
1638 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1639 * always MIN_MATCH bytes ahead.
1640 */
1641 } while (--s->match_length != 0);
1642 s->strstart++;
1643 } else
1644#endif
1645 {
1646 s->strstart += s->match_length;
1647 s->match_length = 0;
1648 s->ins_h = s->window[s->strstart];
1649 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1650#if MIN_MATCH != 3
1651 Call UPDATE_HASH() MIN_MATCH-3 more times
1652#endif
1653 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1654 * matter since it will be recomputed at next deflate call.
1655 */
1656 }
1657 } else {
1658 /* No match, output a literal byte */
1659 Tracevv((stderr,"%c", s->window[s->strstart]));
1660 _tr_tally_lit (s, s->window[s->strstart], bflush);
1661 s->lookahead--;
1662 s->strstart++;
1663 }
1664 if (bflush) FLUSH_BLOCK(s, 0);
1665 }
1666 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1667 if (flush == Z_FINISH) {
1668 FLUSH_BLOCK(s, 1);
1669 return finish_done;
1670 }
1671 if (s->last_lit)
1672 FLUSH_BLOCK(s, 0);
1673 return block_done;
1674}
1675
1676#ifndef FASTEST
1677/* ===========================================================================
1678 * Same as above, but achieves better compression. We use a lazy
1679 * evaluation for matches: a match is finally adopted only if there is
1680 * no better match at the next window position.
1681 */
1682local block_state deflate_slow(deflate_state *s, int flush)
1683{
1684 IPos hash_head; /* head of hash chain */
1685 int bflush; /* set if current block must be flushed */
1686
1687 /* Process the input block. */
1688 for (;;) {
1689 /* Make sure that we always have enough lookahead, except
1690 * at the end of the input file. We need MAX_MATCH bytes
1691 * for the next match, plus MIN_MATCH bytes to insert the
1692 * string following the next match.
1693 */
1694 if (s->lookahead < MIN_LOOKAHEAD) {
1695 fill_window(s);
1696 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1697 return need_more;
1698 }
1699 if (s->lookahead == 0) break; /* flush the current block */
1700 }
1701
1702 /* Insert the string window[strstart .. strstart+2] in the
1703 * dictionary, and set hash_head to the head of the hash chain:
1704 */
1705 hash_head = NIL;
1706 if (s->lookahead >= MIN_MATCH) {
1707 INSERT_STRING(s, s->strstart, hash_head);
1708 }
1709
1710 /* Find the longest match, discarding those <= prev_length.
1711 */
1712 s->prev_length = s->match_length, s->prev_match = s->match_start;
1713 s->match_length = MIN_MATCH-1;
1714
1715 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1716 s->strstart - hash_head <= MAX_DIST(s)) {
1717 /* To simplify the code, we prevent matches with the string
1718 * of window index 0 (in particular we have to avoid a match
1719 * of the string with itself at the start of the input file).
1720 */
1721 s->match_length = longest_match (s, hash_head);
1722 /* longest_match() sets match_start */
1723
1724 if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1725#if TOO_FAR <= 32767
1726 || (s->match_length == MIN_MATCH &&
1727 s->strstart - s->match_start > TOO_FAR)
1728#endif
1729 )) {
1730
1731 /* If prev_match is also MIN_MATCH, match_start is garbage
1732 * but we will ignore the current match anyway.
1733 */
1734 s->match_length = MIN_MATCH-1;
1735 }
1736 }
1737 /* If there was a match at the previous step and the current
1738 * match is not better, output the previous match:
1739 */
1740 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1741 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1742 /* Do not insert strings in hash table beyond this. */
1743
1744 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1745
1746 _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1747 s->prev_length - MIN_MATCH, bflush);
1748
1749 /* Insert in hash table all strings up to the end of the match.
1750 * strstart-1 and strstart are already inserted. If there is not
1751 * enough lookahead, the last two strings are not inserted in
1752 * the hash table.
1753 */
1754 s->lookahead -= s->prev_length-1;
1755 s->prev_length -= 2;
1756 do {
1757 if (++s->strstart <= max_insert) {
1758 INSERT_STRING(s, s->strstart, hash_head);
1759 }
1760 } while (--s->prev_length != 0);
1761 s->match_available = 0;
1762 s->match_length = MIN_MATCH-1;
1763 s->strstart++;
1764
1765 if (bflush) FLUSH_BLOCK(s, 0);
1766
1767 } else if (s->match_available) {
1768 /* If there was no match at the previous position, output a
1769 * single literal. If there was a match but the current match
1770 * is longer, truncate the previous match to a single literal.
1771 */
1772 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1773 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1774 if (bflush) {
1775 FLUSH_BLOCK_ONLY(s, 0);
1776 }
1777 s->strstart++;
1778 s->lookahead--;
1779 if (s->strm->avail_out == 0) return need_more;
1780 } else {
1781 /* There is no previous match to compare with, wait for
1782 * the next step to decide.
1783 */
1784 s->match_available = 1;
1785 s->strstart++;
1786 s->lookahead--;
1787 }
1788 }
1789 Assert (flush != Z_NO_FLUSH, "no flush?");
1790 if (s->match_available) {
1791 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1792 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1793 s->match_available = 0;
1794 }
1795 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1796 if (flush == Z_FINISH) {
1797 FLUSH_BLOCK(s, 1);
1798 return finish_done;
1799 }
1800 if (s->last_lit)
1801 FLUSH_BLOCK(s, 0);
1802 return block_done;
1803}
1804#endif /* FASTEST */
1805
1806/* ===========================================================================
1807 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
1808 * one. Do not maintain a hash table. (It will be regenerated if this run of
1809 * deflate switches away from Z_RLE.)
1810 */
1811local block_state deflate_rle(deflate_state *s, int flush)
1812{
1813 int bflush; /* set if current block must be flushed */
1814 uInt prev; /* byte at distance one to match */
1815 Bytef *scan, *strend; /* scan goes up to strend for length of run */
1816
1817 for (;;) {
1818 /* Make sure that we always have enough lookahead, except
1819 * at the end of the input file. We need MAX_MATCH bytes
1820 * for the longest run, plus one for the unrolled loop.
1821 */
1822 if (s->lookahead <= MAX_MATCH) {
1823 fill_window(s);
1824 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
1825 return need_more;
1826 }
1827 if (s->lookahead == 0) break; /* flush the current block */
1828 }
1829
1830 /* See how many times the previous byte repeats */
1831 s->match_length = 0;
1832 if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
1833 scan = s->window + s->strstart - 1;
1834 prev = *scan;
1835 if (prev == *++scan && prev == *++scan && prev == *++scan) {
1836 strend = s->window + s->strstart + MAX_MATCH;
1837 do {
1838 } while (prev == *++scan && prev == *++scan &&
1839 prev == *++scan && prev == *++scan &&
1840 prev == *++scan && prev == *++scan &&
1841 prev == *++scan && prev == *++scan &&
1842 scan < strend);
1843 s->match_length = MAX_MATCH - (int)(strend - scan);
1844 if (s->match_length > s->lookahead)
1845 s->match_length = s->lookahead;
1846 }
1847 Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
1848 }
1849
1850 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
1851 if (s->match_length >= MIN_MATCH) {
1852 check_match(s, s->strstart, s->strstart - 1, s->match_length);
1853
1854 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
1855
1856 s->lookahead -= s->match_length;
1857 s->strstart += s->match_length;
1858 s->match_length = 0;
1859 } else {
1860 /* No match, output a literal byte */
1861 Tracevv((stderr,"%c", s->window[s->strstart]));
1862 _tr_tally_lit (s, s->window[s->strstart], bflush);
1863 s->lookahead--;
1864 s->strstart++;
1865 }
1866 if (bflush) FLUSH_BLOCK(s, 0);
1867 }
1868 s->insert = 0;
1869 if (flush == Z_FINISH) {
1870 FLUSH_BLOCK(s, 1);
1871 return finish_done;
1872 }
1873 if (s->last_lit)
1874 FLUSH_BLOCK(s, 0);
1875 return block_done;
1876}
1877
1878/* ===========================================================================
1879 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
1880 * (It will be regenerated if this run of deflate switches away from Huffman.)
1881 */
1882local block_state deflate_huff(deflate_state *s, int flush)
1883{
1884 int bflush; /* set if current block must be flushed */
1885
1886 for (;;) {
1887 /* Make sure that we have a literal to write. */
1888 if (s->lookahead == 0) {
1889 fill_window(s);
1890 if (s->lookahead == 0) {
1891 if (flush == Z_NO_FLUSH)
1892 return need_more;
1893 break; /* flush the current block */
1894 }
1895 }
1896
1897 /* Output a literal byte */
1898 s->match_length = 0;
1899 Tracevv((stderr,"%c", s->window[s->strstart]));
1900 _tr_tally_lit (s, s->window[s->strstart], bflush);
1901 s->lookahead--;
1902 s->strstart++;
1903 if (bflush) FLUSH_BLOCK(s, 0);
1904 }
1905 s->insert = 0;
1906 if (flush == Z_FINISH) {
1907 FLUSH_BLOCK(s, 1);
1908 return finish_done;
1909 }
1910 if (s->last_lit)
1911 FLUSH_BLOCK(s, 0);
1912 return block_done;
1913}