git subrepo pull (merge) --force deps/libchdr
[pcsx_rearmed.git] / deps / libchdr / deps / lzma-24.05 / src / LzmaDec.c
CommitLineData
f535537f 1/* LzmaDec.c -- LZMA Decoder
22023-04-07 : Igor Pavlov : Public domain */
3
4#include "Precomp.h"
5
6#include <string.h>
7
8/* #include "CpuArch.h" */
9#include "LzmaDec.h"
10
11// #define kNumTopBits 24
12#define kTopValue ((UInt32)1 << 24)
13
14#define kNumBitModelTotalBits 11
15#define kBitModelTotal (1 << kNumBitModelTotalBits)
16
17#define RC_INIT_SIZE 5
18
19#ifndef Z7_LZMA_DEC_OPT
20
21#define kNumMoveBits 5
22#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
23
24#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * (UInt32)ttt; if (code < bound)
25#define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
26#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
27#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
28 { UPDATE_0(p) i = (i + i); A0; } else \
29 { UPDATE_1(p) i = (i + i) + 1; A1; }
30
31#define TREE_GET_BIT(probs, i) { GET_BIT2(probs + i, i, ;, ;); }
32
33#define REV_BIT(p, i, A0, A1) IF_BIT_0(p + i) \
34 { UPDATE_0(p + i) A0; } else \
35 { UPDATE_1(p + i) A1; }
36#define REV_BIT_VAR( p, i, m) REV_BIT(p, i, i += m; m += m, m += m; i += m; )
37#define REV_BIT_CONST(p, i, m) REV_BIT(p, i, i += m; , i += m * 2; )
38#define REV_BIT_LAST( p, i, m) REV_BIT(p, i, i -= m , ; )
39
40#define TREE_DECODE(probs, limit, i) \
41 { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
42
43/* #define Z7_LZMA_SIZE_OPT */
44
45#ifdef Z7_LZMA_SIZE_OPT
46#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
47#else
48#define TREE_6_DECODE(probs, i) \
49 { i = 1; \
50 TREE_GET_BIT(probs, i) \
51 TREE_GET_BIT(probs, i) \
52 TREE_GET_BIT(probs, i) \
53 TREE_GET_BIT(probs, i) \
54 TREE_GET_BIT(probs, i) \
55 TREE_GET_BIT(probs, i) \
56 i -= 0x40; }
57#endif
58
59#define NORMAL_LITER_DEC TREE_GET_BIT(prob, symbol)
60#define MATCHED_LITER_DEC \
61 matchByte += matchByte; \
62 bit = offs; \
63 offs &= matchByte; \
64 probLit = prob + (offs + bit + symbol); \
65 GET_BIT2(probLit, symbol, offs ^= bit; , ;)
66
67#endif // Z7_LZMA_DEC_OPT
68
69
70#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_INPUT_EOF; range <<= 8; code = (code << 8) | (*buf++); }
71
72#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK bound = (range >> kNumBitModelTotalBits) * (UInt32)ttt; if (code < bound)
73#define UPDATE_0_CHECK range = bound;
74#define UPDATE_1_CHECK range -= bound; code -= bound;
75#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
76 { UPDATE_0_CHECK i = (i + i); A0; } else \
77 { UPDATE_1_CHECK i = (i + i) + 1; A1; }
78#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
79#define TREE_DECODE_CHECK(probs, limit, i) \
80 { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
81
82
83#define REV_BIT_CHECK(p, i, m) IF_BIT_0_CHECK(p + i) \
84 { UPDATE_0_CHECK i += m; m += m; } else \
85 { UPDATE_1_CHECK m += m; i += m; }
86
87
88#define kNumPosBitsMax 4
89#define kNumPosStatesMax (1 << kNumPosBitsMax)
90
91#define kLenNumLowBits 3
92#define kLenNumLowSymbols (1 << kLenNumLowBits)
93#define kLenNumHighBits 8
94#define kLenNumHighSymbols (1 << kLenNumHighBits)
95
96#define LenLow 0
97#define LenHigh (LenLow + 2 * (kNumPosStatesMax << kLenNumLowBits))
98#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
99
100#define LenChoice LenLow
101#define LenChoice2 (LenLow + (1 << kLenNumLowBits))
102
103#define kNumStates 12
104#define kNumStates2 16
105#define kNumLitStates 7
106
107#define kStartPosModelIndex 4
108#define kEndPosModelIndex 14
109#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
110
111#define kNumPosSlotBits 6
112#define kNumLenToPosStates 4
113
114#define kNumAlignBits 4
115#define kAlignTableSize (1 << kNumAlignBits)
116
117#define kMatchMinLen 2
118#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols * 2 + kLenNumHighSymbols)
119
120#define kMatchSpecLen_Error_Data (1 << 9)
121#define kMatchSpecLen_Error_Fail (kMatchSpecLen_Error_Data - 1)
122
123/* External ASM code needs same CLzmaProb array layout. So don't change it. */
124
125/* (probs_1664) is faster and better for code size at some platforms */
126/*
127#ifdef MY_CPU_X86_OR_AMD64
128*/
129#define kStartOffset 1664
130#define GET_PROBS p->probs_1664
131/*
132#define GET_PROBS p->probs + kStartOffset
133#else
134#define kStartOffset 0
135#define GET_PROBS p->probs
136#endif
137*/
138
139#define SpecPos (-kStartOffset)
140#define IsRep0Long (SpecPos + kNumFullDistances)
141#define RepLenCoder (IsRep0Long + (kNumStates2 << kNumPosBitsMax))
142#define LenCoder (RepLenCoder + kNumLenProbs)
143#define IsMatch (LenCoder + kNumLenProbs)
144#define Align (IsMatch + (kNumStates2 << kNumPosBitsMax))
145#define IsRep (Align + kAlignTableSize)
146#define IsRepG0 (IsRep + kNumStates)
147#define IsRepG1 (IsRepG0 + kNumStates)
148#define IsRepG2 (IsRepG1 + kNumStates)
149#define PosSlot (IsRepG2 + kNumStates)
150#define Literal (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
151#define NUM_BASE_PROBS (Literal + kStartOffset)
152
153#if Align != 0 && kStartOffset != 0
154 #error Stop_Compiling_Bad_LZMA_kAlign
155#endif
156
157#if NUM_BASE_PROBS != 1984
158 #error Stop_Compiling_Bad_LZMA_PROBS
159#endif
160
161
162#define LZMA_LIT_SIZE 0x300
163
164#define LzmaProps_GetNumProbs(p) (NUM_BASE_PROBS + ((UInt32)LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
165
166
167#define CALC_POS_STATE(processedPos, pbMask) (((processedPos) & (pbMask)) << 4)
168#define COMBINED_PS_STATE (posState + state)
169#define GET_LEN_STATE (posState)
170
171#define LZMA_DIC_MIN (1 << 12)
172
173/*
174p->remainLen : shows status of LZMA decoder:
175 < kMatchSpecLenStart : the number of bytes to be copied with (p->rep0) offset
176 = kMatchSpecLenStart : the LZMA stream was finished with end mark
177 = kMatchSpecLenStart + 1 : need init range coder
178 = kMatchSpecLenStart + 2 : need init range coder and state
179 = kMatchSpecLen_Error_Fail : Internal Code Failure
180 = kMatchSpecLen_Error_Data + [0 ... 273] : LZMA Data Error
181*/
182
183/* ---------- LZMA_DECODE_REAL ---------- */
184/*
185LzmaDec_DecodeReal_3() can be implemented in external ASM file.
1863 - is the code compatibility version of that function for check at link time.
187*/
188
189#define LZMA_DECODE_REAL LzmaDec_DecodeReal_3
190
191/*
192LZMA_DECODE_REAL()
193In:
194 RangeCoder is normalized
195 if (p->dicPos == limit)
196 {
197 LzmaDec_TryDummy() was called before to exclude LITERAL and MATCH-REP cases.
198 So first symbol can be only MATCH-NON-REP. And if that MATCH-NON-REP symbol
199 is not END_OF_PAYALOAD_MARKER, then the function doesn't write any byte to dictionary,
200 the function returns SZ_OK, and the caller can use (p->remainLen) and (p->reps[0]) later.
201 }
202
203Processing:
204 The first LZMA symbol will be decoded in any case.
205 All main checks for limits are at the end of main loop,
206 It decodes additional LZMA-symbols while (p->buf < bufLimit && dicPos < limit),
207 RangeCoder is still without last normalization when (p->buf < bufLimit) is being checked.
208 But if (p->buf < bufLimit), the caller provided at least (LZMA_REQUIRED_INPUT_MAX + 1) bytes for
209 next iteration before limit (bufLimit + LZMA_REQUIRED_INPUT_MAX),
210 that is enough for worst case LZMA symbol with one additional RangeCoder normalization for one bit.
211 So that function never reads bufLimit [LZMA_REQUIRED_INPUT_MAX] byte.
212
213Out:
214 RangeCoder is normalized
215 Result:
216 SZ_OK - OK
217 p->remainLen:
218 < kMatchSpecLenStart : the number of bytes to be copied with (p->reps[0]) offset
219 = kMatchSpecLenStart : the LZMA stream was finished with end mark
220
221 SZ_ERROR_DATA - error, when the MATCH-Symbol refers out of dictionary
222 p->remainLen : undefined
223 p->reps[*] : undefined
224*/
225
226
227#ifdef Z7_LZMA_DEC_OPT
228
229int Z7_FASTCALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit);
230
231#else
232
233static
234int Z7_FASTCALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
235{
236 CLzmaProb *probs = GET_PROBS;
237 unsigned state = (unsigned)p->state;
238 UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
239 unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
240 unsigned lc = p->prop.lc;
241 unsigned lpMask = ((unsigned)0x100 << p->prop.lp) - ((unsigned)0x100 >> lc);
242
243 Byte *dic = p->dic;
244 SizeT dicBufSize = p->dicBufSize;
245 SizeT dicPos = p->dicPos;
246
247 UInt32 processedPos = p->processedPos;
248 UInt32 checkDicSize = p->checkDicSize;
249 unsigned len = 0;
250
251 const Byte *buf = p->buf;
252 UInt32 range = p->range;
253 UInt32 code = p->code;
254
255 do
256 {
257 CLzmaProb *prob;
258 UInt32 bound;
259 unsigned ttt;
260 unsigned posState = CALC_POS_STATE(processedPos, pbMask);
261
262 prob = probs + IsMatch + COMBINED_PS_STATE;
263 IF_BIT_0(prob)
264 {
265 unsigned symbol;
266 UPDATE_0(prob)
267 prob = probs + Literal;
268 if (processedPos != 0 || checkDicSize != 0)
269 prob += (UInt32)3 * ((((processedPos << 8) + dic[(dicPos == 0 ? dicBufSize : dicPos) - 1]) & lpMask) << lc);
270 processedPos++;
271
272 if (state < kNumLitStates)
273 {
274 state -= (state < 4) ? state : 3;
275 symbol = 1;
276 #ifdef Z7_LZMA_SIZE_OPT
277 do { NORMAL_LITER_DEC } while (symbol < 0x100);
278 #else
279 NORMAL_LITER_DEC
280 NORMAL_LITER_DEC
281 NORMAL_LITER_DEC
282 NORMAL_LITER_DEC
283 NORMAL_LITER_DEC
284 NORMAL_LITER_DEC
285 NORMAL_LITER_DEC
286 NORMAL_LITER_DEC
287 #endif
288 }
289 else
290 {
291 unsigned matchByte = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
292 unsigned offs = 0x100;
293 state -= (state < 10) ? 3 : 6;
294 symbol = 1;
295 #ifdef Z7_LZMA_SIZE_OPT
296 do
297 {
298 unsigned bit;
299 CLzmaProb *probLit;
300 MATCHED_LITER_DEC
301 }
302 while (symbol < 0x100);
303 #else
304 {
305 unsigned bit;
306 CLzmaProb *probLit;
307 MATCHED_LITER_DEC
308 MATCHED_LITER_DEC
309 MATCHED_LITER_DEC
310 MATCHED_LITER_DEC
311 MATCHED_LITER_DEC
312 MATCHED_LITER_DEC
313 MATCHED_LITER_DEC
314 MATCHED_LITER_DEC
315 }
316 #endif
317 }
318
319 dic[dicPos++] = (Byte)symbol;
320 continue;
321 }
322
323 {
324 UPDATE_1(prob)
325 prob = probs + IsRep + state;
326 IF_BIT_0(prob)
327 {
328 UPDATE_0(prob)
329 state += kNumStates;
330 prob = probs + LenCoder;
331 }
332 else
333 {
334 UPDATE_1(prob)
335 prob = probs + IsRepG0 + state;
336 IF_BIT_0(prob)
337 {
338 UPDATE_0(prob)
339 prob = probs + IsRep0Long + COMBINED_PS_STATE;
340 IF_BIT_0(prob)
341 {
342 UPDATE_0(prob)
343
344 // that case was checked before with kBadRepCode
345 // if (checkDicSize == 0 && processedPos == 0) { len = kMatchSpecLen_Error_Data + 1; break; }
346 // The caller doesn't allow (dicPos == limit) case here
347 // so we don't need the following check:
348 // if (dicPos == limit) { state = state < kNumLitStates ? 9 : 11; len = 1; break; }
349
350 dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
351 dicPos++;
352 processedPos++;
353 state = state < kNumLitStates ? 9 : 11;
354 continue;
355 }
356 UPDATE_1(prob)
357 }
358 else
359 {
360 UInt32 distance;
361 UPDATE_1(prob)
362 prob = probs + IsRepG1 + state;
363 IF_BIT_0(prob)
364 {
365 UPDATE_0(prob)
366 distance = rep1;
367 }
368 else
369 {
370 UPDATE_1(prob)
371 prob = probs + IsRepG2 + state;
372 IF_BIT_0(prob)
373 {
374 UPDATE_0(prob)
375 distance = rep2;
376 }
377 else
378 {
379 UPDATE_1(prob)
380 distance = rep3;
381 rep3 = rep2;
382 }
383 rep2 = rep1;
384 }
385 rep1 = rep0;
386 rep0 = distance;
387 }
388 state = state < kNumLitStates ? 8 : 11;
389 prob = probs + RepLenCoder;
390 }
391
392 #ifdef Z7_LZMA_SIZE_OPT
393 {
394 unsigned lim, offset;
395 CLzmaProb *probLen = prob + LenChoice;
396 IF_BIT_0(probLen)
397 {
398 UPDATE_0(probLen)
399 probLen = prob + LenLow + GET_LEN_STATE;
400 offset = 0;
401 lim = (1 << kLenNumLowBits);
402 }
403 else
404 {
405 UPDATE_1(probLen)
406 probLen = prob + LenChoice2;
407 IF_BIT_0(probLen)
408 {
409 UPDATE_0(probLen)
410 probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
411 offset = kLenNumLowSymbols;
412 lim = (1 << kLenNumLowBits);
413 }
414 else
415 {
416 UPDATE_1(probLen)
417 probLen = prob + LenHigh;
418 offset = kLenNumLowSymbols * 2;
419 lim = (1 << kLenNumHighBits);
420 }
421 }
422 TREE_DECODE(probLen, lim, len)
423 len += offset;
424 }
425 #else
426 {
427 CLzmaProb *probLen = prob + LenChoice;
428 IF_BIT_0(probLen)
429 {
430 UPDATE_0(probLen)
431 probLen = prob + LenLow + GET_LEN_STATE;
432 len = 1;
433 TREE_GET_BIT(probLen, len)
434 TREE_GET_BIT(probLen, len)
435 TREE_GET_BIT(probLen, len)
436 len -= 8;
437 }
438 else
439 {
440 UPDATE_1(probLen)
441 probLen = prob + LenChoice2;
442 IF_BIT_0(probLen)
443 {
444 UPDATE_0(probLen)
445 probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
446 len = 1;
447 TREE_GET_BIT(probLen, len)
448 TREE_GET_BIT(probLen, len)
449 TREE_GET_BIT(probLen, len)
450 }
451 else
452 {
453 UPDATE_1(probLen)
454 probLen = prob + LenHigh;
455 TREE_DECODE(probLen, (1 << kLenNumHighBits), len)
456 len += kLenNumLowSymbols * 2;
457 }
458 }
459 }
460 #endif
461
462 if (state >= kNumStates)
463 {
464 UInt32 distance;
465 prob = probs + PosSlot +
466 ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
467 TREE_6_DECODE(prob, distance)
468 if (distance >= kStartPosModelIndex)
469 {
470 unsigned posSlot = (unsigned)distance;
471 unsigned numDirectBits = (unsigned)(((distance >> 1) - 1));
472 distance = (2 | (distance & 1));
473 if (posSlot < kEndPosModelIndex)
474 {
475 distance <<= numDirectBits;
476 prob = probs + SpecPos;
477 {
478 UInt32 m = 1;
479 distance++;
480 do
481 {
482 REV_BIT_VAR(prob, distance, m)
483 }
484 while (--numDirectBits);
485 distance -= m;
486 }
487 }
488 else
489 {
490 numDirectBits -= kNumAlignBits;
491 do
492 {
493 NORMALIZE
494 range >>= 1;
495
496 {
497 UInt32 t;
498 code -= range;
499 t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
500 distance = (distance << 1) + (t + 1);
501 code += range & t;
502 }
503 /*
504 distance <<= 1;
505 if (code >= range)
506 {
507 code -= range;
508 distance |= 1;
509 }
510 */
511 }
512 while (--numDirectBits);
513 prob = probs + Align;
514 distance <<= kNumAlignBits;
515 {
516 unsigned i = 1;
517 REV_BIT_CONST(prob, i, 1)
518 REV_BIT_CONST(prob, i, 2)
519 REV_BIT_CONST(prob, i, 4)
520 REV_BIT_LAST (prob, i, 8)
521 distance |= i;
522 }
523 if (distance == (UInt32)0xFFFFFFFF)
524 {
525 len = kMatchSpecLenStart;
526 state -= kNumStates;
527 break;
528 }
529 }
530 }
531
532 rep3 = rep2;
533 rep2 = rep1;
534 rep1 = rep0;
535 rep0 = distance + 1;
536 state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
537 if (distance >= (checkDicSize == 0 ? processedPos: checkDicSize))
538 {
539 len += kMatchSpecLen_Error_Data + kMatchMinLen;
540 // len = kMatchSpecLen_Error_Data;
541 // len += kMatchMinLen;
542 break;
543 }
544 }
545
546 len += kMatchMinLen;
547
548 {
549 SizeT rem;
550 unsigned curLen;
551 SizeT pos;
552
553 if ((rem = limit - dicPos) == 0)
554 {
555 /*
556 We stop decoding and return SZ_OK, and we can resume decoding later.
557 Any error conditions can be tested later in caller code.
558 For more strict mode we can stop decoding with error
559 // len += kMatchSpecLen_Error_Data;
560 */
561 break;
562 }
563
564 curLen = ((rem < len) ? (unsigned)rem : len);
565 pos = dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0);
566
567 processedPos += (UInt32)curLen;
568
569 len -= curLen;
570 if (curLen <= dicBufSize - pos)
571 {
572 Byte *dest = dic + dicPos;
573 ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
574 const Byte *lim = dest + curLen;
575 dicPos += (SizeT)curLen;
576 do
577 *(dest) = (Byte)*(dest + src);
578 while (++dest != lim);
579 }
580 else
581 {
582 do
583 {
584 dic[dicPos++] = dic[pos];
585 if (++pos == dicBufSize)
586 pos = 0;
587 }
588 while (--curLen != 0);
589 }
590 }
591 }
592 }
593 while (dicPos < limit && buf < bufLimit);
594
595 NORMALIZE
596
597 p->buf = buf;
598 p->range = range;
599 p->code = code;
600 p->remainLen = (UInt32)len; // & (kMatchSpecLen_Error_Data - 1); // we can write real length for error matches too.
601 p->dicPos = dicPos;
602 p->processedPos = processedPos;
603 p->reps[0] = rep0;
604 p->reps[1] = rep1;
605 p->reps[2] = rep2;
606 p->reps[3] = rep3;
607 p->state = (UInt32)state;
608 if (len >= kMatchSpecLen_Error_Data)
609 return SZ_ERROR_DATA;
610 return SZ_OK;
611}
612#endif
613
614
615
616static void Z7_FASTCALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
617{
618 unsigned len = (unsigned)p->remainLen;
619 if (len == 0 /* || len >= kMatchSpecLenStart */)
620 return;
621 {
622 SizeT dicPos = p->dicPos;
623 Byte *dic;
624 SizeT dicBufSize;
625 SizeT rep0; /* we use SizeT to avoid the BUG of VC14 for AMD64 */
626 {
627 SizeT rem = limit - dicPos;
628 if (rem < len)
629 {
630 len = (unsigned)(rem);
631 if (len == 0)
632 return;
633 }
634 }
635
636 if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
637 p->checkDicSize = p->prop.dicSize;
638
639 p->processedPos += (UInt32)len;
640 p->remainLen -= (UInt32)len;
641 dic = p->dic;
642 rep0 = p->reps[0];
643 dicBufSize = p->dicBufSize;
644 do
645 {
646 dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
647 dicPos++;
648 }
649 while (--len);
650 p->dicPos = dicPos;
651 }
652}
653
654
655/*
656At staring of new stream we have one of the following symbols:
657 - Literal - is allowed
658 - Non-Rep-Match - is allowed only if it's end marker symbol
659 - Rep-Match - is not allowed
660We use early check of (RangeCoder:Code) over kBadRepCode to simplify main decoding code
661*/
662
663#define kRange0 0xFFFFFFFF
664#define kBound0 ((kRange0 >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1))
665#define kBadRepCode (kBound0 + (((kRange0 - kBound0) >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1)))
666#if kBadRepCode != (0xC0000000 - 0x400)
667 #error Stop_Compiling_Bad_LZMA_Check
668#endif
669
670
671/*
672LzmaDec_DecodeReal2():
673 It calls LZMA_DECODE_REAL() and it adjusts limit according (p->checkDicSize).
674
675We correct (p->checkDicSize) after LZMA_DECODE_REAL() and in LzmaDec_WriteRem(),
676and we support the following state of (p->checkDicSize):
677 if (total_processed < p->prop.dicSize) then
678 {
679 (total_processed == p->processedPos)
680 (p->checkDicSize == 0)
681 }
682 else
683 (p->checkDicSize == p->prop.dicSize)
684*/
685
686static int Z7_FASTCALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
687{
688 if (p->checkDicSize == 0)
689 {
690 UInt32 rem = p->prop.dicSize - p->processedPos;
691 if (limit - p->dicPos > rem)
692 limit = p->dicPos + rem;
693 }
694 {
695 int res = LZMA_DECODE_REAL(p, limit, bufLimit);
696 if (p->checkDicSize == 0 && p->processedPos >= p->prop.dicSize)
697 p->checkDicSize = p->prop.dicSize;
698 return res;
699 }
700}
701
702
703
704typedef enum
705{
706 DUMMY_INPUT_EOF, /* need more input data */
707 DUMMY_LIT,
708 DUMMY_MATCH,
709 DUMMY_REP
710} ELzmaDummy;
711
712
713#define IS_DUMMY_END_MARKER_POSSIBLE(dummyRes) ((dummyRes) == DUMMY_MATCH)
714
715static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, const Byte **bufOut)
716{
717 UInt32 range = p->range;
718 UInt32 code = p->code;
719 const Byte *bufLimit = *bufOut;
720 const CLzmaProb *probs = GET_PROBS;
721 unsigned state = (unsigned)p->state;
722 ELzmaDummy res;
723
724 for (;;)
725 {
726 const CLzmaProb *prob;
727 UInt32 bound;
728 unsigned ttt;
729 unsigned posState = CALC_POS_STATE(p->processedPos, ((unsigned)1 << p->prop.pb) - 1);
730
731 prob = probs + IsMatch + COMBINED_PS_STATE;
732 IF_BIT_0_CHECK(prob)
733 {
734 UPDATE_0_CHECK
735
736 prob = probs + Literal;
737 if (p->checkDicSize != 0 || p->processedPos != 0)
738 prob += ((UInt32)LZMA_LIT_SIZE *
739 ((((p->processedPos) & (((unsigned)1 << (p->prop.lp)) - 1)) << p->prop.lc) +
740 ((unsigned)p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
741
742 if (state < kNumLitStates)
743 {
744 unsigned symbol = 1;
745 do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
746 }
747 else
748 {
749 unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
750 (p->dicPos < p->reps[0] ? p->dicBufSize : 0)];
751 unsigned offs = 0x100;
752 unsigned symbol = 1;
753 do
754 {
755 unsigned bit;
756 const CLzmaProb *probLit;
757 matchByte += matchByte;
758 bit = offs;
759 offs &= matchByte;
760 probLit = prob + (offs + bit + symbol);
761 GET_BIT2_CHECK(probLit, symbol, offs ^= bit; , ; )
762 }
763 while (symbol < 0x100);
764 }
765 res = DUMMY_LIT;
766 }
767 else
768 {
769 unsigned len;
770 UPDATE_1_CHECK
771
772 prob = probs + IsRep + state;
773 IF_BIT_0_CHECK(prob)
774 {
775 UPDATE_0_CHECK
776 state = 0;
777 prob = probs + LenCoder;
778 res = DUMMY_MATCH;
779 }
780 else
781 {
782 UPDATE_1_CHECK
783 res = DUMMY_REP;
784 prob = probs + IsRepG0 + state;
785 IF_BIT_0_CHECK(prob)
786 {
787 UPDATE_0_CHECK
788 prob = probs + IsRep0Long + COMBINED_PS_STATE;
789 IF_BIT_0_CHECK(prob)
790 {
791 UPDATE_0_CHECK
792 break;
793 }
794 else
795 {
796 UPDATE_1_CHECK
797 }
798 }
799 else
800 {
801 UPDATE_1_CHECK
802 prob = probs + IsRepG1 + state;
803 IF_BIT_0_CHECK(prob)
804 {
805 UPDATE_0_CHECK
806 }
807 else
808 {
809 UPDATE_1_CHECK
810 prob = probs + IsRepG2 + state;
811 IF_BIT_0_CHECK(prob)
812 {
813 UPDATE_0_CHECK
814 }
815 else
816 {
817 UPDATE_1_CHECK
818 }
819 }
820 }
821 state = kNumStates;
822 prob = probs + RepLenCoder;
823 }
824 {
825 unsigned limit, offset;
826 const CLzmaProb *probLen = prob + LenChoice;
827 IF_BIT_0_CHECK(probLen)
828 {
829 UPDATE_0_CHECK
830 probLen = prob + LenLow + GET_LEN_STATE;
831 offset = 0;
832 limit = 1 << kLenNumLowBits;
833 }
834 else
835 {
836 UPDATE_1_CHECK
837 probLen = prob + LenChoice2;
838 IF_BIT_0_CHECK(probLen)
839 {
840 UPDATE_0_CHECK
841 probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
842 offset = kLenNumLowSymbols;
843 limit = 1 << kLenNumLowBits;
844 }
845 else
846 {
847 UPDATE_1_CHECK
848 probLen = prob + LenHigh;
849 offset = kLenNumLowSymbols * 2;
850 limit = 1 << kLenNumHighBits;
851 }
852 }
853 TREE_DECODE_CHECK(probLen, limit, len)
854 len += offset;
855 }
856
857 if (state < 4)
858 {
859 unsigned posSlot;
860 prob = probs + PosSlot +
861 ((len < kNumLenToPosStates - 1 ? len : kNumLenToPosStates - 1) <<
862 kNumPosSlotBits);
863 TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot)
864 if (posSlot >= kStartPosModelIndex)
865 {
866 unsigned numDirectBits = ((posSlot >> 1) - 1);
867
868 if (posSlot < kEndPosModelIndex)
869 {
870 prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits);
871 }
872 else
873 {
874 numDirectBits -= kNumAlignBits;
875 do
876 {
877 NORMALIZE_CHECK
878 range >>= 1;
879 code -= range & (((code - range) >> 31) - 1);
880 /* if (code >= range) code -= range; */
881 }
882 while (--numDirectBits);
883 prob = probs + Align;
884 numDirectBits = kNumAlignBits;
885 }
886 {
887 unsigned i = 1;
888 unsigned m = 1;
889 do
890 {
891 REV_BIT_CHECK(prob, i, m)
892 }
893 while (--numDirectBits);
894 }
895 }
896 }
897 }
898 break;
899 }
900 NORMALIZE_CHECK
901
902 *bufOut = buf;
903 return res;
904}
905
906void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState);
907void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState)
908{
909 p->remainLen = kMatchSpecLenStart + 1;
910 p->tempBufSize = 0;
911
912 if (initDic)
913 {
914 p->processedPos = 0;
915 p->checkDicSize = 0;
916 p->remainLen = kMatchSpecLenStart + 2;
917 }
918 if (initState)
919 p->remainLen = kMatchSpecLenStart + 2;
920}
921
922void LzmaDec_Init(CLzmaDec *p)
923{
924 p->dicPos = 0;
925 LzmaDec_InitDicAndState(p, True, True);
926}
927
928
929/*
930LZMA supports optional end_marker.
931So the decoder can lookahead for one additional LZMA-Symbol to check end_marker.
932That additional LZMA-Symbol can require up to LZMA_REQUIRED_INPUT_MAX bytes in input stream.
933When the decoder reaches dicLimit, it looks (finishMode) parameter:
934 if (finishMode == LZMA_FINISH_ANY), the decoder doesn't lookahead
935 if (finishMode != LZMA_FINISH_ANY), the decoder lookahead, if end_marker is possible for current position
936
937When the decoder lookahead, and the lookahead symbol is not end_marker, we have two ways:
938 1) Strict mode (default) : the decoder returns SZ_ERROR_DATA.
939 2) The relaxed mode (alternative mode) : we could return SZ_OK, and the caller
940 must check (status) value. The caller can show the error,
941 if the end of stream is expected, and the (status) is noit
942 LZMA_STATUS_FINISHED_WITH_MARK or LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK.
943*/
944
945
946#define RETURN_NOT_FINISHED_FOR_FINISH \
947 *status = LZMA_STATUS_NOT_FINISHED; \
948 return SZ_ERROR_DATA; // for strict mode
949 // return SZ_OK; // for relaxed mode
950
951
952SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
953 ELzmaFinishMode finishMode, ELzmaStatus *status)
954{
955 SizeT inSize = *srcLen;
956 (*srcLen) = 0;
957 *status = LZMA_STATUS_NOT_SPECIFIED;
958
959 if (p->remainLen > kMatchSpecLenStart)
960 {
961 if (p->remainLen > kMatchSpecLenStart + 2)
962 return p->remainLen == kMatchSpecLen_Error_Fail ? SZ_ERROR_FAIL : SZ_ERROR_DATA;
963
964 for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
965 p->tempBuf[p->tempBufSize++] = *src++;
966 if (p->tempBufSize != 0 && p->tempBuf[0] != 0)
967 return SZ_ERROR_DATA;
968 if (p->tempBufSize < RC_INIT_SIZE)
969 {
970 *status = LZMA_STATUS_NEEDS_MORE_INPUT;
971 return SZ_OK;
972 }
973 p->code =
974 ((UInt32)p->tempBuf[1] << 24)
975 | ((UInt32)p->tempBuf[2] << 16)
976 | ((UInt32)p->tempBuf[3] << 8)
977 | ((UInt32)p->tempBuf[4]);
978
979 if (p->checkDicSize == 0
980 && p->processedPos == 0
981 && p->code >= kBadRepCode)
982 return SZ_ERROR_DATA;
983
984 p->range = 0xFFFFFFFF;
985 p->tempBufSize = 0;
986
987 if (p->remainLen > kMatchSpecLenStart + 1)
988 {
989 SizeT numProbs = LzmaProps_GetNumProbs(&p->prop);
990 SizeT i;
991 CLzmaProb *probs = p->probs;
992 for (i = 0; i < numProbs; i++)
993 probs[i] = kBitModelTotal >> 1;
994 p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
995 p->state = 0;
996 }
997
998 p->remainLen = 0;
999 }
1000
1001 for (;;)
1002 {
1003 if (p->remainLen == kMatchSpecLenStart)
1004 {
1005 if (p->code != 0)
1006 return SZ_ERROR_DATA;
1007 *status = LZMA_STATUS_FINISHED_WITH_MARK;
1008 return SZ_OK;
1009 }
1010
1011 LzmaDec_WriteRem(p, dicLimit);
1012
1013 {
1014 // (p->remainLen == 0 || p->dicPos == dicLimit)
1015
1016 int checkEndMarkNow = 0;
1017
1018 if (p->dicPos >= dicLimit)
1019 {
1020 if (p->remainLen == 0 && p->code == 0)
1021 {
1022 *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
1023 return SZ_OK;
1024 }
1025 if (finishMode == LZMA_FINISH_ANY)
1026 {
1027 *status = LZMA_STATUS_NOT_FINISHED;
1028 return SZ_OK;
1029 }
1030 if (p->remainLen != 0)
1031 {
1032 RETURN_NOT_FINISHED_FOR_FINISH
1033 }
1034 checkEndMarkNow = 1;
1035 }
1036
1037 // (p->remainLen == 0)
1038
1039 if (p->tempBufSize == 0)
1040 {
1041 const Byte *bufLimit;
1042 int dummyProcessed = -1;
1043
1044 if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
1045 {
1046 const Byte *bufOut = src + inSize;
1047
1048 ELzmaDummy dummyRes = LzmaDec_TryDummy(p, src, &bufOut);
1049
1050 if (dummyRes == DUMMY_INPUT_EOF)
1051 {
1052 size_t i;
1053 if (inSize >= LZMA_REQUIRED_INPUT_MAX)
1054 break;
1055 (*srcLen) += inSize;
1056 p->tempBufSize = (unsigned)inSize;
1057 for (i = 0; i < inSize; i++)
1058 p->tempBuf[i] = src[i];
1059 *status = LZMA_STATUS_NEEDS_MORE_INPUT;
1060 return SZ_OK;
1061 }
1062
1063 dummyProcessed = (int)(bufOut - src);
1064 if ((unsigned)dummyProcessed > LZMA_REQUIRED_INPUT_MAX)
1065 break;
1066
1067 if (checkEndMarkNow && !IS_DUMMY_END_MARKER_POSSIBLE(dummyRes))
1068 {
1069 unsigned i;
1070 (*srcLen) += (unsigned)dummyProcessed;
1071 p->tempBufSize = (unsigned)dummyProcessed;
1072 for (i = 0; i < (unsigned)dummyProcessed; i++)
1073 p->tempBuf[i] = src[i];
1074 // p->remainLen = kMatchSpecLen_Error_Data;
1075 RETURN_NOT_FINISHED_FOR_FINISH
1076 }
1077
1078 bufLimit = src;
1079 // we will decode only one iteration
1080 }
1081 else
1082 bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
1083
1084 p->buf = src;
1085
1086 {
1087 int res = LzmaDec_DecodeReal2(p, dicLimit, bufLimit);
1088
1089 SizeT processed = (SizeT)(p->buf - src);
1090
1091 if (dummyProcessed < 0)
1092 {
1093 if (processed > inSize)
1094 break;
1095 }
1096 else if ((unsigned)dummyProcessed != processed)
1097 break;
1098
1099 src += processed;
1100 inSize -= processed;
1101 (*srcLen) += processed;
1102
1103 if (res != SZ_OK)
1104 {
1105 p->remainLen = kMatchSpecLen_Error_Data;
1106 return SZ_ERROR_DATA;
1107 }
1108 }
1109 continue;
1110 }
1111
1112 {
1113 // we have some data in (p->tempBuf)
1114 // in strict mode: tempBufSize is not enough for one Symbol decoding.
1115 // in relaxed mode: tempBufSize not larger than required for one Symbol decoding.
1116
1117 unsigned rem = p->tempBufSize;
1118 unsigned ahead = 0;
1119 int dummyProcessed = -1;
1120
1121 while (rem < LZMA_REQUIRED_INPUT_MAX && ahead < inSize)
1122 p->tempBuf[rem++] = src[ahead++];
1123
1124 // ahead - the size of new data copied from (src) to (p->tempBuf)
1125 // rem - the size of temp buffer including new data from (src)
1126
1127 if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
1128 {
1129 const Byte *bufOut = p->tempBuf + rem;
1130
1131 ELzmaDummy dummyRes = LzmaDec_TryDummy(p, p->tempBuf, &bufOut);
1132
1133 if (dummyRes == DUMMY_INPUT_EOF)
1134 {
1135 if (rem >= LZMA_REQUIRED_INPUT_MAX)
1136 break;
1137 p->tempBufSize = rem;
1138 (*srcLen) += (SizeT)ahead;
1139 *status = LZMA_STATUS_NEEDS_MORE_INPUT;
1140 return SZ_OK;
1141 }
1142
1143 dummyProcessed = (int)(bufOut - p->tempBuf);
1144
1145 if ((unsigned)dummyProcessed < p->tempBufSize)
1146 break;
1147
1148 if (checkEndMarkNow && !IS_DUMMY_END_MARKER_POSSIBLE(dummyRes))
1149 {
1150 (*srcLen) += (unsigned)dummyProcessed - p->tempBufSize;
1151 p->tempBufSize = (unsigned)dummyProcessed;
1152 // p->remainLen = kMatchSpecLen_Error_Data;
1153 RETURN_NOT_FINISHED_FOR_FINISH
1154 }
1155 }
1156
1157 p->buf = p->tempBuf;
1158
1159 {
1160 // we decode one symbol from (p->tempBuf) here, so the (bufLimit) is equal to (p->buf)
1161 int res = LzmaDec_DecodeReal2(p, dicLimit, p->buf);
1162
1163 SizeT processed = (SizeT)(p->buf - p->tempBuf);
1164 rem = p->tempBufSize;
1165
1166 if (dummyProcessed < 0)
1167 {
1168 if (processed > LZMA_REQUIRED_INPUT_MAX)
1169 break;
1170 if (processed < rem)
1171 break;
1172 }
1173 else if ((unsigned)dummyProcessed != processed)
1174 break;
1175
1176 processed -= rem;
1177
1178 src += processed;
1179 inSize -= processed;
1180 (*srcLen) += processed;
1181 p->tempBufSize = 0;
1182
1183 if (res != SZ_OK)
1184 {
1185 p->remainLen = kMatchSpecLen_Error_Data;
1186 return SZ_ERROR_DATA;
1187 }
1188 }
1189 }
1190 }
1191 }
1192
1193 /* Some unexpected error: internal error of code, memory corruption or hardware failure */
1194 p->remainLen = kMatchSpecLen_Error_Fail;
1195 return SZ_ERROR_FAIL;
1196}
1197
1198
1199
1200SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
1201{
1202 SizeT outSize = *destLen;
1203 SizeT inSize = *srcLen;
1204 *srcLen = *destLen = 0;
1205 for (;;)
1206 {
1207 SizeT inSizeCur = inSize, outSizeCur, dicPos;
1208 ELzmaFinishMode curFinishMode;
1209 SRes res;
1210 if (p->dicPos == p->dicBufSize)
1211 p->dicPos = 0;
1212 dicPos = p->dicPos;
1213 if (outSize > p->dicBufSize - dicPos)
1214 {
1215 outSizeCur = p->dicBufSize;
1216 curFinishMode = LZMA_FINISH_ANY;
1217 }
1218 else
1219 {
1220 outSizeCur = dicPos + outSize;
1221 curFinishMode = finishMode;
1222 }
1223
1224 res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
1225 src += inSizeCur;
1226 inSize -= inSizeCur;
1227 *srcLen += inSizeCur;
1228 outSizeCur = p->dicPos - dicPos;
1229 memcpy(dest, p->dic + dicPos, outSizeCur);
1230 dest += outSizeCur;
1231 outSize -= outSizeCur;
1232 *destLen += outSizeCur;
1233 if (res != 0)
1234 return res;
1235 if (outSizeCur == 0 || outSize == 0)
1236 return SZ_OK;
1237 }
1238}
1239
1240void LzmaDec_FreeProbs(CLzmaDec *p, ISzAllocPtr alloc)
1241{
1242 ISzAlloc_Free(alloc, p->probs);
1243 p->probs = NULL;
1244}
1245
1246static void LzmaDec_FreeDict(CLzmaDec *p, ISzAllocPtr alloc)
1247{
1248 ISzAlloc_Free(alloc, p->dic);
1249 p->dic = NULL;
1250}
1251
1252void LzmaDec_Free(CLzmaDec *p, ISzAllocPtr alloc)
1253{
1254 LzmaDec_FreeProbs(p, alloc);
1255 LzmaDec_FreeDict(p, alloc);
1256}
1257
1258SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
1259{
1260 UInt32 dicSize;
1261 Byte d;
1262
1263 if (size < LZMA_PROPS_SIZE)
1264 return SZ_ERROR_UNSUPPORTED;
1265 else
1266 dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
1267
1268 if (dicSize < LZMA_DIC_MIN)
1269 dicSize = LZMA_DIC_MIN;
1270 p->dicSize = dicSize;
1271
1272 d = data[0];
1273 if (d >= (9 * 5 * 5))
1274 return SZ_ERROR_UNSUPPORTED;
1275
1276 p->lc = (Byte)(d % 9);
1277 d /= 9;
1278 p->pb = (Byte)(d / 5);
1279 p->lp = (Byte)(d % 5);
1280
1281 return SZ_OK;
1282}
1283
1284static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAllocPtr alloc)
1285{
1286 UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
1287 if (!p->probs || numProbs != p->numProbs)
1288 {
1289 LzmaDec_FreeProbs(p, alloc);
1290 p->probs = (CLzmaProb *)ISzAlloc_Alloc(alloc, numProbs * sizeof(CLzmaProb));
1291 if (!p->probs)
1292 return SZ_ERROR_MEM;
1293 p->probs_1664 = p->probs + 1664;
1294 p->numProbs = numProbs;
1295 }
1296 return SZ_OK;
1297}
1298
1299SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
1300{
1301 CLzmaProps propNew;
1302 RINOK(LzmaProps_Decode(&propNew, props, propsSize))
1303 RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc))
1304 p->prop = propNew;
1305 return SZ_OK;
1306}
1307
1308SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
1309{
1310 CLzmaProps propNew;
1311 SizeT dicBufSize;
1312 RINOK(LzmaProps_Decode(&propNew, props, propsSize))
1313 RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc))
1314
1315 {
1316 UInt32 dictSize = propNew.dicSize;
1317 SizeT mask = ((UInt32)1 << 12) - 1;
1318 if (dictSize >= ((UInt32)1 << 30)) mask = ((UInt32)1 << 22) - 1;
1319 else if (dictSize >= ((UInt32)1 << 22)) mask = ((UInt32)1 << 20) - 1;
1320 dicBufSize = ((SizeT)dictSize + mask) & ~mask;
1321 if (dicBufSize < dictSize)
1322 dicBufSize = dictSize;
1323 }
1324
1325 if (!p->dic || dicBufSize != p->dicBufSize)
1326 {
1327 LzmaDec_FreeDict(p, alloc);
1328 p->dic = (Byte *)ISzAlloc_Alloc(alloc, dicBufSize);
1329 if (!p->dic)
1330 {
1331 LzmaDec_FreeProbs(p, alloc);
1332 return SZ_ERROR_MEM;
1333 }
1334 }
1335 p->dicBufSize = dicBufSize;
1336 p->prop = propNew;
1337 return SZ_OK;
1338}
1339
1340SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
1341 const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
1342 ELzmaStatus *status, ISzAllocPtr alloc)
1343{
1344 CLzmaDec p;
1345 SRes res;
1346 SizeT outSize = *destLen, inSize = *srcLen;
1347 *destLen = *srcLen = 0;
1348 *status = LZMA_STATUS_NOT_SPECIFIED;
1349 if (inSize < RC_INIT_SIZE)
1350 return SZ_ERROR_INPUT_EOF;
1351 LzmaDec_CONSTRUCT(&p)
1352 RINOK(LzmaDec_AllocateProbs(&p, propData, propSize, alloc))
1353 p.dic = dest;
1354 p.dicBufSize = outSize;
1355 LzmaDec_Init(&p);
1356 *srcLen = inSize;
1357 res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
1358 *destLen = p.dicPos;
1359 if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
1360 res = SZ_ERROR_INPUT_EOF;
1361 LzmaDec_FreeProbs(&p, alloc);
1362 return res;
1363}