b24e7fce |
1 | /* crc32.c -- compute the CRC-32 of a data stream |
2 | * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler |
3 | * For conditions of distribution and use, see copyright notice in zlib.h |
4 | * |
5 | * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster |
6 | * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing |
7 | * tables for updating the shift register in one step with three exclusive-ors |
8 | * instead of four steps with four exclusive-ors. This results in about a |
9 | * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. |
10 | */ |
11 | |
12 | /* @(#) $Id$ */ |
13 | |
14 | /* |
15 | Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore |
16 | protection on the static variables used to control the first-use generation |
17 | of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should |
18 | first call get_crc_table() to initialize the tables before allowing more than |
19 | one thread to use crc32(). |
20 | |
21 | DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. |
22 | */ |
23 | |
24 | #ifdef MAKECRCH |
25 | # include <stdio.h> |
26 | # ifndef DYNAMIC_CRC_TABLE |
27 | # define DYNAMIC_CRC_TABLE |
28 | # endif /* !DYNAMIC_CRC_TABLE */ |
29 | #endif /* MAKECRCH */ |
30 | |
31 | #include "zutil.h" /* for STDC and FAR definitions */ |
32 | |
33 | /* Definitions for doing the crc four data bytes at a time. */ |
34 | #if !defined(NOBYFOUR) && defined(Z_U4) |
35 | # define BYFOUR |
36 | #endif |
37 | #ifdef BYFOUR |
38 | local unsigned long crc32_little OF((unsigned long, |
39 | const unsigned char FAR *, z_size_t)); |
40 | local unsigned long crc32_big OF((unsigned long, |
41 | const unsigned char FAR *, z_size_t)); |
42 | # define TBLS 8 |
43 | #else |
44 | # define TBLS 1 |
45 | #endif /* BYFOUR */ |
46 | |
47 | /* Local functions for crc concatenation */ |
48 | local unsigned long gf2_matrix_times OF((unsigned long *mat, |
49 | unsigned long vec)); |
50 | local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); |
51 | local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); |
52 | |
53 | |
54 | #ifdef DYNAMIC_CRC_TABLE |
55 | |
56 | local volatile int crc_table_empty = 1; |
57 | local z_crc_t FAR crc_table[TBLS][256]; |
58 | local void make_crc_table OF((void)); |
59 | #ifdef MAKECRCH |
60 | local void write_table OF((FILE *, const z_crc_t FAR *)); |
61 | #endif /* MAKECRCH */ |
62 | /* |
63 | Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: |
64 | x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. |
65 | |
66 | Polynomials over GF(2) are represented in binary, one bit per coefficient, |
67 | with the lowest powers in the most significant bit. Then adding polynomials |
68 | is just exclusive-or, and multiplying a polynomial by x is a right shift by |
69 | one. If we call the above polynomial p, and represent a byte as the |
70 | polynomial q, also with the lowest power in the most significant bit (so the |
71 | byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, |
72 | where a mod b means the remainder after dividing a by b. |
73 | |
74 | This calculation is done using the shift-register method of multiplying and |
75 | taking the remainder. The register is initialized to zero, and for each |
76 | incoming bit, x^32 is added mod p to the register if the bit is a one (where |
77 | x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by |
78 | x (which is shifting right by one and adding x^32 mod p if the bit shifted |
79 | out is a one). We start with the highest power (least significant bit) of |
80 | q and repeat for all eight bits of q. |
81 | |
82 | The first table is simply the CRC of all possible eight bit values. This is |
83 | all the information needed to generate CRCs on data a byte at a time for all |
84 | combinations of CRC register values and incoming bytes. The remaining tables |
85 | allow for word-at-a-time CRC calculation for both big-endian and little- |
86 | endian machines, where a word is four bytes. |
87 | */ |
88 | local void make_crc_table() |
89 | { |
90 | z_crc_t c; |
91 | int n, k; |
92 | z_crc_t poly; /* polynomial exclusive-or pattern */ |
93 | /* terms of polynomial defining this crc (except x^32): */ |
94 | static volatile int first = 1; /* flag to limit concurrent making */ |
95 | static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; |
96 | |
97 | /* See if another task is already doing this (not thread-safe, but better |
98 | than nothing -- significantly reduces duration of vulnerability in |
99 | case the advice about DYNAMIC_CRC_TABLE is ignored) */ |
100 | if (first) { |
101 | first = 0; |
102 | |
103 | /* make exclusive-or pattern from polynomial (0xedb88320UL) */ |
104 | poly = 0; |
105 | for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) |
106 | poly |= (z_crc_t)1 << (31 - p[n]); |
107 | |
108 | /* generate a crc for every 8-bit value */ |
109 | for (n = 0; n < 256; n++) { |
110 | c = (z_crc_t)n; |
111 | for (k = 0; k < 8; k++) |
112 | c = c & 1 ? poly ^ (c >> 1) : c >> 1; |
113 | crc_table[0][n] = c; |
114 | } |
115 | |
116 | #ifdef BYFOUR |
117 | /* generate crc for each value followed by one, two, and three zeros, |
118 | and then the byte reversal of those as well as the first table */ |
119 | for (n = 0; n < 256; n++) { |
120 | c = crc_table[0][n]; |
121 | crc_table[4][n] = ZSWAP32(c); |
122 | for (k = 1; k < 4; k++) { |
123 | c = crc_table[0][c & 0xff] ^ (c >> 8); |
124 | crc_table[k][n] = c; |
125 | crc_table[k + 4][n] = ZSWAP32(c); |
126 | } |
127 | } |
128 | #endif /* BYFOUR */ |
129 | |
130 | crc_table_empty = 0; |
131 | } |
132 | else { /* not first */ |
133 | /* wait for the other guy to finish (not efficient, but rare) */ |
134 | while (crc_table_empty) |
135 | ; |
136 | } |
137 | |
138 | #ifdef MAKECRCH |
139 | /* write out CRC tables to crc32.h */ |
140 | { |
141 | FILE *out; |
142 | |
143 | out = fopen("crc32.h", "w"); |
144 | if (out == NULL) return; |
145 | fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); |
146 | fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); |
147 | fprintf(out, "local const z_crc_t FAR "); |
148 | fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); |
149 | write_table(out, crc_table[0]); |
150 | # ifdef BYFOUR |
151 | fprintf(out, "#ifdef BYFOUR\n"); |
152 | for (k = 1; k < 8; k++) { |
153 | fprintf(out, " },\n {\n"); |
154 | write_table(out, crc_table[k]); |
155 | } |
156 | fprintf(out, "#endif\n"); |
157 | # endif /* BYFOUR */ |
158 | fprintf(out, " }\n};\n"); |
159 | fclose(out); |
160 | } |
161 | #endif /* MAKECRCH */ |
162 | } |
163 | |
164 | #ifdef MAKECRCH |
165 | local void write_table(out, table) |
166 | FILE *out; |
167 | const z_crc_t FAR *table; |
168 | { |
169 | int n; |
170 | |
171 | for (n = 0; n < 256; n++) |
172 | fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", |
173 | (unsigned long)(table[n]), |
174 | n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); |
175 | } |
176 | #endif /* MAKECRCH */ |
177 | |
178 | #else /* !DYNAMIC_CRC_TABLE */ |
179 | /* ======================================================================== |
180 | * Tables of CRC-32s of all single-byte values, made by make_crc_table(). |
181 | */ |
182 | #include "crc32.h" |
183 | #endif /* DYNAMIC_CRC_TABLE */ |
184 | |
185 | /* ========================================================================= |
186 | * This function can be used by asm versions of crc32() |
187 | */ |
188 | const z_crc_t FAR * ZEXPORT get_crc_table() |
189 | { |
190 | #ifdef DYNAMIC_CRC_TABLE |
191 | if (crc_table_empty) |
192 | make_crc_table(); |
193 | #endif /* DYNAMIC_CRC_TABLE */ |
194 | return (const z_crc_t FAR *)crc_table; |
195 | } |
196 | |
197 | /* ========================================================================= */ |
198 | #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) |
199 | #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 |
200 | |
201 | /* ========================================================================= */ |
202 | unsigned long ZEXPORT crc32_z(crc, buf, len) |
203 | unsigned long crc; |
204 | const unsigned char FAR *buf; |
205 | z_size_t len; |
206 | { |
207 | if (buf == Z_NULL) return 0UL; |
208 | |
209 | #ifdef DYNAMIC_CRC_TABLE |
210 | if (crc_table_empty) |
211 | make_crc_table(); |
212 | #endif /* DYNAMIC_CRC_TABLE */ |
213 | |
214 | #ifdef BYFOUR |
215 | if (sizeof(void *) == sizeof(ptrdiff_t)) { |
216 | z_crc_t endian; |
217 | |
218 | endian = 1; |
219 | if (*((unsigned char *)(&endian))) |
220 | return crc32_little(crc, buf, len); |
221 | else |
222 | return crc32_big(crc, buf, len); |
223 | } |
224 | #endif /* BYFOUR */ |
225 | crc = crc ^ 0xffffffffUL; |
226 | while (len >= 8) { |
227 | DO8; |
228 | len -= 8; |
229 | } |
230 | if (len) do { |
231 | DO1; |
232 | } while (--len); |
233 | return crc ^ 0xffffffffUL; |
234 | } |
235 | |
236 | /* ========================================================================= */ |
237 | unsigned long ZEXPORT crc32(crc, buf, len) |
238 | unsigned long crc; |
239 | const unsigned char FAR *buf; |
240 | uInt len; |
241 | { |
242 | return crc32_z(crc, buf, len); |
243 | } |
244 | |
245 | #ifdef BYFOUR |
246 | |
247 | /* |
248 | This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit |
249 | integer pointer type. This violates the strict aliasing rule, where a |
250 | compiler can assume, for optimization purposes, that two pointers to |
251 | fundamentally different types won't ever point to the same memory. This can |
252 | manifest as a problem only if one of the pointers is written to. This code |
253 | only reads from those pointers. So long as this code remains isolated in |
254 | this compilation unit, there won't be a problem. For this reason, this code |
255 | should not be copied and pasted into a compilation unit in which other code |
256 | writes to the buffer that is passed to these routines. |
257 | */ |
258 | |
259 | /* ========================================================================= */ |
260 | #define DOLIT4 c ^= *buf4++; \ |
261 | c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ |
262 | crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] |
263 | #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 |
264 | |
265 | /* ========================================================================= */ |
266 | local unsigned long crc32_little(crc, buf, len) |
267 | unsigned long crc; |
268 | const unsigned char FAR *buf; |
269 | z_size_t len; |
270 | { |
271 | register z_crc_t c; |
272 | register const z_crc_t FAR *buf4; |
273 | |
274 | c = (z_crc_t)crc; |
275 | c = ~c; |
276 | while (len && ((ptrdiff_t)buf & 3)) { |
277 | c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); |
278 | len--; |
279 | } |
280 | |
281 | buf4 = (const z_crc_t FAR *)(const void FAR *)buf; |
282 | while (len >= 32) { |
283 | DOLIT32; |
284 | len -= 32; |
285 | } |
286 | while (len >= 4) { |
287 | DOLIT4; |
288 | len -= 4; |
289 | } |
290 | buf = (const unsigned char FAR *)buf4; |
291 | |
292 | if (len) do { |
293 | c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); |
294 | } while (--len); |
295 | c = ~c; |
296 | return (unsigned long)c; |
297 | } |
298 | |
299 | /* ========================================================================= */ |
300 | #define DOBIG4 c ^= *buf4++; \ |
301 | c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ |
302 | crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] |
303 | #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 |
304 | |
305 | /* ========================================================================= */ |
306 | local unsigned long crc32_big(crc, buf, len) |
307 | unsigned long crc; |
308 | const unsigned char FAR *buf; |
309 | z_size_t len; |
310 | { |
311 | register z_crc_t c; |
312 | register const z_crc_t FAR *buf4; |
313 | |
314 | c = ZSWAP32((z_crc_t)crc); |
315 | c = ~c; |
316 | while (len && ((ptrdiff_t)buf & 3)) { |
317 | c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); |
318 | len--; |
319 | } |
320 | |
321 | buf4 = (const z_crc_t FAR *)(const void FAR *)buf; |
322 | while (len >= 32) { |
323 | DOBIG32; |
324 | len -= 32; |
325 | } |
326 | while (len >= 4) { |
327 | DOBIG4; |
328 | len -= 4; |
329 | } |
330 | buf = (const unsigned char FAR *)buf4; |
331 | |
332 | if (len) do { |
333 | c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); |
334 | } while (--len); |
335 | c = ~c; |
336 | return (unsigned long)(ZSWAP32(c)); |
337 | } |
338 | |
339 | #endif /* BYFOUR */ |
340 | |
341 | #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ |
342 | |
343 | /* ========================================================================= */ |
344 | local unsigned long gf2_matrix_times(mat, vec) |
345 | unsigned long *mat; |
346 | unsigned long vec; |
347 | { |
348 | unsigned long sum; |
349 | |
350 | sum = 0; |
351 | while (vec) { |
352 | if (vec & 1) |
353 | sum ^= *mat; |
354 | vec >>= 1; |
355 | mat++; |
356 | } |
357 | return sum; |
358 | } |
359 | |
360 | /* ========================================================================= */ |
361 | local void gf2_matrix_square(square, mat) |
362 | unsigned long *square; |
363 | unsigned long *mat; |
364 | { |
365 | int n; |
366 | |
367 | for (n = 0; n < GF2_DIM; n++) |
368 | square[n] = gf2_matrix_times(mat, mat[n]); |
369 | } |
370 | |
371 | /* ========================================================================= */ |
372 | local uLong crc32_combine_(crc1, crc2, len2) |
373 | uLong crc1; |
374 | uLong crc2; |
375 | z_off64_t len2; |
376 | { |
377 | int n; |
378 | unsigned long row; |
379 | unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ |
380 | unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ |
381 | |
382 | /* degenerate case (also disallow negative lengths) */ |
383 | if (len2 <= 0) |
384 | return crc1; |
385 | |
386 | /* put operator for one zero bit in odd */ |
387 | odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ |
388 | row = 1; |
389 | for (n = 1; n < GF2_DIM; n++) { |
390 | odd[n] = row; |
391 | row <<= 1; |
392 | } |
393 | |
394 | /* put operator for two zero bits in even */ |
395 | gf2_matrix_square(even, odd); |
396 | |
397 | /* put operator for four zero bits in odd */ |
398 | gf2_matrix_square(odd, even); |
399 | |
400 | /* apply len2 zeros to crc1 (first square will put the operator for one |
401 | zero byte, eight zero bits, in even) */ |
402 | do { |
403 | /* apply zeros operator for this bit of len2 */ |
404 | gf2_matrix_square(even, odd); |
405 | if (len2 & 1) |
406 | crc1 = gf2_matrix_times(even, crc1); |
407 | len2 >>= 1; |
408 | |
409 | /* if no more bits set, then done */ |
410 | if (len2 == 0) |
411 | break; |
412 | |
413 | /* another iteration of the loop with odd and even swapped */ |
414 | gf2_matrix_square(odd, even); |
415 | if (len2 & 1) |
416 | crc1 = gf2_matrix_times(odd, crc1); |
417 | len2 >>= 1; |
418 | |
419 | /* if no more bits set, then done */ |
420 | } while (len2 != 0); |
421 | |
422 | /* return combined crc */ |
423 | crc1 ^= crc2; |
424 | return crc1; |
425 | } |
426 | |
427 | /* ========================================================================= */ |
428 | uLong ZEXPORT crc32_combine(crc1, crc2, len2) |
429 | uLong crc1; |
430 | uLong crc2; |
431 | z_off_t len2; |
432 | { |
433 | return crc32_combine_(crc1, crc2, len2); |
434 | } |
435 | |
436 | uLong ZEXPORT crc32_combine64(crc1, crc2, len2) |
437 | uLong crc1; |
438 | uLong crc2; |
439 | z_off64_t len2; |
440 | { |
441 | return crc32_combine_(crc1, crc2, len2); |
442 | } |