git subrepo pull (merge) --force deps/libchdr
[pcsx_rearmed.git] / deps / libchdr / deps / zstd-1.5.5 / lib / compress / zstd_lazy.c
CommitLineData
648db22b 1/*
2 * Copyright (c) Meta Platforms, Inc. and affiliates.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11#include "zstd_compress_internal.h"
12#include "zstd_lazy.h"
13#include "../common/bits.h" /* ZSTD_countTrailingZeros64 */
14
15#define kLazySkippingStep 8
16
17
18/*-*************************************
19* Binary Tree search
20***************************************/
21
22static void
23ZSTD_updateDUBT(ZSTD_matchState_t* ms,
24 const BYTE* ip, const BYTE* iend,
25 U32 mls)
26{
27 const ZSTD_compressionParameters* const cParams = &ms->cParams;
28 U32* const hashTable = ms->hashTable;
29 U32 const hashLog = cParams->hashLog;
30
31 U32* const bt = ms->chainTable;
32 U32 const btLog = cParams->chainLog - 1;
33 U32 const btMask = (1 << btLog) - 1;
34
35 const BYTE* const base = ms->window.base;
36 U32 const target = (U32)(ip - base);
37 U32 idx = ms->nextToUpdate;
38
39 if (idx != target)
40 DEBUGLOG(7, "ZSTD_updateDUBT, from %u to %u (dictLimit:%u)",
41 idx, target, ms->window.dictLimit);
42 assert(ip + 8 <= iend); /* condition for ZSTD_hashPtr */
43 (void)iend;
44
45 assert(idx >= ms->window.dictLimit); /* condition for valid base+idx */
46 for ( ; idx < target ; idx++) {
47 size_t const h = ZSTD_hashPtr(base + idx, hashLog, mls); /* assumption : ip + 8 <= iend */
48 U32 const matchIndex = hashTable[h];
49
50 U32* const nextCandidatePtr = bt + 2*(idx&btMask);
51 U32* const sortMarkPtr = nextCandidatePtr + 1;
52
53 DEBUGLOG(8, "ZSTD_updateDUBT: insert %u", idx);
54 hashTable[h] = idx; /* Update Hash Table */
55 *nextCandidatePtr = matchIndex; /* update BT like a chain */
56 *sortMarkPtr = ZSTD_DUBT_UNSORTED_MARK;
57 }
58 ms->nextToUpdate = target;
59}
60
61
62/** ZSTD_insertDUBT1() :
63 * sort one already inserted but unsorted position
64 * assumption : curr >= btlow == (curr - btmask)
65 * doesn't fail */
66static void
67ZSTD_insertDUBT1(const ZSTD_matchState_t* ms,
68 U32 curr, const BYTE* inputEnd,
69 U32 nbCompares, U32 btLow,
70 const ZSTD_dictMode_e dictMode)
71{
72 const ZSTD_compressionParameters* const cParams = &ms->cParams;
73 U32* const bt = ms->chainTable;
74 U32 const btLog = cParams->chainLog - 1;
75 U32 const btMask = (1 << btLog) - 1;
76 size_t commonLengthSmaller=0, commonLengthLarger=0;
77 const BYTE* const base = ms->window.base;
78 const BYTE* const dictBase = ms->window.dictBase;
79 const U32 dictLimit = ms->window.dictLimit;
80 const BYTE* const ip = (curr>=dictLimit) ? base + curr : dictBase + curr;
81 const BYTE* const iend = (curr>=dictLimit) ? inputEnd : dictBase + dictLimit;
82 const BYTE* const dictEnd = dictBase + dictLimit;
83 const BYTE* const prefixStart = base + dictLimit;
84 const BYTE* match;
85 U32* smallerPtr = bt + 2*(curr&btMask);
86 U32* largerPtr = smallerPtr + 1;
87 U32 matchIndex = *smallerPtr; /* this candidate is unsorted : next sorted candidate is reached through *smallerPtr, while *largerPtr contains previous unsorted candidate (which is already saved and can be overwritten) */
88 U32 dummy32; /* to be nullified at the end */
89 U32 const windowValid = ms->window.lowLimit;
90 U32 const maxDistance = 1U << cParams->windowLog;
91 U32 const windowLow = (curr - windowValid > maxDistance) ? curr - maxDistance : windowValid;
92
93
94 DEBUGLOG(8, "ZSTD_insertDUBT1(%u) (dictLimit=%u, lowLimit=%u)",
95 curr, dictLimit, windowLow);
96 assert(curr >= btLow);
97 assert(ip < iend); /* condition for ZSTD_count */
98
99 for (; nbCompares && (matchIndex > windowLow); --nbCompares) {
100 U32* const nextPtr = bt + 2*(matchIndex & btMask);
101 size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
102 assert(matchIndex < curr);
103 /* note : all candidates are now supposed sorted,
104 * but it's still possible to have nextPtr[1] == ZSTD_DUBT_UNSORTED_MARK
105 * when a real index has the same value as ZSTD_DUBT_UNSORTED_MARK */
106
107 if ( (dictMode != ZSTD_extDict)
108 || (matchIndex+matchLength >= dictLimit) /* both in current segment*/
109 || (curr < dictLimit) /* both in extDict */) {
110 const BYTE* const mBase = ( (dictMode != ZSTD_extDict)
111 || (matchIndex+matchLength >= dictLimit)) ?
112 base : dictBase;
113 assert( (matchIndex+matchLength >= dictLimit) /* might be wrong if extDict is incorrectly set to 0 */
114 || (curr < dictLimit) );
115 match = mBase + matchIndex;
116 matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
117 } else {
118 match = dictBase + matchIndex;
119 matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
120 if (matchIndex+matchLength >= dictLimit)
121 match = base + matchIndex; /* preparation for next read of match[matchLength] */
122 }
123
124 DEBUGLOG(8, "ZSTD_insertDUBT1: comparing %u with %u : found %u common bytes ",
125 curr, matchIndex, (U32)matchLength);
126
127 if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
128 break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */
129 }
130
131 if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */
132 /* match is smaller than current */
133 *smallerPtr = matchIndex; /* update smaller idx */
134 commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
135 if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */
136 DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is smaller : next => %u",
137 matchIndex, btLow, nextPtr[1]);
138 smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */
139 matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */
140 } else {
141 /* match is larger than current */
142 *largerPtr = matchIndex;
143 commonLengthLarger = matchLength;
144 if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */
145 DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is larger => %u",
146 matchIndex, btLow, nextPtr[0]);
147 largerPtr = nextPtr;
148 matchIndex = nextPtr[0];
149 } }
150
151 *smallerPtr = *largerPtr = 0;
152}
153
154
155static size_t
156ZSTD_DUBT_findBetterDictMatch (
157 const ZSTD_matchState_t* ms,
158 const BYTE* const ip, const BYTE* const iend,
159 size_t* offsetPtr,
160 size_t bestLength,
161 U32 nbCompares,
162 U32 const mls,
163 const ZSTD_dictMode_e dictMode)
164{
165 const ZSTD_matchState_t * const dms = ms->dictMatchState;
166 const ZSTD_compressionParameters* const dmsCParams = &dms->cParams;
167 const U32 * const dictHashTable = dms->hashTable;
168 U32 const hashLog = dmsCParams->hashLog;
169 size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
170 U32 dictMatchIndex = dictHashTable[h];
171
172 const BYTE* const base = ms->window.base;
173 const BYTE* const prefixStart = base + ms->window.dictLimit;
174 U32 const curr = (U32)(ip-base);
175 const BYTE* const dictBase = dms->window.base;
176 const BYTE* const dictEnd = dms->window.nextSrc;
177 U32 const dictHighLimit = (U32)(dms->window.nextSrc - dms->window.base);
178 U32 const dictLowLimit = dms->window.lowLimit;
179 U32 const dictIndexDelta = ms->window.lowLimit - dictHighLimit;
180
181 U32* const dictBt = dms->chainTable;
182 U32 const btLog = dmsCParams->chainLog - 1;
183 U32 const btMask = (1 << btLog) - 1;
184 U32 const btLow = (btMask >= dictHighLimit - dictLowLimit) ? dictLowLimit : dictHighLimit - btMask;
185
186 size_t commonLengthSmaller=0, commonLengthLarger=0;
187
188 (void)dictMode;
189 assert(dictMode == ZSTD_dictMatchState);
190
191 for (; nbCompares && (dictMatchIndex > dictLowLimit); --nbCompares) {
192 U32* const nextPtr = dictBt + 2*(dictMatchIndex & btMask);
193 size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
194 const BYTE* match = dictBase + dictMatchIndex;
195 matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
196 if (dictMatchIndex+matchLength >= dictHighLimit)
197 match = base + dictMatchIndex + dictIndexDelta; /* to prepare for next usage of match[matchLength] */
198
199 if (matchLength > bestLength) {
200 U32 matchIndex = dictMatchIndex + dictIndexDelta;
201 if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) ) {
202 DEBUGLOG(9, "ZSTD_DUBT_findBetterDictMatch(%u) : found better match length %u -> %u and offsetCode %u -> %u (dictMatchIndex %u, matchIndex %u)",
203 curr, (U32)bestLength, (U32)matchLength, (U32)*offsetPtr, OFFSET_TO_OFFBASE(curr - matchIndex), dictMatchIndex, matchIndex);
204 bestLength = matchLength, *offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex);
205 }
206 if (ip+matchLength == iend) { /* reached end of input : ip[matchLength] is not valid, no way to know if it's larger or smaller than match */
207 break; /* drop, to guarantee consistency (miss a little bit of compression) */
208 }
209 }
210
211 if (match[matchLength] < ip[matchLength]) {
212 if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */
213 commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
214 dictMatchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
215 } else {
216 /* match is larger than current */
217 if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */
218 commonLengthLarger = matchLength;
219 dictMatchIndex = nextPtr[0];
220 }
221 }
222
223 if (bestLength >= MINMATCH) {
224 U32 const mIndex = curr - (U32)OFFBASE_TO_OFFSET(*offsetPtr); (void)mIndex;
225 DEBUGLOG(8, "ZSTD_DUBT_findBetterDictMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
226 curr, (U32)bestLength, (U32)*offsetPtr, mIndex);
227 }
228 return bestLength;
229
230}
231
232
233static size_t
234ZSTD_DUBT_findBestMatch(ZSTD_matchState_t* ms,
235 const BYTE* const ip, const BYTE* const iend,
236 size_t* offBasePtr,
237 U32 const mls,
238 const ZSTD_dictMode_e dictMode)
239{
240 const ZSTD_compressionParameters* const cParams = &ms->cParams;
241 U32* const hashTable = ms->hashTable;
242 U32 const hashLog = cParams->hashLog;
243 size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
244 U32 matchIndex = hashTable[h];
245
246 const BYTE* const base = ms->window.base;
247 U32 const curr = (U32)(ip-base);
248 U32 const windowLow = ZSTD_getLowestMatchIndex(ms, curr, cParams->windowLog);
249
250 U32* const bt = ms->chainTable;
251 U32 const btLog = cParams->chainLog - 1;
252 U32 const btMask = (1 << btLog) - 1;
253 U32 const btLow = (btMask >= curr) ? 0 : curr - btMask;
254 U32 const unsortLimit = MAX(btLow, windowLow);
255
256 U32* nextCandidate = bt + 2*(matchIndex&btMask);
257 U32* unsortedMark = bt + 2*(matchIndex&btMask) + 1;
258 U32 nbCompares = 1U << cParams->searchLog;
259 U32 nbCandidates = nbCompares;
260 U32 previousCandidate = 0;
261
262 DEBUGLOG(7, "ZSTD_DUBT_findBestMatch (%u) ", curr);
263 assert(ip <= iend-8); /* required for h calculation */
264 assert(dictMode != ZSTD_dedicatedDictSearch);
265
266 /* reach end of unsorted candidates list */
267 while ( (matchIndex > unsortLimit)
268 && (*unsortedMark == ZSTD_DUBT_UNSORTED_MARK)
269 && (nbCandidates > 1) ) {
270 DEBUGLOG(8, "ZSTD_DUBT_findBestMatch: candidate %u is unsorted",
271 matchIndex);
272 *unsortedMark = previousCandidate; /* the unsortedMark becomes a reversed chain, to move up back to original position */
273 previousCandidate = matchIndex;
274 matchIndex = *nextCandidate;
275 nextCandidate = bt + 2*(matchIndex&btMask);
276 unsortedMark = bt + 2*(matchIndex&btMask) + 1;
277 nbCandidates --;
278 }
279
280 /* nullify last candidate if it's still unsorted
281 * simplification, detrimental to compression ratio, beneficial for speed */
282 if ( (matchIndex > unsortLimit)
283 && (*unsortedMark==ZSTD_DUBT_UNSORTED_MARK) ) {
284 DEBUGLOG(7, "ZSTD_DUBT_findBestMatch: nullify last unsorted candidate %u",
285 matchIndex);
286 *nextCandidate = *unsortedMark = 0;
287 }
288
289 /* batch sort stacked candidates */
290 matchIndex = previousCandidate;
291 while (matchIndex) { /* will end on matchIndex == 0 */
292 U32* const nextCandidateIdxPtr = bt + 2*(matchIndex&btMask) + 1;
293 U32 const nextCandidateIdx = *nextCandidateIdxPtr;
294 ZSTD_insertDUBT1(ms, matchIndex, iend,
295 nbCandidates, unsortLimit, dictMode);
296 matchIndex = nextCandidateIdx;
297 nbCandidates++;
298 }
299
300 /* find longest match */
301 { size_t commonLengthSmaller = 0, commonLengthLarger = 0;
302 const BYTE* const dictBase = ms->window.dictBase;
303 const U32 dictLimit = ms->window.dictLimit;
304 const BYTE* const dictEnd = dictBase + dictLimit;
305 const BYTE* const prefixStart = base + dictLimit;
306 U32* smallerPtr = bt + 2*(curr&btMask);
307 U32* largerPtr = bt + 2*(curr&btMask) + 1;
308 U32 matchEndIdx = curr + 8 + 1;
309 U32 dummy32; /* to be nullified at the end */
310 size_t bestLength = 0;
311
312 matchIndex = hashTable[h];
313 hashTable[h] = curr; /* Update Hash Table */
314
315 for (; nbCompares && (matchIndex > windowLow); --nbCompares) {
316 U32* const nextPtr = bt + 2*(matchIndex & btMask);
317 size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
318 const BYTE* match;
319
320 if ((dictMode != ZSTD_extDict) || (matchIndex+matchLength >= dictLimit)) {
321 match = base + matchIndex;
322 matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
323 } else {
324 match = dictBase + matchIndex;
325 matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
326 if (matchIndex+matchLength >= dictLimit)
327 match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
328 }
329
330 if (matchLength > bestLength) {
331 if (matchLength > matchEndIdx - matchIndex)
332 matchEndIdx = matchIndex + (U32)matchLength;
333 if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr - matchIndex + 1) - ZSTD_highbit32((U32)*offBasePtr)) )
334 bestLength = matchLength, *offBasePtr = OFFSET_TO_OFFBASE(curr - matchIndex);
335 if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
336 if (dictMode == ZSTD_dictMatchState) {
337 nbCompares = 0; /* in addition to avoiding checking any
338 * further in this loop, make sure we
339 * skip checking in the dictionary. */
340 }
341 break; /* drop, to guarantee consistency (miss a little bit of compression) */
342 }
343 }
344
345 if (match[matchLength] < ip[matchLength]) {
346 /* match is smaller than current */
347 *smallerPtr = matchIndex; /* update smaller idx */
348 commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
349 if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
350 smallerPtr = nextPtr+1; /* new "smaller" => larger of match */
351 matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
352 } else {
353 /* match is larger than current */
354 *largerPtr = matchIndex;
355 commonLengthLarger = matchLength;
356 if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
357 largerPtr = nextPtr;
358 matchIndex = nextPtr[0];
359 } }
360
361 *smallerPtr = *largerPtr = 0;
362
363 assert(nbCompares <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
364 if (dictMode == ZSTD_dictMatchState && nbCompares) {
365 bestLength = ZSTD_DUBT_findBetterDictMatch(
366 ms, ip, iend,
367 offBasePtr, bestLength, nbCompares,
368 mls, dictMode);
369 }
370
371 assert(matchEndIdx > curr+8); /* ensure nextToUpdate is increased */
372 ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */
373 if (bestLength >= MINMATCH) {
374 U32 const mIndex = curr - (U32)OFFBASE_TO_OFFSET(*offBasePtr); (void)mIndex;
375 DEBUGLOG(8, "ZSTD_DUBT_findBestMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
376 curr, (U32)bestLength, (U32)*offBasePtr, mIndex);
377 }
378 return bestLength;
379 }
380}
381
382
383/** ZSTD_BtFindBestMatch() : Tree updater, providing best match */
384FORCE_INLINE_TEMPLATE size_t
385ZSTD_BtFindBestMatch( ZSTD_matchState_t* ms,
386 const BYTE* const ip, const BYTE* const iLimit,
387 size_t* offBasePtr,
388 const U32 mls /* template */,
389 const ZSTD_dictMode_e dictMode)
390{
391 DEBUGLOG(7, "ZSTD_BtFindBestMatch");
392 if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */
393 ZSTD_updateDUBT(ms, ip, iLimit, mls);
394 return ZSTD_DUBT_findBestMatch(ms, ip, iLimit, offBasePtr, mls, dictMode);
395}
396
397/***********************************
398* Dedicated dict search
399***********************************/
400
401void ZSTD_dedicatedDictSearch_lazy_loadDictionary(ZSTD_matchState_t* ms, const BYTE* const ip)
402{
403 const BYTE* const base = ms->window.base;
404 U32 const target = (U32)(ip - base);
405 U32* const hashTable = ms->hashTable;
406 U32* const chainTable = ms->chainTable;
407 U32 const chainSize = 1 << ms->cParams.chainLog;
408 U32 idx = ms->nextToUpdate;
409 U32 const minChain = chainSize < target - idx ? target - chainSize : idx;
410 U32 const bucketSize = 1 << ZSTD_LAZY_DDSS_BUCKET_LOG;
411 U32 const cacheSize = bucketSize - 1;
412 U32 const chainAttempts = (1 << ms->cParams.searchLog) - cacheSize;
413 U32 const chainLimit = chainAttempts > 255 ? 255 : chainAttempts;
414
415 /* We know the hashtable is oversized by a factor of `bucketSize`.
416 * We are going to temporarily pretend `bucketSize == 1`, keeping only a
417 * single entry. We will use the rest of the space to construct a temporary
418 * chaintable.
419 */
420 U32 const hashLog = ms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG;
421 U32* const tmpHashTable = hashTable;
422 U32* const tmpChainTable = hashTable + ((size_t)1 << hashLog);
423 U32 const tmpChainSize = (U32)((1 << ZSTD_LAZY_DDSS_BUCKET_LOG) - 1) << hashLog;
424 U32 const tmpMinChain = tmpChainSize < target ? target - tmpChainSize : idx;
425 U32 hashIdx;
426
427 assert(ms->cParams.chainLog <= 24);
428 assert(ms->cParams.hashLog > ms->cParams.chainLog);
429 assert(idx != 0);
430 assert(tmpMinChain <= minChain);
431
432 /* fill conventional hash table and conventional chain table */
433 for ( ; idx < target; idx++) {
434 U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch);
435 if (idx >= tmpMinChain) {
436 tmpChainTable[idx - tmpMinChain] = hashTable[h];
437 }
438 tmpHashTable[h] = idx;
439 }
440
441 /* sort chains into ddss chain table */
442 {
443 U32 chainPos = 0;
444 for (hashIdx = 0; hashIdx < (1U << hashLog); hashIdx++) {
445 U32 count;
446 U32 countBeyondMinChain = 0;
447 U32 i = tmpHashTable[hashIdx];
448 for (count = 0; i >= tmpMinChain && count < cacheSize; count++) {
449 /* skip through the chain to the first position that won't be
450 * in the hash cache bucket */
451 if (i < minChain) {
452 countBeyondMinChain++;
453 }
454 i = tmpChainTable[i - tmpMinChain];
455 }
456 if (count == cacheSize) {
457 for (count = 0; count < chainLimit;) {
458 if (i < minChain) {
459 if (!i || ++countBeyondMinChain > cacheSize) {
460 /* only allow pulling `cacheSize` number of entries
461 * into the cache or chainTable beyond `minChain`,
462 * to replace the entries pulled out of the
463 * chainTable into the cache. This lets us reach
464 * back further without increasing the total number
465 * of entries in the chainTable, guaranteeing the
466 * DDSS chain table will fit into the space
467 * allocated for the regular one. */
468 break;
469 }
470 }
471 chainTable[chainPos++] = i;
472 count++;
473 if (i < tmpMinChain) {
474 break;
475 }
476 i = tmpChainTable[i - tmpMinChain];
477 }
478 } else {
479 count = 0;
480 }
481 if (count) {
482 tmpHashTable[hashIdx] = ((chainPos - count) << 8) + count;
483 } else {
484 tmpHashTable[hashIdx] = 0;
485 }
486 }
487 assert(chainPos <= chainSize); /* I believe this is guaranteed... */
488 }
489
490 /* move chain pointers into the last entry of each hash bucket */
491 for (hashIdx = (1 << hashLog); hashIdx; ) {
492 U32 const bucketIdx = --hashIdx << ZSTD_LAZY_DDSS_BUCKET_LOG;
493 U32 const chainPackedPointer = tmpHashTable[hashIdx];
494 U32 i;
495 for (i = 0; i < cacheSize; i++) {
496 hashTable[bucketIdx + i] = 0;
497 }
498 hashTable[bucketIdx + bucketSize - 1] = chainPackedPointer;
499 }
500
501 /* fill the buckets of the hash table */
502 for (idx = ms->nextToUpdate; idx < target; idx++) {
503 U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch)
504 << ZSTD_LAZY_DDSS_BUCKET_LOG;
505 U32 i;
506 /* Shift hash cache down 1. */
507 for (i = cacheSize - 1; i; i--)
508 hashTable[h + i] = hashTable[h + i - 1];
509 hashTable[h] = idx;
510 }
511
512 ms->nextToUpdate = target;
513}
514
515/* Returns the longest match length found in the dedicated dict search structure.
516 * If none are longer than the argument ml, then ml will be returned.
517 */
518FORCE_INLINE_TEMPLATE
519size_t ZSTD_dedicatedDictSearch_lazy_search(size_t* offsetPtr, size_t ml, U32 nbAttempts,
520 const ZSTD_matchState_t* const dms,
521 const BYTE* const ip, const BYTE* const iLimit,
522 const BYTE* const prefixStart, const U32 curr,
523 const U32 dictLimit, const size_t ddsIdx) {
524 const U32 ddsLowestIndex = dms->window.dictLimit;
525 const BYTE* const ddsBase = dms->window.base;
526 const BYTE* const ddsEnd = dms->window.nextSrc;
527 const U32 ddsSize = (U32)(ddsEnd - ddsBase);
528 const U32 ddsIndexDelta = dictLimit - ddsSize;
529 const U32 bucketSize = (1 << ZSTD_LAZY_DDSS_BUCKET_LOG);
530 const U32 bucketLimit = nbAttempts < bucketSize - 1 ? nbAttempts : bucketSize - 1;
531 U32 ddsAttempt;
532 U32 matchIndex;
533
534 for (ddsAttempt = 0; ddsAttempt < bucketSize - 1; ddsAttempt++) {
535 PREFETCH_L1(ddsBase + dms->hashTable[ddsIdx + ddsAttempt]);
536 }
537
538 {
539 U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1];
540 U32 const chainIndex = chainPackedPointer >> 8;
541
542 PREFETCH_L1(&dms->chainTable[chainIndex]);
543 }
544
545 for (ddsAttempt = 0; ddsAttempt < bucketLimit; ddsAttempt++) {
546 size_t currentMl=0;
547 const BYTE* match;
548 matchIndex = dms->hashTable[ddsIdx + ddsAttempt];
549 match = ddsBase + matchIndex;
550
551 if (!matchIndex) {
552 return ml;
553 }
554
555 /* guaranteed by table construction */
556 (void)ddsLowestIndex;
557 assert(matchIndex >= ddsLowestIndex);
558 assert(match+4 <= ddsEnd);
559 if (MEM_read32(match) == MEM_read32(ip)) {
560 /* assumption : matchIndex <= dictLimit-4 (by table construction) */
561 currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4;
562 }
563
564 /* save best solution */
565 if (currentMl > ml) {
566 ml = currentMl;
567 *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + ddsIndexDelta));
568 if (ip+currentMl == iLimit) {
569 /* best possible, avoids read overflow on next attempt */
570 return ml;
571 }
572 }
573 }
574
575 {
576 U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1];
577 U32 chainIndex = chainPackedPointer >> 8;
578 U32 const chainLength = chainPackedPointer & 0xFF;
579 U32 const chainAttempts = nbAttempts - ddsAttempt;
580 U32 const chainLimit = chainAttempts > chainLength ? chainLength : chainAttempts;
581 U32 chainAttempt;
582
583 for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++) {
584 PREFETCH_L1(ddsBase + dms->chainTable[chainIndex + chainAttempt]);
585 }
586
587 for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++, chainIndex++) {
588 size_t currentMl=0;
589 const BYTE* match;
590 matchIndex = dms->chainTable[chainIndex];
591 match = ddsBase + matchIndex;
592
593 /* guaranteed by table construction */
594 assert(matchIndex >= ddsLowestIndex);
595 assert(match+4 <= ddsEnd);
596 if (MEM_read32(match) == MEM_read32(ip)) {
597 /* assumption : matchIndex <= dictLimit-4 (by table construction) */
598 currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4;
599 }
600
601 /* save best solution */
602 if (currentMl > ml) {
603 ml = currentMl;
604 *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + ddsIndexDelta));
605 if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
606 }
607 }
608 }
609 return ml;
610}
611
612
613/* *********************************
614* Hash Chain
615***********************************/
616#define NEXT_IN_CHAIN(d, mask) chainTable[(d) & (mask)]
617
618/* Update chains up to ip (excluded)
619 Assumption : always within prefix (i.e. not within extDict) */
620FORCE_INLINE_TEMPLATE U32 ZSTD_insertAndFindFirstIndex_internal(
621 ZSTD_matchState_t* ms,
622 const ZSTD_compressionParameters* const cParams,
623 const BYTE* ip, U32 const mls, U32 const lazySkipping)
624{
625 U32* const hashTable = ms->hashTable;
626 const U32 hashLog = cParams->hashLog;
627 U32* const chainTable = ms->chainTable;
628 const U32 chainMask = (1 << cParams->chainLog) - 1;
629 const BYTE* const base = ms->window.base;
630 const U32 target = (U32)(ip - base);
631 U32 idx = ms->nextToUpdate;
632
633 while(idx < target) { /* catch up */
634 size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls);
635 NEXT_IN_CHAIN(idx, chainMask) = hashTable[h];
636 hashTable[h] = idx;
637 idx++;
638 /* Stop inserting every position when in the lazy skipping mode. */
639 if (lazySkipping)
640 break;
641 }
642
643 ms->nextToUpdate = target;
644 return hashTable[ZSTD_hashPtr(ip, hashLog, mls)];
645}
646
647U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip) {
648 const ZSTD_compressionParameters* const cParams = &ms->cParams;
649 return ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, ms->cParams.minMatch, /* lazySkipping*/ 0);
650}
651
652/* inlining is important to hardwire a hot branch (template emulation) */
653FORCE_INLINE_TEMPLATE
654size_t ZSTD_HcFindBestMatch(
655 ZSTD_matchState_t* ms,
656 const BYTE* const ip, const BYTE* const iLimit,
657 size_t* offsetPtr,
658 const U32 mls, const ZSTD_dictMode_e dictMode)
659{
660 const ZSTD_compressionParameters* const cParams = &ms->cParams;
661 U32* const chainTable = ms->chainTable;
662 const U32 chainSize = (1 << cParams->chainLog);
663 const U32 chainMask = chainSize-1;
664 const BYTE* const base = ms->window.base;
665 const BYTE* const dictBase = ms->window.dictBase;
666 const U32 dictLimit = ms->window.dictLimit;
667 const BYTE* const prefixStart = base + dictLimit;
668 const BYTE* const dictEnd = dictBase + dictLimit;
669 const U32 curr = (U32)(ip-base);
670 const U32 maxDistance = 1U << cParams->windowLog;
671 const U32 lowestValid = ms->window.lowLimit;
672 const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
673 const U32 isDictionary = (ms->loadedDictEnd != 0);
674 const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance;
675 const U32 minChain = curr > chainSize ? curr - chainSize : 0;
676 U32 nbAttempts = 1U << cParams->searchLog;
677 size_t ml=4-1;
678
679 const ZSTD_matchState_t* const dms = ms->dictMatchState;
680 const U32 ddsHashLog = dictMode == ZSTD_dedicatedDictSearch
681 ? dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG : 0;
682 const size_t ddsIdx = dictMode == ZSTD_dedicatedDictSearch
683 ? ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG : 0;
684
685 U32 matchIndex;
686
687 if (dictMode == ZSTD_dedicatedDictSearch) {
688 const U32* entry = &dms->hashTable[ddsIdx];
689 PREFETCH_L1(entry);
690 }
691
692 /* HC4 match finder */
693 matchIndex = ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, mls, ms->lazySkipping);
694
695 for ( ; (matchIndex>=lowLimit) & (nbAttempts>0) ; nbAttempts--) {
696 size_t currentMl=0;
697 if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
698 const BYTE* const match = base + matchIndex;
699 assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */
700 /* read 4B starting from (match + ml + 1 - sizeof(U32)) */
701 if (MEM_read32(match + ml - 3) == MEM_read32(ip + ml - 3)) /* potentially better */
702 currentMl = ZSTD_count(ip, match, iLimit);
703 } else {
704 const BYTE* const match = dictBase + matchIndex;
705 assert(match+4 <= dictEnd);
706 if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
707 currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4;
708 }
709
710 /* save best solution */
711 if (currentMl > ml) {
712 ml = currentMl;
713 *offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex);
714 if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
715 }
716
717 if (matchIndex <= minChain) break;
718 matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask);
719 }
720
721 assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
722 if (dictMode == ZSTD_dedicatedDictSearch) {
723 ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts, dms,
724 ip, iLimit, prefixStart, curr, dictLimit, ddsIdx);
725 } else if (dictMode == ZSTD_dictMatchState) {
726 const U32* const dmsChainTable = dms->chainTable;
727 const U32 dmsChainSize = (1 << dms->cParams.chainLog);
728 const U32 dmsChainMask = dmsChainSize - 1;
729 const U32 dmsLowestIndex = dms->window.dictLimit;
730 const BYTE* const dmsBase = dms->window.base;
731 const BYTE* const dmsEnd = dms->window.nextSrc;
732 const U32 dmsSize = (U32)(dmsEnd - dmsBase);
733 const U32 dmsIndexDelta = dictLimit - dmsSize;
734 const U32 dmsMinChain = dmsSize > dmsChainSize ? dmsSize - dmsChainSize : 0;
735
736 matchIndex = dms->hashTable[ZSTD_hashPtr(ip, dms->cParams.hashLog, mls)];
737
738 for ( ; (matchIndex>=dmsLowestIndex) & (nbAttempts>0) ; nbAttempts--) {
739 size_t currentMl=0;
740 const BYTE* const match = dmsBase + matchIndex;
741 assert(match+4 <= dmsEnd);
742 if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
743 currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4;
744
745 /* save best solution */
746 if (currentMl > ml) {
747 ml = currentMl;
748 assert(curr > matchIndex + dmsIndexDelta);
749 *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + dmsIndexDelta));
750 if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
751 }
752
753 if (matchIndex <= dmsMinChain) break;
754
755 matchIndex = dmsChainTable[matchIndex & dmsChainMask];
756 }
757 }
758
759 return ml;
760}
761
762/* *********************************
763* (SIMD) Row-based matchfinder
764***********************************/
765/* Constants for row-based hash */
766#define ZSTD_ROW_HASH_TAG_MASK ((1u << ZSTD_ROW_HASH_TAG_BITS) - 1)
767#define ZSTD_ROW_HASH_MAX_ENTRIES 64 /* absolute maximum number of entries per row, for all configurations */
768
769#define ZSTD_ROW_HASH_CACHE_MASK (ZSTD_ROW_HASH_CACHE_SIZE - 1)
770
771typedef U64 ZSTD_VecMask; /* Clarifies when we are interacting with a U64 representing a mask of matches */
772
773/* ZSTD_VecMask_next():
774 * Starting from the LSB, returns the idx of the next non-zero bit.
775 * Basically counting the nb of trailing zeroes.
776 */
777MEM_STATIC U32 ZSTD_VecMask_next(ZSTD_VecMask val) {
778 return ZSTD_countTrailingZeros64(val);
779}
780
781/* ZSTD_row_nextIndex():
782 * Returns the next index to insert at within a tagTable row, and updates the "head"
783 * value to reflect the update. Essentially cycles backwards from [1, {entries per row})
784 */
785FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextIndex(BYTE* const tagRow, U32 const rowMask) {
786 U32 next = (*tagRow-1) & rowMask;
787 next += (next == 0) ? rowMask : 0; /* skip first position */
788 *tagRow = (BYTE)next;
789 return next;
790}
791
792/* ZSTD_isAligned():
793 * Checks that a pointer is aligned to "align" bytes which must be a power of 2.
794 */
795MEM_STATIC int ZSTD_isAligned(void const* ptr, size_t align) {
796 assert((align & (align - 1)) == 0);
797 return (((size_t)ptr) & (align - 1)) == 0;
798}
799
800/* ZSTD_row_prefetch():
801 * Performs prefetching for the hashTable and tagTable at a given row.
802 */
803FORCE_INLINE_TEMPLATE void ZSTD_row_prefetch(U32 const* hashTable, BYTE const* tagTable, U32 const relRow, U32 const rowLog) {
804 PREFETCH_L1(hashTable + relRow);
805 if (rowLog >= 5) {
806 PREFETCH_L1(hashTable + relRow + 16);
807 /* Note: prefetching more of the hash table does not appear to be beneficial for 128-entry rows */
808 }
809 PREFETCH_L1(tagTable + relRow);
810 if (rowLog == 6) {
811 PREFETCH_L1(tagTable + relRow + 32);
812 }
813 assert(rowLog == 4 || rowLog == 5 || rowLog == 6);
814 assert(ZSTD_isAligned(hashTable + relRow, 64)); /* prefetched hash row always 64-byte aligned */
815 assert(ZSTD_isAligned(tagTable + relRow, (size_t)1 << rowLog)); /* prefetched tagRow sits on correct multiple of bytes (32,64,128) */
816}
817
818/* ZSTD_row_fillHashCache():
819 * Fill up the hash cache starting at idx, prefetching up to ZSTD_ROW_HASH_CACHE_SIZE entries,
820 * but not beyond iLimit.
821 */
822FORCE_INLINE_TEMPLATE void ZSTD_row_fillHashCache(ZSTD_matchState_t* ms, const BYTE* base,
823 U32 const rowLog, U32 const mls,
824 U32 idx, const BYTE* const iLimit)
825{
826 U32 const* const hashTable = ms->hashTable;
827 BYTE const* const tagTable = ms->tagTable;
828 U32 const hashLog = ms->rowHashLog;
829 U32 const maxElemsToPrefetch = (base + idx) > iLimit ? 0 : (U32)(iLimit - (base + idx) + 1);
830 U32 const lim = idx + MIN(ZSTD_ROW_HASH_CACHE_SIZE, maxElemsToPrefetch);
831
832 for (; idx < lim; ++idx) {
833 U32 const hash = (U32)ZSTD_hashPtrSalted(base + idx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt);
834 U32 const row = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
835 ZSTD_row_prefetch(hashTable, tagTable, row, rowLog);
836 ms->hashCache[idx & ZSTD_ROW_HASH_CACHE_MASK] = hash;
837 }
838
839 DEBUGLOG(6, "ZSTD_row_fillHashCache(): [%u %u %u %u %u %u %u %u]", ms->hashCache[0], ms->hashCache[1],
840 ms->hashCache[2], ms->hashCache[3], ms->hashCache[4],
841 ms->hashCache[5], ms->hashCache[6], ms->hashCache[7]);
842}
843
844/* ZSTD_row_nextCachedHash():
845 * Returns the hash of base + idx, and replaces the hash in the hash cache with the byte at
846 * base + idx + ZSTD_ROW_HASH_CACHE_SIZE. Also prefetches the appropriate rows from hashTable and tagTable.
847 */
848FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextCachedHash(U32* cache, U32 const* hashTable,
849 BYTE const* tagTable, BYTE const* base,
850 U32 idx, U32 const hashLog,
851 U32 const rowLog, U32 const mls,
852 U64 const hashSalt)
853{
854 U32 const newHash = (U32)ZSTD_hashPtrSalted(base+idx+ZSTD_ROW_HASH_CACHE_SIZE, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, hashSalt);
855 U32 const row = (newHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
856 ZSTD_row_prefetch(hashTable, tagTable, row, rowLog);
857 { U32 const hash = cache[idx & ZSTD_ROW_HASH_CACHE_MASK];
858 cache[idx & ZSTD_ROW_HASH_CACHE_MASK] = newHash;
859 return hash;
860 }
861}
862
863/* ZSTD_row_update_internalImpl():
864 * Updates the hash table with positions starting from updateStartIdx until updateEndIdx.
865 */
866FORCE_INLINE_TEMPLATE void ZSTD_row_update_internalImpl(ZSTD_matchState_t* ms,
867 U32 updateStartIdx, U32 const updateEndIdx,
868 U32 const mls, U32 const rowLog,
869 U32 const rowMask, U32 const useCache)
870{
871 U32* const hashTable = ms->hashTable;
872 BYTE* const tagTable = ms->tagTable;
873 U32 const hashLog = ms->rowHashLog;
874 const BYTE* const base = ms->window.base;
875
876 DEBUGLOG(6, "ZSTD_row_update_internalImpl(): updateStartIdx=%u, updateEndIdx=%u", updateStartIdx, updateEndIdx);
877 for (; updateStartIdx < updateEndIdx; ++updateStartIdx) {
878 U32 const hash = useCache ? ZSTD_row_nextCachedHash(ms->hashCache, hashTable, tagTable, base, updateStartIdx, hashLog, rowLog, mls, ms->hashSalt)
879 : (U32)ZSTD_hashPtrSalted(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt);
880 U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
881 U32* const row = hashTable + relRow;
882 BYTE* tagRow = tagTable + relRow;
883 U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask);
884
885 assert(hash == ZSTD_hashPtrSalted(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt));
886 tagRow[pos] = hash & ZSTD_ROW_HASH_TAG_MASK;
887 row[pos] = updateStartIdx;
888 }
889}
890
891/* ZSTD_row_update_internal():
892 * Inserts the byte at ip into the appropriate position in the hash table, and updates ms->nextToUpdate.
893 * Skips sections of long matches as is necessary.
894 */
895FORCE_INLINE_TEMPLATE void ZSTD_row_update_internal(ZSTD_matchState_t* ms, const BYTE* ip,
896 U32 const mls, U32 const rowLog,
897 U32 const rowMask, U32 const useCache)
898{
899 U32 idx = ms->nextToUpdate;
900 const BYTE* const base = ms->window.base;
901 const U32 target = (U32)(ip - base);
902 const U32 kSkipThreshold = 384;
903 const U32 kMaxMatchStartPositionsToUpdate = 96;
904 const U32 kMaxMatchEndPositionsToUpdate = 32;
905
906 if (useCache) {
907 /* Only skip positions when using hash cache, i.e.
908 * if we are loading a dict, don't skip anything.
909 * If we decide to skip, then we only update a set number
910 * of positions at the beginning and end of the match.
911 */
912 if (UNLIKELY(target - idx > kSkipThreshold)) {
913 U32 const bound = idx + kMaxMatchStartPositionsToUpdate;
914 ZSTD_row_update_internalImpl(ms, idx, bound, mls, rowLog, rowMask, useCache);
915 idx = target - kMaxMatchEndPositionsToUpdate;
916 ZSTD_row_fillHashCache(ms, base, rowLog, mls, idx, ip+1);
917 }
918 }
919 assert(target >= idx);
920 ZSTD_row_update_internalImpl(ms, idx, target, mls, rowLog, rowMask, useCache);
921 ms->nextToUpdate = target;
922}
923
924/* ZSTD_row_update():
925 * External wrapper for ZSTD_row_update_internal(). Used for filling the hashtable during dictionary
926 * processing.
927 */
928void ZSTD_row_update(ZSTD_matchState_t* const ms, const BYTE* ip) {
929 const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6);
930 const U32 rowMask = (1u << rowLog) - 1;
931 const U32 mls = MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */);
932
933 DEBUGLOG(5, "ZSTD_row_update(), rowLog=%u", rowLog);
934 ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 0 /* don't use cache */);
935}
936
937/* Returns the mask width of bits group of which will be set to 1. Given not all
938 * architectures have easy movemask instruction, this helps to iterate over
939 * groups of bits easier and faster.
940 */
941FORCE_INLINE_TEMPLATE U32
942ZSTD_row_matchMaskGroupWidth(const U32 rowEntries)
943{
944 assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64);
945 assert(rowEntries <= ZSTD_ROW_HASH_MAX_ENTRIES);
946 (void)rowEntries;
947#if defined(ZSTD_ARCH_ARM_NEON)
948 /* NEON path only works for little endian */
949 if (!MEM_isLittleEndian()) {
950 return 1;
951 }
952 if (rowEntries == 16) {
953 return 4;
954 }
955 if (rowEntries == 32) {
956 return 2;
957 }
958 if (rowEntries == 64) {
959 return 1;
960 }
961#endif
962 return 1;
963}
964
965#if defined(ZSTD_ARCH_X86_SSE2)
966FORCE_INLINE_TEMPLATE ZSTD_VecMask
967ZSTD_row_getSSEMask(int nbChunks, const BYTE* const src, const BYTE tag, const U32 head)
968{
969 const __m128i comparisonMask = _mm_set1_epi8((char)tag);
970 int matches[4] = {0};
971 int i;
972 assert(nbChunks == 1 || nbChunks == 2 || nbChunks == 4);
973 for (i=0; i<nbChunks; i++) {
974 const __m128i chunk = _mm_loadu_si128((const __m128i*)(const void*)(src + 16*i));
975 const __m128i equalMask = _mm_cmpeq_epi8(chunk, comparisonMask);
976 matches[i] = _mm_movemask_epi8(equalMask);
977 }
978 if (nbChunks == 1) return ZSTD_rotateRight_U16((U16)matches[0], head);
979 if (nbChunks == 2) return ZSTD_rotateRight_U32((U32)matches[1] << 16 | (U32)matches[0], head);
980 assert(nbChunks == 4);
981 return ZSTD_rotateRight_U64((U64)matches[3] << 48 | (U64)matches[2] << 32 | (U64)matches[1] << 16 | (U64)matches[0], head);
982}
983#endif
984
985#if defined(ZSTD_ARCH_ARM_NEON)
986FORCE_INLINE_TEMPLATE ZSTD_VecMask
987ZSTD_row_getNEONMask(const U32 rowEntries, const BYTE* const src, const BYTE tag, const U32 headGrouped)
988{
989 assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64);
990 if (rowEntries == 16) {
991 /* vshrn_n_u16 shifts by 4 every u16 and narrows to 8 lower bits.
992 * After that groups of 4 bits represent the equalMask. We lower
993 * all bits except the highest in these groups by doing AND with
994 * 0x88 = 0b10001000.
995 */
996 const uint8x16_t chunk = vld1q_u8(src);
997 const uint16x8_t equalMask = vreinterpretq_u16_u8(vceqq_u8(chunk, vdupq_n_u8(tag)));
998 const uint8x8_t res = vshrn_n_u16(equalMask, 4);
999 const U64 matches = vget_lane_u64(vreinterpret_u64_u8(res), 0);
1000 return ZSTD_rotateRight_U64(matches, headGrouped) & 0x8888888888888888ull;
1001 } else if (rowEntries == 32) {
1002 /* Same idea as with rowEntries == 16 but doing AND with
1003 * 0x55 = 0b01010101.
1004 */
1005 const uint16x8x2_t chunk = vld2q_u16((const uint16_t*)(const void*)src);
1006 const uint8x16_t chunk0 = vreinterpretq_u8_u16(chunk.val[0]);
1007 const uint8x16_t chunk1 = vreinterpretq_u8_u16(chunk.val[1]);
1008 const uint8x16_t dup = vdupq_n_u8(tag);
1009 const uint8x8_t t0 = vshrn_n_u16(vreinterpretq_u16_u8(vceqq_u8(chunk0, dup)), 6);
1010 const uint8x8_t t1 = vshrn_n_u16(vreinterpretq_u16_u8(vceqq_u8(chunk1, dup)), 6);
1011 const uint8x8_t res = vsli_n_u8(t0, t1, 4);
1012 const U64 matches = vget_lane_u64(vreinterpret_u64_u8(res), 0) ;
1013 return ZSTD_rotateRight_U64(matches, headGrouped) & 0x5555555555555555ull;
1014 } else { /* rowEntries == 64 */
1015 const uint8x16x4_t chunk = vld4q_u8(src);
1016 const uint8x16_t dup = vdupq_n_u8(tag);
1017 const uint8x16_t cmp0 = vceqq_u8(chunk.val[0], dup);
1018 const uint8x16_t cmp1 = vceqq_u8(chunk.val[1], dup);
1019 const uint8x16_t cmp2 = vceqq_u8(chunk.val[2], dup);
1020 const uint8x16_t cmp3 = vceqq_u8(chunk.val[3], dup);
1021
1022 const uint8x16_t t0 = vsriq_n_u8(cmp1, cmp0, 1);
1023 const uint8x16_t t1 = vsriq_n_u8(cmp3, cmp2, 1);
1024 const uint8x16_t t2 = vsriq_n_u8(t1, t0, 2);
1025 const uint8x16_t t3 = vsriq_n_u8(t2, t2, 4);
1026 const uint8x8_t t4 = vshrn_n_u16(vreinterpretq_u16_u8(t3), 4);
1027 const U64 matches = vget_lane_u64(vreinterpret_u64_u8(t4), 0);
1028 return ZSTD_rotateRight_U64(matches, headGrouped);
1029 }
1030}
1031#endif
1032
1033/* Returns a ZSTD_VecMask (U64) that has the nth group (determined by
1034 * ZSTD_row_matchMaskGroupWidth) of bits set to 1 if the newly-computed "tag"
1035 * matches the hash at the nth position in a row of the tagTable.
1036 * Each row is a circular buffer beginning at the value of "headGrouped". So we
1037 * must rotate the "matches" bitfield to match up with the actual layout of the
1038 * entries within the hashTable */
1039FORCE_INLINE_TEMPLATE ZSTD_VecMask
1040ZSTD_row_getMatchMask(const BYTE* const tagRow, const BYTE tag, const U32 headGrouped, const U32 rowEntries)
1041{
1042 const BYTE* const src = tagRow;
1043 assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64);
1044 assert(rowEntries <= ZSTD_ROW_HASH_MAX_ENTRIES);
1045 assert(ZSTD_row_matchMaskGroupWidth(rowEntries) * rowEntries <= sizeof(ZSTD_VecMask) * 8);
1046
1047#if defined(ZSTD_ARCH_X86_SSE2)
1048
1049 return ZSTD_row_getSSEMask(rowEntries / 16, src, tag, headGrouped);
1050
1051#else /* SW or NEON-LE */
1052
1053# if defined(ZSTD_ARCH_ARM_NEON)
1054 /* This NEON path only works for little endian - otherwise use SWAR below */
1055 if (MEM_isLittleEndian()) {
1056 return ZSTD_row_getNEONMask(rowEntries, src, tag, headGrouped);
1057 }
1058# endif /* ZSTD_ARCH_ARM_NEON */
1059 /* SWAR */
1060 { const int chunkSize = sizeof(size_t);
1061 const size_t shiftAmount = ((chunkSize * 8) - chunkSize);
1062 const size_t xFF = ~((size_t)0);
1063 const size_t x01 = xFF / 0xFF;
1064 const size_t x80 = x01 << 7;
1065 const size_t splatChar = tag * x01;
1066 ZSTD_VecMask matches = 0;
1067 int i = rowEntries - chunkSize;
1068 assert((sizeof(size_t) == 4) || (sizeof(size_t) == 8));
1069 if (MEM_isLittleEndian()) { /* runtime check so have two loops */
1070 const size_t extractMagic = (xFF / 0x7F) >> chunkSize;
1071 do {
1072 size_t chunk = MEM_readST(&src[i]);
1073 chunk ^= splatChar;
1074 chunk = (((chunk | x80) - x01) | chunk) & x80;
1075 matches <<= chunkSize;
1076 matches |= (chunk * extractMagic) >> shiftAmount;
1077 i -= chunkSize;
1078 } while (i >= 0);
1079 } else { /* big endian: reverse bits during extraction */
1080 const size_t msb = xFF ^ (xFF >> 1);
1081 const size_t extractMagic = (msb / 0x1FF) | msb;
1082 do {
1083 size_t chunk = MEM_readST(&src[i]);
1084 chunk ^= splatChar;
1085 chunk = (((chunk | x80) - x01) | chunk) & x80;
1086 matches <<= chunkSize;
1087 matches |= ((chunk >> 7) * extractMagic) >> shiftAmount;
1088 i -= chunkSize;
1089 } while (i >= 0);
1090 }
1091 matches = ~matches;
1092 if (rowEntries == 16) {
1093 return ZSTD_rotateRight_U16((U16)matches, headGrouped);
1094 } else if (rowEntries == 32) {
1095 return ZSTD_rotateRight_U32((U32)matches, headGrouped);
1096 } else {
1097 return ZSTD_rotateRight_U64((U64)matches, headGrouped);
1098 }
1099 }
1100#endif
1101}
1102
1103/* The high-level approach of the SIMD row based match finder is as follows:
1104 * - Figure out where to insert the new entry:
1105 * - Generate a hash from a byte along with an additional 1-byte "short hash". The additional byte is our "tag"
1106 * - The hashTable is effectively split into groups or "rows" of 16 or 32 entries of U32, and the hash determines
1107 * which row to insert into.
1108 * - Determine the correct position within the row to insert the entry into. Each row of 16 or 32 can
1109 * be considered as a circular buffer with a "head" index that resides in the tagTable.
1110 * - Also insert the "tag" into the equivalent row and position in the tagTable.
1111 * - Note: The tagTable has 17 or 33 1-byte entries per row, due to 16 or 32 tags, and 1 "head" entry.
1112 * The 17 or 33 entry rows are spaced out to occur every 32 or 64 bytes, respectively,
1113 * for alignment/performance reasons, leaving some bytes unused.
1114 * - Use SIMD to efficiently compare the tags in the tagTable to the 1-byte "short hash" and
1115 * generate a bitfield that we can cycle through to check the collisions in the hash table.
1116 * - Pick the longest match.
1117 */
1118FORCE_INLINE_TEMPLATE
1119size_t ZSTD_RowFindBestMatch(
1120 ZSTD_matchState_t* ms,
1121 const BYTE* const ip, const BYTE* const iLimit,
1122 size_t* offsetPtr,
1123 const U32 mls, const ZSTD_dictMode_e dictMode,
1124 const U32 rowLog)
1125{
1126 U32* const hashTable = ms->hashTable;
1127 BYTE* const tagTable = ms->tagTable;
1128 U32* const hashCache = ms->hashCache;
1129 const U32 hashLog = ms->rowHashLog;
1130 const ZSTD_compressionParameters* const cParams = &ms->cParams;
1131 const BYTE* const base = ms->window.base;
1132 const BYTE* const dictBase = ms->window.dictBase;
1133 const U32 dictLimit = ms->window.dictLimit;
1134 const BYTE* const prefixStart = base + dictLimit;
1135 const BYTE* const dictEnd = dictBase + dictLimit;
1136 const U32 curr = (U32)(ip-base);
1137 const U32 maxDistance = 1U << cParams->windowLog;
1138 const U32 lowestValid = ms->window.lowLimit;
1139 const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
1140 const U32 isDictionary = (ms->loadedDictEnd != 0);
1141 const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance;
1142 const U32 rowEntries = (1U << rowLog);
1143 const U32 rowMask = rowEntries - 1;
1144 const U32 cappedSearchLog = MIN(cParams->searchLog, rowLog); /* nb of searches is capped at nb entries per row */
1145 const U32 groupWidth = ZSTD_row_matchMaskGroupWidth(rowEntries);
1146 const U64 hashSalt = ms->hashSalt;
1147 U32 nbAttempts = 1U << cappedSearchLog;
1148 size_t ml=4-1;
1149 U32 hash;
1150
1151 /* DMS/DDS variables that may be referenced laster */
1152 const ZSTD_matchState_t* const dms = ms->dictMatchState;
1153
1154 /* Initialize the following variables to satisfy static analyzer */
1155 size_t ddsIdx = 0;
1156 U32 ddsExtraAttempts = 0; /* cctx hash tables are limited in searches, but allow extra searches into DDS */
1157 U32 dmsTag = 0;
1158 U32* dmsRow = NULL;
1159 BYTE* dmsTagRow = NULL;
1160
1161 if (dictMode == ZSTD_dedicatedDictSearch) {
1162 const U32 ddsHashLog = dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG;
1163 { /* Prefetch DDS hashtable entry */
1164 ddsIdx = ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG;
1165 PREFETCH_L1(&dms->hashTable[ddsIdx]);
1166 }
1167 ddsExtraAttempts = cParams->searchLog > rowLog ? 1U << (cParams->searchLog - rowLog) : 0;
1168 }
1169
1170 if (dictMode == ZSTD_dictMatchState) {
1171 /* Prefetch DMS rows */
1172 U32* const dmsHashTable = dms->hashTable;
1173 BYTE* const dmsTagTable = dms->tagTable;
1174 U32 const dmsHash = (U32)ZSTD_hashPtr(ip, dms->rowHashLog + ZSTD_ROW_HASH_TAG_BITS, mls);
1175 U32 const dmsRelRow = (dmsHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
1176 dmsTag = dmsHash & ZSTD_ROW_HASH_TAG_MASK;
1177 dmsTagRow = (BYTE*)(dmsTagTable + dmsRelRow);
1178 dmsRow = dmsHashTable + dmsRelRow;
1179 ZSTD_row_prefetch(dmsHashTable, dmsTagTable, dmsRelRow, rowLog);
1180 }
1181
1182 /* Update the hashTable and tagTable up to (but not including) ip */
1183 if (!ms->lazySkipping) {
1184 ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 1 /* useCache */);
1185 hash = ZSTD_row_nextCachedHash(hashCache, hashTable, tagTable, base, curr, hashLog, rowLog, mls, hashSalt);
1186 } else {
1187 /* Stop inserting every position when in the lazy skipping mode.
1188 * The hash cache is also not kept up to date in this mode.
1189 */
1190 hash = (U32)ZSTD_hashPtrSalted(ip, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, hashSalt);
1191 ms->nextToUpdate = curr;
1192 }
1193 ms->hashSaltEntropy += hash; /* collect salt entropy */
1194
1195 { /* Get the hash for ip, compute the appropriate row */
1196 U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
1197 U32 const tag = hash & ZSTD_ROW_HASH_TAG_MASK;
1198 U32* const row = hashTable + relRow;
1199 BYTE* tagRow = (BYTE*)(tagTable + relRow);
1200 U32 const headGrouped = (*tagRow & rowMask) * groupWidth;
1201 U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES];
1202 size_t numMatches = 0;
1203 size_t currMatch = 0;
1204 ZSTD_VecMask matches = ZSTD_row_getMatchMask(tagRow, (BYTE)tag, headGrouped, rowEntries);
1205
1206 /* Cycle through the matches and prefetch */
1207 for (; (matches > 0) && (nbAttempts > 0); matches &= (matches - 1)) {
1208 U32 const matchPos = ((headGrouped + ZSTD_VecMask_next(matches)) / groupWidth) & rowMask;
1209 U32 const matchIndex = row[matchPos];
1210 if(matchPos == 0) continue;
1211 assert(numMatches < rowEntries);
1212 if (matchIndex < lowLimit)
1213 break;
1214 if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
1215 PREFETCH_L1(base + matchIndex);
1216 } else {
1217 PREFETCH_L1(dictBase + matchIndex);
1218 }
1219 matchBuffer[numMatches++] = matchIndex;
1220 --nbAttempts;
1221 }
1222
1223 /* Speed opt: insert current byte into hashtable too. This allows us to avoid one iteration of the loop
1224 in ZSTD_row_update_internal() at the next search. */
1225 {
1226 U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask);
1227 tagRow[pos] = (BYTE)tag;
1228 row[pos] = ms->nextToUpdate++;
1229 }
1230
1231 /* Return the longest match */
1232 for (; currMatch < numMatches; ++currMatch) {
1233 U32 const matchIndex = matchBuffer[currMatch];
1234 size_t currentMl=0;
1235 assert(matchIndex < curr);
1236 assert(matchIndex >= lowLimit);
1237
1238 if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
1239 const BYTE* const match = base + matchIndex;
1240 assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */
1241 /* read 4B starting from (match + ml + 1 - sizeof(U32)) */
1242 if (MEM_read32(match + ml - 3) == MEM_read32(ip + ml - 3)) /* potentially better */
1243 currentMl = ZSTD_count(ip, match, iLimit);
1244 } else {
1245 const BYTE* const match = dictBase + matchIndex;
1246 assert(match+4 <= dictEnd);
1247 if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
1248 currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4;
1249 }
1250
1251 /* Save best solution */
1252 if (currentMl > ml) {
1253 ml = currentMl;
1254 *offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex);
1255 if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
1256 }
1257 }
1258 }
1259
1260 assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
1261 if (dictMode == ZSTD_dedicatedDictSearch) {
1262 ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts + ddsExtraAttempts, dms,
1263 ip, iLimit, prefixStart, curr, dictLimit, ddsIdx);
1264 } else if (dictMode == ZSTD_dictMatchState) {
1265 /* TODO: Measure and potentially add prefetching to DMS */
1266 const U32 dmsLowestIndex = dms->window.dictLimit;
1267 const BYTE* const dmsBase = dms->window.base;
1268 const BYTE* const dmsEnd = dms->window.nextSrc;
1269 const U32 dmsSize = (U32)(dmsEnd - dmsBase);
1270 const U32 dmsIndexDelta = dictLimit - dmsSize;
1271
1272 { U32 const headGrouped = (*dmsTagRow & rowMask) * groupWidth;
1273 U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES];
1274 size_t numMatches = 0;
1275 size_t currMatch = 0;
1276 ZSTD_VecMask matches = ZSTD_row_getMatchMask(dmsTagRow, (BYTE)dmsTag, headGrouped, rowEntries);
1277
1278 for (; (matches > 0) && (nbAttempts > 0); matches &= (matches - 1)) {
1279 U32 const matchPos = ((headGrouped + ZSTD_VecMask_next(matches)) / groupWidth) & rowMask;
1280 U32 const matchIndex = dmsRow[matchPos];
1281 if(matchPos == 0) continue;
1282 if (matchIndex < dmsLowestIndex)
1283 break;
1284 PREFETCH_L1(dmsBase + matchIndex);
1285 matchBuffer[numMatches++] = matchIndex;
1286 --nbAttempts;
1287 }
1288
1289 /* Return the longest match */
1290 for (; currMatch < numMatches; ++currMatch) {
1291 U32 const matchIndex = matchBuffer[currMatch];
1292 size_t currentMl=0;
1293 assert(matchIndex >= dmsLowestIndex);
1294 assert(matchIndex < curr);
1295
1296 { const BYTE* const match = dmsBase + matchIndex;
1297 assert(match+4 <= dmsEnd);
1298 if (MEM_read32(match) == MEM_read32(ip))
1299 currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4;
1300 }
1301
1302 if (currentMl > ml) {
1303 ml = currentMl;
1304 assert(curr > matchIndex + dmsIndexDelta);
1305 *offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + dmsIndexDelta));
1306 if (ip+currentMl == iLimit) break;
1307 }
1308 }
1309 }
1310 }
1311 return ml;
1312}
1313
1314
1315/**
1316 * Generate search functions templated on (dictMode, mls, rowLog).
1317 * These functions are outlined for code size & compilation time.
1318 * ZSTD_searchMax() dispatches to the correct implementation function.
1319 *
1320 * TODO: The start of the search function involves loading and calculating a
1321 * bunch of constants from the ZSTD_matchState_t. These computations could be
1322 * done in an initialization function, and saved somewhere in the match state.
1323 * Then we could pass a pointer to the saved state instead of the match state,
1324 * and avoid duplicate computations.
1325 *
1326 * TODO: Move the match re-winding into searchMax. This improves compression
1327 * ratio, and unlocks further simplifications with the next TODO.
1328 *
1329 * TODO: Try moving the repcode search into searchMax. After the re-winding
1330 * and repcode search are in searchMax, there is no more logic in the match
1331 * finder loop that requires knowledge about the dictMode. So we should be
1332 * able to avoid force inlining it, and we can join the extDict loop with
1333 * the single segment loop. It should go in searchMax instead of its own
1334 * function to avoid having multiple virtual function calls per search.
1335 */
1336
1337#define ZSTD_BT_SEARCH_FN(dictMode, mls) ZSTD_BtFindBestMatch_##dictMode##_##mls
1338#define ZSTD_HC_SEARCH_FN(dictMode, mls) ZSTD_HcFindBestMatch_##dictMode##_##mls
1339#define ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog) ZSTD_RowFindBestMatch_##dictMode##_##mls##_##rowLog
1340
1341#define ZSTD_SEARCH_FN_ATTRS FORCE_NOINLINE
1342
1343#define GEN_ZSTD_BT_SEARCH_FN(dictMode, mls) \
1344 ZSTD_SEARCH_FN_ATTRS size_t ZSTD_BT_SEARCH_FN(dictMode, mls)( \
1345 ZSTD_matchState_t* ms, \
1346 const BYTE* ip, const BYTE* const iLimit, \
1347 size_t* offBasePtr) \
1348 { \
1349 assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \
1350 return ZSTD_BtFindBestMatch(ms, ip, iLimit, offBasePtr, mls, ZSTD_##dictMode); \
1351 } \
1352
1353#define GEN_ZSTD_HC_SEARCH_FN(dictMode, mls) \
1354 ZSTD_SEARCH_FN_ATTRS size_t ZSTD_HC_SEARCH_FN(dictMode, mls)( \
1355 ZSTD_matchState_t* ms, \
1356 const BYTE* ip, const BYTE* const iLimit, \
1357 size_t* offsetPtr) \
1358 { \
1359 assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \
1360 return ZSTD_HcFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode); \
1361 } \
1362
1363#define GEN_ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog) \
1364 ZSTD_SEARCH_FN_ATTRS size_t ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog)( \
1365 ZSTD_matchState_t* ms, \
1366 const BYTE* ip, const BYTE* const iLimit, \
1367 size_t* offsetPtr) \
1368 { \
1369 assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \
1370 assert(MAX(4, MIN(6, ms->cParams.searchLog)) == rowLog); \
1371 return ZSTD_RowFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode, rowLog); \
1372 } \
1373
1374#define ZSTD_FOR_EACH_ROWLOG(X, dictMode, mls) \
1375 X(dictMode, mls, 4) \
1376 X(dictMode, mls, 5) \
1377 X(dictMode, mls, 6)
1378
1379#define ZSTD_FOR_EACH_MLS_ROWLOG(X, dictMode) \
1380 ZSTD_FOR_EACH_ROWLOG(X, dictMode, 4) \
1381 ZSTD_FOR_EACH_ROWLOG(X, dictMode, 5) \
1382 ZSTD_FOR_EACH_ROWLOG(X, dictMode, 6)
1383
1384#define ZSTD_FOR_EACH_MLS(X, dictMode) \
1385 X(dictMode, 4) \
1386 X(dictMode, 5) \
1387 X(dictMode, 6)
1388
1389#define ZSTD_FOR_EACH_DICT_MODE(X, ...) \
1390 X(__VA_ARGS__, noDict) \
1391 X(__VA_ARGS__, extDict) \
1392 X(__VA_ARGS__, dictMatchState) \
1393 X(__VA_ARGS__, dedicatedDictSearch)
1394
1395/* Generate row search fns for each combination of (dictMode, mls, rowLog) */
1396ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS_ROWLOG, GEN_ZSTD_ROW_SEARCH_FN)
1397/* Generate binary Tree search fns for each combination of (dictMode, mls) */
1398ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_BT_SEARCH_FN)
1399/* Generate hash chain search fns for each combination of (dictMode, mls) */
1400ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_HC_SEARCH_FN)
1401
1402typedef enum { search_hashChain=0, search_binaryTree=1, search_rowHash=2 } searchMethod_e;
1403
1404#define GEN_ZSTD_CALL_BT_SEARCH_FN(dictMode, mls) \
1405 case mls: \
1406 return ZSTD_BT_SEARCH_FN(dictMode, mls)(ms, ip, iend, offsetPtr);
1407#define GEN_ZSTD_CALL_HC_SEARCH_FN(dictMode, mls) \
1408 case mls: \
1409 return ZSTD_HC_SEARCH_FN(dictMode, mls)(ms, ip, iend, offsetPtr);
1410#define GEN_ZSTD_CALL_ROW_SEARCH_FN(dictMode, mls, rowLog) \
1411 case rowLog: \
1412 return ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog)(ms, ip, iend, offsetPtr);
1413
1414#define ZSTD_SWITCH_MLS(X, dictMode) \
1415 switch (mls) { \
1416 ZSTD_FOR_EACH_MLS(X, dictMode) \
1417 }
1418
1419#define ZSTD_SWITCH_ROWLOG(dictMode, mls) \
1420 case mls: \
1421 switch (rowLog) { \
1422 ZSTD_FOR_EACH_ROWLOG(GEN_ZSTD_CALL_ROW_SEARCH_FN, dictMode, mls) \
1423 } \
1424 ZSTD_UNREACHABLE; \
1425 break;
1426
1427#define ZSTD_SWITCH_SEARCH_METHOD(dictMode) \
1428 switch (searchMethod) { \
1429 case search_hashChain: \
1430 ZSTD_SWITCH_MLS(GEN_ZSTD_CALL_HC_SEARCH_FN, dictMode) \
1431 break; \
1432 case search_binaryTree: \
1433 ZSTD_SWITCH_MLS(GEN_ZSTD_CALL_BT_SEARCH_FN, dictMode) \
1434 break; \
1435 case search_rowHash: \
1436 ZSTD_SWITCH_MLS(ZSTD_SWITCH_ROWLOG, dictMode) \
1437 break; \
1438 } \
1439 ZSTD_UNREACHABLE;
1440
1441/**
1442 * Searches for the longest match at @p ip.
1443 * Dispatches to the correct implementation function based on the
1444 * (searchMethod, dictMode, mls, rowLog). We use switch statements
1445 * here instead of using an indirect function call through a function
1446 * pointer because after Spectre and Meltdown mitigations, indirect
1447 * function calls can be very costly, especially in the kernel.
1448 *
1449 * NOTE: dictMode and searchMethod should be templated, so those switch
1450 * statements should be optimized out. Only the mls & rowLog switches
1451 * should be left.
1452 *
1453 * @param ms The match state.
1454 * @param ip The position to search at.
1455 * @param iend The end of the input data.
1456 * @param[out] offsetPtr Stores the match offset into this pointer.
1457 * @param mls The minimum search length, in the range [4, 6].
1458 * @param rowLog The row log (if applicable), in the range [4, 6].
1459 * @param searchMethod The search method to use (templated).
1460 * @param dictMode The dictMode (templated).
1461 *
1462 * @returns The length of the longest match found, or < mls if no match is found.
1463 * If a match is found its offset is stored in @p offsetPtr.
1464 */
1465FORCE_INLINE_TEMPLATE size_t ZSTD_searchMax(
1466 ZSTD_matchState_t* ms,
1467 const BYTE* ip,
1468 const BYTE* iend,
1469 size_t* offsetPtr,
1470 U32 const mls,
1471 U32 const rowLog,
1472 searchMethod_e const searchMethod,
1473 ZSTD_dictMode_e const dictMode)
1474{
1475 if (dictMode == ZSTD_noDict) {
1476 ZSTD_SWITCH_SEARCH_METHOD(noDict)
1477 } else if (dictMode == ZSTD_extDict) {
1478 ZSTD_SWITCH_SEARCH_METHOD(extDict)
1479 } else if (dictMode == ZSTD_dictMatchState) {
1480 ZSTD_SWITCH_SEARCH_METHOD(dictMatchState)
1481 } else if (dictMode == ZSTD_dedicatedDictSearch) {
1482 ZSTD_SWITCH_SEARCH_METHOD(dedicatedDictSearch)
1483 }
1484 ZSTD_UNREACHABLE;
1485 return 0;
1486}
1487
1488/* *******************************
1489* Common parser - lazy strategy
1490*********************************/
1491
1492FORCE_INLINE_TEMPLATE size_t
1493ZSTD_compressBlock_lazy_generic(
1494 ZSTD_matchState_t* ms, seqStore_t* seqStore,
1495 U32 rep[ZSTD_REP_NUM],
1496 const void* src, size_t srcSize,
1497 const searchMethod_e searchMethod, const U32 depth,
1498 ZSTD_dictMode_e const dictMode)
1499{
1500 const BYTE* const istart = (const BYTE*)src;
1501 const BYTE* ip = istart;
1502 const BYTE* anchor = istart;
1503 const BYTE* const iend = istart + srcSize;
1504 const BYTE* const ilimit = (searchMethod == search_rowHash) ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8;
1505 const BYTE* const base = ms->window.base;
1506 const U32 prefixLowestIndex = ms->window.dictLimit;
1507 const BYTE* const prefixLowest = base + prefixLowestIndex;
1508 const U32 mls = BOUNDED(4, ms->cParams.minMatch, 6);
1509 const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6);
1510
1511 U32 offset_1 = rep[0], offset_2 = rep[1];
1512 U32 offsetSaved1 = 0, offsetSaved2 = 0;
1513
1514 const int isDMS = dictMode == ZSTD_dictMatchState;
1515 const int isDDS = dictMode == ZSTD_dedicatedDictSearch;
1516 const int isDxS = isDMS || isDDS;
1517 const ZSTD_matchState_t* const dms = ms->dictMatchState;
1518 const U32 dictLowestIndex = isDxS ? dms->window.dictLimit : 0;
1519 const BYTE* const dictBase = isDxS ? dms->window.base : NULL;
1520 const BYTE* const dictLowest = isDxS ? dictBase + dictLowestIndex : NULL;
1521 const BYTE* const dictEnd = isDxS ? dms->window.nextSrc : NULL;
1522 const U32 dictIndexDelta = isDxS ?
1523 prefixLowestIndex - (U32)(dictEnd - dictBase) :
1524 0;
1525 const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictLowest));
1526
1527 DEBUGLOG(5, "ZSTD_compressBlock_lazy_generic (dictMode=%u) (searchFunc=%u)", (U32)dictMode, (U32)searchMethod);
1528 ip += (dictAndPrefixLength == 0);
1529 if (dictMode == ZSTD_noDict) {
1530 U32 const curr = (U32)(ip - base);
1531 U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, ms->cParams.windowLog);
1532 U32 const maxRep = curr - windowLow;
1533 if (offset_2 > maxRep) offsetSaved2 = offset_2, offset_2 = 0;
1534 if (offset_1 > maxRep) offsetSaved1 = offset_1, offset_1 = 0;
1535 }
1536 if (isDxS) {
1537 /* dictMatchState repCode checks don't currently handle repCode == 0
1538 * disabling. */
1539 assert(offset_1 <= dictAndPrefixLength);
1540 assert(offset_2 <= dictAndPrefixLength);
1541 }
1542
1543 /* Reset the lazy skipping state */
1544 ms->lazySkipping = 0;
1545
1546 if (searchMethod == search_rowHash) {
1547 ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit);
1548 }
1549
1550 /* Match Loop */
1551#if defined(__GNUC__) && defined(__x86_64__)
1552 /* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the
1553 * code alignment is perturbed. To fix the instability align the loop on 32-bytes.
1554 */
1555 __asm__(".p2align 5");
1556#endif
1557 while (ip < ilimit) {
1558 size_t matchLength=0;
1559 size_t offBase = REPCODE1_TO_OFFBASE;
1560 const BYTE* start=ip+1;
1561 DEBUGLOG(7, "search baseline (depth 0)");
1562
1563 /* check repCode */
1564 if (isDxS) {
1565 const U32 repIndex = (U32)(ip - base) + 1 - offset_1;
1566 const BYTE* repMatch = ((dictMode == ZSTD_dictMatchState || dictMode == ZSTD_dedicatedDictSearch)
1567 && repIndex < prefixLowestIndex) ?
1568 dictBase + (repIndex - dictIndexDelta) :
1569 base + repIndex;
1570 if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
1571 && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
1572 const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
1573 matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
1574 if (depth==0) goto _storeSequence;
1575 }
1576 }
1577 if ( dictMode == ZSTD_noDict
1578 && ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
1579 matchLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
1580 if (depth==0) goto _storeSequence;
1581 }
1582
1583 /* first search (depth 0) */
1584 { size_t offbaseFound = 999999999;
1585 size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &offbaseFound, mls, rowLog, searchMethod, dictMode);
1586 if (ml2 > matchLength)
1587 matchLength = ml2, start = ip, offBase = offbaseFound;
1588 }
1589
1590 if (matchLength < 4) {
1591 size_t const step = ((size_t)(ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */;
1592 ip += step;
1593 /* Enter the lazy skipping mode once we are skipping more than 8 bytes at a time.
1594 * In this mode we stop inserting every position into our tables, and only insert
1595 * positions that we search, which is one in step positions.
1596 * The exact cutoff is flexible, I've just chosen a number that is reasonably high,
1597 * so we minimize the compression ratio loss in "normal" scenarios. This mode gets
1598 * triggered once we've gone 2KB without finding any matches.
1599 */
1600 ms->lazySkipping = step > kLazySkippingStep;
1601 continue;
1602 }
1603
1604 /* let's try to find a better solution */
1605 if (depth>=1)
1606 while (ip<ilimit) {
1607 DEBUGLOG(7, "search depth 1");
1608 ip ++;
1609 if ( (dictMode == ZSTD_noDict)
1610 && (offBase) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
1611 size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4;
1612 int const gain2 = (int)(mlRep * 3);
1613 int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1);
1614 if ((mlRep >= 4) && (gain2 > gain1))
1615 matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip;
1616 }
1617 if (isDxS) {
1618 const U32 repIndex = (U32)(ip - base) - offset_1;
1619 const BYTE* repMatch = repIndex < prefixLowestIndex ?
1620 dictBase + (repIndex - dictIndexDelta) :
1621 base + repIndex;
1622 if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
1623 && (MEM_read32(repMatch) == MEM_read32(ip)) ) {
1624 const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
1625 size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
1626 int const gain2 = (int)(mlRep * 3);
1627 int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1);
1628 if ((mlRep >= 4) && (gain2 > gain1))
1629 matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip;
1630 }
1631 }
1632 { size_t ofbCandidate=999999999;
1633 size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, dictMode);
1634 int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */
1635 int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 4);
1636 if ((ml2 >= 4) && (gain2 > gain1)) {
1637 matchLength = ml2, offBase = ofbCandidate, start = ip;
1638 continue; /* search a better one */
1639 } }
1640
1641 /* let's find an even better one */
1642 if ((depth==2) && (ip<ilimit)) {
1643 DEBUGLOG(7, "search depth 2");
1644 ip ++;
1645 if ( (dictMode == ZSTD_noDict)
1646 && (offBase) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
1647 size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4;
1648 int const gain2 = (int)(mlRep * 4);
1649 int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1);
1650 if ((mlRep >= 4) && (gain2 > gain1))
1651 matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip;
1652 }
1653 if (isDxS) {
1654 const U32 repIndex = (U32)(ip - base) - offset_1;
1655 const BYTE* repMatch = repIndex < prefixLowestIndex ?
1656 dictBase + (repIndex - dictIndexDelta) :
1657 base + repIndex;
1658 if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
1659 && (MEM_read32(repMatch) == MEM_read32(ip)) ) {
1660 const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
1661 size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
1662 int const gain2 = (int)(mlRep * 4);
1663 int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1);
1664 if ((mlRep >= 4) && (gain2 > gain1))
1665 matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip;
1666 }
1667 }
1668 { size_t ofbCandidate=999999999;
1669 size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, dictMode);
1670 int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */
1671 int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 7);
1672 if ((ml2 >= 4) && (gain2 > gain1)) {
1673 matchLength = ml2, offBase = ofbCandidate, start = ip;
1674 continue;
1675 } } }
1676 break; /* nothing found : store previous solution */
1677 }
1678
1679 /* NOTE:
1680 * Pay attention that `start[-value]` can lead to strange undefined behavior
1681 * notably if `value` is unsigned, resulting in a large positive `-value`.
1682 */
1683 /* catch up */
1684 if (OFFBASE_IS_OFFSET(offBase)) {
1685 if (dictMode == ZSTD_noDict) {
1686 while ( ((start > anchor) & (start - OFFBASE_TO_OFFSET(offBase) > prefixLowest))
1687 && (start[-1] == (start-OFFBASE_TO_OFFSET(offBase))[-1]) ) /* only search for offset within prefix */
1688 { start--; matchLength++; }
1689 }
1690 if (isDxS) {
1691 U32 const matchIndex = (U32)((size_t)(start-base) - OFFBASE_TO_OFFSET(offBase));
1692 const BYTE* match = (matchIndex < prefixLowestIndex) ? dictBase + matchIndex - dictIndexDelta : base + matchIndex;
1693 const BYTE* const mStart = (matchIndex < prefixLowestIndex) ? dictLowest : prefixLowest;
1694 while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */
1695 }
1696 offset_2 = offset_1; offset_1 = (U32)OFFBASE_TO_OFFSET(offBase);
1697 }
1698 /* store sequence */
1699_storeSequence:
1700 { size_t const litLength = (size_t)(start - anchor);
1701 ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offBase, matchLength);
1702 anchor = ip = start + matchLength;
1703 }
1704 if (ms->lazySkipping) {
1705 /* We've found a match, disable lazy skipping mode, and refill the hash cache. */
1706 if (searchMethod == search_rowHash) {
1707 ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit);
1708 }
1709 ms->lazySkipping = 0;
1710 }
1711
1712 /* check immediate repcode */
1713 if (isDxS) {
1714 while (ip <= ilimit) {
1715 U32 const current2 = (U32)(ip-base);
1716 U32 const repIndex = current2 - offset_2;
1717 const BYTE* repMatch = repIndex < prefixLowestIndex ?
1718 dictBase - dictIndexDelta + repIndex :
1719 base + repIndex;
1720 if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex) >= 3 /* intentional overflow */)
1721 && (MEM_read32(repMatch) == MEM_read32(ip)) ) {
1722 const BYTE* const repEnd2 = repIndex < prefixLowestIndex ? dictEnd : iend;
1723 matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd2, prefixLowest) + 4;
1724 offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap offset_2 <=> offset_1 */
1725 ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength);
1726 ip += matchLength;
1727 anchor = ip;
1728 continue;
1729 }
1730 break;
1731 }
1732 }
1733
1734 if (dictMode == ZSTD_noDict) {
1735 while ( ((ip <= ilimit) & (offset_2>0))
1736 && (MEM_read32(ip) == MEM_read32(ip - offset_2)) ) {
1737 /* store sequence */
1738 matchLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
1739 offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap repcodes */
1740 ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength);
1741 ip += matchLength;
1742 anchor = ip;
1743 continue; /* faster when present ... (?) */
1744 } } }
1745
1746 /* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0),
1747 * rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */
1748 offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2;
1749
1750 /* save reps for next block */
1751 rep[0] = offset_1 ? offset_1 : offsetSaved1;
1752 rep[1] = offset_2 ? offset_2 : offsetSaved2;
1753
1754 /* Return the last literals size */
1755 return (size_t)(iend - anchor);
1756}
1757
1758
1759size_t ZSTD_compressBlock_btlazy2(
1760 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1761 void const* src, size_t srcSize)
1762{
1763 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_noDict);
1764}
1765
1766size_t ZSTD_compressBlock_lazy2(
1767 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1768 void const* src, size_t srcSize)
1769{
1770 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_noDict);
1771}
1772
1773size_t ZSTD_compressBlock_lazy(
1774 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1775 void const* src, size_t srcSize)
1776{
1777 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_noDict);
1778}
1779
1780size_t ZSTD_compressBlock_greedy(
1781 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1782 void const* src, size_t srcSize)
1783{
1784 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_noDict);
1785}
1786
1787size_t ZSTD_compressBlock_btlazy2_dictMatchState(
1788 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1789 void const* src, size_t srcSize)
1790{
1791 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_dictMatchState);
1792}
1793
1794size_t ZSTD_compressBlock_lazy2_dictMatchState(
1795 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1796 void const* src, size_t srcSize)
1797{
1798 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dictMatchState);
1799}
1800
1801size_t ZSTD_compressBlock_lazy_dictMatchState(
1802 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1803 void const* src, size_t srcSize)
1804{
1805 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dictMatchState);
1806}
1807
1808size_t ZSTD_compressBlock_greedy_dictMatchState(
1809 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1810 void const* src, size_t srcSize)
1811{
1812 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dictMatchState);
1813}
1814
1815
1816size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch(
1817 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1818 void const* src, size_t srcSize)
1819{
1820 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dedicatedDictSearch);
1821}
1822
1823size_t ZSTD_compressBlock_lazy_dedicatedDictSearch(
1824 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1825 void const* src, size_t srcSize)
1826{
1827 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dedicatedDictSearch);
1828}
1829
1830size_t ZSTD_compressBlock_greedy_dedicatedDictSearch(
1831 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1832 void const* src, size_t srcSize)
1833{
1834 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dedicatedDictSearch);
1835}
1836
1837/* Row-based matchfinder */
1838size_t ZSTD_compressBlock_lazy2_row(
1839 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1840 void const* src, size_t srcSize)
1841{
1842 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_noDict);
1843}
1844
1845size_t ZSTD_compressBlock_lazy_row(
1846 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1847 void const* src, size_t srcSize)
1848{
1849 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_noDict);
1850}
1851
1852size_t ZSTD_compressBlock_greedy_row(
1853 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1854 void const* src, size_t srcSize)
1855{
1856 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_noDict);
1857}
1858
1859size_t ZSTD_compressBlock_lazy2_dictMatchState_row(
1860 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1861 void const* src, size_t srcSize)
1862{
1863 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dictMatchState);
1864}
1865
1866size_t ZSTD_compressBlock_lazy_dictMatchState_row(
1867 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1868 void const* src, size_t srcSize)
1869{
1870 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dictMatchState);
1871}
1872
1873size_t ZSTD_compressBlock_greedy_dictMatchState_row(
1874 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1875 void const* src, size_t srcSize)
1876{
1877 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dictMatchState);
1878}
1879
1880
1881size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch_row(
1882 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1883 void const* src, size_t srcSize)
1884{
1885 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dedicatedDictSearch);
1886}
1887
1888size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row(
1889 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1890 void const* src, size_t srcSize)
1891{
1892 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dedicatedDictSearch);
1893}
1894
1895size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row(
1896 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1897 void const* src, size_t srcSize)
1898{
1899 return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dedicatedDictSearch);
1900}
1901
1902FORCE_INLINE_TEMPLATE
1903size_t ZSTD_compressBlock_lazy_extDict_generic(
1904 ZSTD_matchState_t* ms, seqStore_t* seqStore,
1905 U32 rep[ZSTD_REP_NUM],
1906 const void* src, size_t srcSize,
1907 const searchMethod_e searchMethod, const U32 depth)
1908{
1909 const BYTE* const istart = (const BYTE*)src;
1910 const BYTE* ip = istart;
1911 const BYTE* anchor = istart;
1912 const BYTE* const iend = istart + srcSize;
1913 const BYTE* const ilimit = searchMethod == search_rowHash ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8;
1914 const BYTE* const base = ms->window.base;
1915 const U32 dictLimit = ms->window.dictLimit;
1916 const BYTE* const prefixStart = base + dictLimit;
1917 const BYTE* const dictBase = ms->window.dictBase;
1918 const BYTE* const dictEnd = dictBase + dictLimit;
1919 const BYTE* const dictStart = dictBase + ms->window.lowLimit;
1920 const U32 windowLog = ms->cParams.windowLog;
1921 const U32 mls = BOUNDED(4, ms->cParams.minMatch, 6);
1922 const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6);
1923
1924 U32 offset_1 = rep[0], offset_2 = rep[1];
1925
1926 DEBUGLOG(5, "ZSTD_compressBlock_lazy_extDict_generic (searchFunc=%u)", (U32)searchMethod);
1927
1928 /* Reset the lazy skipping state */
1929 ms->lazySkipping = 0;
1930
1931 /* init */
1932 ip += (ip == prefixStart);
1933 if (searchMethod == search_rowHash) {
1934 ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit);
1935 }
1936
1937 /* Match Loop */
1938#if defined(__GNUC__) && defined(__x86_64__)
1939 /* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the
1940 * code alignment is perturbed. To fix the instability align the loop on 32-bytes.
1941 */
1942 __asm__(".p2align 5");
1943#endif
1944 while (ip < ilimit) {
1945 size_t matchLength=0;
1946 size_t offBase = REPCODE1_TO_OFFBASE;
1947 const BYTE* start=ip+1;
1948 U32 curr = (U32)(ip-base);
1949
1950 /* check repCode */
1951 { const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr+1, windowLog);
1952 const U32 repIndex = (U32)(curr+1 - offset_1);
1953 const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
1954 const BYTE* const repMatch = repBase + repIndex;
1955 if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow */
1956 & (offset_1 <= curr+1 - windowLow) ) /* note: we are searching at curr+1 */
1957 if (MEM_read32(ip+1) == MEM_read32(repMatch)) {
1958 /* repcode detected we should take it */
1959 const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
1960 matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repEnd, prefixStart) + 4;
1961 if (depth==0) goto _storeSequence;
1962 } }
1963
1964 /* first search (depth 0) */
1965 { size_t ofbCandidate = 999999999;
1966 size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict);
1967 if (ml2 > matchLength)
1968 matchLength = ml2, start = ip, offBase = ofbCandidate;
1969 }
1970
1971 if (matchLength < 4) {
1972 size_t const step = ((size_t)(ip-anchor) >> kSearchStrength);
1973 ip += step + 1; /* jump faster over incompressible sections */
1974 /* Enter the lazy skipping mode once we are skipping more than 8 bytes at a time.
1975 * In this mode we stop inserting every position into our tables, and only insert
1976 * positions that we search, which is one in step positions.
1977 * The exact cutoff is flexible, I've just chosen a number that is reasonably high,
1978 * so we minimize the compression ratio loss in "normal" scenarios. This mode gets
1979 * triggered once we've gone 2KB without finding any matches.
1980 */
1981 ms->lazySkipping = step > kLazySkippingStep;
1982 continue;
1983 }
1984
1985 /* let's try to find a better solution */
1986 if (depth>=1)
1987 while (ip<ilimit) {
1988 ip ++;
1989 curr++;
1990 /* check repCode */
1991 if (offBase) {
1992 const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog);
1993 const U32 repIndex = (U32)(curr - offset_1);
1994 const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
1995 const BYTE* const repMatch = repBase + repIndex;
1996 if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */
1997 & (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
1998 if (MEM_read32(ip) == MEM_read32(repMatch)) {
1999 /* repcode detected */
2000 const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
2001 size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
2002 int const gain2 = (int)(repLength * 3);
2003 int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1);
2004 if ((repLength >= 4) && (gain2 > gain1))
2005 matchLength = repLength, offBase = REPCODE1_TO_OFFBASE, start = ip;
2006 } }
2007
2008 /* search match, depth 1 */
2009 { size_t ofbCandidate = 999999999;
2010 size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict);
2011 int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */
2012 int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 4);
2013 if ((ml2 >= 4) && (gain2 > gain1)) {
2014 matchLength = ml2, offBase = ofbCandidate, start = ip;
2015 continue; /* search a better one */
2016 } }
2017
2018 /* let's find an even better one */
2019 if ((depth==2) && (ip<ilimit)) {
2020 ip ++;
2021 curr++;
2022 /* check repCode */
2023 if (offBase) {
2024 const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog);
2025 const U32 repIndex = (U32)(curr - offset_1);
2026 const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
2027 const BYTE* const repMatch = repBase + repIndex;
2028 if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */
2029 & (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
2030 if (MEM_read32(ip) == MEM_read32(repMatch)) {
2031 /* repcode detected */
2032 const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
2033 size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
2034 int const gain2 = (int)(repLength * 4);
2035 int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1);
2036 if ((repLength >= 4) && (gain2 > gain1))
2037 matchLength = repLength, offBase = REPCODE1_TO_OFFBASE, start = ip;
2038 } }
2039
2040 /* search match, depth 2 */
2041 { size_t ofbCandidate = 999999999;
2042 size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict);
2043 int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */
2044 int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 7);
2045 if ((ml2 >= 4) && (gain2 > gain1)) {
2046 matchLength = ml2, offBase = ofbCandidate, start = ip;
2047 continue;
2048 } } }
2049 break; /* nothing found : store previous solution */
2050 }
2051
2052 /* catch up */
2053 if (OFFBASE_IS_OFFSET(offBase)) {
2054 U32 const matchIndex = (U32)((size_t)(start-base) - OFFBASE_TO_OFFSET(offBase));
2055 const BYTE* match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex;
2056 const BYTE* const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart;
2057 while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */
2058 offset_2 = offset_1; offset_1 = (U32)OFFBASE_TO_OFFSET(offBase);
2059 }
2060
2061 /* store sequence */
2062_storeSequence:
2063 { size_t const litLength = (size_t)(start - anchor);
2064 ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offBase, matchLength);
2065 anchor = ip = start + matchLength;
2066 }
2067 if (ms->lazySkipping) {
2068 /* We've found a match, disable lazy skipping mode, and refill the hash cache. */
2069 if (searchMethod == search_rowHash) {
2070 ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit);
2071 }
2072 ms->lazySkipping = 0;
2073 }
2074
2075 /* check immediate repcode */
2076 while (ip <= ilimit) {
2077 const U32 repCurrent = (U32)(ip-base);
2078 const U32 windowLow = ZSTD_getLowestMatchIndex(ms, repCurrent, windowLog);
2079 const U32 repIndex = repCurrent - offset_2;
2080 const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
2081 const BYTE* const repMatch = repBase + repIndex;
2082 if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */
2083 & (offset_2 <= repCurrent - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
2084 if (MEM_read32(ip) == MEM_read32(repMatch)) {
2085 /* repcode detected we should take it */
2086 const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
2087 matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
2088 offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap offset history */
2089 ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength);
2090 ip += matchLength;
2091 anchor = ip;
2092 continue; /* faster when present ... (?) */
2093 }
2094 break;
2095 } }
2096
2097 /* Save reps for next block */
2098 rep[0] = offset_1;
2099 rep[1] = offset_2;
2100
2101 /* Return the last literals size */
2102 return (size_t)(iend - anchor);
2103}
2104
2105
2106size_t ZSTD_compressBlock_greedy_extDict(
2107 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2108 void const* src, size_t srcSize)
2109{
2110 return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0);
2111}
2112
2113size_t ZSTD_compressBlock_lazy_extDict(
2114 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2115 void const* src, size_t srcSize)
2116
2117{
2118 return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1);
2119}
2120
2121size_t ZSTD_compressBlock_lazy2_extDict(
2122 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2123 void const* src, size_t srcSize)
2124
2125{
2126 return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2);
2127}
2128
2129size_t ZSTD_compressBlock_btlazy2_extDict(
2130 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2131 void const* src, size_t srcSize)
2132
2133{
2134 return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2);
2135}
2136
2137size_t ZSTD_compressBlock_greedy_extDict_row(
2138 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2139 void const* src, size_t srcSize)
2140{
2141 return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0);
2142}
2143
2144size_t ZSTD_compressBlock_lazy_extDict_row(
2145 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2146 void const* src, size_t srcSize)
2147
2148{
2149 return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1);
2150}
2151
2152size_t ZSTD_compressBlock_lazy2_extDict_row(
2153 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2154 void const* src, size_t srcSize)
2155{
2156 return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2);
2157}