git subrepo pull (merge) --force deps/libchdr
[pcsx_rearmed.git] / deps / libchdr / deps / zstd-1.5.5 / lib / dictBuilder / cover.c
CommitLineData
648db22b 1/*
2 * Copyright (c) Meta Platforms, Inc. and affiliates.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11/* *****************************************************************************
12 * Constructs a dictionary using a heuristic based on the following paper:
13 *
14 * Liao, Petri, Moffat, Wirth
15 * Effective Construction of Relative Lempel-Ziv Dictionaries
16 * Published in WWW 2016.
17 *
18 * Adapted from code originally written by @ot (Giuseppe Ottaviano).
19 ******************************************************************************/
20
21/*-*************************************
22* Dependencies
23***************************************/
24#include <stdio.h> /* fprintf */
25#include <stdlib.h> /* malloc, free, qsort */
26#include <string.h> /* memset */
27#include <time.h> /* clock */
28
29#ifndef ZDICT_STATIC_LINKING_ONLY
30# define ZDICT_STATIC_LINKING_ONLY
31#endif
32
33#include "../common/mem.h" /* read */
34#include "../common/pool.h"
35#include "../common/threading.h"
36#include "../common/zstd_internal.h" /* includes zstd.h */
37#include "../common/bits.h" /* ZSTD_highbit32 */
38#include "../zdict.h"
39#include "cover.h"
40
41/*-*************************************
42* Constants
43***************************************/
44/**
45* There are 32bit indexes used to ref samples, so limit samples size to 4GB
46* on 64bit builds.
47* For 32bit builds we choose 1 GB.
48* Most 32bit platforms have 2GB user-mode addressable space and we allocate a large
49* contiguous buffer, so 1GB is already a high limit.
50*/
51#define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB))
52#define COVER_DEFAULT_SPLITPOINT 1.0
53
54/*-*************************************
55* Console display
56***************************************/
57#ifndef LOCALDISPLAYLEVEL
58static int g_displayLevel = 0;
59#endif
60#undef DISPLAY
61#define DISPLAY(...) \
62 { \
63 fprintf(stderr, __VA_ARGS__); \
64 fflush(stderr); \
65 }
66#undef LOCALDISPLAYLEVEL
67#define LOCALDISPLAYLEVEL(displayLevel, l, ...) \
68 if (displayLevel >= l) { \
69 DISPLAY(__VA_ARGS__); \
70 } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
71#undef DISPLAYLEVEL
72#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
73
74#ifndef LOCALDISPLAYUPDATE
75static const clock_t g_refreshRate = CLOCKS_PER_SEC * 15 / 100;
76static clock_t g_time = 0;
77#endif
78#undef LOCALDISPLAYUPDATE
79#define LOCALDISPLAYUPDATE(displayLevel, l, ...) \
80 if (displayLevel >= l) { \
81 if ((clock() - g_time > g_refreshRate) || (displayLevel >= 4)) { \
82 g_time = clock(); \
83 DISPLAY(__VA_ARGS__); \
84 } \
85 }
86#undef DISPLAYUPDATE
87#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
88
89/*-*************************************
90* Hash table
91***************************************
92* A small specialized hash map for storing activeDmers.
93* The map does not resize, so if it becomes full it will loop forever.
94* Thus, the map must be large enough to store every value.
95* The map implements linear probing and keeps its load less than 0.5.
96*/
97
98#define MAP_EMPTY_VALUE ((U32)-1)
99typedef struct COVER_map_pair_t_s {
100 U32 key;
101 U32 value;
102} COVER_map_pair_t;
103
104typedef struct COVER_map_s {
105 COVER_map_pair_t *data;
106 U32 sizeLog;
107 U32 size;
108 U32 sizeMask;
109} COVER_map_t;
110
111/**
112 * Clear the map.
113 */
114static void COVER_map_clear(COVER_map_t *map) {
115 memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t));
116}
117
118/**
119 * Initializes a map of the given size.
120 * Returns 1 on success and 0 on failure.
121 * The map must be destroyed with COVER_map_destroy().
122 * The map is only guaranteed to be large enough to hold size elements.
123 */
124static int COVER_map_init(COVER_map_t *map, U32 size) {
125 map->sizeLog = ZSTD_highbit32(size) + 2;
126 map->size = (U32)1 << map->sizeLog;
127 map->sizeMask = map->size - 1;
128 map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t));
129 if (!map->data) {
130 map->sizeLog = 0;
131 map->size = 0;
132 return 0;
133 }
134 COVER_map_clear(map);
135 return 1;
136}
137
138/**
139 * Internal hash function
140 */
141static const U32 COVER_prime4bytes = 2654435761U;
142static U32 COVER_map_hash(COVER_map_t *map, U32 key) {
143 return (key * COVER_prime4bytes) >> (32 - map->sizeLog);
144}
145
146/**
147 * Helper function that returns the index that a key should be placed into.
148 */
149static U32 COVER_map_index(COVER_map_t *map, U32 key) {
150 const U32 hash = COVER_map_hash(map, key);
151 U32 i;
152 for (i = hash;; i = (i + 1) & map->sizeMask) {
153 COVER_map_pair_t *pos = &map->data[i];
154 if (pos->value == MAP_EMPTY_VALUE) {
155 return i;
156 }
157 if (pos->key == key) {
158 return i;
159 }
160 }
161}
162
163/**
164 * Returns the pointer to the value for key.
165 * If key is not in the map, it is inserted and the value is set to 0.
166 * The map must not be full.
167 */
168static U32 *COVER_map_at(COVER_map_t *map, U32 key) {
169 COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)];
170 if (pos->value == MAP_EMPTY_VALUE) {
171 pos->key = key;
172 pos->value = 0;
173 }
174 return &pos->value;
175}
176
177/**
178 * Deletes key from the map if present.
179 */
180static void COVER_map_remove(COVER_map_t *map, U32 key) {
181 U32 i = COVER_map_index(map, key);
182 COVER_map_pair_t *del = &map->data[i];
183 U32 shift = 1;
184 if (del->value == MAP_EMPTY_VALUE) {
185 return;
186 }
187 for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) {
188 COVER_map_pair_t *const pos = &map->data[i];
189 /* If the position is empty we are done */
190 if (pos->value == MAP_EMPTY_VALUE) {
191 del->value = MAP_EMPTY_VALUE;
192 return;
193 }
194 /* If pos can be moved to del do so */
195 if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) {
196 del->key = pos->key;
197 del->value = pos->value;
198 del = pos;
199 shift = 1;
200 } else {
201 ++shift;
202 }
203 }
204}
205
206/**
207 * Destroys a map that is inited with COVER_map_init().
208 */
209static void COVER_map_destroy(COVER_map_t *map) {
210 if (map->data) {
211 free(map->data);
212 }
213 map->data = NULL;
214 map->size = 0;
215}
216
217/*-*************************************
218* Context
219***************************************/
220
221typedef struct {
222 const BYTE *samples;
223 size_t *offsets;
224 const size_t *samplesSizes;
225 size_t nbSamples;
226 size_t nbTrainSamples;
227 size_t nbTestSamples;
228 U32 *suffix;
229 size_t suffixSize;
230 U32 *freqs;
231 U32 *dmerAt;
232 unsigned d;
233} COVER_ctx_t;
234
235/* We need a global context for qsort... */
236static COVER_ctx_t *g_coverCtx = NULL;
237
238/*-*************************************
239* Helper functions
240***************************************/
241
242/**
243 * Returns the sum of the sample sizes.
244 */
245size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
246 size_t sum = 0;
247 unsigned i;
248 for (i = 0; i < nbSamples; ++i) {
249 sum += samplesSizes[i];
250 }
251 return sum;
252}
253
254/**
255 * Returns -1 if the dmer at lp is less than the dmer at rp.
256 * Return 0 if the dmers at lp and rp are equal.
257 * Returns 1 if the dmer at lp is greater than the dmer at rp.
258 */
259static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) {
260 U32 const lhs = *(U32 const *)lp;
261 U32 const rhs = *(U32 const *)rp;
262 return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d);
263}
264/**
265 * Faster version for d <= 8.
266 */
267static int COVER_cmp8(COVER_ctx_t *ctx, const void *lp, const void *rp) {
268 U64 const mask = (ctx->d == 8) ? (U64)-1 : (((U64)1 << (8 * ctx->d)) - 1);
269 U64 const lhs = MEM_readLE64(ctx->samples + *(U32 const *)lp) & mask;
270 U64 const rhs = MEM_readLE64(ctx->samples + *(U32 const *)rp) & mask;
271 if (lhs < rhs) {
272 return -1;
273 }
274 return (lhs > rhs);
275}
276
277/**
278 * Same as COVER_cmp() except ties are broken by pointer value
279 * NOTE: g_coverCtx must be set to call this function. A global is required because
280 * qsort doesn't take an opaque pointer.
281 */
282static int WIN_CDECL COVER_strict_cmp(const void *lp, const void *rp) {
283 int result = COVER_cmp(g_coverCtx, lp, rp);
284 if (result == 0) {
285 result = lp < rp ? -1 : 1;
286 }
287 return result;
288}
289/**
290 * Faster version for d <= 8.
291 */
292static int WIN_CDECL COVER_strict_cmp8(const void *lp, const void *rp) {
293 int result = COVER_cmp8(g_coverCtx, lp, rp);
294 if (result == 0) {
295 result = lp < rp ? -1 : 1;
296 }
297 return result;
298}
299
300/**
301 * Returns the first pointer in [first, last) whose element does not compare
302 * less than value. If no such element exists it returns last.
303 */
304static const size_t *COVER_lower_bound(const size_t *first, const size_t *last,
305 size_t value) {
306 size_t count = last - first;
307 while (count != 0) {
308 size_t step = count / 2;
309 const size_t *ptr = first;
310 ptr += step;
311 if (*ptr < value) {
312 first = ++ptr;
313 count -= step + 1;
314 } else {
315 count = step;
316 }
317 }
318 return first;
319}
320
321/**
322 * Generic groupBy function.
323 * Groups an array sorted by cmp into groups with equivalent values.
324 * Calls grp for each group.
325 */
326static void
327COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx,
328 int (*cmp)(COVER_ctx_t *, const void *, const void *),
329 void (*grp)(COVER_ctx_t *, const void *, const void *)) {
330 const BYTE *ptr = (const BYTE *)data;
331 size_t num = 0;
332 while (num < count) {
333 const BYTE *grpEnd = ptr + size;
334 ++num;
335 while (num < count && cmp(ctx, ptr, grpEnd) == 0) {
336 grpEnd += size;
337 ++num;
338 }
339 grp(ctx, ptr, grpEnd);
340 ptr = grpEnd;
341 }
342}
343
344/*-*************************************
345* Cover functions
346***************************************/
347
348/**
349 * Called on each group of positions with the same dmer.
350 * Counts the frequency of each dmer and saves it in the suffix array.
351 * Fills `ctx->dmerAt`.
352 */
353static void COVER_group(COVER_ctx_t *ctx, const void *group,
354 const void *groupEnd) {
355 /* The group consists of all the positions with the same first d bytes. */
356 const U32 *grpPtr = (const U32 *)group;
357 const U32 *grpEnd = (const U32 *)groupEnd;
358 /* The dmerId is how we will reference this dmer.
359 * This allows us to map the whole dmer space to a much smaller space, the
360 * size of the suffix array.
361 */
362 const U32 dmerId = (U32)(grpPtr - ctx->suffix);
363 /* Count the number of samples this dmer shows up in */
364 U32 freq = 0;
365 /* Details */
366 const size_t *curOffsetPtr = ctx->offsets;
367 const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples;
368 /* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a
369 * different sample than the last.
370 */
371 size_t curSampleEnd = ctx->offsets[0];
372 for (; grpPtr != grpEnd; ++grpPtr) {
373 /* Save the dmerId for this position so we can get back to it. */
374 ctx->dmerAt[*grpPtr] = dmerId;
375 /* Dictionaries only help for the first reference to the dmer.
376 * After that zstd can reference the match from the previous reference.
377 * So only count each dmer once for each sample it is in.
378 */
379 if (*grpPtr < curSampleEnd) {
380 continue;
381 }
382 freq += 1;
383 /* Binary search to find the end of the sample *grpPtr is in.
384 * In the common case that grpPtr + 1 == grpEnd we can skip the binary
385 * search because the loop is over.
386 */
387 if (grpPtr + 1 != grpEnd) {
388 const size_t *sampleEndPtr =
389 COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr);
390 curSampleEnd = *sampleEndPtr;
391 curOffsetPtr = sampleEndPtr + 1;
392 }
393 }
394 /* At this point we are never going to look at this segment of the suffix
395 * array again. We take advantage of this fact to save memory.
396 * We store the frequency of the dmer in the first position of the group,
397 * which is dmerId.
398 */
399 ctx->suffix[dmerId] = freq;
400}
401
402
403/**
404 * Selects the best segment in an epoch.
405 * Segments of are scored according to the function:
406 *
407 * Let F(d) be the frequency of dmer d.
408 * Let S_i be the dmer at position i of segment S which has length k.
409 *
410 * Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
411 *
412 * Once the dmer d is in the dictionary we set F(d) = 0.
413 */
414static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
415 COVER_map_t *activeDmers, U32 begin,
416 U32 end,
417 ZDICT_cover_params_t parameters) {
418 /* Constants */
419 const U32 k = parameters.k;
420 const U32 d = parameters.d;
421 const U32 dmersInK = k - d + 1;
422 /* Try each segment (activeSegment) and save the best (bestSegment) */
423 COVER_segment_t bestSegment = {0, 0, 0};
424 COVER_segment_t activeSegment;
425 /* Reset the activeDmers in the segment */
426 COVER_map_clear(activeDmers);
427 /* The activeSegment starts at the beginning of the epoch. */
428 activeSegment.begin = begin;
429 activeSegment.end = begin;
430 activeSegment.score = 0;
431 /* Slide the activeSegment through the whole epoch.
432 * Save the best segment in bestSegment.
433 */
434 while (activeSegment.end < end) {
435 /* The dmerId for the dmer at the next position */
436 U32 newDmer = ctx->dmerAt[activeSegment.end];
437 /* The entry in activeDmers for this dmerId */
438 U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer);
439 /* If the dmer isn't already present in the segment add its score. */
440 if (*newDmerOcc == 0) {
441 /* The paper suggest using the L-0.5 norm, but experiments show that it
442 * doesn't help.
443 */
444 activeSegment.score += freqs[newDmer];
445 }
446 /* Add the dmer to the segment */
447 activeSegment.end += 1;
448 *newDmerOcc += 1;
449
450 /* If the window is now too large, drop the first position */
451 if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
452 U32 delDmer = ctx->dmerAt[activeSegment.begin];
453 U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer);
454 activeSegment.begin += 1;
455 *delDmerOcc -= 1;
456 /* If this is the last occurrence of the dmer, subtract its score */
457 if (*delDmerOcc == 0) {
458 COVER_map_remove(activeDmers, delDmer);
459 activeSegment.score -= freqs[delDmer];
460 }
461 }
462
463 /* If this segment is the best so far save it */
464 if (activeSegment.score > bestSegment.score) {
465 bestSegment = activeSegment;
466 }
467 }
468 {
469 /* Trim off the zero frequency head and tail from the segment. */
470 U32 newBegin = bestSegment.end;
471 U32 newEnd = bestSegment.begin;
472 U32 pos;
473 for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
474 U32 freq = freqs[ctx->dmerAt[pos]];
475 if (freq != 0) {
476 newBegin = MIN(newBegin, pos);
477 newEnd = pos + 1;
478 }
479 }
480 bestSegment.begin = newBegin;
481 bestSegment.end = newEnd;
482 }
483 {
484 /* Zero out the frequency of each dmer covered by the chosen segment. */
485 U32 pos;
486 for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
487 freqs[ctx->dmerAt[pos]] = 0;
488 }
489 }
490 return bestSegment;
491}
492
493/**
494 * Check the validity of the parameters.
495 * Returns non-zero if the parameters are valid and 0 otherwise.
496 */
497static int COVER_checkParameters(ZDICT_cover_params_t parameters,
498 size_t maxDictSize) {
499 /* k and d are required parameters */
500 if (parameters.d == 0 || parameters.k == 0) {
501 return 0;
502 }
503 /* k <= maxDictSize */
504 if (parameters.k > maxDictSize) {
505 return 0;
506 }
507 /* d <= k */
508 if (parameters.d > parameters.k) {
509 return 0;
510 }
511 /* 0 < splitPoint <= 1 */
512 if (parameters.splitPoint <= 0 || parameters.splitPoint > 1){
513 return 0;
514 }
515 return 1;
516}
517
518/**
519 * Clean up a context initialized with `COVER_ctx_init()`.
520 */
521static void COVER_ctx_destroy(COVER_ctx_t *ctx) {
522 if (!ctx) {
523 return;
524 }
525 if (ctx->suffix) {
526 free(ctx->suffix);
527 ctx->suffix = NULL;
528 }
529 if (ctx->freqs) {
530 free(ctx->freqs);
531 ctx->freqs = NULL;
532 }
533 if (ctx->dmerAt) {
534 free(ctx->dmerAt);
535 ctx->dmerAt = NULL;
536 }
537 if (ctx->offsets) {
538 free(ctx->offsets);
539 ctx->offsets = NULL;
540 }
541}
542
543/**
544 * Prepare a context for dictionary building.
545 * The context is only dependent on the parameter `d` and can be used multiple
546 * times.
547 * Returns 0 on success or error code on error.
548 * The context must be destroyed with `COVER_ctx_destroy()`.
549 */
550static size_t COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
551 const size_t *samplesSizes, unsigned nbSamples,
552 unsigned d, double splitPoint) {
553 const BYTE *const samples = (const BYTE *)samplesBuffer;
554 const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
555 /* Split samples into testing and training sets */
556 const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
557 const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
558 const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
559 const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
560 /* Checks */
561 if (totalSamplesSize < MAX(d, sizeof(U64)) ||
562 totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) {
563 DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
564 (unsigned)(totalSamplesSize>>20), (COVER_MAX_SAMPLES_SIZE >> 20));
565 return ERROR(srcSize_wrong);
566 }
567 /* Check if there are at least 5 training samples */
568 if (nbTrainSamples < 5) {
569 DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples);
570 return ERROR(srcSize_wrong);
571 }
572 /* Check if there's testing sample */
573 if (nbTestSamples < 1) {
574 DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples);
575 return ERROR(srcSize_wrong);
576 }
577 /* Zero the context */
578 memset(ctx, 0, sizeof(*ctx));
579 DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
580 (unsigned)trainingSamplesSize);
581 DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
582 (unsigned)testSamplesSize);
583 ctx->samples = samples;
584 ctx->samplesSizes = samplesSizes;
585 ctx->nbSamples = nbSamples;
586 ctx->nbTrainSamples = nbTrainSamples;
587 ctx->nbTestSamples = nbTestSamples;
588 /* Partial suffix array */
589 ctx->suffixSize = trainingSamplesSize - MAX(d, sizeof(U64)) + 1;
590 ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
591 /* Maps index to the dmerID */
592 ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
593 /* The offsets of each file */
594 ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
595 if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) {
596 DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
597 COVER_ctx_destroy(ctx);
598 return ERROR(memory_allocation);
599 }
600 ctx->freqs = NULL;
601 ctx->d = d;
602
603 /* Fill offsets from the samplesSizes */
604 {
605 U32 i;
606 ctx->offsets[0] = 0;
607 for (i = 1; i <= nbSamples; ++i) {
608 ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
609 }
610 }
611 DISPLAYLEVEL(2, "Constructing partial suffix array\n");
612 {
613 /* suffix is a partial suffix array.
614 * It only sorts suffixes by their first parameters.d bytes.
615 * The sort is stable, so each dmer group is sorted by position in input.
616 */
617 U32 i;
618 for (i = 0; i < ctx->suffixSize; ++i) {
619 ctx->suffix[i] = i;
620 }
621 /* qsort doesn't take an opaque pointer, so pass as a global.
622 * On OpenBSD qsort() is not guaranteed to be stable, their mergesort() is.
623 */
624 g_coverCtx = ctx;
625#if defined(__OpenBSD__)
626 mergesort(ctx->suffix, ctx->suffixSize, sizeof(U32),
627 (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
628#else
629 qsort(ctx->suffix, ctx->suffixSize, sizeof(U32),
630 (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
631#endif
632 }
633 DISPLAYLEVEL(2, "Computing frequencies\n");
634 /* For each dmer group (group of positions with the same first d bytes):
635 * 1. For each position we set dmerAt[position] = dmerID. The dmerID is
636 * (groupBeginPtr - suffix). This allows us to go from position to
637 * dmerID so we can look up values in freq.
638 * 2. We calculate how many samples the dmer occurs in and save it in
639 * freqs[dmerId].
640 */
641 COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx,
642 (ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group);
643 ctx->freqs = ctx->suffix;
644 ctx->suffix = NULL;
645 return 0;
646}
647
648void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel)
649{
650 const double ratio = (double)nbDmers / (double)maxDictSize;
651 if (ratio >= 10) {
652 return;
653 }
654 LOCALDISPLAYLEVEL(displayLevel, 1,
655 "WARNING: The maximum dictionary size %u is too large "
656 "compared to the source size %u! "
657 "size(source)/size(dictionary) = %f, but it should be >= "
658 "10! This may lead to a subpar dictionary! We recommend "
659 "training on sources at least 10x, and preferably 100x "
660 "the size of the dictionary! \n", (U32)maxDictSize,
661 (U32)nbDmers, ratio);
662}
663
664COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize,
665 U32 nbDmers, U32 k, U32 passes)
666{
667 const U32 minEpochSize = k * 10;
668 COVER_epoch_info_t epochs;
669 epochs.num = MAX(1, maxDictSize / k / passes);
670 epochs.size = nbDmers / epochs.num;
671 if (epochs.size >= minEpochSize) {
672 assert(epochs.size * epochs.num <= nbDmers);
673 return epochs;
674 }
675 epochs.size = MIN(minEpochSize, nbDmers);
676 epochs.num = nbDmers / epochs.size;
677 assert(epochs.size * epochs.num <= nbDmers);
678 return epochs;
679}
680
681/**
682 * Given the prepared context build the dictionary.
683 */
684static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs,
685 COVER_map_t *activeDmers, void *dictBuffer,
686 size_t dictBufferCapacity,
687 ZDICT_cover_params_t parameters) {
688 BYTE *const dict = (BYTE *)dictBuffer;
689 size_t tail = dictBufferCapacity;
690 /* Divide the data into epochs. We will select one segment from each epoch. */
691 const COVER_epoch_info_t epochs = COVER_computeEpochs(
692 (U32)dictBufferCapacity, (U32)ctx->suffixSize, parameters.k, 4);
693 const size_t maxZeroScoreRun = MAX(10, MIN(100, epochs.num >> 3));
694 size_t zeroScoreRun = 0;
695 size_t epoch;
696 DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
697 (U32)epochs.num, (U32)epochs.size);
698 /* Loop through the epochs until there are no more segments or the dictionary
699 * is full.
700 */
701 for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
702 const U32 epochBegin = (U32)(epoch * epochs.size);
703 const U32 epochEnd = epochBegin + epochs.size;
704 size_t segmentSize;
705 /* Select a segment */
706 COVER_segment_t segment = COVER_selectSegment(
707 ctx, freqs, activeDmers, epochBegin, epochEnd, parameters);
708 /* If the segment covers no dmers, then we are out of content.
709 * There may be new content in other epochs, for continue for some time.
710 */
711 if (segment.score == 0) {
712 if (++zeroScoreRun >= maxZeroScoreRun) {
713 break;
714 }
715 continue;
716 }
717 zeroScoreRun = 0;
718 /* Trim the segment if necessary and if it is too small then we are done */
719 segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
720 if (segmentSize < parameters.d) {
721 break;
722 }
723 /* We fill the dictionary from the back to allow the best segments to be
724 * referenced with the smallest offsets.
725 */
726 tail -= segmentSize;
727 memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
728 DISPLAYUPDATE(
729 2, "\r%u%% ",
730 (unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
731 }
732 DISPLAYLEVEL(2, "\r%79s\r", "");
733 return tail;
734}
735
736ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
737 void *dictBuffer, size_t dictBufferCapacity,
738 const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
739 ZDICT_cover_params_t parameters)
740{
741 BYTE* const dict = (BYTE*)dictBuffer;
742 COVER_ctx_t ctx;
743 COVER_map_t activeDmers;
744 parameters.splitPoint = 1.0;
745 /* Initialize global data */
746 g_displayLevel = (int)parameters.zParams.notificationLevel;
747 /* Checks */
748 if (!COVER_checkParameters(parameters, dictBufferCapacity)) {
749 DISPLAYLEVEL(1, "Cover parameters incorrect\n");
750 return ERROR(parameter_outOfBound);
751 }
752 if (nbSamples == 0) {
753 DISPLAYLEVEL(1, "Cover must have at least one input file\n");
754 return ERROR(srcSize_wrong);
755 }
756 if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
757 DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
758 ZDICT_DICTSIZE_MIN);
759 return ERROR(dstSize_tooSmall);
760 }
761 /* Initialize context and activeDmers */
762 {
763 size_t const initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
764 parameters.d, parameters.splitPoint);
765 if (ZSTD_isError(initVal)) {
766 return initVal;
767 }
768 }
769 COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, g_displayLevel);
770 if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
771 DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
772 COVER_ctx_destroy(&ctx);
773 return ERROR(memory_allocation);
774 }
775
776 DISPLAYLEVEL(2, "Building dictionary\n");
777 {
778 const size_t tail =
779 COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer,
780 dictBufferCapacity, parameters);
781 const size_t dictionarySize = ZDICT_finalizeDictionary(
782 dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
783 samplesBuffer, samplesSizes, nbSamples, parameters.zParams);
784 if (!ZSTD_isError(dictionarySize)) {
785 DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
786 (unsigned)dictionarySize);
787 }
788 COVER_ctx_destroy(&ctx);
789 COVER_map_destroy(&activeDmers);
790 return dictionarySize;
791 }
792}
793
794
795
796size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
797 const size_t *samplesSizes, const BYTE *samples,
798 size_t *offsets,
799 size_t nbTrainSamples, size_t nbSamples,
800 BYTE *const dict, size_t dictBufferCapacity) {
801 size_t totalCompressedSize = ERROR(GENERIC);
802 /* Pointers */
803 ZSTD_CCtx *cctx;
804 ZSTD_CDict *cdict;
805 void *dst;
806 /* Local variables */
807 size_t dstCapacity;
808 size_t i;
809 /* Allocate dst with enough space to compress the maximum sized sample */
810 {
811 size_t maxSampleSize = 0;
812 i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
813 for (; i < nbSamples; ++i) {
814 maxSampleSize = MAX(samplesSizes[i], maxSampleSize);
815 }
816 dstCapacity = ZSTD_compressBound(maxSampleSize);
817 dst = malloc(dstCapacity);
818 }
819 /* Create the cctx and cdict */
820 cctx = ZSTD_createCCtx();
821 cdict = ZSTD_createCDict(dict, dictBufferCapacity,
822 parameters.zParams.compressionLevel);
823 if (!dst || !cctx || !cdict) {
824 goto _compressCleanup;
825 }
826 /* Compress each sample and sum their sizes (or error) */
827 totalCompressedSize = dictBufferCapacity;
828 i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
829 for (; i < nbSamples; ++i) {
830 const size_t size = ZSTD_compress_usingCDict(
831 cctx, dst, dstCapacity, samples + offsets[i],
832 samplesSizes[i], cdict);
833 if (ZSTD_isError(size)) {
834 totalCompressedSize = size;
835 goto _compressCleanup;
836 }
837 totalCompressedSize += size;
838 }
839_compressCleanup:
840 ZSTD_freeCCtx(cctx);
841 ZSTD_freeCDict(cdict);
842 if (dst) {
843 free(dst);
844 }
845 return totalCompressedSize;
846}
847
848
849/**
850 * Initialize the `COVER_best_t`.
851 */
852void COVER_best_init(COVER_best_t *best) {
853 if (best==NULL) return; /* compatible with init on NULL */
854 (void)ZSTD_pthread_mutex_init(&best->mutex, NULL);
855 (void)ZSTD_pthread_cond_init(&best->cond, NULL);
856 best->liveJobs = 0;
857 best->dict = NULL;
858 best->dictSize = 0;
859 best->compressedSize = (size_t)-1;
860 memset(&best->parameters, 0, sizeof(best->parameters));
861}
862
863/**
864 * Wait until liveJobs == 0.
865 */
866void COVER_best_wait(COVER_best_t *best) {
867 if (!best) {
868 return;
869 }
870 ZSTD_pthread_mutex_lock(&best->mutex);
871 while (best->liveJobs != 0) {
872 ZSTD_pthread_cond_wait(&best->cond, &best->mutex);
873 }
874 ZSTD_pthread_mutex_unlock(&best->mutex);
875}
876
877/**
878 * Call COVER_best_wait() and then destroy the COVER_best_t.
879 */
880void COVER_best_destroy(COVER_best_t *best) {
881 if (!best) {
882 return;
883 }
884 COVER_best_wait(best);
885 if (best->dict) {
886 free(best->dict);
887 }
888 ZSTD_pthread_mutex_destroy(&best->mutex);
889 ZSTD_pthread_cond_destroy(&best->cond);
890}
891
892/**
893 * Called when a thread is about to be launched.
894 * Increments liveJobs.
895 */
896void COVER_best_start(COVER_best_t *best) {
897 if (!best) {
898 return;
899 }
900 ZSTD_pthread_mutex_lock(&best->mutex);
901 ++best->liveJobs;
902 ZSTD_pthread_mutex_unlock(&best->mutex);
903}
904
905/**
906 * Called when a thread finishes executing, both on error or success.
907 * Decrements liveJobs and signals any waiting threads if liveJobs == 0.
908 * If this dictionary is the best so far save it and its parameters.
909 */
910void COVER_best_finish(COVER_best_t *best, ZDICT_cover_params_t parameters,
911 COVER_dictSelection_t selection) {
912 void* dict = selection.dictContent;
913 size_t compressedSize = selection.totalCompressedSize;
914 size_t dictSize = selection.dictSize;
915 if (!best) {
916 return;
917 }
918 {
919 size_t liveJobs;
920 ZSTD_pthread_mutex_lock(&best->mutex);
921 --best->liveJobs;
922 liveJobs = best->liveJobs;
923 /* If the new dictionary is better */
924 if (compressedSize < best->compressedSize) {
925 /* Allocate space if necessary */
926 if (!best->dict || best->dictSize < dictSize) {
927 if (best->dict) {
928 free(best->dict);
929 }
930 best->dict = malloc(dictSize);
931 if (!best->dict) {
932 best->compressedSize = ERROR(GENERIC);
933 best->dictSize = 0;
934 ZSTD_pthread_cond_signal(&best->cond);
935 ZSTD_pthread_mutex_unlock(&best->mutex);
936 return;
937 }
938 }
939 /* Save the dictionary, parameters, and size */
940 if (dict) {
941 memcpy(best->dict, dict, dictSize);
942 best->dictSize = dictSize;
943 best->parameters = parameters;
944 best->compressedSize = compressedSize;
945 }
946 }
947 if (liveJobs == 0) {
948 ZSTD_pthread_cond_broadcast(&best->cond);
949 }
950 ZSTD_pthread_mutex_unlock(&best->mutex);
951 }
952}
953
954static COVER_dictSelection_t setDictSelection(BYTE* buf, size_t s, size_t csz)
955{
956 COVER_dictSelection_t ds;
957 ds.dictContent = buf;
958 ds.dictSize = s;
959 ds.totalCompressedSize = csz;
960 return ds;
961}
962
963COVER_dictSelection_t COVER_dictSelectionError(size_t error) {
964 return setDictSelection(NULL, 0, error);
965}
966
967unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection) {
968 return (ZSTD_isError(selection.totalCompressedSize) || !selection.dictContent);
969}
970
971void COVER_dictSelectionFree(COVER_dictSelection_t selection){
972 free(selection.dictContent);
973}
974
975COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent, size_t dictBufferCapacity,
976 size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
977 size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize) {
978
979 size_t largestDict = 0;
980 size_t largestCompressed = 0;
981 BYTE* customDictContentEnd = customDictContent + dictContentSize;
982
983 BYTE * largestDictbuffer = (BYTE *)malloc(dictBufferCapacity);
984 BYTE * candidateDictBuffer = (BYTE *)malloc(dictBufferCapacity);
985 double regressionTolerance = ((double)params.shrinkDictMaxRegression / 100.0) + 1.00;
986
987 if (!largestDictbuffer || !candidateDictBuffer) {
988 free(largestDictbuffer);
989 free(candidateDictBuffer);
990 return COVER_dictSelectionError(dictContentSize);
991 }
992
993 /* Initial dictionary size and compressed size */
994 memcpy(largestDictbuffer, customDictContent, dictContentSize);
995 dictContentSize = ZDICT_finalizeDictionary(
996 largestDictbuffer, dictBufferCapacity, customDictContent, dictContentSize,
997 samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
998
999 if (ZDICT_isError(dictContentSize)) {
1000 free(largestDictbuffer);
1001 free(candidateDictBuffer);
1002 return COVER_dictSelectionError(dictContentSize);
1003 }
1004
1005 totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
1006 samplesBuffer, offsets,
1007 nbCheckSamples, nbSamples,
1008 largestDictbuffer, dictContentSize);
1009
1010 if (ZSTD_isError(totalCompressedSize)) {
1011 free(largestDictbuffer);
1012 free(candidateDictBuffer);
1013 return COVER_dictSelectionError(totalCompressedSize);
1014 }
1015
1016 if (params.shrinkDict == 0) {
1017 free(candidateDictBuffer);
1018 return setDictSelection(largestDictbuffer, dictContentSize, totalCompressedSize);
1019 }
1020
1021 largestDict = dictContentSize;
1022 largestCompressed = totalCompressedSize;
1023 dictContentSize = ZDICT_DICTSIZE_MIN;
1024
1025 /* Largest dict is initially at least ZDICT_DICTSIZE_MIN */
1026 while (dictContentSize < largestDict) {
1027 memcpy(candidateDictBuffer, largestDictbuffer, largestDict);
1028 dictContentSize = ZDICT_finalizeDictionary(
1029 candidateDictBuffer, dictBufferCapacity, customDictContentEnd - dictContentSize, dictContentSize,
1030 samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
1031
1032 if (ZDICT_isError(dictContentSize)) {
1033 free(largestDictbuffer);
1034 free(candidateDictBuffer);
1035 return COVER_dictSelectionError(dictContentSize);
1036
1037 }
1038
1039 totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
1040 samplesBuffer, offsets,
1041 nbCheckSamples, nbSamples,
1042 candidateDictBuffer, dictContentSize);
1043
1044 if (ZSTD_isError(totalCompressedSize)) {
1045 free(largestDictbuffer);
1046 free(candidateDictBuffer);
1047 return COVER_dictSelectionError(totalCompressedSize);
1048 }
1049
1050 if ((double)totalCompressedSize <= (double)largestCompressed * regressionTolerance) {
1051 free(largestDictbuffer);
1052 return setDictSelection( candidateDictBuffer, dictContentSize, totalCompressedSize );
1053 }
1054 dictContentSize *= 2;
1055 }
1056 dictContentSize = largestDict;
1057 totalCompressedSize = largestCompressed;
1058 free(candidateDictBuffer);
1059 return setDictSelection( largestDictbuffer, dictContentSize, totalCompressedSize );
1060}
1061
1062/**
1063 * Parameters for COVER_tryParameters().
1064 */
1065typedef struct COVER_tryParameters_data_s {
1066 const COVER_ctx_t *ctx;
1067 COVER_best_t *best;
1068 size_t dictBufferCapacity;
1069 ZDICT_cover_params_t parameters;
1070} COVER_tryParameters_data_t;
1071
1072/**
1073 * Tries a set of parameters and updates the COVER_best_t with the results.
1074 * This function is thread safe if zstd is compiled with multithreaded support.
1075 * It takes its parameters as an *OWNING* opaque pointer to support threading.
1076 */
1077static void COVER_tryParameters(void *opaque)
1078{
1079 /* Save parameters as local variables */
1080 COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t*)opaque;
1081 const COVER_ctx_t *const ctx = data->ctx;
1082 const ZDICT_cover_params_t parameters = data->parameters;
1083 size_t dictBufferCapacity = data->dictBufferCapacity;
1084 size_t totalCompressedSize = ERROR(GENERIC);
1085 /* Allocate space for hash table, dict, and freqs */
1086 COVER_map_t activeDmers;
1087 BYTE* const dict = (BYTE*)malloc(dictBufferCapacity);
1088 COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC));
1089 U32* const freqs = (U32*)malloc(ctx->suffixSize * sizeof(U32));
1090 if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
1091 DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
1092 goto _cleanup;
1093 }
1094 if (!dict || !freqs) {
1095 DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
1096 goto _cleanup;
1097 }
1098 /* Copy the frequencies because we need to modify them */
1099 memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32));
1100 /* Build the dictionary */
1101 {
1102 const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict,
1103 dictBufferCapacity, parameters);
1104 selection = COVER_selectDict(dict + tail, dictBufferCapacity, dictBufferCapacity - tail,
1105 ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
1106 totalCompressedSize);
1107
1108 if (COVER_dictSelectionIsError(selection)) {
1109 DISPLAYLEVEL(1, "Failed to select dictionary\n");
1110 goto _cleanup;
1111 }
1112 }
1113_cleanup:
1114 free(dict);
1115 COVER_best_finish(data->best, parameters, selection);
1116 free(data);
1117 COVER_map_destroy(&activeDmers);
1118 COVER_dictSelectionFree(selection);
1119 free(freqs);
1120}
1121
1122ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
1123 void* dictBuffer, size_t dictBufferCapacity, const void* samplesBuffer,
1124 const size_t* samplesSizes, unsigned nbSamples,
1125 ZDICT_cover_params_t* parameters)
1126{
1127 /* constants */
1128 const unsigned nbThreads = parameters->nbThreads;
1129 const double splitPoint =
1130 parameters->splitPoint <= 0.0 ? COVER_DEFAULT_SPLITPOINT : parameters->splitPoint;
1131 const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
1132 const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
1133 const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
1134 const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
1135 const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
1136 const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
1137 const unsigned kIterations =
1138 (1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
1139 const unsigned shrinkDict = 0;
1140 /* Local variables */
1141 const int displayLevel = parameters->zParams.notificationLevel;
1142 unsigned iteration = 1;
1143 unsigned d;
1144 unsigned k;
1145 COVER_best_t best;
1146 POOL_ctx *pool = NULL;
1147 int warned = 0;
1148
1149 /* Checks */
1150 if (splitPoint <= 0 || splitPoint > 1) {
1151 LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
1152 return ERROR(parameter_outOfBound);
1153 }
1154 if (kMinK < kMaxD || kMaxK < kMinK) {
1155 LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
1156 return ERROR(parameter_outOfBound);
1157 }
1158 if (nbSamples == 0) {
1159 DISPLAYLEVEL(1, "Cover must have at least one input file\n");
1160 return ERROR(srcSize_wrong);
1161 }
1162 if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
1163 DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
1164 ZDICT_DICTSIZE_MIN);
1165 return ERROR(dstSize_tooSmall);
1166 }
1167 if (nbThreads > 1) {
1168 pool = POOL_create(nbThreads, 1);
1169 if (!pool) {
1170 return ERROR(memory_allocation);
1171 }
1172 }
1173 /* Initialization */
1174 COVER_best_init(&best);
1175 /* Turn down global display level to clean up display at level 2 and below */
1176 g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
1177 /* Loop through d first because each new value needs a new context */
1178 LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
1179 kIterations);
1180 for (d = kMinD; d <= kMaxD; d += 2) {
1181 /* Initialize the context for this value of d */
1182 COVER_ctx_t ctx;
1183 LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
1184 {
1185 const size_t initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint);
1186 if (ZSTD_isError(initVal)) {
1187 LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
1188 COVER_best_destroy(&best);
1189 POOL_free(pool);
1190 return initVal;
1191 }
1192 }
1193 if (!warned) {
1194 COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, displayLevel);
1195 warned = 1;
1196 }
1197 /* Loop through k reusing the same context */
1198 for (k = kMinK; k <= kMaxK; k += kStepSize) {
1199 /* Prepare the arguments */
1200 COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)malloc(
1201 sizeof(COVER_tryParameters_data_t));
1202 LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
1203 if (!data) {
1204 LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
1205 COVER_best_destroy(&best);
1206 COVER_ctx_destroy(&ctx);
1207 POOL_free(pool);
1208 return ERROR(memory_allocation);
1209 }
1210 data->ctx = &ctx;
1211 data->best = &best;
1212 data->dictBufferCapacity = dictBufferCapacity;
1213 data->parameters = *parameters;
1214 data->parameters.k = k;
1215 data->parameters.d = d;
1216 data->parameters.splitPoint = splitPoint;
1217 data->parameters.steps = kSteps;
1218 data->parameters.shrinkDict = shrinkDict;
1219 data->parameters.zParams.notificationLevel = g_displayLevel;
1220 /* Check the parameters */
1221 if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) {
1222 DISPLAYLEVEL(1, "Cover parameters incorrect\n");
1223 free(data);
1224 continue;
1225 }
1226 /* Call the function and pass ownership of data to it */
1227 COVER_best_start(&best);
1228 if (pool) {
1229 POOL_add(pool, &COVER_tryParameters, data);
1230 } else {
1231 COVER_tryParameters(data);
1232 }
1233 /* Print status */
1234 LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ",
1235 (unsigned)((iteration * 100) / kIterations));
1236 ++iteration;
1237 }
1238 COVER_best_wait(&best);
1239 COVER_ctx_destroy(&ctx);
1240 }
1241 LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
1242 /* Fill the output buffer and parameters with output of the best parameters */
1243 {
1244 const size_t dictSize = best.dictSize;
1245 if (ZSTD_isError(best.compressedSize)) {
1246 const size_t compressedSize = best.compressedSize;
1247 COVER_best_destroy(&best);
1248 POOL_free(pool);
1249 return compressedSize;
1250 }
1251 *parameters = best.parameters;
1252 memcpy(dictBuffer, best.dict, dictSize);
1253 COVER_best_destroy(&best);
1254 POOL_free(pool);
1255 return dictSize;
1256 }
1257}