git subrepo pull (merge) --force deps/libchdr
[pcsx_rearmed.git] / deps / libchdr / deps / zstd-1.5.5 / lib / dictBuilder / zdict.c
CommitLineData
648db22b 1/*
2 * Copyright (c) Meta Platforms, Inc. and affiliates.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11
12/*-**************************************
13* Tuning parameters
14****************************************/
15#define MINRATIO 4 /* minimum nb of apparition to be selected in dictionary */
16#define ZDICT_MAX_SAMPLES_SIZE (2000U << 20)
17#define ZDICT_MIN_SAMPLES_SIZE (ZDICT_CONTENTSIZE_MIN * MINRATIO)
18
19
20/*-**************************************
21* Compiler Options
22****************************************/
23/* Unix Large Files support (>4GB) */
24#define _FILE_OFFSET_BITS 64
25#if (defined(__sun__) && (!defined(__LP64__))) /* Sun Solaris 32-bits requires specific definitions */
26# ifndef _LARGEFILE_SOURCE
27# define _LARGEFILE_SOURCE
28# endif
29#elif ! defined(__LP64__) /* No point defining Large file for 64 bit */
30# ifndef _LARGEFILE64_SOURCE
31# define _LARGEFILE64_SOURCE
32# endif
33#endif
34
35
36/*-*************************************
37* Dependencies
38***************************************/
39#include <stdlib.h> /* malloc, free */
40#include <string.h> /* memset */
41#include <stdio.h> /* fprintf, fopen, ftello64 */
42#include <time.h> /* clock */
43
44#ifndef ZDICT_STATIC_LINKING_ONLY
45# define ZDICT_STATIC_LINKING_ONLY
46#endif
47
48#include "../common/mem.h" /* read */
49#include "../common/fse.h" /* FSE_normalizeCount, FSE_writeNCount */
50#include "../common/huf.h" /* HUF_buildCTable, HUF_writeCTable */
51#include "../common/zstd_internal.h" /* includes zstd.h */
52#include "../common/xxhash.h" /* XXH64 */
53#include "../compress/zstd_compress_internal.h" /* ZSTD_loadCEntropy() */
54#include "../zdict.h"
55#include "divsufsort.h"
56#include "../common/bits.h" /* ZSTD_NbCommonBytes */
57
58
59/*-*************************************
60* Constants
61***************************************/
62#define KB *(1 <<10)
63#define MB *(1 <<20)
64#define GB *(1U<<30)
65
66#define DICTLISTSIZE_DEFAULT 10000
67
68#define NOISELENGTH 32
69
70static const U32 g_selectivity_default = 9;
71
72
73/*-*************************************
74* Console display
75***************************************/
76#undef DISPLAY
77#define DISPLAY(...) { fprintf(stderr, __VA_ARGS__); fflush( stderr ); }
78#undef DISPLAYLEVEL
79#define DISPLAYLEVEL(l, ...) if (notificationLevel>=l) { DISPLAY(__VA_ARGS__); } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
80
81static clock_t ZDICT_clockSpan(clock_t nPrevious) { return clock() - nPrevious; }
82
83static void ZDICT_printHex(const void* ptr, size_t length)
84{
85 const BYTE* const b = (const BYTE*)ptr;
86 size_t u;
87 for (u=0; u<length; u++) {
88 BYTE c = b[u];
89 if (c<32 || c>126) c = '.'; /* non-printable char */
90 DISPLAY("%c", c);
91 }
92}
93
94
95/*-********************************************************
96* Helper functions
97**********************************************************/
98unsigned ZDICT_isError(size_t errorCode) { return ERR_isError(errorCode); }
99
100const char* ZDICT_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
101
102unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize)
103{
104 if (dictSize < 8) return 0;
105 if (MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return 0;
106 return MEM_readLE32((const char*)dictBuffer + 4);
107}
108
109size_t ZDICT_getDictHeaderSize(const void* dictBuffer, size_t dictSize)
110{
111 size_t headerSize;
112 if (dictSize <= 8 || MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return ERROR(dictionary_corrupted);
113
114 { ZSTD_compressedBlockState_t* bs = (ZSTD_compressedBlockState_t*)malloc(sizeof(ZSTD_compressedBlockState_t));
115 U32* wksp = (U32*)malloc(HUF_WORKSPACE_SIZE);
116 if (!bs || !wksp) {
117 headerSize = ERROR(memory_allocation);
118 } else {
119 ZSTD_reset_compressedBlockState(bs);
120 headerSize = ZSTD_loadCEntropy(bs, wksp, dictBuffer, dictSize);
121 }
122
123 free(bs);
124 free(wksp);
125 }
126
127 return headerSize;
128}
129
130/*-********************************************************
131* Dictionary training functions
132**********************************************************/
133/*! ZDICT_count() :
134 Count the nb of common bytes between 2 pointers.
135 Note : this function presumes end of buffer followed by noisy guard band.
136*/
137static size_t ZDICT_count(const void* pIn, const void* pMatch)
138{
139 const char* const pStart = (const char*)pIn;
140 for (;;) {
141 size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
142 if (!diff) {
143 pIn = (const char*)pIn+sizeof(size_t);
144 pMatch = (const char*)pMatch+sizeof(size_t);
145 continue;
146 }
147 pIn = (const char*)pIn+ZSTD_NbCommonBytes(diff);
148 return (size_t)((const char*)pIn - pStart);
149 }
150}
151
152
153typedef struct {
154 U32 pos;
155 U32 length;
156 U32 savings;
157} dictItem;
158
159static void ZDICT_initDictItem(dictItem* d)
160{
161 d->pos = 1;
162 d->length = 0;
163 d->savings = (U32)(-1);
164}
165
166
167#define LLIMIT 64 /* heuristic determined experimentally */
168#define MINMATCHLENGTH 7 /* heuristic determined experimentally */
169static dictItem ZDICT_analyzePos(
170 BYTE* doneMarks,
171 const int* suffix, U32 start,
172 const void* buffer, U32 minRatio, U32 notificationLevel)
173{
174 U32 lengthList[LLIMIT] = {0};
175 U32 cumulLength[LLIMIT] = {0};
176 U32 savings[LLIMIT] = {0};
177 const BYTE* b = (const BYTE*)buffer;
178 size_t maxLength = LLIMIT;
179 size_t pos = (size_t)suffix[start];
180 U32 end = start;
181 dictItem solution;
182
183 /* init */
184 memset(&solution, 0, sizeof(solution));
185 doneMarks[pos] = 1;
186
187 /* trivial repetition cases */
188 if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2))
189 ||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3))
190 ||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) {
191 /* skip and mark segment */
192 U16 const pattern16 = MEM_read16(b+pos+4);
193 U32 u, patternEnd = 6;
194 while (MEM_read16(b+pos+patternEnd) == pattern16) patternEnd+=2 ;
195 if (b[pos+patternEnd] == b[pos+patternEnd-1]) patternEnd++;
196 for (u=1; u<patternEnd; u++)
197 doneMarks[pos+u] = 1;
198 return solution;
199 }
200
201 /* look forward */
202 { size_t length;
203 do {
204 end++;
205 length = ZDICT_count(b + pos, b + suffix[end]);
206 } while (length >= MINMATCHLENGTH);
207 }
208
209 /* look backward */
210 { size_t length;
211 do {
212 length = ZDICT_count(b + pos, b + *(suffix+start-1));
213 if (length >=MINMATCHLENGTH) start--;
214 } while(length >= MINMATCHLENGTH);
215 }
216
217 /* exit if not found a minimum nb of repetitions */
218 if (end-start < minRatio) {
219 U32 idx;
220 for(idx=start; idx<end; idx++)
221 doneMarks[suffix[idx]] = 1;
222 return solution;
223 }
224
225 { int i;
226 U32 mml;
227 U32 refinedStart = start;
228 U32 refinedEnd = end;
229
230 DISPLAYLEVEL(4, "\n");
231 DISPLAYLEVEL(4, "found %3u matches of length >= %i at pos %7u ", (unsigned)(end-start), MINMATCHLENGTH, (unsigned)pos);
232 DISPLAYLEVEL(4, "\n");
233
234 for (mml = MINMATCHLENGTH ; ; mml++) {
235 BYTE currentChar = 0;
236 U32 currentCount = 0;
237 U32 currentID = refinedStart;
238 U32 id;
239 U32 selectedCount = 0;
240 U32 selectedID = currentID;
241 for (id =refinedStart; id < refinedEnd; id++) {
242 if (b[suffix[id] + mml] != currentChar) {
243 if (currentCount > selectedCount) {
244 selectedCount = currentCount;
245 selectedID = currentID;
246 }
247 currentID = id;
248 currentChar = b[ suffix[id] + mml];
249 currentCount = 0;
250 }
251 currentCount ++;
252 }
253 if (currentCount > selectedCount) { /* for last */
254 selectedCount = currentCount;
255 selectedID = currentID;
256 }
257
258 if (selectedCount < minRatio)
259 break;
260 refinedStart = selectedID;
261 refinedEnd = refinedStart + selectedCount;
262 }
263
264 /* evaluate gain based on new dict */
265 start = refinedStart;
266 pos = suffix[refinedStart];
267 end = start;
268 memset(lengthList, 0, sizeof(lengthList));
269
270 /* look forward */
271 { size_t length;
272 do {
273 end++;
274 length = ZDICT_count(b + pos, b + suffix[end]);
275 if (length >= LLIMIT) length = LLIMIT-1;
276 lengthList[length]++;
277 } while (length >=MINMATCHLENGTH);
278 }
279
280 /* look backward */
281 { size_t length = MINMATCHLENGTH;
282 while ((length >= MINMATCHLENGTH) & (start > 0)) {
283 length = ZDICT_count(b + pos, b + suffix[start - 1]);
284 if (length >= LLIMIT) length = LLIMIT - 1;
285 lengthList[length]++;
286 if (length >= MINMATCHLENGTH) start--;
287 }
288 }
289
290 /* largest useful length */
291 memset(cumulLength, 0, sizeof(cumulLength));
292 cumulLength[maxLength-1] = lengthList[maxLength-1];
293 for (i=(int)(maxLength-2); i>=0; i--)
294 cumulLength[i] = cumulLength[i+1] + lengthList[i];
295
296 for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break;
297 maxLength = i;
298
299 /* reduce maxLength in case of final into repetitive data */
300 { U32 l = (U32)maxLength;
301 BYTE const c = b[pos + maxLength-1];
302 while (b[pos+l-2]==c) l--;
303 maxLength = l;
304 }
305 if (maxLength < MINMATCHLENGTH) return solution; /* skip : no long-enough solution */
306
307 /* calculate savings */
308 savings[5] = 0;
309 for (i=MINMATCHLENGTH; i<=(int)maxLength; i++)
310 savings[i] = savings[i-1] + (lengthList[i] * (i-3));
311
312 DISPLAYLEVEL(4, "Selected dict at position %u, of length %u : saves %u (ratio: %.2f) \n",
313 (unsigned)pos, (unsigned)maxLength, (unsigned)savings[maxLength], (double)savings[maxLength] / (double)maxLength);
314
315 solution.pos = (U32)pos;
316 solution.length = (U32)maxLength;
317 solution.savings = savings[maxLength];
318
319 /* mark positions done */
320 { U32 id;
321 for (id=start; id<end; id++) {
322 U32 p, pEnd, length;
323 U32 const testedPos = (U32)suffix[id];
324 if (testedPos == pos)
325 length = solution.length;
326 else {
327 length = (U32)ZDICT_count(b+pos, b+testedPos);
328 if (length > solution.length) length = solution.length;
329 }
330 pEnd = (U32)(testedPos + length);
331 for (p=testedPos; p<pEnd; p++)
332 doneMarks[p] = 1;
333 } } }
334
335 return solution;
336}
337
338
339static int isIncluded(const void* in, const void* container, size_t length)
340{
341 const char* const ip = (const char*) in;
342 const char* const into = (const char*) container;
343 size_t u;
344
345 for (u=0; u<length; u++) { /* works because end of buffer is a noisy guard band */
346 if (ip[u] != into[u]) break;
347 }
348
349 return u==length;
350}
351
352/*! ZDICT_tryMerge() :
353 check if dictItem can be merged, do it if possible
354 @return : id of destination elt, 0 if not merged
355*/
356static U32 ZDICT_tryMerge(dictItem* table, dictItem elt, U32 eltNbToSkip, const void* buffer)
357{
358 const U32 tableSize = table->pos;
359 const U32 eltEnd = elt.pos + elt.length;
360 const char* const buf = (const char*) buffer;
361
362 /* tail overlap */
363 U32 u; for (u=1; u<tableSize; u++) {
364 if (u==eltNbToSkip) continue;
365 if ((table[u].pos > elt.pos) && (table[u].pos <= eltEnd)) { /* overlap, existing > new */
366 /* append */
367 U32 const addedLength = table[u].pos - elt.pos;
368 table[u].length += addedLength;
369 table[u].pos = elt.pos;
370 table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */
371 table[u].savings += elt.length / 8; /* rough approx bonus */
372 elt = table[u];
373 /* sort : improve rank */
374 while ((u>1) && (table[u-1].savings < elt.savings))
375 table[u] = table[u-1], u--;
376 table[u] = elt;
377 return u;
378 } }
379
380 /* front overlap */
381 for (u=1; u<tableSize; u++) {
382 if (u==eltNbToSkip) continue;
383
384 if ((table[u].pos + table[u].length >= elt.pos) && (table[u].pos < elt.pos)) { /* overlap, existing < new */
385 /* append */
386 int const addedLength = (int)eltEnd - (int)(table[u].pos + table[u].length);
387 table[u].savings += elt.length / 8; /* rough approx bonus */
388 if (addedLength > 0) { /* otherwise, elt fully included into existing */
389 table[u].length += addedLength;
390 table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */
391 }
392 /* sort : improve rank */
393 elt = table[u];
394 while ((u>1) && (table[u-1].savings < elt.savings))
395 table[u] = table[u-1], u--;
396 table[u] = elt;
397 return u;
398 }
399
400 if (MEM_read64(buf + table[u].pos) == MEM_read64(buf + elt.pos + 1)) {
401 if (isIncluded(buf + table[u].pos, buf + elt.pos + 1, table[u].length)) {
402 size_t const addedLength = MAX( (int)elt.length - (int)table[u].length , 1 );
403 table[u].pos = elt.pos;
404 table[u].savings += (U32)(elt.savings * addedLength / elt.length);
405 table[u].length = MIN(elt.length, table[u].length + 1);
406 return u;
407 }
408 }
409 }
410
411 return 0;
412}
413
414
415static void ZDICT_removeDictItem(dictItem* table, U32 id)
416{
417 /* convention : table[0].pos stores nb of elts */
418 U32 const max = table[0].pos;
419 U32 u;
420 if (!id) return; /* protection, should never happen */
421 for (u=id; u<max-1; u++)
422 table[u] = table[u+1];
423 table->pos--;
424}
425
426
427static void ZDICT_insertDictItem(dictItem* table, U32 maxSize, dictItem elt, const void* buffer)
428{
429 /* merge if possible */
430 U32 mergeId = ZDICT_tryMerge(table, elt, 0, buffer);
431 if (mergeId) {
432 U32 newMerge = 1;
433 while (newMerge) {
434 newMerge = ZDICT_tryMerge(table, table[mergeId], mergeId, buffer);
435 if (newMerge) ZDICT_removeDictItem(table, mergeId);
436 mergeId = newMerge;
437 }
438 return;
439 }
440
441 /* insert */
442 { U32 current;
443 U32 nextElt = table->pos;
444 if (nextElt >= maxSize) nextElt = maxSize-1;
445 current = nextElt-1;
446 while (table[current].savings < elt.savings) {
447 table[current+1] = table[current];
448 current--;
449 }
450 table[current+1] = elt;
451 table->pos = nextElt+1;
452 }
453}
454
455
456static U32 ZDICT_dictSize(const dictItem* dictList)
457{
458 U32 u, dictSize = 0;
459 for (u=1; u<dictList[0].pos; u++)
460 dictSize += dictList[u].length;
461 return dictSize;
462}
463
464
465static size_t ZDICT_trainBuffer_legacy(dictItem* dictList, U32 dictListSize,
466 const void* const buffer, size_t bufferSize, /* buffer must end with noisy guard band */
467 const size_t* fileSizes, unsigned nbFiles,
468 unsigned minRatio, U32 notificationLevel)
469{
470 int* const suffix0 = (int*)malloc((bufferSize+2)*sizeof(*suffix0));
471 int* const suffix = suffix0+1;
472 U32* reverseSuffix = (U32*)malloc((bufferSize)*sizeof(*reverseSuffix));
473 BYTE* doneMarks = (BYTE*)malloc((bufferSize+16)*sizeof(*doneMarks)); /* +16 for overflow security */
474 U32* filePos = (U32*)malloc(nbFiles * sizeof(*filePos));
475 size_t result = 0;
476 clock_t displayClock = 0;
477 clock_t const refreshRate = CLOCKS_PER_SEC * 3 / 10;
478
479# undef DISPLAYUPDATE
480# define DISPLAYUPDATE(l, ...) if (notificationLevel>=l) { \
481 if (ZDICT_clockSpan(displayClock) > refreshRate) \
482 { displayClock = clock(); DISPLAY(__VA_ARGS__); \
483 if (notificationLevel>=4) fflush(stderr); } }
484
485 /* init */
486 DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */
487 if (!suffix0 || !reverseSuffix || !doneMarks || !filePos) {
488 result = ERROR(memory_allocation);
489 goto _cleanup;
490 }
491 if (minRatio < MINRATIO) minRatio = MINRATIO;
492 memset(doneMarks, 0, bufferSize+16);
493
494 /* limit sample set size (divsufsort limitation)*/
495 if (bufferSize > ZDICT_MAX_SAMPLES_SIZE) DISPLAYLEVEL(3, "sample set too large : reduced to %u MB ...\n", (unsigned)(ZDICT_MAX_SAMPLES_SIZE>>20));
496 while (bufferSize > ZDICT_MAX_SAMPLES_SIZE) bufferSize -= fileSizes[--nbFiles];
497
498 /* sort */
499 DISPLAYLEVEL(2, "sorting %u files of total size %u MB ...\n", nbFiles, (unsigned)(bufferSize>>20));
500 { int const divSuftSortResult = divsufsort((const unsigned char*)buffer, suffix, (int)bufferSize, 0);
501 if (divSuftSortResult != 0) { result = ERROR(GENERIC); goto _cleanup; }
502 }
503 suffix[bufferSize] = (int)bufferSize; /* leads into noise */
504 suffix0[0] = (int)bufferSize; /* leads into noise */
505 /* build reverse suffix sort */
506 { size_t pos;
507 for (pos=0; pos < bufferSize; pos++)
508 reverseSuffix[suffix[pos]] = (U32)pos;
509 /* note filePos tracks borders between samples.
510 It's not used at this stage, but planned to become useful in a later update */
511 filePos[0] = 0;
512 for (pos=1; pos<nbFiles; pos++)
513 filePos[pos] = (U32)(filePos[pos-1] + fileSizes[pos-1]);
514 }
515
516 DISPLAYLEVEL(2, "finding patterns ... \n");
517 DISPLAYLEVEL(3, "minimum ratio : %u \n", minRatio);
518
519 { U32 cursor; for (cursor=0; cursor < bufferSize; ) {
520 dictItem solution;
521 if (doneMarks[cursor]) { cursor++; continue; }
522 solution = ZDICT_analyzePos(doneMarks, suffix, reverseSuffix[cursor], buffer, minRatio, notificationLevel);
523 if (solution.length==0) { cursor++; continue; }
524 ZDICT_insertDictItem(dictList, dictListSize, solution, buffer);
525 cursor += solution.length;
526 DISPLAYUPDATE(2, "\r%4.2f %% \r", (double)cursor / (double)bufferSize * 100.0);
527 } }
528
529_cleanup:
530 free(suffix0);
531 free(reverseSuffix);
532 free(doneMarks);
533 free(filePos);
534 return result;
535}
536
537
538static void ZDICT_fillNoise(void* buffer, size_t length)
539{
540 unsigned const prime1 = 2654435761U;
541 unsigned const prime2 = 2246822519U;
542 unsigned acc = prime1;
543 size_t p=0;
544 for (p=0; p<length; p++) {
545 acc *= prime2;
546 ((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21);
547 }
548}
549
550
551typedef struct
552{
553 ZSTD_CDict* dict; /* dictionary */
554 ZSTD_CCtx* zc; /* working context */
555 void* workPlace; /* must be ZSTD_BLOCKSIZE_MAX allocated */
556} EStats_ress_t;
557
558#define MAXREPOFFSET 1024
559
560static void ZDICT_countEStats(EStats_ress_t esr, const ZSTD_parameters* params,
561 unsigned* countLit, unsigned* offsetcodeCount, unsigned* matchlengthCount, unsigned* litlengthCount, U32* repOffsets,
562 const void* src, size_t srcSize,
563 U32 notificationLevel)
564{
565 size_t const blockSizeMax = MIN (ZSTD_BLOCKSIZE_MAX, 1 << params->cParams.windowLog);
566 size_t cSize;
567
568 if (srcSize > blockSizeMax) srcSize = blockSizeMax; /* protection vs large samples */
569 { size_t const errorCode = ZSTD_compressBegin_usingCDict_deprecated(esr.zc, esr.dict);
570 if (ZSTD_isError(errorCode)) { DISPLAYLEVEL(1, "warning : ZSTD_compressBegin_usingCDict failed \n"); return; }
571
572 }
573 cSize = ZSTD_compressBlock_deprecated(esr.zc, esr.workPlace, ZSTD_BLOCKSIZE_MAX, src, srcSize);
574 if (ZSTD_isError(cSize)) { DISPLAYLEVEL(3, "warning : could not compress sample size %u \n", (unsigned)srcSize); return; }
575
576 if (cSize) { /* if == 0; block is not compressible */
577 const seqStore_t* const seqStorePtr = ZSTD_getSeqStore(esr.zc);
578
579 /* literals stats */
580 { const BYTE* bytePtr;
581 for(bytePtr = seqStorePtr->litStart; bytePtr < seqStorePtr->lit; bytePtr++)
582 countLit[*bytePtr]++;
583 }
584
585 /* seqStats */
586 { U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
587 ZSTD_seqToCodes(seqStorePtr);
588
589 { const BYTE* codePtr = seqStorePtr->ofCode;
590 U32 u;
591 for (u=0; u<nbSeq; u++) offsetcodeCount[codePtr[u]]++;
592 }
593
594 { const BYTE* codePtr = seqStorePtr->mlCode;
595 U32 u;
596 for (u=0; u<nbSeq; u++) matchlengthCount[codePtr[u]]++;
597 }
598
599 { const BYTE* codePtr = seqStorePtr->llCode;
600 U32 u;
601 for (u=0; u<nbSeq; u++) litlengthCount[codePtr[u]]++;
602 }
603
604 if (nbSeq >= 2) { /* rep offsets */
605 const seqDef* const seq = seqStorePtr->sequencesStart;
606 U32 offset1 = seq[0].offBase - ZSTD_REP_NUM;
607 U32 offset2 = seq[1].offBase - ZSTD_REP_NUM;
608 if (offset1 >= MAXREPOFFSET) offset1 = 0;
609 if (offset2 >= MAXREPOFFSET) offset2 = 0;
610 repOffsets[offset1] += 3;
611 repOffsets[offset2] += 1;
612 } } }
613}
614
615static size_t ZDICT_totalSampleSize(const size_t* fileSizes, unsigned nbFiles)
616{
617 size_t total=0;
618 unsigned u;
619 for (u=0; u<nbFiles; u++) total += fileSizes[u];
620 return total;
621}
622
623typedef struct { U32 offset; U32 count; } offsetCount_t;
624
625static void ZDICT_insertSortCount(offsetCount_t table[ZSTD_REP_NUM+1], U32 val, U32 count)
626{
627 U32 u;
628 table[ZSTD_REP_NUM].offset = val;
629 table[ZSTD_REP_NUM].count = count;
630 for (u=ZSTD_REP_NUM; u>0; u--) {
631 offsetCount_t tmp;
632 if (table[u-1].count >= table[u].count) break;
633 tmp = table[u-1];
634 table[u-1] = table[u];
635 table[u] = tmp;
636 }
637}
638
639/* ZDICT_flatLit() :
640 * rewrite `countLit` to contain a mostly flat but still compressible distribution of literals.
641 * necessary to avoid generating a non-compressible distribution that HUF_writeCTable() cannot encode.
642 */
643static void ZDICT_flatLit(unsigned* countLit)
644{
645 int u;
646 for (u=1; u<256; u++) countLit[u] = 2;
647 countLit[0] = 4;
648 countLit[253] = 1;
649 countLit[254] = 1;
650}
651
652#define OFFCODE_MAX 30 /* only applicable to first block */
653static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize,
654 int compressionLevel,
655 const void* srcBuffer, const size_t* fileSizes, unsigned nbFiles,
656 const void* dictBuffer, size_t dictBufferSize,
657 unsigned notificationLevel)
658{
659 unsigned countLit[256];
660 HUF_CREATE_STATIC_CTABLE(hufTable, 255);
661 unsigned offcodeCount[OFFCODE_MAX+1];
662 short offcodeNCount[OFFCODE_MAX+1];
663 U32 offcodeMax = ZSTD_highbit32((U32)(dictBufferSize + 128 KB));
664 unsigned matchLengthCount[MaxML+1];
665 short matchLengthNCount[MaxML+1];
666 unsigned litLengthCount[MaxLL+1];
667 short litLengthNCount[MaxLL+1];
668 U32 repOffset[MAXREPOFFSET];
669 offsetCount_t bestRepOffset[ZSTD_REP_NUM+1];
670 EStats_ress_t esr = { NULL, NULL, NULL };
671 ZSTD_parameters params;
672 U32 u, huffLog = 11, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total;
673 size_t pos = 0, errorCode;
674 size_t eSize = 0;
675 size_t const totalSrcSize = ZDICT_totalSampleSize(fileSizes, nbFiles);
676 size_t const averageSampleSize = totalSrcSize / (nbFiles + !nbFiles);
677 BYTE* dstPtr = (BYTE*)dstBuffer;
678 U32 wksp[HUF_CTABLE_WORKSPACE_SIZE_U32];
679
680 /* init */
681 DEBUGLOG(4, "ZDICT_analyzeEntropy");
682 if (offcodeMax>OFFCODE_MAX) { eSize = ERROR(dictionaryCreation_failed); goto _cleanup; } /* too large dictionary */
683 for (u=0; u<256; u++) countLit[u] = 1; /* any character must be described */
684 for (u=0; u<=offcodeMax; u++) offcodeCount[u] = 1;
685 for (u=0; u<=MaxML; u++) matchLengthCount[u] = 1;
686 for (u=0; u<=MaxLL; u++) litLengthCount[u] = 1;
687 memset(repOffset, 0, sizeof(repOffset));
688 repOffset[1] = repOffset[4] = repOffset[8] = 1;
689 memset(bestRepOffset, 0, sizeof(bestRepOffset));
690 if (compressionLevel==0) compressionLevel = ZSTD_CLEVEL_DEFAULT;
691 params = ZSTD_getParams(compressionLevel, averageSampleSize, dictBufferSize);
692
693 esr.dict = ZSTD_createCDict_advanced(dictBuffer, dictBufferSize, ZSTD_dlm_byRef, ZSTD_dct_rawContent, params.cParams, ZSTD_defaultCMem);
694 esr.zc = ZSTD_createCCtx();
695 esr.workPlace = malloc(ZSTD_BLOCKSIZE_MAX);
696 if (!esr.dict || !esr.zc || !esr.workPlace) {
697 eSize = ERROR(memory_allocation);
698 DISPLAYLEVEL(1, "Not enough memory \n");
699 goto _cleanup;
700 }
701
702 /* collect stats on all samples */
703 for (u=0; u<nbFiles; u++) {
704 ZDICT_countEStats(esr, &params,
705 countLit, offcodeCount, matchLengthCount, litLengthCount, repOffset,
706 (const char*)srcBuffer + pos, fileSizes[u],
707 notificationLevel);
708 pos += fileSizes[u];
709 }
710
711 if (notificationLevel >= 4) {
712 /* writeStats */
713 DISPLAYLEVEL(4, "Offset Code Frequencies : \n");
714 for (u=0; u<=offcodeMax; u++) {
715 DISPLAYLEVEL(4, "%2u :%7u \n", u, offcodeCount[u]);
716 } }
717
718 /* analyze, build stats, starting with literals */
719 { size_t maxNbBits = HUF_buildCTable_wksp(hufTable, countLit, 255, huffLog, wksp, sizeof(wksp));
720 if (HUF_isError(maxNbBits)) {
721 eSize = maxNbBits;
722 DISPLAYLEVEL(1, " HUF_buildCTable error \n");
723 goto _cleanup;
724 }
725 if (maxNbBits==8) { /* not compressible : will fail on HUF_writeCTable() */
726 DISPLAYLEVEL(2, "warning : pathological dataset : literals are not compressible : samples are noisy or too regular \n");
727 ZDICT_flatLit(countLit); /* replace distribution by a fake "mostly flat but still compressible" distribution, that HUF_writeCTable() can encode */
728 maxNbBits = HUF_buildCTable_wksp(hufTable, countLit, 255, huffLog, wksp, sizeof(wksp));
729 assert(maxNbBits==9);
730 }
731 huffLog = (U32)maxNbBits;
732 }
733
734 /* looking for most common first offsets */
735 { U32 offset;
736 for (offset=1; offset<MAXREPOFFSET; offset++)
737 ZDICT_insertSortCount(bestRepOffset, offset, repOffset[offset]);
738 }
739 /* note : the result of this phase should be used to better appreciate the impact on statistics */
740
741 total=0; for (u=0; u<=offcodeMax; u++) total+=offcodeCount[u];
742 errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, offcodeMax, /* useLowProbCount */ 1);
743 if (FSE_isError(errorCode)) {
744 eSize = errorCode;
745 DISPLAYLEVEL(1, "FSE_normalizeCount error with offcodeCount \n");
746 goto _cleanup;
747 }
748 Offlog = (U32)errorCode;
749
750 total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u];
751 errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML, /* useLowProbCount */ 1);
752 if (FSE_isError(errorCode)) {
753 eSize = errorCode;
754 DISPLAYLEVEL(1, "FSE_normalizeCount error with matchLengthCount \n");
755 goto _cleanup;
756 }
757 mlLog = (U32)errorCode;
758
759 total=0; for (u=0; u<=MaxLL; u++) total+=litLengthCount[u];
760 errorCode = FSE_normalizeCount(litLengthNCount, llLog, litLengthCount, total, MaxLL, /* useLowProbCount */ 1);
761 if (FSE_isError(errorCode)) {
762 eSize = errorCode;
763 DISPLAYLEVEL(1, "FSE_normalizeCount error with litLengthCount \n");
764 goto _cleanup;
765 }
766 llLog = (U32)errorCode;
767
768 /* write result to buffer */
769 { size_t const hhSize = HUF_writeCTable_wksp(dstPtr, maxDstSize, hufTable, 255, huffLog, wksp, sizeof(wksp));
770 if (HUF_isError(hhSize)) {
771 eSize = hhSize;
772 DISPLAYLEVEL(1, "HUF_writeCTable error \n");
773 goto _cleanup;
774 }
775 dstPtr += hhSize;
776 maxDstSize -= hhSize;
777 eSize += hhSize;
778 }
779
780 { size_t const ohSize = FSE_writeNCount(dstPtr, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog);
781 if (FSE_isError(ohSize)) {
782 eSize = ohSize;
783 DISPLAYLEVEL(1, "FSE_writeNCount error with offcodeNCount \n");
784 goto _cleanup;
785 }
786 dstPtr += ohSize;
787 maxDstSize -= ohSize;
788 eSize += ohSize;
789 }
790
791 { size_t const mhSize = FSE_writeNCount(dstPtr, maxDstSize, matchLengthNCount, MaxML, mlLog);
792 if (FSE_isError(mhSize)) {
793 eSize = mhSize;
794 DISPLAYLEVEL(1, "FSE_writeNCount error with matchLengthNCount \n");
795 goto _cleanup;
796 }
797 dstPtr += mhSize;
798 maxDstSize -= mhSize;
799 eSize += mhSize;
800 }
801
802 { size_t const lhSize = FSE_writeNCount(dstPtr, maxDstSize, litLengthNCount, MaxLL, llLog);
803 if (FSE_isError(lhSize)) {
804 eSize = lhSize;
805 DISPLAYLEVEL(1, "FSE_writeNCount error with litlengthNCount \n");
806 goto _cleanup;
807 }
808 dstPtr += lhSize;
809 maxDstSize -= lhSize;
810 eSize += lhSize;
811 }
812
813 if (maxDstSize<12) {
814 eSize = ERROR(dstSize_tooSmall);
815 DISPLAYLEVEL(1, "not enough space to write RepOffsets \n");
816 goto _cleanup;
817 }
818# if 0
819 MEM_writeLE32(dstPtr+0, bestRepOffset[0].offset);
820 MEM_writeLE32(dstPtr+4, bestRepOffset[1].offset);
821 MEM_writeLE32(dstPtr+8, bestRepOffset[2].offset);
822#else
823 /* at this stage, we don't use the result of "most common first offset",
824 * as the impact of statistics is not properly evaluated */
825 MEM_writeLE32(dstPtr+0, repStartValue[0]);
826 MEM_writeLE32(dstPtr+4, repStartValue[1]);
827 MEM_writeLE32(dstPtr+8, repStartValue[2]);
828#endif
829 eSize += 12;
830
831_cleanup:
832 ZSTD_freeCDict(esr.dict);
833 ZSTD_freeCCtx(esr.zc);
834 free(esr.workPlace);
835
836 return eSize;
837}
838
839
840/**
841 * @returns the maximum repcode value
842 */
843static U32 ZDICT_maxRep(U32 const reps[ZSTD_REP_NUM])
844{
845 U32 maxRep = reps[0];
846 int r;
847 for (r = 1; r < ZSTD_REP_NUM; ++r)
848 maxRep = MAX(maxRep, reps[r]);
849 return maxRep;
850}
851
852size_t ZDICT_finalizeDictionary(void* dictBuffer, size_t dictBufferCapacity,
853 const void* customDictContent, size_t dictContentSize,
854 const void* samplesBuffer, const size_t* samplesSizes,
855 unsigned nbSamples, ZDICT_params_t params)
856{
857 size_t hSize;
858#define HBUFFSIZE 256 /* should prove large enough for all entropy headers */
859 BYTE header[HBUFFSIZE];
860 int const compressionLevel = (params.compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : params.compressionLevel;
861 U32 const notificationLevel = params.notificationLevel;
862 /* The final dictionary content must be at least as large as the largest repcode */
863 size_t const minContentSize = (size_t)ZDICT_maxRep(repStartValue);
864 size_t paddingSize;
865
866 /* check conditions */
867 DEBUGLOG(4, "ZDICT_finalizeDictionary");
868 if (dictBufferCapacity < dictContentSize) return ERROR(dstSize_tooSmall);
869 if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) return ERROR(dstSize_tooSmall);
870
871 /* dictionary header */
872 MEM_writeLE32(header, ZSTD_MAGIC_DICTIONARY);
873 { U64 const randomID = XXH64(customDictContent, dictContentSize, 0);
874 U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
875 U32 const dictID = params.dictID ? params.dictID : compliantID;
876 MEM_writeLE32(header+4, dictID);
877 }
878 hSize = 8;
879
880 /* entropy tables */
881 DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */
882 DISPLAYLEVEL(2, "statistics ... \n");
883 { size_t const eSize = ZDICT_analyzeEntropy(header+hSize, HBUFFSIZE-hSize,
884 compressionLevel,
885 samplesBuffer, samplesSizes, nbSamples,
886 customDictContent, dictContentSize,
887 notificationLevel);
888 if (ZDICT_isError(eSize)) return eSize;
889 hSize += eSize;
890 }
891
892 /* Shrink the content size if it doesn't fit in the buffer */
893 if (hSize + dictContentSize > dictBufferCapacity) {
894 dictContentSize = dictBufferCapacity - hSize;
895 }
896
897 /* Pad the dictionary content with zeros if it is too small */
898 if (dictContentSize < minContentSize) {
899 RETURN_ERROR_IF(hSize + minContentSize > dictBufferCapacity, dstSize_tooSmall,
900 "dictBufferCapacity too small to fit max repcode");
901 paddingSize = minContentSize - dictContentSize;
902 } else {
903 paddingSize = 0;
904 }
905
906 {
907 size_t const dictSize = hSize + paddingSize + dictContentSize;
908
909 /* The dictionary consists of the header, optional padding, and the content.
910 * The padding comes before the content because the "best" position in the
911 * dictionary is the last byte.
912 */
913 BYTE* const outDictHeader = (BYTE*)dictBuffer;
914 BYTE* const outDictPadding = outDictHeader + hSize;
915 BYTE* const outDictContent = outDictPadding + paddingSize;
916
917 assert(dictSize <= dictBufferCapacity);
918 assert(outDictContent + dictContentSize == (BYTE*)dictBuffer + dictSize);
919
920 /* First copy the customDictContent into its final location.
921 * `customDictContent` and `dictBuffer` may overlap, so we must
922 * do this before any other writes into the output buffer.
923 * Then copy the header & padding into the output buffer.
924 */
925 memmove(outDictContent, customDictContent, dictContentSize);
926 memcpy(outDictHeader, header, hSize);
927 memset(outDictPadding, 0, paddingSize);
928
929 return dictSize;
930 }
931}
932
933
934static size_t ZDICT_addEntropyTablesFromBuffer_advanced(
935 void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
936 const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
937 ZDICT_params_t params)
938{
939 int const compressionLevel = (params.compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : params.compressionLevel;
940 U32 const notificationLevel = params.notificationLevel;
941 size_t hSize = 8;
942
943 /* calculate entropy tables */
944 DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */
945 DISPLAYLEVEL(2, "statistics ... \n");
946 { size_t const eSize = ZDICT_analyzeEntropy((char*)dictBuffer+hSize, dictBufferCapacity-hSize,
947 compressionLevel,
948 samplesBuffer, samplesSizes, nbSamples,
949 (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize,
950 notificationLevel);
951 if (ZDICT_isError(eSize)) return eSize;
952 hSize += eSize;
953 }
954
955 /* add dictionary header (after entropy tables) */
956 MEM_writeLE32(dictBuffer, ZSTD_MAGIC_DICTIONARY);
957 { U64 const randomID = XXH64((char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, 0);
958 U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
959 U32 const dictID = params.dictID ? params.dictID : compliantID;
960 MEM_writeLE32((char*)dictBuffer+4, dictID);
961 }
962
963 if (hSize + dictContentSize < dictBufferCapacity)
964 memmove((char*)dictBuffer + hSize, (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize);
965 return MIN(dictBufferCapacity, hSize+dictContentSize);
966}
967
968/*! ZDICT_trainFromBuffer_unsafe_legacy() :
969* Warning : `samplesBuffer` must be followed by noisy guard band !!!
970* @return : size of dictionary, or an error code which can be tested with ZDICT_isError()
971*/
972static size_t ZDICT_trainFromBuffer_unsafe_legacy(
973 void* dictBuffer, size_t maxDictSize,
974 const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
975 ZDICT_legacy_params_t params)
976{
977 U32 const dictListSize = MAX(MAX(DICTLISTSIZE_DEFAULT, nbSamples), (U32)(maxDictSize/16));
978 dictItem* const dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList));
979 unsigned const selectivity = params.selectivityLevel == 0 ? g_selectivity_default : params.selectivityLevel;
980 unsigned const minRep = (selectivity > 30) ? MINRATIO : nbSamples >> selectivity;
981 size_t const targetDictSize = maxDictSize;
982 size_t const samplesBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
983 size_t dictSize = 0;
984 U32 const notificationLevel = params.zParams.notificationLevel;
985
986 /* checks */
987 if (!dictList) return ERROR(memory_allocation);
988 if (maxDictSize < ZDICT_DICTSIZE_MIN) { free(dictList); return ERROR(dstSize_tooSmall); } /* requested dictionary size is too small */
989 if (samplesBuffSize < ZDICT_MIN_SAMPLES_SIZE) { free(dictList); return ERROR(dictionaryCreation_failed); } /* not enough source to create dictionary */
990
991 /* init */
992 ZDICT_initDictItem(dictList);
993
994 /* build dictionary */
995 ZDICT_trainBuffer_legacy(dictList, dictListSize,
996 samplesBuffer, samplesBuffSize,
997 samplesSizes, nbSamples,
998 minRep, notificationLevel);
999
1000 /* display best matches */
1001 if (params.zParams.notificationLevel>= 3) {
1002 unsigned const nb = MIN(25, dictList[0].pos);
1003 unsigned const dictContentSize = ZDICT_dictSize(dictList);
1004 unsigned u;
1005 DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", (unsigned)dictList[0].pos-1, dictContentSize);
1006 DISPLAYLEVEL(3, "list %u best segments \n", nb-1);
1007 for (u=1; u<nb; u++) {
1008 unsigned const pos = dictList[u].pos;
1009 unsigned const length = dictList[u].length;
1010 U32 const printedLength = MIN(40, length);
1011 if ((pos > samplesBuffSize) || ((pos + length) > samplesBuffSize)) {
1012 free(dictList);
1013 return ERROR(GENERIC); /* should never happen */
1014 }
1015 DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |",
1016 u, length, pos, (unsigned)dictList[u].savings);
1017 ZDICT_printHex((const char*)samplesBuffer+pos, printedLength);
1018 DISPLAYLEVEL(3, "| \n");
1019 } }
1020
1021
1022 /* create dictionary */
1023 { unsigned dictContentSize = ZDICT_dictSize(dictList);
1024 if (dictContentSize < ZDICT_CONTENTSIZE_MIN) { free(dictList); return ERROR(dictionaryCreation_failed); } /* dictionary content too small */
1025 if (dictContentSize < targetDictSize/4) {
1026 DISPLAYLEVEL(2, "! warning : selected content significantly smaller than requested (%u < %u) \n", dictContentSize, (unsigned)maxDictSize);
1027 if (samplesBuffSize < 10 * targetDictSize)
1028 DISPLAYLEVEL(2, "! consider increasing the number of samples (total size : %u MB)\n", (unsigned)(samplesBuffSize>>20));
1029 if (minRep > MINRATIO) {
1030 DISPLAYLEVEL(2, "! consider increasing selectivity to produce larger dictionary (-s%u) \n", selectivity+1);
1031 DISPLAYLEVEL(2, "! note : larger dictionaries are not necessarily better, test its efficiency on samples \n");
1032 }
1033 }
1034
1035 if ((dictContentSize > targetDictSize*3) && (nbSamples > 2*MINRATIO) && (selectivity>1)) {
1036 unsigned proposedSelectivity = selectivity-1;
1037 while ((nbSamples >> proposedSelectivity) <= MINRATIO) { proposedSelectivity--; }
1038 DISPLAYLEVEL(2, "! note : calculated dictionary significantly larger than requested (%u > %u) \n", dictContentSize, (unsigned)maxDictSize);
1039 DISPLAYLEVEL(2, "! consider increasing dictionary size, or produce denser dictionary (-s%u) \n", proposedSelectivity);
1040 DISPLAYLEVEL(2, "! always test dictionary efficiency on real samples \n");
1041 }
1042
1043 /* limit dictionary size */
1044 { U32 const max = dictList->pos; /* convention : nb of useful elts within dictList */
1045 U32 currentSize = 0;
1046 U32 n; for (n=1; n<max; n++) {
1047 currentSize += dictList[n].length;
1048 if (currentSize > targetDictSize) { currentSize -= dictList[n].length; break; }
1049 }
1050 dictList->pos = n;
1051 dictContentSize = currentSize;
1052 }
1053
1054 /* build dict content */
1055 { U32 u;
1056 BYTE* ptr = (BYTE*)dictBuffer + maxDictSize;
1057 for (u=1; u<dictList->pos; u++) {
1058 U32 l = dictList[u].length;
1059 ptr -= l;
1060 if (ptr<(BYTE*)dictBuffer) { free(dictList); return ERROR(GENERIC); } /* should not happen */
1061 memcpy(ptr, (const char*)samplesBuffer+dictList[u].pos, l);
1062 } }
1063
1064 dictSize = ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, maxDictSize,
1065 samplesBuffer, samplesSizes, nbSamples,
1066 params.zParams);
1067 }
1068
1069 /* clean up */
1070 free(dictList);
1071 return dictSize;
1072}
1073
1074
1075/* ZDICT_trainFromBuffer_legacy() :
1076 * issue : samplesBuffer need to be followed by a noisy guard band.
1077 * work around : duplicate the buffer, and add the noise */
1078size_t ZDICT_trainFromBuffer_legacy(void* dictBuffer, size_t dictBufferCapacity,
1079 const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
1080 ZDICT_legacy_params_t params)
1081{
1082 size_t result;
1083 void* newBuff;
1084 size_t const sBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
1085 if (sBuffSize < ZDICT_MIN_SAMPLES_SIZE) return 0; /* not enough content => no dictionary */
1086
1087 newBuff = malloc(sBuffSize + NOISELENGTH);
1088 if (!newBuff) return ERROR(memory_allocation);
1089
1090 memcpy(newBuff, samplesBuffer, sBuffSize);
1091 ZDICT_fillNoise((char*)newBuff + sBuffSize, NOISELENGTH); /* guard band, for end of buffer condition */
1092
1093 result =
1094 ZDICT_trainFromBuffer_unsafe_legacy(dictBuffer, dictBufferCapacity, newBuff,
1095 samplesSizes, nbSamples, params);
1096 free(newBuff);
1097 return result;
1098}
1099
1100
1101size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
1102 const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
1103{
1104 ZDICT_fastCover_params_t params;
1105 DEBUGLOG(3, "ZDICT_trainFromBuffer");
1106 memset(&params, 0, sizeof(params));
1107 params.d = 8;
1108 params.steps = 4;
1109 /* Use default level since no compression level information is available */
1110 params.zParams.compressionLevel = ZSTD_CLEVEL_DEFAULT;
1111#if defined(DEBUGLEVEL) && (DEBUGLEVEL>=1)
1112 params.zParams.notificationLevel = DEBUGLEVEL;
1113#endif
1114 return ZDICT_optimizeTrainFromBuffer_fastCover(dictBuffer, dictBufferCapacity,
1115 samplesBuffer, samplesSizes, nbSamples,
1116 &params);
1117}
1118
1119size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
1120 const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
1121{
1122 ZDICT_params_t params;
1123 memset(&params, 0, sizeof(params));
1124 return ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, dictBufferCapacity,
1125 samplesBuffer, samplesSizes, nbSamples,
1126 params);
1127}