git subrepo pull (merge) --force deps/libchdr
[pcsx_rearmed.git] / deps / libchdr / deps / zstd-1.5.6 / doc / educational_decoder / zstd_decompress.c
CommitLineData
648db22b 1/*
2 * Copyright (c) Meta Platforms, Inc. and affiliates.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11/// Zstandard educational decoder implementation
12/// See https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md
13
14#include <stdint.h> // uint8_t, etc.
15#include <stdlib.h> // malloc, free, exit
16#include <stdio.h> // fprintf
17#include <string.h> // memset, memcpy
18#include "zstd_decompress.h"
19
20
21/******* IMPORTANT CONSTANTS *********************************************/
22
23// Zstandard frame
24// "Magic_Number
25// 4 Bytes, little-endian format. Value : 0xFD2FB528"
26#define ZSTD_MAGIC_NUMBER 0xFD2FB528U
27
28// The size of `Block_Content` is limited by `Block_Maximum_Size`,
29#define ZSTD_BLOCK_SIZE_MAX ((size_t)128 * 1024)
30
31// literal blocks can't be larger than their block
32#define MAX_LITERALS_SIZE ZSTD_BLOCK_SIZE_MAX
33
34
35/******* UTILITY MACROS AND TYPES *********************************************/
36#define MAX(a, b) ((a) > (b) ? (a) : (b))
37#define MIN(a, b) ((a) < (b) ? (a) : (b))
38
39#if defined(ZDEC_NO_MESSAGE)
40#define MESSAGE(...)
41#else
42#define MESSAGE(...) fprintf(stderr, "" __VA_ARGS__)
43#endif
44
45/// This decoder calls exit(1) when it encounters an error, however a production
46/// library should propagate error codes
47#define ERROR(s) \
48 do { \
49 MESSAGE("Error: %s\n", s); \
50 exit(1); \
51 } while (0)
52#define INP_SIZE() \
53 ERROR("Input buffer smaller than it should be or input is " \
54 "corrupted")
55#define OUT_SIZE() ERROR("Output buffer too small for output")
56#define CORRUPTION() ERROR("Corruption detected while decompressing")
57#define BAD_ALLOC() ERROR("Memory allocation error")
58#define IMPOSSIBLE() ERROR("An impossibility has occurred")
59
60typedef uint8_t u8;
61typedef uint16_t u16;
62typedef uint32_t u32;
63typedef uint64_t u64;
64
65typedef int8_t i8;
66typedef int16_t i16;
67typedef int32_t i32;
68typedef int64_t i64;
69/******* END UTILITY MACROS AND TYPES *****************************************/
70
71/******* IMPLEMENTATION PRIMITIVE PROTOTYPES **********************************/
72/// The implementations for these functions can be found at the bottom of this
73/// file. They implement low-level functionality needed for the higher level
74/// decompression functions.
75
76/*** IO STREAM OPERATIONS *************/
77
78/// ostream_t/istream_t are used to wrap the pointers/length data passed into
79/// ZSTD_decompress, so that all IO operations are safely bounds checked
80/// They are written/read forward, and reads are treated as little-endian
81/// They should be used opaquely to ensure safety
82typedef struct {
83 u8 *ptr;
84 size_t len;
85} ostream_t;
86
87typedef struct {
88 const u8 *ptr;
89 size_t len;
90
91 // Input often reads a few bits at a time, so maintain an internal offset
92 int bit_offset;
93} istream_t;
94
95/// The following two functions are the only ones that allow the istream to be
96/// non-byte aligned
97
98/// Reads `num` bits from a bitstream, and updates the internal offset
99static inline u64 IO_read_bits(istream_t *const in, const int num_bits);
100/// Backs-up the stream by `num` bits so they can be read again
101static inline void IO_rewind_bits(istream_t *const in, const int num_bits);
102/// If the remaining bits in a byte will be unused, advance to the end of the
103/// byte
104static inline void IO_align_stream(istream_t *const in);
105
106/// Write the given byte into the output stream
107static inline void IO_write_byte(ostream_t *const out, u8 symb);
108
109/// Returns the number of bytes left to be read in this stream. The stream must
110/// be byte aligned.
111static inline size_t IO_istream_len(const istream_t *const in);
112
113/// Advances the stream by `len` bytes, and returns a pointer to the chunk that
114/// was skipped. The stream must be byte aligned.
115static inline const u8 *IO_get_read_ptr(istream_t *const in, size_t len);
116/// Advances the stream by `len` bytes, and returns a pointer to the chunk that
117/// was skipped so it can be written to.
118static inline u8 *IO_get_write_ptr(ostream_t *const out, size_t len);
119
120/// Advance the inner state by `len` bytes. The stream must be byte aligned.
121static inline void IO_advance_input(istream_t *const in, size_t len);
122
123/// Returns an `ostream_t` constructed from the given pointer and length.
124static inline ostream_t IO_make_ostream(u8 *out, size_t len);
125/// Returns an `istream_t` constructed from the given pointer and length.
126static inline istream_t IO_make_istream(const u8 *in, size_t len);
127
128/// Returns an `istream_t` with the same base as `in`, and length `len`.
129/// Then, advance `in` to account for the consumed bytes.
130/// `in` must be byte aligned.
131static inline istream_t IO_make_sub_istream(istream_t *const in, size_t len);
132/*** END IO STREAM OPERATIONS *********/
133
134/*** BITSTREAM OPERATIONS *************/
135/// Read `num` bits (up to 64) from `src + offset`, where `offset` is in bits,
136/// and return them interpreted as a little-endian unsigned integer.
137static inline u64 read_bits_LE(const u8 *src, const int num_bits,
138 const size_t offset);
139
140/// Read bits from the end of a HUF or FSE bitstream. `offset` is in bits, so
141/// it updates `offset` to `offset - bits`, and then reads `bits` bits from
142/// `src + offset`. If the offset becomes negative, the extra bits at the
143/// bottom are filled in with `0` bits instead of reading from before `src`.
144static inline u64 STREAM_read_bits(const u8 *src, const int bits,
145 i64 *const offset);
146/*** END BITSTREAM OPERATIONS *********/
147
148/*** BIT COUNTING OPERATIONS **********/
149/// Returns the index of the highest set bit in `num`, or `-1` if `num == 0`
150static inline int highest_set_bit(const u64 num);
151/*** END BIT COUNTING OPERATIONS ******/
152
153/*** HUFFMAN PRIMITIVES ***************/
154// Table decode method uses exponential memory, so we need to limit depth
155#define HUF_MAX_BITS (16)
156
157// Limit the maximum number of symbols to 256 so we can store a symbol in a byte
158#define HUF_MAX_SYMBS (256)
159
160/// Structure containing all tables necessary for efficient Huffman decoding
161typedef struct {
162 u8 *symbols;
163 u8 *num_bits;
164 int max_bits;
165} HUF_dtable;
166
167/// Decode a single symbol and read in enough bits to refresh the state
168static inline u8 HUF_decode_symbol(const HUF_dtable *const dtable,
169 u16 *const state, const u8 *const src,
170 i64 *const offset);
171/// Read in a full state's worth of bits to initialize it
172static inline void HUF_init_state(const HUF_dtable *const dtable,
173 u16 *const state, const u8 *const src,
174 i64 *const offset);
175
176/// Decompresses a single Huffman stream, returns the number of bytes decoded.
177/// `src_len` must be the exact length of the Huffman-coded block.
178static size_t HUF_decompress_1stream(const HUF_dtable *const dtable,
179 ostream_t *const out, istream_t *const in);
180/// Same as previous but decodes 4 streams, formatted as in the Zstandard
181/// specification.
182/// `src_len` must be the exact length of the Huffman-coded block.
183static size_t HUF_decompress_4stream(const HUF_dtable *const dtable,
184 ostream_t *const out, istream_t *const in);
185
186/// Initialize a Huffman decoding table using the table of bit counts provided
187static void HUF_init_dtable(HUF_dtable *const table, const u8 *const bits,
188 const int num_symbs);
189/// Initialize a Huffman decoding table using the table of weights provided
190/// Weights follow the definition provided in the Zstandard specification
191static void HUF_init_dtable_usingweights(HUF_dtable *const table,
192 const u8 *const weights,
193 const int num_symbs);
194
195/// Free the malloc'ed parts of a decoding table
196static void HUF_free_dtable(HUF_dtable *const dtable);
197/*** END HUFFMAN PRIMITIVES ***********/
198
199/*** FSE PRIMITIVES *******************/
200/// For more description of FSE see
201/// https://github.com/Cyan4973/FiniteStateEntropy/
202
203// FSE table decoding uses exponential memory, so limit the maximum accuracy
204#define FSE_MAX_ACCURACY_LOG (15)
205// Limit the maximum number of symbols so they can be stored in a single byte
206#define FSE_MAX_SYMBS (256)
207
208/// The tables needed to decode FSE encoded streams
209typedef struct {
210 u8 *symbols;
211 u8 *num_bits;
212 u16 *new_state_base;
213 int accuracy_log;
214} FSE_dtable;
215
216/// Return the symbol for the current state
217static inline u8 FSE_peek_symbol(const FSE_dtable *const dtable,
218 const u16 state);
219/// Read the number of bits necessary to update state, update, and shift offset
220/// back to reflect the bits read
221static inline void FSE_update_state(const FSE_dtable *const dtable,
222 u16 *const state, const u8 *const src,
223 i64 *const offset);
224
225/// Combine peek and update: decode a symbol and update the state
226static inline u8 FSE_decode_symbol(const FSE_dtable *const dtable,
227 u16 *const state, const u8 *const src,
228 i64 *const offset);
229
230/// Read bits from the stream to initialize the state and shift offset back
231static inline void FSE_init_state(const FSE_dtable *const dtable,
232 u16 *const state, const u8 *const src,
233 i64 *const offset);
234
235/// Decompress two interleaved bitstreams (e.g. compressed Huffman weights)
236/// using an FSE decoding table. `src_len` must be the exact length of the
237/// block.
238static size_t FSE_decompress_interleaved2(const FSE_dtable *const dtable,
239 ostream_t *const out,
240 istream_t *const in);
241
242/// Initialize a decoding table using normalized frequencies.
243static void FSE_init_dtable(FSE_dtable *const dtable,
244 const i16 *const norm_freqs, const int num_symbs,
245 const int accuracy_log);
246
247/// Decode an FSE header as defined in the Zstandard format specification and
248/// use the decoded frequencies to initialize a decoding table.
249static void FSE_decode_header(FSE_dtable *const dtable, istream_t *const in,
250 const int max_accuracy_log);
251
252/// Initialize an FSE table that will always return the same symbol and consume
253/// 0 bits per symbol, to be used for RLE mode in sequence commands
254static void FSE_init_dtable_rle(FSE_dtable *const dtable, const u8 symb);
255
256/// Free the malloc'ed parts of a decoding table
257static void FSE_free_dtable(FSE_dtable *const dtable);
258/*** END FSE PRIMITIVES ***************/
259
260/******* END IMPLEMENTATION PRIMITIVE PROTOTYPES ******************************/
261
262/******* ZSTD HELPER STRUCTS AND PROTOTYPES ***********************************/
263
264/// A small structure that can be reused in various places that need to access
265/// frame header information
266typedef struct {
267 // The size of window that we need to be able to contiguously store for
268 // references
269 size_t window_size;
270 // The total output size of this compressed frame
271 size_t frame_content_size;
272
273 // The dictionary id if this frame uses one
274 u32 dictionary_id;
275
276 // Whether or not the content of this frame has a checksum
277 int content_checksum_flag;
278 // Whether or not the output for this frame is in a single segment
279 int single_segment_flag;
280} frame_header_t;
281
282/// The context needed to decode blocks in a frame
283typedef struct {
284 frame_header_t header;
285
286 // The total amount of data available for backreferences, to determine if an
287 // offset too large to be correct
288 size_t current_total_output;
289
290 const u8 *dict_content;
291 size_t dict_content_len;
292
293 // Entropy encoding tables so they can be repeated by future blocks instead
294 // of retransmitting
295 HUF_dtable literals_dtable;
296 FSE_dtable ll_dtable;
297 FSE_dtable ml_dtable;
298 FSE_dtable of_dtable;
299
300 // The last 3 offsets for the special "repeat offsets".
301 u64 previous_offsets[3];
302} frame_context_t;
303
304/// The decoded contents of a dictionary so that it doesn't have to be repeated
305/// for each frame that uses it
306struct dictionary_s {
307 // Entropy tables
308 HUF_dtable literals_dtable;
309 FSE_dtable ll_dtable;
310 FSE_dtable ml_dtable;
311 FSE_dtable of_dtable;
312
313 // Raw content for backreferences
314 u8 *content;
315 size_t content_size;
316
317 // Offset history to prepopulate the frame's history
318 u64 previous_offsets[3];
319
320 u32 dictionary_id;
321};
322
323/// A tuple containing the parts necessary to decode and execute a ZSTD sequence
324/// command
325typedef struct {
326 u32 literal_length;
327 u32 match_length;
328 u32 offset;
329} sequence_command_t;
330
331/// The decoder works top-down, starting at the high level like Zstd frames, and
332/// working down to lower more technical levels such as blocks, literals, and
333/// sequences. The high-level functions roughly follow the outline of the
334/// format specification:
335/// https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md
336
337/// Before the implementation of each high-level function declared here, the
338/// prototypes for their helper functions are defined and explained
339
340/// Decode a single Zstd frame, or error if the input is not a valid frame.
341/// Accepts a dict argument, which may be NULL indicating no dictionary.
342/// See
343/// https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#frame-concatenation
344static void decode_frame(ostream_t *const out, istream_t *const in,
345 const dictionary_t *const dict);
346
347// Decode data in a compressed block
348static void decompress_block(frame_context_t *const ctx, ostream_t *const out,
349 istream_t *const in);
350
351// Decode the literals section of a block
352static size_t decode_literals(frame_context_t *const ctx, istream_t *const in,
353 u8 **const literals);
354
355// Decode the sequences part of a block
356static size_t decode_sequences(frame_context_t *const ctx, istream_t *const in,
357 sequence_command_t **const sequences);
358
359// Execute the decoded sequences on the literals block
360static void execute_sequences(frame_context_t *const ctx, ostream_t *const out,
361 const u8 *const literals,
362 const size_t literals_len,
363 const sequence_command_t *const sequences,
364 const size_t num_sequences);
365
366// Copies literals and returns the total literal length that was copied
367static u32 copy_literals(const size_t seq, istream_t *litstream,
368 ostream_t *const out);
369
370// Given an offset code from a sequence command (either an actual offset value
371// or an index for previous offset), computes the correct offset and updates
372// the offset history
373static size_t compute_offset(sequence_command_t seq, u64 *const offset_hist);
374
375// Given an offset, match length, and total output, as well as the frame
376// context for the dictionary, determines if the dictionary is used and
377// executes the copy operation
378static void execute_match_copy(frame_context_t *const ctx, size_t offset,
379 size_t match_length, size_t total_output,
380 ostream_t *const out);
381
382/******* END ZSTD HELPER STRUCTS AND PROTOTYPES *******************************/
383
384size_t ZSTD_decompress(void *const dst, const size_t dst_len,
385 const void *const src, const size_t src_len) {
386 dictionary_t* const uninit_dict = create_dictionary();
387 size_t const decomp_size = ZSTD_decompress_with_dict(dst, dst_len, src,
388 src_len, uninit_dict);
389 free_dictionary(uninit_dict);
390 return decomp_size;
391}
392
393size_t ZSTD_decompress_with_dict(void *const dst, const size_t dst_len,
394 const void *const src, const size_t src_len,
395 dictionary_t* parsed_dict) {
396
397 istream_t in = IO_make_istream(src, src_len);
398 ostream_t out = IO_make_ostream(dst, dst_len);
399
400 // "A content compressed by Zstandard is transformed into a Zstandard frame.
401 // Multiple frames can be appended into a single file or stream. A frame is
402 // totally independent, has a defined beginning and end, and a set of
403 // parameters which tells the decoder how to decompress it."
404
405 /* this decoder assumes decompression of a single frame */
406 decode_frame(&out, &in, parsed_dict);
407
408 return (size_t)(out.ptr - (u8 *)dst);
409}
410
411/******* FRAME DECODING ******************************************************/
412
413static void decode_data_frame(ostream_t *const out, istream_t *const in,
414 const dictionary_t *const dict);
415static void init_frame_context(frame_context_t *const context,
416 istream_t *const in,
417 const dictionary_t *const dict);
418static void free_frame_context(frame_context_t *const context);
419static void parse_frame_header(frame_header_t *const header,
420 istream_t *const in);
421static void frame_context_apply_dict(frame_context_t *const ctx,
422 const dictionary_t *const dict);
423
424static void decompress_data(frame_context_t *const ctx, ostream_t *const out,
425 istream_t *const in);
426
427static void decode_frame(ostream_t *const out, istream_t *const in,
428 const dictionary_t *const dict) {
429 const u32 magic_number = (u32)IO_read_bits(in, 32);
430 if (magic_number == ZSTD_MAGIC_NUMBER) {
431 // ZSTD frame
432 decode_data_frame(out, in, dict);
433
434 return;
435 }
436
437 // not a real frame or a skippable frame
438 ERROR("Tried to decode non-ZSTD frame");
439}
440
441/// Decode a frame that contains compressed data. Not all frames do as there
442/// are skippable frames.
443/// See
444/// https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#general-structure-of-zstandard-frame-format
445static void decode_data_frame(ostream_t *const out, istream_t *const in,
446 const dictionary_t *const dict) {
447 frame_context_t ctx;
448
449 // Initialize the context that needs to be carried from block to block
450 init_frame_context(&ctx, in, dict);
451
452 if (ctx.header.frame_content_size != 0 &&
453 ctx.header.frame_content_size > out->len) {
454 OUT_SIZE();
455 }
456
457 decompress_data(&ctx, out, in);
458
459 free_frame_context(&ctx);
460}
461
462/// Takes the information provided in the header and dictionary, and initializes
463/// the context for this frame
464static void init_frame_context(frame_context_t *const context,
465 istream_t *const in,
466 const dictionary_t *const dict) {
467 // Most fields in context are correct when initialized to 0
468 memset(context, 0, sizeof(frame_context_t));
469
470 // Parse data from the frame header
471 parse_frame_header(&context->header, in);
472
473 // Set up the offset history for the repeat offset commands
474 context->previous_offsets[0] = 1;
475 context->previous_offsets[1] = 4;
476 context->previous_offsets[2] = 8;
477
478 // Apply details from the dict if it exists
479 frame_context_apply_dict(context, dict);
480}
481
482static void free_frame_context(frame_context_t *const context) {
483 HUF_free_dtable(&context->literals_dtable);
484
485 FSE_free_dtable(&context->ll_dtable);
486 FSE_free_dtable(&context->ml_dtable);
487 FSE_free_dtable(&context->of_dtable);
488
489 memset(context, 0, sizeof(frame_context_t));
490}
491
492static void parse_frame_header(frame_header_t *const header,
493 istream_t *const in) {
494 // "The first header's byte is called the Frame_Header_Descriptor. It tells
495 // which other fields are present. Decoding this byte is enough to tell the
496 // size of Frame_Header.
497 //
498 // Bit number Field name
499 // 7-6 Frame_Content_Size_flag
500 // 5 Single_Segment_flag
501 // 4 Unused_bit
502 // 3 Reserved_bit
503 // 2 Content_Checksum_flag
504 // 1-0 Dictionary_ID_flag"
505 const u8 descriptor = (u8)IO_read_bits(in, 8);
506
507 // decode frame header descriptor into flags
508 const u8 frame_content_size_flag = descriptor >> 6;
509 const u8 single_segment_flag = (descriptor >> 5) & 1;
510 const u8 reserved_bit = (descriptor >> 3) & 1;
511 const u8 content_checksum_flag = (descriptor >> 2) & 1;
512 const u8 dictionary_id_flag = descriptor & 3;
513
514 if (reserved_bit != 0) {
515 CORRUPTION();
516 }
517
518 header->single_segment_flag = single_segment_flag;
519 header->content_checksum_flag = content_checksum_flag;
520
521 // decode window size
522 if (!single_segment_flag) {
523 // "Provides guarantees on maximum back-reference distance that will be
524 // used within compressed data. This information is important for
525 // decoders to allocate enough memory.
526 //
527 // Bit numbers 7-3 2-0
528 // Field name Exponent Mantissa"
529 u8 window_descriptor = (u8)IO_read_bits(in, 8);
530 u8 exponent = window_descriptor >> 3;
531 u8 mantissa = window_descriptor & 7;
532
533 // Use the algorithm from the specification to compute window size
534 // https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#window_descriptor
535 size_t window_base = (size_t)1 << (10 + exponent);
536 size_t window_add = (window_base / 8) * mantissa;
537 header->window_size = window_base + window_add;
538 }
539
540 // decode dictionary id if it exists
541 if (dictionary_id_flag) {
542 // "This is a variable size field, which contains the ID of the
543 // dictionary required to properly decode the frame. Note that this
544 // field is optional. When it's not present, it's up to the caller to
545 // make sure it uses the correct dictionary. Format is little-endian."
546 const int bytes_array[] = {0, 1, 2, 4};
547 const int bytes = bytes_array[dictionary_id_flag];
548
549 header->dictionary_id = (u32)IO_read_bits(in, bytes * 8);
550 } else {
551 header->dictionary_id = 0;
552 }
553
554 // decode frame content size if it exists
555 if (single_segment_flag || frame_content_size_flag) {
556 // "This is the original (uncompressed) size. This information is
557 // optional. The Field_Size is provided according to value of
558 // Frame_Content_Size_flag. The Field_Size can be equal to 0 (not
559 // present), 1, 2, 4 or 8 bytes. Format is little-endian."
560 //
561 // if frame_content_size_flag == 0 but single_segment_flag is set, we
562 // still have a 1 byte field
563 const int bytes_array[] = {1, 2, 4, 8};
564 const int bytes = bytes_array[frame_content_size_flag];
565
566 header->frame_content_size = IO_read_bits(in, bytes * 8);
567 if (bytes == 2) {
568 // "When Field_Size is 2, the offset of 256 is added."
569 header->frame_content_size += 256;
570 }
571 } else {
572 header->frame_content_size = 0;
573 }
574
575 if (single_segment_flag) {
576 // "The Window_Descriptor byte is optional. It is absent when
577 // Single_Segment_flag is set. In this case, the maximum back-reference
578 // distance is the content size itself, which can be any value from 1 to
579 // 2^64-1 bytes (16 EB)."
580 header->window_size = header->frame_content_size;
581 }
582}
583
584/// Decompress the data from a frame block by block
585static void decompress_data(frame_context_t *const ctx, ostream_t *const out,
586 istream_t *const in) {
587 // "A frame encapsulates one or multiple blocks. Each block can be
588 // compressed or not, and has a guaranteed maximum content size, which
589 // depends on frame parameters. Unlike frames, each block depends on
590 // previous blocks for proper decoding. However, each block can be
591 // decompressed without waiting for its successor, allowing streaming
592 // operations."
593 int last_block = 0;
594 do {
595 // "Last_Block
596 //
597 // The lowest bit signals if this block is the last one. Frame ends
598 // right after this block.
599 //
600 // Block_Type and Block_Size
601 //
602 // The next 2 bits represent the Block_Type, while the remaining 21 bits
603 // represent the Block_Size. Format is little-endian."
604 last_block = (int)IO_read_bits(in, 1);
605 const int block_type = (int)IO_read_bits(in, 2);
606 const size_t block_len = IO_read_bits(in, 21);
607
608 switch (block_type) {
609 case 0: {
610 // "Raw_Block - this is an uncompressed block. Block_Size is the
611 // number of bytes to read and copy."
612 const u8 *const read_ptr = IO_get_read_ptr(in, block_len);
613 u8 *const write_ptr = IO_get_write_ptr(out, block_len);
614
615 // Copy the raw data into the output
616 memcpy(write_ptr, read_ptr, block_len);
617
618 ctx->current_total_output += block_len;
619 break;
620 }
621 case 1: {
622 // "RLE_Block - this is a single byte, repeated N times. In which
623 // case, Block_Size is the size to regenerate, while the
624 // "compressed" block is just 1 byte (the byte to repeat)."
625 const u8 *const read_ptr = IO_get_read_ptr(in, 1);
626 u8 *const write_ptr = IO_get_write_ptr(out, block_len);
627
628 // Copy `block_len` copies of `read_ptr[0]` to the output
629 memset(write_ptr, read_ptr[0], block_len);
630
631 ctx->current_total_output += block_len;
632 break;
633 }
634 case 2: {
635 // "Compressed_Block - this is a Zstandard compressed block,
636 // detailed in another section of this specification. Block_Size is
637 // the compressed size.
638
639 // Create a sub-stream for the block
640 istream_t block_stream = IO_make_sub_istream(in, block_len);
641 decompress_block(ctx, out, &block_stream);
642 break;
643 }
644 case 3:
645 // "Reserved - this is not a block. This value cannot be used with
646 // current version of this specification."
647 CORRUPTION();
648 break;
649 default:
650 IMPOSSIBLE();
651 }
652 } while (!last_block);
653
654 if (ctx->header.content_checksum_flag) {
655 // This program does not support checking the checksum, so skip over it
656 // if it's present
657 IO_advance_input(in, 4);
658 }
659}
660/******* END FRAME DECODING ***************************************************/
661
662/******* BLOCK DECOMPRESSION **************************************************/
663static void decompress_block(frame_context_t *const ctx, ostream_t *const out,
664 istream_t *const in) {
665 // "A compressed block consists of 2 sections :
666 //
667 // Literals_Section
668 // Sequences_Section"
669
670
671 // Part 1: decode the literals block
672 u8 *literals = NULL;
673 const size_t literals_size = decode_literals(ctx, in, &literals);
674
675 // Part 2: decode the sequences block
676 sequence_command_t *sequences = NULL;
677 const size_t num_sequences =
678 decode_sequences(ctx, in, &sequences);
679
680 // Part 3: combine literals and sequence commands to generate output
681 execute_sequences(ctx, out, literals, literals_size, sequences,
682 num_sequences);
683 free(literals);
684 free(sequences);
685}
686/******* END BLOCK DECOMPRESSION **********************************************/
687
688/******* LITERALS DECODING ****************************************************/
689static size_t decode_literals_simple(istream_t *const in, u8 **const literals,
690 const int block_type,
691 const int size_format);
692static size_t decode_literals_compressed(frame_context_t *const ctx,
693 istream_t *const in,
694 u8 **const literals,
695 const int block_type,
696 const int size_format);
697static void decode_huf_table(HUF_dtable *const dtable, istream_t *const in);
698static void fse_decode_hufweights(ostream_t *weights, istream_t *const in,
699 int *const num_symbs);
700
701static size_t decode_literals(frame_context_t *const ctx, istream_t *const in,
702 u8 **const literals) {
703 // "Literals can be stored uncompressed or compressed using Huffman prefix
704 // codes. When compressed, an optional tree description can be present,
705 // followed by 1 or 4 streams."
706 //
707 // "Literals_Section_Header
708 //
709 // Header is in charge of describing how literals are packed. It's a
710 // byte-aligned variable-size bitfield, ranging from 1 to 5 bytes, using
711 // little-endian convention."
712 //
713 // "Literals_Block_Type
714 //
715 // This field uses 2 lowest bits of first byte, describing 4 different block
716 // types"
717 //
718 // size_format takes between 1 and 2 bits
719 int block_type = (int)IO_read_bits(in, 2);
720 int size_format = (int)IO_read_bits(in, 2);
721
722 if (block_type <= 1) {
723 // Raw or RLE literals block
724 return decode_literals_simple(in, literals, block_type,
725 size_format);
726 } else {
727 // Huffman compressed literals
728 return decode_literals_compressed(ctx, in, literals, block_type,
729 size_format);
730 }
731}
732
733/// Decodes literals blocks in raw or RLE form
734static size_t decode_literals_simple(istream_t *const in, u8 **const literals,
735 const int block_type,
736 const int size_format) {
737 size_t size;
738 switch (size_format) {
739 // These cases are in the form ?0
740 // In this case, the ? bit is actually part of the size field
741 case 0:
742 case 2:
743 // "Size_Format uses 1 bit. Regenerated_Size uses 5 bits (0-31)."
744 IO_rewind_bits(in, 1);
745 size = IO_read_bits(in, 5);
746 break;
747 case 1:
748 // "Size_Format uses 2 bits. Regenerated_Size uses 12 bits (0-4095)."
749 size = IO_read_bits(in, 12);
750 break;
751 case 3:
752 // "Size_Format uses 2 bits. Regenerated_Size uses 20 bits (0-1048575)."
753 size = IO_read_bits(in, 20);
754 break;
755 default:
756 // Size format is in range 0-3
757 IMPOSSIBLE();
758 }
759
760 if (size > MAX_LITERALS_SIZE) {
761 CORRUPTION();
762 }
763
764 *literals = malloc(size);
765 if (!*literals) {
766 BAD_ALLOC();
767 }
768
769 switch (block_type) {
770 case 0: {
771 // "Raw_Literals_Block - Literals are stored uncompressed."
772 const u8 *const read_ptr = IO_get_read_ptr(in, size);
773 memcpy(*literals, read_ptr, size);
774 break;
775 }
776 case 1: {
777 // "RLE_Literals_Block - Literals consist of a single byte value repeated N times."
778 const u8 *const read_ptr = IO_get_read_ptr(in, 1);
779 memset(*literals, read_ptr[0], size);
780 break;
781 }
782 default:
783 IMPOSSIBLE();
784 }
785
786 return size;
787}
788
789/// Decodes Huffman compressed literals
790static size_t decode_literals_compressed(frame_context_t *const ctx,
791 istream_t *const in,
792 u8 **const literals,
793 const int block_type,
794 const int size_format) {
795 size_t regenerated_size, compressed_size;
796 // Only size_format=0 has 1 stream, so default to 4
797 int num_streams = 4;
798 switch (size_format) {
799 case 0:
800 // "A single stream. Both Compressed_Size and Regenerated_Size use 10
801 // bits (0-1023)."
802 num_streams = 1;
803 // Fall through as it has the same size format
804 /* fallthrough */
805 case 1:
806 // "4 streams. Both Compressed_Size and Regenerated_Size use 10 bits
807 // (0-1023)."
808 regenerated_size = IO_read_bits(in, 10);
809 compressed_size = IO_read_bits(in, 10);
810 break;
811 case 2:
812 // "4 streams. Both Compressed_Size and Regenerated_Size use 14 bits
813 // (0-16383)."
814 regenerated_size = IO_read_bits(in, 14);
815 compressed_size = IO_read_bits(in, 14);
816 break;
817 case 3:
818 // "4 streams. Both Compressed_Size and Regenerated_Size use 18 bits
819 // (0-262143)."
820 regenerated_size = IO_read_bits(in, 18);
821 compressed_size = IO_read_bits(in, 18);
822 break;
823 default:
824 // Impossible
825 IMPOSSIBLE();
826 }
827 if (regenerated_size > MAX_LITERALS_SIZE) {
828 CORRUPTION();
829 }
830
831 *literals = malloc(regenerated_size);
832 if (!*literals) {
833 BAD_ALLOC();
834 }
835
836 ostream_t lit_stream = IO_make_ostream(*literals, regenerated_size);
837 istream_t huf_stream = IO_make_sub_istream(in, compressed_size);
838
839 if (block_type == 2) {
840 // Decode the provided Huffman table
841 // "This section is only present when Literals_Block_Type type is
842 // Compressed_Literals_Block (2)."
843
844 HUF_free_dtable(&ctx->literals_dtable);
845 decode_huf_table(&ctx->literals_dtable, &huf_stream);
846 } else {
847 // If the previous Huffman table is being repeated, ensure it exists
848 if (!ctx->literals_dtable.symbols) {
849 CORRUPTION();
850 }
851 }
852
853 size_t symbols_decoded;
854 if (num_streams == 1) {
855 symbols_decoded = HUF_decompress_1stream(&ctx->literals_dtable, &lit_stream, &huf_stream);
856 } else {
857 symbols_decoded = HUF_decompress_4stream(&ctx->literals_dtable, &lit_stream, &huf_stream);
858 }
859
860 if (symbols_decoded != regenerated_size) {
861 CORRUPTION();
862 }
863
864 return regenerated_size;
865}
866
867// Decode the Huffman table description
868static void decode_huf_table(HUF_dtable *const dtable, istream_t *const in) {
869 // "All literal values from zero (included) to last present one (excluded)
870 // are represented by Weight with values from 0 to Max_Number_of_Bits."
871
872 // "This is a single byte value (0-255), which describes how to decode the list of weights."
873 const u8 header = IO_read_bits(in, 8);
874
875 u8 weights[HUF_MAX_SYMBS];
876 memset(weights, 0, sizeof(weights));
877
878 int num_symbs;
879
880 if (header >= 128) {
881 // "This is a direct representation, where each Weight is written
882 // directly as a 4 bits field (0-15). The full representation occupies
883 // ((Number_of_Symbols+1)/2) bytes, meaning it uses a last full byte
884 // even if Number_of_Symbols is odd. Number_of_Symbols = headerByte -
885 // 127"
886 num_symbs = header - 127;
887 const size_t bytes = (num_symbs + 1) / 2;
888
889 const u8 *const weight_src = IO_get_read_ptr(in, bytes);
890
891 for (int i = 0; i < num_symbs; i++) {
892 // "They are encoded forward, 2
893 // weights to a byte with the first weight taking the top four bits
894 // and the second taking the bottom four (e.g. the following
895 // operations could be used to read the weights: Weight[0] =
896 // (Byte[0] >> 4), Weight[1] = (Byte[0] & 0xf), etc.)."
897 if (i % 2 == 0) {
898 weights[i] = weight_src[i / 2] >> 4;
899 } else {
900 weights[i] = weight_src[i / 2] & 0xf;
901 }
902 }
903 } else {
904 // The weights are FSE encoded, decode them before we can construct the
905 // table
906 istream_t fse_stream = IO_make_sub_istream(in, header);
907 ostream_t weight_stream = IO_make_ostream(weights, HUF_MAX_SYMBS);
908 fse_decode_hufweights(&weight_stream, &fse_stream, &num_symbs);
909 }
910
911 // Construct the table using the decoded weights
912 HUF_init_dtable_usingweights(dtable, weights, num_symbs);
913}
914
915static void fse_decode_hufweights(ostream_t *weights, istream_t *const in,
916 int *const num_symbs) {
917 const int MAX_ACCURACY_LOG = 7;
918
919 FSE_dtable dtable;
920
921 // "An FSE bitstream starts by a header, describing probabilities
922 // distribution. It will create a Decoding Table. For a list of Huffman
923 // weights, maximum accuracy is 7 bits."
924 FSE_decode_header(&dtable, in, MAX_ACCURACY_LOG);
925
926 // Decode the weights
927 *num_symbs = FSE_decompress_interleaved2(&dtable, weights, in);
928
929 FSE_free_dtable(&dtable);
930}
931/******* END LITERALS DECODING ************************************************/
932
933/******* SEQUENCE DECODING ****************************************************/
934/// The combination of FSE states needed to decode sequences
935typedef struct {
936 FSE_dtable ll_table;
937 FSE_dtable of_table;
938 FSE_dtable ml_table;
939
940 u16 ll_state;
941 u16 of_state;
942 u16 ml_state;
943} sequence_states_t;
944
945/// Different modes to signal to decode_seq_tables what to do
946typedef enum {
947 seq_literal_length = 0,
948 seq_offset = 1,
949 seq_match_length = 2,
950} seq_part_t;
951
952typedef enum {
953 seq_predefined = 0,
954 seq_rle = 1,
955 seq_fse = 2,
956 seq_repeat = 3,
957} seq_mode_t;
958
959/// The predefined FSE distribution tables for `seq_predefined` mode
960static const i16 SEQ_LITERAL_LENGTH_DEFAULT_DIST[36] = {
961 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2,
962 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1, -1, -1, -1, -1};
963static const i16 SEQ_OFFSET_DEFAULT_DIST[29] = {
964 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1,
965 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1};
966static const i16 SEQ_MATCH_LENGTH_DEFAULT_DIST[53] = {
967 1, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1,
968 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
969 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1};
970
971/// The sequence decoding baseline and number of additional bits to read/add
972/// https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#the-codes-for-literals-lengths-match-lengths-and-offsets
973static const u32 SEQ_LITERAL_LENGTH_BASELINES[36] = {
974 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
975 12, 13, 14, 15, 16, 18, 20, 22, 24, 28, 32, 40,
976 48, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536};
977static const u8 SEQ_LITERAL_LENGTH_EXTRA_BITS[36] = {
978 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
979 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
980
981static const u32 SEQ_MATCH_LENGTH_BASELINES[53] = {
982 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
983 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
984 31, 32, 33, 34, 35, 37, 39, 41, 43, 47, 51, 59, 67, 83,
985 99, 131, 259, 515, 1027, 2051, 4099, 8195, 16387, 32771, 65539};
986static const u8 SEQ_MATCH_LENGTH_EXTRA_BITS[53] = {
987 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
988 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
989 2, 2, 3, 3, 4, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
990
991/// Offset decoding is simpler so we just need a maximum code value
992static const u8 SEQ_MAX_CODES[3] = {35, (u8)-1, 52};
993
994static void decompress_sequences(frame_context_t *const ctx,
995 istream_t *const in,
996 sequence_command_t *const sequences,
997 const size_t num_sequences);
998static sequence_command_t decode_sequence(sequence_states_t *const state,
999 const u8 *const src,
f535537f 1000 i64 *const offset,
1001 int lastSequence);
648db22b 1002static void decode_seq_table(FSE_dtable *const table, istream_t *const in,
1003 const seq_part_t type, const seq_mode_t mode);
1004
1005static size_t decode_sequences(frame_context_t *const ctx, istream_t *in,
1006 sequence_command_t **const sequences) {
1007 // "A compressed block is a succession of sequences . A sequence is a
1008 // literal copy command, followed by a match copy command. A literal copy
1009 // command specifies a length. It is the number of bytes to be copied (or
1010 // extracted) from the literal section. A match copy command specifies an
1011 // offset and a length. The offset gives the position to copy from, which
1012 // can be within a previous block."
1013
1014 size_t num_sequences;
1015
1016 // "Number_of_Sequences
1017 //
1018 // This is a variable size field using between 1 and 3 bytes. Let's call its
1019 // first byte byte0."
1020 u8 header = IO_read_bits(in, 8);
f535537f 1021 if (header < 128) {
648db22b 1022 // "Number_of_Sequences = byte0 . Uses 1 byte."
1023 num_sequences = header;
1024 } else if (header < 255) {
1025 // "Number_of_Sequences = ((byte0-128) << 8) + byte1 . Uses 2 bytes."
1026 num_sequences = ((header - 128) << 8) + IO_read_bits(in, 8);
1027 } else {
1028 // "Number_of_Sequences = byte1 + (byte2<<8) + 0x7F00 . Uses 3 bytes."
1029 num_sequences = IO_read_bits(in, 16) + 0x7F00;
1030 }
1031
f535537f 1032 if (num_sequences == 0) {
1033 // "There are no sequences. The sequence section stops there."
1034 *sequences = NULL;
1035 return 0;
1036 }
1037
648db22b 1038 *sequences = malloc(num_sequences * sizeof(sequence_command_t));
1039 if (!*sequences) {
1040 BAD_ALLOC();
1041 }
1042
1043 decompress_sequences(ctx, in, *sequences, num_sequences);
1044 return num_sequences;
1045}
1046
1047/// Decompress the FSE encoded sequence commands
1048static void decompress_sequences(frame_context_t *const ctx, istream_t *in,
1049 sequence_command_t *const sequences,
1050 const size_t num_sequences) {
1051 // "The Sequences_Section regroup all symbols required to decode commands.
1052 // There are 3 symbol types : literals lengths, offsets and match lengths.
1053 // They are encoded together, interleaved, in a single bitstream."
1054
1055 // "Symbol compression modes
1056 //
1057 // This is a single byte, defining the compression mode of each symbol
1058 // type."
1059 //
1060 // Bit number : Field name
1061 // 7-6 : Literals_Lengths_Mode
1062 // 5-4 : Offsets_Mode
1063 // 3-2 : Match_Lengths_Mode
1064 // 1-0 : Reserved
1065 u8 compression_modes = IO_read_bits(in, 8);
1066
1067 if ((compression_modes & 3) != 0) {
1068 // Reserved bits set
1069 CORRUPTION();
1070 }
1071
1072 // "Following the header, up to 3 distribution tables can be described. When
1073 // present, they are in this order :
1074 //
1075 // Literals lengths
1076 // Offsets
1077 // Match Lengths"
1078 // Update the tables we have stored in the context
1079 decode_seq_table(&ctx->ll_dtable, in, seq_literal_length,
1080 (compression_modes >> 6) & 3);
1081
1082 decode_seq_table(&ctx->of_dtable, in, seq_offset,
1083 (compression_modes >> 4) & 3);
1084
1085 decode_seq_table(&ctx->ml_dtable, in, seq_match_length,
1086 (compression_modes >> 2) & 3);
1087
1088
1089 sequence_states_t states;
1090
1091 // Initialize the decoding tables
1092 {
1093 states.ll_table = ctx->ll_dtable;
1094 states.of_table = ctx->of_dtable;
1095 states.ml_table = ctx->ml_dtable;
1096 }
1097
1098 const size_t len = IO_istream_len(in);
1099 const u8 *const src = IO_get_read_ptr(in, len);
1100
1101 // "After writing the last bit containing information, the compressor writes
1102 // a single 1-bit and then fills the byte with 0-7 0 bits of padding."
1103 const int padding = 8 - highest_set_bit(src[len - 1]);
1104 // The offset starts at the end because FSE streams are read backwards
1105 i64 bit_offset = (i64)(len * 8 - (size_t)padding);
1106
1107 // "The bitstream starts with initial state values, each using the required
1108 // number of bits in their respective accuracy, decoded previously from
1109 // their normalized distribution.
1110 //
1111 // It starts by Literals_Length_State, followed by Offset_State, and finally
1112 // Match_Length_State."
1113 FSE_init_state(&states.ll_table, &states.ll_state, src, &bit_offset);
1114 FSE_init_state(&states.of_table, &states.of_state, src, &bit_offset);
1115 FSE_init_state(&states.ml_table, &states.ml_state, src, &bit_offset);
1116
1117 for (size_t i = 0; i < num_sequences; i++) {
1118 // Decode sequences one by one
f535537f 1119 sequences[i] = decode_sequence(&states, src, &bit_offset, i==num_sequences-1);
648db22b 1120 }
1121
1122 if (bit_offset != 0) {
1123 CORRUPTION();
1124 }
1125}
1126
1127// Decode a single sequence and update the state
1128static sequence_command_t decode_sequence(sequence_states_t *const states,
1129 const u8 *const src,
f535537f 1130 i64 *const offset,
1131 int lastSequence) {
648db22b 1132 // "Each symbol is a code in its own context, which specifies Baseline and
1133 // Number_of_Bits to add. Codes are FSE compressed, and interleaved with raw
1134 // additional bits in the same bitstream."
1135
1136 // Decode symbols, but don't update states
1137 const u8 of_code = FSE_peek_symbol(&states->of_table, states->of_state);
1138 const u8 ll_code = FSE_peek_symbol(&states->ll_table, states->ll_state);
1139 const u8 ml_code = FSE_peek_symbol(&states->ml_table, states->ml_state);
1140
1141 // Offset doesn't need a max value as it's not decoded using a table
1142 if (ll_code > SEQ_MAX_CODES[seq_literal_length] ||
1143 ml_code > SEQ_MAX_CODES[seq_match_length]) {
1144 CORRUPTION();
1145 }
1146
1147 // Read the interleaved bits
1148 sequence_command_t seq;
1149 // "Decoding starts by reading the Number_of_Bits required to decode Offset.
1150 // It then does the same for Match_Length, and then for Literals_Length."
1151 seq.offset = ((u32)1 << of_code) + STREAM_read_bits(src, of_code, offset);
1152
1153 seq.match_length =
1154 SEQ_MATCH_LENGTH_BASELINES[ml_code] +
1155 STREAM_read_bits(src, SEQ_MATCH_LENGTH_EXTRA_BITS[ml_code], offset);
1156
1157 seq.literal_length =
1158 SEQ_LITERAL_LENGTH_BASELINES[ll_code] +
1159 STREAM_read_bits(src, SEQ_LITERAL_LENGTH_EXTRA_BITS[ll_code], offset);
1160
1161 // "If it is not the last sequence in the block, the next operation is to
1162 // update states. Using the rules pre-calculated in the decoding tables,
1163 // Literals_Length_State is updated, followed by Match_Length_State, and
1164 // then Offset_State."
1165 // If the stream is complete don't read bits to update state
f535537f 1166 if (!lastSequence) {
648db22b 1167 FSE_update_state(&states->ll_table, &states->ll_state, src, offset);
1168 FSE_update_state(&states->ml_table, &states->ml_state, src, offset);
1169 FSE_update_state(&states->of_table, &states->of_state, src, offset);
1170 }
1171
1172 return seq;
1173}
1174
1175/// Given a sequence part and table mode, decode the FSE distribution
1176/// Errors if the mode is `seq_repeat` without a pre-existing table in `table`
1177static void decode_seq_table(FSE_dtable *const table, istream_t *const in,
1178 const seq_part_t type, const seq_mode_t mode) {
1179 // Constant arrays indexed by seq_part_t
1180 const i16 *const default_distributions[] = {SEQ_LITERAL_LENGTH_DEFAULT_DIST,
1181 SEQ_OFFSET_DEFAULT_DIST,
1182 SEQ_MATCH_LENGTH_DEFAULT_DIST};
1183 const size_t default_distribution_lengths[] = {36, 29, 53};
1184 const size_t default_distribution_accuracies[] = {6, 5, 6};
1185
1186 const size_t max_accuracies[] = {9, 8, 9};
1187
1188 if (mode != seq_repeat) {
1189 // Free old one before overwriting
1190 FSE_free_dtable(table);
1191 }
1192
1193 switch (mode) {
1194 case seq_predefined: {
1195 // "Predefined_Mode : uses a predefined distribution table."
1196 const i16 *distribution = default_distributions[type];
1197 const size_t symbs = default_distribution_lengths[type];
1198 const size_t accuracy_log = default_distribution_accuracies[type];
1199
1200 FSE_init_dtable(table, distribution, symbs, accuracy_log);
1201 break;
1202 }
1203 case seq_rle: {
1204 // "RLE_Mode : it's a single code, repeated Number_of_Sequences times."
1205 const u8 symb = IO_get_read_ptr(in, 1)[0];
1206 FSE_init_dtable_rle(table, symb);
1207 break;
1208 }
1209 case seq_fse: {
1210 // "FSE_Compressed_Mode : standard FSE compression. A distribution table
1211 // will be present "
1212 FSE_decode_header(table, in, max_accuracies[type]);
1213 break;
1214 }
1215 case seq_repeat:
f535537f 1216 // "Repeat_Mode : reuse distribution table from previous compressed
648db22b 1217 // block."
1218 // Nothing to do here, table will be unchanged
1219 if (!table->symbols) {
1220 // This mode is invalid if we don't already have a table
1221 CORRUPTION();
1222 }
1223 break;
1224 default:
1225 // Impossible, as mode is from 0-3
1226 IMPOSSIBLE();
1227 break;
1228 }
1229
1230}
1231/******* END SEQUENCE DECODING ************************************************/
1232
1233/******* SEQUENCE EXECUTION ***************************************************/
1234static void execute_sequences(frame_context_t *const ctx, ostream_t *const out,
1235 const u8 *const literals,
1236 const size_t literals_len,
1237 const sequence_command_t *const sequences,
1238 const size_t num_sequences) {
1239 istream_t litstream = IO_make_istream(literals, literals_len);
1240
1241 u64 *const offset_hist = ctx->previous_offsets;
1242 size_t total_output = ctx->current_total_output;
1243
1244 for (size_t i = 0; i < num_sequences; i++) {
1245 const sequence_command_t seq = sequences[i];
1246 {
1247 const u32 literals_size = copy_literals(seq.literal_length, &litstream, out);
1248 total_output += literals_size;
1249 }
1250
1251 size_t const offset = compute_offset(seq, offset_hist);
1252
1253 size_t const match_length = seq.match_length;
1254
1255 execute_match_copy(ctx, offset, match_length, total_output, out);
1256
1257 total_output += match_length;
1258 }
1259
1260 // Copy any leftover literals
1261 {
1262 size_t len = IO_istream_len(&litstream);
1263 copy_literals(len, &litstream, out);
1264 total_output += len;
1265 }
1266
1267 ctx->current_total_output = total_output;
1268}
1269
1270static u32 copy_literals(const size_t literal_length, istream_t *litstream,
1271 ostream_t *const out) {
1272 // If the sequence asks for more literals than are left, the
1273 // sequence must be corrupted
1274 if (literal_length > IO_istream_len(litstream)) {
1275 CORRUPTION();
1276 }
1277
1278 u8 *const write_ptr = IO_get_write_ptr(out, literal_length);
1279 const u8 *const read_ptr =
1280 IO_get_read_ptr(litstream, literal_length);
1281 // Copy literals to output
1282 memcpy(write_ptr, read_ptr, literal_length);
1283
1284 return literal_length;
1285}
1286
1287static size_t compute_offset(sequence_command_t seq, u64 *const offset_hist) {
1288 size_t offset;
1289 // Offsets are special, we need to handle the repeat offsets
1290 if (seq.offset <= 3) {
1291 // "The first 3 values define a repeated offset and we will call
1292 // them Repeated_Offset1, Repeated_Offset2, and Repeated_Offset3.
1293 // They are sorted in recency order, with Repeated_Offset1 meaning
1294 // 'most recent one'".
1295
1296 // Use 0 indexing for the array
1297 u32 idx = seq.offset - 1;
1298 if (seq.literal_length == 0) {
1299 // "There is an exception though, when current sequence's
1300 // literals length is 0. In this case, repeated offsets are
1301 // shifted by one, so Repeated_Offset1 becomes Repeated_Offset2,
1302 // Repeated_Offset2 becomes Repeated_Offset3, and
1303 // Repeated_Offset3 becomes Repeated_Offset1 - 1_byte."
1304 idx++;
1305 }
1306
1307 if (idx == 0) {
1308 offset = offset_hist[0];
1309 } else {
1310 // If idx == 3 then literal length was 0 and the offset was 3,
1311 // as per the exception listed above
1312 offset = idx < 3 ? offset_hist[idx] : offset_hist[0] - 1;
1313
1314 // If idx == 1 we don't need to modify offset_hist[2], since
1315 // we're using the second-most recent code
1316 if (idx > 1) {
1317 offset_hist[2] = offset_hist[1];
1318 }
1319 offset_hist[1] = offset_hist[0];
1320 offset_hist[0] = offset;
1321 }
1322 } else {
1323 // When it's not a repeat offset:
1324 // "if (Offset_Value > 3) offset = Offset_Value - 3;"
1325 offset = seq.offset - 3;
1326
1327 // Shift back history
1328 offset_hist[2] = offset_hist[1];
1329 offset_hist[1] = offset_hist[0];
1330 offset_hist[0] = offset;
1331 }
1332 return offset;
1333}
1334
1335static void execute_match_copy(frame_context_t *const ctx, size_t offset,
1336 size_t match_length, size_t total_output,
1337 ostream_t *const out) {
1338 u8 *write_ptr = IO_get_write_ptr(out, match_length);
1339 if (total_output <= ctx->header.window_size) {
1340 // In this case offset might go back into the dictionary
1341 if (offset > total_output + ctx->dict_content_len) {
1342 // The offset goes beyond even the dictionary
1343 CORRUPTION();
1344 }
1345
1346 if (offset > total_output) {
1347 // "The rest of the dictionary is its content. The content act
1348 // as a "past" in front of data to compress or decompress, so it
1349 // can be referenced in sequence commands."
1350 const size_t dict_copy =
1351 MIN(offset - total_output, match_length);
1352 const size_t dict_offset =
1353 ctx->dict_content_len - (offset - total_output);
1354
1355 memcpy(write_ptr, ctx->dict_content + dict_offset, dict_copy);
1356 write_ptr += dict_copy;
1357 match_length -= dict_copy;
1358 }
1359 } else if (offset > ctx->header.window_size) {
1360 CORRUPTION();
1361 }
1362
1363 // We must copy byte by byte because the match length might be larger
1364 // than the offset
1365 // ex: if the output so far was "abc", a command with offset=3 and
1366 // match_length=6 would produce "abcabcabc" as the new output
1367 for (size_t j = 0; j < match_length; j++) {
1368 *write_ptr = *(write_ptr - offset);
1369 write_ptr++;
1370 }
1371}
1372/******* END SEQUENCE EXECUTION ***********************************************/
1373
1374/******* OUTPUT SIZE COUNTING *************************************************/
1375/// Get the decompressed size of an input stream so memory can be allocated in
1376/// advance.
1377/// This implementation assumes `src` points to a single ZSTD-compressed frame
1378size_t ZSTD_get_decompressed_size(const void *src, const size_t src_len) {
1379 istream_t in = IO_make_istream(src, src_len);
1380
1381 // get decompressed size from ZSTD frame header
1382 {
1383 const u32 magic_number = (u32)IO_read_bits(&in, 32);
1384
1385 if (magic_number == ZSTD_MAGIC_NUMBER) {
1386 // ZSTD frame
1387 frame_header_t header;
1388 parse_frame_header(&header, &in);
1389
1390 if (header.frame_content_size == 0 && !header.single_segment_flag) {
1391 // Content size not provided, we can't tell
1392 return (size_t)-1;
1393 }
1394
1395 return header.frame_content_size;
1396 } else {
1397 // not a real frame or skippable frame
1398 ERROR("ZSTD frame magic number did not match");
1399 }
1400 }
1401}
1402/******* END OUTPUT SIZE COUNTING *********************************************/
1403
1404/******* DICTIONARY PARSING ***************************************************/
f535537f 1405dictionary_t* create_dictionary(void) {
648db22b 1406 dictionary_t* const dict = calloc(1, sizeof(dictionary_t));
1407 if (!dict) {
1408 BAD_ALLOC();
1409 }
1410 return dict;
1411}
1412
1413/// Free an allocated dictionary
1414void free_dictionary(dictionary_t *const dict) {
1415 HUF_free_dtable(&dict->literals_dtable);
1416 FSE_free_dtable(&dict->ll_dtable);
1417 FSE_free_dtable(&dict->of_dtable);
1418 FSE_free_dtable(&dict->ml_dtable);
1419
1420 free(dict->content);
1421
1422 memset(dict, 0, sizeof(dictionary_t));
1423
1424 free(dict);
1425}
1426
1427
1428#if !defined(ZDEC_NO_DICTIONARY)
1429#define DICT_SIZE_ERROR() ERROR("Dictionary size cannot be less than 8 bytes")
1430#define NULL_SRC() ERROR("Tried to create dictionary with pointer to null src");
1431
1432static void init_dictionary_content(dictionary_t *const dict,
1433 istream_t *const in);
1434
1435void parse_dictionary(dictionary_t *const dict, const void *src,
1436 size_t src_len) {
1437 const u8 *byte_src = (const u8 *)src;
1438 memset(dict, 0, sizeof(dictionary_t));
1439 if (src == NULL) { /* cannot initialize dictionary with null src */
1440 NULL_SRC();
1441 }
1442 if (src_len < 8) {
1443 DICT_SIZE_ERROR();
1444 }
1445
1446 istream_t in = IO_make_istream(byte_src, src_len);
1447
1448 const u32 magic_number = IO_read_bits(&in, 32);
1449 if (magic_number != 0xEC30A437) {
1450 // raw content dict
1451 IO_rewind_bits(&in, 32);
1452 init_dictionary_content(dict, &in);
1453 return;
1454 }
1455
1456 dict->dictionary_id = IO_read_bits(&in, 32);
1457
1458 // "Entropy_Tables : following the same format as the tables in compressed
1459 // blocks. They are stored in following order : Huffman tables for literals,
1460 // FSE table for offsets, FSE table for match lengths, and FSE table for
1461 // literals lengths. It's finally followed by 3 offset values, populating
1462 // recent offsets (instead of using {1,4,8}), stored in order, 4-bytes
1463 // little-endian each, for a total of 12 bytes. Each recent offset must have
1464 // a value < dictionary size."
1465 decode_huf_table(&dict->literals_dtable, &in);
1466 decode_seq_table(&dict->of_dtable, &in, seq_offset, seq_fse);
1467 decode_seq_table(&dict->ml_dtable, &in, seq_match_length, seq_fse);
1468 decode_seq_table(&dict->ll_dtable, &in, seq_literal_length, seq_fse);
1469
1470 // Read in the previous offset history
1471 dict->previous_offsets[0] = IO_read_bits(&in, 32);
1472 dict->previous_offsets[1] = IO_read_bits(&in, 32);
1473 dict->previous_offsets[2] = IO_read_bits(&in, 32);
1474
1475 // Ensure the provided offsets aren't too large
1476 // "Each recent offset must have a value < dictionary size."
1477 for (int i = 0; i < 3; i++) {
1478 if (dict->previous_offsets[i] > src_len) {
1479 ERROR("Dictionary corrupted");
1480 }
1481 }
1482
1483 // "Content : The rest of the dictionary is its content. The content act as
1484 // a "past" in front of data to compress or decompress, so it can be
1485 // referenced in sequence commands."
1486 init_dictionary_content(dict, &in);
1487}
1488
1489static void init_dictionary_content(dictionary_t *const dict,
1490 istream_t *const in) {
1491 // Copy in the content
1492 dict->content_size = IO_istream_len(in);
1493 dict->content = malloc(dict->content_size);
1494 if (!dict->content) {
1495 BAD_ALLOC();
1496 }
1497
1498 const u8 *const content = IO_get_read_ptr(in, dict->content_size);
1499
1500 memcpy(dict->content, content, dict->content_size);
1501}
1502
1503static void HUF_copy_dtable(HUF_dtable *const dst,
1504 const HUF_dtable *const src) {
1505 if (src->max_bits == 0) {
1506 memset(dst, 0, sizeof(HUF_dtable));
1507 return;
1508 }
1509
1510 const size_t size = (size_t)1 << src->max_bits;
1511 dst->max_bits = src->max_bits;
1512
1513 dst->symbols = malloc(size);
1514 dst->num_bits = malloc(size);
1515 if (!dst->symbols || !dst->num_bits) {
1516 BAD_ALLOC();
1517 }
1518
1519 memcpy(dst->symbols, src->symbols, size);
1520 memcpy(dst->num_bits, src->num_bits, size);
1521}
1522
1523static void FSE_copy_dtable(FSE_dtable *const dst, const FSE_dtable *const src) {
1524 if (src->accuracy_log == 0) {
1525 memset(dst, 0, sizeof(FSE_dtable));
1526 return;
1527 }
1528
1529 size_t size = (size_t)1 << src->accuracy_log;
1530 dst->accuracy_log = src->accuracy_log;
1531
1532 dst->symbols = malloc(size);
1533 dst->num_bits = malloc(size);
1534 dst->new_state_base = malloc(size * sizeof(u16));
1535 if (!dst->symbols || !dst->num_bits || !dst->new_state_base) {
1536 BAD_ALLOC();
1537 }
1538
1539 memcpy(dst->symbols, src->symbols, size);
1540 memcpy(dst->num_bits, src->num_bits, size);
1541 memcpy(dst->new_state_base, src->new_state_base, size * sizeof(u16));
1542}
1543
1544/// A dictionary acts as initializing values for the frame context before
1545/// decompression, so we implement it by applying it's predetermined
1546/// tables and content to the context before beginning decompression
1547static void frame_context_apply_dict(frame_context_t *const ctx,
1548 const dictionary_t *const dict) {
1549 // If the content pointer is NULL then it must be an empty dict
1550 if (!dict || !dict->content)
1551 return;
1552
1553 // If the requested dictionary_id is non-zero, the correct dictionary must
1554 // be present
1555 if (ctx->header.dictionary_id != 0 &&
1556 ctx->header.dictionary_id != dict->dictionary_id) {
1557 ERROR("Wrong dictionary provided");
1558 }
1559
1560 // Copy the dict content to the context for references during sequence
1561 // execution
1562 ctx->dict_content = dict->content;
1563 ctx->dict_content_len = dict->content_size;
1564
1565 // If it's a formatted dict copy the precomputed tables in so they can
1566 // be used in the table repeat modes
1567 if (dict->dictionary_id != 0) {
1568 // Deep copy the entropy tables so they can be freed independently of
1569 // the dictionary struct
1570 HUF_copy_dtable(&ctx->literals_dtable, &dict->literals_dtable);
1571 FSE_copy_dtable(&ctx->ll_dtable, &dict->ll_dtable);
1572 FSE_copy_dtable(&ctx->of_dtable, &dict->of_dtable);
1573 FSE_copy_dtable(&ctx->ml_dtable, &dict->ml_dtable);
1574
1575 // Copy the repeated offsets
1576 memcpy(ctx->previous_offsets, dict->previous_offsets,
1577 sizeof(ctx->previous_offsets));
1578 }
1579}
1580
1581#else // ZDEC_NO_DICTIONARY is defined
1582
1583static void frame_context_apply_dict(frame_context_t *const ctx,
1584 const dictionary_t *const dict) {
1585 (void)ctx;
1586 if (dict && dict->content) ERROR("dictionary not supported");
1587}
1588
1589#endif
1590/******* END DICTIONARY PARSING ***********************************************/
1591
1592/******* IO STREAM OPERATIONS *************************************************/
1593
1594/// Reads `num` bits from a bitstream, and updates the internal offset
1595static inline u64 IO_read_bits(istream_t *const in, const int num_bits) {
1596 if (num_bits > 64 || num_bits <= 0) {
1597 ERROR("Attempt to read an invalid number of bits");
1598 }
1599
1600 const size_t bytes = (num_bits + in->bit_offset + 7) / 8;
1601 const size_t full_bytes = (num_bits + in->bit_offset) / 8;
1602 if (bytes > in->len) {
1603 INP_SIZE();
1604 }
1605
1606 const u64 result = read_bits_LE(in->ptr, num_bits, in->bit_offset);
1607
1608 in->bit_offset = (num_bits + in->bit_offset) % 8;
1609 in->ptr += full_bytes;
1610 in->len -= full_bytes;
1611
1612 return result;
1613}
1614
1615/// If a non-zero number of bits have been read from the current byte, advance
1616/// the offset to the next byte
1617static inline void IO_rewind_bits(istream_t *const in, int num_bits) {
1618 if (num_bits < 0) {
1619 ERROR("Attempting to rewind stream by a negative number of bits");
1620 }
1621
1622 // move the offset back by `num_bits` bits
1623 const int new_offset = in->bit_offset - num_bits;
1624 // determine the number of whole bytes we have to rewind, rounding up to an
1625 // integer number (e.g. if `new_offset == -5`, `bytes == 1`)
1626 const i64 bytes = -(new_offset - 7) / 8;
1627
1628 in->ptr -= bytes;
1629 in->len += bytes;
1630 // make sure the resulting `bit_offset` is positive, as mod in C does not
1631 // convert numbers from negative to positive (e.g. -22 % 8 == -6)
1632 in->bit_offset = ((new_offset % 8) + 8) % 8;
1633}
1634
1635/// If the remaining bits in a byte will be unused, advance to the end of the
1636/// byte
1637static inline void IO_align_stream(istream_t *const in) {
1638 if (in->bit_offset != 0) {
1639 if (in->len == 0) {
1640 INP_SIZE();
1641 }
1642 in->ptr++;
1643 in->len--;
1644 in->bit_offset = 0;
1645 }
1646}
1647
1648/// Write the given byte into the output stream
1649static inline void IO_write_byte(ostream_t *const out, u8 symb) {
1650 if (out->len == 0) {
1651 OUT_SIZE();
1652 }
1653
1654 out->ptr[0] = symb;
1655 out->ptr++;
1656 out->len--;
1657}
1658
1659/// Returns the number of bytes left to be read in this stream. The stream must
1660/// be byte aligned.
1661static inline size_t IO_istream_len(const istream_t *const in) {
1662 return in->len;
1663}
1664
1665/// Returns a pointer where `len` bytes can be read, and advances the internal
1666/// state. The stream must be byte aligned.
1667static inline const u8 *IO_get_read_ptr(istream_t *const in, size_t len) {
1668 if (len > in->len) {
1669 INP_SIZE();
1670 }
1671 if (in->bit_offset != 0) {
1672 ERROR("Attempting to operate on a non-byte aligned stream");
1673 }
1674 const u8 *const ptr = in->ptr;
1675 in->ptr += len;
1676 in->len -= len;
1677
1678 return ptr;
1679}
1680/// Returns a pointer to write `len` bytes to, and advances the internal state
1681static inline u8 *IO_get_write_ptr(ostream_t *const out, size_t len) {
1682 if (len > out->len) {
1683 OUT_SIZE();
1684 }
1685 u8 *const ptr = out->ptr;
1686 out->ptr += len;
1687 out->len -= len;
1688
1689 return ptr;
1690}
1691
1692/// Advance the inner state by `len` bytes
1693static inline void IO_advance_input(istream_t *const in, size_t len) {
1694 if (len > in->len) {
1695 INP_SIZE();
1696 }
1697 if (in->bit_offset != 0) {
1698 ERROR("Attempting to operate on a non-byte aligned stream");
1699 }
1700
1701 in->ptr += len;
1702 in->len -= len;
1703}
1704
1705/// Returns an `ostream_t` constructed from the given pointer and length
1706static inline ostream_t IO_make_ostream(u8 *out, size_t len) {
1707 return (ostream_t) { out, len };
1708}
1709
1710/// Returns an `istream_t` constructed from the given pointer and length
1711static inline istream_t IO_make_istream(const u8 *in, size_t len) {
1712 return (istream_t) { in, len, 0 };
1713}
1714
1715/// Returns an `istream_t` with the same base as `in`, and length `len`
1716/// Then, advance `in` to account for the consumed bytes
1717/// `in` must be byte aligned
1718static inline istream_t IO_make_sub_istream(istream_t *const in, size_t len) {
1719 // Consume `len` bytes of the parent stream
1720 const u8 *const ptr = IO_get_read_ptr(in, len);
1721
1722 // Make a substream using the pointer to those `len` bytes
1723 return IO_make_istream(ptr, len);
1724}
1725/******* END IO STREAM OPERATIONS *********************************************/
1726
1727/******* BITSTREAM OPERATIONS *************************************************/
1728/// Read `num` bits (up to 64) from `src + offset`, where `offset` is in bits
1729static inline u64 read_bits_LE(const u8 *src, const int num_bits,
1730 const size_t offset) {
1731 if (num_bits > 64) {
1732 ERROR("Attempt to read an invalid number of bits");
1733 }
1734
1735 // Skip over bytes that aren't in range
1736 src += offset / 8;
1737 size_t bit_offset = offset % 8;
1738 u64 res = 0;
1739
1740 int shift = 0;
1741 int left = num_bits;
1742 while (left > 0) {
1743 u64 mask = left >= 8 ? 0xff : (((u64)1 << left) - 1);
1744 // Read the next byte, shift it to account for the offset, and then mask
1745 // out the top part if we don't need all the bits
1746 res += (((u64)*src++ >> bit_offset) & mask) << shift;
1747 shift += 8 - bit_offset;
1748 left -= 8 - bit_offset;
1749 bit_offset = 0;
1750 }
1751
1752 return res;
1753}
1754
1755/// Read bits from the end of a HUF or FSE bitstream. `offset` is in bits, so
1756/// it updates `offset` to `offset - bits`, and then reads `bits` bits from
1757/// `src + offset`. If the offset becomes negative, the extra bits at the
1758/// bottom are filled in with `0` bits instead of reading from before `src`.
1759static inline u64 STREAM_read_bits(const u8 *const src, const int bits,
1760 i64 *const offset) {
1761 *offset = *offset - bits;
1762 size_t actual_off = *offset;
1763 size_t actual_bits = bits;
1764 // Don't actually read bits from before the start of src, so if `*offset <
1765 // 0` fix actual_off and actual_bits to reflect the quantity to read
1766 if (*offset < 0) {
1767 actual_bits += *offset;
1768 actual_off = 0;
1769 }
1770 u64 res = read_bits_LE(src, actual_bits, actual_off);
1771
1772 if (*offset < 0) {
1773 // Fill in the bottom "overflowed" bits with 0's
1774 res = -*offset >= 64 ? 0 : (res << -*offset);
1775 }
1776 return res;
1777}
1778/******* END BITSTREAM OPERATIONS *********************************************/
1779
1780/******* BIT COUNTING OPERATIONS **********************************************/
1781/// Returns `x`, where `2^x` is the largest power of 2 less than or equal to
1782/// `num`, or `-1` if `num == 0`.
1783static inline int highest_set_bit(const u64 num) {
1784 for (int i = 63; i >= 0; i--) {
1785 if (((u64)1 << i) <= num) {
1786 return i;
1787 }
1788 }
1789 return -1;
1790}
1791/******* END BIT COUNTING OPERATIONS ******************************************/
1792
1793/******* HUFFMAN PRIMITIVES ***************************************************/
1794static inline u8 HUF_decode_symbol(const HUF_dtable *const dtable,
1795 u16 *const state, const u8 *const src,
1796 i64 *const offset) {
1797 // Look up the symbol and number of bits to read
1798 const u8 symb = dtable->symbols[*state];
1799 const u8 bits = dtable->num_bits[*state];
1800 const u16 rest = STREAM_read_bits(src, bits, offset);
1801 // Shift `bits` bits out of the state, keeping the low order bits that
1802 // weren't necessary to determine this symbol. Then add in the new bits
1803 // read from the stream.
1804 *state = ((*state << bits) + rest) & (((u16)1 << dtable->max_bits) - 1);
1805
1806 return symb;
1807}
1808
1809static inline void HUF_init_state(const HUF_dtable *const dtable,
1810 u16 *const state, const u8 *const src,
1811 i64 *const offset) {
1812 // Read in a full `dtable->max_bits` bits to initialize the state
1813 const u8 bits = dtable->max_bits;
1814 *state = STREAM_read_bits(src, bits, offset);
1815}
1816
1817static size_t HUF_decompress_1stream(const HUF_dtable *const dtable,
1818 ostream_t *const out,
1819 istream_t *const in) {
1820 const size_t len = IO_istream_len(in);
1821 if (len == 0) {
1822 INP_SIZE();
1823 }
1824 const u8 *const src = IO_get_read_ptr(in, len);
1825
1826 // "Each bitstream must be read backward, that is starting from the end down
1827 // to the beginning. Therefore it's necessary to know the size of each
1828 // bitstream.
1829 //
1830 // It's also necessary to know exactly which bit is the latest. This is
1831 // detected by a final bit flag : the highest bit of latest byte is a
1832 // final-bit-flag. Consequently, a last byte of 0 is not possible. And the
1833 // final-bit-flag itself is not part of the useful bitstream. Hence, the
1834 // last byte contains between 0 and 7 useful bits."
1835 const int padding = 8 - highest_set_bit(src[len - 1]);
1836
1837 // Offset starts at the end because HUF streams are read backwards
1838 i64 bit_offset = len * 8 - padding;
1839 u16 state;
1840
1841 HUF_init_state(dtable, &state, src, &bit_offset);
1842
1843 size_t symbols_written = 0;
1844 while (bit_offset > -dtable->max_bits) {
1845 // Iterate over the stream, decoding one symbol at a time
1846 IO_write_byte(out, HUF_decode_symbol(dtable, &state, src, &bit_offset));
1847 symbols_written++;
1848 }
1849 // "The process continues up to reading the required number of symbols per
1850 // stream. If a bitstream is not entirely and exactly consumed, hence
1851 // reaching exactly its beginning position with all bits consumed, the
1852 // decoding process is considered faulty."
1853
1854 // When all symbols have been decoded, the final state value shouldn't have
1855 // any data from the stream, so it should have "read" dtable->max_bits from
1856 // before the start of `src`
1857 // Therefore `offset`, the edge to start reading new bits at, should be
1858 // dtable->max_bits before the start of the stream
1859 if (bit_offset != -dtable->max_bits) {
1860 CORRUPTION();
1861 }
1862
1863 return symbols_written;
1864}
1865
1866static size_t HUF_decompress_4stream(const HUF_dtable *const dtable,
1867 ostream_t *const out, istream_t *const in) {
1868 // "Compressed size is provided explicitly : in the 4-streams variant,
1869 // bitstreams are preceded by 3 unsigned little-endian 16-bits values. Each
1870 // value represents the compressed size of one stream, in order. The last
1871 // stream size is deducted from total compressed size and from previously
1872 // decoded stream sizes"
1873 const size_t csize1 = IO_read_bits(in, 16);
1874 const size_t csize2 = IO_read_bits(in, 16);
1875 const size_t csize3 = IO_read_bits(in, 16);
1876
1877 istream_t in1 = IO_make_sub_istream(in, csize1);
1878 istream_t in2 = IO_make_sub_istream(in, csize2);
1879 istream_t in3 = IO_make_sub_istream(in, csize3);
1880 istream_t in4 = IO_make_sub_istream(in, IO_istream_len(in));
1881
1882 size_t total_output = 0;
1883 // Decode each stream independently for simplicity
1884 // If we wanted to we could decode all 4 at the same time for speed,
1885 // utilizing more execution units
1886 total_output += HUF_decompress_1stream(dtable, out, &in1);
1887 total_output += HUF_decompress_1stream(dtable, out, &in2);
1888 total_output += HUF_decompress_1stream(dtable, out, &in3);
1889 total_output += HUF_decompress_1stream(dtable, out, &in4);
1890
1891 return total_output;
1892}
1893
1894/// Initializes a Huffman table using canonical Huffman codes
1895/// For more explanation on canonical Huffman codes see
1896/// https://www.cs.scranton.edu/~mccloske/courses/cmps340/huff_canonical_dec2015.html
1897/// Codes within a level are allocated in symbol order (i.e. smaller symbols get
1898/// earlier codes)
1899static void HUF_init_dtable(HUF_dtable *const table, const u8 *const bits,
1900 const int num_symbs) {
1901 memset(table, 0, sizeof(HUF_dtable));
1902 if (num_symbs > HUF_MAX_SYMBS) {
1903 ERROR("Too many symbols for Huffman");
1904 }
1905
1906 u8 max_bits = 0;
1907 u16 rank_count[HUF_MAX_BITS + 1];
1908 memset(rank_count, 0, sizeof(rank_count));
1909
1910 // Count the number of symbols for each number of bits, and determine the
1911 // depth of the tree
1912 for (int i = 0; i < num_symbs; i++) {
1913 if (bits[i] > HUF_MAX_BITS) {
1914 ERROR("Huffman table depth too large");
1915 }
1916 max_bits = MAX(max_bits, bits[i]);
1917 rank_count[bits[i]]++;
1918 }
1919
1920 const size_t table_size = 1 << max_bits;
1921 table->max_bits = max_bits;
1922 table->symbols = malloc(table_size);
1923 table->num_bits = malloc(table_size);
1924
1925 if (!table->symbols || !table->num_bits) {
1926 free(table->symbols);
1927 free(table->num_bits);
1928 BAD_ALLOC();
1929 }
1930
1931 // "Symbols are sorted by Weight. Within same Weight, symbols keep natural
1932 // order. Symbols with a Weight of zero are removed. Then, starting from
1933 // lowest weight, prefix codes are distributed in order."
1934
1935 u32 rank_idx[HUF_MAX_BITS + 1];
1936 // Initialize the starting codes for each rank (number of bits)
1937 rank_idx[max_bits] = 0;
1938 for (int i = max_bits; i >= 1; i--) {
1939 rank_idx[i - 1] = rank_idx[i] + rank_count[i] * (1 << (max_bits - i));
1940 // The entire range takes the same number of bits so we can memset it
1941 memset(&table->num_bits[rank_idx[i]], i, rank_idx[i - 1] - rank_idx[i]);
1942 }
1943
1944 if (rank_idx[0] != table_size) {
1945 CORRUPTION();
1946 }
1947
1948 // Allocate codes and fill in the table
1949 for (int i = 0; i < num_symbs; i++) {
1950 if (bits[i] != 0) {
1951 // Allocate a code for this symbol and set its range in the table
1952 const u16 code = rank_idx[bits[i]];
1953 // Since the code doesn't care about the bottom `max_bits - bits[i]`
1954 // bits of state, it gets a range that spans all possible values of
1955 // the lower bits
1956 const u16 len = 1 << (max_bits - bits[i]);
1957 memset(&table->symbols[code], i, len);
1958 rank_idx[bits[i]] += len;
1959 }
1960 }
1961}
1962
1963static void HUF_init_dtable_usingweights(HUF_dtable *const table,
1964 const u8 *const weights,
1965 const int num_symbs) {
1966 // +1 because the last weight is not transmitted in the header
1967 if (num_symbs + 1 > HUF_MAX_SYMBS) {
1968 ERROR("Too many symbols for Huffman");
1969 }
1970
1971 u8 bits[HUF_MAX_SYMBS];
1972
1973 u64 weight_sum = 0;
1974 for (int i = 0; i < num_symbs; i++) {
1975 // Weights are in the same range as bit count
1976 if (weights[i] > HUF_MAX_BITS) {
1977 CORRUPTION();
1978 }
1979 weight_sum += weights[i] > 0 ? (u64)1 << (weights[i] - 1) : 0;
1980 }
1981
1982 // Find the first power of 2 larger than the sum
1983 const int max_bits = highest_set_bit(weight_sum) + 1;
1984 const u64 left_over = ((u64)1 << max_bits) - weight_sum;
1985 // If the left over isn't a power of 2, the weights are invalid
1986 if (left_over & (left_over - 1)) {
1987 CORRUPTION();
1988 }
1989
1990 // left_over is used to find the last weight as it's not transmitted
1991 // by inverting 2^(weight - 1) we can determine the value of last_weight
1992 const int last_weight = highest_set_bit(left_over) + 1;
1993
1994 for (int i = 0; i < num_symbs; i++) {
1995 // "Number_of_Bits = Number_of_Bits ? Max_Number_of_Bits + 1 - Weight : 0"
1996 bits[i] = weights[i] > 0 ? (max_bits + 1 - weights[i]) : 0;
1997 }
1998 bits[num_symbs] =
1999 max_bits + 1 - last_weight; // Last weight is always non-zero
2000
2001 HUF_init_dtable(table, bits, num_symbs + 1);
2002}
2003
2004static void HUF_free_dtable(HUF_dtable *const dtable) {
2005 free(dtable->symbols);
2006 free(dtable->num_bits);
2007 memset(dtable, 0, sizeof(HUF_dtable));
2008}
2009/******* END HUFFMAN PRIMITIVES ***********************************************/
2010
2011/******* FSE PRIMITIVES *******************************************************/
2012/// For more description of FSE see
2013/// https://github.com/Cyan4973/FiniteStateEntropy/
2014
2015/// Allow a symbol to be decoded without updating state
2016static inline u8 FSE_peek_symbol(const FSE_dtable *const dtable,
2017 const u16 state) {
2018 return dtable->symbols[state];
2019}
2020
2021/// Consumes bits from the input and uses the current state to determine the
2022/// next state
2023static inline void FSE_update_state(const FSE_dtable *const dtable,
2024 u16 *const state, const u8 *const src,
2025 i64 *const offset) {
2026 const u8 bits = dtable->num_bits[*state];
2027 const u16 rest = STREAM_read_bits(src, bits, offset);
2028 *state = dtable->new_state_base[*state] + rest;
2029}
2030
2031/// Decodes a single FSE symbol and updates the offset
2032static inline u8 FSE_decode_symbol(const FSE_dtable *const dtable,
2033 u16 *const state, const u8 *const src,
2034 i64 *const offset) {
2035 const u8 symb = FSE_peek_symbol(dtable, *state);
2036 FSE_update_state(dtable, state, src, offset);
2037 return symb;
2038}
2039
2040static inline void FSE_init_state(const FSE_dtable *const dtable,
2041 u16 *const state, const u8 *const src,
2042 i64 *const offset) {
2043 // Read in a full `accuracy_log` bits to initialize the state
2044 const u8 bits = dtable->accuracy_log;
2045 *state = STREAM_read_bits(src, bits, offset);
2046}
2047
2048static size_t FSE_decompress_interleaved2(const FSE_dtable *const dtable,
2049 ostream_t *const out,
2050 istream_t *const in) {
2051 const size_t len = IO_istream_len(in);
2052 if (len == 0) {
2053 INP_SIZE();
2054 }
2055 const u8 *const src = IO_get_read_ptr(in, len);
2056
2057 // "Each bitstream must be read backward, that is starting from the end down
2058 // to the beginning. Therefore it's necessary to know the size of each
2059 // bitstream.
2060 //
2061 // It's also necessary to know exactly which bit is the latest. This is
2062 // detected by a final bit flag : the highest bit of latest byte is a
2063 // final-bit-flag. Consequently, a last byte of 0 is not possible. And the
2064 // final-bit-flag itself is not part of the useful bitstream. Hence, the
2065 // last byte contains between 0 and 7 useful bits."
2066 const int padding = 8 - highest_set_bit(src[len - 1]);
2067 i64 offset = len * 8 - padding;
2068
2069 u16 state1, state2;
2070 // "The first state (State1) encodes the even indexed symbols, and the
2071 // second (State2) encodes the odd indexes. State1 is initialized first, and
2072 // then State2, and they take turns decoding a single symbol and updating
2073 // their state."
2074 FSE_init_state(dtable, &state1, src, &offset);
2075 FSE_init_state(dtable, &state2, src, &offset);
2076
2077 // Decode until we overflow the stream
2078 // Since we decode in reverse order, overflowing the stream is offset going
2079 // negative
2080 size_t symbols_written = 0;
2081 while (1) {
2082 // "The number of symbols to decode is determined by tracking bitStream
2083 // overflow condition: If updating state after decoding a symbol would
2084 // require more bits than remain in the stream, it is assumed the extra
2085 // bits are 0. Then, the symbols for each of the final states are
2086 // decoded and the process is complete."
2087 IO_write_byte(out, FSE_decode_symbol(dtable, &state1, src, &offset));
2088 symbols_written++;
2089 if (offset < 0) {
2090 // There's still a symbol to decode in state2
2091 IO_write_byte(out, FSE_peek_symbol(dtable, state2));
2092 symbols_written++;
2093 break;
2094 }
2095
2096 IO_write_byte(out, FSE_decode_symbol(dtable, &state2, src, &offset));
2097 symbols_written++;
2098 if (offset < 0) {
2099 // There's still a symbol to decode in state1
2100 IO_write_byte(out, FSE_peek_symbol(dtable, state1));
2101 symbols_written++;
2102 break;
2103 }
2104 }
2105
2106 return symbols_written;
2107}
2108
2109static void FSE_init_dtable(FSE_dtable *const dtable,
2110 const i16 *const norm_freqs, const int num_symbs,
2111 const int accuracy_log) {
2112 if (accuracy_log > FSE_MAX_ACCURACY_LOG) {
2113 ERROR("FSE accuracy too large");
2114 }
2115 if (num_symbs > FSE_MAX_SYMBS) {
2116 ERROR("Too many symbols for FSE");
2117 }
2118
2119 dtable->accuracy_log = accuracy_log;
2120
2121 const size_t size = (size_t)1 << accuracy_log;
2122 dtable->symbols = malloc(size * sizeof(u8));
2123 dtable->num_bits = malloc(size * sizeof(u8));
2124 dtable->new_state_base = malloc(size * sizeof(u16));
2125
2126 if (!dtable->symbols || !dtable->num_bits || !dtable->new_state_base) {
2127 BAD_ALLOC();
2128 }
2129
2130 // Used to determine how many bits need to be read for each state,
2131 // and where the destination range should start
2132 // Needs to be u16 because max value is 2 * max number of symbols,
2133 // which can be larger than a byte can store
2134 u16 state_desc[FSE_MAX_SYMBS];
2135
2136 // "Symbols are scanned in their natural order for "less than 1"
2137 // probabilities. Symbols with this probability are being attributed a
2138 // single cell, starting from the end of the table. These symbols define a
2139 // full state reset, reading Accuracy_Log bits."
2140 int high_threshold = size;
2141 for (int s = 0; s < num_symbs; s++) {
2142 // Scan for low probability symbols to put at the top
2143 if (norm_freqs[s] == -1) {
2144 dtable->symbols[--high_threshold] = s;
2145 state_desc[s] = 1;
2146 }
2147 }
2148
2149 // "All remaining symbols are sorted in their natural order. Starting from
2150 // symbol 0 and table position 0, each symbol gets attributed as many cells
2151 // as its probability. Cell allocation is spread, not linear."
2152 // Place the rest in the table
2153 const u16 step = (size >> 1) + (size >> 3) + 3;
2154 const u16 mask = size - 1;
2155 u16 pos = 0;
2156 for (int s = 0; s < num_symbs; s++) {
2157 if (norm_freqs[s] <= 0) {
2158 continue;
2159 }
2160
2161 state_desc[s] = norm_freqs[s];
2162
2163 for (int i = 0; i < norm_freqs[s]; i++) {
2164 // Give `norm_freqs[s]` states to symbol s
2165 dtable->symbols[pos] = s;
2166 // "A position is skipped if already occupied, typically by a "less
2167 // than 1" probability symbol."
2168 do {
2169 pos = (pos + step) & mask;
2170 } while (pos >=
2171 high_threshold);
2172 // Note: no other collision checking is necessary as `step` is
2173 // coprime to `size`, so the cycle will visit each position exactly
2174 // once
2175 }
2176 }
2177 if (pos != 0) {
2178 CORRUPTION();
2179 }
2180
2181 // Now we can fill baseline and num bits
2182 for (size_t i = 0; i < size; i++) {
2183 u8 symbol = dtable->symbols[i];
2184 u16 next_state_desc = state_desc[symbol]++;
2185 // Fills in the table appropriately, next_state_desc increases by symbol
2186 // over time, decreasing number of bits
2187 dtable->num_bits[i] = (u8)(accuracy_log - highest_set_bit(next_state_desc));
2188 // Baseline increases until the bit threshold is passed, at which point
2189 // it resets to 0
2190 dtable->new_state_base[i] =
2191 ((u16)next_state_desc << dtable->num_bits[i]) - size;
2192 }
2193}
2194
2195/// Decode an FSE header as defined in the Zstandard format specification and
2196/// use the decoded frequencies to initialize a decoding table.
2197static void FSE_decode_header(FSE_dtable *const dtable, istream_t *const in,
2198 const int max_accuracy_log) {
2199 // "An FSE distribution table describes the probabilities of all symbols
2200 // from 0 to the last present one (included) on a normalized scale of 1 <<
2201 // Accuracy_Log .
2202 //
2203 // It's a bitstream which is read forward, in little-endian fashion. It's
2204 // not necessary to know its exact size, since it will be discovered and
2205 // reported by the decoding process.
2206 if (max_accuracy_log > FSE_MAX_ACCURACY_LOG) {
2207 ERROR("FSE accuracy too large");
2208 }
2209
2210 // The bitstream starts by reporting on which scale it operates.
2211 // Accuracy_Log = low4bits + 5. Note that maximum Accuracy_Log for literal
2212 // and match lengths is 9, and for offsets is 8. Higher values are
2213 // considered errors."
2214 const int accuracy_log = 5 + IO_read_bits(in, 4);
2215 if (accuracy_log > max_accuracy_log) {
2216 ERROR("FSE accuracy too large");
2217 }
2218
2219 // "Then follows each symbol value, from 0 to last present one. The number
2220 // of bits used by each field is variable. It depends on :
2221 //
2222 // Remaining probabilities + 1 : example : Presuming an Accuracy_Log of 8,
2223 // and presuming 100 probabilities points have already been distributed, the
2224 // decoder may read any value from 0 to 255 - 100 + 1 == 156 (inclusive).
2225 // Therefore, it must read log2sup(156) == 8 bits.
2226 //
2227 // Value decoded : small values use 1 less bit : example : Presuming values
2228 // from 0 to 156 (inclusive) are possible, 255-156 = 99 values are remaining
2229 // in an 8-bits field. They are used this way : first 99 values (hence from
2230 // 0 to 98) use only 7 bits, values from 99 to 156 use 8 bits. "
2231
2232 i32 remaining = 1 << accuracy_log;
2233 i16 frequencies[FSE_MAX_SYMBS];
2234
2235 int symb = 0;
2236 while (remaining > 0 && symb < FSE_MAX_SYMBS) {
2237 // Log of the number of possible values we could read
2238 int bits = highest_set_bit(remaining + 1) + 1;
2239
2240 u16 val = IO_read_bits(in, bits);
2241
2242 // Try to mask out the lower bits to see if it qualifies for the "small
2243 // value" threshold
2244 const u16 lower_mask = ((u16)1 << (bits - 1)) - 1;
2245 const u16 threshold = ((u16)1 << bits) - 1 - (remaining + 1);
2246
2247 if ((val & lower_mask) < threshold) {
2248 IO_rewind_bits(in, 1);
2249 val = val & lower_mask;
2250 } else if (val > lower_mask) {
2251 val = val - threshold;
2252 }
2253
2254 // "Probability is obtained from Value decoded by following formula :
2255 // Proba = value - 1"
2256 const i16 proba = (i16)val - 1;
2257
2258 // "It means value 0 becomes negative probability -1. -1 is a special
2259 // probability, which means "less than 1". Its effect on distribution
2260 // table is described in next paragraph. For the purpose of calculating
2261 // cumulated distribution, it counts as one."
2262 remaining -= proba < 0 ? -proba : proba;
2263
2264 frequencies[symb] = proba;
2265 symb++;
2266
2267 // "When a symbol has a probability of zero, it is followed by a 2-bits
2268 // repeat flag. This repeat flag tells how many probabilities of zeroes
2269 // follow the current one. It provides a number ranging from 0 to 3. If
2270 // it is a 3, another 2-bits repeat flag follows, and so on."
2271 if (proba == 0) {
2272 // Read the next two bits to see how many more 0s
2273 int repeat = IO_read_bits(in, 2);
2274
2275 while (1) {
2276 for (int i = 0; i < repeat && symb < FSE_MAX_SYMBS; i++) {
2277 frequencies[symb++] = 0;
2278 }
2279 if (repeat == 3) {
2280 repeat = IO_read_bits(in, 2);
2281 } else {
2282 break;
2283 }
2284 }
2285 }
2286 }
2287 IO_align_stream(in);
2288
2289 // "When last symbol reaches cumulated total of 1 << Accuracy_Log, decoding
2290 // is complete. If the last symbol makes cumulated total go above 1 <<
2291 // Accuracy_Log, distribution is considered corrupted."
2292 if (remaining != 0 || symb >= FSE_MAX_SYMBS) {
2293 CORRUPTION();
2294 }
2295
2296 // Initialize the decoding table using the determined weights
2297 FSE_init_dtable(dtable, frequencies, symb, accuracy_log);
2298}
2299
2300static void FSE_init_dtable_rle(FSE_dtable *const dtable, const u8 symb) {
2301 dtable->symbols = malloc(sizeof(u8));
2302 dtable->num_bits = malloc(sizeof(u8));
2303 dtable->new_state_base = malloc(sizeof(u16));
2304
2305 if (!dtable->symbols || !dtable->num_bits || !dtable->new_state_base) {
2306 BAD_ALLOC();
2307 }
2308
2309 // This setup will always have a state of 0, always return symbol `symb`,
2310 // and never consume any bits
2311 dtable->symbols[0] = symb;
2312 dtable->num_bits[0] = 0;
2313 dtable->new_state_base[0] = 0;
2314 dtable->accuracy_log = 0;
2315}
2316
2317static void FSE_free_dtable(FSE_dtable *const dtable) {
2318 free(dtable->symbols);
2319 free(dtable->num_bits);
2320 free(dtable->new_state_base);
2321 memset(dtable, 0, sizeof(FSE_dtable));
2322}
2323/******* END FSE PRIMITIVES ***************************************************/