git subrepo pull (merge) --force deps/libchdr
[pcsx_rearmed.git] / deps / libchdr / deps / zstd-1.5.6 / lib / decompress / huf_decompress.c
CommitLineData
648db22b 1/* ******************************************************************
2 * huff0 huffman decoder,
3 * part of Finite State Entropy library
4 * Copyright (c) Meta Platforms, Inc. and affiliates.
5 *
6 * You can contact the author at :
7 * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
8 *
9 * This source code is licensed under both the BSD-style license (found in the
10 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
11 * in the COPYING file in the root directory of this source tree).
12 * You may select, at your option, one of the above-listed licenses.
13****************************************************************** */
14
15/* **************************************************************
16* Dependencies
17****************************************************************/
18#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
19#include "../common/compiler.h"
20#include "../common/bitstream.h" /* BIT_* */
21#include "../common/fse.h" /* to compress headers */
22#include "../common/huf.h"
23#include "../common/error_private.h"
24#include "../common/zstd_internal.h"
25#include "../common/bits.h" /* ZSTD_highbit32, ZSTD_countTrailingZeros64 */
26
27/* **************************************************************
28* Constants
29****************************************************************/
30
31#define HUF_DECODER_FAST_TABLELOG 11
32
33/* **************************************************************
34* Macros
35****************************************************************/
36
f535537f 37#ifdef HUF_DISABLE_FAST_DECODE
38# define HUF_ENABLE_FAST_DECODE 0
39#else
40# define HUF_ENABLE_FAST_DECODE 1
41#endif
42
648db22b 43/* These two optional macros force the use one way or another of the two
44 * Huffman decompression implementations. You can't force in both directions
45 * at the same time.
46 */
47#if defined(HUF_FORCE_DECOMPRESS_X1) && \
48 defined(HUF_FORCE_DECOMPRESS_X2)
49#error "Cannot force the use of the X1 and X2 decoders at the same time!"
50#endif
51
52/* When DYNAMIC_BMI2 is enabled, fast decoders are only called when bmi2 is
53 * supported at runtime, so we can add the BMI2 target attribute.
54 * When it is disabled, we will still get BMI2 if it is enabled statically.
55 */
56#if DYNAMIC_BMI2
57# define HUF_FAST_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE
58#else
59# define HUF_FAST_BMI2_ATTRS
60#endif
61
62#ifdef __cplusplus
63# define HUF_EXTERN_C extern "C"
64#else
65# define HUF_EXTERN_C
66#endif
67#define HUF_ASM_DECL HUF_EXTERN_C
68
69#if DYNAMIC_BMI2
70# define HUF_NEED_BMI2_FUNCTION 1
71#else
72# define HUF_NEED_BMI2_FUNCTION 0
73#endif
74
75/* **************************************************************
76* Error Management
77****************************************************************/
78#define HUF_isError ERR_isError
79
80
81/* **************************************************************
82* Byte alignment for workSpace management
83****************************************************************/
84#define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1)
85#define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
86
87
88/* **************************************************************
89* BMI2 Variant Wrappers
90****************************************************************/
91typedef size_t (*HUF_DecompressUsingDTableFn)(void *dst, size_t dstSize,
92 const void *cSrc,
93 size_t cSrcSize,
94 const HUF_DTable *DTable);
95
96#if DYNAMIC_BMI2
97
98#define HUF_DGEN(fn) \
99 \
100 static size_t fn##_default( \
101 void* dst, size_t dstSize, \
102 const void* cSrc, size_t cSrcSize, \
103 const HUF_DTable* DTable) \
104 { \
105 return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
106 } \
107 \
108 static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \
109 void* dst, size_t dstSize, \
110 const void* cSrc, size_t cSrcSize, \
111 const HUF_DTable* DTable) \
112 { \
113 return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
114 } \
115 \
116 static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
117 size_t cSrcSize, HUF_DTable const* DTable, int flags) \
118 { \
119 if (flags & HUF_flags_bmi2) { \
120 return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \
121 } \
122 return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \
123 }
124
125#else
126
127#define HUF_DGEN(fn) \
128 static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
129 size_t cSrcSize, HUF_DTable const* DTable, int flags) \
130 { \
131 (void)flags; \
132 return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
133 }
134
135#endif
136
137
138/*-***************************/
139/* generic DTableDesc */
140/*-***************************/
141typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
142
143static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
144{
145 DTableDesc dtd;
146 ZSTD_memcpy(&dtd, table, sizeof(dtd));
147 return dtd;
148}
149
150static size_t HUF_initFastDStream(BYTE const* ip) {
151 BYTE const lastByte = ip[7];
152 size_t const bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0;
153 size_t const value = MEM_readLEST(ip) | 1;
154 assert(bitsConsumed <= 8);
155 assert(sizeof(size_t) == 8);
156 return value << bitsConsumed;
157}
158
159
160/**
161 * The input/output arguments to the Huffman fast decoding loop:
162 *
163 * ip [in/out] - The input pointers, must be updated to reflect what is consumed.
164 * op [in/out] - The output pointers, must be updated to reflect what is written.
165 * bits [in/out] - The bitstream containers, must be updated to reflect the current state.
166 * dt [in] - The decoding table.
f535537f 167 * ilowest [in] - The beginning of the valid range of the input. Decoders may read
168 * down to this pointer. It may be below iend[0].
648db22b 169 * oend [in] - The end of the output stream. op[3] must not cross oend.
170 * iend [in] - The end of each input stream. ip[i] may cross iend[i],
f535537f 171 * as long as it is above ilowest, but that indicates corruption.
648db22b 172 */
173typedef struct {
174 BYTE const* ip[4];
175 BYTE* op[4];
176 U64 bits[4];
177 void const* dt;
f535537f 178 BYTE const* ilowest;
648db22b 179 BYTE* oend;
180 BYTE const* iend[4];
181} HUF_DecompressFastArgs;
182
183typedef void (*HUF_DecompressFastLoopFn)(HUF_DecompressFastArgs*);
184
185/**
186 * Initializes args for the fast decoding loop.
187 * @returns 1 on success
188 * 0 if the fallback implementation should be used.
189 * Or an error code on failure.
190 */
191static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable)
192{
193 void const* dt = DTable + 1;
194 U32 const dtLog = HUF_getDTableDesc(DTable).tableLog;
195
f535537f 196 const BYTE* const istart = (const BYTE*)src;
648db22b 197
f535537f 198 BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
648db22b 199
200 /* The fast decoding loop assumes 64-bit little-endian.
201 * This condition is false on x32.
202 */
203 if (!MEM_isLittleEndian() || MEM_32bits())
204 return 0;
205
f535537f 206 /* Avoid nullptr addition */
207 if (dstSize == 0)
208 return 0;
209 assert(dst != NULL);
210
648db22b 211 /* strict minimum : jump table + 1 byte per stream */
212 if (srcSize < 10)
213 return ERROR(corruption_detected);
214
215 /* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers.
216 * If table log is not correct at this point, fallback to the old decoder.
217 * On small inputs we don't have enough data to trigger the fast loop, so use the old decoder.
218 */
219 if (dtLog != HUF_DECODER_FAST_TABLELOG)
220 return 0;
221
222 /* Read the jump table. */
223 {
648db22b 224 size_t const length1 = MEM_readLE16(istart);
225 size_t const length2 = MEM_readLE16(istart+2);
226 size_t const length3 = MEM_readLE16(istart+4);
227 size_t const length4 = srcSize - (length1 + length2 + length3 + 6);
228 args->iend[0] = istart + 6; /* jumpTable */
229 args->iend[1] = args->iend[0] + length1;
230 args->iend[2] = args->iend[1] + length2;
231 args->iend[3] = args->iend[2] + length3;
232
233 /* HUF_initFastDStream() requires this, and this small of an input
234 * won't benefit from the ASM loop anyways.
648db22b 235 */
f535537f 236 if (length1 < 8 || length2 < 8 || length3 < 8 || length4 < 8)
648db22b 237 return 0;
238 if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */
239 }
240 /* ip[] contains the position that is currently loaded into bits[]. */
241 args->ip[0] = args->iend[1] - sizeof(U64);
242 args->ip[1] = args->iend[2] - sizeof(U64);
243 args->ip[2] = args->iend[3] - sizeof(U64);
244 args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64);
245
246 /* op[] contains the output pointers. */
247 args->op[0] = (BYTE*)dst;
248 args->op[1] = args->op[0] + (dstSize+3)/4;
249 args->op[2] = args->op[1] + (dstSize+3)/4;
250 args->op[3] = args->op[2] + (dstSize+3)/4;
251
252 /* No point to call the ASM loop for tiny outputs. */
253 if (args->op[3] >= oend)
254 return 0;
255
256 /* bits[] is the bit container.
257 * It is read from the MSB down to the LSB.
258 * It is shifted left as it is read, and zeros are
259 * shifted in. After the lowest valid bit a 1 is
260 * set, so that CountTrailingZeros(bits[]) can be used
261 * to count how many bits we've consumed.
262 */
263 args->bits[0] = HUF_initFastDStream(args->ip[0]);
264 args->bits[1] = HUF_initFastDStream(args->ip[1]);
265 args->bits[2] = HUF_initFastDStream(args->ip[2]);
266 args->bits[3] = HUF_initFastDStream(args->ip[3]);
267
f535537f 268 /* The decoders must be sure to never read beyond ilowest.
269 * This is lower than iend[0], but allowing decoders to read
270 * down to ilowest can allow an extra iteration or two in the
271 * fast loop.
272 */
273 args->ilowest = istart;
648db22b 274
275 args->oend = oend;
276 args->dt = dt;
277
278 return 1;
279}
280
281static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressFastArgs const* args, int stream, BYTE* segmentEnd)
282{
283 /* Validate that we haven't overwritten. */
284 if (args->op[stream] > segmentEnd)
285 return ERROR(corruption_detected);
286 /* Validate that we haven't read beyond iend[].
287 * Note that ip[] may be < iend[] because the MSB is
288 * the next bit to read, and we may have consumed 100%
289 * of the stream, so down to iend[i] - 8 is valid.
290 */
291 if (args->ip[stream] < args->iend[stream] - 8)
292 return ERROR(corruption_detected);
293
294 /* Construct the BIT_DStream_t. */
295 assert(sizeof(size_t) == 8);
296 bit->bitContainer = MEM_readLEST(args->ip[stream]);
297 bit->bitsConsumed = ZSTD_countTrailingZeros64(args->bits[stream]);
f535537f 298 bit->start = (const char*)args->ilowest;
648db22b 299 bit->limitPtr = bit->start + sizeof(size_t);
300 bit->ptr = (const char*)args->ip[stream];
301
302 return 0;
303}
304
f535537f 305/* Calls X(N) for each stream 0, 1, 2, 3. */
306#define HUF_4X_FOR_EACH_STREAM(X) \
307 do { \
308 X(0); \
309 X(1); \
310 X(2); \
311 X(3); \
312 } while (0)
313
314/* Calls X(N, var) for each stream 0, 1, 2, 3. */
315#define HUF_4X_FOR_EACH_STREAM_WITH_VAR(X, var) \
316 do { \
317 X(0, (var)); \
318 X(1, (var)); \
319 X(2, (var)); \
320 X(3, (var)); \
321 } while (0)
322
648db22b 323
324#ifndef HUF_FORCE_DECOMPRESS_X2
325
326/*-***************************/
327/* single-symbol decoding */
328/*-***************************/
329typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */
330
331/**
332 * Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at
333 * a time.
334 */
335static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) {
336 U64 D4;
337 if (MEM_isLittleEndian()) {
338 D4 = (U64)((symbol << 8) + nbBits);
339 } else {
340 D4 = (U64)(symbol + (nbBits << 8));
341 }
342 assert(D4 < (1U << 16));
343 D4 *= 0x0001000100010001ULL;
344 return D4;
345}
346
347/**
348 * Increase the tableLog to targetTableLog and rescales the stats.
349 * If tableLog > targetTableLog this is a no-op.
350 * @returns New tableLog
351 */
352static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog)
353{
354 if (tableLog > targetTableLog)
355 return tableLog;
356 if (tableLog < targetTableLog) {
357 U32 const scale = targetTableLog - tableLog;
358 U32 s;
359 /* Increase the weight for all non-zero probability symbols by scale. */
360 for (s = 0; s < nbSymbols; ++s) {
361 huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale);
362 }
363 /* Update rankVal to reflect the new weights.
364 * All weights except 0 get moved to weight + scale.
365 * Weights [1, scale] are empty.
366 */
367 for (s = targetTableLog; s > scale; --s) {
368 rankVal[s] = rankVal[s - scale];
369 }
370 for (s = scale; s > 0; --s) {
371 rankVal[s] = 0;
372 }
373 }
374 return targetTableLog;
375}
376
377typedef struct {
378 U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
379 U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1];
380 U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
381 BYTE symbols[HUF_SYMBOLVALUE_MAX + 1];
382 BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
383} HUF_ReadDTableX1_Workspace;
384
385size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags)
386{
387 U32 tableLog = 0;
388 U32 nbSymbols = 0;
389 size_t iSize;
390 void* const dtPtr = DTable + 1;
391 HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
392 HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace;
393
394 DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp));
395 if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge);
396
397 DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
398 /* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
399
400 iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), flags);
401 if (HUF_isError(iSize)) return iSize;
402
403
404 /* Table header */
405 { DTableDesc dtd = HUF_getDTableDesc(DTable);
406 U32 const maxTableLog = dtd.maxTableLog + 1;
407 U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG);
408 tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog);
409 if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */
410 dtd.tableType = 0;
411 dtd.tableLog = (BYTE)tableLog;
412 ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
413 }
414
415 /* Compute symbols and rankStart given rankVal:
416 *
417 * rankVal already contains the number of values of each weight.
418 *
419 * symbols contains the symbols ordered by weight. First are the rankVal[0]
420 * weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on.
421 * symbols[0] is filled (but unused) to avoid a branch.
422 *
423 * rankStart contains the offset where each rank belongs in the DTable.
424 * rankStart[0] is not filled because there are no entries in the table for
425 * weight 0.
426 */
427 { int n;
428 U32 nextRankStart = 0;
429 int const unroll = 4;
430 int const nLimit = (int)nbSymbols - unroll + 1;
431 for (n=0; n<(int)tableLog+1; n++) {
432 U32 const curr = nextRankStart;
433 nextRankStart += wksp->rankVal[n];
434 wksp->rankStart[n] = curr;
435 }
436 for (n=0; n < nLimit; n += unroll) {
437 int u;
438 for (u=0; u < unroll; ++u) {
439 size_t const w = wksp->huffWeight[n+u];
440 wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u);
441 }
442 }
443 for (; n < (int)nbSymbols; ++n) {
444 size_t const w = wksp->huffWeight[n];
445 wksp->symbols[wksp->rankStart[w]++] = (BYTE)n;
446 }
447 }
448
449 /* fill DTable
450 * We fill all entries of each weight in order.
451 * That way length is a constant for each iteration of the outer loop.
452 * We can switch based on the length to a different inner loop which is
453 * optimized for that particular case.
454 */
455 { U32 w;
456 int symbol = wksp->rankVal[0];
457 int rankStart = 0;
458 for (w=1; w<tableLog+1; ++w) {
459 int const symbolCount = wksp->rankVal[w];
460 int const length = (1 << w) >> 1;
461 int uStart = rankStart;
462 BYTE const nbBits = (BYTE)(tableLog + 1 - w);
463 int s;
464 int u;
465 switch (length) {
466 case 1:
467 for (s=0; s<symbolCount; ++s) {
468 HUF_DEltX1 D;
469 D.byte = wksp->symbols[symbol + s];
470 D.nbBits = nbBits;
471 dt[uStart] = D;
472 uStart += 1;
473 }
474 break;
475 case 2:
476 for (s=0; s<symbolCount; ++s) {
477 HUF_DEltX1 D;
478 D.byte = wksp->symbols[symbol + s];
479 D.nbBits = nbBits;
480 dt[uStart+0] = D;
481 dt[uStart+1] = D;
482 uStart += 2;
483 }
484 break;
485 case 4:
486 for (s=0; s<symbolCount; ++s) {
487 U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
488 MEM_write64(dt + uStart, D4);
489 uStart += 4;
490 }
491 break;
492 case 8:
493 for (s=0; s<symbolCount; ++s) {
494 U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
495 MEM_write64(dt + uStart, D4);
496 MEM_write64(dt + uStart + 4, D4);
497 uStart += 8;
498 }
499 break;
500 default:
501 for (s=0; s<symbolCount; ++s) {
502 U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
503 for (u=0; u < length; u += 16) {
504 MEM_write64(dt + uStart + u + 0, D4);
505 MEM_write64(dt + uStart + u + 4, D4);
506 MEM_write64(dt + uStart + u + 8, D4);
507 MEM_write64(dt + uStart + u + 12, D4);
508 }
509 assert(u == length);
510 uStart += length;
511 }
512 break;
513 }
514 symbol += symbolCount;
515 rankStart += symbolCount * length;
516 }
517 }
518 return iSize;
519}
520
521FORCE_INLINE_TEMPLATE BYTE
522HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
523{
524 size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
525 BYTE const c = dt[val].byte;
526 BIT_skipBits(Dstream, dt[val].nbBits);
527 return c;
528}
529
530#define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
f535537f 531 do { *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog); } while (0)
648db22b 532
f535537f 533#define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \
534 do { \
535 if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
536 HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr); \
537 } while (0)
648db22b 538
f535537f 539#define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
540 do { \
541 if (MEM_64bits()) \
542 HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr); \
543 } while (0)
648db22b 544
545HINT_INLINE size_t
546HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
547{
548 BYTE* const pStart = p;
549
550 /* up to 4 symbols at a time */
551 if ((pEnd - p) > 3) {
552 while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
553 HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
554 HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
555 HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
556 HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
557 }
558 } else {
559 BIT_reloadDStream(bitDPtr);
560 }
561
562 /* [0-3] symbols remaining */
563 if (MEM_32bits())
564 while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
565 HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
566
567 /* no more data to retrieve from bitstream, no need to reload */
568 while (p < pEnd)
569 HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
570
571 return (size_t)(pEnd-pStart);
572}
573
574FORCE_INLINE_TEMPLATE size_t
575HUF_decompress1X1_usingDTable_internal_body(
576 void* dst, size_t dstSize,
577 const void* cSrc, size_t cSrcSize,
578 const HUF_DTable* DTable)
579{
580 BYTE* op = (BYTE*)dst;
f535537f 581 BYTE* const oend = ZSTD_maybeNullPtrAdd(op, dstSize);
648db22b 582 const void* dtPtr = DTable + 1;
583 const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
584 BIT_DStream_t bitD;
585 DTableDesc const dtd = HUF_getDTableDesc(DTable);
586 U32 const dtLog = dtd.tableLog;
587
588 CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
589
590 HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);
591
592 if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
593
594 return dstSize;
595}
596
597/* HUF_decompress4X1_usingDTable_internal_body():
598 * Conditions :
599 * @dstSize >= 6
600 */
601FORCE_INLINE_TEMPLATE size_t
602HUF_decompress4X1_usingDTable_internal_body(
603 void* dst, size_t dstSize,
604 const void* cSrc, size_t cSrcSize,
605 const HUF_DTable* DTable)
606{
607 /* Check */
608 if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
f535537f 609 if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
648db22b 610
611 { const BYTE* const istart = (const BYTE*) cSrc;
612 BYTE* const ostart = (BYTE*) dst;
613 BYTE* const oend = ostart + dstSize;
614 BYTE* const olimit = oend - 3;
615 const void* const dtPtr = DTable + 1;
616 const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
617
618 /* Init */
619 BIT_DStream_t bitD1;
620 BIT_DStream_t bitD2;
621 BIT_DStream_t bitD3;
622 BIT_DStream_t bitD4;
623 size_t const length1 = MEM_readLE16(istart);
624 size_t const length2 = MEM_readLE16(istart+2);
625 size_t const length3 = MEM_readLE16(istart+4);
626 size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
627 const BYTE* const istart1 = istart + 6; /* jumpTable */
628 const BYTE* const istart2 = istart1 + length1;
629 const BYTE* const istart3 = istart2 + length2;
630 const BYTE* const istart4 = istart3 + length3;
631 const size_t segmentSize = (dstSize+3) / 4;
632 BYTE* const opStart2 = ostart + segmentSize;
633 BYTE* const opStart3 = opStart2 + segmentSize;
634 BYTE* const opStart4 = opStart3 + segmentSize;
635 BYTE* op1 = ostart;
636 BYTE* op2 = opStart2;
637 BYTE* op3 = opStart3;
638 BYTE* op4 = opStart4;
639 DTableDesc const dtd = HUF_getDTableDesc(DTable);
640 U32 const dtLog = dtd.tableLog;
641 U32 endSignal = 1;
642
643 if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
644 if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
f535537f 645 assert(dstSize >= 6); /* validated above */
648db22b 646 CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
647 CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
648 CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
649 CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
650
651 /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
652 if ((size_t)(oend - op4) >= sizeof(size_t)) {
653 for ( ; (endSignal) & (op4 < olimit) ; ) {
654 HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
655 HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
656 HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
657 HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
658 HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
659 HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
660 HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
661 HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
662 HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
663 HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
664 HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
665 HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
666 HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
667 HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
668 HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
669 HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
670 endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
671 endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
672 endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
673 endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
674 }
675 }
676
677 /* check corruption */
678 /* note : should not be necessary : op# advance in lock step, and we control op4.
679 * but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
680 if (op1 > opStart2) return ERROR(corruption_detected);
681 if (op2 > opStart3) return ERROR(corruption_detected);
682 if (op3 > opStart4) return ERROR(corruption_detected);
683 /* note : op4 supposed already verified within main loop */
684
685 /* finish bitStreams one by one */
686 HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
687 HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
688 HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
689 HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog);
690
691 /* check */
692 { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
693 if (!endCheck) return ERROR(corruption_detected); }
694
695 /* decoded size */
696 return dstSize;
697 }
698}
699
700#if HUF_NEED_BMI2_FUNCTION
701static BMI2_TARGET_ATTRIBUTE
702size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
703 size_t cSrcSize, HUF_DTable const* DTable) {
704 return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
705}
706#endif
707
708static
709size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
710 size_t cSrcSize, HUF_DTable const* DTable) {
711 return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
712}
713
714#if ZSTD_ENABLE_ASM_X86_64_BMI2
715
716HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;
717
718#endif
719
720static HUF_FAST_BMI2_ATTRS
721void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
722{
723 U64 bits[4];
724 BYTE const* ip[4];
725 BYTE* op[4];
726 U16 const* const dtable = (U16 const*)args->dt;
727 BYTE* const oend = args->oend;
f535537f 728 BYTE const* const ilowest = args->ilowest;
648db22b 729
730 /* Copy the arguments to local variables */
731 ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
732 ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
733 ZSTD_memcpy(&op, &args->op, sizeof(op));
734
735 assert(MEM_isLittleEndian());
736 assert(!MEM_32bits());
737
738 for (;;) {
739 BYTE* olimit;
740 int stream;
648db22b 741
742 /* Assert loop preconditions */
743#ifndef NDEBUG
744 for (stream = 0; stream < 4; ++stream) {
745 assert(op[stream] <= (stream == 3 ? oend : op[stream + 1]));
f535537f 746 assert(ip[stream] >= ilowest);
648db22b 747 }
748#endif
749 /* Compute olimit */
750 {
751 /* Each iteration produces 5 output symbols per stream */
752 size_t const oiters = (size_t)(oend - op[3]) / 5;
753 /* Each iteration consumes up to 11 bits * 5 = 55 bits < 7 bytes
754 * per stream.
755 */
f535537f 756 size_t const iiters = (size_t)(ip[0] - ilowest) / 7;
648db22b 757 /* We can safely run iters iterations before running bounds checks */
758 size_t const iters = MIN(oiters, iiters);
759 size_t const symbols = iters * 5;
760
761 /* We can simply check that op[3] < olimit, instead of checking all
762 * of our bounds, since we can't hit the other bounds until we've run
763 * iters iterations, which only happens when op[3] == olimit.
764 */
765 olimit = op[3] + symbols;
766
f535537f 767 /* Exit fast decoding loop once we reach the end. */
768 if (op[3] == olimit)
648db22b 769 break;
770
771 /* Exit the decoding loop if any input pointer has crossed the
772 * previous one. This indicates corruption, and a precondition
773 * to our loop is that ip[i] >= ip[0].
774 */
775 for (stream = 1; stream < 4; ++stream) {
776 if (ip[stream] < ip[stream - 1])
777 goto _out;
778 }
779 }
780
781#ifndef NDEBUG
782 for (stream = 1; stream < 4; ++stream) {
783 assert(ip[stream] >= ip[stream - 1]);
784 }
785#endif
786
f535537f 787#define HUF_4X1_DECODE_SYMBOL(_stream, _symbol) \
788 do { \
789 int const index = (int)(bits[(_stream)] >> 53); \
790 int const entry = (int)dtable[index]; \
791 bits[(_stream)] <<= (entry & 0x3F); \
792 op[(_stream)][(_symbol)] = (BYTE)((entry >> 8) & 0xFF); \
793 } while (0)
794
795#define HUF_4X1_RELOAD_STREAM(_stream) \
796 do { \
797 int const ctz = ZSTD_countTrailingZeros64(bits[(_stream)]); \
798 int const nbBits = ctz & 7; \
799 int const nbBytes = ctz >> 3; \
800 op[(_stream)] += 5; \
801 ip[(_stream)] -= nbBytes; \
802 bits[(_stream)] = MEM_read64(ip[(_stream)]) | 1; \
803 bits[(_stream)] <<= nbBits; \
804 } while (0)
805
806 /* Manually unroll the loop because compilers don't consistently
807 * unroll the inner loops, which destroys performance.
808 */
648db22b 809 do {
810 /* Decode 5 symbols in each of the 4 streams */
f535537f 811 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 0);
812 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 1);
813 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 2);
814 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 3);
815 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 4);
816
817 /* Reload each of the 4 the bitstreams */
818 HUF_4X_FOR_EACH_STREAM(HUF_4X1_RELOAD_STREAM);
648db22b 819 } while (op[3] < olimit);
f535537f 820
821#undef HUF_4X1_DECODE_SYMBOL
822#undef HUF_4X1_RELOAD_STREAM
648db22b 823 }
824
825_out:
826
827 /* Save the final values of each of the state variables back to args. */
828 ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
829 ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
830 ZSTD_memcpy(&args->op, &op, sizeof(op));
831}
832
833/**
834 * @returns @p dstSize on success (>= 6)
835 * 0 if the fallback implementation should be used
836 * An error if an error occurred
837 */
838static HUF_FAST_BMI2_ATTRS
839size_t
840HUF_decompress4X1_usingDTable_internal_fast(
841 void* dst, size_t dstSize,
842 const void* cSrc, size_t cSrcSize,
843 const HUF_DTable* DTable,
844 HUF_DecompressFastLoopFn loopFn)
845{
846 void const* dt = DTable + 1;
f535537f 847 BYTE const* const ilowest = (BYTE const*)cSrc;
848 BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
648db22b 849 HUF_DecompressFastArgs args;
850 { size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
851 FORWARD_IF_ERROR(ret, "Failed to init fast loop args");
852 if (ret == 0)
853 return 0;
854 }
855
f535537f 856 assert(args.ip[0] >= args.ilowest);
648db22b 857 loopFn(&args);
858
f535537f 859 /* Our loop guarantees that ip[] >= ilowest and that we haven't
648db22b 860 * overwritten any op[].
861 */
f535537f 862 assert(args.ip[0] >= ilowest);
863 assert(args.ip[0] >= ilowest);
864 assert(args.ip[1] >= ilowest);
865 assert(args.ip[2] >= ilowest);
866 assert(args.ip[3] >= ilowest);
648db22b 867 assert(args.op[3] <= oend);
f535537f 868
869 assert(ilowest == args.ilowest);
870 assert(ilowest + 6 == args.iend[0]);
871 (void)ilowest;
648db22b 872
873 /* finish bit streams one by one. */
874 { size_t const segmentSize = (dstSize+3) / 4;
875 BYTE* segmentEnd = (BYTE*)dst;
876 int i;
877 for (i = 0; i < 4; ++i) {
878 BIT_DStream_t bit;
879 if (segmentSize <= (size_t)(oend - segmentEnd))
880 segmentEnd += segmentSize;
881 else
882 segmentEnd = oend;
883 FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
884 /* Decompress and validate that we've produced exactly the expected length. */
885 args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG);
886 if (args.op[i] != segmentEnd) return ERROR(corruption_detected);
887 }
888 }
889
890 /* decoded size */
891 assert(dstSize != 0);
892 return dstSize;
893}
894
895HUF_DGEN(HUF_decompress1X1_usingDTable_internal)
896
897static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
898 size_t cSrcSize, HUF_DTable const* DTable, int flags)
899{
900 HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X1_usingDTable_internal_default;
901 HUF_DecompressFastLoopFn loopFn = HUF_decompress4X1_usingDTable_internal_fast_c_loop;
902
903#if DYNAMIC_BMI2
904 if (flags & HUF_flags_bmi2) {
905 fallbackFn = HUF_decompress4X1_usingDTable_internal_bmi2;
906# if ZSTD_ENABLE_ASM_X86_64_BMI2
907 if (!(flags & HUF_flags_disableAsm)) {
908 loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
909 }
910# endif
911 } else {
912 return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
913 }
914#endif
915
916#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
917 if (!(flags & HUF_flags_disableAsm)) {
918 loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
919 }
920#endif
921
f535537f 922 if (HUF_ENABLE_FAST_DECODE && !(flags & HUF_flags_disableFast)) {
648db22b 923 size_t const ret = HUF_decompress4X1_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
924 if (ret != 0)
925 return ret;
926 }
927 return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
928}
929
930static size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
931 const void* cSrc, size_t cSrcSize,
932 void* workSpace, size_t wkspSize, int flags)
933{
934 const BYTE* ip = (const BYTE*) cSrc;
935
936 size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
937 if (HUF_isError(hSize)) return hSize;
938 if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
939 ip += hSize; cSrcSize -= hSize;
940
941 return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
942}
943
944#endif /* HUF_FORCE_DECOMPRESS_X2 */
945
946
947#ifndef HUF_FORCE_DECOMPRESS_X1
948
949/* *************************/
950/* double-symbols decoding */
951/* *************************/
952
953typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */
954typedef struct { BYTE symbol; } sortedSymbol_t;
955typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
956typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
957
958/**
959 * Constructs a HUF_DEltX2 in a U32.
960 */
961static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level)
962{
963 U32 seq;
964 DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0);
965 DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2);
966 DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3);
967 DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32));
968 if (MEM_isLittleEndian()) {
969 seq = level == 1 ? symbol : (baseSeq + (symbol << 8));
970 return seq + (nbBits << 16) + ((U32)level << 24);
971 } else {
972 seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol);
973 return (seq << 16) + (nbBits << 8) + (U32)level;
974 }
975}
976
977/**
978 * Constructs a HUF_DEltX2.
979 */
980static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level)
981{
982 HUF_DEltX2 DElt;
983 U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
984 DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val));
985 ZSTD_memcpy(&DElt, &val, sizeof(val));
986 return DElt;
987}
988
989/**
990 * Constructs 2 HUF_DEltX2s and packs them into a U64.
991 */
992static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level)
993{
994 U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
995 return (U64)DElt + ((U64)DElt << 32);
996}
997
998/**
999 * Fills the DTable rank with all the symbols from [begin, end) that are each
1000 * nbBits long.
1001 *
1002 * @param DTableRank The start of the rank in the DTable.
1003 * @param begin The first symbol to fill (inclusive).
1004 * @param end The last symbol to fill (exclusive).
1005 * @param nbBits Each symbol is nbBits long.
1006 * @param tableLog The table log.
1007 * @param baseSeq If level == 1 { 0 } else { the first level symbol }
1008 * @param level The level in the table. Must be 1 or 2.
1009 */
1010static void HUF_fillDTableX2ForWeight(
1011 HUF_DEltX2* DTableRank,
1012 sortedSymbol_t const* begin, sortedSymbol_t const* end,
1013 U32 nbBits, U32 tableLog,
1014 U16 baseSeq, int const level)
1015{
1016 U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */);
1017 const sortedSymbol_t* ptr;
1018 assert(level >= 1 && level <= 2);
1019 switch (length) {
1020 case 1:
1021 for (ptr = begin; ptr != end; ++ptr) {
1022 HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
1023 *DTableRank++ = DElt;
1024 }
1025 break;
1026 case 2:
1027 for (ptr = begin; ptr != end; ++ptr) {
1028 HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
1029 DTableRank[0] = DElt;
1030 DTableRank[1] = DElt;
1031 DTableRank += 2;
1032 }
1033 break;
1034 case 4:
1035 for (ptr = begin; ptr != end; ++ptr) {
1036 U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
1037 ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
1038 ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
1039 DTableRank += 4;
1040 }
1041 break;
1042 case 8:
1043 for (ptr = begin; ptr != end; ++ptr) {
1044 U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
1045 ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
1046 ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
1047 ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
1048 ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
1049 DTableRank += 8;
1050 }
1051 break;
1052 default:
1053 for (ptr = begin; ptr != end; ++ptr) {
1054 U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
1055 HUF_DEltX2* const DTableRankEnd = DTableRank + length;
1056 for (; DTableRank != DTableRankEnd; DTableRank += 8) {
1057 ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
1058 ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
1059 ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
1060 ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
1061 }
1062 }
1063 break;
1064 }
1065}
1066
1067/* HUF_fillDTableX2Level2() :
1068 * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
1069static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits,
1070 const U32* rankVal, const int minWeight, const int maxWeight1,
1071 const sortedSymbol_t* sortedSymbols, U32 const* rankStart,
1072 U32 nbBitsBaseline, U16 baseSeq)
1073{
1074 /* Fill skipped values (all positions up to rankVal[minWeight]).
1075 * These are positions only get a single symbol because the combined weight
1076 * is too large.
1077 */
1078 if (minWeight>1) {
1079 U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */);
1080 U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1);
1081 int const skipSize = rankVal[minWeight];
1082 assert(length > 1);
1083 assert((U32)skipSize < length);
1084 switch (length) {
1085 case 2:
1086 assert(skipSize == 1);
1087 ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2));
1088 break;
1089 case 4:
1090 assert(skipSize <= 4);
1091 ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2));
1092 ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2));
1093 break;
1094 default:
1095 {
1096 int i;
1097 for (i = 0; i < skipSize; i += 8) {
1098 ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2));
1099 ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2));
1100 ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2));
1101 ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2));
1102 }
1103 }
1104 }
1105 }
1106
1107 /* Fill each of the second level symbols by weight. */
1108 {
1109 int w;
1110 for (w = minWeight; w < maxWeight1; ++w) {
1111 int const begin = rankStart[w];
1112 int const end = rankStart[w+1];
1113 U32 const nbBits = nbBitsBaseline - w;
1114 U32 const totalBits = nbBits + consumedBits;
1115 HUF_fillDTableX2ForWeight(
1116 DTable + rankVal[w],
1117 sortedSymbols + begin, sortedSymbols + end,
1118 totalBits, targetLog,
1119 baseSeq, /* level */ 2);
1120 }
1121 }
1122}
1123
1124static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog,
1125 const sortedSymbol_t* sortedList,
1126 const U32* rankStart, rankValCol_t* rankValOrigin, const U32 maxWeight,
1127 const U32 nbBitsBaseline)
1128{
1129 U32* const rankVal = rankValOrigin[0];
1130 const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
1131 const U32 minBits = nbBitsBaseline - maxWeight;
1132 int w;
1133 int const wEnd = (int)maxWeight + 1;
1134
1135 /* Fill DTable in order of weight. */
1136 for (w = 1; w < wEnd; ++w) {
1137 int const begin = (int)rankStart[w];
1138 int const end = (int)rankStart[w+1];
1139 U32 const nbBits = nbBitsBaseline - w;
1140
1141 if (targetLog-nbBits >= minBits) {
1142 /* Enough room for a second symbol. */
1143 int start = rankVal[w];
1144 U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */);
1145 int minWeight = nbBits + scaleLog;
1146 int s;
1147 if (minWeight < 1) minWeight = 1;
1148 /* Fill the DTable for every symbol of weight w.
1149 * These symbols get at least 1 second symbol.
1150 */
1151 for (s = begin; s != end; ++s) {
1152 HUF_fillDTableX2Level2(
1153 DTable + start, targetLog, nbBits,
1154 rankValOrigin[nbBits], minWeight, wEnd,
1155 sortedList, rankStart,
1156 nbBitsBaseline, sortedList[s].symbol);
1157 start += length;
1158 }
1159 } else {
1160 /* Only a single symbol. */
1161 HUF_fillDTableX2ForWeight(
1162 DTable + rankVal[w],
1163 sortedList + begin, sortedList + end,
1164 nbBits, targetLog,
1165 /* baseSeq */ 0, /* level */ 1);
1166 }
1167 }
1168}
1169
1170typedef struct {
1171 rankValCol_t rankVal[HUF_TABLELOG_MAX];
1172 U32 rankStats[HUF_TABLELOG_MAX + 1];
1173 U32 rankStart0[HUF_TABLELOG_MAX + 3];
1174 sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
1175 BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
1176 U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
1177} HUF_ReadDTableX2_Workspace;
1178
1179size_t HUF_readDTableX2_wksp(HUF_DTable* DTable,
1180 const void* src, size_t srcSize,
1181 void* workSpace, size_t wkspSize, int flags)
1182{
1183 U32 tableLog, maxW, nbSymbols;
1184 DTableDesc dtd = HUF_getDTableDesc(DTable);
1185 U32 maxTableLog = dtd.maxTableLog;
1186 size_t iSize;
1187 void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */
1188 HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
1189 U32 *rankStart;
1190
1191 HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace;
1192
1193 if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC);
1194
1195 rankStart = wksp->rankStart0 + 1;
1196 ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats));
1197 ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0));
1198
1199 DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */
1200 if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
1201 /* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
1202
1203 iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), flags);
1204 if (HUF_isError(iSize)) return iSize;
1205
1206 /* check result */
1207 if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
1208 if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG;
1209
1210 /* find maxWeight */
1211 for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
1212
1213 /* Get start index of each weight */
1214 { U32 w, nextRankStart = 0;
1215 for (w=1; w<maxW+1; w++) {
1216 U32 curr = nextRankStart;
1217 nextRankStart += wksp->rankStats[w];
1218 rankStart[w] = curr;
1219 }
1220 rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
1221 rankStart[maxW+1] = nextRankStart;
1222 }
1223
1224 /* sort symbols by weight */
1225 { U32 s;
1226 for (s=0; s<nbSymbols; s++) {
1227 U32 const w = wksp->weightList[s];
1228 U32 const r = rankStart[w]++;
1229 wksp->sortedSymbol[r].symbol = (BYTE)s;
1230 }
1231 rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
1232 }
1233
1234 /* Build rankVal */
1235 { U32* const rankVal0 = wksp->rankVal[0];
1236 { int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */
1237 U32 nextRankVal = 0;
1238 U32 w;
1239 for (w=1; w<maxW+1; w++) {
1240 U32 curr = nextRankVal;
1241 nextRankVal += wksp->rankStats[w] << (w+rescale);
1242 rankVal0[w] = curr;
1243 } }
1244 { U32 const minBits = tableLog+1 - maxW;
1245 U32 consumed;
1246 for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
1247 U32* const rankValPtr = wksp->rankVal[consumed];
1248 U32 w;
1249 for (w = 1; w < maxW+1; w++) {
1250 rankValPtr[w] = rankVal0[w] >> consumed;
1251 } } } }
1252
1253 HUF_fillDTableX2(dt, maxTableLog,
1254 wksp->sortedSymbol,
1255 wksp->rankStart0, wksp->rankVal, maxW,
1256 tableLog+1);
1257
1258 dtd.tableLog = (BYTE)maxTableLog;
1259 dtd.tableType = 1;
1260 ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
1261 return iSize;
1262}
1263
1264
1265FORCE_INLINE_TEMPLATE U32
1266HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
1267{
1268 size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
1269 ZSTD_memcpy(op, &dt[val].sequence, 2);
1270 BIT_skipBits(DStream, dt[val].nbBits);
1271 return dt[val].length;
1272}
1273
1274FORCE_INLINE_TEMPLATE U32
1275HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
1276{
1277 size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
1278 ZSTD_memcpy(op, &dt[val].sequence, 1);
1279 if (dt[val].length==1) {
1280 BIT_skipBits(DStream, dt[val].nbBits);
1281 } else {
1282 if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
1283 BIT_skipBits(DStream, dt[val].nbBits);
1284 if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
1285 /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
1286 DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
1287 }
1288 }
1289 return 1;
1290}
1291
1292#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
f535537f 1293 do { ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); } while (0)
648db22b 1294
f535537f 1295#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
1296 do { \
1297 if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
1298 ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); \
1299 } while (0)
648db22b 1300
f535537f 1301#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
1302 do { \
1303 if (MEM_64bits()) \
1304 ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); \
1305 } while (0)
648db22b 1306
1307HINT_INLINE size_t
1308HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
1309 const HUF_DEltX2* const dt, const U32 dtLog)
1310{
1311 BYTE* const pStart = p;
1312
1313 /* up to 8 symbols at a time */
1314 if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) {
1315 if (dtLog <= 11 && MEM_64bits()) {
1316 /* up to 10 symbols at a time */
1317 while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) {
1318 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1319 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1320 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1321 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1322 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1323 }
1324 } else {
1325 /* up to 8 symbols at a time */
1326 while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
1327 HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
1328 HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
1329 HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
1330 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1331 }
1332 }
1333 } else {
1334 BIT_reloadDStream(bitDPtr);
1335 }
1336
1337 /* closer to end : up to 2 symbols at a time */
1338 if ((size_t)(pEnd - p) >= 2) {
1339 while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
1340 HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1341
1342 while (p <= pEnd-2)
1343 HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
1344 }
1345
1346 if (p < pEnd)
1347 p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog);
1348
1349 return p-pStart;
1350}
1351
1352FORCE_INLINE_TEMPLATE size_t
1353HUF_decompress1X2_usingDTable_internal_body(
1354 void* dst, size_t dstSize,
1355 const void* cSrc, size_t cSrcSize,
1356 const HUF_DTable* DTable)
1357{
1358 BIT_DStream_t bitD;
1359
1360 /* Init */
1361 CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
1362
1363 /* decode */
1364 { BYTE* const ostart = (BYTE*) dst;
f535537f 1365 BYTE* const oend = ZSTD_maybeNullPtrAdd(ostart, dstSize);
648db22b 1366 const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
1367 const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
1368 DTableDesc const dtd = HUF_getDTableDesc(DTable);
1369 HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog);
1370 }
1371
1372 /* check */
1373 if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
1374
1375 /* decoded size */
1376 return dstSize;
1377}
1378
1379/* HUF_decompress4X2_usingDTable_internal_body():
1380 * Conditions:
1381 * @dstSize >= 6
1382 */
1383FORCE_INLINE_TEMPLATE size_t
1384HUF_decompress4X2_usingDTable_internal_body(
1385 void* dst, size_t dstSize,
1386 const void* cSrc, size_t cSrcSize,
1387 const HUF_DTable* DTable)
1388{
1389 if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
f535537f 1390 if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
648db22b 1391
1392 { const BYTE* const istart = (const BYTE*) cSrc;
1393 BYTE* const ostart = (BYTE*) dst;
1394 BYTE* const oend = ostart + dstSize;
1395 BYTE* const olimit = oend - (sizeof(size_t)-1);
1396 const void* const dtPtr = DTable+1;
1397 const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
1398
1399 /* Init */
1400 BIT_DStream_t bitD1;
1401 BIT_DStream_t bitD2;
1402 BIT_DStream_t bitD3;
1403 BIT_DStream_t bitD4;
1404 size_t const length1 = MEM_readLE16(istart);
1405 size_t const length2 = MEM_readLE16(istart+2);
1406 size_t const length3 = MEM_readLE16(istart+4);
1407 size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
1408 const BYTE* const istart1 = istart + 6; /* jumpTable */
1409 const BYTE* const istart2 = istart1 + length1;
1410 const BYTE* const istart3 = istart2 + length2;
1411 const BYTE* const istart4 = istart3 + length3;
1412 size_t const segmentSize = (dstSize+3) / 4;
1413 BYTE* const opStart2 = ostart + segmentSize;
1414 BYTE* const opStart3 = opStart2 + segmentSize;
1415 BYTE* const opStart4 = opStart3 + segmentSize;
1416 BYTE* op1 = ostart;
1417 BYTE* op2 = opStart2;
1418 BYTE* op3 = opStart3;
1419 BYTE* op4 = opStart4;
1420 U32 endSignal = 1;
1421 DTableDesc const dtd = HUF_getDTableDesc(DTable);
1422 U32 const dtLog = dtd.tableLog;
1423
1424 if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
1425 if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
f535537f 1426 assert(dstSize >= 6 /* validated above */);
648db22b 1427 CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
1428 CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
1429 CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
1430 CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
1431
1432 /* 16-32 symbols per loop (4-8 symbols per stream) */
1433 if ((size_t)(oend - op4) >= sizeof(size_t)) {
1434 for ( ; (endSignal) & (op4 < olimit); ) {
1435#if defined(__clang__) && (defined(__x86_64__) || defined(__i386__))
1436 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1437 HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
1438 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1439 HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
1440 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1441 HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
1442 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1443 HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
1444 endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
1445 endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
1446 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1447 HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
1448 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1449 HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
1450 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1451 HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
1452 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1453 HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
1454 endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
1455 endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
1456#else
1457 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1458 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1459 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1460 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1461 HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
1462 HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
1463 HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
1464 HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
1465 HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1466 HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1467 HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1468 HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1469 HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
1470 HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
1471 HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
1472 HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
1473 endSignal = (U32)LIKELY((U32)
1474 (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
1475 & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished)
1476 & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished)
1477 & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished));
1478#endif
1479 }
1480 }
1481
1482 /* check corruption */
1483 if (op1 > opStart2) return ERROR(corruption_detected);
1484 if (op2 > opStart3) return ERROR(corruption_detected);
1485 if (op3 > opStart4) return ERROR(corruption_detected);
1486 /* note : op4 already verified within main loop */
1487
1488 /* finish bitStreams one by one */
1489 HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
1490 HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
1491 HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
1492 HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
1493
1494 /* check */
1495 { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
1496 if (!endCheck) return ERROR(corruption_detected); }
1497
1498 /* decoded size */
1499 return dstSize;
1500 }
1501}
1502
1503#if HUF_NEED_BMI2_FUNCTION
1504static BMI2_TARGET_ATTRIBUTE
1505size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
1506 size_t cSrcSize, HUF_DTable const* DTable) {
1507 return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
1508}
1509#endif
1510
1511static
1512size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
1513 size_t cSrcSize, HUF_DTable const* DTable) {
1514 return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
1515}
1516
1517#if ZSTD_ENABLE_ASM_X86_64_BMI2
1518
1519HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;
1520
1521#endif
1522
1523static HUF_FAST_BMI2_ATTRS
1524void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
1525{
1526 U64 bits[4];
1527 BYTE const* ip[4];
1528 BYTE* op[4];
1529 BYTE* oend[4];
1530 HUF_DEltX2 const* const dtable = (HUF_DEltX2 const*)args->dt;
f535537f 1531 BYTE const* const ilowest = args->ilowest;
648db22b 1532
1533 /* Copy the arguments to local registers. */
1534 ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
1535 ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
1536 ZSTD_memcpy(&op, &args->op, sizeof(op));
1537
1538 oend[0] = op[1];
1539 oend[1] = op[2];
1540 oend[2] = op[3];
1541 oend[3] = args->oend;
1542
1543 assert(MEM_isLittleEndian());
1544 assert(!MEM_32bits());
1545
1546 for (;;) {
1547 BYTE* olimit;
1548 int stream;
648db22b 1549
1550 /* Assert loop preconditions */
1551#ifndef NDEBUG
1552 for (stream = 0; stream < 4; ++stream) {
1553 assert(op[stream] <= oend[stream]);
f535537f 1554 assert(ip[stream] >= ilowest);
648db22b 1555 }
1556#endif
1557 /* Compute olimit */
1558 {
1559 /* Each loop does 5 table lookups for each of the 4 streams.
1560 * Each table lookup consumes up to 11 bits of input, and produces
1561 * up to 2 bytes of output.
1562 */
1563 /* We can consume up to 7 bytes of input per iteration per stream.
1564 * We also know that each input pointer is >= ip[0]. So we can run
1565 * iters loops before running out of input.
1566 */
f535537f 1567 size_t iters = (size_t)(ip[0] - ilowest) / 7;
648db22b 1568 /* Each iteration can produce up to 10 bytes of output per stream.
1569 * Each output stream my advance at different rates. So take the
1570 * minimum number of safe iterations among all the output streams.
1571 */
1572 for (stream = 0; stream < 4; ++stream) {
1573 size_t const oiters = (size_t)(oend[stream] - op[stream]) / 10;
1574 iters = MIN(iters, oiters);
1575 }
1576
1577 /* Each iteration produces at least 5 output symbols. So until
1578 * op[3] crosses olimit, we know we haven't executed iters
1579 * iterations yet. This saves us maintaining an iters counter,
1580 * at the expense of computing the remaining # of iterations
1581 * more frequently.
1582 */
1583 olimit = op[3] + (iters * 5);
1584
f535537f 1585 /* Exit the fast decoding loop once we reach the end. */
1586 if (op[3] == olimit)
648db22b 1587 break;
1588
1589 /* Exit the decoding loop if any input pointer has crossed the
1590 * previous one. This indicates corruption, and a precondition
1591 * to our loop is that ip[i] >= ip[0].
1592 */
1593 for (stream = 1; stream < 4; ++stream) {
1594 if (ip[stream] < ip[stream - 1])
1595 goto _out;
1596 }
1597 }
1598
1599#ifndef NDEBUG
1600 for (stream = 1; stream < 4; ++stream) {
1601 assert(ip[stream] >= ip[stream - 1]);
1602 }
1603#endif
1604
f535537f 1605#define HUF_4X2_DECODE_SYMBOL(_stream, _decode3) \
1606 do { \
1607 if ((_decode3) || (_stream) != 3) { \
1608 int const index = (int)(bits[(_stream)] >> 53); \
1609 HUF_DEltX2 const entry = dtable[index]; \
1610 MEM_write16(op[(_stream)], entry.sequence); \
1611 bits[(_stream)] <<= (entry.nbBits) & 0x3F; \
1612 op[(_stream)] += (entry.length); \
1613 } \
1614 } while (0)
1615
1616#define HUF_4X2_RELOAD_STREAM(_stream) \
1617 do { \
1618 HUF_4X2_DECODE_SYMBOL(3, 1); \
1619 { \
1620 int const ctz = ZSTD_countTrailingZeros64(bits[(_stream)]); \
1621 int const nbBits = ctz & 7; \
1622 int const nbBytes = ctz >> 3; \
1623 ip[(_stream)] -= nbBytes; \
1624 bits[(_stream)] = MEM_read64(ip[(_stream)]) | 1; \
1625 bits[(_stream)] <<= nbBits; \
1626 } \
1627 } while (0)
1628
1629 /* Manually unroll the loop because compilers don't consistently
1630 * unroll the inner loops, which destroys performance.
1631 */
648db22b 1632 do {
f535537f 1633 /* Decode 5 symbols from each of the first 3 streams.
1634 * The final stream will be decoded during the reload phase
1635 * to reduce register pressure.
1636 */
1637 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1638 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1639 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1640 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1641 HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1642
1643 /* Decode one symbol from the final stream */
1644 HUF_4X2_DECODE_SYMBOL(3, 1);
1645
1646 /* Decode 4 symbols from the final stream & reload bitstreams.
1647 * The final stream is reloaded last, meaning that all 5 symbols
1648 * are decoded from the final stream before it is reloaded.
1649 */
1650 HUF_4X_FOR_EACH_STREAM(HUF_4X2_RELOAD_STREAM);
648db22b 1651 } while (op[3] < olimit);
1652 }
1653
f535537f 1654#undef HUF_4X2_DECODE_SYMBOL
1655#undef HUF_4X2_RELOAD_STREAM
1656
648db22b 1657_out:
1658
1659 /* Save the final values of each of the state variables back to args. */
1660 ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
1661 ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
1662 ZSTD_memcpy(&args->op, &op, sizeof(op));
1663}
1664
1665
1666static HUF_FAST_BMI2_ATTRS size_t
1667HUF_decompress4X2_usingDTable_internal_fast(
1668 void* dst, size_t dstSize,
1669 const void* cSrc, size_t cSrcSize,
1670 const HUF_DTable* DTable,
1671 HUF_DecompressFastLoopFn loopFn) {
1672 void const* dt = DTable + 1;
f535537f 1673 const BYTE* const ilowest = (const BYTE*)cSrc;
1674 BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
648db22b 1675 HUF_DecompressFastArgs args;
1676 {
1677 size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
1678 FORWARD_IF_ERROR(ret, "Failed to init asm args");
1679 if (ret == 0)
1680 return 0;
1681 }
1682
f535537f 1683 assert(args.ip[0] >= args.ilowest);
648db22b 1684 loopFn(&args);
1685
1686 /* note : op4 already verified within main loop */
f535537f 1687 assert(args.ip[0] >= ilowest);
1688 assert(args.ip[1] >= ilowest);
1689 assert(args.ip[2] >= ilowest);
1690 assert(args.ip[3] >= ilowest);
648db22b 1691 assert(args.op[3] <= oend);
f535537f 1692
1693 assert(ilowest == args.ilowest);
1694 assert(ilowest + 6 == args.iend[0]);
1695 (void)ilowest;
648db22b 1696
1697 /* finish bitStreams one by one */
1698 {
1699 size_t const segmentSize = (dstSize+3) / 4;
1700 BYTE* segmentEnd = (BYTE*)dst;
1701 int i;
1702 for (i = 0; i < 4; ++i) {
1703 BIT_DStream_t bit;
1704 if (segmentSize <= (size_t)(oend - segmentEnd))
1705 segmentEnd += segmentSize;
1706 else
1707 segmentEnd = oend;
1708 FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
1709 args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG);
1710 if (args.op[i] != segmentEnd)
1711 return ERROR(corruption_detected);
1712 }
1713 }
1714
1715 /* decoded size */
1716 return dstSize;
1717}
1718
1719static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
1720 size_t cSrcSize, HUF_DTable const* DTable, int flags)
1721{
1722 HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X2_usingDTable_internal_default;
1723 HUF_DecompressFastLoopFn loopFn = HUF_decompress4X2_usingDTable_internal_fast_c_loop;
1724
1725#if DYNAMIC_BMI2
1726 if (flags & HUF_flags_bmi2) {
1727 fallbackFn = HUF_decompress4X2_usingDTable_internal_bmi2;
1728# if ZSTD_ENABLE_ASM_X86_64_BMI2
1729 if (!(flags & HUF_flags_disableAsm)) {
1730 loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop;
1731 }
1732# endif
1733 } else {
1734 return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
1735 }
1736#endif
1737
1738#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
1739 if (!(flags & HUF_flags_disableAsm)) {
1740 loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop;
1741 }
1742#endif
1743
f535537f 1744 if (HUF_ENABLE_FAST_DECODE && !(flags & HUF_flags_disableFast)) {
648db22b 1745 size_t const ret = HUF_decompress4X2_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
1746 if (ret != 0)
1747 return ret;
1748 }
1749 return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
1750}
1751
1752HUF_DGEN(HUF_decompress1X2_usingDTable_internal)
1753
1754size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
1755 const void* cSrc, size_t cSrcSize,
1756 void* workSpace, size_t wkspSize, int flags)
1757{
1758 const BYTE* ip = (const BYTE*) cSrc;
1759
1760 size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize,
1761 workSpace, wkspSize, flags);
1762 if (HUF_isError(hSize)) return hSize;
1763 if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1764 ip += hSize; cSrcSize -= hSize;
1765
1766 return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, flags);
1767}
1768
1769static size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
1770 const void* cSrc, size_t cSrcSize,
1771 void* workSpace, size_t wkspSize, int flags)
1772{
1773 const BYTE* ip = (const BYTE*) cSrc;
1774
1775 size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize,
1776 workSpace, wkspSize, flags);
1777 if (HUF_isError(hSize)) return hSize;
1778 if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1779 ip += hSize; cSrcSize -= hSize;
1780
1781 return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
1782}
1783
1784#endif /* HUF_FORCE_DECOMPRESS_X1 */
1785
1786
1787/* ***********************************/
1788/* Universal decompression selectors */
1789/* ***********************************/
1790
1791
1792#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
1793typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
1794static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] =
1795{
1796 /* single, double, quad */
1797 {{0,0}, {1,1}}, /* Q==0 : impossible */
1798 {{0,0}, {1,1}}, /* Q==1 : impossible */
1799 {{ 150,216}, { 381,119}}, /* Q == 2 : 12-18% */
1800 {{ 170,205}, { 514,112}}, /* Q == 3 : 18-25% */
1801 {{ 177,199}, { 539,110}}, /* Q == 4 : 25-32% */
1802 {{ 197,194}, { 644,107}}, /* Q == 5 : 32-38% */
1803 {{ 221,192}, { 735,107}}, /* Q == 6 : 38-44% */
1804 {{ 256,189}, { 881,106}}, /* Q == 7 : 44-50% */
1805 {{ 359,188}, {1167,109}}, /* Q == 8 : 50-56% */
1806 {{ 582,187}, {1570,114}}, /* Q == 9 : 56-62% */
1807 {{ 688,187}, {1712,122}}, /* Q ==10 : 62-69% */
1808 {{ 825,186}, {1965,136}}, /* Q ==11 : 69-75% */
1809 {{ 976,185}, {2131,150}}, /* Q ==12 : 75-81% */
1810 {{1180,186}, {2070,175}}, /* Q ==13 : 81-87% */
1811 {{1377,185}, {1731,202}}, /* Q ==14 : 87-93% */
1812 {{1412,185}, {1695,202}}, /* Q ==15 : 93-99% */
1813};
1814#endif
1815
1816/** HUF_selectDecoder() :
1817 * Tells which decoder is likely to decode faster,
1818 * based on a set of pre-computed metrics.
1819 * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
1820 * Assumption : 0 < dstSize <= 128 KB */
1821U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
1822{
1823 assert(dstSize > 0);
1824 assert(dstSize <= 128*1024);
1825#if defined(HUF_FORCE_DECOMPRESS_X1)
1826 (void)dstSize;
1827 (void)cSrcSize;
1828 return 0;
1829#elif defined(HUF_FORCE_DECOMPRESS_X2)
1830 (void)dstSize;
1831 (void)cSrcSize;
1832 return 1;
1833#else
1834 /* decoder timing evaluation */
1835 { U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */
1836 U32 const D256 = (U32)(dstSize >> 8);
1837 U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
1838 U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
1839 DTime1 += DTime1 >> 5; /* small advantage to algorithm using less memory, to reduce cache eviction */
1840 return DTime1 < DTime0;
1841 }
1842#endif
1843}
1844
1845size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
1846 const void* cSrc, size_t cSrcSize,
1847 void* workSpace, size_t wkspSize, int flags)
1848{
1849 /* validation checks */
1850 if (dstSize == 0) return ERROR(dstSize_tooSmall);
1851 if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
1852 if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
1853 if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
1854
1855 { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
1856#if defined(HUF_FORCE_DECOMPRESS_X1)
1857 (void)algoNb;
1858 assert(algoNb == 0);
1859 return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
1860 cSrcSize, workSpace, wkspSize, flags);
1861#elif defined(HUF_FORCE_DECOMPRESS_X2)
1862 (void)algoNb;
1863 assert(algoNb == 1);
1864 return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
1865 cSrcSize, workSpace, wkspSize, flags);
1866#else
1867 return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
1868 cSrcSize, workSpace, wkspSize, flags):
1869 HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
1870 cSrcSize, workSpace, wkspSize, flags);
1871#endif
1872 }
1873}
1874
1875
1876size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags)
1877{
1878 DTableDesc const dtd = HUF_getDTableDesc(DTable);
1879#if defined(HUF_FORCE_DECOMPRESS_X1)
1880 (void)dtd;
1881 assert(dtd.tableType == 0);
1882 return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1883#elif defined(HUF_FORCE_DECOMPRESS_X2)
1884 (void)dtd;
1885 assert(dtd.tableType == 1);
1886 return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1887#else
1888 return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) :
1889 HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1890#endif
1891}
1892
1893#ifndef HUF_FORCE_DECOMPRESS_X2
1894size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags)
1895{
1896 const BYTE* ip = (const BYTE*) cSrc;
1897
1898 size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
1899 if (HUF_isError(hSize)) return hSize;
1900 if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1901 ip += hSize; cSrcSize -= hSize;
1902
1903 return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
1904}
1905#endif
1906
1907size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags)
1908{
1909 DTableDesc const dtd = HUF_getDTableDesc(DTable);
1910#if defined(HUF_FORCE_DECOMPRESS_X1)
1911 (void)dtd;
1912 assert(dtd.tableType == 0);
1913 return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1914#elif defined(HUF_FORCE_DECOMPRESS_X2)
1915 (void)dtd;
1916 assert(dtd.tableType == 1);
1917 return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1918#else
1919 return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) :
1920 HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1921#endif
1922}
1923
1924size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags)
1925{
1926 /* validation checks */
1927 if (dstSize == 0) return ERROR(dstSize_tooSmall);
1928 if (cSrcSize == 0) return ERROR(corruption_detected);
1929
1930 { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
1931#if defined(HUF_FORCE_DECOMPRESS_X1)
1932 (void)algoNb;
1933 assert(algoNb == 0);
1934 return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
1935#elif defined(HUF_FORCE_DECOMPRESS_X2)
1936 (void)algoNb;
1937 assert(algoNb == 1);
1938 return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
1939#else
1940 return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags) :
1941 HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
1942#endif
1943 }
1944}