gpu_neon: fix some missing ebuf updates
[pcsx_rearmed.git] / deps / libretro-common / formats / libchdr / libchdr_huffman.c
CommitLineData
3719602c
PC
1/* license:BSD-3-Clause
2 * copyright-holders:Aaron Giles
3****************************************************************************
4
5 huffman.c
6
7 Static Huffman compression and decompression helpers.
8
9****************************************************************************
10
11 Maximum codelength is officially (alphabetsize - 1). This would be 255 bits
12 (since we use 1 byte values). However, it is also dependent upon the number
13 of samples used, as follows:
14
15 2 bits -> 3..4 samples
16 3 bits -> 5..7 samples
17 4 bits -> 8..12 samples
18 5 bits -> 13..20 samples
19 6 bits -> 21..33 samples
20 7 bits -> 34..54 samples
21 8 bits -> 55..88 samples
22 9 bits -> 89..143 samples
23 10 bits -> 144..232 samples
24 11 bits -> 233..376 samples
25 12 bits -> 377..609 samples
26 13 bits -> 610..986 samples
27 14 bits -> 987..1596 samples
28 15 bits -> 1597..2583 samples
29 16 bits -> 2584..4180 samples -> note that a 4k data size guarantees codelength <= 16 bits
30 17 bits -> 4181..6764 samples
31 18 bits -> 6765..10945 samples
32 19 bits -> 10946..17710 samples
33 20 bits -> 17711..28656 samples
34 21 bits -> 28657..46367 samples
35 22 bits -> 46368..75024 samples
36 23 bits -> 75025..121392 samples
37 24 bits -> 121393..196417 samples
38 25 bits -> 196418..317810 samples
39 26 bits -> 317811..514228 samples
40 27 bits -> 514229..832039 samples
41 28 bits -> 832040..1346268 samples
42 29 bits -> 1346269..2178308 samples
43 30 bits -> 2178309..3524577 samples
44 31 bits -> 3524578..5702886 samples
45 32 bits -> 5702887..9227464 samples
46
47 Looking at it differently, here is where powers of 2 fall into these buckets:
48
49 256 samples -> 11 bits max
50 512 samples -> 12 bits max
51 1k samples -> 14 bits max
52 2k samples -> 15 bits max
53 4k samples -> 16 bits max
54 8k samples -> 18 bits max
55 16k samples -> 19 bits max
56 32k samples -> 21 bits max
57 64k samples -> 22 bits max
58 128k samples -> 24 bits max
59 256k samples -> 25 bits max
60 512k samples -> 27 bits max
61 1M samples -> 28 bits max
62 2M samples -> 29 bits max
63 4M samples -> 31 bits max
64 8M samples -> 32 bits max
65
66****************************************************************************
67
68 Delta-RLE encoding works as follows:
69
70 Starting value is assumed to be 0. All data is encoded as a delta
71 from the previous value, such that final[i] = final[i - 1] + delta.
72 Long runs of 0s are RLE-encoded as follows:
73
74 0x100 = repeat count of 8
75 0x101 = repeat count of 9
76 0x102 = repeat count of 10
77 0x103 = repeat count of 11
78 0x104 = repeat count of 12
79 0x105 = repeat count of 13
80 0x106 = repeat count of 14
81 0x107 = repeat count of 15
82 0x108 = repeat count of 16
83 0x109 = repeat count of 32
84 0x10a = repeat count of 64
85 0x10b = repeat count of 128
86 0x10c = repeat count of 256
87 0x10d = repeat count of 512
88 0x10e = repeat count of 1024
89 0x10f = repeat count of 2048
90
91 Note that repeat counts are reset at the end of a row, so if a 0 run
92 extends to the end of a row, a large repeat count may be used.
93
94 The reason for starting the run counts at 8 is that 0 is expected to
95 be the most common symbol, and is typically encoded in 1 or 2 bits.
96
97***************************************************************************/
98
99#include <stdlib.h>
100#include <assert.h>
101#include <stdio.h>
102#include <string.h>
103
104#include <libchdr/huffman.h>
105#include <libchdr/minmax.h>
106
107/***************************************************************************
108 * MACROS
109 ***************************************************************************
110 */
111
112#define MAKE_LOOKUP(code,bits) (((code) << 5) | ((bits) & 0x1f))
113
114/***************************************************************************
115 * IMPLEMENTATION
116 ***************************************************************************
117 */
118
119/*-------------------------------------------------
120 * huffman_context_base - create an encoding/
121 * decoding context
122 *-------------------------------------------------
123 */
124
125struct huffman_decoder* create_huffman_decoder(int numcodes, int maxbits)
126{
127 struct huffman_decoder* decoder;
128 /* limit to 24 bits */
129 if (maxbits > 24)
130 return NULL;
131
132 decoder = (struct huffman_decoder*)malloc(sizeof(struct huffman_decoder));
133 decoder->numcodes = numcodes;
134 decoder->maxbits = maxbits;
135 decoder->lookup = (lookup_value*)malloc(sizeof(lookup_value) * (1 << maxbits));
136 decoder->huffnode = (struct node_t*)malloc(sizeof(struct node_t) * numcodes);
137 decoder->datahisto = NULL;
138 decoder->prevdata = 0;
139 decoder->rleremaining = 0;
140 return decoder;
141}
142
143void delete_huffman_decoder(struct huffman_decoder* decoder)
144{
145 if (decoder != NULL)
146 {
147 if (decoder->lookup != NULL)
148 free(decoder->lookup);
149 if (decoder->huffnode != NULL)
150 free(decoder->huffnode);
151 free(decoder);
152 }
153}
154
155/*-------------------------------------------------
156 * decode_one - decode a single code from the
157 * huffman stream
158 *-------------------------------------------------
159 */
160
161uint32_t huffman_decode_one(struct huffman_decoder* decoder, struct bitstream* bitbuf)
162{
163 /* peek ahead to get maxbits worth of data */
164 uint32_t bits = bitstream_peek(bitbuf, decoder->maxbits);
165
166 /* look it up, then remove the actual number of bits for this code */
167 lookup_value lookup = decoder->lookup[bits];
168 bitstream_remove(bitbuf, lookup & 0x1f);
169
170 /* return the value */
171 return lookup >> 5;
172}
173
174/*-------------------------------------------------
175 * import_tree_rle - import an RLE-encoded
176 * huffman tree from a source data stream
177 *-------------------------------------------------
178 */
179
180enum huffman_error huffman_import_tree_rle(struct huffman_decoder* decoder, struct bitstream* bitbuf)
181{
182 enum huffman_error error;
183 /* bits per entry depends on the maxbits */
184 int numbits;
185 int curnode;
186 if (decoder->maxbits >= 16)
187 numbits = 5;
188 else if (decoder->maxbits >= 8)
189 numbits = 4;
190 else
191 numbits = 3;
192
193 /* loop until we read all the nodes */
194 for (curnode = 0; curnode < (int)decoder->numcodes; /* blank */)
195 {
196 /* a non-one value is just raw */
197 int nodebits = bitstream_read(bitbuf, numbits);
198 if (nodebits != 1)
199 decoder->huffnode[curnode++].numbits = nodebits;
200
201 /* a one value is an escape code */
202 else
203 {
204 /* a double 1 is just a single 1 */
205 nodebits = bitstream_read(bitbuf, numbits);
206 if (nodebits == 1)
207 decoder->huffnode[curnode++].numbits = nodebits;
208
209 /* otherwise, we need one for value for the repeat count */
210 else
211 {
212 int repcount = bitstream_read(bitbuf, numbits) + 3;
213 while (repcount--)
214 decoder->huffnode[curnode++].numbits = nodebits;
215 }
216 }
217 }
218
219 /* make sure we ended up with the right number */
220 if (curnode != (int)decoder->numcodes)
221 return HUFFERR_INVALID_DATA;
222
223 /* assign canonical codes for all nodes based on their code lengths */
224 error = huffman_assign_canonical_codes(decoder);
225 if (error != HUFFERR_NONE)
226 return error;
227
228 /* build the lookup table */
229 huffman_build_lookup_table(decoder);
230
231 /* determine final input length and report errors */
232 return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE;
233}
234
235/*-------------------------------------------------
236 * import_tree_huffman - import a huffman-encoded
237 * huffman tree from a source data stream
238 *-------------------------------------------------
239 */
240
241enum huffman_error huffman_import_tree_huffman(struct huffman_decoder* decoder, struct bitstream* bitbuf)
242{
243 int last = 0;
244 int curcode;
245 uint32_t temp;
246 enum huffman_error error;
247 uint8_t rlefullbits = 0;
248 int index, count = 0;
249 int start;
250 /* start by parsing the lengths for the small tree */
251 struct huffman_decoder* smallhuff = create_huffman_decoder(24, 6);
252
253 smallhuff->huffnode[0].numbits = bitstream_read(bitbuf, 3);
254 start = bitstream_read(bitbuf, 3) + 1;
255
256 for (index = 1; index < 24; index++)
257 {
258 if (index < start || count == 7)
259 smallhuff->huffnode[index].numbits = 0;
260 else
261 {
262 count = bitstream_read(bitbuf, 3);
263 smallhuff->huffnode[index].numbits = (count == 7) ? 0 : count;
264 }
265 }
266
267 /* then regenerate the tree */
268 error = huffman_assign_canonical_codes(smallhuff);
269 if (error != HUFFERR_NONE)
270 return error;
271 huffman_build_lookup_table(smallhuff);
272
273 /* determine the maximum length of an RLE count */
274 temp = decoder->numcodes - 9;
275 while (temp != 0)
276 {
277 temp >>= 1;
278 rlefullbits++;
279 }
280
281 /* now process the rest of the data */
282 for (curcode = 0; curcode < (int)decoder->numcodes; /* blank */)
283 {
284 int value = huffman_decode_one(smallhuff, bitbuf);
285 if (value != 0)
286 decoder->huffnode[curcode++].numbits = last = value - 1;
287 else
288 {
289 int count = bitstream_read(bitbuf, 3) + 2;
290 if (count == 7+2)
291 count += bitstream_read(bitbuf, rlefullbits);
292 for (/* blank */; count != 0 && curcode < (int)decoder->numcodes; count--)
293 decoder->huffnode[curcode++].numbits = last;
294 }
295 }
296
297 /* make sure we ended up with the right number */
298 if (curcode != (int)decoder->numcodes)
299 {
300 delete_huffman_decoder(smallhuff);
301 return HUFFERR_INVALID_DATA;
302 }
303
304 /* assign canonical codes for all nodes based on their code lengths */
305 error = huffman_assign_canonical_codes(decoder);
306 if (error != HUFFERR_NONE)
307 {
308 delete_huffman_decoder(smallhuff);
309 return error;
310 }
311
312 /* build the lookup table */
313 huffman_build_lookup_table(decoder);
314 delete_huffman_decoder(smallhuff);
315
316 /* determine final input length and report errors */
317 return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE;
318}
319
320/*-------------------------------------------------
321 * compute_tree_from_histo - common backend for
322 * computing a tree based on the data histogram
323 *-------------------------------------------------
324 */
325
326enum huffman_error huffman_compute_tree_from_histo(struct huffman_decoder* decoder)
327{
328 /* compute the number of data items in the histogram */
329 int i;
330 uint32_t upperweight;
331 uint32_t lowerweight = 0;
332 uint32_t sdatacount = 0;
333 for (i = 0; i < (int)decoder->numcodes; i++)
334 sdatacount += decoder->datahisto[i];
335
336 /* binary search to achieve the optimum encoding */
337 upperweight = sdatacount * 2;
338
339 for (;;)
340 {
341 /* build a tree using the current weight */
342 uint32_t curweight = (upperweight + lowerweight) / 2;
343 int curmaxbits = huffman_build_tree(decoder, sdatacount, curweight);
344
345 /* apply binary search here */
346 if (curmaxbits <= decoder->maxbits)
347 {
348 lowerweight = curweight;
349
350 /* early out if it worked with the raw weights, or if we're done searching */
351 if (curweight == sdatacount || (upperweight - lowerweight) <= 1)
352 break;
353 }
354 else
355 upperweight = curweight;
356 }
357
358 /* assign canonical codes for all nodes based on their code lengths */
359 return huffman_assign_canonical_codes(decoder);
360}
361
362/***************************************************************************
363 * INTERNAL FUNCTIONS
364 ***************************************************************************
365 */
366
367/*-------------------------------------------------
368 * tree_node_compare - compare two tree nodes
369 * by weight
370 *-------------------------------------------------
371 */
372
373static int huffman_tree_node_compare(const void *item1, const void *item2)
374{
375 const struct node_t *node1 = *(const struct node_t **)item1;
376 const struct node_t *node2 = *(const struct node_t **)item2;
377 if (node2->weight != node1->weight)
378 return node2->weight - node1->weight;
379 if (node2->bits - node1->bits == 0)
380 fprintf(stderr, "identical node sort keys, should not happen!\n");
381 return (int)node1->bits - (int)node2->bits;
382}
383
384/*-------------------------------------------------
385 * build_tree - build a huffman tree based on the
386 * data distribution
387 *-------------------------------------------------
388 */
389
390int huffman_build_tree(struct huffman_decoder* decoder, uint32_t totaldata, uint32_t totalweight)
391{
392 int nextalloc;
393 int maxbits = 0;
394 /* make a list of all non-zero nodes */
395 struct node_t** list = (struct node_t**)
396 malloc(sizeof(struct node_t*) * decoder->numcodes * 2);
397 int curcode, listitems = 0;
398
399 memset(decoder->huffnode, 0,
400 decoder->numcodes * sizeof(decoder->huffnode[0]));
401
402 for (curcode = 0; curcode < (int)decoder->numcodes; curcode++)
403 if (decoder->datahisto[curcode] != 0)
404 {
405 list[listitems++] = &decoder->huffnode[curcode];
406 decoder->huffnode[curcode].count = decoder->datahisto[curcode];
407 decoder->huffnode[curcode].bits = curcode;
408
409 /* scale the weight by the current effective length, ensuring we don't go to 0 */
410 decoder->huffnode[curcode].weight = ((uint64_t)decoder->datahisto[curcode]) * ((uint64_t)totalweight) / ((uint64_t)totaldata);
411 if (decoder->huffnode[curcode].weight == 0)
412 decoder->huffnode[curcode].weight = 1;
413 }
414
415#if 0
416 {
417 unsigned i;
418 fprintf(stderr, "Pre-sort:\n");
419 for (i = 0; i < listitems; i++)
420 fprintf(stderr, "weight: %d code: %d\n",
421 list[i]->m_weight, list[i]->m_bits);
422 }
423#endif
424
425 /* sort the list by weight, largest weight first */
426 qsort(&list[0], listitems, sizeof(list[0]), huffman_tree_node_compare);
427
428#if 0
429 fprintf(stderr, "Post-sort:\n");
430 for (int i = 0; i < listitems; i++) {
431 fprintf(stderr, "weight: %d code: %d\n", list[i]->m_weight, list[i]->m_bits);
432 }
433 fprintf(stderr, "===================\n");
434#endif
435
436 /* now build the tree */
437 nextalloc = decoder->numcodes;
438
439 while (listitems > 1)
440 {
441 int curitem;
442 /* remove lowest two items */
443 struct node_t* node1 = &(*list[--listitems]);
444 struct node_t* node0 = &(*list[--listitems]);
445
446 /* create new node */
447 struct node_t* newnode = &decoder->huffnode[nextalloc++];
448 newnode->parent = NULL;
449 node0->parent =
450 node1->parent = newnode;
451 newnode->weight =
452 node0->weight + node1->weight;
453
454 /* insert into list at appropriate location */
455 for (curitem = 0; curitem < listitems; curitem++)
456 if (newnode->weight > list[curitem]->weight)
457 {
458 memmove(&list[curitem+1],
459 &list[curitem],
460 (listitems - curitem) * sizeof(list[0]));
461 break;
462 }
463 list[curitem] = newnode;
464 listitems++;
465 }
466
467 /* compute the number of bits in each code,
468 * and fill in another histogram */
469 for (curcode = 0; curcode < (int)decoder->numcodes; curcode++)
470 {
471 struct node_t *curnode;
472 struct node_t* node = &decoder->huffnode[curcode];
473 node->numbits = 0;
474 node->bits = 0;
475
476 /* if we have a non-zero weight, compute the number of bits */
477 if (node->weight > 0)
478 {
479 /* determine the number of bits for this node */
480 for (curnode = node;
481 curnode->parent != NULL; curnode = curnode->parent)
482 node->numbits++;
483 if (node->numbits == 0)
484 node->numbits = 1;
485
486 /* keep track of the max */
487 maxbits = MAX(maxbits, ((int)node->numbits));
488 }
489 }
490 free(list);
491 return maxbits;
492}
493
494/*-------------------------------------------------
495 * assign_canonical_codes - assign canonical codes
496 * to all the nodes based on the number of bits
497 * in each
498 *-------------------------------------------------
499 */
500
501enum huffman_error huffman_assign_canonical_codes(struct huffman_decoder* decoder)
502{
503 uint32_t curstart = 0;
504 /* build up a histogram of bit lengths */
505 int curcode, codelen;
506 uint32_t bithisto[33] = { 0 };
507 for (curcode = 0; curcode < (int)decoder->numcodes; curcode++)
508 {
509 struct node_t* node = &decoder->huffnode[curcode];
510 if (node->numbits > decoder->maxbits)
511 return HUFFERR_INTERNAL_INCONSISTENCY;
512 if (node->numbits <= 32)
513 bithisto[node->numbits]++;
514 }
515
516 /* for each code length, determine the starting code number */
517 for (codelen = 32; codelen > 0; codelen--)
518 {
519 uint32_t nextstart = (curstart + bithisto[codelen]) >> 1;
520 if (codelen != 1 && nextstart * 2 != (curstart + bithisto[codelen]))
521 return HUFFERR_INTERNAL_INCONSISTENCY;
522 bithisto[codelen] = curstart;
523 curstart = nextstart;
524 }
525
526 /* now assign canonical codes */
527 for (curcode = 0; curcode < (int)decoder->numcodes; curcode++)
528 {
529 struct node_t* node = &decoder->huffnode[curcode];
530 if (node->numbits > 0)
531 node->bits = bithisto[node->numbits]++;
532 }
533 return HUFFERR_NONE;
534}
535
536/*-------------------------------------------------
537 * build_lookup_table - build a lookup table for
538 * fast decoding
539 *-------------------------------------------------
540 */
541
542void huffman_build_lookup_table(struct huffman_decoder* decoder)
543{
544 /* iterate over all codes */
545 int curcode;
546 for (curcode = 0; curcode < (int)decoder->numcodes; curcode++)
547 {
548 /* process all nodes which have non-zero bits */
549 struct node_t* node = &decoder->huffnode[curcode];
550 if (node->numbits > 0)
551 {
552 /* set up the entry */
553 lookup_value value = MAKE_LOOKUP(curcode, node->numbits);
554
555 /* fill all matching entries */
556 int shift = decoder->maxbits - node->numbits;
557 lookup_value *dest = &decoder->lookup[node->bits << shift];
558 lookup_value *destend = &decoder->lookup[((node->bits + 1) << shift) - 1];
559 while (dest <= destend)
560 *dest++ = value;
561 }
562 }
563}