update libchdr
[pcsx_rearmed.git] / deps / libretro-common / utils / md5.c
CommitLineData
3719602c
PC
1/*
2 * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
3 * MD5 Message-Digest Algorithm (RFC 1321).
4 *
5 * Homepage:
6 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
7 *
8 * Author:
9 * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
10 *
11 * This software was written by Alexander Peslyak in 2001. No copyright is
12 * claimed, and the software is hereby placed in the public domain.
13 * In case this attempt to disclaim copyright and place the software in the
14 * public domain is deemed null and void, then the software is
15 * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
16 * general public under the following terms:
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted.
20 *
21 * There's ABSOLUTELY NO WARRANTY, express or implied.
22 *
23 * (This is a heavily cut-down "BSD license".)
24 *
25 * This differs from Colin Plumb's older public domain implementation in that
26 * no exactly 32-bit integer data type is required (any 32-bit or wider
27 * unsigned integer data type will do), there's no compile-time endianness
28 * configuration, and the function prototypes match OpenSSL's. No code from
29 * Colin Plumb's implementation has been reused; this comment merely compares
30 * the properties of the two independent implementations.
31 *
32 * The primary goals of this implementation are portability and ease of use.
33 * It is meant to be fast, but not as fast as possible. Some known
34 * optimizations are not included to reduce source code size and avoid
35 * compile-time configuration.
36 */
37#include <lrc_hash.h>
38
39#include <string.h>
40
41/*
42 * The basic MD5 functions.
43 *
44 * F and G are optimized compared to their RFC 1321 definitions for
45 * architectures that lack an AND-NOT instruction, just like in Colin Plumb's
46 * implementation.
47 */
48#define MD5_F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
49#define MD5_G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
50#define MD5_H(x, y, z) (((x) ^ (y)) ^ (z))
51#define MD5_H2(x, y, z) ((x) ^ ((y) ^ (z)))
52#define MD5_I(x, y, z) ((y) ^ ((x) | ~(z)))
53
54/*
55 * The MD5 transformation for all four rounds.
56 */
57#define MD5_STEP(f, a, b, c, d, x, t, s) \
58 (a) += f((b), (c), (d)) + (x) + (t); \
59 (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
60 (a) += (b);
61
62/*
63 * MD5_SET reads 4 input bytes in little-endian byte order and stores them
64 * in a properly aligned word in host byte order.
65 *
66 * The check for little-endian architectures that tolerate unaligned
67 * memory accesses is just an optimization. Nothing will break if it
68 * doesn't work.
69 */
70#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
71#define MD5_SET(n) \
72 (*(MD5_u32plus *)&ptr[(n) * 4])
73#define MD5_GET(n) \
74 MD5_SET(n)
75#else
76#define MD5_SET(n) \
77 (ctx->block[(n)] = \
78 (MD5_u32plus)ptr[(n) * 4] | \
79 ((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \
80 ((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \
81 ((MD5_u32plus)ptr[(n) * 4 + 3] << 24))
82#define MD5_GET(n) \
83 (ctx->block[(n)])
84#endif
85
86/*
87 * This processes one or more 64-byte data blocks, but does NOT update
88 * the bit counters. There are no alignment requirements.
89 */
90static const void *MD5_body(MD5_CTX *ctx, const void *data, unsigned long size)
91{
92 const unsigned char *ptr;
93 MD5_u32plus a, b, c, d;
94 MD5_u32plus saved_a, saved_b, saved_c, saved_d;
95
96 ptr = (const unsigned char *)data;
97
98 a = ctx->a;
99 b = ctx->b;
100 c = ctx->c;
101 d = ctx->d;
102
103 do {
104 saved_a = a;
105 saved_b = b;
106 saved_c = c;
107 saved_d = d;
108
109/* Round 1 */
110 MD5_STEP(MD5_F, a, b, c, d, MD5_SET(0), 0xd76aa478, 7)
111 MD5_STEP(MD5_F, d, a, b, c, MD5_SET(1), 0xe8c7b756, 12)
112 MD5_STEP(MD5_F, c, d, a, b, MD5_SET(2), 0x242070db, 17)
113 MD5_STEP(MD5_F, b, c, d, a, MD5_SET(3), 0xc1bdceee, 22)
114 MD5_STEP(MD5_F, a, b, c, d, MD5_SET(4), 0xf57c0faf, 7)
115 MD5_STEP(MD5_F, d, a, b, c, MD5_SET(5), 0x4787c62a, 12)
116 MD5_STEP(MD5_F, c, d, a, b, MD5_SET(6), 0xa8304613, 17)
117 MD5_STEP(MD5_F, b, c, d, a, MD5_SET(7), 0xfd469501, 22)
118 MD5_STEP(MD5_F, a, b, c, d, MD5_SET(8), 0x698098d8, 7)
119 MD5_STEP(MD5_F, d, a, b, c, MD5_SET(9), 0x8b44f7af, 12)
120 MD5_STEP(MD5_F, c, d, a, b, MD5_SET(10), 0xffff5bb1, 17)
121 MD5_STEP(MD5_F, b, c, d, a, MD5_SET(11), 0x895cd7be, 22)
122 MD5_STEP(MD5_F, a, b, c, d, MD5_SET(12), 0x6b901122, 7)
123 MD5_STEP(MD5_F, d, a, b, c, MD5_SET(13), 0xfd987193, 12)
124 MD5_STEP(MD5_F, c, d, a, b, MD5_SET(14), 0xa679438e, 17)
125 MD5_STEP(MD5_F, b, c, d, a, MD5_SET(15), 0x49b40821, 22)
126
127/* Round 2 */
128 MD5_STEP(MD5_G, a, b, c, d, MD5_GET(1), 0xf61e2562, 5)
129 MD5_STEP(MD5_G, d, a, b, c, MD5_GET(6), 0xc040b340, 9)
130 MD5_STEP(MD5_G, c, d, a, b, MD5_GET(11), 0x265e5a51, 14)
131 MD5_STEP(MD5_G, b, c, d, a, MD5_GET(0), 0xe9b6c7aa, 20)
132 MD5_STEP(MD5_G, a, b, c, d, MD5_GET(5), 0xd62f105d, 5)
133 MD5_STEP(MD5_G, d, a, b, c, MD5_GET(10), 0x02441453, 9)
134 MD5_STEP(MD5_G, c, d, a, b, MD5_GET(15), 0xd8a1e681, 14)
135 MD5_STEP(MD5_G, b, c, d, a, MD5_GET(4), 0xe7d3fbc8, 20)
136 MD5_STEP(MD5_G, a, b, c, d, MD5_GET(9), 0x21e1cde6, 5)
137 MD5_STEP(MD5_G, d, a, b, c, MD5_GET(14), 0xc33707d6, 9)
138 MD5_STEP(MD5_G, c, d, a, b, MD5_GET(3), 0xf4d50d87, 14)
139 MD5_STEP(MD5_G, b, c, d, a, MD5_GET(8), 0x455a14ed, 20)
140 MD5_STEP(MD5_G, a, b, c, d, MD5_GET(13), 0xa9e3e905, 5)
141 MD5_STEP(MD5_G, d, a, b, c, MD5_GET(2), 0xfcefa3f8, 9)
142 MD5_STEP(MD5_G, c, d, a, b, MD5_GET(7), 0x676f02d9, 14)
143 MD5_STEP(MD5_G, b, c, d, a, MD5_GET(12), 0x8d2a4c8a, 20)
144
145/* Round 3 */
146 MD5_STEP(MD5_H, a, b, c, d, MD5_GET(5), 0xfffa3942, 4)
147 MD5_STEP(MD5_H2, d, a, b, c, MD5_GET(8), 0x8771f681, 11)
148 MD5_STEP(MD5_H, c, d, a, b, MD5_GET(11), 0x6d9d6122, 16)
149 MD5_STEP(MD5_H2, b, c, d, a, MD5_GET(14), 0xfde5380c, 23)
150 MD5_STEP(MD5_H, a, b, c, d, MD5_GET(1), 0xa4beea44, 4)
151 MD5_STEP(MD5_H2, d, a, b, c, MD5_GET(4), 0x4bdecfa9, 11)
152 MD5_STEP(MD5_H, c, d, a, b, MD5_GET(7), 0xf6bb4b60, 16)
153 MD5_STEP(MD5_H2, b, c, d, a, MD5_GET(10), 0xbebfbc70, 23)
154 MD5_STEP(MD5_H, a, b, c, d, MD5_GET(13), 0x289b7ec6, 4)
155 MD5_STEP(MD5_H2, d, a, b, c, MD5_GET(0), 0xeaa127fa, 11)
156 MD5_STEP(MD5_H, c, d, a, b, MD5_GET(3), 0xd4ef3085, 16)
157 MD5_STEP(MD5_H2, b, c, d, a, MD5_GET(6), 0x04881d05, 23)
158 MD5_STEP(MD5_H, a, b, c, d, MD5_GET(9), 0xd9d4d039, 4)
159 MD5_STEP(MD5_H2, d, a, b, c, MD5_GET(12), 0xe6db99e5, 11)
160 MD5_STEP(MD5_H, c, d, a, b, MD5_GET(15), 0x1fa27cf8, 16)
161 MD5_STEP(MD5_H2, b, c, d, a, MD5_GET(2), 0xc4ac5665, 23)
162
163/* Round 4 */
164 MD5_STEP(MD5_I, a, b, c, d, MD5_GET(0), 0xf4292244, 6)
165 MD5_STEP(MD5_I, d, a, b, c, MD5_GET(7), 0x432aff97, 10)
166 MD5_STEP(MD5_I, c, d, a, b, MD5_GET(14), 0xab9423a7, 15)
167 MD5_STEP(MD5_I, b, c, d, a, MD5_GET(5), 0xfc93a039, 21)
168 MD5_STEP(MD5_I, a, b, c, d, MD5_GET(12), 0x655b59c3, 6)
169 MD5_STEP(MD5_I, d, a, b, c, MD5_GET(3), 0x8f0ccc92, 10)
170 MD5_STEP(MD5_I, c, d, a, b, MD5_GET(10), 0xffeff47d, 15)
171 MD5_STEP(MD5_I, b, c, d, a, MD5_GET(1), 0x85845dd1, 21)
172 MD5_STEP(MD5_I, a, b, c, d, MD5_GET(8), 0x6fa87e4f, 6)
173 MD5_STEP(MD5_I, d, a, b, c, MD5_GET(15), 0xfe2ce6e0, 10)
174 MD5_STEP(MD5_I, c, d, a, b, MD5_GET(6), 0xa3014314, 15)
175 MD5_STEP(MD5_I, b, c, d, a, MD5_GET(13), 0x4e0811a1, 21)
176 MD5_STEP(MD5_I, a, b, c, d, MD5_GET(4), 0xf7537e82, 6)
177 MD5_STEP(MD5_I, d, a, b, c, MD5_GET(11), 0xbd3af235, 10)
178 MD5_STEP(MD5_I, c, d, a, b, MD5_GET(2), 0x2ad7d2bb, 15)
179 MD5_STEP(MD5_I, b, c, d, a, MD5_GET(9), 0xeb86d391, 21)
180
181 a += saved_a;
182 b += saved_b;
183 c += saved_c;
184 d += saved_d;
185
186 ptr += 64;
187 } while (size -= 64);
188
189 ctx->a = a;
190 ctx->b = b;
191 ctx->c = c;
192 ctx->d = d;
193
194 return ptr;
195}
196
197void MD5_Init(MD5_CTX *ctx)
198{
199 ctx->a = 0x67452301;
200 ctx->b = 0xefcdab89;
201 ctx->c = 0x98badcfe;
202 ctx->d = 0x10325476;
203
204 ctx->lo = 0;
205 ctx->hi = 0;
206}
207
208void MD5_Update(MD5_CTX *ctx, const void *data, unsigned long size)
209{
210 MD5_u32plus saved_lo;
211 unsigned long used, available;
212
213 saved_lo = ctx->lo;
214 if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
215 ctx->hi++;
216 ctx->hi += size >> 29;
217
218 used = saved_lo & 0x3f;
219
220 if (used)
221 {
222 available = 64 - used;
223
224 if (size < available)
225 {
226 memcpy(&ctx->buffer[used], data, size);
227 return;
228 }
229
230 memcpy(&ctx->buffer[used], data, available);
231 data = (const unsigned char *)data + available;
232 size -= available;
233 MD5_body(ctx, ctx->buffer, 64);
234 }
235
236 if (size >= 64)
237 {
238 data = MD5_body(ctx, data, size & ~(unsigned long)0x3f);
239 size &= 0x3f;
240 }
241
242 memcpy(ctx->buffer, data, size);
243}
244
245void MD5_Final(unsigned char *result, MD5_CTX *ctx)
246{
247 unsigned long used, available;
248
249 used = ctx->lo & 0x3f;
250
251 ctx->buffer[used++] = 0x80;
252
253 available = 64 - used;
254
255 if (available < 8)
256 {
257 memset(&ctx->buffer[used], 0, available);
258 MD5_body(ctx, ctx->buffer, 64);
259 used = 0;
260 available = 64;
261 }
262
263 memset(&ctx->buffer[used], 0, available - 8);
264
265 ctx->lo <<= 3;
266 ctx->buffer[56] = ctx->lo;
267 ctx->buffer[57] = ctx->lo >> 8;
268 ctx->buffer[58] = ctx->lo >> 16;
269 ctx->buffer[59] = ctx->lo >> 24;
270 ctx->buffer[60] = ctx->hi;
271 ctx->buffer[61] = ctx->hi >> 8;
272 ctx->buffer[62] = ctx->hi >> 16;
273 ctx->buffer[63] = ctx->hi >> 24;
274
275 MD5_body(ctx, ctx->buffer, 64);
276
277 result[0] = ctx->a;
278 result[1] = ctx->a >> 8;
279 result[2] = ctx->a >> 16;
280 result[3] = ctx->a >> 24;
281 result[4] = ctx->b;
282 result[5] = ctx->b >> 8;
283 result[6] = ctx->b >> 16;
284 result[7] = ctx->b >> 24;
285 result[8] = ctx->c;
286 result[9] = ctx->c >> 8;
287 result[10] = ctx->c >> 16;
288 result[11] = ctx->c >> 24;
289 result[12] = ctx->d;
290 result[13] = ctx->d >> 8;
291 result[14] = ctx->d >> 16;
292 result[15] = ctx->d >> 24;
293
294 memset(ctx, 0, sizeof(*ctx));
295}