Commit | Line | Data |
---|---|---|
3719602c PC |
1 | /* |
2 | * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc. | |
3 | * MD5 Message-Digest Algorithm (RFC 1321). | |
4 | * | |
5 | * Homepage: | |
6 | * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5 | |
7 | * | |
8 | * Author: | |
9 | * Alexander Peslyak, better known as Solar Designer <solar at openwall.com> | |
10 | * | |
11 | * This software was written by Alexander Peslyak in 2001. No copyright is | |
12 | * claimed, and the software is hereby placed in the public domain. | |
13 | * In case this attempt to disclaim copyright and place the software in the | |
14 | * public domain is deemed null and void, then the software is | |
15 | * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the | |
16 | * general public under the following terms: | |
17 | * | |
18 | * Redistribution and use in source and binary forms, with or without | |
19 | * modification, are permitted. | |
20 | * | |
21 | * There's ABSOLUTELY NO WARRANTY, express or implied. | |
22 | * | |
23 | * (This is a heavily cut-down "BSD license".) | |
24 | * | |
25 | * This differs from Colin Plumb's older public domain implementation in that | |
26 | * no exactly 32-bit integer data type is required (any 32-bit or wider | |
27 | * unsigned integer data type will do), there's no compile-time endianness | |
28 | * configuration, and the function prototypes match OpenSSL's. No code from | |
29 | * Colin Plumb's implementation has been reused; this comment merely compares | |
30 | * the properties of the two independent implementations. | |
31 | * | |
32 | * The primary goals of this implementation are portability and ease of use. | |
33 | * It is meant to be fast, but not as fast as possible. Some known | |
34 | * optimizations are not included to reduce source code size and avoid | |
35 | * compile-time configuration. | |
36 | */ | |
37 | #include <lrc_hash.h> | |
38 | ||
39 | #include <string.h> | |
40 | ||
41 | /* | |
42 | * The basic MD5 functions. | |
43 | * | |
44 | * F and G are optimized compared to their RFC 1321 definitions for | |
45 | * architectures that lack an AND-NOT instruction, just like in Colin Plumb's | |
46 | * implementation. | |
47 | */ | |
48 | #define MD5_F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) | |
49 | #define MD5_G(x, y, z) ((y) ^ ((z) & ((x) ^ (y)))) | |
50 | #define MD5_H(x, y, z) (((x) ^ (y)) ^ (z)) | |
51 | #define MD5_H2(x, y, z) ((x) ^ ((y) ^ (z))) | |
52 | #define MD5_I(x, y, z) ((y) ^ ((x) | ~(z))) | |
53 | ||
54 | /* | |
55 | * The MD5 transformation for all four rounds. | |
56 | */ | |
57 | #define MD5_STEP(f, a, b, c, d, x, t, s) \ | |
58 | (a) += f((b), (c), (d)) + (x) + (t); \ | |
59 | (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \ | |
60 | (a) += (b); | |
61 | ||
62 | /* | |
63 | * MD5_SET reads 4 input bytes in little-endian byte order and stores them | |
64 | * in a properly aligned word in host byte order. | |
65 | * | |
66 | * The check for little-endian architectures that tolerate unaligned | |
67 | * memory accesses is just an optimization. Nothing will break if it | |
68 | * doesn't work. | |
69 | */ | |
70 | #if defined(__i386__) || defined(__x86_64__) || defined(__vax__) | |
71 | #define MD5_SET(n) \ | |
72 | (*(MD5_u32plus *)&ptr[(n) * 4]) | |
73 | #define MD5_GET(n) \ | |
74 | MD5_SET(n) | |
75 | #else | |
76 | #define MD5_SET(n) \ | |
77 | (ctx->block[(n)] = \ | |
78 | (MD5_u32plus)ptr[(n) * 4] | \ | |
79 | ((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \ | |
80 | ((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \ | |
81 | ((MD5_u32plus)ptr[(n) * 4 + 3] << 24)) | |
82 | #define MD5_GET(n) \ | |
83 | (ctx->block[(n)]) | |
84 | #endif | |
85 | ||
86 | /* | |
87 | * This processes one or more 64-byte data blocks, but does NOT update | |
88 | * the bit counters. There are no alignment requirements. | |
89 | */ | |
90 | static const void *MD5_body(MD5_CTX *ctx, const void *data, unsigned long size) | |
91 | { | |
92 | const unsigned char *ptr; | |
93 | MD5_u32plus a, b, c, d; | |
94 | MD5_u32plus saved_a, saved_b, saved_c, saved_d; | |
95 | ||
96 | ptr = (const unsigned char *)data; | |
97 | ||
98 | a = ctx->a; | |
99 | b = ctx->b; | |
100 | c = ctx->c; | |
101 | d = ctx->d; | |
102 | ||
103 | do { | |
104 | saved_a = a; | |
105 | saved_b = b; | |
106 | saved_c = c; | |
107 | saved_d = d; | |
108 | ||
109 | /* Round 1 */ | |
110 | MD5_STEP(MD5_F, a, b, c, d, MD5_SET(0), 0xd76aa478, 7) | |
111 | MD5_STEP(MD5_F, d, a, b, c, MD5_SET(1), 0xe8c7b756, 12) | |
112 | MD5_STEP(MD5_F, c, d, a, b, MD5_SET(2), 0x242070db, 17) | |
113 | MD5_STEP(MD5_F, b, c, d, a, MD5_SET(3), 0xc1bdceee, 22) | |
114 | MD5_STEP(MD5_F, a, b, c, d, MD5_SET(4), 0xf57c0faf, 7) | |
115 | MD5_STEP(MD5_F, d, a, b, c, MD5_SET(5), 0x4787c62a, 12) | |
116 | MD5_STEP(MD5_F, c, d, a, b, MD5_SET(6), 0xa8304613, 17) | |
117 | MD5_STEP(MD5_F, b, c, d, a, MD5_SET(7), 0xfd469501, 22) | |
118 | MD5_STEP(MD5_F, a, b, c, d, MD5_SET(8), 0x698098d8, 7) | |
119 | MD5_STEP(MD5_F, d, a, b, c, MD5_SET(9), 0x8b44f7af, 12) | |
120 | MD5_STEP(MD5_F, c, d, a, b, MD5_SET(10), 0xffff5bb1, 17) | |
121 | MD5_STEP(MD5_F, b, c, d, a, MD5_SET(11), 0x895cd7be, 22) | |
122 | MD5_STEP(MD5_F, a, b, c, d, MD5_SET(12), 0x6b901122, 7) | |
123 | MD5_STEP(MD5_F, d, a, b, c, MD5_SET(13), 0xfd987193, 12) | |
124 | MD5_STEP(MD5_F, c, d, a, b, MD5_SET(14), 0xa679438e, 17) | |
125 | MD5_STEP(MD5_F, b, c, d, a, MD5_SET(15), 0x49b40821, 22) | |
126 | ||
127 | /* Round 2 */ | |
128 | MD5_STEP(MD5_G, a, b, c, d, MD5_GET(1), 0xf61e2562, 5) | |
129 | MD5_STEP(MD5_G, d, a, b, c, MD5_GET(6), 0xc040b340, 9) | |
130 | MD5_STEP(MD5_G, c, d, a, b, MD5_GET(11), 0x265e5a51, 14) | |
131 | MD5_STEP(MD5_G, b, c, d, a, MD5_GET(0), 0xe9b6c7aa, 20) | |
132 | MD5_STEP(MD5_G, a, b, c, d, MD5_GET(5), 0xd62f105d, 5) | |
133 | MD5_STEP(MD5_G, d, a, b, c, MD5_GET(10), 0x02441453, 9) | |
134 | MD5_STEP(MD5_G, c, d, a, b, MD5_GET(15), 0xd8a1e681, 14) | |
135 | MD5_STEP(MD5_G, b, c, d, a, MD5_GET(4), 0xe7d3fbc8, 20) | |
136 | MD5_STEP(MD5_G, a, b, c, d, MD5_GET(9), 0x21e1cde6, 5) | |
137 | MD5_STEP(MD5_G, d, a, b, c, MD5_GET(14), 0xc33707d6, 9) | |
138 | MD5_STEP(MD5_G, c, d, a, b, MD5_GET(3), 0xf4d50d87, 14) | |
139 | MD5_STEP(MD5_G, b, c, d, a, MD5_GET(8), 0x455a14ed, 20) | |
140 | MD5_STEP(MD5_G, a, b, c, d, MD5_GET(13), 0xa9e3e905, 5) | |
141 | MD5_STEP(MD5_G, d, a, b, c, MD5_GET(2), 0xfcefa3f8, 9) | |
142 | MD5_STEP(MD5_G, c, d, a, b, MD5_GET(7), 0x676f02d9, 14) | |
143 | MD5_STEP(MD5_G, b, c, d, a, MD5_GET(12), 0x8d2a4c8a, 20) | |
144 | ||
145 | /* Round 3 */ | |
146 | MD5_STEP(MD5_H, a, b, c, d, MD5_GET(5), 0xfffa3942, 4) | |
147 | MD5_STEP(MD5_H2, d, a, b, c, MD5_GET(8), 0x8771f681, 11) | |
148 | MD5_STEP(MD5_H, c, d, a, b, MD5_GET(11), 0x6d9d6122, 16) | |
149 | MD5_STEP(MD5_H2, b, c, d, a, MD5_GET(14), 0xfde5380c, 23) | |
150 | MD5_STEP(MD5_H, a, b, c, d, MD5_GET(1), 0xa4beea44, 4) | |
151 | MD5_STEP(MD5_H2, d, a, b, c, MD5_GET(4), 0x4bdecfa9, 11) | |
152 | MD5_STEP(MD5_H, c, d, a, b, MD5_GET(7), 0xf6bb4b60, 16) | |
153 | MD5_STEP(MD5_H2, b, c, d, a, MD5_GET(10), 0xbebfbc70, 23) | |
154 | MD5_STEP(MD5_H, a, b, c, d, MD5_GET(13), 0x289b7ec6, 4) | |
155 | MD5_STEP(MD5_H2, d, a, b, c, MD5_GET(0), 0xeaa127fa, 11) | |
156 | MD5_STEP(MD5_H, c, d, a, b, MD5_GET(3), 0xd4ef3085, 16) | |
157 | MD5_STEP(MD5_H2, b, c, d, a, MD5_GET(6), 0x04881d05, 23) | |
158 | MD5_STEP(MD5_H, a, b, c, d, MD5_GET(9), 0xd9d4d039, 4) | |
159 | MD5_STEP(MD5_H2, d, a, b, c, MD5_GET(12), 0xe6db99e5, 11) | |
160 | MD5_STEP(MD5_H, c, d, a, b, MD5_GET(15), 0x1fa27cf8, 16) | |
161 | MD5_STEP(MD5_H2, b, c, d, a, MD5_GET(2), 0xc4ac5665, 23) | |
162 | ||
163 | /* Round 4 */ | |
164 | MD5_STEP(MD5_I, a, b, c, d, MD5_GET(0), 0xf4292244, 6) | |
165 | MD5_STEP(MD5_I, d, a, b, c, MD5_GET(7), 0x432aff97, 10) | |
166 | MD5_STEP(MD5_I, c, d, a, b, MD5_GET(14), 0xab9423a7, 15) | |
167 | MD5_STEP(MD5_I, b, c, d, a, MD5_GET(5), 0xfc93a039, 21) | |
168 | MD5_STEP(MD5_I, a, b, c, d, MD5_GET(12), 0x655b59c3, 6) | |
169 | MD5_STEP(MD5_I, d, a, b, c, MD5_GET(3), 0x8f0ccc92, 10) | |
170 | MD5_STEP(MD5_I, c, d, a, b, MD5_GET(10), 0xffeff47d, 15) | |
171 | MD5_STEP(MD5_I, b, c, d, a, MD5_GET(1), 0x85845dd1, 21) | |
172 | MD5_STEP(MD5_I, a, b, c, d, MD5_GET(8), 0x6fa87e4f, 6) | |
173 | MD5_STEP(MD5_I, d, a, b, c, MD5_GET(15), 0xfe2ce6e0, 10) | |
174 | MD5_STEP(MD5_I, c, d, a, b, MD5_GET(6), 0xa3014314, 15) | |
175 | MD5_STEP(MD5_I, b, c, d, a, MD5_GET(13), 0x4e0811a1, 21) | |
176 | MD5_STEP(MD5_I, a, b, c, d, MD5_GET(4), 0xf7537e82, 6) | |
177 | MD5_STEP(MD5_I, d, a, b, c, MD5_GET(11), 0xbd3af235, 10) | |
178 | MD5_STEP(MD5_I, c, d, a, b, MD5_GET(2), 0x2ad7d2bb, 15) | |
179 | MD5_STEP(MD5_I, b, c, d, a, MD5_GET(9), 0xeb86d391, 21) | |
180 | ||
181 | a += saved_a; | |
182 | b += saved_b; | |
183 | c += saved_c; | |
184 | d += saved_d; | |
185 | ||
186 | ptr += 64; | |
187 | } while (size -= 64); | |
188 | ||
189 | ctx->a = a; | |
190 | ctx->b = b; | |
191 | ctx->c = c; | |
192 | ctx->d = d; | |
193 | ||
194 | return ptr; | |
195 | } | |
196 | ||
197 | void MD5_Init(MD5_CTX *ctx) | |
198 | { | |
199 | ctx->a = 0x67452301; | |
200 | ctx->b = 0xefcdab89; | |
201 | ctx->c = 0x98badcfe; | |
202 | ctx->d = 0x10325476; | |
203 | ||
204 | ctx->lo = 0; | |
205 | ctx->hi = 0; | |
206 | } | |
207 | ||
208 | void MD5_Update(MD5_CTX *ctx, const void *data, unsigned long size) | |
209 | { | |
210 | MD5_u32plus saved_lo; | |
211 | unsigned long used, available; | |
212 | ||
213 | saved_lo = ctx->lo; | |
214 | if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo) | |
215 | ctx->hi++; | |
216 | ctx->hi += size >> 29; | |
217 | ||
218 | used = saved_lo & 0x3f; | |
219 | ||
220 | if (used) | |
221 | { | |
222 | available = 64 - used; | |
223 | ||
224 | if (size < available) | |
225 | { | |
226 | memcpy(&ctx->buffer[used], data, size); | |
227 | return; | |
228 | } | |
229 | ||
230 | memcpy(&ctx->buffer[used], data, available); | |
231 | data = (const unsigned char *)data + available; | |
232 | size -= available; | |
233 | MD5_body(ctx, ctx->buffer, 64); | |
234 | } | |
235 | ||
236 | if (size >= 64) | |
237 | { | |
238 | data = MD5_body(ctx, data, size & ~(unsigned long)0x3f); | |
239 | size &= 0x3f; | |
240 | } | |
241 | ||
242 | memcpy(ctx->buffer, data, size); | |
243 | } | |
244 | ||
245 | void MD5_Final(unsigned char *result, MD5_CTX *ctx) | |
246 | { | |
247 | unsigned long used, available; | |
248 | ||
249 | used = ctx->lo & 0x3f; | |
250 | ||
251 | ctx->buffer[used++] = 0x80; | |
252 | ||
253 | available = 64 - used; | |
254 | ||
255 | if (available < 8) | |
256 | { | |
257 | memset(&ctx->buffer[used], 0, available); | |
258 | MD5_body(ctx, ctx->buffer, 64); | |
259 | used = 0; | |
260 | available = 64; | |
261 | } | |
262 | ||
263 | memset(&ctx->buffer[used], 0, available - 8); | |
264 | ||
265 | ctx->lo <<= 3; | |
266 | ctx->buffer[56] = ctx->lo; | |
267 | ctx->buffer[57] = ctx->lo >> 8; | |
268 | ctx->buffer[58] = ctx->lo >> 16; | |
269 | ctx->buffer[59] = ctx->lo >> 24; | |
270 | ctx->buffer[60] = ctx->hi; | |
271 | ctx->buffer[61] = ctx->hi >> 8; | |
272 | ctx->buffer[62] = ctx->hi >> 16; | |
273 | ctx->buffer[63] = ctx->hi >> 24; | |
274 | ||
275 | MD5_body(ctx, ctx->buffer, 64); | |
276 | ||
277 | result[0] = ctx->a; | |
278 | result[1] = ctx->a >> 8; | |
279 | result[2] = ctx->a >> 16; | |
280 | result[3] = ctx->a >> 24; | |
281 | result[4] = ctx->b; | |
282 | result[5] = ctx->b >> 8; | |
283 | result[6] = ctx->b >> 16; | |
284 | result[7] = ctx->b >> 24; | |
285 | result[8] = ctx->c; | |
286 | result[9] = ctx->c >> 8; | |
287 | result[10] = ctx->c >> 16; | |
288 | result[11] = ctx->c >> 24; | |
289 | result[12] = ctx->d; | |
290 | result[13] = ctx->d >> 8; | |
291 | result[14] = ctx->d >> 16; | |
292 | result[15] = ctx->d >> 24; | |
293 | ||
294 | memset(ctx, 0, sizeof(*ctx)); | |
295 | } |