psxmem: Add support for Lightrec's custom mem init sequence
[pcsx_rearmed.git] / deps / lightrec / interpreter.c
CommitLineData
98fa08a5 1// SPDX-License-Identifier: LGPL-2.1-or-later
d16005f8 2/*
98fa08a5 3 * Copyright (C) 2019-2021 Paul Cercueil <paul@crapouillou.net>
d16005f8
PC
4 */
5
6#include "disassembler.h"
7#include "interpreter.h"
8#include "lightrec-private.h"
9#include "optimizer.h"
10#include "regcache.h"
11
12#include <stdbool.h>
13
14struct interpreter;
15
16static u32 int_CP0(struct interpreter *inter);
17static u32 int_CP2(struct interpreter *inter);
18static u32 int_SPECIAL(struct interpreter *inter);
19static u32 int_REGIMM(struct interpreter *inter);
20static u32 int_branch(struct interpreter *inter, u32 pc,
21 union code code, bool branch);
22
23typedef u32 (*lightrec_int_func_t)(struct interpreter *inter);
24
25static const lightrec_int_func_t int_standard[64];
26
27struct interpreter {
28 struct lightrec_state *state;
29 struct block *block;
30 struct opcode *op;
31 u32 cycles;
32 bool delay_slot;
98fa08a5 33 u16 offset;
d16005f8
PC
34};
35
98fa08a5
PC
36static u32 int_get_branch_pc(const struct interpreter *inter)
37{
38 return get_branch_pc(inter->block, inter->offset, 0);
39}
40
41static inline u32 int_get_ds_pc(const struct interpreter *inter, s16 imm)
42{
43 return get_ds_pc(inter->block, inter->offset, imm);
44}
45
46static inline struct opcode *next_op(const struct interpreter *inter)
47{
48 return &inter->block->opcode_list[inter->offset + 1];
49}
50
d16005f8
PC
51static inline u32 execute(lightrec_int_func_t func, struct interpreter *inter)
52{
53 return (*func)(inter);
54}
55
98fa08a5
PC
56static inline u32 lightrec_int_op(struct interpreter *inter)
57{
58 return execute(int_standard[inter->op->i.op], inter);
59}
60
d16005f8
PC
61static inline u32 jump_skip(struct interpreter *inter)
62{
98fa08a5
PC
63 inter->op = next_op(inter);
64 inter->offset++;
d16005f8 65
98fa08a5
PC
66 if (inter->op->flags & LIGHTREC_SYNC) {
67 inter->state->current_cycle += inter->cycles;
68 inter->cycles = 0;
69 }
70
71 return lightrec_int_op(inter);
d16005f8
PC
72}
73
74static inline u32 jump_next(struct interpreter *inter)
75{
76 inter->cycles += lightrec_cycles_of_opcode(inter->op->c);
77
78 if (unlikely(inter->delay_slot))
79 return 0;
80
81 return jump_skip(inter);
82}
83
84static inline u32 jump_after_branch(struct interpreter *inter)
85{
86 inter->cycles += lightrec_cycles_of_opcode(inter->op->c);
87
88 if (unlikely(inter->delay_slot))
89 return 0;
90
98fa08a5
PC
91 inter->op = next_op(inter);
92 inter->offset++;
d16005f8
PC
93
94 return jump_skip(inter);
95}
96
97static void update_cycles_before_branch(struct interpreter *inter)
98{
99 u32 cycles;
100
101 if (!inter->delay_slot) {
102 cycles = lightrec_cycles_of_opcode(inter->op->c);
103
104 if (has_delay_slot(inter->op->c) &&
105 !(inter->op->flags & LIGHTREC_NO_DS))
98fa08a5 106 cycles += lightrec_cycles_of_opcode(next_op(inter)->c);
d16005f8
PC
107
108 inter->cycles += cycles;
109 inter->state->current_cycle += inter->cycles;
110 inter->cycles = -cycles;
111 }
112}
113
114static bool is_branch_taken(const u32 *reg_cache, union code op)
115{
116 switch (op.i.op) {
117 case OP_SPECIAL:
118 return op.r.op == OP_SPECIAL_JR || op.r.op == OP_SPECIAL_JALR;
119 case OP_J:
120 case OP_JAL:
121 return true;
122 case OP_BEQ:
d16005f8
PC
123 return reg_cache[op.r.rs] == reg_cache[op.r.rt];
124 case OP_BNE:
d16005f8
PC
125 return reg_cache[op.r.rs] != reg_cache[op.r.rt];
126 case OP_REGIMM:
127 switch (op.r.rt) {
128 case OP_REGIMM_BLTZ:
129 case OP_REGIMM_BLTZAL:
130 return (s32)reg_cache[op.r.rs] < 0;
131 case OP_REGIMM_BGEZ:
132 case OP_REGIMM_BGEZAL:
133 return (s32)reg_cache[op.r.rs] >= 0;
134 }
135 default:
136 break;
137 }
138
139 return false;
140}
141
142static u32 int_delay_slot(struct interpreter *inter, u32 pc, bool branch)
143{
144 struct lightrec_state *state = inter->state;
98fa08a5
PC
145 u32 *reg_cache = state->regs.gpr;
146 struct opcode new_op, *op = next_op(inter);
d16005f8
PC
147 union code op_next;
148 struct interpreter inter2 = {
149 .state = state,
150 .cycles = inter->cycles,
151 .delay_slot = true,
152 .block = NULL,
153 };
154 bool run_first_op = false, dummy_ld = false, save_rs = false,
155 load_in_ds, branch_in_ds = false, branch_at_addr = false,
156 branch_taken;
157 u32 old_rs, new_rs, new_rt;
158 u32 next_pc, ds_next_pc;
159 u32 cause, epc;
160
161 if (op->i.op == OP_CP0 && op->r.rs == OP_CP0_RFE) {
162 /* When an IRQ happens, the PSX exception handlers (when done)
163 * will jump back to the instruction that was executed right
164 * before the IRQ, unless it was a GTE opcode; in that case, it
165 * jumps to the instruction right after.
166 * Since we will never handle the IRQ right after a GTE opcode,
167 * but on branch boundaries, we need to adjust the return
168 * address so that the GTE opcode is effectively executed.
169 */
98fa08a5
PC
170 cause = state->regs.cp0[13];
171 epc = state->regs.cp0[14];
d16005f8
PC
172
173 if (!(cause & 0x7c) && epc == pc - 4)
174 pc -= 4;
175 }
176
177 if (inter->delay_slot) {
178 /* The branch opcode was in a delay slot of another branch
179 * opcode. Just return the target address of the second
180 * branch. */
181 return pc;
182 }
183
184 /* An opcode located in the delay slot performing a delayed read
185 * requires special handling; we will always resort to using the
186 * interpreter in that case.
187 * Same goes for when we have a branch in a delay slot of another
188 * branch. */
189 load_in_ds = load_in_delay_slot(op->c);
190 branch_in_ds = has_delay_slot(op->c);
191
192 if (branch) {
193 if (load_in_ds || branch_in_ds)
194 op_next = lightrec_read_opcode(state, pc);
195
196 if (load_in_ds) {
197 /* Verify that the next block actually reads the
198 * destination register of the delay slot opcode. */
199 run_first_op = opcode_reads_register(op_next, op->r.rt);
200 }
201
202 if (branch_in_ds) {
203 run_first_op = true;
204 next_pc = pc + 4;
205 }
206
207 if (load_in_ds && run_first_op) {
208 next_pc = pc + 4;
209
210 /* If the first opcode of the next block writes the
211 * regiser used as the address for the load, we need to
212 * reset to the old value after it has been executed,
213 * then restore the new value after the delay slot
214 * opcode has been executed. */
215 save_rs = opcode_reads_register(op->c, op->r.rs) &&
216 opcode_writes_register(op_next, op->r.rs);
217 if (save_rs)
218 old_rs = reg_cache[op->r.rs];
219
220 /* If both the first opcode of the next block and the
221 * delay slot opcode write to the same register, the
222 * value written by the delay slot opcode is
223 * discarded. */
224 dummy_ld = opcode_writes_register(op_next, op->r.rt);
225 }
226
227 if (!run_first_op) {
228 next_pc = pc;
229 } else if (has_delay_slot(op_next)) {
230 /* The first opcode of the next block is a branch, so we
231 * cannot execute it here, because of the load delay.
232 * Just check whether or not the branch would be taken,
233 * and save that info into the interpreter struct. */
234 branch_at_addr = true;
235 branch_taken = is_branch_taken(reg_cache, op_next);
236 pr_debug("Target of impossible branch is a branch, "
237 "%staken.\n", branch_taken ? "" : "not ");
a59e5536 238 inter->cycles += lightrec_cycles_of_opcode(op_next);
239 old_rs = reg_cache[op_next.r.rs];
d16005f8
PC
240 } else {
241 new_op.c = op_next;
242 new_op.flags = 0;
d16005f8
PC
243 inter2.op = &new_op;
244
245 /* Execute the first opcode of the next block */
98fa08a5 246 lightrec_int_op(&inter2);
d16005f8
PC
247
248 if (save_rs) {
249 new_rs = reg_cache[op->r.rs];
250 reg_cache[op->r.rs] = old_rs;
251 }
252
253 inter->cycles += lightrec_cycles_of_opcode(op_next);
254 }
255 } else {
98fa08a5 256 next_pc = int_get_ds_pc(inter, 2);
d16005f8
PC
257 }
258
259 inter2.block = inter->block;
260 inter2.op = op;
261 inter2.cycles = inter->cycles;
262
263 if (dummy_ld)
264 new_rt = reg_cache[op->r.rt];
265
266 /* Execute delay slot opcode */
98fa08a5 267 ds_next_pc = lightrec_int_op(&inter2);
a59e5536 268
269 if (branch_at_addr) {
270 if (op_next.i.op == OP_SPECIAL)
271 /* TODO: Handle JALR setting $ra */
272 ds_next_pc = old_rs;
273 else if (op_next.i.op == OP_J || op_next.i.op == OP_JAL)
274 /* TODO: Handle JAL setting $ra */
275 ds_next_pc = (pc & 0xf0000000) | (op_next.j.imm << 2);
276 else
277 ds_next_pc = pc + 4 + ((s16)op_next.i.imm << 2);
278 }
d16005f8
PC
279
280 if (branch_at_addr && !branch_taken) {
281 /* If the branch at the target of the branch opcode is not
282 * taken, we jump to its delay slot */
283 next_pc = pc + sizeof(u32);
a59e5536 284 } else if (branch_at_addr || (!branch && branch_in_ds)) {
d16005f8
PC
285 next_pc = ds_next_pc;
286 }
287
288 if (save_rs)
289 reg_cache[op->r.rs] = new_rs;
290 if (dummy_ld)
291 reg_cache[op->r.rt] = new_rt;
292
293 inter->cycles += lightrec_cycles_of_opcode(op->c);
294
295 if (branch_at_addr && branch_taken) {
296 /* If the branch at the target of the branch opcode is taken,
297 * we execute its delay slot here, and jump to its target
298 * address. */
299 op_next = lightrec_read_opcode(state, pc + 4);
300
301 new_op.c = op_next;
302 new_op.flags = 0;
d16005f8
PC
303 inter2.op = &new_op;
304 inter2.block = NULL;
305
306 inter->cycles += lightrec_cycles_of_opcode(op_next);
307
308 pr_debug("Running delay slot of branch at target of impossible "
309 "branch\n");
98fa08a5 310 lightrec_int_op(&inter2);
d16005f8
PC
311 }
312
313 return next_pc;
314}
315
316static u32 int_unimplemented(struct interpreter *inter)
317{
318 pr_warn("Unimplemented opcode 0x%08x\n", inter->op->opcode);
319
320 return jump_next(inter);
321}
322
323static u32 int_jump(struct interpreter *inter, bool link)
324{
325 struct lightrec_state *state = inter->state;
98fa08a5 326 u32 old_pc = int_get_branch_pc(inter);
d16005f8
PC
327 u32 pc = (old_pc & 0xf0000000) | (inter->op->j.imm << 2);
328
329 if (link)
98fa08a5 330 state->regs.gpr[31] = old_pc + 8;
d16005f8
PC
331
332 if (inter->op->flags & LIGHTREC_NO_DS)
333 return pc;
334
335 return int_delay_slot(inter, pc, true);
336}
337
338static u32 int_J(struct interpreter *inter)
339{
340 return int_jump(inter, false);
341}
342
343static u32 int_JAL(struct interpreter *inter)
344{
345 return int_jump(inter, true);
346}
347
348static u32 int_jumpr(struct interpreter *inter, u8 link_reg)
349{
350 struct lightrec_state *state = inter->state;
98fa08a5 351 u32 old_pc, next_pc = state->regs.gpr[inter->op->r.rs];
d16005f8
PC
352
353 if (link_reg) {
98fa08a5
PC
354 old_pc = int_get_branch_pc(inter);
355 state->regs.gpr[link_reg] = old_pc + 8;
d16005f8
PC
356 }
357
358 if (inter->op->flags & LIGHTREC_NO_DS)
359 return next_pc;
360
361 return int_delay_slot(inter, next_pc, true);
362}
363
364static u32 int_special_JR(struct interpreter *inter)
365{
366 return int_jumpr(inter, 0);
367}
368
369static u32 int_special_JALR(struct interpreter *inter)
370{
371 return int_jumpr(inter, inter->op->r.rd);
372}
373
374static u32 int_do_branch(struct interpreter *inter, u32 old_pc, u32 next_pc)
375{
376 if (!inter->delay_slot &&
377 (inter->op->flags & LIGHTREC_LOCAL_BRANCH) &&
378 (s16)inter->op->c.i.imm >= 0) {
379 next_pc = old_pc + ((1 + (s16)inter->op->c.i.imm) << 2);
98fa08a5 380 next_pc = lightrec_emulate_block(inter->state, inter->block, next_pc);
d16005f8
PC
381 }
382
383 return next_pc;
384}
385
386static u32 int_branch(struct interpreter *inter, u32 pc,
387 union code code, bool branch)
388{
389 u32 next_pc = pc + 4 + ((s16)code.i.imm << 2);
390
391 update_cycles_before_branch(inter);
392
393 if (inter->op->flags & LIGHTREC_NO_DS) {
394 if (branch)
395 return int_do_branch(inter, pc, next_pc);
396 else
397 return jump_next(inter);
398 }
399
400 if (!inter->delay_slot)
401 next_pc = int_delay_slot(inter, next_pc, branch);
402
403 if (branch)
404 return int_do_branch(inter, pc, next_pc);
405
406 if (inter->op->flags & LIGHTREC_EMULATE_BRANCH)
407 return pc + 8;
408 else
409 return jump_after_branch(inter);
410}
411
412static u32 int_beq(struct interpreter *inter, bool bne)
413{
98fa08a5 414 u32 rs, rt, old_pc = int_get_branch_pc(inter);
d16005f8 415
98fa08a5
PC
416 rs = inter->state->regs.gpr[inter->op->i.rs];
417 rt = inter->state->regs.gpr[inter->op->i.rt];
d16005f8
PC
418
419 return int_branch(inter, old_pc, inter->op->c, (rs == rt) ^ bne);
420}
421
422static u32 int_BEQ(struct interpreter *inter)
423{
424 return int_beq(inter, false);
425}
426
427static u32 int_BNE(struct interpreter *inter)
428{
429 return int_beq(inter, true);
430}
431
432static u32 int_bgez(struct interpreter *inter, bool link, bool lt, bool regimm)
433{
98fa08a5 434 u32 old_pc = int_get_branch_pc(inter);
d16005f8
PC
435 s32 rs;
436
437 if (link)
98fa08a5 438 inter->state->regs.gpr[31] = old_pc + 8;
d16005f8 439
98fa08a5 440 rs = (s32)inter->state->regs.gpr[inter->op->i.rs];
d16005f8
PC
441
442 return int_branch(inter, old_pc, inter->op->c,
443 ((regimm && !rs) || rs > 0) ^ lt);
444}
445
446static u32 int_regimm_BLTZ(struct interpreter *inter)
447{
448 return int_bgez(inter, false, true, true);
449}
450
451static u32 int_regimm_BGEZ(struct interpreter *inter)
452{
453 return int_bgez(inter, false, false, true);
454}
455
456static u32 int_regimm_BLTZAL(struct interpreter *inter)
457{
458 return int_bgez(inter, true, true, true);
459}
460
461static u32 int_regimm_BGEZAL(struct interpreter *inter)
462{
463 return int_bgez(inter, true, false, true);
464}
465
466static u32 int_BLEZ(struct interpreter *inter)
467{
468 return int_bgez(inter, false, true, false);
469}
470
471static u32 int_BGTZ(struct interpreter *inter)
472{
473 return int_bgez(inter, false, false, false);
474}
475
476static u32 int_cfc(struct interpreter *inter)
477{
478 struct lightrec_state *state = inter->state;
479 const struct opcode *op = inter->op;
480 u32 val;
481
482 val = lightrec_mfc(state, op->c);
483
484 if (likely(op->r.rt))
98fa08a5 485 state->regs.gpr[op->r.rt] = val;
d16005f8
PC
486
487 return jump_next(inter);
488}
489
490static u32 int_ctc(struct interpreter *inter)
491{
492 struct lightrec_state *state = inter->state;
493 const struct opcode *op = inter->op;
494
98fa08a5 495 lightrec_mtc(state, op->c, state->regs.gpr[op->r.rt]);
d16005f8
PC
496
497 /* If we have a MTC0 or CTC0 to CP0 register 12 (Status) or 13 (Cause),
498 * return early so that the emulator will be able to check software
499 * interrupt status. */
a59e5536 500 if (!(inter->op->flags & LIGHTREC_NO_DS) &&
501 op->i.op == OP_CP0 && (op->r.rd == 12 || op->r.rd == 13))
98fa08a5 502 return int_get_ds_pc(inter, 1);
d16005f8
PC
503 else
504 return jump_next(inter);
505}
506
507static u32 int_cp0_RFE(struct interpreter *inter)
508{
98fa08a5 509 lightrec_rfe(inter->state);
d16005f8
PC
510
511 return jump_next(inter);
512}
513
514static u32 int_CP(struct interpreter *inter)
515{
98fa08a5 516 lightrec_cp(inter->state, inter->op->c);
d16005f8
PC
517
518 return jump_next(inter);
519}
520
521static u32 int_ADDI(struct interpreter *inter)
522{
98fa08a5 523 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
524 struct opcode_i *op = &inter->op->i;
525
526 if (likely(op->rt))
527 reg_cache[op->rt] = reg_cache[op->rs] + (s32)(s16)op->imm;
528
529 return jump_next(inter);
530}
531
532static u32 int_SLTI(struct interpreter *inter)
533{
98fa08a5 534 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
535 struct opcode_i *op = &inter->op->i;
536
537 if (likely(op->rt))
538 reg_cache[op->rt] = (s32)reg_cache[op->rs] < (s32)(s16)op->imm;
539
540 return jump_next(inter);
541}
542
543static u32 int_SLTIU(struct interpreter *inter)
544{
98fa08a5 545 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
546 struct opcode_i *op = &inter->op->i;
547
548 if (likely(op->rt))
549 reg_cache[op->rt] = reg_cache[op->rs] < (u32)(s32)(s16)op->imm;
550
551 return jump_next(inter);
552}
553
554static u32 int_ANDI(struct interpreter *inter)
555{
98fa08a5 556 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
557 struct opcode_i *op = &inter->op->i;
558
559 if (likely(op->rt))
560 reg_cache[op->rt] = reg_cache[op->rs] & op->imm;
561
562 return jump_next(inter);
563}
564
565static u32 int_ORI(struct interpreter *inter)
566{
98fa08a5 567 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
568 struct opcode_i *op = &inter->op->i;
569
570 if (likely(op->rt))
571 reg_cache[op->rt] = reg_cache[op->rs] | op->imm;
572
573 return jump_next(inter);
574}
575
576static u32 int_XORI(struct interpreter *inter)
577{
98fa08a5 578 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
579 struct opcode_i *op = &inter->op->i;
580
581 if (likely(op->rt))
582 reg_cache[op->rt] = reg_cache[op->rs] ^ op->imm;
583
584 return jump_next(inter);
585}
586
587static u32 int_LUI(struct interpreter *inter)
588{
589 struct opcode_i *op = &inter->op->i;
590
98fa08a5 591 inter->state->regs.gpr[op->rt] = op->imm << 16;
d16005f8
PC
592
593 return jump_next(inter);
594}
595
596static u32 int_io(struct interpreter *inter, bool is_load)
597{
598 struct opcode_i *op = &inter->op->i;
98fa08a5 599 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
600 u32 val;
601
602 val = lightrec_rw(inter->state, inter->op->c,
603 reg_cache[op->rs], reg_cache[op->rt],
98fa08a5 604 &inter->op->flags, inter->block);
d16005f8
PC
605
606 if (is_load && op->rt)
607 reg_cache[op->rt] = val;
608
609 return jump_next(inter);
610}
611
612static u32 int_load(struct interpreter *inter)
613{
614 return int_io(inter, true);
615}
616
617static u32 int_store(struct interpreter *inter)
618{
619 u32 next_pc;
620
621 if (likely(!(inter->op->flags & LIGHTREC_SMC)))
622 return int_io(inter, false);
623
624 lightrec_rw(inter->state, inter->op->c,
98fa08a5
PC
625 inter->state->regs.gpr[inter->op->i.rs],
626 inter->state->regs.gpr[inter->op->i.rt],
627 &inter->op->flags, inter->block);
d16005f8 628
98fa08a5 629 next_pc = int_get_ds_pc(inter, 1);
d16005f8
PC
630
631 /* Invalidate next PC, to force the rest of the block to be rebuilt */
632 lightrec_invalidate(inter->state, next_pc, 4);
633
634 return next_pc;
635}
636
637static u32 int_LWC2(struct interpreter *inter)
638{
639 return int_io(inter, false);
640}
641
642static u32 int_special_SLL(struct interpreter *inter)
643{
644 struct opcode *op = inter->op;
645 u32 rt;
646
647 if (op->opcode) { /* Handle NOPs */
98fa08a5
PC
648 rt = inter->state->regs.gpr[op->r.rt];
649 inter->state->regs.gpr[op->r.rd] = rt << op->r.imm;
d16005f8
PC
650 }
651
652 return jump_next(inter);
653}
654
655static u32 int_special_SRL(struct interpreter *inter)
656{
657 struct opcode *op = inter->op;
98fa08a5 658 u32 rt = inter->state->regs.gpr[op->r.rt];
d16005f8 659
98fa08a5 660 inter->state->regs.gpr[op->r.rd] = rt >> op->r.imm;
d16005f8
PC
661
662 return jump_next(inter);
663}
664
665static u32 int_special_SRA(struct interpreter *inter)
666{
667 struct opcode *op = inter->op;
98fa08a5 668 s32 rt = inter->state->regs.gpr[op->r.rt];
d16005f8 669
98fa08a5 670 inter->state->regs.gpr[op->r.rd] = rt >> op->r.imm;
d16005f8
PC
671
672 return jump_next(inter);
673}
674
675static u32 int_special_SLLV(struct interpreter *inter)
676{
677 struct opcode *op = inter->op;
98fa08a5
PC
678 u32 rs = inter->state->regs.gpr[op->r.rs];
679 u32 rt = inter->state->regs.gpr[op->r.rt];
d16005f8 680
98fa08a5 681 inter->state->regs.gpr[op->r.rd] = rt << (rs & 0x1f);
d16005f8
PC
682
683 return jump_next(inter);
684}
685
686static u32 int_special_SRLV(struct interpreter *inter)
687{
688 struct opcode *op = inter->op;
98fa08a5
PC
689 u32 rs = inter->state->regs.gpr[op->r.rs];
690 u32 rt = inter->state->regs.gpr[op->r.rt];
d16005f8 691
98fa08a5 692 inter->state->regs.gpr[op->r.rd] = rt >> (rs & 0x1f);
d16005f8
PC
693
694 return jump_next(inter);
695}
696
697static u32 int_special_SRAV(struct interpreter *inter)
698{
699 struct opcode *op = inter->op;
98fa08a5
PC
700 u32 rs = inter->state->regs.gpr[op->r.rs];
701 s32 rt = inter->state->regs.gpr[op->r.rt];
d16005f8 702
98fa08a5 703 inter->state->regs.gpr[op->r.rd] = rt >> (rs & 0x1f);
d16005f8
PC
704
705 return jump_next(inter);
706}
707
708static u32 int_syscall_break(struct interpreter *inter)
709{
710
711 if (inter->op->r.op == OP_SPECIAL_BREAK)
712 inter->state->exit_flags |= LIGHTREC_EXIT_BREAK;
713 else
714 inter->state->exit_flags |= LIGHTREC_EXIT_SYSCALL;
715
98fa08a5 716 return int_get_ds_pc(inter, 0);
d16005f8
PC
717}
718
719static u32 int_special_MFHI(struct interpreter *inter)
720{
98fa08a5 721 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
722 struct opcode_r *op = &inter->op->r;
723
724 if (likely(op->rd))
725 reg_cache[op->rd] = reg_cache[REG_HI];
726
727 return jump_next(inter);
728}
729
730static u32 int_special_MTHI(struct interpreter *inter)
731{
98fa08a5 732 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
733
734 reg_cache[REG_HI] = reg_cache[inter->op->r.rs];
735
736 return jump_next(inter);
737}
738
739static u32 int_special_MFLO(struct interpreter *inter)
740{
98fa08a5 741 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
742 struct opcode_r *op = &inter->op->r;
743
744 if (likely(op->rd))
745 reg_cache[op->rd] = reg_cache[REG_LO];
746
747 return jump_next(inter);
748}
749
750static u32 int_special_MTLO(struct interpreter *inter)
751{
98fa08a5 752 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
753
754 reg_cache[REG_LO] = reg_cache[inter->op->r.rs];
755
756 return jump_next(inter);
757}
758
759static u32 int_special_MULT(struct interpreter *inter)
760{
98fa08a5 761 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
762 s32 rs = reg_cache[inter->op->r.rs];
763 s32 rt = reg_cache[inter->op->r.rt];
98fa08a5
PC
764 u8 reg_lo = get_mult_div_lo(inter->op->c);
765 u8 reg_hi = get_mult_div_hi(inter->op->c);
d16005f8
PC
766 u64 res = (s64)rs * (s64)rt;
767
98fa08a5
PC
768 if (!(inter->op->flags & LIGHTREC_NO_HI))
769 reg_cache[reg_hi] = res >> 32;
770 if (!(inter->op->flags & LIGHTREC_NO_LO))
771 reg_cache[reg_lo] = res;
d16005f8
PC
772
773 return jump_next(inter);
774}
775
776static u32 int_special_MULTU(struct interpreter *inter)
777{
98fa08a5 778 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
779 u32 rs = reg_cache[inter->op->r.rs];
780 u32 rt = reg_cache[inter->op->r.rt];
98fa08a5
PC
781 u8 reg_lo = get_mult_div_lo(inter->op->c);
782 u8 reg_hi = get_mult_div_hi(inter->op->c);
d16005f8
PC
783 u64 res = (u64)rs * (u64)rt;
784
98fa08a5
PC
785 if (!(inter->op->flags & LIGHTREC_NO_HI))
786 reg_cache[reg_hi] = res >> 32;
787 if (!(inter->op->flags & LIGHTREC_NO_LO))
788 reg_cache[reg_lo] = res;
d16005f8
PC
789
790 return jump_next(inter);
791}
792
793static u32 int_special_DIV(struct interpreter *inter)
794{
98fa08a5 795 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
796 s32 rs = reg_cache[inter->op->r.rs];
797 s32 rt = reg_cache[inter->op->r.rt];
98fa08a5
PC
798 u8 reg_lo = get_mult_div_lo(inter->op->c);
799 u8 reg_hi = get_mult_div_hi(inter->op->c);
d16005f8
PC
800 u32 lo, hi;
801
802 if (rt == 0) {
803 hi = rs;
804 lo = (rs < 0) * 2 - 1;
805 } else {
806 lo = rs / rt;
807 hi = rs % rt;
808 }
809
98fa08a5
PC
810 if (!(inter->op->flags & LIGHTREC_NO_HI))
811 reg_cache[reg_hi] = hi;
812 if (!(inter->op->flags & LIGHTREC_NO_LO))
813 reg_cache[reg_lo] = lo;
d16005f8
PC
814
815 return jump_next(inter);
816}
817
818static u32 int_special_DIVU(struct interpreter *inter)
819{
98fa08a5 820 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
821 u32 rs = reg_cache[inter->op->r.rs];
822 u32 rt = reg_cache[inter->op->r.rt];
98fa08a5
PC
823 u8 reg_lo = get_mult_div_lo(inter->op->c);
824 u8 reg_hi = get_mult_div_hi(inter->op->c);
d16005f8
PC
825 u32 lo, hi;
826
827 if (rt == 0) {
828 hi = rs;
829 lo = (u32)-1;
830 } else {
831 lo = rs / rt;
832 hi = rs % rt;
833 }
834
98fa08a5
PC
835 if (!(inter->op->flags & LIGHTREC_NO_HI))
836 reg_cache[reg_hi] = hi;
837 if (!(inter->op->flags & LIGHTREC_NO_LO))
838 reg_cache[reg_lo] = lo;
d16005f8
PC
839
840 return jump_next(inter);
841}
842
843static u32 int_special_ADD(struct interpreter *inter)
844{
98fa08a5 845 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
846 struct opcode_r *op = &inter->op->r;
847 s32 rs = reg_cache[op->rs];
848 s32 rt = reg_cache[op->rt];
849
850 if (likely(op->rd))
851 reg_cache[op->rd] = rs + rt;
852
853 return jump_next(inter);
854}
855
856static u32 int_special_SUB(struct interpreter *inter)
857{
98fa08a5 858 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
859 struct opcode_r *op = &inter->op->r;
860 u32 rs = reg_cache[op->rs];
861 u32 rt = reg_cache[op->rt];
862
863 if (likely(op->rd))
864 reg_cache[op->rd] = rs - rt;
865
866 return jump_next(inter);
867}
868
869static u32 int_special_AND(struct interpreter *inter)
870{
98fa08a5 871 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
872 struct opcode_r *op = &inter->op->r;
873 u32 rs = reg_cache[op->rs];
874 u32 rt = reg_cache[op->rt];
875
876 if (likely(op->rd))
877 reg_cache[op->rd] = rs & rt;
878
879 return jump_next(inter);
880}
881
882static u32 int_special_OR(struct interpreter *inter)
883{
98fa08a5 884 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
885 struct opcode_r *op = &inter->op->r;
886 u32 rs = reg_cache[op->rs];
887 u32 rt = reg_cache[op->rt];
888
889 if (likely(op->rd))
890 reg_cache[op->rd] = rs | rt;
891
892 return jump_next(inter);
893}
894
895static u32 int_special_XOR(struct interpreter *inter)
896{
98fa08a5 897 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
898 struct opcode_r *op = &inter->op->r;
899 u32 rs = reg_cache[op->rs];
900 u32 rt = reg_cache[op->rt];
901
902 if (likely(op->rd))
903 reg_cache[op->rd] = rs ^ rt;
904
905 return jump_next(inter);
906}
907
908static u32 int_special_NOR(struct interpreter *inter)
909{
98fa08a5 910 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
911 struct opcode_r *op = &inter->op->r;
912 u32 rs = reg_cache[op->rs];
913 u32 rt = reg_cache[op->rt];
914
915 if (likely(op->rd))
916 reg_cache[op->rd] = ~(rs | rt);
917
918 return jump_next(inter);
919}
920
921static u32 int_special_SLT(struct interpreter *inter)
922{
98fa08a5 923 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
924 struct opcode_r *op = &inter->op->r;
925 s32 rs = reg_cache[op->rs];
926 s32 rt = reg_cache[op->rt];
927
928 if (likely(op->rd))
929 reg_cache[op->rd] = rs < rt;
930
931 return jump_next(inter);
932}
933
934static u32 int_special_SLTU(struct interpreter *inter)
935{
98fa08a5 936 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
937 struct opcode_r *op = &inter->op->r;
938 u32 rs = reg_cache[op->rs];
939 u32 rt = reg_cache[op->rt];
940
941 if (likely(op->rd))
942 reg_cache[op->rd] = rs < rt;
943
944 return jump_next(inter);
945}
946
d16005f8
PC
947static u32 int_META_MOV(struct interpreter *inter)
948{
98fa08a5 949 u32 *reg_cache = inter->state->regs.gpr;
d16005f8
PC
950 struct opcode_r *op = &inter->op->r;
951
952 if (likely(op->rd))
953 reg_cache[op->rd] = reg_cache[op->rs];
954
955 return jump_next(inter);
956}
957
98fa08a5 958static u32 int_META_EXTC(struct interpreter *inter)
d16005f8 959{
98fa08a5
PC
960 u32 *reg_cache = inter->state->regs.gpr;
961 struct opcode_i *op = &inter->op->i;
d16005f8 962
98fa08a5
PC
963 if (likely(op->rt))
964 reg_cache[op->rt] = (u32)(s32)(s8)reg_cache[op->rs];
965
966 return jump_next(inter);
967}
968
969static u32 int_META_EXTS(struct interpreter *inter)
970{
971 u32 *reg_cache = inter->state->regs.gpr;
972 struct opcode_i *op = &inter->op->i;
973
974 if (likely(op->rt))
975 reg_cache[op->rt] = (u32)(s32)(s16)reg_cache[op->rs];
976
977 return jump_next(inter);
d16005f8
PC
978}
979
980static const lightrec_int_func_t int_standard[64] = {
98fa08a5 981 SET_DEFAULT_ELM(int_standard, int_unimplemented),
d16005f8
PC
982 [OP_SPECIAL] = int_SPECIAL,
983 [OP_REGIMM] = int_REGIMM,
984 [OP_J] = int_J,
985 [OP_JAL] = int_JAL,
986 [OP_BEQ] = int_BEQ,
987 [OP_BNE] = int_BNE,
988 [OP_BLEZ] = int_BLEZ,
989 [OP_BGTZ] = int_BGTZ,
990 [OP_ADDI] = int_ADDI,
991 [OP_ADDIU] = int_ADDI,
992 [OP_SLTI] = int_SLTI,
993 [OP_SLTIU] = int_SLTIU,
994 [OP_ANDI] = int_ANDI,
995 [OP_ORI] = int_ORI,
996 [OP_XORI] = int_XORI,
997 [OP_LUI] = int_LUI,
998 [OP_CP0] = int_CP0,
999 [OP_CP2] = int_CP2,
1000 [OP_LB] = int_load,
1001 [OP_LH] = int_load,
1002 [OP_LWL] = int_load,
1003 [OP_LW] = int_load,
1004 [OP_LBU] = int_load,
1005 [OP_LHU] = int_load,
1006 [OP_LWR] = int_load,
1007 [OP_SB] = int_store,
1008 [OP_SH] = int_store,
1009 [OP_SWL] = int_store,
1010 [OP_SW] = int_store,
1011 [OP_SWR] = int_store,
1012 [OP_LWC2] = int_LWC2,
1013 [OP_SWC2] = int_store,
1014
d16005f8 1015 [OP_META_MOV] = int_META_MOV,
98fa08a5
PC
1016 [OP_META_EXTC] = int_META_EXTC,
1017 [OP_META_EXTS] = int_META_EXTS,
d16005f8
PC
1018};
1019
1020static const lightrec_int_func_t int_special[64] = {
98fa08a5 1021 SET_DEFAULT_ELM(int_special, int_unimplemented),
d16005f8
PC
1022 [OP_SPECIAL_SLL] = int_special_SLL,
1023 [OP_SPECIAL_SRL] = int_special_SRL,
1024 [OP_SPECIAL_SRA] = int_special_SRA,
1025 [OP_SPECIAL_SLLV] = int_special_SLLV,
1026 [OP_SPECIAL_SRLV] = int_special_SRLV,
1027 [OP_SPECIAL_SRAV] = int_special_SRAV,
1028 [OP_SPECIAL_JR] = int_special_JR,
1029 [OP_SPECIAL_JALR] = int_special_JALR,
1030 [OP_SPECIAL_SYSCALL] = int_syscall_break,
1031 [OP_SPECIAL_BREAK] = int_syscall_break,
1032 [OP_SPECIAL_MFHI] = int_special_MFHI,
1033 [OP_SPECIAL_MTHI] = int_special_MTHI,
1034 [OP_SPECIAL_MFLO] = int_special_MFLO,
1035 [OP_SPECIAL_MTLO] = int_special_MTLO,
1036 [OP_SPECIAL_MULT] = int_special_MULT,
1037 [OP_SPECIAL_MULTU] = int_special_MULTU,
1038 [OP_SPECIAL_DIV] = int_special_DIV,
1039 [OP_SPECIAL_DIVU] = int_special_DIVU,
1040 [OP_SPECIAL_ADD] = int_special_ADD,
1041 [OP_SPECIAL_ADDU] = int_special_ADD,
1042 [OP_SPECIAL_SUB] = int_special_SUB,
1043 [OP_SPECIAL_SUBU] = int_special_SUB,
1044 [OP_SPECIAL_AND] = int_special_AND,
1045 [OP_SPECIAL_OR] = int_special_OR,
1046 [OP_SPECIAL_XOR] = int_special_XOR,
1047 [OP_SPECIAL_NOR] = int_special_NOR,
1048 [OP_SPECIAL_SLT] = int_special_SLT,
1049 [OP_SPECIAL_SLTU] = int_special_SLTU,
1050};
1051
1052static const lightrec_int_func_t int_regimm[64] = {
98fa08a5 1053 SET_DEFAULT_ELM(int_regimm, int_unimplemented),
d16005f8
PC
1054 [OP_REGIMM_BLTZ] = int_regimm_BLTZ,
1055 [OP_REGIMM_BGEZ] = int_regimm_BGEZ,
1056 [OP_REGIMM_BLTZAL] = int_regimm_BLTZAL,
1057 [OP_REGIMM_BGEZAL] = int_regimm_BGEZAL,
1058};
1059
1060static const lightrec_int_func_t int_cp0[64] = {
98fa08a5 1061 SET_DEFAULT_ELM(int_cp0, int_CP),
d16005f8
PC
1062 [OP_CP0_MFC0] = int_cfc,
1063 [OP_CP0_CFC0] = int_cfc,
1064 [OP_CP0_MTC0] = int_ctc,
1065 [OP_CP0_CTC0] = int_ctc,
1066 [OP_CP0_RFE] = int_cp0_RFE,
1067};
1068
1069static const lightrec_int_func_t int_cp2_basic[64] = {
98fa08a5 1070 SET_DEFAULT_ELM(int_cp2_basic, int_CP),
d16005f8
PC
1071 [OP_CP2_BASIC_MFC2] = int_cfc,
1072 [OP_CP2_BASIC_CFC2] = int_cfc,
1073 [OP_CP2_BASIC_MTC2] = int_ctc,
1074 [OP_CP2_BASIC_CTC2] = int_ctc,
1075};
1076
1077static u32 int_SPECIAL(struct interpreter *inter)
1078{
1079 lightrec_int_func_t f = int_special[inter->op->r.op];
98fa08a5
PC
1080
1081 if (!HAS_DEFAULT_ELM && unlikely(!f))
d16005f8 1082 return int_unimplemented(inter);
98fa08a5
PC
1083
1084 return execute(f, inter);
d16005f8
PC
1085}
1086
1087static u32 int_REGIMM(struct interpreter *inter)
1088{
1089 lightrec_int_func_t f = int_regimm[inter->op->r.rt];
98fa08a5
PC
1090
1091 if (!HAS_DEFAULT_ELM && unlikely(!f))
d16005f8 1092 return int_unimplemented(inter);
98fa08a5
PC
1093
1094 return execute(f, inter);
d16005f8
PC
1095}
1096
1097static u32 int_CP0(struct interpreter *inter)
1098{
1099 lightrec_int_func_t f = int_cp0[inter->op->r.rs];
98fa08a5
PC
1100
1101 if (!HAS_DEFAULT_ELM && unlikely(!f))
d16005f8 1102 return int_CP(inter);
98fa08a5
PC
1103
1104 return execute(f, inter);
d16005f8
PC
1105}
1106
1107static u32 int_CP2(struct interpreter *inter)
1108{
1109 if (inter->op->r.op == OP_CP2_BASIC) {
1110 lightrec_int_func_t f = int_cp2_basic[inter->op->r.rs];
98fa08a5 1111 if (HAS_DEFAULT_ELM || likely(f))
d16005f8
PC
1112 return execute(f, inter);
1113 }
1114
1115 return int_CP(inter);
1116}
1117
98fa08a5
PC
1118static u32 lightrec_emulate_block_list(struct lightrec_state *state,
1119 struct block *block, u32 offset)
d16005f8
PC
1120{
1121 struct interpreter inter;
1122 u32 pc;
1123
1124 inter.block = block;
98fa08a5
PC
1125 inter.state = state;
1126 inter.offset = offset;
1127 inter.op = &block->opcode_list[offset];
d16005f8
PC
1128 inter.cycles = 0;
1129 inter.delay_slot = false;
1130
1131 pc = lightrec_int_op(&inter);
1132
1133 /* Add the cycles of the last branch */
1134 inter.cycles += lightrec_cycles_of_opcode(inter.op->c);
1135
98fa08a5 1136 state->current_cycle += inter.cycles;
d16005f8
PC
1137
1138 return pc;
1139}
1140
98fa08a5 1141u32 lightrec_emulate_block(struct lightrec_state *state, struct block *block, u32 pc)
d16005f8
PC
1142{
1143 u32 offset = (kunseg(pc) - kunseg(block->pc)) >> 2;
d16005f8 1144
98fa08a5
PC
1145 if (offset < block->nb_ops)
1146 return lightrec_emulate_block_list(state, block, offset);
d16005f8
PC
1147
1148 pr_err("PC 0x%x is outside block at PC 0x%x\n", pc, block->pc);
1149
1150 return 0;
1151}