Merge pull request #389 from notaz/master
[pcsx_rearmed.git] / deps / lightrec / interpreter.c
CommitLineData
d16005f8
PC
1/*
2 * Copyright (C) 2019-2020 Paul Cercueil <paul@crapouillou.net>
3 *
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
8 *
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
13 */
14
15#include "disassembler.h"
16#include "interpreter.h"
17#include "lightrec-private.h"
18#include "optimizer.h"
19#include "regcache.h"
20
21#include <stdbool.h>
22
23struct interpreter;
24
25static u32 int_CP0(struct interpreter *inter);
26static u32 int_CP2(struct interpreter *inter);
27static u32 int_SPECIAL(struct interpreter *inter);
28static u32 int_REGIMM(struct interpreter *inter);
29static u32 int_branch(struct interpreter *inter, u32 pc,
30 union code code, bool branch);
31
32typedef u32 (*lightrec_int_func_t)(struct interpreter *inter);
33
34static const lightrec_int_func_t int_standard[64];
35
36struct interpreter {
37 struct lightrec_state *state;
38 struct block *block;
39 struct opcode *op;
40 u32 cycles;
41 bool delay_slot;
42};
43
44static inline u32 execute(lightrec_int_func_t func, struct interpreter *inter)
45{
46 return (*func)(inter);
47}
48
49static inline u32 jump_skip(struct interpreter *inter)
50{
51 inter->op = inter->op->next;
52
53 return execute(int_standard[inter->op->i.op], inter);
54}
55
56static inline u32 jump_next(struct interpreter *inter)
57{
58 inter->cycles += lightrec_cycles_of_opcode(inter->op->c);
59
60 if (unlikely(inter->delay_slot))
61 return 0;
62
63 return jump_skip(inter);
64}
65
66static inline u32 jump_after_branch(struct interpreter *inter)
67{
68 inter->cycles += lightrec_cycles_of_opcode(inter->op->c);
69
70 if (unlikely(inter->delay_slot))
71 return 0;
72
73 inter->op = inter->op->next;
74
75 return jump_skip(inter);
76}
77
78static void update_cycles_before_branch(struct interpreter *inter)
79{
80 u32 cycles;
81
82 if (!inter->delay_slot) {
83 cycles = lightrec_cycles_of_opcode(inter->op->c);
84
85 if (has_delay_slot(inter->op->c) &&
86 !(inter->op->flags & LIGHTREC_NO_DS))
87 cycles += lightrec_cycles_of_opcode(inter->op->next->c);
88
89 inter->cycles += cycles;
90 inter->state->current_cycle += inter->cycles;
91 inter->cycles = -cycles;
92 }
93}
94
95static bool is_branch_taken(const u32 *reg_cache, union code op)
96{
97 switch (op.i.op) {
98 case OP_SPECIAL:
99 return op.r.op == OP_SPECIAL_JR || op.r.op == OP_SPECIAL_JALR;
100 case OP_J:
101 case OP_JAL:
102 return true;
103 case OP_BEQ:
104 case OP_META_BEQZ:
105 return reg_cache[op.r.rs] == reg_cache[op.r.rt];
106 case OP_BNE:
107 case OP_META_BNEZ:
108 return reg_cache[op.r.rs] != reg_cache[op.r.rt];
109 case OP_REGIMM:
110 switch (op.r.rt) {
111 case OP_REGIMM_BLTZ:
112 case OP_REGIMM_BLTZAL:
113 return (s32)reg_cache[op.r.rs] < 0;
114 case OP_REGIMM_BGEZ:
115 case OP_REGIMM_BGEZAL:
116 return (s32)reg_cache[op.r.rs] >= 0;
117 }
118 default:
119 break;
120 }
121
122 return false;
123}
124
125static u32 int_delay_slot(struct interpreter *inter, u32 pc, bool branch)
126{
127 struct lightrec_state *state = inter->state;
128 u32 *reg_cache = state->native_reg_cache;
129 struct opcode new_op, *op = inter->op->next;
130 union code op_next;
131 struct interpreter inter2 = {
132 .state = state,
133 .cycles = inter->cycles,
134 .delay_slot = true,
135 .block = NULL,
136 };
137 bool run_first_op = false, dummy_ld = false, save_rs = false,
138 load_in_ds, branch_in_ds = false, branch_at_addr = false,
139 branch_taken;
140 u32 old_rs, new_rs, new_rt;
141 u32 next_pc, ds_next_pc;
142 u32 cause, epc;
143
144 if (op->i.op == OP_CP0 && op->r.rs == OP_CP0_RFE) {
145 /* When an IRQ happens, the PSX exception handlers (when done)
146 * will jump back to the instruction that was executed right
147 * before the IRQ, unless it was a GTE opcode; in that case, it
148 * jumps to the instruction right after.
149 * Since we will never handle the IRQ right after a GTE opcode,
150 * but on branch boundaries, we need to adjust the return
151 * address so that the GTE opcode is effectively executed.
152 */
153 cause = (*state->ops.cop0_ops.cfc)(state, 13);
154 epc = (*state->ops.cop0_ops.cfc)(state, 14);
155
156 if (!(cause & 0x7c) && epc == pc - 4)
157 pc -= 4;
158 }
159
160 if (inter->delay_slot) {
161 /* The branch opcode was in a delay slot of another branch
162 * opcode. Just return the target address of the second
163 * branch. */
164 return pc;
165 }
166
167 /* An opcode located in the delay slot performing a delayed read
168 * requires special handling; we will always resort to using the
169 * interpreter in that case.
170 * Same goes for when we have a branch in a delay slot of another
171 * branch. */
172 load_in_ds = load_in_delay_slot(op->c);
173 branch_in_ds = has_delay_slot(op->c);
174
175 if (branch) {
176 if (load_in_ds || branch_in_ds)
177 op_next = lightrec_read_opcode(state, pc);
178
179 if (load_in_ds) {
180 /* Verify that the next block actually reads the
181 * destination register of the delay slot opcode. */
182 run_first_op = opcode_reads_register(op_next, op->r.rt);
183 }
184
185 if (branch_in_ds) {
186 run_first_op = true;
187 next_pc = pc + 4;
188 }
189
190 if (load_in_ds && run_first_op) {
191 next_pc = pc + 4;
192
193 /* If the first opcode of the next block writes the
194 * regiser used as the address for the load, we need to
195 * reset to the old value after it has been executed,
196 * then restore the new value after the delay slot
197 * opcode has been executed. */
198 save_rs = opcode_reads_register(op->c, op->r.rs) &&
199 opcode_writes_register(op_next, op->r.rs);
200 if (save_rs)
201 old_rs = reg_cache[op->r.rs];
202
203 /* If both the first opcode of the next block and the
204 * delay slot opcode write to the same register, the
205 * value written by the delay slot opcode is
206 * discarded. */
207 dummy_ld = opcode_writes_register(op_next, op->r.rt);
208 }
209
210 if (!run_first_op) {
211 next_pc = pc;
212 } else if (has_delay_slot(op_next)) {
213 /* The first opcode of the next block is a branch, so we
214 * cannot execute it here, because of the load delay.
215 * Just check whether or not the branch would be taken,
216 * and save that info into the interpreter struct. */
217 branch_at_addr = true;
218 branch_taken = is_branch_taken(reg_cache, op_next);
219 pr_debug("Target of impossible branch is a branch, "
220 "%staken.\n", branch_taken ? "" : "not ");
221 } else {
222 new_op.c = op_next;
223 new_op.flags = 0;
224 new_op.offset = 0;
225 new_op.next = NULL;
226 inter2.op = &new_op;
227
228 /* Execute the first opcode of the next block */
229 (*int_standard[inter2.op->i.op])(&inter2);
230
231 if (save_rs) {
232 new_rs = reg_cache[op->r.rs];
233 reg_cache[op->r.rs] = old_rs;
234 }
235
236 inter->cycles += lightrec_cycles_of_opcode(op_next);
237 }
238 } else {
239 next_pc = inter->block->pc
240 + (inter->op->offset + 2) * sizeof(u32);
241 }
242
243 inter2.block = inter->block;
244 inter2.op = op;
245 inter2.cycles = inter->cycles;
246
247 if (dummy_ld)
248 new_rt = reg_cache[op->r.rt];
249
250 /* Execute delay slot opcode */
251 if (branch_at_addr)
252 ds_next_pc = int_branch(&inter2, pc, op_next, branch_taken);
253 else
254 ds_next_pc = (*int_standard[inter2.op->i.op])(&inter2);
255
256 if (branch_at_addr && !branch_taken) {
257 /* If the branch at the target of the branch opcode is not
258 * taken, we jump to its delay slot */
259 next_pc = pc + sizeof(u32);
260 } else if (!branch && branch_in_ds) {
261 next_pc = ds_next_pc;
262 }
263
264 if (save_rs)
265 reg_cache[op->r.rs] = new_rs;
266 if (dummy_ld)
267 reg_cache[op->r.rt] = new_rt;
268
269 inter->cycles += lightrec_cycles_of_opcode(op->c);
270
271 if (branch_at_addr && branch_taken) {
272 /* If the branch at the target of the branch opcode is taken,
273 * we execute its delay slot here, and jump to its target
274 * address. */
275 op_next = lightrec_read_opcode(state, pc + 4);
276
277 new_op.c = op_next;
278 new_op.flags = 0;
279 new_op.offset = sizeof(u32);
280 new_op.next = NULL;
281 inter2.op = &new_op;
282 inter2.block = NULL;
283
284 inter->cycles += lightrec_cycles_of_opcode(op_next);
285
286 pr_debug("Running delay slot of branch at target of impossible "
287 "branch\n");
288 (*int_standard[inter2.op->i.op])(&inter2);
289 }
290
291 return next_pc;
292}
293
294static u32 int_unimplemented(struct interpreter *inter)
295{
296 pr_warn("Unimplemented opcode 0x%08x\n", inter->op->opcode);
297
298 return jump_next(inter);
299}
300
301static u32 int_jump(struct interpreter *inter, bool link)
302{
303 struct lightrec_state *state = inter->state;
304 u32 old_pc = inter->block->pc + inter->op->offset * sizeof(u32);
305 u32 pc = (old_pc & 0xf0000000) | (inter->op->j.imm << 2);
306
307 if (link)
308 state->native_reg_cache[31] = old_pc + 8;
309
310 if (inter->op->flags & LIGHTREC_NO_DS)
311 return pc;
312
313 return int_delay_slot(inter, pc, true);
314}
315
316static u32 int_J(struct interpreter *inter)
317{
318 return int_jump(inter, false);
319}
320
321static u32 int_JAL(struct interpreter *inter)
322{
323 return int_jump(inter, true);
324}
325
326static u32 int_jumpr(struct interpreter *inter, u8 link_reg)
327{
328 struct lightrec_state *state = inter->state;
329 u32 old_pc, next_pc = state->native_reg_cache[inter->op->r.rs];
330
331 if (link_reg) {
332 old_pc = inter->block->pc + inter->op->offset * sizeof(u32);
333 state->native_reg_cache[link_reg] = old_pc + 8;
334 }
335
336 if (inter->op->flags & LIGHTREC_NO_DS)
337 return next_pc;
338
339 return int_delay_slot(inter, next_pc, true);
340}
341
342static u32 int_special_JR(struct interpreter *inter)
343{
344 return int_jumpr(inter, 0);
345}
346
347static u32 int_special_JALR(struct interpreter *inter)
348{
349 return int_jumpr(inter, inter->op->r.rd);
350}
351
352static u32 int_do_branch(struct interpreter *inter, u32 old_pc, u32 next_pc)
353{
354 if (!inter->delay_slot &&
355 (inter->op->flags & LIGHTREC_LOCAL_BRANCH) &&
356 (s16)inter->op->c.i.imm >= 0) {
357 next_pc = old_pc + ((1 + (s16)inter->op->c.i.imm) << 2);
358 next_pc = lightrec_emulate_block(inter->block, next_pc);
359 }
360
361 return next_pc;
362}
363
364static u32 int_branch(struct interpreter *inter, u32 pc,
365 union code code, bool branch)
366{
367 u32 next_pc = pc + 4 + ((s16)code.i.imm << 2);
368
369 update_cycles_before_branch(inter);
370
371 if (inter->op->flags & LIGHTREC_NO_DS) {
372 if (branch)
373 return int_do_branch(inter, pc, next_pc);
374 else
375 return jump_next(inter);
376 }
377
378 if (!inter->delay_slot)
379 next_pc = int_delay_slot(inter, next_pc, branch);
380
381 if (branch)
382 return int_do_branch(inter, pc, next_pc);
383
384 if (inter->op->flags & LIGHTREC_EMULATE_BRANCH)
385 return pc + 8;
386 else
387 return jump_after_branch(inter);
388}
389
390static u32 int_beq(struct interpreter *inter, bool bne)
391{
392 u32 rs, rt, old_pc = inter->block->pc + inter->op->offset * sizeof(u32);
393
394 rs = inter->state->native_reg_cache[inter->op->i.rs];
395 rt = inter->state->native_reg_cache[inter->op->i.rt];
396
397 return int_branch(inter, old_pc, inter->op->c, (rs == rt) ^ bne);
398}
399
400static u32 int_BEQ(struct interpreter *inter)
401{
402 return int_beq(inter, false);
403}
404
405static u32 int_BNE(struct interpreter *inter)
406{
407 return int_beq(inter, true);
408}
409
410static u32 int_bgez(struct interpreter *inter, bool link, bool lt, bool regimm)
411{
412 u32 old_pc = inter->block->pc + inter->op->offset * sizeof(u32);
413 s32 rs;
414
415 if (link)
416 inter->state->native_reg_cache[31] = old_pc + 8;
417
418 rs = (s32)inter->state->native_reg_cache[inter->op->i.rs];
419
420 return int_branch(inter, old_pc, inter->op->c,
421 ((regimm && !rs) || rs > 0) ^ lt);
422}
423
424static u32 int_regimm_BLTZ(struct interpreter *inter)
425{
426 return int_bgez(inter, false, true, true);
427}
428
429static u32 int_regimm_BGEZ(struct interpreter *inter)
430{
431 return int_bgez(inter, false, false, true);
432}
433
434static u32 int_regimm_BLTZAL(struct interpreter *inter)
435{
436 return int_bgez(inter, true, true, true);
437}
438
439static u32 int_regimm_BGEZAL(struct interpreter *inter)
440{
441 return int_bgez(inter, true, false, true);
442}
443
444static u32 int_BLEZ(struct interpreter *inter)
445{
446 return int_bgez(inter, false, true, false);
447}
448
449static u32 int_BGTZ(struct interpreter *inter)
450{
451 return int_bgez(inter, false, false, false);
452}
453
454static u32 int_cfc(struct interpreter *inter)
455{
456 struct lightrec_state *state = inter->state;
457 const struct opcode *op = inter->op;
458 u32 val;
459
460 val = lightrec_mfc(state, op->c);
461
462 if (likely(op->r.rt))
463 state->native_reg_cache[op->r.rt] = val;
464
465 return jump_next(inter);
466}
467
468static u32 int_ctc(struct interpreter *inter)
469{
470 struct lightrec_state *state = inter->state;
471 const struct opcode *op = inter->op;
472
473 lightrec_mtc(state, op->c, state->native_reg_cache[op->r.rt]);
474
475 /* If we have a MTC0 or CTC0 to CP0 register 12 (Status) or 13 (Cause),
476 * return early so that the emulator will be able to check software
477 * interrupt status. */
478 if (op->i.op == OP_CP0 && (op->r.rd == 12 || op->r.rd == 13))
479 return inter->block->pc + (op->offset + 1) * sizeof(u32);
480 else
481 return jump_next(inter);
482}
483
484static u32 int_cp0_RFE(struct interpreter *inter)
485{
486 struct lightrec_state *state = inter->state;
487 u32 status;
488
489 /* Read CP0 Status register (r12) */
490 status = state->ops.cop0_ops.mfc(state, 12);
491
492 /* Switch the bits */
493 status = ((status & 0x3c) >> 2) | (status & ~0xf);
494
495 /* Write it back */
496 state->ops.cop0_ops.ctc(state, 12, status);
497
498 return jump_next(inter);
499}
500
501static u32 int_CP(struct interpreter *inter)
502{
503 struct lightrec_state *state = inter->state;
504 const struct lightrec_cop_ops *ops;
505 const struct opcode *op = inter->op;
506
507 if ((op->j.imm >> 25) & 1)
508 ops = &state->ops.cop2_ops;
509 else
510 ops = &state->ops.cop0_ops;
511
512 (*ops->op)(state, (op->j.imm) & ~(1 << 25));
513
514 return jump_next(inter);
515}
516
517static u32 int_ADDI(struct interpreter *inter)
518{
519 u32 *reg_cache = inter->state->native_reg_cache;
520 struct opcode_i *op = &inter->op->i;
521
522 if (likely(op->rt))
523 reg_cache[op->rt] = reg_cache[op->rs] + (s32)(s16)op->imm;
524
525 return jump_next(inter);
526}
527
528static u32 int_SLTI(struct interpreter *inter)
529{
530 u32 *reg_cache = inter->state->native_reg_cache;
531 struct opcode_i *op = &inter->op->i;
532
533 if (likely(op->rt))
534 reg_cache[op->rt] = (s32)reg_cache[op->rs] < (s32)(s16)op->imm;
535
536 return jump_next(inter);
537}
538
539static u32 int_SLTIU(struct interpreter *inter)
540{
541 u32 *reg_cache = inter->state->native_reg_cache;
542 struct opcode_i *op = &inter->op->i;
543
544 if (likely(op->rt))
545 reg_cache[op->rt] = reg_cache[op->rs] < (u32)(s32)(s16)op->imm;
546
547 return jump_next(inter);
548}
549
550static u32 int_ANDI(struct interpreter *inter)
551{
552 u32 *reg_cache = inter->state->native_reg_cache;
553 struct opcode_i *op = &inter->op->i;
554
555 if (likely(op->rt))
556 reg_cache[op->rt] = reg_cache[op->rs] & op->imm;
557
558 return jump_next(inter);
559}
560
561static u32 int_ORI(struct interpreter *inter)
562{
563 u32 *reg_cache = inter->state->native_reg_cache;
564 struct opcode_i *op = &inter->op->i;
565
566 if (likely(op->rt))
567 reg_cache[op->rt] = reg_cache[op->rs] | op->imm;
568
569 return jump_next(inter);
570}
571
572static u32 int_XORI(struct interpreter *inter)
573{
574 u32 *reg_cache = inter->state->native_reg_cache;
575 struct opcode_i *op = &inter->op->i;
576
577 if (likely(op->rt))
578 reg_cache[op->rt] = reg_cache[op->rs] ^ op->imm;
579
580 return jump_next(inter);
581}
582
583static u32 int_LUI(struct interpreter *inter)
584{
585 struct opcode_i *op = &inter->op->i;
586
587 inter->state->native_reg_cache[op->rt] = op->imm << 16;
588
589 return jump_next(inter);
590}
591
592static u32 int_io(struct interpreter *inter, bool is_load)
593{
594 struct opcode_i *op = &inter->op->i;
595 u32 *reg_cache = inter->state->native_reg_cache;
596 u32 val;
597
598 val = lightrec_rw(inter->state, inter->op->c,
599 reg_cache[op->rs], reg_cache[op->rt],
600 &inter->op->flags);
601
602 if (is_load && op->rt)
603 reg_cache[op->rt] = val;
604
605 return jump_next(inter);
606}
607
608static u32 int_load(struct interpreter *inter)
609{
610 return int_io(inter, true);
611}
612
613static u32 int_store(struct interpreter *inter)
614{
615 u32 next_pc;
616
617 if (likely(!(inter->op->flags & LIGHTREC_SMC)))
618 return int_io(inter, false);
619
620 lightrec_rw(inter->state, inter->op->c,
621 inter->state->native_reg_cache[inter->op->i.rs],
622 inter->state->native_reg_cache[inter->op->i.rt],
623 &inter->op->flags);
624
625 next_pc = inter->block->pc + (inter->op->offset + 1) * 4;
626
627 /* Invalidate next PC, to force the rest of the block to be rebuilt */
628 lightrec_invalidate(inter->state, next_pc, 4);
629
630 return next_pc;
631}
632
633static u32 int_LWC2(struct interpreter *inter)
634{
635 return int_io(inter, false);
636}
637
638static u32 int_special_SLL(struct interpreter *inter)
639{
640 struct opcode *op = inter->op;
641 u32 rt;
642
643 if (op->opcode) { /* Handle NOPs */
644 rt = inter->state->native_reg_cache[op->r.rt];
645 inter->state->native_reg_cache[op->r.rd] = rt << op->r.imm;
646 }
647
648 return jump_next(inter);
649}
650
651static u32 int_special_SRL(struct interpreter *inter)
652{
653 struct opcode *op = inter->op;
654 u32 rt = inter->state->native_reg_cache[op->r.rt];
655
656 inter->state->native_reg_cache[op->r.rd] = rt >> op->r.imm;
657
658 return jump_next(inter);
659}
660
661static u32 int_special_SRA(struct interpreter *inter)
662{
663 struct opcode *op = inter->op;
664 s32 rt = inter->state->native_reg_cache[op->r.rt];
665
666 inter->state->native_reg_cache[op->r.rd] = rt >> op->r.imm;
667
668 return jump_next(inter);
669}
670
671static u32 int_special_SLLV(struct interpreter *inter)
672{
673 struct opcode *op = inter->op;
674 u32 rs = inter->state->native_reg_cache[op->r.rs];
675 u32 rt = inter->state->native_reg_cache[op->r.rt];
676
677 inter->state->native_reg_cache[op->r.rd] = rt << (rs & 0x1f);
678
679 return jump_next(inter);
680}
681
682static u32 int_special_SRLV(struct interpreter *inter)
683{
684 struct opcode *op = inter->op;
685 u32 rs = inter->state->native_reg_cache[op->r.rs];
686 u32 rt = inter->state->native_reg_cache[op->r.rt];
687
688 inter->state->native_reg_cache[op->r.rd] = rt >> (rs & 0x1f);
689
690 return jump_next(inter);
691}
692
693static u32 int_special_SRAV(struct interpreter *inter)
694{
695 struct opcode *op = inter->op;
696 u32 rs = inter->state->native_reg_cache[op->r.rs];
697 s32 rt = inter->state->native_reg_cache[op->r.rt];
698
699 inter->state->native_reg_cache[op->r.rd] = rt >> (rs & 0x1f);
700
701 return jump_next(inter);
702}
703
704static u32 int_syscall_break(struct interpreter *inter)
705{
706
707 if (inter->op->r.op == OP_SPECIAL_BREAK)
708 inter->state->exit_flags |= LIGHTREC_EXIT_BREAK;
709 else
710 inter->state->exit_flags |= LIGHTREC_EXIT_SYSCALL;
711
712 return inter->block->pc + inter->op->offset * sizeof(u32);
713}
714
715static u32 int_special_MFHI(struct interpreter *inter)
716{
717 u32 *reg_cache = inter->state->native_reg_cache;
718 struct opcode_r *op = &inter->op->r;
719
720 if (likely(op->rd))
721 reg_cache[op->rd] = reg_cache[REG_HI];
722
723 return jump_next(inter);
724}
725
726static u32 int_special_MTHI(struct interpreter *inter)
727{
728 u32 *reg_cache = inter->state->native_reg_cache;
729
730 reg_cache[REG_HI] = reg_cache[inter->op->r.rs];
731
732 return jump_next(inter);
733}
734
735static u32 int_special_MFLO(struct interpreter *inter)
736{
737 u32 *reg_cache = inter->state->native_reg_cache;
738 struct opcode_r *op = &inter->op->r;
739
740 if (likely(op->rd))
741 reg_cache[op->rd] = reg_cache[REG_LO];
742
743 return jump_next(inter);
744}
745
746static u32 int_special_MTLO(struct interpreter *inter)
747{
748 u32 *reg_cache = inter->state->native_reg_cache;
749
750 reg_cache[REG_LO] = reg_cache[inter->op->r.rs];
751
752 return jump_next(inter);
753}
754
755static u32 int_special_MULT(struct interpreter *inter)
756{
757 u32 *reg_cache = inter->state->native_reg_cache;
758 s32 rs = reg_cache[inter->op->r.rs];
759 s32 rt = reg_cache[inter->op->r.rt];
760 u64 res = (s64)rs * (s64)rt;
761
762 if (!(inter->op->flags & LIGHTREC_MULT32))
763 reg_cache[REG_HI] = res >> 32;
764 reg_cache[REG_LO] = res;
765
766 return jump_next(inter);
767}
768
769static u32 int_special_MULTU(struct interpreter *inter)
770{
771 u32 *reg_cache = inter->state->native_reg_cache;
772 u32 rs = reg_cache[inter->op->r.rs];
773 u32 rt = reg_cache[inter->op->r.rt];
774 u64 res = (u64)rs * (u64)rt;
775
776 if (!(inter->op->flags & LIGHTREC_MULT32))
777 reg_cache[REG_HI] = res >> 32;
778 reg_cache[REG_LO] = res;
779
780 return jump_next(inter);
781}
782
783static u32 int_special_DIV(struct interpreter *inter)
784{
785 u32 *reg_cache = inter->state->native_reg_cache;
786 s32 rs = reg_cache[inter->op->r.rs];
787 s32 rt = reg_cache[inter->op->r.rt];
788 u32 lo, hi;
789
790 if (rt == 0) {
791 hi = rs;
792 lo = (rs < 0) * 2 - 1;
793 } else {
794 lo = rs / rt;
795 hi = rs % rt;
796 }
797
798 reg_cache[REG_HI] = hi;
799 reg_cache[REG_LO] = lo;
800
801 return jump_next(inter);
802}
803
804static u32 int_special_DIVU(struct interpreter *inter)
805{
806 u32 *reg_cache = inter->state->native_reg_cache;
807 u32 rs = reg_cache[inter->op->r.rs];
808 u32 rt = reg_cache[inter->op->r.rt];
809 u32 lo, hi;
810
811 if (rt == 0) {
812 hi = rs;
813 lo = (u32)-1;
814 } else {
815 lo = rs / rt;
816 hi = rs % rt;
817 }
818
819 reg_cache[REG_HI] = hi;
820 reg_cache[REG_LO] = lo;
821
822 return jump_next(inter);
823}
824
825static u32 int_special_ADD(struct interpreter *inter)
826{
827 u32 *reg_cache = inter->state->native_reg_cache;
828 struct opcode_r *op = &inter->op->r;
829 s32 rs = reg_cache[op->rs];
830 s32 rt = reg_cache[op->rt];
831
832 if (likely(op->rd))
833 reg_cache[op->rd] = rs + rt;
834
835 return jump_next(inter);
836}
837
838static u32 int_special_SUB(struct interpreter *inter)
839{
840 u32 *reg_cache = inter->state->native_reg_cache;
841 struct opcode_r *op = &inter->op->r;
842 u32 rs = reg_cache[op->rs];
843 u32 rt = reg_cache[op->rt];
844
845 if (likely(op->rd))
846 reg_cache[op->rd] = rs - rt;
847
848 return jump_next(inter);
849}
850
851static u32 int_special_AND(struct interpreter *inter)
852{
853 u32 *reg_cache = inter->state->native_reg_cache;
854 struct opcode_r *op = &inter->op->r;
855 u32 rs = reg_cache[op->rs];
856 u32 rt = reg_cache[op->rt];
857
858 if (likely(op->rd))
859 reg_cache[op->rd] = rs & rt;
860
861 return jump_next(inter);
862}
863
864static u32 int_special_OR(struct interpreter *inter)
865{
866 u32 *reg_cache = inter->state->native_reg_cache;
867 struct opcode_r *op = &inter->op->r;
868 u32 rs = reg_cache[op->rs];
869 u32 rt = reg_cache[op->rt];
870
871 if (likely(op->rd))
872 reg_cache[op->rd] = rs | rt;
873
874 return jump_next(inter);
875}
876
877static u32 int_special_XOR(struct interpreter *inter)
878{
879 u32 *reg_cache = inter->state->native_reg_cache;
880 struct opcode_r *op = &inter->op->r;
881 u32 rs = reg_cache[op->rs];
882 u32 rt = reg_cache[op->rt];
883
884 if (likely(op->rd))
885 reg_cache[op->rd] = rs ^ rt;
886
887 return jump_next(inter);
888}
889
890static u32 int_special_NOR(struct interpreter *inter)
891{
892 u32 *reg_cache = inter->state->native_reg_cache;
893 struct opcode_r *op = &inter->op->r;
894 u32 rs = reg_cache[op->rs];
895 u32 rt = reg_cache[op->rt];
896
897 if (likely(op->rd))
898 reg_cache[op->rd] = ~(rs | rt);
899
900 return jump_next(inter);
901}
902
903static u32 int_special_SLT(struct interpreter *inter)
904{
905 u32 *reg_cache = inter->state->native_reg_cache;
906 struct opcode_r *op = &inter->op->r;
907 s32 rs = reg_cache[op->rs];
908 s32 rt = reg_cache[op->rt];
909
910 if (likely(op->rd))
911 reg_cache[op->rd] = rs < rt;
912
913 return jump_next(inter);
914}
915
916static u32 int_special_SLTU(struct interpreter *inter)
917{
918 u32 *reg_cache = inter->state->native_reg_cache;
919 struct opcode_r *op = &inter->op->r;
920 u32 rs = reg_cache[op->rs];
921 u32 rt = reg_cache[op->rt];
922
923 if (likely(op->rd))
924 reg_cache[op->rd] = rs < rt;
925
926 return jump_next(inter);
927}
928
929static u32 int_META_SKIP(struct interpreter *inter)
930{
931 return jump_skip(inter);
932}
933
934static u32 int_META_MOV(struct interpreter *inter)
935{
936 u32 *reg_cache = inter->state->native_reg_cache;
937 struct opcode_r *op = &inter->op->r;
938
939 if (likely(op->rd))
940 reg_cache[op->rd] = reg_cache[op->rs];
941
942 return jump_next(inter);
943}
944
945static u32 int_META_SYNC(struct interpreter *inter)
946{
947 inter->state->current_cycle += inter->cycles;
948 inter->cycles = 0;
949
950 return jump_skip(inter);
951}
952
953static const lightrec_int_func_t int_standard[64] = {
954 [OP_SPECIAL] = int_SPECIAL,
955 [OP_REGIMM] = int_REGIMM,
956 [OP_J] = int_J,
957 [OP_JAL] = int_JAL,
958 [OP_BEQ] = int_BEQ,
959 [OP_BNE] = int_BNE,
960 [OP_BLEZ] = int_BLEZ,
961 [OP_BGTZ] = int_BGTZ,
962 [OP_ADDI] = int_ADDI,
963 [OP_ADDIU] = int_ADDI,
964 [OP_SLTI] = int_SLTI,
965 [OP_SLTIU] = int_SLTIU,
966 [OP_ANDI] = int_ANDI,
967 [OP_ORI] = int_ORI,
968 [OP_XORI] = int_XORI,
969 [OP_LUI] = int_LUI,
970 [OP_CP0] = int_CP0,
971 [OP_CP2] = int_CP2,
972 [OP_LB] = int_load,
973 [OP_LH] = int_load,
974 [OP_LWL] = int_load,
975 [OP_LW] = int_load,
976 [OP_LBU] = int_load,
977 [OP_LHU] = int_load,
978 [OP_LWR] = int_load,
979 [OP_SB] = int_store,
980 [OP_SH] = int_store,
981 [OP_SWL] = int_store,
982 [OP_SW] = int_store,
983 [OP_SWR] = int_store,
984 [OP_LWC2] = int_LWC2,
985 [OP_SWC2] = int_store,
986
987 [OP_META_REG_UNLOAD] = int_META_SKIP,
988 [OP_META_BEQZ] = int_BEQ,
989 [OP_META_BNEZ] = int_BNE,
990 [OP_META_MOV] = int_META_MOV,
991 [OP_META_SYNC] = int_META_SYNC,
992};
993
994static const lightrec_int_func_t int_special[64] = {
995 [OP_SPECIAL_SLL] = int_special_SLL,
996 [OP_SPECIAL_SRL] = int_special_SRL,
997 [OP_SPECIAL_SRA] = int_special_SRA,
998 [OP_SPECIAL_SLLV] = int_special_SLLV,
999 [OP_SPECIAL_SRLV] = int_special_SRLV,
1000 [OP_SPECIAL_SRAV] = int_special_SRAV,
1001 [OP_SPECIAL_JR] = int_special_JR,
1002 [OP_SPECIAL_JALR] = int_special_JALR,
1003 [OP_SPECIAL_SYSCALL] = int_syscall_break,
1004 [OP_SPECIAL_BREAK] = int_syscall_break,
1005 [OP_SPECIAL_MFHI] = int_special_MFHI,
1006 [OP_SPECIAL_MTHI] = int_special_MTHI,
1007 [OP_SPECIAL_MFLO] = int_special_MFLO,
1008 [OP_SPECIAL_MTLO] = int_special_MTLO,
1009 [OP_SPECIAL_MULT] = int_special_MULT,
1010 [OP_SPECIAL_MULTU] = int_special_MULTU,
1011 [OP_SPECIAL_DIV] = int_special_DIV,
1012 [OP_SPECIAL_DIVU] = int_special_DIVU,
1013 [OP_SPECIAL_ADD] = int_special_ADD,
1014 [OP_SPECIAL_ADDU] = int_special_ADD,
1015 [OP_SPECIAL_SUB] = int_special_SUB,
1016 [OP_SPECIAL_SUBU] = int_special_SUB,
1017 [OP_SPECIAL_AND] = int_special_AND,
1018 [OP_SPECIAL_OR] = int_special_OR,
1019 [OP_SPECIAL_XOR] = int_special_XOR,
1020 [OP_SPECIAL_NOR] = int_special_NOR,
1021 [OP_SPECIAL_SLT] = int_special_SLT,
1022 [OP_SPECIAL_SLTU] = int_special_SLTU,
1023};
1024
1025static const lightrec_int_func_t int_regimm[64] = {
1026 [OP_REGIMM_BLTZ] = int_regimm_BLTZ,
1027 [OP_REGIMM_BGEZ] = int_regimm_BGEZ,
1028 [OP_REGIMM_BLTZAL] = int_regimm_BLTZAL,
1029 [OP_REGIMM_BGEZAL] = int_regimm_BGEZAL,
1030};
1031
1032static const lightrec_int_func_t int_cp0[64] = {
1033 [OP_CP0_MFC0] = int_cfc,
1034 [OP_CP0_CFC0] = int_cfc,
1035 [OP_CP0_MTC0] = int_ctc,
1036 [OP_CP0_CTC0] = int_ctc,
1037 [OP_CP0_RFE] = int_cp0_RFE,
1038};
1039
1040static const lightrec_int_func_t int_cp2_basic[64] = {
1041 [OP_CP2_BASIC_MFC2] = int_cfc,
1042 [OP_CP2_BASIC_CFC2] = int_cfc,
1043 [OP_CP2_BASIC_MTC2] = int_ctc,
1044 [OP_CP2_BASIC_CTC2] = int_ctc,
1045};
1046
1047static u32 int_SPECIAL(struct interpreter *inter)
1048{
1049 lightrec_int_func_t f = int_special[inter->op->r.op];
1050 if (likely(f))
1051 return execute(f, inter);
1052 else
1053 return int_unimplemented(inter);
1054}
1055
1056static u32 int_REGIMM(struct interpreter *inter)
1057{
1058 lightrec_int_func_t f = int_regimm[inter->op->r.rt];
1059 if (likely(f))
1060 return execute(f, inter);
1061 else
1062 return int_unimplemented(inter);
1063}
1064
1065static u32 int_CP0(struct interpreter *inter)
1066{
1067 lightrec_int_func_t f = int_cp0[inter->op->r.rs];
1068 if (likely(f))
1069 return execute(f, inter);
1070 else
1071 return int_CP(inter);
1072}
1073
1074static u32 int_CP2(struct interpreter *inter)
1075{
1076 if (inter->op->r.op == OP_CP2_BASIC) {
1077 lightrec_int_func_t f = int_cp2_basic[inter->op->r.rs];
1078 if (likely(f))
1079 return execute(f, inter);
1080 }
1081
1082 return int_CP(inter);
1083}
1084
1085static u32 lightrec_int_op(struct interpreter *inter)
1086{
1087 return execute(int_standard[inter->op->i.op], inter);
1088}
1089
1090static u32 lightrec_emulate_block_list(struct block *block, struct opcode *op)
1091{
1092 struct interpreter inter;
1093 u32 pc;
1094
1095 inter.block = block;
1096 inter.state = block->state;
1097 inter.op = op;
1098 inter.cycles = 0;
1099 inter.delay_slot = false;
1100
1101 pc = lightrec_int_op(&inter);
1102
1103 /* Add the cycles of the last branch */
1104 inter.cycles += lightrec_cycles_of_opcode(inter.op->c);
1105
1106 block->state->current_cycle += inter.cycles;
1107
1108 return pc;
1109}
1110
1111u32 lightrec_emulate_block(struct block *block, u32 pc)
1112{
1113 u32 offset = (kunseg(pc) - kunseg(block->pc)) >> 2;
1114 struct opcode *op;
1115
1116 for (op = block->opcode_list;
1117 op && (op->offset < offset); op = op->next);
1118 if (op)
1119 return lightrec_emulate_block_list(block, op);
1120
1121 pr_err("PC 0x%x is outside block at PC 0x%x\n", pc, block->pc);
1122
1123 return 0;
1124}