Commit | Line | Data |
---|---|---|
7795edd6 JAS |
1 | /* deflate.c -- compress data using the deflation algorithm |
2 | * Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler | |
3 | * For conditions of distribution and use, see copyright notice in zlib.h | |
4 | */ | |
5 | ||
6 | /* | |
7 | * ALGORITHM | |
8 | * | |
9 | * The "deflation" process depends on being able to identify portions | |
10 | * of the input text which are identical to earlier input (within a | |
11 | * sliding window trailing behind the input currently being processed). | |
12 | * | |
13 | * The most straightforward technique turns out to be the fastest for | |
14 | * most input files: try all possible matches and select the longest. | |
15 | * The key feature of this algorithm is that insertions into the string | |
16 | * dictionary are very simple and thus fast, and deletions are avoided | |
17 | * completely. Insertions are performed at each input character, whereas | |
18 | * string matches are performed only when the previous match ends. So it | |
19 | * is preferable to spend more time in matches to allow very fast string | |
20 | * insertions and avoid deletions. The matching algorithm for small | |
21 | * strings is inspired from that of Rabin & Karp. A brute force approach | |
22 | * is used to find longer strings when a small match has been found. | |
23 | * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze | |
24 | * (by Leonid Broukhis). | |
25 | * A previous version of this file used a more sophisticated algorithm | |
26 | * (by Fiala and Greene) which is guaranteed to run in linear amortized | |
27 | * time, but has a larger average cost, uses more memory and is patented. | |
28 | * However the F&G algorithm may be faster for some highly redundant | |
29 | * files if the parameter max_chain_length (described below) is too large. | |
30 | * | |
31 | * ACKNOWLEDGEMENTS | |
32 | * | |
33 | * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and | |
34 | * I found it in 'freeze' written by Leonid Broukhis. | |
35 | * Thanks to many people for bug reports and testing. | |
36 | * | |
37 | * REFERENCES | |
38 | * | |
39 | * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". | |
40 | * Available in http://tools.ietf.org/html/rfc1951 | |
41 | * | |
42 | * A description of the Rabin and Karp algorithm is given in the book | |
43 | * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. | |
44 | * | |
45 | * Fiala,E.R., and Greene,D.H. | |
46 | * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 | |
47 | * | |
48 | */ | |
49 | ||
50 | /* @(#) $Id$ */ | |
51 | ||
52 | #include "deflate.h" | |
53 | ||
54 | const char deflate_copyright[] = | |
55 | " deflate 1.2.8 Copyright 1995-2013 Jean-loup Gailly and Mark Adler "; | |
56 | /* | |
57 | If you use the zlib library in a product, an acknowledgment is welcome | |
58 | in the documentation of your product. If for some reason you cannot | |
59 | include such an acknowledgment, I would appreciate that you keep this | |
60 | copyright string in the executable of your product. | |
61 | */ | |
62 | ||
63 | /* =========================================================================== | |
64 | * Function prototypes. | |
65 | */ | |
66 | typedef enum { | |
67 | need_more, /* block not completed, need more input or more output */ | |
68 | block_done, /* block flush performed */ | |
69 | finish_started, /* finish started, need only more output at next deflate */ | |
70 | finish_done /* finish done, accept no more input or output */ | |
71 | } block_state; | |
72 | ||
73 | typedef block_state (*compress_func) OF((deflate_state *s, int flush)); | |
74 | /* Compression function. Returns the block state after the call. */ | |
75 | ||
76 | local void fill_window OF((deflate_state *s)); | |
77 | local block_state deflate_stored OF((deflate_state *s, int flush)); | |
78 | local block_state deflate_fast OF((deflate_state *s, int flush)); | |
79 | #ifndef FASTEST | |
80 | local block_state deflate_slow OF((deflate_state *s, int flush)); | |
81 | #endif | |
82 | local block_state deflate_rle OF((deflate_state *s, int flush)); | |
83 | local block_state deflate_huff OF((deflate_state *s, int flush)); | |
84 | local void lm_init OF((deflate_state *s)); | |
85 | local void putShortMSB OF((deflate_state *s, uInt b)); | |
86 | local void flush_pending OF((z_streamp strm)); | |
87 | local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); | |
88 | #ifdef ASMV | |
89 | void match_init OF((void)); /* asm code initialization */ | |
90 | uInt longest_match OF((deflate_state *s, IPos cur_match)); | |
91 | #else | |
92 | local uInt longest_match OF((deflate_state *s, IPos cur_match)); | |
93 | #endif | |
94 | ||
95 | #ifdef DEBUG | |
96 | local void check_match OF((deflate_state *s, IPos start, IPos match, | |
97 | int length)); | |
98 | #endif | |
99 | ||
100 | /* =========================================================================== | |
101 | * Local data | |
102 | */ | |
103 | ||
104 | #define NIL 0 | |
105 | /* Tail of hash chains */ | |
106 | ||
107 | #ifndef TOO_FAR | |
108 | # define TOO_FAR 4096 | |
109 | #endif | |
110 | /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ | |
111 | ||
112 | /* Values for max_lazy_match, good_match and max_chain_length, depending on | |
113 | * the desired pack level (0..9). The values given below have been tuned to | |
114 | * exclude worst case performance for pathological files. Better values may be | |
115 | * found for specific files. | |
116 | */ | |
117 | typedef struct config_s { | |
118 | ush good_length; /* reduce lazy search above this match length */ | |
119 | ush max_lazy; /* do not perform lazy search above this match length */ | |
120 | ush nice_length; /* quit search above this match length */ | |
121 | ush max_chain; | |
122 | compress_func func; | |
123 | } config; | |
124 | ||
125 | #ifdef FASTEST | |
126 | local const config configuration_table[2] = { | |
127 | /* good lazy nice chain */ | |
128 | /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ | |
129 | /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ | |
130 | #else | |
131 | local const config configuration_table[10] = { | |
132 | /* good lazy nice chain */ | |
133 | /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ | |
134 | /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ | |
135 | /* 2 */ {4, 5, 16, 8, deflate_fast}, | |
136 | /* 3 */ {4, 6, 32, 32, deflate_fast}, | |
137 | ||
138 | /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ | |
139 | /* 5 */ {8, 16, 32, 32, deflate_slow}, | |
140 | /* 6 */ {8, 16, 128, 128, deflate_slow}, | |
141 | /* 7 */ {8, 32, 128, 256, deflate_slow}, | |
142 | /* 8 */ {32, 128, 258, 1024, deflate_slow}, | |
143 | /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ | |
144 | #endif | |
145 | ||
146 | /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 | |
147 | * For deflate_fast() (levels <= 3) good is ignored and lazy has a different | |
148 | * meaning. | |
149 | */ | |
150 | ||
151 | #define EQUAL 0 | |
152 | /* result of memcmp for equal strings */ | |
153 | ||
154 | /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ | |
155 | #define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0)) | |
156 | ||
157 | /* =========================================================================== | |
158 | * Update a hash value with the given input byte | |
159 | * IN assertion: all calls to to UPDATE_HASH are made with consecutive | |
160 | * input characters, so that a running hash key can be computed from the | |
161 | * previous key instead of complete recalculation each time. | |
162 | */ | |
163 | #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) | |
164 | ||
165 | ||
166 | /* =========================================================================== | |
167 | * Insert string str in the dictionary and set match_head to the previous head | |
168 | * of the hash chain (the most recent string with same hash key). Return | |
169 | * the previous length of the hash chain. | |
170 | * If this file is compiled with -DFASTEST, the compression level is forced | |
171 | * to 1, and no hash chains are maintained. | |
172 | * IN assertion: all calls to to INSERT_STRING are made with consecutive | |
173 | * input characters and the first MIN_MATCH bytes of str are valid | |
174 | * (except for the last MIN_MATCH-1 bytes of the input file). | |
175 | */ | |
176 | #ifdef FASTEST | |
177 | #define INSERT_STRING(s, str, match_head) \ | |
178 | (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ | |
179 | match_head = s->head[s->ins_h], \ | |
180 | s->head[s->ins_h] = (Pos)(str)) | |
181 | #else | |
182 | #define INSERT_STRING(s, str, match_head) \ | |
183 | (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ | |
184 | match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ | |
185 | s->head[s->ins_h] = (Pos)(str)) | |
186 | #endif | |
187 | ||
188 | /* =========================================================================== | |
189 | * Initialize the hash table (avoiding 64K overflow for 16 bit systems). | |
190 | * prev[] will be initialized on the fly. | |
191 | */ | |
192 | #define CLEAR_HASH(s) \ | |
193 | s->head[s->hash_size-1] = NIL; \ | |
194 | zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); | |
195 | ||
196 | int ZEXPORT deflateResetKeep (z_streamp strm); | |
197 | ||
198 | int ZEXPORT deflatePending (z_streamp strm, unsigned *pending, int *bits); | |
199 | ||
200 | /* ========================================================================= */ | |
201 | int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version, int stream_size) | |
202 | { | |
203 | return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, | |
204 | Z_DEFAULT_STRATEGY, version, stream_size); | |
205 | /* To do: ignore strm->next_in if we use it as window */ | |
206 | } | |
207 | ||
208 | /* ========================================================================= */ | |
209 | int ZEXPORT deflateInit2_(z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy, | |
210 | const char *version, int stream_size) | |
211 | { | |
212 | deflate_state *s; | |
213 | int wrap = 1; | |
214 | static const char my_version[] = ZLIB_VERSION; | |
215 | ||
216 | ushf *overlay; | |
217 | /* We overlay pending_buf and d_buf+l_buf. This works since the average | |
218 | * output size for (length,distance) codes is <= 24 bits. | |
219 | */ | |
220 | ||
221 | if (version == Z_NULL || version[0] != my_version[0] || | |
222 | stream_size != sizeof(z_stream)) { | |
223 | return Z_VERSION_ERROR; | |
224 | } | |
225 | if (strm == Z_NULL) return Z_STREAM_ERROR; | |
226 | ||
227 | strm->msg = Z_NULL; | |
228 | if (strm->zalloc == (alloc_func)0) { | |
229 | #ifdef Z_SOLO | |
230 | return Z_STREAM_ERROR; | |
231 | #else | |
232 | strm->zalloc = zcalloc; | |
233 | strm->opaque = (voidpf)0; | |
234 | #endif | |
235 | } | |
236 | if (strm->zfree == NULL) | |
237 | #ifdef Z_SOLO | |
238 | return Z_STREAM_ERROR; | |
239 | #else | |
240 | strm->zfree = zcfree; | |
241 | #endif | |
242 | ||
243 | #ifdef FASTEST | |
244 | if (level != 0) level = 1; | |
245 | #else | |
246 | if (level == Z_DEFAULT_COMPRESSION) level = 6; | |
247 | #endif | |
248 | ||
249 | if (windowBits < 0) { /* suppress zlib wrapper */ | |
250 | wrap = 0; | |
251 | windowBits = -windowBits; | |
252 | } | |
253 | #ifdef GZIP | |
254 | else if (windowBits > 15) { | |
255 | wrap = 2; /* write gzip wrapper instead */ | |
256 | windowBits -= 16; | |
257 | } | |
258 | #endif | |
259 | if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || | |
260 | windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || | |
261 | strategy < 0 || strategy > Z_FIXED) { | |
262 | return Z_STREAM_ERROR; | |
263 | } | |
264 | if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ | |
265 | s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); | |
266 | if (s == Z_NULL) return Z_MEM_ERROR; | |
267 | strm->state = (struct internal_state*)s; | |
268 | s->strm = strm; | |
269 | ||
270 | s->wrap = wrap; | |
271 | s->gzhead = Z_NULL; | |
272 | s->w_bits = windowBits; | |
273 | s->w_size = 1 << s->w_bits; | |
274 | s->w_mask = s->w_size - 1; | |
275 | ||
276 | s->hash_bits = memLevel + 7; | |
277 | s->hash_size = 1 << s->hash_bits; | |
278 | s->hash_mask = s->hash_size - 1; | |
279 | s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); | |
280 | ||
281 | s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); | |
282 | s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); | |
283 | s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); | |
284 | ||
285 | s->high_water = 0; /* nothing written to s->window yet */ | |
286 | ||
287 | s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ | |
288 | ||
289 | overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); | |
290 | s->pending_buf = (uchf *) overlay; | |
291 | s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); | |
292 | ||
293 | if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || | |
294 | s->pending_buf == Z_NULL) { | |
295 | s->status = FINISH_STATE; | |
296 | strm->msg = ERR_MSG(Z_MEM_ERROR); | |
297 | deflateEnd (strm); | |
298 | return Z_MEM_ERROR; | |
299 | } | |
300 | s->d_buf = overlay + s->lit_bufsize/sizeof(ush); | |
301 | s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; | |
302 | ||
303 | s->level = level; | |
304 | s->strategy = strategy; | |
305 | s->method = (Byte)method; | |
306 | ||
307 | return deflateReset(strm); | |
308 | } | |
309 | ||
310 | /* ========================================================================= */ | |
311 | int ZEXPORT deflateSetDictionary (z_streamp strm, const Bytef *dictionary, uInt dictLength) | |
312 | { | |
313 | deflate_state *s; | |
314 | uInt str, n; | |
315 | int wrap; | |
316 | unsigned avail; | |
317 | unsigned char *next; | |
318 | ||
319 | if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL) | |
320 | return Z_STREAM_ERROR; | |
321 | s = (deflate_state*)strm->state; | |
322 | wrap = s->wrap; | |
323 | if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) | |
324 | return Z_STREAM_ERROR; | |
325 | ||
326 | /* when using zlib wrappers, compute Adler-32 for provided dictionary */ | |
327 | if (wrap == 1) | |
328 | strm->adler = adler32(strm->adler, dictionary, dictLength); | |
329 | s->wrap = 0; /* avoid computing Adler-32 in read_buf */ | |
330 | ||
331 | /* if dictionary would fill window, just replace the history */ | |
332 | if (dictLength >= s->w_size) { | |
333 | if (wrap == 0) { /* already empty otherwise */ | |
334 | CLEAR_HASH(s); | |
335 | s->strstart = 0; | |
336 | s->block_start = 0L; | |
337 | s->insert = 0; | |
338 | } | |
339 | dictionary += dictLength - s->w_size; /* use the tail */ | |
340 | dictLength = s->w_size; | |
341 | } | |
342 | ||
343 | /* insert dictionary into window and hash */ | |
344 | avail = strm->avail_in; | |
345 | next = strm->next_in; | |
346 | strm->avail_in = dictLength; | |
347 | strm->next_in = (Bytef *)dictionary; | |
348 | fill_window(s); | |
349 | while (s->lookahead >= MIN_MATCH) { | |
350 | str = s->strstart; | |
351 | n = s->lookahead - (MIN_MATCH-1); | |
352 | do { | |
353 | UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); | |
354 | #ifndef FASTEST | |
355 | s->prev[str & s->w_mask] = s->head[s->ins_h]; | |
356 | #endif | |
357 | s->head[s->ins_h] = (Pos)str; | |
358 | str++; | |
359 | } while (--n); | |
360 | s->strstart = str; | |
361 | s->lookahead = MIN_MATCH-1; | |
362 | fill_window(s); | |
363 | } | |
364 | s->strstart += s->lookahead; | |
365 | s->block_start = (long)s->strstart; | |
366 | s->insert = s->lookahead; | |
367 | s->lookahead = 0; | |
368 | s->match_length = s->prev_length = MIN_MATCH-1; | |
369 | s->match_available = 0; | |
370 | strm->next_in = next; | |
371 | strm->avail_in = avail; | |
372 | s->wrap = wrap; | |
373 | return Z_OK; | |
374 | } | |
375 | ||
376 | /* ========================================================================= */ | |
377 | int ZEXPORT deflateResetKeep (z_streamp strm) | |
378 | { | |
379 | deflate_state *s; | |
380 | ||
381 | if (strm == Z_NULL || strm->state == Z_NULL || | |
382 | strm->zalloc == Z_NULL || strm->zfree == Z_NULL) { | |
383 | return Z_STREAM_ERROR; | |
384 | } | |
385 | ||
386 | strm->total_in = strm->total_out = 0; | |
387 | strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ | |
388 | strm->data_type = Z_UNKNOWN; | |
389 | ||
390 | s = (deflate_state *)strm->state; | |
391 | s->pending = 0; | |
392 | s->pending_out = s->pending_buf; | |
393 | ||
394 | if (s->wrap < 0) { | |
395 | s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ | |
396 | } | |
397 | s->status = s->wrap ? INIT_STATE : BUSY_STATE; | |
398 | strm->adler = | |
399 | #ifdef GZIP | |
400 | s->wrap == 2 ? crc32(0L, Z_NULL, 0) : | |
401 | #endif | |
402 | adler32(0L, Z_NULL, 0); | |
403 | s->last_flush = Z_NO_FLUSH; | |
404 | ||
405 | _tr_init(s); | |
406 | ||
407 | return Z_OK; | |
408 | } | |
409 | ||
410 | /* ========================================================================= */ | |
411 | int ZEXPORT deflateReset (z_streamp strm) | |
412 | { | |
413 | int ret; | |
414 | ||
415 | ret = deflateResetKeep(strm); | |
416 | if (ret == Z_OK) | |
417 | lm_init((deflate_state*)strm->state); | |
418 | return ret; | |
419 | } | |
420 | ||
421 | /* ========================================================================= */ | |
422 | int ZEXPORT deflateSetHeader (z_streamp strm, gz_headerp head) | |
423 | { | |
424 | struct internal_state_deflate *state = (struct internal_state_deflate*)strm->state; | |
425 | if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; | |
426 | if (state->wrap != 2) | |
427 | return Z_STREAM_ERROR; | |
428 | state->gzhead = head; | |
429 | return Z_OK; | |
430 | } | |
431 | ||
432 | /* ========================================================================= */ | |
433 | int ZEXPORT deflatePending (z_streamp strm, unsigned *pending, int *bits) | |
434 | { | |
435 | struct internal_state_deflate *state = (struct internal_state_deflate*)strm->state; | |
436 | if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; | |
437 | if (pending != Z_NULL) | |
438 | *pending = state->pending; | |
439 | if (bits != Z_NULL) | |
440 | *bits = state->bi_valid; | |
441 | return Z_OK; | |
442 | } | |
443 | ||
444 | /* ========================================================================= */ | |
445 | int ZEXPORT deflatePrime (z_streamp strm, int bits, int value) | |
446 | { | |
447 | deflate_state *s; | |
448 | int put; | |
449 | ||
450 | if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; | |
451 | s = (deflate_state*)strm->state; | |
452 | if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3)) | |
453 | return Z_BUF_ERROR; | |
454 | do { | |
455 | put = Buf_size - s->bi_valid; | |
456 | if (put > bits) | |
457 | put = bits; | |
458 | s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); | |
459 | s->bi_valid += put; | |
460 | _tr_flush_bits(s); | |
461 | value >>= put; | |
462 | bits -= put; | |
463 | } while (bits); | |
464 | return Z_OK; | |
465 | } | |
466 | ||
467 | /* ========================================================================= */ | |
468 | int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) | |
469 | { | |
470 | deflate_state *s; | |
471 | compress_func func; | |
472 | int err = Z_OK; | |
473 | ||
474 | if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; | |
475 | s = (deflate_state*)strm->state; | |
476 | ||
477 | #ifdef FASTEST | |
478 | if (level != 0) level = 1; | |
479 | #else | |
480 | if (level == Z_DEFAULT_COMPRESSION) level = 6; | |
481 | #endif | |
482 | if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { | |
483 | return Z_STREAM_ERROR; | |
484 | } | |
485 | func = configuration_table[s->level].func; | |
486 | ||
487 | if ((strategy != s->strategy || func != configuration_table[level].func) && | |
488 | strm->total_in != 0) { | |
489 | /* Flush the last buffer: */ | |
490 | err = deflate(strm, Z_BLOCK); | |
491 | if (err == Z_BUF_ERROR && s->pending == 0) | |
492 | err = Z_OK; | |
493 | } | |
494 | if (s->level != level) { | |
495 | s->level = level; | |
496 | s->max_lazy_match = configuration_table[level].max_lazy; | |
497 | s->good_match = configuration_table[level].good_length; | |
498 | s->nice_match = configuration_table[level].nice_length; | |
499 | s->max_chain_length = configuration_table[level].max_chain; | |
500 | } | |
501 | s->strategy = strategy; | |
502 | return err; | |
503 | } | |
504 | ||
505 | /* ========================================================================= */ | |
506 | int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy, int nice_length, int max_chain) | |
507 | { | |
508 | deflate_state *s; | |
509 | ||
510 | if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; | |
511 | s = (deflate_state*)strm->state; | |
512 | s->good_match = good_length; | |
513 | s->max_lazy_match = max_lazy; | |
514 | s->nice_match = nice_length; | |
515 | s->max_chain_length = max_chain; | |
516 | return Z_OK; | |
517 | } | |
518 | ||
519 | /* ========================================================================= | |
520 | * For the default windowBits of 15 and memLevel of 8, this function returns | |
521 | * a close to exact, as well as small, upper bound on the compressed size. | |
522 | * They are coded as constants here for a reason--if the #define's are | |
523 | * changed, then this function needs to be changed as well. The return | |
524 | * value for 15 and 8 only works for those exact settings. | |
525 | * | |
526 | * For any setting other than those defaults for windowBits and memLevel, | |
527 | * the value returned is a conservative worst case for the maximum expansion | |
528 | * resulting from using fixed blocks instead of stored blocks, which deflate | |
529 | * can emit on compressed data for some combinations of the parameters. | |
530 | * | |
531 | * This function could be more sophisticated to provide closer upper bounds for | |
532 | * every combination of windowBits and memLevel. But even the conservative | |
533 | * upper bound of about 14% expansion does not seem onerous for output buffer | |
534 | * allocation. | |
535 | */ | |
536 | uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) | |
537 | { | |
538 | deflate_state *s; | |
539 | uLong complen, wraplen; | |
540 | Bytef *str; | |
541 | ||
542 | /* conservative upper bound for compressed data */ | |
543 | complen = sourceLen + | |
544 | ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; | |
545 | ||
546 | /* if can't get parameters, return conservative bound plus zlib wrapper */ | |
547 | if (strm == Z_NULL || strm->state == Z_NULL) | |
548 | return complen + 6; | |
549 | ||
550 | /* compute wrapper length */ | |
551 | s = (deflate_state*)strm->state; | |
552 | switch (s->wrap) { | |
553 | case 0: /* raw deflate */ | |
554 | wraplen = 0; | |
555 | break; | |
556 | case 1: /* zlib wrapper */ | |
557 | wraplen = 6 + (s->strstart ? 4 : 0); | |
558 | break; | |
559 | case 2: /* gzip wrapper */ | |
560 | wraplen = 18; | |
561 | if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ | |
562 | if (s->gzhead->extra != Z_NULL) | |
563 | wraplen += 2 + s->gzhead->extra_len; | |
564 | str = s->gzhead->name; | |
565 | if (str != Z_NULL) | |
566 | do { | |
567 | wraplen++; | |
568 | } while (*str++); | |
569 | str = s->gzhead->comment; | |
570 | if (str != Z_NULL) | |
571 | do { | |
572 | wraplen++; | |
573 | } while (*str++); | |
574 | if (s->gzhead->hcrc) | |
575 | wraplen += 2; | |
576 | } | |
577 | break; | |
578 | default: /* for compiler happiness */ | |
579 | wraplen = 6; | |
580 | } | |
581 | ||
582 | /* if not default parameters, return conservative bound */ | |
583 | if (s->w_bits != 15 || s->hash_bits != 8 + 7) | |
584 | return complen + wraplen; | |
585 | ||
586 | /* default settings: return tight bound for that case */ | |
587 | return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + | |
588 | (sourceLen >> 25) + 13 - 6 + wraplen; | |
589 | } | |
590 | ||
591 | /* ========================================================================= | |
592 | * Put a short in the pending buffer. The 16-bit value is put in MSB order. | |
593 | * IN assertion: the stream state is correct and there is enough room in | |
594 | * pending_buf. | |
595 | */ | |
596 | local void putShortMSB (deflate_state *s, uInt b) | |
597 | { | |
598 | put_byte(s, (Byte)(b >> 8)); | |
599 | put_byte(s, (Byte)(b & 0xff)); | |
600 | } | |
601 | ||
602 | /* ========================================================================= | |
603 | * Flush as much pending output as possible. All deflate() output goes | |
604 | * through this function so some applications may wish to modify it | |
605 | * to avoid allocating a large strm->next_out buffer and copying into it. | |
606 | * (See also read_buf()). | |
607 | */ | |
608 | local void flush_pending(z_streamp strm) | |
609 | { | |
610 | unsigned len; | |
611 | deflate_state *s = (deflate_state*)strm->state; | |
612 | ||
613 | _tr_flush_bits(s); | |
614 | len = s->pending; | |
615 | if (len > strm->avail_out) len = strm->avail_out; | |
616 | if (len == 0) return; | |
617 | ||
618 | zmemcpy(strm->next_out, s->pending_out, len); | |
619 | strm->next_out += len; | |
620 | s->pending_out += len; | |
621 | strm->total_out += len; | |
622 | strm->avail_out -= len; | |
623 | s->pending -= len; | |
624 | if (s->pending == 0) { | |
625 | s->pending_out = s->pending_buf; | |
626 | } | |
627 | } | |
628 | ||
629 | /* ========================================================================= */ | |
630 | int ZEXPORT deflate (z_streamp strm, int flush) | |
631 | { | |
632 | int old_flush; /* value of flush param for previous deflate call */ | |
633 | deflate_state *s; | |
634 | ||
635 | if (strm == Z_NULL || strm->state == Z_NULL || | |
636 | flush > Z_BLOCK || flush < 0) { | |
637 | return Z_STREAM_ERROR; | |
638 | } | |
639 | s = (deflate_state*)strm->state; | |
640 | ||
641 | if (strm->next_out == Z_NULL || | |
642 | (strm->next_in == Z_NULL && strm->avail_in != 0) || | |
643 | (s->status == FINISH_STATE && flush != Z_FINISH)) { | |
644 | ERR_RETURN(strm, Z_STREAM_ERROR); | |
645 | } | |
646 | if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); | |
647 | ||
648 | s->strm = strm; /* just in case */ | |
649 | old_flush = s->last_flush; | |
650 | s->last_flush = flush; | |
651 | ||
652 | /* Write the header */ | |
653 | if (s->status == INIT_STATE) { | |
654 | #ifdef GZIP | |
655 | if (s->wrap == 2) { | |
656 | strm->adler = crc32(0L, Z_NULL, 0); | |
657 | put_byte(s, 31); | |
658 | put_byte(s, 139); | |
659 | put_byte(s, 8); | |
660 | if (s->gzhead == Z_NULL) { | |
661 | put_byte(s, 0); | |
662 | put_byte(s, 0); | |
663 | put_byte(s, 0); | |
664 | put_byte(s, 0); | |
665 | put_byte(s, 0); | |
666 | put_byte(s, s->level == 9 ? 2 : | |
667 | (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? | |
668 | 4 : 0)); | |
669 | put_byte(s, OS_CODE); | |
670 | s->status = BUSY_STATE; | |
671 | } | |
672 | else { | |
673 | put_byte(s, (s->gzhead->text ? 1 : 0) + | |
674 | (s->gzhead->hcrc ? 2 : 0) + | |
675 | (s->gzhead->extra == Z_NULL ? 0 : 4) + | |
676 | (s->gzhead->name == Z_NULL ? 0 : 8) + | |
677 | (s->gzhead->comment == Z_NULL ? 0 : 16) | |
678 | ); | |
679 | put_byte(s, (Byte)(s->gzhead->time & 0xff)); | |
680 | put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); | |
681 | put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); | |
682 | put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); | |
683 | put_byte(s, s->level == 9 ? 2 : | |
684 | (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? | |
685 | 4 : 0)); | |
686 | put_byte(s, s->gzhead->os & 0xff); | |
687 | if (s->gzhead->extra != Z_NULL) { | |
688 | put_byte(s, s->gzhead->extra_len & 0xff); | |
689 | put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); | |
690 | } | |
691 | if (s->gzhead->hcrc) | |
692 | strm->adler = crc32(strm->adler, s->pending_buf, | |
693 | s->pending); | |
694 | s->gzindex = 0; | |
695 | s->status = EXTRA_STATE; | |
696 | } | |
697 | } | |
698 | else | |
699 | #endif | |
700 | { | |
701 | uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; | |
702 | uInt level_flags; | |
703 | ||
704 | if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) | |
705 | level_flags = 0; | |
706 | else if (s->level < 6) | |
707 | level_flags = 1; | |
708 | else if (s->level == 6) | |
709 | level_flags = 2; | |
710 | else | |
711 | level_flags = 3; | |
712 | header |= (level_flags << 6); | |
713 | if (s->strstart != 0) header |= PRESET_DICT; | |
714 | header += 31 - (header % 31); | |
715 | ||
716 | s->status = BUSY_STATE; | |
717 | putShortMSB(s, header); | |
718 | ||
719 | /* Save the adler32 of the preset dictionary: */ | |
720 | if (s->strstart != 0) { | |
721 | putShortMSB(s, (uInt)(strm->adler >> 16)); | |
722 | putShortMSB(s, (uInt)(strm->adler & 0xffff)); | |
723 | } | |
724 | strm->adler = adler32(0L, Z_NULL, 0); | |
725 | } | |
726 | } | |
727 | #ifdef GZIP | |
728 | if (s->status == EXTRA_STATE) { | |
729 | if (s->gzhead->extra != Z_NULL) { | |
730 | uInt beg = s->pending; /* start of bytes to update crc */ | |
731 | ||
732 | while (s->gzindex < (s->gzhead->extra_len & 0xffff)) { | |
733 | if (s->pending == s->pending_buf_size) { | |
734 | if (s->gzhead->hcrc && s->pending > beg) | |
735 | strm->adler = crc32(strm->adler, s->pending_buf + beg, | |
736 | s->pending - beg); | |
737 | flush_pending(strm); | |
738 | beg = s->pending; | |
739 | if (s->pending == s->pending_buf_size) | |
740 | break; | |
741 | } | |
742 | put_byte(s, s->gzhead->extra[s->gzindex]); | |
743 | s->gzindex++; | |
744 | } | |
745 | if (s->gzhead->hcrc && s->pending > beg) | |
746 | strm->adler = crc32(strm->adler, s->pending_buf + beg, | |
747 | s->pending - beg); | |
748 | if (s->gzindex == s->gzhead->extra_len) { | |
749 | s->gzindex = 0; | |
750 | s->status = NAME_STATE; | |
751 | } | |
752 | } | |
753 | else | |
754 | s->status = NAME_STATE; | |
755 | } | |
756 | if (s->status == NAME_STATE) { | |
757 | if (s->gzhead->name != Z_NULL) { | |
758 | uInt beg = s->pending; /* start of bytes to update crc */ | |
759 | int val; | |
760 | ||
761 | do { | |
762 | if (s->pending == s->pending_buf_size) { | |
763 | if (s->gzhead->hcrc && s->pending > beg) | |
764 | strm->adler = crc32(strm->adler, s->pending_buf + beg, | |
765 | s->pending - beg); | |
766 | flush_pending(strm); | |
767 | beg = s->pending; | |
768 | if (s->pending == s->pending_buf_size) { | |
769 | val = 1; | |
770 | break; | |
771 | } | |
772 | } | |
773 | val = s->gzhead->name[s->gzindex++]; | |
774 | put_byte(s, val); | |
775 | } while (val != 0); | |
776 | if (s->gzhead->hcrc && s->pending > beg) | |
777 | strm->adler = crc32(strm->adler, s->pending_buf + beg, | |
778 | s->pending - beg); | |
779 | if (val == 0) { | |
780 | s->gzindex = 0; | |
781 | s->status = COMMENT_STATE; | |
782 | } | |
783 | } | |
784 | else | |
785 | s->status = COMMENT_STATE; | |
786 | } | |
787 | if (s->status == COMMENT_STATE) { | |
788 | if (s->gzhead->comment != Z_NULL) { | |
789 | uInt beg = s->pending; /* start of bytes to update crc */ | |
790 | int val; | |
791 | ||
792 | do { | |
793 | if (s->pending == s->pending_buf_size) { | |
794 | if (s->gzhead->hcrc && s->pending > beg) | |
795 | strm->adler = crc32(strm->adler, s->pending_buf + beg, | |
796 | s->pending - beg); | |
797 | flush_pending(strm); | |
798 | beg = s->pending; | |
799 | if (s->pending == s->pending_buf_size) { | |
800 | val = 1; | |
801 | break; | |
802 | } | |
803 | } | |
804 | val = s->gzhead->comment[s->gzindex++]; | |
805 | put_byte(s, val); | |
806 | } while (val != 0); | |
807 | if (s->gzhead->hcrc && s->pending > beg) | |
808 | strm->adler = crc32(strm->adler, s->pending_buf + beg, | |
809 | s->pending - beg); | |
810 | if (val == 0) | |
811 | s->status = HCRC_STATE; | |
812 | } | |
813 | else | |
814 | s->status = HCRC_STATE; | |
815 | } | |
816 | if (s->status == HCRC_STATE) { | |
817 | if (s->gzhead->hcrc) { | |
818 | if (s->pending + 2 > s->pending_buf_size) | |
819 | flush_pending(strm); | |
820 | if (s->pending + 2 <= s->pending_buf_size) { | |
821 | put_byte(s, (Byte)(strm->adler & 0xff)); | |
822 | put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); | |
823 | strm->adler = crc32(0L, Z_NULL, 0); | |
824 | s->status = BUSY_STATE; | |
825 | } | |
826 | } | |
827 | else | |
828 | s->status = BUSY_STATE; | |
829 | } | |
830 | #endif | |
831 | ||
832 | /* Flush as much pending output as possible */ | |
833 | if (s->pending != 0) { | |
834 | flush_pending(strm); | |
835 | if (strm->avail_out == 0) { | |
836 | /* Since avail_out is 0, deflate will be called again with | |
837 | * more output space, but possibly with both pending and | |
838 | * avail_in equal to zero. There won't be anything to do, | |
839 | * but this is not an error situation so make sure we | |
840 | * return OK instead of BUF_ERROR at next call of deflate: | |
841 | */ | |
842 | s->last_flush = -1; | |
843 | return Z_OK; | |
844 | } | |
845 | ||
846 | /* Make sure there is something to do and avoid duplicate consecutive | |
847 | * flushes. For repeated and useless calls with Z_FINISH, we keep | |
848 | * returning Z_STREAM_END instead of Z_BUF_ERROR. | |
849 | */ | |
850 | } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && | |
851 | flush != Z_FINISH) { | |
852 | ERR_RETURN(strm, Z_BUF_ERROR); | |
853 | } | |
854 | ||
855 | /* User must not provide more input after the first FINISH: */ | |
856 | if (s->status == FINISH_STATE && strm->avail_in != 0) { | |
857 | ERR_RETURN(strm, Z_BUF_ERROR); | |
858 | } | |
859 | ||
860 | /* Start a new block or continue the current one. | |
861 | */ | |
862 | if (strm->avail_in != 0 || s->lookahead != 0 || | |
863 | (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { | |
864 | block_state bstate; | |
865 | ||
866 | bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : | |
867 | (s->strategy == Z_RLE ? deflate_rle(s, flush) : | |
868 | (*(configuration_table[s->level].func))(s, flush)); | |
869 | ||
870 | if (bstate == finish_started || bstate == finish_done) { | |
871 | s->status = FINISH_STATE; | |
872 | } | |
873 | if (bstate == need_more || bstate == finish_started) { | |
874 | if (strm->avail_out == 0) { | |
875 | s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ | |
876 | } | |
877 | return Z_OK; | |
878 | /* If flush != Z_NO_FLUSH && avail_out == 0, the next call | |
879 | * of deflate should use the same flush parameter to make sure | |
880 | * that the flush is complete. So we don't have to output an | |
881 | * empty block here, this will be done at next call. This also | |
882 | * ensures that for a very small output buffer, we emit at most | |
883 | * one empty block. | |
884 | */ | |
885 | } | |
886 | if (bstate == block_done) { | |
887 | if (flush == Z_PARTIAL_FLUSH) { | |
888 | _tr_align(s); | |
889 | } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ | |
890 | _tr_stored_block(s, (char*)0, 0L, 0); | |
891 | /* For a full flush, this empty block will be recognized | |
892 | * as a special marker by inflate_sync(). | |
893 | */ | |
894 | if (flush == Z_FULL_FLUSH) { | |
895 | CLEAR_HASH(s); /* forget history */ | |
896 | if (s->lookahead == 0) { | |
897 | s->strstart = 0; | |
898 | s->block_start = 0L; | |
899 | s->insert = 0; | |
900 | } | |
901 | } | |
902 | } | |
903 | flush_pending(strm); | |
904 | if (strm->avail_out == 0) { | |
905 | s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ | |
906 | return Z_OK; | |
907 | } | |
908 | } | |
909 | } | |
910 | Assert(strm->avail_out > 0, "bug2"); | |
911 | ||
912 | if (flush != Z_FINISH) return Z_OK; | |
913 | if (s->wrap <= 0) return Z_STREAM_END; | |
914 | ||
915 | /* Write the trailer */ | |
916 | #ifdef GZIP | |
917 | if (s->wrap == 2) { | |
918 | put_byte(s, (Byte)(strm->adler & 0xff)); | |
919 | put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); | |
920 | put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); | |
921 | put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); | |
922 | put_byte(s, (Byte)(strm->total_in & 0xff)); | |
923 | put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); | |
924 | put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); | |
925 | put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); | |
926 | } | |
927 | else | |
928 | #endif | |
929 | { | |
930 | putShortMSB(s, (uInt)(strm->adler >> 16)); | |
931 | putShortMSB(s, (uInt)(strm->adler & 0xffff)); | |
932 | } | |
933 | flush_pending(strm); | |
934 | /* If avail_out is zero, the application will call deflate again | |
935 | * to flush the rest. | |
936 | */ | |
937 | if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ | |
938 | return s->pending != 0 ? Z_OK : Z_STREAM_END; | |
939 | } | |
940 | ||
941 | /* ========================================================================= */ | |
942 | int ZEXPORT deflateEnd (z_streamp strm) | |
943 | { | |
944 | struct internal_state_deflate *state; | |
945 | int status; | |
946 | ||
947 | if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; | |
948 | state = (struct internal_state_deflate*)strm->state; | |
949 | ||
950 | status = state->status; | |
951 | if (status != INIT_STATE && | |
952 | status != EXTRA_STATE && | |
953 | status != NAME_STATE && | |
954 | status != COMMENT_STATE && | |
955 | status != HCRC_STATE && | |
956 | status != BUSY_STATE && | |
957 | status != FINISH_STATE) { | |
958 | return Z_STREAM_ERROR; | |
959 | } | |
960 | ||
961 | /* Deallocate in reverse order of allocations: */ | |
962 | TRY_FREE(strm, state->pending_buf); | |
963 | TRY_FREE(strm, state->head); | |
964 | TRY_FREE(strm, state->prev); | |
965 | TRY_FREE(strm, state->window); | |
966 | ||
967 | ZFREE(strm, state); | |
968 | state = Z_NULL; | |
969 | ||
970 | return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; | |
971 | } | |
972 | ||
973 | /* ========================================================================= | |
974 | * Copy the source state to the destination state. | |
975 | * To simplify the source, this is not supported for 16-bit MSDOS (which | |
976 | * doesn't have enough memory anyway to duplicate compression states). | |
977 | */ | |
978 | int ZEXPORT deflateCopy (z_streamp dest, z_streamp source) | |
979 | { | |
980 | #ifdef MAXSEG_64K | |
981 | return Z_STREAM_ERROR; | |
982 | #else | |
983 | deflate_state *ds; | |
984 | deflate_state *ss; | |
985 | ushf *overlay; | |
986 | ||
987 | ||
988 | if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { | |
989 | return Z_STREAM_ERROR; | |
990 | } | |
991 | ||
992 | ss = (deflate_state*)source->state; | |
993 | ||
994 | zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); | |
995 | ||
996 | ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); | |
997 | if (ds == Z_NULL) return Z_MEM_ERROR; | |
998 | dest->state = (struct internal_state FAR *) ds; | |
999 | zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); | |
1000 | ds->strm = dest; | |
1001 | ||
1002 | ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); | |
1003 | ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); | |
1004 | ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); | |
1005 | overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); | |
1006 | ds->pending_buf = (uchf *) overlay; | |
1007 | ||
1008 | if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || | |
1009 | ds->pending_buf == Z_NULL) { | |
1010 | deflateEnd (dest); | |
1011 | return Z_MEM_ERROR; | |
1012 | } | |
1013 | /* following zmemcpy do not work for 16-bit MSDOS */ | |
1014 | zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); | |
1015 | zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); | |
1016 | zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); | |
1017 | zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); | |
1018 | ||
1019 | ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); | |
1020 | ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); | |
1021 | ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; | |
1022 | ||
1023 | ds->l_desc.dyn_tree = ds->dyn_ltree; | |
1024 | ds->d_desc.dyn_tree = ds->dyn_dtree; | |
1025 | ds->bl_desc.dyn_tree = ds->bl_tree; | |
1026 | ||
1027 | return Z_OK; | |
1028 | #endif /* MAXSEG_64K */ | |
1029 | } | |
1030 | ||
1031 | /* =========================================================================== | |
1032 | * Read a new buffer from the current input stream, update the adler32 | |
1033 | * and total number of bytes read. All deflate() input goes through | |
1034 | * this function so some applications may wish to modify it to avoid | |
1035 | * allocating a large strm->next_in buffer and copying from it. | |
1036 | * (See also flush_pending()). | |
1037 | */ | |
1038 | local int read_buf(z_streamp strm, Bytef *buf, unsigned size) | |
1039 | { | |
1040 | struct internal_state_deflate *state = (struct internal_state_deflate*)strm->state; | |
1041 | unsigned len = strm->avail_in; | |
1042 | ||
1043 | if (len > size) len = size; | |
1044 | if (len == 0) return 0; | |
1045 | ||
1046 | strm->avail_in -= len; | |
1047 | ||
1048 | zmemcpy(buf, strm->next_in, len); | |
1049 | if (state->wrap == 1) { | |
1050 | strm->adler = adler32(strm->adler, buf, len); | |
1051 | } | |
1052 | #ifdef GZIP | |
1053 | else if (state->wrap == 2) { | |
1054 | strm->adler = crc32(strm->adler, buf, len); | |
1055 | } | |
1056 | #endif | |
1057 | strm->next_in += len; | |
1058 | strm->total_in += len; | |
1059 | ||
1060 | return (int)len; | |
1061 | } | |
1062 | ||
1063 | /* =========================================================================== | |
1064 | * Initialize the "longest match" routines for a new zlib stream | |
1065 | */ | |
1066 | local void lm_init (deflate_state *s) | |
1067 | { | |
1068 | s->window_size = (ulg)2L*s->w_size; | |
1069 | ||
1070 | CLEAR_HASH(s); | |
1071 | ||
1072 | /* Set the default configuration parameters: | |
1073 | */ | |
1074 | s->max_lazy_match = configuration_table[s->level].max_lazy; | |
1075 | s->good_match = configuration_table[s->level].good_length; | |
1076 | s->nice_match = configuration_table[s->level].nice_length; | |
1077 | s->max_chain_length = configuration_table[s->level].max_chain; | |
1078 | ||
1079 | s->strstart = 0; | |
1080 | s->block_start = 0L; | |
1081 | s->lookahead = 0; | |
1082 | s->insert = 0; | |
1083 | s->match_length = s->prev_length = MIN_MATCH-1; | |
1084 | s->match_available = 0; | |
1085 | s->ins_h = 0; | |
1086 | #ifndef FASTEST | |
1087 | #ifdef ASMV | |
1088 | match_init(); /* initialize the asm code */ | |
1089 | #endif | |
1090 | #endif | |
1091 | } | |
1092 | ||
1093 | #ifndef FASTEST | |
1094 | /* =========================================================================== | |
1095 | * Set match_start to the longest match starting at the given string and | |
1096 | * return its length. Matches shorter or equal to prev_length are discarded, | |
1097 | * in which case the result is equal to prev_length and match_start is | |
1098 | * garbage. | |
1099 | * IN assertions: cur_match is the head of the hash chain for the current | |
1100 | * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 | |
1101 | * OUT assertion: the match length is not greater than s->lookahead. | |
1102 | */ | |
1103 | #ifndef ASMV | |
1104 | /* For 80x86 and 680x0, an optimized version will be provided in match.asm or | |
1105 | * match.S. The code will be functionally equivalent. | |
1106 | */ | |
1107 | local uInt longest_match(deflate_state *s, IPos cur_match) | |
1108 | { | |
1109 | unsigned chain_length = s->max_chain_length;/* max hash chain length */ | |
1110 | register Bytef *scan = s->window + s->strstart; /* current string */ | |
1111 | register Bytef *match; /* matched string */ | |
1112 | register int len; /* length of current match */ | |
1113 | int best_len = s->prev_length; /* best match length so far */ | |
1114 | int nice_match = s->nice_match; /* stop if match long enough */ | |
1115 | IPos limit = s->strstart > (IPos)MAX_DIST(s) ? | |
1116 | s->strstart - (IPos)MAX_DIST(s) : NIL; | |
1117 | /* Stop when cur_match becomes <= limit. To simplify the code, | |
1118 | * we prevent matches with the string of window index 0. | |
1119 | */ | |
1120 | Posf *prev = s->prev; | |
1121 | uInt wmask = s->w_mask; | |
1122 | ||
1123 | #ifdef UNALIGNED_OK | |
1124 | /* Compare two bytes at a time. Note: this is not always beneficial. | |
1125 | * Try with and without -DUNALIGNED_OK to check. | |
1126 | */ | |
1127 | register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; | |
1128 | register ush scan_start = *(ushf*)scan; | |
1129 | register ush scan_end = *(ushf*)(scan+best_len-1); | |
1130 | #else | |
1131 | register Bytef *strend = s->window + s->strstart + MAX_MATCH; | |
1132 | register Byte scan_end1 = scan[best_len-1]; | |
1133 | register Byte scan_end = scan[best_len]; | |
1134 | #endif | |
1135 | ||
1136 | /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | |
1137 | * It is easy to get rid of this optimization if necessary. | |
1138 | */ | |
1139 | Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); | |
1140 | ||
1141 | /* Do not waste too much time if we already have a good match: */ | |
1142 | if (s->prev_length >= s->good_match) { | |
1143 | chain_length >>= 2; | |
1144 | } | |
1145 | /* Do not look for matches beyond the end of the input. This is necessary | |
1146 | * to make deflate deterministic. | |
1147 | */ | |
1148 | if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; | |
1149 | ||
1150 | Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); | |
1151 | ||
1152 | do { | |
1153 | Assert(cur_match < s->strstart, "no future"); | |
1154 | match = s->window + cur_match; | |
1155 | ||
1156 | /* Skip to next match if the match length cannot increase | |
1157 | * or if the match length is less than 2. Note that the checks below | |
1158 | * for insufficient lookahead only occur occasionally for performance | |
1159 | * reasons. Therefore uninitialized memory will be accessed, and | |
1160 | * conditional jumps will be made that depend on those values. | |
1161 | * However the length of the match is limited to the lookahead, so | |
1162 | * the output of deflate is not affected by the uninitialized values. | |
1163 | */ | |
1164 | #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) | |
1165 | /* This code assumes sizeof(unsigned short) == 2. Do not use | |
1166 | * UNALIGNED_OK if your compiler uses a different size. | |
1167 | */ | |
1168 | if (*(ushf*)(match+best_len-1) != scan_end || | |
1169 | *(ushf*)match != scan_start) continue; | |
1170 | ||
1171 | /* It is not necessary to compare scan[2] and match[2] since they are | |
1172 | * always equal when the other bytes match, given that the hash keys | |
1173 | * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at | |
1174 | * strstart+3, +5, ... up to strstart+257. We check for insufficient | |
1175 | * lookahead only every 4th comparison; the 128th check will be made | |
1176 | * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is | |
1177 | * necessary to put more guard bytes at the end of the window, or | |
1178 | * to check more often for insufficient lookahead. | |
1179 | */ | |
1180 | Assert(scan[2] == match[2], "scan[2]?"); | |
1181 | scan++, match++; | |
1182 | do { | |
1183 | } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && | |
1184 | *(ushf*)(scan+=2) == *(ushf*)(match+=2) && | |
1185 | *(ushf*)(scan+=2) == *(ushf*)(match+=2) && | |
1186 | *(ushf*)(scan+=2) == *(ushf*)(match+=2) && | |
1187 | scan < strend); | |
1188 | /* The funny "do {}" generates better code on most compilers */ | |
1189 | ||
1190 | /* Here, scan <= window+strstart+257 */ | |
1191 | Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | |
1192 | if (*scan == *match) scan++; | |
1193 | ||
1194 | len = (MAX_MATCH - 1) - (int)(strend-scan); | |
1195 | scan = strend - (MAX_MATCH-1); | |
1196 | ||
1197 | #else /* UNALIGNED_OK */ | |
1198 | ||
1199 | if (match[best_len] != scan_end || | |
1200 | match[best_len-1] != scan_end1 || | |
1201 | *match != *scan || | |
1202 | *++match != scan[1]) continue; | |
1203 | ||
1204 | /* The check at best_len-1 can be removed because it will be made | |
1205 | * again later. (This heuristic is not always a win.) | |
1206 | * It is not necessary to compare scan[2] and match[2] since they | |
1207 | * are always equal when the other bytes match, given that | |
1208 | * the hash keys are equal and that HASH_BITS >= 8. | |
1209 | */ | |
1210 | scan += 2, match++; | |
1211 | Assert(*scan == *match, "match[2]?"); | |
1212 | ||
1213 | /* We check for insufficient lookahead only every 8th comparison; | |
1214 | * the 256th check will be made at strstart+258. | |
1215 | */ | |
1216 | do { | |
1217 | } while (*++scan == *++match && *++scan == *++match && | |
1218 | *++scan == *++match && *++scan == *++match && | |
1219 | *++scan == *++match && *++scan == *++match && | |
1220 | *++scan == *++match && *++scan == *++match && | |
1221 | scan < strend); | |
1222 | ||
1223 | Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | |
1224 | ||
1225 | len = MAX_MATCH - (int)(strend - scan); | |
1226 | scan = strend - MAX_MATCH; | |
1227 | ||
1228 | #endif /* UNALIGNED_OK */ | |
1229 | ||
1230 | if (len > best_len) { | |
1231 | s->match_start = cur_match; | |
1232 | best_len = len; | |
1233 | if (len >= nice_match) break; | |
1234 | #ifdef UNALIGNED_OK | |
1235 | scan_end = *(ushf*)(scan+best_len-1); | |
1236 | #else | |
1237 | scan_end1 = scan[best_len-1]; | |
1238 | scan_end = scan[best_len]; | |
1239 | #endif | |
1240 | } | |
1241 | } while ((cur_match = prev[cur_match & wmask]) > limit | |
1242 | && --chain_length != 0); | |
1243 | ||
1244 | if ((uInt)best_len <= s->lookahead) return (uInt)best_len; | |
1245 | return s->lookahead; | |
1246 | } | |
1247 | #endif /* ASMV */ | |
1248 | ||
1249 | #else /* FASTEST */ | |
1250 | ||
1251 | /* --------------------------------------------------------------------------- | |
1252 | * Optimized version for FASTEST only | |
1253 | */ | |
1254 | local uInt longest_match(s, cur_match) | |
1255 | deflate_state *s; | |
1256 | IPos cur_match; /* current match */ | |
1257 | { | |
1258 | register Bytef *scan = s->window + s->strstart; /* current string */ | |
1259 | register Bytef *match; /* matched string */ | |
1260 | register int len; /* length of current match */ | |
1261 | register Bytef *strend = s->window + s->strstart + MAX_MATCH; | |
1262 | ||
1263 | /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | |
1264 | * It is easy to get rid of this optimization if necessary. | |
1265 | */ | |
1266 | Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); | |
1267 | ||
1268 | Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); | |
1269 | ||
1270 | Assert(cur_match < s->strstart, "no future"); | |
1271 | ||
1272 | match = s->window + cur_match; | |
1273 | ||
1274 | /* Return failure if the match length is less than 2: | |
1275 | */ | |
1276 | if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; | |
1277 | ||
1278 | /* The check at best_len-1 can be removed because it will be made | |
1279 | * again later. (This heuristic is not always a win.) | |
1280 | * It is not necessary to compare scan[2] and match[2] since they | |
1281 | * are always equal when the other bytes match, given that | |
1282 | * the hash keys are equal and that HASH_BITS >= 8. | |
1283 | */ | |
1284 | scan += 2, match += 2; | |
1285 | Assert(*scan == *match, "match[2]?"); | |
1286 | ||
1287 | /* We check for insufficient lookahead only every 8th comparison; | |
1288 | * the 256th check will be made at strstart+258. | |
1289 | */ | |
1290 | do { | |
1291 | } while (*++scan == *++match && *++scan == *++match && | |
1292 | *++scan == *++match && *++scan == *++match && | |
1293 | *++scan == *++match && *++scan == *++match && | |
1294 | *++scan == *++match && *++scan == *++match && | |
1295 | scan < strend); | |
1296 | ||
1297 | Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | |
1298 | ||
1299 | len = MAX_MATCH - (int)(strend - scan); | |
1300 | ||
1301 | if (len < MIN_MATCH) return MIN_MATCH - 1; | |
1302 | ||
1303 | s->match_start = cur_match; | |
1304 | return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; | |
1305 | } | |
1306 | ||
1307 | #endif /* FASTEST */ | |
1308 | ||
1309 | #ifdef DEBUG | |
1310 | /* =========================================================================== | |
1311 | * Check that the match at match_start is indeed a match. | |
1312 | */ | |
1313 | local void check_match(s, start, match, length) | |
1314 | deflate_state *s; | |
1315 | IPos start, match; | |
1316 | int length; | |
1317 | { | |
1318 | /* check that the match is indeed a match */ | |
1319 | if (zmemcmp(s->window + match, | |
1320 | s->window + start, length) != EQUAL) { | |
1321 | fprintf(stderr, " start %u, match %u, length %d\n", | |
1322 | start, match, length); | |
1323 | do { | |
1324 | fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); | |
1325 | } while (--length != 0); | |
1326 | z_error("invalid match"); | |
1327 | } | |
1328 | if (z_verbose > 1) { | |
1329 | fprintf(stderr,"\\[%d,%d]", start-match, length); | |
1330 | do { putc(s->window[start++], stderr); } while (--length != 0); | |
1331 | } | |
1332 | } | |
1333 | #else | |
1334 | # define check_match(s, start, match, length) | |
1335 | #endif /* DEBUG */ | |
1336 | ||
1337 | /* =========================================================================== | |
1338 | * Fill the window when the lookahead becomes insufficient. | |
1339 | * Updates strstart and lookahead. | |
1340 | * | |
1341 | * IN assertion: lookahead < MIN_LOOKAHEAD | |
1342 | * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD | |
1343 | * At least one byte has been read, or avail_in == 0; reads are | |
1344 | * performed for at least two bytes (required for the zip translate_eol | |
1345 | * option -- not supported here). | |
1346 | */ | |
1347 | local void fill_window(deflate_state *s) | |
1348 | { | |
1349 | register unsigned n, m; | |
1350 | register Posf *p; | |
1351 | unsigned more; /* Amount of free space at the end of the window. */ | |
1352 | uInt wsize = s->w_size; | |
1353 | ||
1354 | Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); | |
1355 | ||
1356 | do { | |
1357 | more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); | |
1358 | ||
1359 | /* Deal with !@#$% 64K limit: */ | |
1360 | if (sizeof(int) <= 2) { | |
1361 | if (more == 0 && s->strstart == 0 && s->lookahead == 0) { | |
1362 | more = wsize; | |
1363 | ||
1364 | } else if (more == (unsigned)(-1)) { | |
1365 | /* Very unlikely, but possible on 16 bit machine if | |
1366 | * strstart == 0 && lookahead == 1 (input done a byte at time) | |
1367 | */ | |
1368 | more--; | |
1369 | } | |
1370 | } | |
1371 | ||
1372 | /* If the window is almost full and there is insufficient lookahead, | |
1373 | * move the upper half to the lower one to make room in the upper half. | |
1374 | */ | |
1375 | if (s->strstart >= wsize+MAX_DIST(s)) { | |
1376 | ||
1377 | zmemcpy(s->window, s->window+wsize, (unsigned)wsize); | |
1378 | s->match_start -= wsize; | |
1379 | s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ | |
1380 | s->block_start -= (long) wsize; | |
1381 | ||
1382 | /* Slide the hash table (could be avoided with 32 bit values | |
1383 | at the expense of memory usage). We slide even when level == 0 | |
1384 | to keep the hash table consistent if we switch back to level > 0 | |
1385 | later. (Using level 0 permanently is not an optimal usage of | |
1386 | zlib, so we don't care about this pathological case.) | |
1387 | */ | |
1388 | n = s->hash_size; | |
1389 | p = &s->head[n]; | |
1390 | do { | |
1391 | m = *--p; | |
1392 | *p = (Pos)(m >= wsize ? m-wsize : NIL); | |
1393 | } while (--n); | |
1394 | ||
1395 | n = wsize; | |
1396 | #ifndef FASTEST | |
1397 | p = &s->prev[n]; | |
1398 | do { | |
1399 | m = *--p; | |
1400 | *p = (Pos)(m >= wsize ? m-wsize : NIL); | |
1401 | /* If n is not on any hash chain, prev[n] is garbage but | |
1402 | * its value will never be used. | |
1403 | */ | |
1404 | } while (--n); | |
1405 | #endif | |
1406 | more += wsize; | |
1407 | } | |
1408 | if (s->strm->avail_in == 0) break; | |
1409 | ||
1410 | /* If there was no sliding: | |
1411 | * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && | |
1412 | * more == window_size - lookahead - strstart | |
1413 | * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) | |
1414 | * => more >= window_size - 2*WSIZE + 2 | |
1415 | * In the BIG_MEM or MMAP case (not yet supported), | |
1416 | * window_size == input_size + MIN_LOOKAHEAD && | |
1417 | * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. | |
1418 | * Otherwise, window_size == 2*WSIZE so more >= 2. | |
1419 | * If there was sliding, more >= WSIZE. So in all cases, more >= 2. | |
1420 | */ | |
1421 | Assert(more >= 2, "more < 2"); | |
1422 | ||
1423 | n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); | |
1424 | s->lookahead += n; | |
1425 | ||
1426 | /* Initialize the hash value now that we have some input: */ | |
1427 | if (s->lookahead + s->insert >= MIN_MATCH) { | |
1428 | uInt str = s->strstart - s->insert; | |
1429 | s->ins_h = s->window[str]; | |
1430 | UPDATE_HASH(s, s->ins_h, s->window[str + 1]); | |
1431 | #if MIN_MATCH != 3 | |
1432 | Call UPDATE_HASH() MIN_MATCH-3 more times | |
1433 | #endif | |
1434 | while (s->insert) { | |
1435 | UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); | |
1436 | #ifndef FASTEST | |
1437 | s->prev[str & s->w_mask] = s->head[s->ins_h]; | |
1438 | #endif | |
1439 | s->head[s->ins_h] = (Pos)str; | |
1440 | str++; | |
1441 | s->insert--; | |
1442 | if (s->lookahead + s->insert < MIN_MATCH) | |
1443 | break; | |
1444 | } | |
1445 | } | |
1446 | /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, | |
1447 | * but this is not important since only literal bytes will be emitted. | |
1448 | */ | |
1449 | ||
1450 | } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); | |
1451 | ||
1452 | /* If the WIN_INIT bytes after the end of the current data have never been | |
1453 | * written, then zero those bytes in order to avoid memory check reports of | |
1454 | * the use of uninitialized (or uninitialised as Julian writes) bytes by | |
1455 | * the longest match routines. Update the high water mark for the next | |
1456 | * time through here. WIN_INIT is set to MAX_MATCH since the longest match | |
1457 | * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. | |
1458 | */ | |
1459 | if (s->high_water < s->window_size) { | |
1460 | ulg curr = s->strstart + (ulg)(s->lookahead); | |
1461 | ulg init; | |
1462 | ||
1463 | if (s->high_water < curr) { | |
1464 | /* Previous high water mark below current data -- zero WIN_INIT | |
1465 | * bytes or up to end of window, whichever is less. | |
1466 | */ | |
1467 | init = s->window_size - curr; | |
1468 | if (init > WIN_INIT) | |
1469 | init = WIN_INIT; | |
1470 | zmemzero(s->window + curr, (unsigned)init); | |
1471 | s->high_water = curr + init; | |
1472 | } | |
1473 | else if (s->high_water < (ulg)curr + WIN_INIT) { | |
1474 | /* High water mark at or above current data, but below current data | |
1475 | * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up | |
1476 | * to end of window, whichever is less. | |
1477 | */ | |
1478 | init = (ulg)curr + WIN_INIT - s->high_water; | |
1479 | if (init > s->window_size - s->high_water) | |
1480 | init = s->window_size - s->high_water; | |
1481 | zmemzero(s->window + s->high_water, (unsigned)init); | |
1482 | s->high_water += init; | |
1483 | } | |
1484 | } | |
1485 | ||
1486 | Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, | |
1487 | "not enough room for search"); | |
1488 | } | |
1489 | ||
1490 | /* =========================================================================== | |
1491 | * Flush the current block, with given end-of-file flag. | |
1492 | * IN assertion: strstart is set to the end of the current match. | |
1493 | */ | |
1494 | #define FLUSH_BLOCK_ONLY(s, last) { \ | |
1495 | _tr_flush_block(s, (s->block_start >= 0L ? \ | |
1496 | (charf *)&s->window[(unsigned)s->block_start] : \ | |
1497 | (charf *)Z_NULL), \ | |
1498 | (ulg)((long)s->strstart - s->block_start), \ | |
1499 | (last)); \ | |
1500 | s->block_start = s->strstart; \ | |
1501 | flush_pending(s->strm); \ | |
1502 | Tracev((stderr,"[FLUSH]")); \ | |
1503 | } | |
1504 | ||
1505 | /* Same but force premature exit if necessary. */ | |
1506 | #define FLUSH_BLOCK(s, last) { \ | |
1507 | FLUSH_BLOCK_ONLY(s, last); \ | |
1508 | if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ | |
1509 | } | |
1510 | ||
1511 | /* =========================================================================== | |
1512 | * Copy without compression as much as possible from the input stream, return | |
1513 | * the current block state. | |
1514 | * This function does not insert new strings in the dictionary since | |
1515 | * uncompressible data is probably not useful. This function is used | |
1516 | * only for the level=0 compression option. | |
1517 | * NOTE: this function should be optimized to avoid extra copying from | |
1518 | * window to pending_buf. | |
1519 | */ | |
1520 | local block_state deflate_stored(deflate_state *s, int flush) | |
1521 | { | |
1522 | /* Stored blocks are limited to 0xffff bytes, pending_buf is limited | |
1523 | * to pending_buf_size, and each stored block has a 5 byte header: | |
1524 | */ | |
1525 | ulg max_block_size = 0xffff; | |
1526 | ulg max_start; | |
1527 | ||
1528 | if (max_block_size > s->pending_buf_size - 5) { | |
1529 | max_block_size = s->pending_buf_size - 5; | |
1530 | } | |
1531 | ||
1532 | /* Copy as much as possible from input to output: */ | |
1533 | for (;;) { | |
1534 | /* Fill the window as much as possible: */ | |
1535 | if (s->lookahead <= 1) { | |
1536 | ||
1537 | Assert(s->strstart < s->w_size+MAX_DIST(s) || | |
1538 | s->block_start >= (long)s->w_size, "slide too late"); | |
1539 | ||
1540 | fill_window(s); | |
1541 | if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; | |
1542 | ||
1543 | if (s->lookahead == 0) break; /* flush the current block */ | |
1544 | } | |
1545 | Assert(s->block_start >= 0L, "block gone"); | |
1546 | ||
1547 | s->strstart += s->lookahead; | |
1548 | s->lookahead = 0; | |
1549 | ||
1550 | /* Emit a stored block if pending_buf will be full: */ | |
1551 | max_start = s->block_start + max_block_size; | |
1552 | if (s->strstart == 0 || (ulg)s->strstart >= max_start) { | |
1553 | /* strstart == 0 is possible when wraparound on 16-bit machine */ | |
1554 | s->lookahead = (uInt)(s->strstart - max_start); | |
1555 | s->strstart = (uInt)max_start; | |
1556 | FLUSH_BLOCK(s, 0); | |
1557 | } | |
1558 | /* Flush if we may have to slide, otherwise block_start may become | |
1559 | * negative and the data will be gone: | |
1560 | */ | |
1561 | if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { | |
1562 | FLUSH_BLOCK(s, 0); | |
1563 | } | |
1564 | } | |
1565 | s->insert = 0; | |
1566 | if (flush == Z_FINISH) { | |
1567 | FLUSH_BLOCK(s, 1); | |
1568 | return finish_done; | |
1569 | } | |
1570 | if ((long)s->strstart > s->block_start) | |
1571 | FLUSH_BLOCK(s, 0); | |
1572 | return block_done; | |
1573 | } | |
1574 | ||
1575 | /* =========================================================================== | |
1576 | * Compress as much as possible from the input stream, return the current | |
1577 | * block state. | |
1578 | * This function does not perform lazy evaluation of matches and inserts | |
1579 | * new strings in the dictionary only for unmatched strings or for short | |
1580 | * matches. It is used only for the fast compression options. | |
1581 | */ | |
1582 | local block_state deflate_fast(deflate_state *s, int flush) | |
1583 | { | |
1584 | IPos hash_head; /* head of the hash chain */ | |
1585 | int bflush; /* set if current block must be flushed */ | |
1586 | ||
1587 | for (;;) { | |
1588 | /* Make sure that we always have enough lookahead, except | |
1589 | * at the end of the input file. We need MAX_MATCH bytes | |
1590 | * for the next match, plus MIN_MATCH bytes to insert the | |
1591 | * string following the next match. | |
1592 | */ | |
1593 | if (s->lookahead < MIN_LOOKAHEAD) { | |
1594 | fill_window(s); | |
1595 | if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | |
1596 | return need_more; | |
1597 | } | |
1598 | if (s->lookahead == 0) break; /* flush the current block */ | |
1599 | } | |
1600 | ||
1601 | /* Insert the string window[strstart .. strstart+2] in the | |
1602 | * dictionary, and set hash_head to the head of the hash chain: | |
1603 | */ | |
1604 | hash_head = NIL; | |
1605 | if (s->lookahead >= MIN_MATCH) { | |
1606 | INSERT_STRING(s, s->strstart, hash_head); | |
1607 | } | |
1608 | ||
1609 | /* Find the longest match, discarding those <= prev_length. | |
1610 | * At this point we have always match_length < MIN_MATCH | |
1611 | */ | |
1612 | if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { | |
1613 | /* To simplify the code, we prevent matches with the string | |
1614 | * of window index 0 (in particular we have to avoid a match | |
1615 | * of the string with itself at the start of the input file). | |
1616 | */ | |
1617 | s->match_length = longest_match (s, hash_head); | |
1618 | /* longest_match() sets match_start */ | |
1619 | } | |
1620 | if (s->match_length >= MIN_MATCH) { | |
1621 | check_match(s, s->strstart, s->match_start, s->match_length); | |
1622 | ||
1623 | _tr_tally_dist(s, s->strstart - s->match_start, | |
1624 | s->match_length - MIN_MATCH, bflush); | |
1625 | ||
1626 | s->lookahead -= s->match_length; | |
1627 | ||
1628 | /* Insert new strings in the hash table only if the match length | |
1629 | * is not too large. This saves time but degrades compression. | |
1630 | */ | |
1631 | #ifndef FASTEST | |
1632 | if (s->match_length <= s->max_insert_length && | |
1633 | s->lookahead >= MIN_MATCH) { | |
1634 | s->match_length--; /* string at strstart already in table */ | |
1635 | do { | |
1636 | s->strstart++; | |
1637 | INSERT_STRING(s, s->strstart, hash_head); | |
1638 | /* strstart never exceeds WSIZE-MAX_MATCH, so there are | |
1639 | * always MIN_MATCH bytes ahead. | |
1640 | */ | |
1641 | } while (--s->match_length != 0); | |
1642 | s->strstart++; | |
1643 | } else | |
1644 | #endif | |
1645 | { | |
1646 | s->strstart += s->match_length; | |
1647 | s->match_length = 0; | |
1648 | s->ins_h = s->window[s->strstart]; | |
1649 | UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); | |
1650 | #if MIN_MATCH != 3 | |
1651 | Call UPDATE_HASH() MIN_MATCH-3 more times | |
1652 | #endif | |
1653 | /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not | |
1654 | * matter since it will be recomputed at next deflate call. | |
1655 | */ | |
1656 | } | |
1657 | } else { | |
1658 | /* No match, output a literal byte */ | |
1659 | Tracevv((stderr,"%c", s->window[s->strstart])); | |
1660 | _tr_tally_lit (s, s->window[s->strstart], bflush); | |
1661 | s->lookahead--; | |
1662 | s->strstart++; | |
1663 | } | |
1664 | if (bflush) FLUSH_BLOCK(s, 0); | |
1665 | } | |
1666 | s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; | |
1667 | if (flush == Z_FINISH) { | |
1668 | FLUSH_BLOCK(s, 1); | |
1669 | return finish_done; | |
1670 | } | |
1671 | if (s->last_lit) | |
1672 | FLUSH_BLOCK(s, 0); | |
1673 | return block_done; | |
1674 | } | |
1675 | ||
1676 | #ifndef FASTEST | |
1677 | /* =========================================================================== | |
1678 | * Same as above, but achieves better compression. We use a lazy | |
1679 | * evaluation for matches: a match is finally adopted only if there is | |
1680 | * no better match at the next window position. | |
1681 | */ | |
1682 | local block_state deflate_slow(deflate_state *s, int flush) | |
1683 | { | |
1684 | IPos hash_head; /* head of hash chain */ | |
1685 | int bflush; /* set if current block must be flushed */ | |
1686 | ||
1687 | /* Process the input block. */ | |
1688 | for (;;) { | |
1689 | /* Make sure that we always have enough lookahead, except | |
1690 | * at the end of the input file. We need MAX_MATCH bytes | |
1691 | * for the next match, plus MIN_MATCH bytes to insert the | |
1692 | * string following the next match. | |
1693 | */ | |
1694 | if (s->lookahead < MIN_LOOKAHEAD) { | |
1695 | fill_window(s); | |
1696 | if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | |
1697 | return need_more; | |
1698 | } | |
1699 | if (s->lookahead == 0) break; /* flush the current block */ | |
1700 | } | |
1701 | ||
1702 | /* Insert the string window[strstart .. strstart+2] in the | |
1703 | * dictionary, and set hash_head to the head of the hash chain: | |
1704 | */ | |
1705 | hash_head = NIL; | |
1706 | if (s->lookahead >= MIN_MATCH) { | |
1707 | INSERT_STRING(s, s->strstart, hash_head); | |
1708 | } | |
1709 | ||
1710 | /* Find the longest match, discarding those <= prev_length. | |
1711 | */ | |
1712 | s->prev_length = s->match_length, s->prev_match = s->match_start; | |
1713 | s->match_length = MIN_MATCH-1; | |
1714 | ||
1715 | if (hash_head != NIL && s->prev_length < s->max_lazy_match && | |
1716 | s->strstart - hash_head <= MAX_DIST(s)) { | |
1717 | /* To simplify the code, we prevent matches with the string | |
1718 | * of window index 0 (in particular we have to avoid a match | |
1719 | * of the string with itself at the start of the input file). | |
1720 | */ | |
1721 | s->match_length = longest_match (s, hash_head); | |
1722 | /* longest_match() sets match_start */ | |
1723 | ||
1724 | if (s->match_length <= 5 && (s->strategy == Z_FILTERED | |
1725 | #if TOO_FAR <= 32767 | |
1726 | || (s->match_length == MIN_MATCH && | |
1727 | s->strstart - s->match_start > TOO_FAR) | |
1728 | #endif | |
1729 | )) { | |
1730 | ||
1731 | /* If prev_match is also MIN_MATCH, match_start is garbage | |
1732 | * but we will ignore the current match anyway. | |
1733 | */ | |
1734 | s->match_length = MIN_MATCH-1; | |
1735 | } | |
1736 | } | |
1737 | /* If there was a match at the previous step and the current | |
1738 | * match is not better, output the previous match: | |
1739 | */ | |
1740 | if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { | |
1741 | uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; | |
1742 | /* Do not insert strings in hash table beyond this. */ | |
1743 | ||
1744 | check_match(s, s->strstart-1, s->prev_match, s->prev_length); | |
1745 | ||
1746 | _tr_tally_dist(s, s->strstart -1 - s->prev_match, | |
1747 | s->prev_length - MIN_MATCH, bflush); | |
1748 | ||
1749 | /* Insert in hash table all strings up to the end of the match. | |
1750 | * strstart-1 and strstart are already inserted. If there is not | |
1751 | * enough lookahead, the last two strings are not inserted in | |
1752 | * the hash table. | |
1753 | */ | |
1754 | s->lookahead -= s->prev_length-1; | |
1755 | s->prev_length -= 2; | |
1756 | do { | |
1757 | if (++s->strstart <= max_insert) { | |
1758 | INSERT_STRING(s, s->strstart, hash_head); | |
1759 | } | |
1760 | } while (--s->prev_length != 0); | |
1761 | s->match_available = 0; | |
1762 | s->match_length = MIN_MATCH-1; | |
1763 | s->strstart++; | |
1764 | ||
1765 | if (bflush) FLUSH_BLOCK(s, 0); | |
1766 | ||
1767 | } else if (s->match_available) { | |
1768 | /* If there was no match at the previous position, output a | |
1769 | * single literal. If there was a match but the current match | |
1770 | * is longer, truncate the previous match to a single literal. | |
1771 | */ | |
1772 | Tracevv((stderr,"%c", s->window[s->strstart-1])); | |
1773 | _tr_tally_lit(s, s->window[s->strstart-1], bflush); | |
1774 | if (bflush) { | |
1775 | FLUSH_BLOCK_ONLY(s, 0); | |
1776 | } | |
1777 | s->strstart++; | |
1778 | s->lookahead--; | |
1779 | if (s->strm->avail_out == 0) return need_more; | |
1780 | } else { | |
1781 | /* There is no previous match to compare with, wait for | |
1782 | * the next step to decide. | |
1783 | */ | |
1784 | s->match_available = 1; | |
1785 | s->strstart++; | |
1786 | s->lookahead--; | |
1787 | } | |
1788 | } | |
1789 | Assert (flush != Z_NO_FLUSH, "no flush?"); | |
1790 | if (s->match_available) { | |
1791 | Tracevv((stderr,"%c", s->window[s->strstart-1])); | |
1792 | _tr_tally_lit(s, s->window[s->strstart-1], bflush); | |
1793 | s->match_available = 0; | |
1794 | } | |
1795 | s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; | |
1796 | if (flush == Z_FINISH) { | |
1797 | FLUSH_BLOCK(s, 1); | |
1798 | return finish_done; | |
1799 | } | |
1800 | if (s->last_lit) | |
1801 | FLUSH_BLOCK(s, 0); | |
1802 | return block_done; | |
1803 | } | |
1804 | #endif /* FASTEST */ | |
1805 | ||
1806 | /* =========================================================================== | |
1807 | * For Z_RLE, simply look for runs of bytes, generate matches only of distance | |
1808 | * one. Do not maintain a hash table. (It will be regenerated if this run of | |
1809 | * deflate switches away from Z_RLE.) | |
1810 | */ | |
1811 | local block_state deflate_rle(deflate_state *s, int flush) | |
1812 | { | |
1813 | int bflush; /* set if current block must be flushed */ | |
1814 | uInt prev; /* byte at distance one to match */ | |
1815 | Bytef *scan, *strend; /* scan goes up to strend for length of run */ | |
1816 | ||
1817 | for (;;) { | |
1818 | /* Make sure that we always have enough lookahead, except | |
1819 | * at the end of the input file. We need MAX_MATCH bytes | |
1820 | * for the longest run, plus one for the unrolled loop. | |
1821 | */ | |
1822 | if (s->lookahead <= MAX_MATCH) { | |
1823 | fill_window(s); | |
1824 | if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { | |
1825 | return need_more; | |
1826 | } | |
1827 | if (s->lookahead == 0) break; /* flush the current block */ | |
1828 | } | |
1829 | ||
1830 | /* See how many times the previous byte repeats */ | |
1831 | s->match_length = 0; | |
1832 | if (s->lookahead >= MIN_MATCH && s->strstart > 0) { | |
1833 | scan = s->window + s->strstart - 1; | |
1834 | prev = *scan; | |
1835 | if (prev == *++scan && prev == *++scan && prev == *++scan) { | |
1836 | strend = s->window + s->strstart + MAX_MATCH; | |
1837 | do { | |
1838 | } while (prev == *++scan && prev == *++scan && | |
1839 | prev == *++scan && prev == *++scan && | |
1840 | prev == *++scan && prev == *++scan && | |
1841 | prev == *++scan && prev == *++scan && | |
1842 | scan < strend); | |
1843 | s->match_length = MAX_MATCH - (int)(strend - scan); | |
1844 | if (s->match_length > s->lookahead) | |
1845 | s->match_length = s->lookahead; | |
1846 | } | |
1847 | Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); | |
1848 | } | |
1849 | ||
1850 | /* Emit match if have run of MIN_MATCH or longer, else emit literal */ | |
1851 | if (s->match_length >= MIN_MATCH) { | |
1852 | check_match(s, s->strstart, s->strstart - 1, s->match_length); | |
1853 | ||
1854 | _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); | |
1855 | ||
1856 | s->lookahead -= s->match_length; | |
1857 | s->strstart += s->match_length; | |
1858 | s->match_length = 0; | |
1859 | } else { | |
1860 | /* No match, output a literal byte */ | |
1861 | Tracevv((stderr,"%c", s->window[s->strstart])); | |
1862 | _tr_tally_lit (s, s->window[s->strstart], bflush); | |
1863 | s->lookahead--; | |
1864 | s->strstart++; | |
1865 | } | |
1866 | if (bflush) FLUSH_BLOCK(s, 0); | |
1867 | } | |
1868 | s->insert = 0; | |
1869 | if (flush == Z_FINISH) { | |
1870 | FLUSH_BLOCK(s, 1); | |
1871 | return finish_done; | |
1872 | } | |
1873 | if (s->last_lit) | |
1874 | FLUSH_BLOCK(s, 0); | |
1875 | return block_done; | |
1876 | } | |
1877 | ||
1878 | /* =========================================================================== | |
1879 | * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. | |
1880 | * (It will be regenerated if this run of deflate switches away from Huffman.) | |
1881 | */ | |
1882 | local block_state deflate_huff(deflate_state *s, int flush) | |
1883 | { | |
1884 | int bflush; /* set if current block must be flushed */ | |
1885 | ||
1886 | for (;;) { | |
1887 | /* Make sure that we have a literal to write. */ | |
1888 | if (s->lookahead == 0) { | |
1889 | fill_window(s); | |
1890 | if (s->lookahead == 0) { | |
1891 | if (flush == Z_NO_FLUSH) | |
1892 | return need_more; | |
1893 | break; /* flush the current block */ | |
1894 | } | |
1895 | } | |
1896 | ||
1897 | /* Output a literal byte */ | |
1898 | s->match_length = 0; | |
1899 | Tracevv((stderr,"%c", s->window[s->strstart])); | |
1900 | _tr_tally_lit (s, s->window[s->strstart], bflush); | |
1901 | s->lookahead--; | |
1902 | s->strstart++; | |
1903 | if (bflush) FLUSH_BLOCK(s, 0); | |
1904 | } | |
1905 | s->insert = 0; | |
1906 | if (flush == Z_FINISH) { | |
1907 | FLUSH_BLOCK(s, 1); | |
1908 | return finish_done; | |
1909 | } | |
1910 | if (s->last_lit) | |
1911 | FLUSH_BLOCK(s, 0); | |
1912 | return block_done; | |
1913 | } |