cc68a136 |
1 | /* crc32.c -- compute the CRC-32 of a data stream |
2 | * Copyright (C) 1995-2005 Mark Adler |
3 | * For conditions of distribution and use, see copyright notice in zlib.h |
4 | * |
5 | * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster |
6 | * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing |
7 | * tables for updating the shift register in one step with three exclusive-ors |
8 | * instead of four steps with four exclusive-ors. This results in about a |
9 | * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. |
10 | */ |
11 | |
12 | /* @(#) $Id$ */ |
13 | |
14 | /* |
15 | Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore |
16 | protection on the static variables used to control the first-use generation |
17 | of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should |
18 | first call get_crc_table() to initialize the tables before allowing more than |
19 | one thread to use crc32(). |
20 | */ |
21 | |
22 | #ifdef MAKECRCH |
23 | # include <stdio.h> |
24 | # ifndef DYNAMIC_CRC_TABLE |
25 | # define DYNAMIC_CRC_TABLE |
26 | # endif /* !DYNAMIC_CRC_TABLE */ |
27 | #endif /* MAKECRCH */ |
28 | |
29 | #include "zutil.h" /* for STDC and FAR definitions */ |
30 | |
31 | #define local static |
32 | |
33 | /* Find a four-byte integer type for crc32_little() and crc32_big(). */ |
34 | #ifndef NOBYFOUR |
35 | # ifdef STDC /* need ANSI C limits.h to determine sizes */ |
36 | # include <limits.h> |
37 | # define BYFOUR |
38 | # if (UINT_MAX == 0xffffffffUL) |
39 | typedef unsigned int u4; |
40 | # else |
41 | # if (ULONG_MAX == 0xffffffffUL) |
42 | typedef unsigned long u4; |
43 | # else |
44 | # if (USHRT_MAX == 0xffffffffUL) |
45 | typedef unsigned short u4; |
46 | # else |
47 | # undef BYFOUR /* can't find a four-byte integer type! */ |
48 | # endif |
49 | # endif |
50 | # endif |
51 | # endif /* STDC */ |
52 | #endif /* !NOBYFOUR */ |
53 | |
54 | /* Definitions for doing the crc four data bytes at a time. */ |
55 | #ifdef BYFOUR |
56 | # define REV(w) (((w)>>24)+(((w)>>8)&0xff00)+ \ |
57 | (((w)&0xff00)<<8)+(((w)&0xff)<<24)) |
58 | local unsigned long crc32_little OF((unsigned long, |
59 | const unsigned char FAR *, unsigned)); |
60 | local unsigned long crc32_big OF((unsigned long, |
61 | const unsigned char FAR *, unsigned)); |
62 | # define TBLS 8 |
63 | #else |
64 | # define TBLS 1 |
65 | #endif /* BYFOUR */ |
66 | |
67 | /* Local functions for crc concatenation */ |
68 | local unsigned long gf2_matrix_times OF((unsigned long *mat, |
69 | unsigned long vec)); |
70 | local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); |
71 | |
72 | #ifdef DYNAMIC_CRC_TABLE |
73 | |
74 | local volatile int crc_table_empty = 1; |
75 | local unsigned long FAR crc_table[TBLS][256]; |
76 | local void make_crc_table OF((void)); |
77 | #ifdef MAKECRCH |
78 | local void write_table OF((FILE *, const unsigned long FAR *)); |
79 | #endif /* MAKECRCH */ |
80 | /* |
81 | Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: |
82 | x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. |
83 | |
84 | Polynomials over GF(2) are represented in binary, one bit per coefficient, |
85 | with the lowest powers in the most significant bit. Then adding polynomials |
86 | is just exclusive-or, and multiplying a polynomial by x is a right shift by |
87 | one. If we call the above polynomial p, and represent a byte as the |
88 | polynomial q, also with the lowest power in the most significant bit (so the |
89 | byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, |
90 | where a mod b means the remainder after dividing a by b. |
91 | |
92 | This calculation is done using the shift-register method of multiplying and |
93 | taking the remainder. The register is initialized to zero, and for each |
94 | incoming bit, x^32 is added mod p to the register if the bit is a one (where |
95 | x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by |
96 | x (which is shifting right by one and adding x^32 mod p if the bit shifted |
97 | out is a one). We start with the highest power (least significant bit) of |
98 | q and repeat for all eight bits of q. |
99 | |
100 | The first table is simply the CRC of all possible eight bit values. This is |
101 | all the information needed to generate CRCs on data a byte at a time for all |
102 | combinations of CRC register values and incoming bytes. The remaining tables |
103 | allow for word-at-a-time CRC calculation for both big-endian and little- |
104 | endian machines, where a word is four bytes. |
105 | */ |
106 | local void make_crc_table() |
107 | { |
108 | unsigned long c; |
109 | int n, k; |
110 | unsigned long poly; /* polynomial exclusive-or pattern */ |
111 | /* terms of polynomial defining this crc (except x^32): */ |
112 | static volatile int first = 1; /* flag to limit concurrent making */ |
113 | static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; |
114 | |
115 | /* See if another task is already doing this (not thread-safe, but better |
116 | than nothing -- significantly reduces duration of vulnerability in |
117 | case the advice about DYNAMIC_CRC_TABLE is ignored) */ |
118 | if (first) { |
119 | first = 0; |
120 | |
121 | /* make exclusive-or pattern from polynomial (0xedb88320UL) */ |
122 | poly = 0UL; |
123 | for (n = 0; n < sizeof(p)/sizeof(unsigned char); n++) |
124 | poly |= 1UL << (31 - p[n]); |
125 | |
126 | /* generate a crc for every 8-bit value */ |
127 | for (n = 0; n < 256; n++) { |
128 | c = (unsigned long)n; |
129 | for (k = 0; k < 8; k++) |
130 | c = c & 1 ? poly ^ (c >> 1) : c >> 1; |
131 | crc_table[0][n] = c; |
132 | } |
133 | |
134 | #ifdef BYFOUR |
135 | /* generate crc for each value followed by one, two, and three zeros, |
136 | and then the byte reversal of those as well as the first table */ |
137 | for (n = 0; n < 256; n++) { |
138 | c = crc_table[0][n]; |
139 | crc_table[4][n] = REV(c); |
140 | for (k = 1; k < 4; k++) { |
141 | c = crc_table[0][c & 0xff] ^ (c >> 8); |
142 | crc_table[k][n] = c; |
143 | crc_table[k + 4][n] = REV(c); |
144 | } |
145 | } |
146 | #endif /* BYFOUR */ |
147 | |
148 | crc_table_empty = 0; |
149 | } |
150 | else { /* not first */ |
151 | /* wait for the other guy to finish (not efficient, but rare) */ |
152 | while (crc_table_empty) |
153 | ; |
154 | } |
155 | |
156 | #ifdef MAKECRCH |
157 | /* write out CRC tables to crc32.h */ |
158 | { |
159 | FILE *out; |
160 | |
161 | out = fopen("crc32.h", "w"); |
162 | if (out == NULL) return; |
163 | fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); |
164 | fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); |
165 | fprintf(out, "local const unsigned long FAR "); |
166 | fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); |
167 | write_table(out, crc_table[0]); |
168 | # ifdef BYFOUR |
169 | fprintf(out, "#ifdef BYFOUR\n"); |
170 | for (k = 1; k < 8; k++) { |
171 | fprintf(out, " },\n {\n"); |
172 | write_table(out, crc_table[k]); |
173 | } |
174 | fprintf(out, "#endif\n"); |
175 | # endif /* BYFOUR */ |
176 | fprintf(out, " }\n};\n"); |
177 | fclose(out); |
178 | } |
179 | #endif /* MAKECRCH */ |
180 | } |
181 | |
182 | #ifdef MAKECRCH |
183 | local void write_table(out, table) |
184 | FILE *out; |
185 | const unsigned long FAR *table; |
186 | { |
187 | int n; |
188 | |
189 | for (n = 0; n < 256; n++) |
190 | fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", table[n], |
191 | n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); |
192 | } |
193 | #endif /* MAKECRCH */ |
194 | |
195 | #else /* !DYNAMIC_CRC_TABLE */ |
196 | /* ======================================================================== |
197 | * Tables of CRC-32s of all single-byte values, made by make_crc_table(). |
198 | */ |
199 | #include "crc32.h" |
200 | #endif /* DYNAMIC_CRC_TABLE */ |
201 | |
202 | /* ========================================================================= |
203 | * This function can be used by asm versions of crc32() |
204 | */ |
205 | const unsigned long FAR * ZEXPORT get_crc_table() |
206 | { |
207 | #ifdef DYNAMIC_CRC_TABLE |
208 | if (crc_table_empty) |
209 | make_crc_table(); |
210 | #endif /* DYNAMIC_CRC_TABLE */ |
211 | return (const unsigned long FAR *)crc_table; |
212 | } |
213 | |
214 | /* ========================================================================= */ |
215 | #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) |
216 | #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 |
217 | |
218 | /* ========================================================================= */ |
219 | unsigned long ZEXPORT crc32(crc, buf, len) |
220 | unsigned long crc; |
221 | const unsigned char FAR *buf; |
222 | unsigned len; |
223 | { |
224 | if (buf == Z_NULL) return 0UL; |
225 | |
226 | #ifdef DYNAMIC_CRC_TABLE |
227 | if (crc_table_empty) |
228 | make_crc_table(); |
229 | #endif /* DYNAMIC_CRC_TABLE */ |
230 | |
231 | #ifdef BYFOUR |
232 | if (sizeof(void *) == sizeof(ptrdiff_t)) { |
233 | u4 endian; |
234 | |
235 | endian = 1; |
236 | if (*((unsigned char *)(&endian))) |
237 | return crc32_little(crc, buf, len); |
238 | else |
239 | return crc32_big(crc, buf, len); |
240 | } |
241 | #endif /* BYFOUR */ |
242 | crc = crc ^ 0xffffffffUL; |
243 | while (len >= 8) { |
244 | DO8; |
245 | len -= 8; |
246 | } |
247 | if (len) do { |
248 | DO1; |
249 | } while (--len); |
250 | return crc ^ 0xffffffffUL; |
251 | } |
252 | |
253 | #ifdef BYFOUR |
254 | |
255 | /* ========================================================================= */ |
256 | #define DOLIT4 c ^= *buf4++; \ |
257 | c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ |
258 | crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] |
259 | #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 |
260 | |
261 | /* ========================================================================= */ |
262 | local unsigned long crc32_little(crc, buf, len) |
263 | unsigned long crc; |
264 | const unsigned char FAR *buf; |
265 | unsigned len; |
266 | { |
267 | register u4 c; |
268 | register const u4 FAR *buf4; |
269 | |
270 | c = (u4)crc; |
271 | c = ~c; |
272 | while (len && ((ptrdiff_t)buf & 3)) { |
273 | c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); |
274 | len--; |
275 | } |
276 | |
277 | buf4 = (const u4 FAR *)(const void FAR *)buf; |
278 | while (len >= 32) { |
279 | DOLIT32; |
280 | len -= 32; |
281 | } |
282 | while (len >= 4) { |
283 | DOLIT4; |
284 | len -= 4; |
285 | } |
286 | buf = (const unsigned char FAR *)buf4; |
287 | |
288 | if (len) do { |
289 | c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); |
290 | } while (--len); |
291 | c = ~c; |
292 | return (unsigned long)c; |
293 | } |
294 | |
295 | /* ========================================================================= */ |
296 | #define DOBIG4 c ^= *++buf4; \ |
297 | c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ |
298 | crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] |
299 | #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 |
300 | |
301 | /* ========================================================================= */ |
302 | local unsigned long crc32_big(crc, buf, len) |
303 | unsigned long crc; |
304 | const unsigned char FAR *buf; |
305 | unsigned len; |
306 | { |
307 | register u4 c; |
308 | register const u4 FAR *buf4; |
309 | |
310 | c = REV((u4)crc); |
311 | c = ~c; |
312 | while (len && ((ptrdiff_t)buf & 3)) { |
313 | c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); |
314 | len--; |
315 | } |
316 | |
317 | buf4 = (const u4 FAR *)(const void FAR *)buf; |
318 | buf4--; |
319 | while (len >= 32) { |
320 | DOBIG32; |
321 | len -= 32; |
322 | } |
323 | while (len >= 4) { |
324 | DOBIG4; |
325 | len -= 4; |
326 | } |
327 | buf4++; |
328 | buf = (const unsigned char FAR *)buf4; |
329 | |
330 | if (len) do { |
331 | c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); |
332 | } while (--len); |
333 | c = ~c; |
334 | return (unsigned long)(REV(c)); |
335 | } |
336 | |
337 | #endif /* BYFOUR */ |
338 | |
339 | #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ |
340 | |
341 | /* ========================================================================= */ |
342 | local unsigned long gf2_matrix_times(mat, vec) |
343 | unsigned long *mat; |
344 | unsigned long vec; |
345 | { |
346 | unsigned long sum; |
347 | |
348 | sum = 0; |
349 | while (vec) { |
350 | if (vec & 1) |
351 | sum ^= *mat; |
352 | vec >>= 1; |
353 | mat++; |
354 | } |
355 | return sum; |
356 | } |
357 | |
358 | /* ========================================================================= */ |
359 | local void gf2_matrix_square(square, mat) |
360 | unsigned long *square; |
361 | unsigned long *mat; |
362 | { |
363 | int n; |
364 | |
365 | for (n = 0; n < GF2_DIM; n++) |
366 | square[n] = gf2_matrix_times(mat, mat[n]); |
367 | } |
368 | |
369 | /* ========================================================================= */ |
370 | uLong ZEXPORT crc32_combine(crc1, crc2, len2) |
371 | uLong crc1; |
372 | uLong crc2; |
373 | z_off_t len2; |
374 | { |
375 | int n; |
376 | unsigned long row; |
377 | unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ |
378 | unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ |
379 | |
380 | /* degenerate case */ |
381 | if (len2 == 0) |
382 | return crc1; |
383 | |
384 | /* put operator for one zero bit in odd */ |
385 | odd[0] = 0xedb88320L; /* CRC-32 polynomial */ |
386 | row = 1; |
387 | for (n = 1; n < GF2_DIM; n++) { |
388 | odd[n] = row; |
389 | row <<= 1; |
390 | } |
391 | |
392 | /* put operator for two zero bits in even */ |
393 | gf2_matrix_square(even, odd); |
394 | |
395 | /* put operator for four zero bits in odd */ |
396 | gf2_matrix_square(odd, even); |
397 | |
398 | /* apply len2 zeros to crc1 (first square will put the operator for one |
399 | zero byte, eight zero bits, in even) */ |
400 | do { |
401 | /* apply zeros operator for this bit of len2 */ |
402 | gf2_matrix_square(even, odd); |
403 | if (len2 & 1) |
404 | crc1 = gf2_matrix_times(even, crc1); |
405 | len2 >>= 1; |
406 | |
407 | /* if no more bits set, then done */ |
408 | if (len2 == 0) |
409 | break; |
410 | |
411 | /* another iteration of the loop with odd and even swapped */ |
412 | gf2_matrix_square(odd, even); |
413 | if (len2 & 1) |
414 | crc1 = gf2_matrix_times(odd, crc1); |
415 | len2 >>= 1; |
416 | |
417 | /* if no more bits set, then done */ |
418 | } while (len2 != 0); |
419 | |
420 | /* return combined crc */ |
421 | crc1 ^= crc2; |
422 | return crc1; |
423 | } |