svp compiler: block ref counter version
[picodrive.git] / Pico / carthw / svp / ssp16.c
... / ...
CommitLineData
1// basic, incomplete SSP160x (SSP1601?) interpreter
2// with SVP memory controller emu
3
4// (c) Copyright 2008, Grazvydas "notaz" Ignotas
5// Free for non-commercial use.
6
7// For commercial use, separate licencing terms must be obtained.
8
9
10//#define USE_DEBUGGER
11/* detect ops with unimplemented/invalid fields.
12 * Useful for homebrew or if a new VR revision pops up. */
13//#define DO_CHECKS
14
15#include "../../PicoInt.h"
16
17/*
18 * Register info
19 *
20 * 0. "-"
21 * size: 16
22 * desc: Constant register with all bits set (0xffff).
23 *
24 * 1. "X"
25 * size: 16
26 * desc: Generic register. When set, updates P (P = X * Y * 2)
27 *
28 * 2. "Y"
29 * size: 16
30 * desc: Generic register. When set, updates P (P = X * Y * 2)
31 *
32 * 3. "A"
33 * size: 32
34 * desc: Accumulator.
35 *
36 * 4. "ST"
37 * size: 16
38 * desc: Status register. From MAME: bits 0-9 are CONTROL, other FLAG
39 * fedc ba98 7654 3210
40 * 210 - RPL (?) "Loop size". If non-zero, makes (rX+) and (rX-) respectively
41 * modulo-increment and modulo-decrement. The value shows which
42 * power of 2 to use, i.e. 4 means modulo by 16.
43 * (e: fir16_32.sc, IIR_4B.SC, DECIM.SC)
44 * 43 - RB (?)
45 * 5 - GP0_0 (ST5?) Changed before acessing PM0 (affects banking?).
46 * 6 - GP0_1 (ST6?) Cleared before acessing PM0 (affects banking?). Set after.
47 * datasheet says these (5,6) bits correspond to hardware pins.
48 * 7 - IE (?) Not directly used by SVP code (never set, but preserved)?
49 * 8 - OP (?) Not used by SVP code (only cleared)? (MAME: saturated value
50 * (probably means clamping? i.e. 0x7ffc + 9 -> 0x7fff))
51 * 9 - MACS (?) Not used by SVP code (only cleared)? (e: "mac shift")
52 * a - GPI_0 Interrupt 0 enable/status?
53 * b - GPI_1 Interrupt 1 enable/status?
54 * c - L L flag. Carry?
55 * d - Z Zero flag.
56 * e - OV Overflow flag.
57 * f - N Negative flag.
58 * seen directly changing code sequences:
59 * ldi ST, 0 ld A, ST ld A, ST ld A, ST ldi st, 20h
60 * ldi ST, 60h ori A, 60h and A, E8h and A, E8h
61 * ld ST, A ld ST, A ori 3
62 * ld ST, A
63 *
64 * 5. "STACK"
65 * size: 16
66 * desc: hw stack of 6 levels (according to datasheet)
67 *
68 * 6. "PC"
69 * size: 16
70 * desc: Program counter.
71 *
72 * 7. "P"
73 * size: 32
74 * desc: multiply result register. P = X * Y * 2
75 * probably affected by MACS bit in ST.
76 *
77 * 8. "PM0" (PM from PMAR name from Tasco's docs)
78 * size: 16?
79 * desc: Programmable Memory access register.
80 * On reset, or when one (both?) GP0 bits are clear,
81 * acts as status for XST, mapped at 015004 at 68k side:
82 * bit0: ssp has written something to XST (cleared when 015004 is read)
83 * bit1: 68k has written something through a1500{0|2} (cleared on PM0 read)
84 *
85 * 9. "PM1"
86 * size: 16?
87 * desc: Programmable Memory access register.
88 * This reg. is only used as PMAR.
89 *
90 * 10. "PM2"
91 * size: 16?
92 * desc: Programmable Memory access register.
93 * This reg. is only used as PMAR.
94 *
95 * 11. "XST"
96 * size: 16?
97 * desc: eXternal STate. Mapped to a15000 and a15002 at 68k side.
98 * Can be programmed as PMAR? (only seen in test mode code)
99 * Affects PM0 when written to?
100 *
101 * 12. "PM4"
102 * size: 16?
103 * desc: Programmable Memory access register.
104 * This reg. is only used as PMAR. The most used PMAR by VR.
105 *
106 * 13. (unused by VR)
107 *
108 * 14. "PMC" (PMC from PMAC name from Tasco's docs)
109 * size: 32?
110 * desc: Programmable Memory access Control. Set using 2 16bit writes,
111 * first address, then mode word. After setting PMAC, PMAR sould
112 * be blind accessed (ld -, PMx or ld PMx, -) to program it for
113 * reading and writing respectively.
114 * Reading the register also shifts it's state (from "waiting for
115 * address" to "waiting for mode" and back). Reads always return
116 * address related to last PMx register accressed.
117 * (note: addresses do not wrap).
118 *
119 * 15. "AL"
120 * size: 16
121 * desc: Accumulator Low. 16 least significant bits of accumulator.
122 * (normally reading acc (ld X, A) you get 16 most significant bits).
123 *
124 *
125 * There are 8 8-bit pointer registers rX. r0-r3 (ri) point to RAM0, r4-r7 (rj) point to RAM1.
126 * They can be accessed directly, or 2 indirection levels can be used [ (rX), ((rX)) ],
127 * which work similar to * and ** operators in C, only they use different memory banks and
128 * ((rX)) also does post-increment. First indirection level (rX) accesses RAMx, second accesses
129 * program memory at address read from (rX), and increments value in (rX).
130 *
131 * r0,r1,r2,r4,r5,r6 can be modified [ex: ldi r0, 5].
132 * 3 modifiers can be applied (optional):
133 * + : post-increment [ex: ld a, (r0+) ]. Can be made modulo-increment by setting RPL bits in ST.
134 * - : post-decrement. Can be made modulo-decrement by setting RPL bits in ST (not sure).
135 * +!: post-increment, unaffected by RPL (probably).
136 * These are only used on 1st indirection level, so things like [ld a, ((r0+))] and [ld X, r6-]
137 * ar probably invalid.
138 *
139 * r3 and r7 are special and can not be changed (at least Samsung samples and VR code never do).
140 * They are fixed to the start of their RAM banks. (They are probably changeable for ssp1605+,
141 * Samsung's old DSP page claims that).
142 * 1 of these 4 modifiers must be used (short form direct addressing?):
143 * |00: RAMx[0] [ex: (r3|00), 0] (based on sample code)
144 * |01: RAMx[1]
145 * |10: RAMx[2] ? maybe 10h? accortding to Div_c_dp.sc, 2
146 * |11: RAMx[3]
147 *
148 *
149 * Instruction notes
150 *
151 * ld a, * doesn't affect flags! (e: A_LAW.SC, Div_c_dp.sc)
152 *
153 * mld (rj), (ri) [, b]
154 * operation: A = 0; P = (rj) * (ri)
155 * notes: based on IIR_4B.SC sample. flags? what is b???
156 *
157 * mpya (rj), (ri) [, b]
158 * name: multiply and add?
159 * operation: A += P; P = (rj) * (ri)
160 *
161 * mpys (rj), (ri), b
162 * name: multiply and subtract?
163 * notes: not used by VR code.
164 *
165 * mod cond, op
166 * mod cond, shr does arithmetic shift
167 *
168 * 'ld -, AL' and probably 'ld AL, -' are for dummy assigns
169 *
170 * memory map:
171 * 000000 - 1fffff ROM, accessable by both
172 * 200000 - 2fffff unused?
173 * 300000 - 31ffff DRAM, both
174 * 320000 - 38ffff unused?
175 * 390000 - 3907ff IRAM. can only be accessed by ssp?
176 * 390000 - 39ffff similar mapping to "cell arrange" in Sega CD, 68k only?
177 * 3a0000 - 3affff similar mapping to "cell arrange" in Sega CD, a bit different
178 *
179 * 30fe02 - 0 if SVP busy, 1 if done (set by SVP, checked and cleared by 68k)
180 * 30fe06 - also sync related.
181 * 30fe08 - job number [1-12] for SVP. 0 means no job. Set by 68k, read-cleared by VR.
182 *
183 * Assumptions and limitations in this code
184 * only Z and N status flags are emulated (others unused by VR)
185 * so all condition checks except N and Z are ignored (not used by VR)
186 * modifiers for 'OP a, ri' and ((ri)) are ignored (not used by VR)
187 * loop repeat mode when (ri) is destination is ignored
188 * ops not used by VR are not implemented
189 */
190
191#include "../../PicoInt.h"
192
193#define u32 unsigned int
194
195// 0
196#define rX ssp->gr[SSP_X].h
197#define rY ssp->gr[SSP_Y].h
198#define rA ssp->gr[SSP_A].h
199#define rST ssp->gr[SSP_ST].h // 4
200#define rSTACK ssp->gr[SSP_STACK].h
201#define rPC ssp->gr[SSP_PC].h
202#define rP ssp->gr[SSP_P]
203#define rPM0 ssp->gr[SSP_PM0].h // 8
204#define rPM1 ssp->gr[SSP_PM1].h
205#define rPM2 ssp->gr[SSP_PM2].h
206#define rXST ssp->gr[SSP_XST].h
207#define rPM4 ssp->gr[SSP_PM4].h // 12
208// 13
209#define rPMC ssp->gr[SSP_PMC] // will keep addr in .l, mode in .h
210#define rAL ssp->gr[SSP_A].l
211
212#define rA32 ssp->gr[SSP_A].v
213#define rIJ ssp->r
214
215#define IJind (((op>>6)&4)|(op&3))
216
217#ifndef EMBED_INTERPRETER
218#define GET_PC() (PC - (unsigned short *)svp->iram_rom)
219#define GET_PPC_OFFS() ((unsigned int)PC - (unsigned int)svp->iram_rom - 2)
220#define SET_PC(d) PC = (unsigned short *)svp->iram_rom + d
221#endif
222
223#define REG_READ(r) (((r) <= 4) ? ssp->gr[r].h : read_handlers[r]())
224#define REG_WRITE(r,d) { \
225 int r1 = r; \
226 if (r1 >= 4) write_handlers[r1](d); \
227 else if (r1 > 0) ssp->gr[r1].h = d; \
228}
229
230// flags
231#define SSP_FLAG_L (1<<0xc)
232#define SSP_FLAG_Z (1<<0xd)
233#define SSP_FLAG_V (1<<0xe)
234#define SSP_FLAG_N (1<<0xf)
235
236// update ZN according to 32bit ACC.
237#define UPD_ACC_ZN \
238 rST &= ~(SSP_FLAG_Z|SSP_FLAG_N); \
239 if (!rA32) rST |= SSP_FLAG_Z; \
240 else rST |= (rA32>>16)&SSP_FLAG_N;
241
242// it seems SVP code never checks for L and OV, so we leave them out.
243// rST |= (t>>4)&SSP_FLAG_L;
244#define UPD_LZVN \
245 rST &= ~(SSP_FLAG_L|SSP_FLAG_Z|SSP_FLAG_V|SSP_FLAG_N); \
246 if (!rA32) rST |= SSP_FLAG_Z; \
247 else rST |= (rA32>>16)&SSP_FLAG_N;
248
249// standard cond processing.
250// again, only Z and N is checked, as VR doesn't seem to use any other conds.
251#define COND_CHECK \
252 switch (op&0xf0) { \
253 case 0x00: cond = 1; break; /* always true */ \
254 case 0x50: cond = !((rST ^ (op<<5)) & SSP_FLAG_Z); break; /* Z matches f(?) bit */ \
255 case 0x70: cond = !((rST ^ (op<<7)) & SSP_FLAG_N); break; /* N matches f(?) bit */ \
256 default:elprintf(EL_SVP|EL_ANOMALY, "ssp FIXME: unimplemented cond @ %04x", GET_PPC_OFFS()); break; \
257 }
258
259// ops with accumulator.
260// how is low word really affected by these?
261// nearly sure 'ld A' doesn't affect flags
262#define OP_LDA(x) \
263 ssp->gr[SSP_A].h = x
264
265#define OP_LDA32(x) \
266 rA32 = x
267
268#define OP_SUBA(x) { \
269 rA32 -= (x) << 16; \
270 UPD_LZVN \
271}
272
273#define OP_SUBA32(x) { \
274 rA32 -= (x); \
275 UPD_LZVN \
276}
277
278#define OP_CMPA(x) { \
279 u32 t = rA32 - ((x) << 16); \
280 rST &= ~(SSP_FLAG_L|SSP_FLAG_Z|SSP_FLAG_V|SSP_FLAG_N); \
281 if (!t) rST |= SSP_FLAG_Z; \
282 else rST |= (t>>16)&SSP_FLAG_N; \
283}
284
285#define OP_CMPA32(x) { \
286 u32 t = rA32 - (x); \
287 rST &= ~(SSP_FLAG_L|SSP_FLAG_Z|SSP_FLAG_V|SSP_FLAG_N); \
288 if (!t) rST |= SSP_FLAG_Z; \
289 else rST |= (t>>16)&SSP_FLAG_N; \
290}
291
292#define OP_ADDA(x) { \
293 rA32 += (x) << 16; \
294 UPD_LZVN \
295}
296
297#define OP_ADDA32(x) { \
298 rA32 += (x); \
299 UPD_LZVN \
300}
301
302#define OP_ANDA(x) \
303 rA32 &= (x) << 16; \
304 UPD_ACC_ZN
305
306#define OP_ANDA32(x) \
307 rA32 &= (x); \
308 UPD_ACC_ZN
309
310#define OP_ORA(x) \
311 rA32 |= (x) << 16; \
312 UPD_ACC_ZN
313
314#define OP_ORA32(x) \
315 rA32 |= (x); \
316 UPD_ACC_ZN
317
318#define OP_EORA(x) \
319 rA32 ^= (x) << 16; \
320 UPD_ACC_ZN
321
322#define OP_EORA32(x) \
323 rA32 ^= (x); \
324 UPD_ACC_ZN
325
326
327#define OP_CHECK32(OP) { \
328 if ((op & 0x0f) == SSP_P) { /* A <- P */ \
329 read_P(); /* update P */ \
330 OP(rP.v); \
331 break; \
332 } \
333 if ((op & 0x0f) == SSP_A) { /* A <- A */ \
334 OP(rA32); \
335 break; \
336 } \
337}
338
339
340#ifdef DO_CHECKS
341#define CHECK_IMM16() if (op&0x1ff) elprintf(EL_ANOMALY, "imm bits! %04x @ %04x", op, GET_PPC_OFFS())
342#define CHECK_B_SET() if (op&0x100) elprintf(EL_ANOMALY, "b set! %04x @ %04x", op, GET_PPC_OFFS())
343#define CHECK_B_CLEAR() if (!(op&0x100)) elprintf(EL_ANOMALY, "b clear! %04x @ %04x", op, GET_PPC_OFFS())
344#define CHECK_MOD() if (op&0x00c) elprintf(EL_ANOMALY, "mod bits! %04x @ %04x", op, GET_PPC_OFFS())
345#define CHECK_10f() if (op&0x10f) elprintf(EL_ANOMALY, "bits 10f! %04x @ %04x", op, GET_PPC_OFFS())
346#define CHECK_008() if (op&0x008) elprintf(EL_ANOMALY, "bits 008! %04x @ %04x", op, GET_PPC_OFFS())
347#define CHECK_00f() if (op&0x00f) elprintf(EL_ANOMALY, "bits 00f! %04x @ %04x", op, GET_PPC_OFFS())
348#define CHECK_0f0() if (op&0x0f0) elprintf(EL_ANOMALY, "bits 0f0! %04x @ %04x", op, GET_PPC_OFFS())
349#define CHECK_1f0() if (op&0x1f0) elprintf(EL_ANOMALY, "bits 1f0! %04x @ %04x", op, GET_PPC_OFFS())
350#define CHECK_RPL() if (rST&7) elprintf(EL_ANOMALY, "unhandled RPL! %04x @ %04x", op, GET_PPC_OFFS())
351#define CHECK_ST(d) if((rST^d)&0xf98)elprintf(EL_ANOMALY, "ssp FIXME ST %04x -> %04x @ %04x", rST, d, GET_PPC_OFFS())
352#else
353#define CHECK_IMM16()
354#define CHECK_B_SET()
355#define CHECK_B_CLEAR()
356#define CHECK_MOD()
357#define CHECK_10f()
358#define CHECK_008()
359#define CHECK_00f()
360#define CHECK_0f0()
361#define CHECK_1f0()
362#define CHECK_RPL()
363#define CHECK_ST(d)
364#endif
365
366#ifndef EMBED_INTERPRETER
367static
368#endif
369ssp1601_t *ssp = NULL;
370static unsigned short *PC;
371static int g_cycles;
372
373#ifdef USE_DEBUGGER
374static int running = 0;
375static int last_iram = 0;
376#endif
377
378// -----------------------------------------------------
379// register i/o handlers
380
381// 0-4, 13
382static u32 read_unknown(void)
383{
384 elprintf(EL_ANOMALY|EL_SVP, "ssp FIXME: unknown read @ %04x", GET_PPC_OFFS());
385 return 0;
386}
387
388static void write_unknown(u32 d)
389{
390 elprintf(EL_ANOMALY|EL_SVP, "ssp FIXME: unknown write @ %04x", GET_PPC_OFFS());
391}
392
393// 4
394static void write_ST(u32 d)
395{
396 CHECK_ST(d);
397 rST = d;
398}
399
400// 5
401static u32 read_STACK(void)
402{
403 --rSTACK;
404 if ((short)rSTACK < 0) {
405 rSTACK = 5;
406 elprintf(EL_ANOMALY|EL_SVP, "ssp FIXME: stack underflow! (%i) @ %04x", rSTACK, GET_PPC_OFFS());
407 }
408 return ssp->stack[rSTACK];
409}
410
411static void write_STACK(u32 d)
412{
413 if (rSTACK >= 6) {
414 elprintf(EL_ANOMALY|EL_SVP, "ssp FIXME: stack overflow! (%i) @ %04x", rSTACK, GET_PPC_OFFS());
415 rSTACK = 0;
416 }
417 ssp->stack[rSTACK++] = d;
418}
419
420// 6
421static u32 read_PC(void)
422{
423 return GET_PC();
424}
425
426static void write_PC(u32 d)
427{
428 SET_PC(d);
429 g_cycles--;
430}
431
432// 7
433static u32 read_P(void)
434{
435 int m1 = (signed short)rX;
436 int m2 = (signed short)rY;
437 rP.v = (m1 * m2 * 2);
438 return rP.h;
439}
440
441// -----------------------------------------------------
442
443static int get_inc(int mode)
444{
445 int inc = (mode >> 11) & 7;
446 if (inc != 0) {
447 if (inc != 7) inc--;
448 inc = 1 << inc; // 0 1 2 4 8 16 32 128
449 if (mode & 0x8000) inc = -inc; // decrement mode
450 }
451 return inc;
452}
453
454#define overwrite_write(dst, d) \
455{ \
456 if (d & 0xf000) { dst &= ~0xf000; dst |= d & 0xf000; } \
457 if (d & 0x0f00) { dst &= ~0x0f00; dst |= d & 0x0f00; } \
458 if (d & 0x00f0) { dst &= ~0x00f0; dst |= d & 0x00f0; } \
459 if (d & 0x000f) { dst &= ~0x000f; dst |= d & 0x000f; } \
460}
461
462static u32 pm_io(int reg, int write, u32 d)
463{
464 if (ssp->emu_status & SSP_PMC_SET)
465 {
466 // this MUST be blind r or w
467 if ((*(PC-1) & 0xff0f) && (*(PC-1) & 0xfff0)) {
468 elprintf(EL_SVP|EL_ANOMALY, "ssp FIXME: tried to set PM%i (%c) with non-blind i/o %08x @ %04x",
469 reg, write ? 'w' : 'r', rPMC.v, GET_PPC_OFFS());
470 ssp->emu_status &= ~SSP_PMC_SET;
471 return 0;
472 }
473 elprintf(EL_SVP, "PM%i (%c) set to %08x @ %04x", reg, write ? 'w' : 'r', rPMC.v, GET_PPC_OFFS());
474 ssp->pmac_read[write ? reg + 6 : reg] = rPMC.v;
475 ssp->emu_status &= ~SSP_PMC_SET;
476 if ((rPMC.v & 0x7fffff) == 0x1c8000 || (rPMC.v & 0x7fffff) == 0x1c8240) {
477 elprintf(EL_SVP, "ssp IRAM copy from %06x to %04x", (ssp->RAM1[0]-1)<<1, (rPMC.v&0x7fff)<<1);
478#ifdef USE_DEBUGGER
479 last_iram = (ssp->RAM1[0]-1)<<1;
480#endif
481 }
482 return 0;
483 }
484
485 // just in case
486 if (ssp->emu_status & SSP_PMC_HAVE_ADDR) {
487 elprintf(EL_SVP|EL_ANOMALY, "ssp FIXME: PM%i (%c) with only addr set @ %04x",
488 reg, write ? 'w' : 'r', GET_PPC_OFFS());
489 ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
490 }
491
492 if (reg == 4 || (rST & 0x60))
493 {
494 #define CADDR ((((mode<<16)&0x7f0000)|addr)<<1)
495 unsigned short *dram = (unsigned short *)svp->dram;
496 if (write)
497 {
498 int mode = ssp->pmac_write[reg]>>16;
499 int addr = ssp->pmac_write[reg]&0xffff;
500 if ((mode & 0xb800) == 0xb800)
501 elprintf(EL_SVP|EL_ANOMALY, "ssp FIXME: mode %04x", mode);
502 if ((mode & 0x43ff) == 0x0018) // DRAM
503 {
504 int inc = get_inc(mode);
505 elprintf(EL_SVP, "ssp PM%i DRAM w [%06x] %04x (inc %i, ovrw %i)",
506 reg, CADDR, d, inc, (mode>>10)&1);
507 if (mode & 0x0400) {
508 overwrite_write(dram[addr], d);
509 } else dram[addr] = d;
510 ssp->pmac_write[reg] += inc;
511 }
512 else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
513 {
514 elprintf(EL_SVP, "ssp PM%i DRAM w [%06x] %04x (cell inc, ovrw %i) @ %04x",
515 reg, CADDR, d, (mode>>10)&1, GET_PPC_OFFS());
516 if (mode & 0x0400) {
517 overwrite_write(dram[addr], d);
518 } else dram[addr] = d;
519 ssp->pmac_write[reg] += (addr&1) ? 31 : 1;
520 }
521 else if ((mode & 0x47ff) == 0x001c) // IRAM
522 {
523 int inc = get_inc(mode);
524 if ((addr&0xfc00) != 0x8000)
525 elprintf(EL_SVP|EL_ANOMALY, "ssp FIXME: invalid IRAM addr: %04x", addr<<1);
526 elprintf(EL_SVP, "ssp IRAM w [%06x] %04x (inc %i)", (addr<<1)&0x7ff, d, inc);
527 ((unsigned short *)svp->iram_rom)[addr&0x3ff] = d;
528 ssp->pmac_write[reg] += inc;
529#ifdef EMBED_INTERPRETER
530 ssp->drc.iram_dirty = 1;
531#endif
532 }
533 else
534 {
535 elprintf(EL_SVP|EL_ANOMALY, "ssp FIXME: PM%i unhandled write mode %04x, [%06x] %04x @ %04x",
536 reg, mode, CADDR, d, GET_PPC_OFFS());
537 }
538 }
539 else
540 {
541 int mode = ssp->pmac_read[reg]>>16;
542 int addr = ssp->pmac_read[reg]&0xffff;
543 if ((mode & 0xfff0) == 0x0800) // ROM, inc 1, verified to be correct
544 {
545 elprintf(EL_SVP, "ssp ROM r [%06x] %04x", CADDR,
546 ((unsigned short *)Pico.rom)[addr|((mode&0xf)<<16)]);
547 ssp->pmac_read[reg] += 1;
548 d = ((unsigned short *)Pico.rom)[addr|((mode&0xf)<<16)];
549 }
550 else if ((mode & 0x47ff) == 0x0018) // DRAM
551 {
552 int inc = get_inc(mode);
553 elprintf(EL_SVP, "ssp PM%i DRAM r [%06x] %04x (inc %i)", reg, CADDR, dram[addr]);
554 d = dram[addr];
555 ssp->pmac_read[reg] += inc;
556 }
557 else
558 {
559 elprintf(EL_SVP|EL_ANOMALY, "ssp FIXME: PM%i unhandled read mode %04x, [%06x] @ %04x",
560 reg, mode, CADDR, GET_PPC_OFFS());
561 d = 0;
562 }
563 }
564
565 // PMC value corresponds to last PMR accessed (not sure).
566 rPMC.v = ssp->pmac_read[write ? reg + 6 : reg];
567
568 return d;
569 }
570
571 return (u32)-1;
572}
573
574// 8
575static u32 read_PM0(void)
576{
577 u32 d = pm_io(0, 0, 0);
578 if (d != (u32)-1) return d;
579 elprintf(EL_SVP, "PM0 raw r %04x @ %04x", rPM0, GET_PPC_OFFS());
580 d = rPM0;
581#ifndef EMBED_INTERPRETER
582 if (!(d & 2) && (GET_PPC_OFFS() == 0x800 || GET_PPC_OFFS() == 0x1851E)) {
583 ssp->emu_status |= SSP_WAIT_PM0; elprintf(EL_SVP, "det TIGHT loop: PM0");
584 }
585#endif
586 rPM0 &= ~2; // ?
587 return d;
588}
589
590static void write_PM0(u32 d)
591{
592 u32 r = pm_io(0, 1, d);
593 if (r != (u32)-1) return;
594 elprintf(EL_SVP, "PM0 raw w %04x @ %04x", d, GET_PPC_OFFS());
595 rPM0 = d;
596}
597
598// 9
599static u32 read_PM1(void)
600{
601 u32 d = pm_io(1, 0, 0);
602 if (d != (u32)-1) return d;
603 // can be removed?
604 elprintf(EL_SVP|EL_ANOMALY, "PM1 raw r %04x @ %04x", rPM1, GET_PPC_OFFS());
605 return rPM1;
606}
607
608static void write_PM1(u32 d)
609{
610 u32 r = pm_io(1, 1, d);
611 if (r != (u32)-1) return;
612 // can be removed?
613 elprintf(EL_SVP|EL_ANOMALY, "PM1 raw w %04x @ %04x", d, GET_PPC_OFFS());
614 rPM1 = d;
615}
616
617// 10
618static u32 read_PM2(void)
619{
620 u32 d = pm_io(2, 0, 0);
621 if (d != (u32)-1) return d;
622 // can be removed?
623 elprintf(EL_SVP|EL_ANOMALY, "PM2 raw r %04x @ %04x", rPM2, GET_PPC_OFFS());
624 return rPM2;
625}
626
627static void write_PM2(u32 d)
628{
629 u32 r = pm_io(2, 1, d);
630 if (r != (u32)-1) return;
631 // can be removed?
632 elprintf(EL_SVP|EL_ANOMALY, "PM2 raw w %04x @ %04x", d, GET_PPC_OFFS());
633 rPM2 = d;
634}
635
636// 11
637static u32 read_XST(void)
638{
639 // can be removed?
640 u32 d = pm_io(3, 0, 0);
641 if (d != (u32)-1) return d;
642
643 elprintf(EL_SVP, "XST raw r %04x @ %04x", rXST, GET_PPC_OFFS());
644 return rXST;
645}
646
647static void write_XST(u32 d)
648{
649 // can be removed?
650 u32 r = pm_io(3, 1, d);
651 if (r != (u32)-1) return;
652
653 elprintf(EL_SVP, "XST raw w %04x @ %04x", d, GET_PPC_OFFS());
654 rPM0 |= 1;
655 rXST = d;
656}
657
658// 12
659static u32 read_PM4(void)
660{
661 u32 d = pm_io(4, 0, 0);
662#ifndef EMBED_INTERPRETER
663 if (d == 0) {
664 switch (GET_PPC_OFFS()) {
665 case 0x0854: ssp->emu_status |= SSP_WAIT_30FE08; elprintf(EL_SVP, "det TIGHT loop: [30fe08]"); break;
666 case 0x4f12: ssp->emu_status |= SSP_WAIT_30FE06; elprintf(EL_SVP, "det TIGHT loop: [30fe06]"); break;
667 }
668 }
669#endif
670 if (d != (u32)-1) return d;
671 // can be removed?
672 elprintf(EL_SVP|EL_ANOMALY, "PM4 raw r %04x @ %04x", rPM4, GET_PPC_OFFS());
673 return rPM4;
674}
675
676static void write_PM4(u32 d)
677{
678 u32 r = pm_io(4, 1, d);
679 if (r != (u32)-1) return;
680 // can be removed?
681 elprintf(EL_SVP|EL_ANOMALY, "PM4 raw w %04x @ %04x", d, GET_PPC_OFFS());
682 rPM4 = d;
683}
684
685// 14
686static u32 read_PMC(void)
687{
688 elprintf(EL_SVP, "PMC r a %04x (st %c) @ %04x", rPMC.l,
689 (ssp->emu_status & SSP_PMC_HAVE_ADDR) ? 'm' : 'a', GET_PPC_OFFS());
690 if (ssp->emu_status & SSP_PMC_HAVE_ADDR) {
691 //if (ssp->emu_status & SSP_PMC_SET)
692 // elprintf(EL_ANOMALY|EL_SVP, "prev PMC not used @ %04x", GET_PPC_OFFS());
693 ssp->emu_status |= SSP_PMC_SET;
694 ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
695 return ((rPMC.l << 4) & 0xfff0) | ((rPMC.l >> 4) & 0xf);
696 } else {
697 ssp->emu_status |= SSP_PMC_HAVE_ADDR;
698 return rPMC.l;
699 }
700}
701
702static void write_PMC(u32 d)
703{
704 if (ssp->emu_status & SSP_PMC_HAVE_ADDR) {
705 //if (ssp->emu_status & SSP_PMC_SET)
706 // elprintf(EL_ANOMALY|EL_SVP, "prev PMC not used @ %04x", GET_PPC_OFFS());
707 ssp->emu_status |= SSP_PMC_SET;
708 ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
709 rPMC.h = d;
710 elprintf(EL_SVP, "PMC w m %04x @ %04x", rPMC.h, GET_PPC_OFFS());
711 } else {
712 ssp->emu_status |= SSP_PMC_HAVE_ADDR;
713 rPMC.l = d;
714 elprintf(EL_SVP, "PMC w a %04x @ %04x", rPMC.l, GET_PPC_OFFS());
715 }
716}
717
718// 15
719static u32 read_AL(void)
720{
721 if (*(PC-1) == 0x000f)
722 elprintf(EL_SVP, "ssp dummy PM assign %08x @ %04x", rPMC.v, GET_PPC_OFFS());
723 ssp->emu_status &= ~(SSP_PMC_SET|SSP_PMC_HAVE_ADDR); // ?
724 return rAL;
725}
726
727static void write_AL(u32 d)
728{
729 rAL = d;
730}
731
732
733typedef u32 (*read_func_t)(void);
734typedef void (*write_func_t)(u32 d);
735
736static read_func_t read_handlers[16] =
737{
738 read_unknown, read_unknown, read_unknown, read_unknown, // -, X, Y, A
739 read_unknown, // 4 ST
740 read_STACK,
741 read_PC,
742 read_P,
743 read_PM0, // 8
744 read_PM1,
745 read_PM2,
746 read_XST,
747 read_PM4, // 12
748 read_unknown, // 13 gr13
749 read_PMC,
750 read_AL
751};
752
753static write_func_t write_handlers[16] =
754{
755 write_unknown, write_unknown, write_unknown, write_unknown, // -, X, Y, A
756// write_unknown, // 4 ST
757 write_ST, // 4 ST (debug hook)
758 write_STACK,
759 write_PC,
760 write_unknown, // 7 P
761 write_PM0, // 8
762 write_PM1,
763 write_PM2,
764 write_XST,
765 write_PM4, // 12
766 write_unknown, // 13 gr13
767 write_PMC,
768 write_AL
769};
770
771// -----------------------------------------------------
772// pointer register handlers
773
774//
775#define ptr1_read(op) ptr1_read_(op&3,(op>>6)&4,(op<<1)&0x18)
776
777static u32 ptr1_read_(int ri, int isj2, int modi3)
778{
779 //int t = (op&3) | ((op>>6)&4) | ((op<<1)&0x18);
780 u32 mask, add = 0, t = ri | isj2 | modi3;
781 unsigned char *rp = NULL;
782 switch (t)
783 {
784 // mod=0 (00)
785 case 0x00:
786 case 0x01:
787 case 0x02: return ssp->RAM0[ssp->r0[t&3]];
788 case 0x03: return ssp->RAM0[0];
789 case 0x04:
790 case 0x05:
791 case 0x06: return ssp->RAM1[ssp->r1[t&3]];
792 case 0x07: return ssp->RAM1[0];
793 // mod=1 (01), "+!"
794 case 0x08:
795 case 0x09:
796 case 0x0a: return ssp->RAM0[ssp->r0[t&3]++];
797 case 0x0b: return ssp->RAM0[1];
798 case 0x0c:
799 case 0x0d:
800 case 0x0e: return ssp->RAM1[ssp->r1[t&3]++];
801 case 0x0f: return ssp->RAM1[1];
802 // mod=2 (10), "-"
803 case 0x10:
804 case 0x11:
805 case 0x12: rp = &ssp->r0[t&3]; t = ssp->RAM0[*rp];
806 if (!(rST&7)) { (*rp)--; return t; }
807 add = -1; goto modulo;
808 case 0x13: return ssp->RAM0[2];
809 case 0x14:
810 case 0x15:
811 case 0x16: rp = &ssp->r1[t&3]; t = ssp->RAM1[*rp];
812 if (!(rST&7)) { (*rp)--; return t; }
813 add = -1; goto modulo;
814 case 0x17: return ssp->RAM1[2];
815 // mod=3 (11), "+"
816 case 0x18:
817 case 0x19:
818 case 0x1a: rp = &ssp->r0[t&3]; t = ssp->RAM0[*rp];
819 if (!(rST&7)) { (*rp)++; return t; }
820 add = 1; goto modulo;
821 case 0x1b: return ssp->RAM0[3];
822 case 0x1c:
823 case 0x1d:
824 case 0x1e: rp = &ssp->r1[t&3]; t = ssp->RAM1[*rp];
825 if (!(rST&7)) { (*rp)++; return t; }
826 add = 1; goto modulo;
827 case 0x1f: return ssp->RAM1[3];
828 }
829
830 return 0;
831
832modulo:
833 mask = (1 << (rST&7)) - 1;
834 *rp = (*rp & ~mask) | ((*rp + add) & mask);
835 return t;
836}
837
838static void ptr1_write(int op, u32 d)
839{
840 int t = (op&3) | ((op>>6)&4) | ((op<<1)&0x18);
841 switch (t)
842 {
843 // mod=0 (00)
844 case 0x00:
845 case 0x01:
846 case 0x02: ssp->RAM0[ssp->r0[t&3]] = d; return;
847 case 0x03: ssp->RAM0[0] = d; return;
848 case 0x04:
849 case 0x05:
850 case 0x06: ssp->RAM1[ssp->r1[t&3]] = d; return;
851 case 0x07: ssp->RAM1[0] = d; return;
852 // mod=1 (01), "+!"
853 // mod=3, "+"
854 case 0x08:
855 case 0x09:
856 case 0x0a: ssp->RAM0[ssp->r0[t&3]++] = d; return;
857 case 0x0b: ssp->RAM0[1] = d; return;
858 case 0x0c:
859 case 0x0d:
860 case 0x0e: ssp->RAM1[ssp->r1[t&3]++] = d; return;
861 case 0x0f: ssp->RAM1[1] = d; return;
862 // mod=2 (10), "-"
863 case 0x10:
864 case 0x11:
865 case 0x12: ssp->RAM0[ssp->r0[t&3]--] = d; CHECK_RPL(); return;
866 case 0x13: ssp->RAM0[2] = d; return;
867 case 0x14:
868 case 0x15:
869 case 0x16: ssp->RAM1[ssp->r1[t&3]--] = d; CHECK_RPL(); return;
870 case 0x17: ssp->RAM1[2] = d; return;
871 // mod=3 (11), "+"
872 case 0x18:
873 case 0x19:
874 case 0x1a: ssp->RAM0[ssp->r0[t&3]++] = d; CHECK_RPL(); return;
875 case 0x1b: ssp->RAM0[3] = d; return;
876 case 0x1c:
877 case 0x1d:
878 case 0x1e: ssp->RAM1[ssp->r1[t&3]++] = d; CHECK_RPL(); return;
879 case 0x1f: ssp->RAM1[3] = d; return;
880 }
881}
882
883static u32 ptr2_read(int op)
884{
885 int mv = 0, t = (op&3) | ((op>>6)&4) | ((op<<1)&0x18);
886 switch (t)
887 {
888 // mod=0 (00)
889 case 0x00:
890 case 0x01:
891 case 0x02: mv = ssp->RAM0[ssp->r0[t&3]]++; break;
892 case 0x03: mv = ssp->RAM0[0]++; break;
893 case 0x04:
894 case 0x05:
895 case 0x06: mv = ssp->RAM1[ssp->r1[t&3]]++; break;
896 case 0x07: mv = ssp->RAM1[0]++; break;
897 // mod=1 (01)
898 case 0x0b: mv = ssp->RAM0[1]++; break;
899 case 0x0f: mv = ssp->RAM1[1]++; break;
900 // mod=2 (10)
901 case 0x13: mv = ssp->RAM0[2]++; break;
902 case 0x17: mv = ssp->RAM1[2]++; break;
903 // mod=3 (11)
904 case 0x1b: mv = ssp->RAM0[3]++; break;
905 case 0x1f: mv = ssp->RAM1[3]++; break;
906 default: elprintf(EL_SVP|EL_ANOMALY, "ssp FIXME: invalid mod in ((rX))? @ %04x", GET_PPC_OFFS());
907 return 0;
908 }
909
910 return ((unsigned short *)svp->iram_rom)[mv];
911}
912
913
914// -----------------------------------------------------
915
916#if defined(USE_DEBUGGER) //|| defined(EMBED_INTERPRETER)
917static void debug_dump2file(const char *fname, void *mem, int len)
918{
919 FILE *f = fopen(fname, "wb");
920 unsigned short *p = mem;
921 int i;
922 if (f) {
923 for (i = 0; i < len/2; i++) p[i] = (p[i]<<8) | (p[i]>>8);
924 fwrite(mem, 1, len, f);
925 fclose(f);
926 for (i = 0; i < len/2; i++) p[i] = (p[i]<<8) | (p[i]>>8);
927 printf("dumped to %s\n", fname);
928 }
929 else
930 printf("dump failed\n");
931}
932#endif
933
934#ifdef USE_DEBUGGER
935static void debug_dump(void)
936{
937 printf("GR0: %04x X: %04x Y: %04x A: %08x\n", ssp->gr[SSP_GR0].h, rX, rY, ssp->gr[SSP_A].v);
938 printf("PC: %04x (%04x) P: %08x\n", GET_PC(), GET_PC() << 1, rP.v);
939 printf("PM0: %04x PM1: %04x PM2: %04x\n", rPM0, rPM1, rPM2);
940 printf("XST: %04x PM4: %04x PMC: %08x\n", rXST, rPM4, rPMC.v);
941 printf(" ST: %04x %c%c%c%c, GP0_0 %i, GP0_1 %i\n", rST, rST&SSP_FLAG_N?'N':'n', rST&SSP_FLAG_V?'V':'v',
942 rST&SSP_FLAG_Z?'Z':'z', rST&SSP_FLAG_L?'L':'l', (rST>>5)&1, (rST>>6)&1);
943 printf("STACK: %i %04x %04x %04x %04x %04x %04x\n", rSTACK, ssp->stack[0], ssp->stack[1],
944 ssp->stack[2], ssp->stack[3], ssp->stack[4], ssp->stack[5]);
945 printf("r0-r2: %02x %02x %02x r4-r6: %02x %02x %02x\n", rIJ[0], rIJ[1], rIJ[2], rIJ[4], rIJ[5], rIJ[6]);
946 elprintf(EL_SVP, "cycles: %i, emu_status: %x", g_cycles, ssp->emu_status);
947}
948
949static void debug_dump_mem(void)
950{
951 int h, i;
952 printf("RAM0\n");
953 for (h = 0; h < 32; h++)
954 {
955 if (h == 16) printf("RAM1\n");
956 printf("%03x:", h*16);
957 for (i = 0; i < 16; i++)
958 printf(" %04x", ssp->RAM[h*16+i]);
959 printf("\n");
960 }
961}
962
963static int bpts[10] = { 0, };
964
965static void debug(unsigned int pc, unsigned int op)
966{
967 static char buffo[64] = {0,};
968 char buff[64] = {0,};
969 int i;
970
971 if (running) {
972 for (i = 0; i < 10; i++)
973 if (pc != 0 && bpts[i] == pc) {
974 printf("breakpoint %i\n", i);
975 running = 0;
976 break;
977 }
978 }
979 if (running) return;
980
981 printf("%04x (%02x) @ %04x\n", op, op >> 9, pc<<1);
982
983 while (1)
984 {
985 printf("dbg> ");
986 fflush(stdout);
987 fgets(buff, sizeof(buff), stdin);
988 if (buff[0] == '\n') strcpy(buff, buffo);
989 else strcpy(buffo, buff);
990
991 switch (buff[0]) {
992 case 0: exit(0);
993 case 'c':
994 case 'r': running = 1; return;
995 case 's':
996 case 'n': return;
997 case 'x': debug_dump(); break;
998 case 'm': debug_dump_mem(); break;
999 case 'b': {
1000 char *baddr = buff + 2;
1001 i = 0;
1002 if (buff[3] == ' ') { i = buff[2] - '0'; baddr = buff + 4; }
1003 bpts[i] = strtol(baddr, NULL, 16) >> 1;
1004 printf("breakpoint %i set @ %04x\n", i, bpts[i]<<1);
1005 break;
1006 }
1007 case 'd':
1008 sprintf(buff, "iramrom_%04x.bin", last_iram);
1009 debug_dump2file(buff, svp->iram_rom, sizeof(svp->iram_rom));
1010 debug_dump2file("dram.bin", svp->dram, sizeof(svp->dram));
1011 break;
1012 default: printf("unknown command\n"); break;
1013 }
1014 }
1015}
1016#endif // USE_DEBUGGER
1017
1018
1019void ssp1601_reset(ssp1601_t *l_ssp)
1020{
1021 ssp = l_ssp;
1022 ssp->emu_status = 0;
1023 ssp->gr[SSP_GR0].v = 0xffff0000;
1024 rPC = 0x400;
1025 rSTACK = 0; // ? using ascending stack
1026 rST = 0;
1027}
1028
1029
1030void ssp1601_run(int cycles)
1031{
1032#ifndef EMBED_INTERPRETER
1033 SET_PC(rPC);
1034#endif
1035 g_cycles = cycles;
1036
1037 while (g_cycles > 0 && !(ssp->emu_status & SSP_WAIT_MASK))
1038 {
1039 int op;
1040 u32 tmpv;
1041
1042 op = *PC++;
1043#ifdef USE_DEBUGGER
1044 debug(GET_PC()-1, op);
1045#endif
1046 switch (op >> 9)
1047 {
1048 // ld d, s
1049 case 0x00:
1050 CHECK_B_SET();
1051 if (op == 0) break; // nop
1052 if (op == ((SSP_A<<4)|SSP_P)) { // A <- P
1053 // not sure. MAME claims that only hi word is transfered.
1054 read_P(); // update P
1055 rA32 = rP.v;
1056 }
1057 else
1058 {
1059 tmpv = REG_READ(op & 0x0f);
1060 REG_WRITE((op & 0xf0) >> 4, tmpv);
1061 }
1062 break;
1063
1064 // ld d, (ri)
1065 case 0x01: tmpv = ptr1_read(op); REG_WRITE((op & 0xf0) >> 4, tmpv); break;
1066
1067 // ld (ri), s
1068 case 0x02: tmpv = REG_READ((op & 0xf0) >> 4); ptr1_write(op, tmpv); break;
1069
1070 // ldi d, imm
1071 case 0x04: CHECK_10f(); tmpv = *PC++; REG_WRITE((op & 0xf0) >> 4, tmpv); g_cycles--; break;
1072
1073 // ld d, ((ri))
1074 case 0x05: CHECK_MOD(); tmpv = ptr2_read(op); REG_WRITE((op & 0xf0) >> 4, tmpv); g_cycles -= 2; break;
1075
1076 // ldi (ri), imm
1077 case 0x06: tmpv = *PC++; ptr1_write(op, tmpv); g_cycles--; break;
1078
1079 // ld adr, a
1080 case 0x07: ssp->RAM[op & 0x1ff] = rA; break;
1081
1082 // ld d, ri
1083 case 0x09: CHECK_MOD(); tmpv = rIJ[(op&3)|((op>>6)&4)]; REG_WRITE((op & 0xf0) >> 4, tmpv); break;
1084
1085 // ld ri, s
1086 case 0x0a: CHECK_MOD(); rIJ[(op&3)|((op>>6)&4)] = REG_READ((op & 0xf0) >> 4); break;
1087
1088 // ldi ri, simm
1089 case 0x0c:
1090 case 0x0d:
1091 case 0x0e:
1092 case 0x0f: rIJ[(op>>8)&7] = op; break;
1093
1094 // call cond, addr
1095 case 0x24: {
1096 int cond = 0;
1097 CHECK_00f();
1098 COND_CHECK
1099 if (cond) { int new_PC = *PC++; write_STACK(GET_PC()); SET_PC(new_PC); }
1100 else PC++;
1101 g_cycles--; // always 2 cycles
1102 break;
1103 }
1104
1105 // ld d, (a)
1106 case 0x25:
1107 CHECK_10f();
1108 tmpv = ((unsigned short *)svp->iram_rom)[rA];
1109 REG_WRITE((op & 0xf0) >> 4, tmpv);
1110 g_cycles -= 2; // 3 cycles total
1111 break;
1112
1113 // bra cond, addr
1114 case 0x26: {
1115 int cond = 0;
1116 CHECK_00f();
1117 COND_CHECK
1118 if (cond) { int new_PC = *PC++; SET_PC(new_PC); }
1119 else PC++;
1120 g_cycles--;
1121 break;
1122 }
1123
1124 // mod cond, op
1125 case 0x48: {
1126 int cond = 0;
1127 CHECK_008();
1128 COND_CHECK
1129 if (cond) {
1130 switch (op & 7) {
1131 case 2: rA32 = (signed int)rA32 >> 1; break; // shr (arithmetic)
1132 case 3: rA32 <<= 1; break; // shl
1133 case 6: rA32 = -(signed int)rA32; break; // neg
1134 case 7: if ((int)rA32 < 0) rA32 = -(signed int)rA32; break; // abs
1135 default: elprintf(EL_SVP|EL_ANOMALY, "ssp FIXME: unhandled mod %i @ %04x",
1136 op&7, GET_PPC_OFFS());
1137 }
1138 UPD_ACC_ZN
1139 }
1140 break;
1141 }
1142
1143 // mpys?
1144 case 0x1b:
1145 CHECK_B_CLEAR();
1146 read_P(); // update P
1147 rA32 -= rP.v;
1148 UPD_ACC_ZN
1149 rX = ptr1_read_(op&3, 0, (op<<1)&0x18);
1150 rY = ptr1_read_((op>>4)&3, 4, (op>>3)&0x18);
1151 break;
1152
1153 // mpya (rj), (ri), b
1154 case 0x4b:
1155 CHECK_B_CLEAR();
1156 read_P(); // update P
1157 rA32 += rP.v;
1158 UPD_ACC_ZN
1159 rX = ptr1_read_(op&3, 0, (op<<1)&0x18);
1160 rY = ptr1_read_((op>>4)&3, 4, (op>>3)&0x18);
1161 break;
1162
1163 // mld (rj), (ri), b
1164 case 0x5b:
1165 CHECK_B_CLEAR();
1166 rA32 = 0;
1167 rST &= 0x0fff;
1168 rST |= SSP_FLAG_Z;
1169 rX = ptr1_read_(op&3, 0, (op<<1)&0x18);
1170 rY = ptr1_read_((op>>4)&3, 4, (op>>3)&0x18);
1171 break;
1172
1173 // OP a, s
1174 case 0x10: CHECK_1f0(); OP_CHECK32(OP_SUBA32); tmpv = REG_READ(op & 0x0f); OP_SUBA(tmpv); break;
1175 case 0x30: CHECK_1f0(); OP_CHECK32(OP_CMPA32); tmpv = REG_READ(op & 0x0f); OP_CMPA(tmpv); break;
1176 case 0x40: CHECK_1f0(); OP_CHECK32(OP_ADDA32); tmpv = REG_READ(op & 0x0f); OP_ADDA(tmpv); break;
1177 case 0x50: CHECK_1f0(); OP_CHECK32(OP_ANDA32); tmpv = REG_READ(op & 0x0f); OP_ANDA(tmpv); break;
1178 case 0x60: CHECK_1f0(); OP_CHECK32(OP_ORA32 ); tmpv = REG_READ(op & 0x0f); OP_ORA (tmpv); break;
1179 case 0x70: CHECK_1f0(); OP_CHECK32(OP_EORA32); tmpv = REG_READ(op & 0x0f); OP_EORA(tmpv); break;
1180
1181 // OP a, (ri)
1182 case 0x11: CHECK_0f0(); tmpv = ptr1_read(op); OP_SUBA(tmpv); break;
1183 case 0x31: CHECK_0f0(); tmpv = ptr1_read(op); OP_CMPA(tmpv); break;
1184 case 0x41: CHECK_0f0(); tmpv = ptr1_read(op); OP_ADDA(tmpv); break;
1185 case 0x51: CHECK_0f0(); tmpv = ptr1_read(op); OP_ANDA(tmpv); break;
1186 case 0x61: CHECK_0f0(); tmpv = ptr1_read(op); OP_ORA (tmpv); break;
1187 case 0x71: CHECK_0f0(); tmpv = ptr1_read(op); OP_EORA(tmpv); break;
1188
1189 // OP a, adr
1190 case 0x03: tmpv = ssp->RAM[op & 0x1ff]; OP_LDA (tmpv); break;
1191 case 0x13: tmpv = ssp->RAM[op & 0x1ff]; OP_SUBA(tmpv); break;
1192 case 0x33: tmpv = ssp->RAM[op & 0x1ff]; OP_CMPA(tmpv); break;
1193 case 0x43: tmpv = ssp->RAM[op & 0x1ff]; OP_ADDA(tmpv); break;
1194 case 0x53: tmpv = ssp->RAM[op & 0x1ff]; OP_ANDA(tmpv); break;
1195 case 0x63: tmpv = ssp->RAM[op & 0x1ff]; OP_ORA (tmpv); break;
1196 case 0x73: tmpv = ssp->RAM[op & 0x1ff]; OP_EORA(tmpv); break;
1197
1198 // OP a, imm
1199 case 0x14: CHECK_IMM16(); tmpv = *PC++; OP_SUBA(tmpv); g_cycles--; break;
1200 case 0x34: CHECK_IMM16(); tmpv = *PC++; OP_CMPA(tmpv); g_cycles--; break;
1201 case 0x44: CHECK_IMM16(); tmpv = *PC++; OP_ADDA(tmpv); g_cycles--; break;
1202 case 0x54: CHECK_IMM16(); tmpv = *PC++; OP_ANDA(tmpv); g_cycles--; break;
1203 case 0x64: CHECK_IMM16(); tmpv = *PC++; OP_ORA (tmpv); g_cycles--; break;
1204 case 0x74: CHECK_IMM16(); tmpv = *PC++; OP_EORA(tmpv); g_cycles--; break;
1205
1206 // OP a, ((ri))
1207 case 0x15: CHECK_MOD(); tmpv = ptr2_read(op); OP_SUBA(tmpv); g_cycles -= 2; break;
1208 case 0x35: CHECK_MOD(); tmpv = ptr2_read(op); OP_CMPA(tmpv); g_cycles -= 2; break;
1209 case 0x45: CHECK_MOD(); tmpv = ptr2_read(op); OP_ADDA(tmpv); g_cycles -= 2; break;
1210 case 0x55: CHECK_MOD(); tmpv = ptr2_read(op); OP_ANDA(tmpv); g_cycles -= 2; break;
1211 case 0x65: CHECK_MOD(); tmpv = ptr2_read(op); OP_ORA (tmpv); g_cycles -= 2; break;
1212 case 0x75: CHECK_MOD(); tmpv = ptr2_read(op); OP_EORA(tmpv); g_cycles -= 2; break;
1213
1214 // OP a, ri
1215 case 0x19: CHECK_MOD(); tmpv = rIJ[IJind]; OP_SUBA(tmpv); break;
1216 case 0x39: CHECK_MOD(); tmpv = rIJ[IJind]; OP_CMPA(tmpv); break;
1217 case 0x49: CHECK_MOD(); tmpv = rIJ[IJind]; OP_ADDA(tmpv); break;
1218 case 0x59: CHECK_MOD(); tmpv = rIJ[IJind]; OP_ANDA(tmpv); break;
1219 case 0x69: CHECK_MOD(); tmpv = rIJ[IJind]; OP_ORA (tmpv); break;
1220 case 0x79: CHECK_MOD(); tmpv = rIJ[IJind]; OP_EORA(tmpv); break;
1221
1222 // OP simm
1223 case 0x1c: CHECK_B_SET(); OP_SUBA(op & 0xff); break;
1224 case 0x3c: CHECK_B_SET(); OP_CMPA(op & 0xff); break;
1225 case 0x4c: CHECK_B_SET(); OP_ADDA(op & 0xff); break;
1226 case 0x5c: CHECK_B_SET(); OP_ANDA(op & 0xff); break;
1227 case 0x6c: CHECK_B_SET(); OP_ORA (op & 0xff); break;
1228 case 0x7c: CHECK_B_SET(); OP_EORA(op & 0xff); break;
1229
1230 default:
1231 elprintf(EL_ANOMALY|EL_SVP, "ssp FIXME unhandled op %04x @ %04x", op, GET_PPC_OFFS());
1232 break;
1233 }
1234 g_cycles--;
1235 }
1236
1237 rPC = GET_PC();
1238 read_P(); // update P
1239}
1240