| 1 | /*\r |
| 2 | ** This is a bunch of remains of original fm.c from MAME project. All stuff\r |
| 3 | ** unrelated to ym2612 was removed, multiple chip support was removed,\r |
| 4 | ** some parts of code were slightly rewritten and tied to the emulator.\r |
| 5 | **\r |
| 6 | ** SSG-EG was also removed, because it's rarely used, Sega2.doc even does not\r |
| 7 | ** document it ("proprietary") and tells to write 0 to SSG-EG control register.\r |
| 8 | */\r |
| 9 | \r |
| 10 | /*\r |
| 11 | **\r |
| 12 | ** File: fm.c -- software implementation of Yamaha FM sound generator\r |
| 13 | **\r |
| 14 | ** Copyright (C) 2001, 2002, 2003 Jarek Burczynski (bujar at mame dot net)\r |
| 15 | ** Copyright (C) 1998 Tatsuyuki Satoh , MultiArcadeMachineEmulator development\r |
| 16 | **\r |
| 17 | ** Version 1.4 (final beta)\r |
| 18 | **\r |
| 19 | */\r |
| 20 | \r |
| 21 | /*\r |
| 22 | ** History:\r |
| 23 | **\r |
| 24 | ** 03-08-2003 Jarek Burczynski:\r |
| 25 | ** - fixed YM2608 initial values (after the reset)\r |
| 26 | ** - fixed flag and irqmask handling (YM2608)\r |
| 27 | ** - fixed BUFRDY flag handling (YM2608)\r |
| 28 | **\r |
| 29 | ** 14-06-2003 Jarek Burczynski:\r |
| 30 | ** - implemented all of the YM2608 status register flags\r |
| 31 | ** - implemented support for external memory read/write via YM2608\r |
| 32 | ** - implemented support for deltat memory limit register in YM2608 emulation\r |
| 33 | **\r |
| 34 | ** 22-05-2003 Jarek Burczynski:\r |
| 35 | ** - fixed LFO PM calculations (copy&paste bugfix)\r |
| 36 | **\r |
| 37 | ** 08-05-2003 Jarek Burczynski:\r |
| 38 | ** - fixed SSG support\r |
| 39 | **\r |
| 40 | ** 22-04-2003 Jarek Burczynski:\r |
| 41 | ** - implemented 100% correct LFO generator (verified on real YM2610 and YM2608)\r |
| 42 | **\r |
| 43 | ** 15-04-2003 Jarek Burczynski:\r |
| 44 | ** - added support for YM2608's register 0x110 - status mask\r |
| 45 | **\r |
| 46 | ** 01-12-2002 Jarek Burczynski:\r |
| 47 | ** - fixed register addressing in YM2608, YM2610, YM2610B chips. (verified on real YM2608)\r |
| 48 | ** The addressing patch used for early Neo-Geo games can be removed now.\r |
| 49 | **\r |
| 50 | ** 26-11-2002 Jarek Burczynski, Nicola Salmoria:\r |
| 51 | ** - recreated YM2608 ADPCM ROM using data from real YM2608's output which leads to:\r |
| 52 | ** - added emulation of YM2608 drums.\r |
| 53 | ** - output of YM2608 is two times lower now - same as YM2610 (verified on real YM2608)\r |
| 54 | **\r |
| 55 | ** 16-08-2002 Jarek Burczynski:\r |
| 56 | ** - binary exact Envelope Generator (verified on real YM2203);\r |
| 57 | ** identical to YM2151\r |
| 58 | ** - corrected 'off by one' error in feedback calculations (when feedback is off)\r |
| 59 | ** - corrected connection (algorithm) calculation (verified on real YM2203 and YM2610)\r |
| 60 | **\r |
| 61 | ** 18-12-2001 Jarek Burczynski:\r |
| 62 | ** - added SSG-EG support (verified on real YM2203)\r |
| 63 | **\r |
| 64 | ** 12-08-2001 Jarek Burczynski:\r |
| 65 | ** - corrected ym_sin_tab and ym_tl_tab data (verified on real chip)\r |
| 66 | ** - corrected feedback calculations (verified on real chip)\r |
| 67 | ** - corrected phase generator calculations (verified on real chip)\r |
| 68 | ** - corrected envelope generator calculations (verified on real chip)\r |
| 69 | ** - corrected FM volume level (YM2610 and YM2610B).\r |
| 70 | ** - changed YMxxxUpdateOne() functions (YM2203, YM2608, YM2610, YM2610B, YM2612) :\r |
| 71 | ** this was needed to calculate YM2610 FM channels output correctly.\r |
| 72 | ** (Each FM channel is calculated as in other chips, but the output of the channel\r |
| 73 | ** gets shifted right by one *before* sending to accumulator. That was impossible to do\r |
| 74 | ** with previous implementation).\r |
| 75 | **\r |
| 76 | ** 23-07-2001 Jarek Burczynski, Nicola Salmoria:\r |
| 77 | ** - corrected YM2610 ADPCM type A algorithm and tables (verified on real chip)\r |
| 78 | **\r |
| 79 | ** 11-06-2001 Jarek Burczynski:\r |
| 80 | ** - corrected end of sample bug in ADPCMA_calc_cha().\r |
| 81 | ** Real YM2610 checks for equality between current and end addresses (only 20 LSB bits).\r |
| 82 | **\r |
| 83 | ** 08-12-98 hiro-shi:\r |
| 84 | ** rename ADPCMA -> ADPCMB, ADPCMB -> ADPCMA\r |
| 85 | ** move ROM limit check.(CALC_CH? -> 2610Write1/2)\r |
| 86 | ** test program (ADPCMB_TEST)\r |
| 87 | ** move ADPCM A/B end check.\r |
| 88 | ** ADPCMB repeat flag(no check)\r |
| 89 | ** change ADPCM volume rate (8->16) (32->48).\r |
| 90 | **\r |
| 91 | ** 09-12-98 hiro-shi:\r |
| 92 | ** change ADPCM volume. (8->16, 48->64)\r |
| 93 | ** replace ym2610 ch0/3 (YM-2610B)\r |
| 94 | ** change ADPCM_SHIFT (10->8) missing bank change 0x4000-0xffff.\r |
| 95 | ** add ADPCM_SHIFT_MASK\r |
| 96 | ** change ADPCMA_DECODE_MIN/MAX.\r |
| 97 | */\r |
| 98 | \r |
| 99 | \r |
| 100 | \r |
| 101 | \r |
| 102 | /************************************************************************/\r |
| 103 | /* comment of hiro-shi(Hiromitsu Shioya) */\r |
| 104 | /* YM2610(B) = OPN-B */\r |
| 105 | /* YM2610 : PSG:3ch FM:4ch ADPCM(18.5KHz):6ch DeltaT ADPCM:1ch */\r |
| 106 | /* YM2610B : PSG:3ch FM:6ch ADPCM(18.5KHz):6ch DeltaT ADPCM:1ch */\r |
| 107 | /************************************************************************/\r |
| 108 | \r |
| 109 | //#include <stdio.h>\r |
| 110 | \r |
| 111 | #include <string.h>\r |
| 112 | #include <math.h>\r |
| 113 | \r |
| 114 | #include "ym2612.h"\r |
| 115 | \r |
| 116 | #ifndef EXTERNAL_YM2612\r |
| 117 | #include <stdlib.h>\r |
| 118 | // let it be 1 global to simplify things\r |
| 119 | static YM2612 ym2612;\r |
| 120 | \r |
| 121 | #else\r |
| 122 | extern YM2612 *ym2612_940;\r |
| 123 | #define ym2612 (*ym2612_940)\r |
| 124 | \r |
| 125 | #endif\r |
| 126 | \r |
| 127 | void memset32(int *dest, int c, int count);\r |
| 128 | \r |
| 129 | \r |
| 130 | #ifndef __GNUC__\r |
| 131 | #pragma warning (disable:4100) // unreferenced formal parameter\r |
| 132 | #pragma warning (disable:4244)\r |
| 133 | #pragma warning (disable:4245) // signed/unsigned in conversion\r |
| 134 | #pragma warning (disable:4710)\r |
| 135 | #pragma warning (disable:4018) // signed/unsigned\r |
| 136 | #endif\r |
| 137 | \r |
| 138 | #ifndef INLINE\r |
| 139 | #define INLINE static __inline\r |
| 140 | #endif\r |
| 141 | \r |
| 142 | #ifndef M_PI\r |
| 143 | #define M_PI 3.14159265358979323846\r |
| 144 | #endif\r |
| 145 | \r |
| 146 | \r |
| 147 | /* globals */\r |
| 148 | \r |
| 149 | #define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */\r |
| 150 | #define EG_SH 16 /* 16.16 fixed point (envelope generator timing) */\r |
| 151 | #define LFO_SH 25 /* 7.25 fixed point (LFO calculations) */\r |
| 152 | #define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */\r |
| 153 | \r |
| 154 | #define ENV_BITS 10\r |
| 155 | #define ENV_LEN (1<<ENV_BITS)\r |
| 156 | #define ENV_STEP (128.0/ENV_LEN)\r |
| 157 | \r |
| 158 | #define MAX_ATT_INDEX (ENV_LEN-1) /* 1023 */\r |
| 159 | #define MIN_ATT_INDEX (0) /* 0 */\r |
| 160 | \r |
| 161 | #define EG_ATT 4\r |
| 162 | #define EG_DEC 3\r |
| 163 | #define EG_SUS 2\r |
| 164 | #define EG_REL 1\r |
| 165 | #define EG_OFF 0\r |
| 166 | \r |
| 167 | #define SIN_BITS 10\r |
| 168 | #define SIN_LEN (1<<SIN_BITS)\r |
| 169 | #define SIN_MASK (SIN_LEN-1)\r |
| 170 | \r |
| 171 | #define TL_RES_LEN (256) /* 8 bits addressing (real chip) */\r |
| 172 | \r |
| 173 | #define EG_TIMER_OVERFLOW (3*(1<<EG_SH)) /* envelope generator timer overflows every 3 samples (on real chip) */\r |
| 174 | \r |
| 175 | #define MAXOUT (+32767)\r |
| 176 | #define MINOUT (-32768)\r |
| 177 | \r |
| 178 | /* limitter */\r |
| 179 | #define Limit(val, max,min) { \\r |
| 180 | if ( val > max ) val = max; \\r |
| 181 | else if ( val < min ) val = min; \\r |
| 182 | }\r |
| 183 | \r |
| 184 | \r |
| 185 | /* TL_TAB_LEN is calculated as:\r |
| 186 | * 13 - sinus amplitude bits (Y axis)\r |
| 187 | * 2 - sinus sign bit (Y axis)\r |
| 188 | * TL_RES_LEN - sinus resolution (X axis)\r |
| 189 | */\r |
| 190 | //#define TL_TAB_LEN (13*2*TL_RES_LEN)\r |
| 191 | #define TL_TAB_LEN (13*TL_RES_LEN*256/8) // 106496*2\r |
| 192 | UINT16 ym_tl_tab[TL_TAB_LEN];\r |
| 193 | \r |
| 194 | /* ~3K wasted but oh well */\r |
| 195 | UINT16 ym_tl_tab2[13*TL_RES_LEN];\r |
| 196 | \r |
| 197 | #define ENV_QUIET (2*13*TL_RES_LEN/8)\r |
| 198 | \r |
| 199 | /* sin waveform table in 'decibel' scale (use only period/4 values) */\r |
| 200 | static UINT16 ym_sin_tab[256];\r |
| 201 | \r |
| 202 | /* sustain level table (3dB per step) */\r |
| 203 | /* bit0, bit1, bit2, bit3, bit4, bit5, bit6 */\r |
| 204 | /* 1, 2, 4, 8, 16, 32, 64 (value)*/\r |
| 205 | /* 0.75, 1.5, 3, 6, 12, 24, 48 (dB)*/\r |
| 206 | \r |
| 207 | /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/\r |
| 208 | #define SC(db) (UINT32) ( db * (4.0/ENV_STEP) )\r |
| 209 | static const UINT32 sl_table[16]={\r |
| 210 | SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),\r |
| 211 | SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)\r |
| 212 | };\r |
| 213 | #undef SC\r |
| 214 | \r |
| 215 | \r |
| 216 | #if 0\r |
| 217 | #define RATE_STEPS (8)\r |
| 218 | static const UINT8 eg_inc[19*RATE_STEPS]={\r |
| 219 | \r |
| 220 | /*cycle:0 1 2 3 4 5 6 7*/\r |
| 221 | \r |
| 222 | /* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..11 0 (increment by 0 or 1) */\r |
| 223 | /* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..11 1 */\r |
| 224 | /* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..11 2 */\r |
| 225 | /* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..11 3 */\r |
| 226 | \r |
| 227 | /* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 12 0 (increment by 1) */\r |
| 228 | /* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 12 1 */\r |
| 229 | /* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 12 2 */\r |
| 230 | /* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 12 3 */\r |
| 231 | \r |
| 232 | /* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 13 0 (increment by 2) */\r |
| 233 | /* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 13 1 */\r |
| 234 | /*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 13 2 */\r |
| 235 | /*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 13 3 */\r |
| 236 | \r |
| 237 | /*12 */ 4,4, 4,4, 4,4, 4,4, /* rate 14 0 (increment by 4) */\r |
| 238 | /*13 */ 4,4, 4,8, 4,4, 4,8, /* rate 14 1 */\r |
| 239 | /*14 */ 4,8, 4,8, 4,8, 4,8, /* rate 14 2 */\r |
| 240 | /*15 */ 4,8, 8,8, 4,8, 8,8, /* rate 14 3 */\r |
| 241 | \r |
| 242 | /*16 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 8) */\r |
| 243 | /*17 */ 16,16,16,16,16,16,16,16, /* rates 15 2, 15 3 for attack */\r |
| 244 | /*18 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */\r |
| 245 | };\r |
| 246 | #endif\r |
| 247 | \r |
| 248 | \r |
| 249 | #define PACK(a0,a1,a2,a3,a4,a5,a6,a7) ((a7<<21)|(a6<<18)|(a5<<15)|(a4<<12)|(a3<<9)|(a2<<6)|(a1<<3)|(a0<<0))\r |
| 250 | static const UINT32 eg_inc_pack[19] =\r |
| 251 | {\r |
| 252 | /* 0 */ PACK(0,1,0,1,0,1,0,1), /* rates 00..11 0 (increment by 0 or 1) */\r |
| 253 | /* 1 */ PACK(0,1,0,1,1,1,0,1), /* rates 00..11 1 */\r |
| 254 | /* 2 */ PACK(0,1,1,1,0,1,1,1), /* rates 00..11 2 */\r |
| 255 | /* 3 */ PACK(0,1,1,1,1,1,1,1), /* rates 00..11 3 */\r |
| 256 | \r |
| 257 | /* 4 */ PACK(1,1,1,1,1,1,1,1), /* rate 12 0 (increment by 1) */\r |
| 258 | /* 5 */ PACK(1,1,1,2,1,1,1,2), /* rate 12 1 */\r |
| 259 | /* 6 */ PACK(1,2,1,2,1,2,1,2), /* rate 12 2 */\r |
| 260 | /* 7 */ PACK(1,2,2,2,1,2,2,2), /* rate 12 3 */\r |
| 261 | \r |
| 262 | /* 8 */ PACK(2,2,2,2,2,2,2,2), /* rate 13 0 (increment by 2) */\r |
| 263 | /* 9 */ PACK(2,2,2,3,2,2,2,3), /* rate 13 1 */\r |
| 264 | /*10 */ PACK(2,3,2,3,2,3,2,3), /* rate 13 2 */\r |
| 265 | /*11 */ PACK(2,3,3,3,2,3,3,3), /* rate 13 3 */\r |
| 266 | \r |
| 267 | /*12 */ PACK(3,3,3,3,3,3,3,3), /* rate 14 0 (increment by 4) */\r |
| 268 | /*13 */ PACK(3,3,3,4,3,3,3,4), /* rate 14 1 */\r |
| 269 | /*14 */ PACK(3,4,3,4,3,4,3,4), /* rate 14 2 */\r |
| 270 | /*15 */ PACK(3,4,4,4,3,4,4,4), /* rate 14 3 */\r |
| 271 | \r |
| 272 | /*16 */ PACK(4,4,4,4,4,4,4,4), /* rates 15 0, 15 1, 15 2, 15 3 (increment by 8) */\r |
| 273 | /*17 */ PACK(5,5,5,5,5,5,5,5), /* rates 15 2, 15 3 for attack */\r |
| 274 | /*18 */ PACK(0,0,0,0,0,0,0,0), /* infinity rates for attack and decay(s) */\r |
| 275 | };\r |
| 276 | \r |
| 277 | \r |
| 278 | //#define O(a) (a*RATE_STEPS)\r |
| 279 | #define O(a) a\r |
| 280 | \r |
| 281 | /*note that there is no O(17) in this table - it's directly in the code */\r |
| 282 | static const UINT8 eg_rate_select[32+64+32]={ /* Envelope Generator rates (32 + 64 rates + 32 RKS) */\r |
| 283 | /* 32 infinite time rates */\r |
| 284 | O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),\r |
| 285 | O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),\r |
| 286 | O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),\r |
| 287 | O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),\r |
| 288 | \r |
| 289 | /* rates 00-11 */\r |
| 290 | O( 0),O( 1),O( 2),O( 3),\r |
| 291 | O( 0),O( 1),O( 2),O( 3),\r |
| 292 | O( 0),O( 1),O( 2),O( 3),\r |
| 293 | O( 0),O( 1),O( 2),O( 3),\r |
| 294 | O( 0),O( 1),O( 2),O( 3),\r |
| 295 | O( 0),O( 1),O( 2),O( 3),\r |
| 296 | O( 0),O( 1),O( 2),O( 3),\r |
| 297 | O( 0),O( 1),O( 2),O( 3),\r |
| 298 | O( 0),O( 1),O( 2),O( 3),\r |
| 299 | O( 0),O( 1),O( 2),O( 3),\r |
| 300 | O( 0),O( 1),O( 2),O( 3),\r |
| 301 | O( 0),O( 1),O( 2),O( 3),\r |
| 302 | \r |
| 303 | /* rate 12 */\r |
| 304 | O( 4),O( 5),O( 6),O( 7),\r |
| 305 | \r |
| 306 | /* rate 13 */\r |
| 307 | O( 8),O( 9),O(10),O(11),\r |
| 308 | \r |
| 309 | /* rate 14 */\r |
| 310 | O(12),O(13),O(14),O(15),\r |
| 311 | \r |
| 312 | /* rate 15 */\r |
| 313 | O(16),O(16),O(16),O(16),\r |
| 314 | \r |
| 315 | /* 32 dummy rates (same as 15 3) */\r |
| 316 | O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),\r |
| 317 | O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),\r |
| 318 | O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),\r |
| 319 | O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16)\r |
| 320 | \r |
| 321 | };\r |
| 322 | #undef O\r |
| 323 | \r |
| 324 | /*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15*/\r |
| 325 | /*shift 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0 */\r |
| 326 | /*mask 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0, 0 */\r |
| 327 | \r |
| 328 | #define O(a) (a*1)\r |
| 329 | static const UINT8 eg_rate_shift[32+64+32]={ /* Envelope Generator counter shifts (32 + 64 rates + 32 RKS) */\r |
| 330 | /* 32 infinite time rates */\r |
| 331 | O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),\r |
| 332 | O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),\r |
| 333 | O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),\r |
| 334 | O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),\r |
| 335 | \r |
| 336 | /* rates 00-11 */\r |
| 337 | O(11),O(11),O(11),O(11),\r |
| 338 | O(10),O(10),O(10),O(10),\r |
| 339 | O( 9),O( 9),O( 9),O( 9),\r |
| 340 | O( 8),O( 8),O( 8),O( 8),\r |
| 341 | O( 7),O( 7),O( 7),O( 7),\r |
| 342 | O( 6),O( 6),O( 6),O( 6),\r |
| 343 | O( 5),O( 5),O( 5),O( 5),\r |
| 344 | O( 4),O( 4),O( 4),O( 4),\r |
| 345 | O( 3),O( 3),O( 3),O( 3),\r |
| 346 | O( 2),O( 2),O( 2),O( 2),\r |
| 347 | O( 1),O( 1),O( 1),O( 1),\r |
| 348 | O( 0),O( 0),O( 0),O( 0),\r |
| 349 | \r |
| 350 | /* rate 12 */\r |
| 351 | O( 0),O( 0),O( 0),O( 0),\r |
| 352 | \r |
| 353 | /* rate 13 */\r |
| 354 | O( 0),O( 0),O( 0),O( 0),\r |
| 355 | \r |
| 356 | /* rate 14 */\r |
| 357 | O( 0),O( 0),O( 0),O( 0),\r |
| 358 | \r |
| 359 | /* rate 15 */\r |
| 360 | O( 0),O( 0),O( 0),O( 0),\r |
| 361 | \r |
| 362 | /* 32 dummy rates (same as 15 3) */\r |
| 363 | O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),\r |
| 364 | O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),\r |
| 365 | O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),\r |
| 366 | O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0)\r |
| 367 | \r |
| 368 | };\r |
| 369 | #undef O\r |
| 370 | \r |
| 371 | static const UINT8 dt_tab[4 * 32]={\r |
| 372 | /* this is YM2151 and YM2612 phase increment data (in 10.10 fixed point format)*/\r |
| 373 | /* FD=0 */\r |
| 374 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r |
| 375 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r |
| 376 | /* FD=1 */\r |
| 377 | 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,\r |
| 378 | 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8,\r |
| 379 | /* FD=2 */\r |
| 380 | 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,\r |
| 381 | 5, 6, 6, 7, 8, 8, 9,10,11,12,13,14,16,16,16,16,\r |
| 382 | /* FD=3 */\r |
| 383 | 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7,\r |
| 384 | 8 , 8, 9,10,11,12,13,14,16,17,19,20,22,22,22,22\r |
| 385 | };\r |
| 386 | \r |
| 387 | \r |
| 388 | /* OPN key frequency number -> key code follow table */\r |
| 389 | /* fnum higher 4bit -> keycode lower 2bit */\r |
| 390 | static const UINT8 opn_fktable[16] = {0,0,0,0,0,0,0,1,2,3,3,3,3,3,3,3};\r |
| 391 | \r |
| 392 | \r |
| 393 | /* 8 LFO speed parameters */\r |
| 394 | /* each value represents number of samples that one LFO level will last for */\r |
| 395 | static const UINT32 lfo_samples_per_step[8] = {108, 77, 71, 67, 62, 44, 8, 5};\r |
| 396 | \r |
| 397 | \r |
| 398 | \r |
| 399 | /*There are 4 different LFO AM depths available, they are:\r |
| 400 | 0 dB, 1.4 dB, 5.9 dB, 11.8 dB\r |
| 401 | Here is how it is generated (in EG steps):\r |
| 402 | \r |
| 403 | 11.8 dB = 0, 2, 4, 6, 8, 10,12,14,16...126,126,124,122,120,118,....4,2,0\r |
| 404 | 5.9 dB = 0, 1, 2, 3, 4, 5, 6, 7, 8....63, 63, 62, 61, 60, 59,.....2,1,0\r |
| 405 | 1.4 dB = 0, 0, 0, 0, 1, 1, 1, 1, 2,...15, 15, 15, 15, 14, 14,.....0,0,0\r |
| 406 | \r |
| 407 | (1.4 dB is loosing precision as you can see)\r |
| 408 | \r |
| 409 | It's implemented as generator from 0..126 with step 2 then a shift\r |
| 410 | right N times, where N is:\r |
| 411 | 8 for 0 dB\r |
| 412 | 3 for 1.4 dB\r |
| 413 | 1 for 5.9 dB\r |
| 414 | 0 for 11.8 dB\r |
| 415 | */\r |
| 416 | static const UINT8 lfo_ams_depth_shift[4] = {8, 3, 1, 0};\r |
| 417 | \r |
| 418 | \r |
| 419 | \r |
| 420 | /*There are 8 different LFO PM depths available, they are:\r |
| 421 | 0, 3.4, 6.7, 10, 14, 20, 40, 80 (cents)\r |
| 422 | \r |
| 423 | Modulation level at each depth depends on F-NUMBER bits: 4,5,6,7,8,9,10\r |
| 424 | (bits 8,9,10 = FNUM MSB from OCT/FNUM register)\r |
| 425 | \r |
| 426 | Here we store only first quarter (positive one) of full waveform.\r |
| 427 | Full table (lfo_pm_table) containing all 128 waveforms is build\r |
| 428 | at run (init) time.\r |
| 429 | \r |
| 430 | One value in table below represents 4 (four) basic LFO steps\r |
| 431 | (1 PM step = 4 AM steps).\r |
| 432 | \r |
| 433 | For example:\r |
| 434 | at LFO SPEED=0 (which is 108 samples per basic LFO step)\r |
| 435 | one value from "lfo_pm_output" table lasts for 432 consecutive\r |
| 436 | samples (4*108=432) and one full LFO waveform cycle lasts for 13824\r |
| 437 | samples (32*432=13824; 32 because we store only a quarter of whole\r |
| 438 | waveform in the table below)\r |
| 439 | */\r |
| 440 | static const UINT8 lfo_pm_output[7*8][8]={ /* 7 bits meaningful (of F-NUMBER), 8 LFO output levels per one depth (out of 32), 8 LFO depths */\r |
| 441 | /* FNUM BIT 4: 000 0001xxxx */\r |
| 442 | /* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 443 | /* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 444 | /* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 445 | /* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 446 | /* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 447 | /* DEPTH 5 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 448 | /* DEPTH 6 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 449 | /* DEPTH 7 */ {0, 0, 0, 0, 1, 1, 1, 1},\r |
| 450 | \r |
| 451 | /* FNUM BIT 5: 000 0010xxxx */\r |
| 452 | /* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 453 | /* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 454 | /* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 455 | /* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 456 | /* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 457 | /* DEPTH 5 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 458 | /* DEPTH 6 */ {0, 0, 0, 0, 1, 1, 1, 1},\r |
| 459 | /* DEPTH 7 */ {0, 0, 1, 1, 2, 2, 2, 3},\r |
| 460 | \r |
| 461 | /* FNUM BIT 6: 000 0100xxxx */\r |
| 462 | /* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 463 | /* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 464 | /* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 465 | /* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 466 | /* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 1},\r |
| 467 | /* DEPTH 5 */ {0, 0, 0, 0, 1, 1, 1, 1},\r |
| 468 | /* DEPTH 6 */ {0, 0, 1, 1, 2, 2, 2, 3},\r |
| 469 | /* DEPTH 7 */ {0, 0, 2, 3, 4, 4, 5, 6},\r |
| 470 | \r |
| 471 | /* FNUM BIT 7: 000 1000xxxx */\r |
| 472 | /* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 473 | /* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 474 | /* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 1, 1},\r |
| 475 | /* DEPTH 3 */ {0, 0, 0, 0, 1, 1, 1, 1},\r |
| 476 | /* DEPTH 4 */ {0, 0, 0, 1, 1, 1, 1, 2},\r |
| 477 | /* DEPTH 5 */ {0, 0, 1, 1, 2, 2, 2, 3},\r |
| 478 | /* DEPTH 6 */ {0, 0, 2, 3, 4, 4, 5, 6},\r |
| 479 | /* DEPTH 7 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},\r |
| 480 | \r |
| 481 | /* FNUM BIT 8: 001 0000xxxx */\r |
| 482 | /* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 483 | /* DEPTH 1 */ {0, 0, 0, 0, 1, 1, 1, 1},\r |
| 484 | /* DEPTH 2 */ {0, 0, 0, 1, 1, 1, 2, 2},\r |
| 485 | /* DEPTH 3 */ {0, 0, 1, 1, 2, 2, 3, 3},\r |
| 486 | /* DEPTH 4 */ {0, 0, 1, 2, 2, 2, 3, 4},\r |
| 487 | /* DEPTH 5 */ {0, 0, 2, 3, 4, 4, 5, 6},\r |
| 488 | /* DEPTH 6 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},\r |
| 489 | /* DEPTH 7 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},\r |
| 490 | \r |
| 491 | /* FNUM BIT 9: 010 0000xxxx */\r |
| 492 | /* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 493 | /* DEPTH 1 */ {0, 0, 0, 0, 2, 2, 2, 2},\r |
| 494 | /* DEPTH 2 */ {0, 0, 0, 2, 2, 2, 4, 4},\r |
| 495 | /* DEPTH 3 */ {0, 0, 2, 2, 4, 4, 6, 6},\r |
| 496 | /* DEPTH 4 */ {0, 0, 2, 4, 4, 4, 6, 8},\r |
| 497 | /* DEPTH 5 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},\r |
| 498 | /* DEPTH 6 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},\r |
| 499 | /* DEPTH 7 */ {0, 0,0x10,0x18,0x20,0x20,0x28,0x30},\r |
| 500 | \r |
| 501 | /* FNUM BIT10: 100 0000xxxx */\r |
| 502 | /* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},\r |
| 503 | /* DEPTH 1 */ {0, 0, 0, 0, 4, 4, 4, 4},\r |
| 504 | /* DEPTH 2 */ {0, 0, 0, 4, 4, 4, 8, 8},\r |
| 505 | /* DEPTH 3 */ {0, 0, 4, 4, 8, 8, 0xc, 0xc},\r |
| 506 | /* DEPTH 4 */ {0, 0, 4, 8, 8, 8, 0xc,0x10},\r |
| 507 | /* DEPTH 5 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},\r |
| 508 | /* DEPTH 6 */ {0, 0,0x10,0x18,0x20,0x20,0x28,0x30},\r |
| 509 | /* DEPTH 7 */ {0, 0,0x20,0x30,0x40,0x40,0x50,0x60},\r |
| 510 | \r |
| 511 | };\r |
| 512 | \r |
| 513 | /* all 128 LFO PM waveforms */\r |
| 514 | static INT32 lfo_pm_table[128*8*32]; /* 128 combinations of 7 bits meaningful (of F-NUMBER), 8 LFO depths, 32 LFO output levels per one depth */\r |
| 515 | \r |
| 516 | /* there are 2048 FNUMs that can be generated using FNUM/BLK registers\r |
| 517 | but LFO works with one more bit of a precision so we really need 4096 elements */\r |
| 518 | static UINT32 fn_table[4096]; /* fnumber->increment counter */\r |
| 519 | \r |
| 520 | static int g_lfo_ampm = 0;\r |
| 521 | \r |
| 522 | /* register number to channel number , slot offset */\r |
| 523 | #define OPN_CHAN(N) (N&3)\r |
| 524 | #define OPN_SLOT(N) ((N>>2)&3)\r |
| 525 | \r |
| 526 | /* slot number */\r |
| 527 | #define SLOT1 0\r |
| 528 | #define SLOT2 2\r |
| 529 | #define SLOT3 1\r |
| 530 | #define SLOT4 3\r |
| 531 | \r |
| 532 | \r |
| 533 | /* OPN Mode Register Write */\r |
| 534 | INLINE void set_timers( int v )\r |
| 535 | {\r |
| 536 | /* b7 = CSM MODE */\r |
| 537 | /* b6 = 3 slot mode */\r |
| 538 | /* b5 = reset b */\r |
| 539 | /* b4 = reset a */\r |
| 540 | /* b3 = timer enable b */\r |
| 541 | /* b2 = timer enable a */\r |
| 542 | /* b1 = load b */\r |
| 543 | /* b0 = load a */\r |
| 544 | ym2612.OPN.ST.mode = v;\r |
| 545 | \r |
| 546 | /* reset Timer b flag */\r |
| 547 | if( v & 0x20 )\r |
| 548 | ym2612.OPN.ST.status &= ~2;\r |
| 549 | \r |
| 550 | /* reset Timer a flag */\r |
| 551 | if( v & 0x10 )\r |
| 552 | ym2612.OPN.ST.status &= ~1;\r |
| 553 | }\r |
| 554 | \r |
| 555 | \r |
| 556 | INLINE void FM_KEYON(FM_CH *CH , int s )\r |
| 557 | {\r |
| 558 | FM_SLOT *SLOT = &CH->SLOT[s];\r |
| 559 | if( !SLOT->key )\r |
| 560 | {\r |
| 561 | SLOT->key = 1;\r |
| 562 | SLOT->phase = 0; /* restart Phase Generator */\r |
| 563 | SLOT->state = EG_ATT; /* phase -> Attack */\r |
| 564 | }\r |
| 565 | }\r |
| 566 | \r |
| 567 | INLINE void FM_KEYOFF(FM_CH *CH , int s )\r |
| 568 | {\r |
| 569 | FM_SLOT *SLOT = &CH->SLOT[s];\r |
| 570 | if( SLOT->key )\r |
| 571 | {\r |
| 572 | SLOT->key = 0;\r |
| 573 | if (SLOT->state>EG_REL)\r |
| 574 | SLOT->state = EG_REL;/* phase -> Release */\r |
| 575 | }\r |
| 576 | }\r |
| 577 | \r |
| 578 | \r |
| 579 | /* set detune & multiple */\r |
| 580 | INLINE void set_det_mul(FM_CH *CH, FM_SLOT *SLOT, int v)\r |
| 581 | {\r |
| 582 | SLOT->mul = (v&0x0f)? (v&0x0f)*2 : 1;\r |
| 583 | SLOT->DT = ym2612.OPN.ST.dt_tab[(v>>4)&7];\r |
| 584 | CH->SLOT[SLOT1].Incr=-1;\r |
| 585 | }\r |
| 586 | \r |
| 587 | /* set total level */\r |
| 588 | INLINE void set_tl(FM_SLOT *SLOT, int v)\r |
| 589 | {\r |
| 590 | SLOT->tl = (v&0x7f)<<(ENV_BITS-7); /* 7bit TL */\r |
| 591 | }\r |
| 592 | \r |
| 593 | /* set attack rate & key scale */\r |
| 594 | INLINE void set_ar_ksr(FM_CH *CH, FM_SLOT *SLOT, int v)\r |
| 595 | {\r |
| 596 | UINT8 old_KSR = SLOT->KSR;\r |
| 597 | \r |
| 598 | SLOT->ar = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;\r |
| 599 | \r |
| 600 | SLOT->KSR = 3-(v>>6);\r |
| 601 | if (SLOT->KSR != old_KSR)\r |
| 602 | {\r |
| 603 | CH->SLOT[SLOT1].Incr=-1;\r |
| 604 | }\r |
| 605 | else\r |
| 606 | {\r |
| 607 | int eg_sh_ar, eg_sel_ar;\r |
| 608 | \r |
| 609 | /* refresh Attack rate */\r |
| 610 | if ((SLOT->ar + SLOT->ksr) < 32+62)\r |
| 611 | {\r |
| 612 | eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];\r |
| 613 | eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];\r |
| 614 | }\r |
| 615 | else\r |
| 616 | {\r |
| 617 | eg_sh_ar = 0;\r |
| 618 | eg_sel_ar = 17;\r |
| 619 | }\r |
| 620 | \r |
| 621 | SLOT->eg_pack_ar = eg_inc_pack[eg_sel_ar] | (eg_sh_ar<<24);\r |
| 622 | }\r |
| 623 | }\r |
| 624 | \r |
| 625 | /* set decay rate */\r |
| 626 | INLINE void set_dr(FM_SLOT *SLOT, int v)\r |
| 627 | {\r |
| 628 | int eg_sh_d1r, eg_sel_d1r;\r |
| 629 | \r |
| 630 | SLOT->d1r = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;\r |
| 631 | \r |
| 632 | eg_sh_d1r = eg_rate_shift [SLOT->d1r + SLOT->ksr];\r |
| 633 | eg_sel_d1r= eg_rate_select[SLOT->d1r + SLOT->ksr];\r |
| 634 | \r |
| 635 | SLOT->eg_pack_d1r = eg_inc_pack[eg_sel_d1r] | (eg_sh_d1r<<24);\r |
| 636 | }\r |
| 637 | \r |
| 638 | /* set sustain rate */\r |
| 639 | INLINE void set_sr(FM_SLOT *SLOT, int v)\r |
| 640 | {\r |
| 641 | int eg_sh_d2r, eg_sel_d2r;\r |
| 642 | \r |
| 643 | SLOT->d2r = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;\r |
| 644 | \r |
| 645 | eg_sh_d2r = eg_rate_shift [SLOT->d2r + SLOT->ksr];\r |
| 646 | eg_sel_d2r= eg_rate_select[SLOT->d2r + SLOT->ksr];\r |
| 647 | \r |
| 648 | SLOT->eg_pack_d2r = eg_inc_pack[eg_sel_d2r] | (eg_sh_d2r<<24);\r |
| 649 | }\r |
| 650 | \r |
| 651 | /* set release rate */\r |
| 652 | INLINE void set_sl_rr(FM_SLOT *SLOT, int v)\r |
| 653 | {\r |
| 654 | int eg_sh_rr, eg_sel_rr;\r |
| 655 | \r |
| 656 | SLOT->sl = sl_table[ v>>4 ];\r |
| 657 | \r |
| 658 | SLOT->rr = 34 + ((v&0x0f)<<2);\r |
| 659 | \r |
| 660 | eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr];\r |
| 661 | eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr];\r |
| 662 | \r |
| 663 | SLOT->eg_pack_rr = eg_inc_pack[eg_sel_rr] | (eg_sh_rr<<24);\r |
| 664 | }\r |
| 665 | \r |
| 666 | \r |
| 667 | \r |
| 668 | INLINE signed int op_calc(UINT32 phase, unsigned int env, signed int pm)\r |
| 669 | {\r |
| 670 | int ret, sin = (phase>>16) + (pm>>1);\r |
| 671 | int neg = sin & 0x200;\r |
| 672 | if (sin & 0x100) sin ^= 0xff;\r |
| 673 | sin&=0xff;\r |
| 674 | env&=~1;\r |
| 675 | \r |
| 676 | // this was already checked\r |
| 677 | // if (env >= ENV_QUIET) // 384\r |
| 678 | // return 0;\r |
| 679 | \r |
| 680 | ret = ym_tl_tab[sin | (env<<7)];\r |
| 681 | \r |
| 682 | return neg ? -ret : ret;\r |
| 683 | }\r |
| 684 | \r |
| 685 | INLINE signed int op_calc1(UINT32 phase, unsigned int env, signed int pm)\r |
| 686 | {\r |
| 687 | int ret, sin = (phase+pm)>>16;\r |
| 688 | int neg = sin & 0x200;\r |
| 689 | if (sin & 0x100) sin ^= 0xff;\r |
| 690 | sin&=0xff;\r |
| 691 | env&=~1;\r |
| 692 | \r |
| 693 | // if (env >= ENV_QUIET) // 384\r |
| 694 | // return 0;\r |
| 695 | \r |
| 696 | ret = ym_tl_tab[sin | (env<<7)];\r |
| 697 | \r |
| 698 | return neg ? -ret : ret;\r |
| 699 | }\r |
| 700 | \r |
| 701 | #if !defined(_ASM_YM2612_C) || defined(EXTERNAL_YM2612)\r |
| 702 | /* advance LFO to next sample */\r |
| 703 | INLINE int advance_lfo(int lfo_ampm, UINT32 lfo_cnt_old, UINT32 lfo_cnt)\r |
| 704 | {\r |
| 705 | UINT8 pos;\r |
| 706 | UINT8 prev_pos;\r |
| 707 | \r |
| 708 | prev_pos = (lfo_cnt_old >> LFO_SH) & 127;\r |
| 709 | \r |
| 710 | pos = (lfo_cnt >> LFO_SH) & 127;\r |
| 711 | \r |
| 712 | /* update AM when LFO output changes */\r |
| 713 | \r |
| 714 | if (prev_pos != pos)\r |
| 715 | {\r |
| 716 | lfo_ampm &= 0xff;\r |
| 717 | /* triangle */\r |
| 718 | /* AM: 0 to 126 step +2, 126 to 0 step -2 */\r |
| 719 | if (pos<64)\r |
| 720 | lfo_ampm |= ((pos&63) * 2) << 8; /* 0 - 126 */\r |
| 721 | else\r |
| 722 | lfo_ampm |= (126 - (pos&63)*2) << 8;\r |
| 723 | }\r |
| 724 | else\r |
| 725 | {\r |
| 726 | return lfo_ampm;\r |
| 727 | }\r |
| 728 | \r |
| 729 | /* PM works with 4 times slower clock */\r |
| 730 | prev_pos >>= 2;\r |
| 731 | pos >>= 2;\r |
| 732 | /* update PM when LFO output changes */\r |
| 733 | if (prev_pos != pos)\r |
| 734 | {\r |
| 735 | lfo_ampm &= ~0xff;\r |
| 736 | lfo_ampm |= pos; /* 0 - 32 */\r |
| 737 | }\r |
| 738 | return lfo_ampm;\r |
| 739 | }\r |
| 740 | \r |
| 741 | #define EG_INC_VAL() \\r |
| 742 | ((1 << ((pack >> ((eg_cnt>>shift)&7)*3)&7)) >> 1)\r |
| 743 | \r |
| 744 | INLINE UINT32 update_eg_phase(FM_SLOT *SLOT, UINT32 eg_cnt)\r |
| 745 | {\r |
| 746 | INT32 volume = SLOT->volume;\r |
| 747 | \r |
| 748 | switch(SLOT->state)\r |
| 749 | {\r |
| 750 | case EG_ATT: /* attack phase */\r |
| 751 | {\r |
| 752 | UINT32 pack = SLOT->eg_pack_ar;\r |
| 753 | UINT32 shift = pack>>24;\r |
| 754 | if ( !(eg_cnt & ((1<<shift)-1) ) )\r |
| 755 | {\r |
| 756 | volume += ( ~volume * EG_INC_VAL() ) >>4;\r |
| 757 | \r |
| 758 | if (volume <= MIN_ATT_INDEX)\r |
| 759 | {\r |
| 760 | volume = MIN_ATT_INDEX;\r |
| 761 | SLOT->state = EG_DEC;\r |
| 762 | }\r |
| 763 | }\r |
| 764 | break;\r |
| 765 | }\r |
| 766 | \r |
| 767 | case EG_DEC: /* decay phase */\r |
| 768 | {\r |
| 769 | UINT32 pack = SLOT->eg_pack_d1r;\r |
| 770 | UINT32 shift = pack>>24;\r |
| 771 | if ( !(eg_cnt & ((1<<shift)-1) ) )\r |
| 772 | {\r |
| 773 | volume += EG_INC_VAL();\r |
| 774 | \r |
| 775 | if ( volume >= (INT32) SLOT->sl )\r |
| 776 | SLOT->state = EG_SUS;\r |
| 777 | }\r |
| 778 | break;\r |
| 779 | }\r |
| 780 | \r |
| 781 | case EG_SUS: /* sustain phase */\r |
| 782 | {\r |
| 783 | UINT32 pack = SLOT->eg_pack_d2r;\r |
| 784 | UINT32 shift = pack>>24;\r |
| 785 | if ( !(eg_cnt & ((1<<shift)-1) ) )\r |
| 786 | {\r |
| 787 | volume += EG_INC_VAL();\r |
| 788 | \r |
| 789 | if ( volume >= MAX_ATT_INDEX )\r |
| 790 | {\r |
| 791 | volume = MAX_ATT_INDEX;\r |
| 792 | /* do not change SLOT->state (verified on real chip) */\r |
| 793 | }\r |
| 794 | }\r |
| 795 | break;\r |
| 796 | }\r |
| 797 | \r |
| 798 | case EG_REL: /* release phase */\r |
| 799 | {\r |
| 800 | UINT32 pack = SLOT->eg_pack_rr;\r |
| 801 | UINT32 shift = pack>>24;\r |
| 802 | if ( !(eg_cnt & ((1<<shift)-1) ) )\r |
| 803 | {\r |
| 804 | volume += EG_INC_VAL();\r |
| 805 | \r |
| 806 | if ( volume >= MAX_ATT_INDEX )\r |
| 807 | {\r |
| 808 | volume = MAX_ATT_INDEX;\r |
| 809 | SLOT->state = EG_OFF;\r |
| 810 | }\r |
| 811 | }\r |
| 812 | break;\r |
| 813 | }\r |
| 814 | }\r |
| 815 | \r |
| 816 | SLOT->volume = volume;\r |
| 817 | return SLOT->tl + ((UINT32)volume); /* tl is 7bit<<3, volume 0-1023 (0-2039 total) */\r |
| 818 | }\r |
| 819 | #endif\r |
| 820 | \r |
| 821 | \r |
| 822 | typedef struct\r |
| 823 | {\r |
| 824 | UINT16 vol_out1; /* 00: current output from EG circuit (without AM from LFO) */\r |
| 825 | UINT16 vol_out2;\r |
| 826 | UINT16 vol_out3;\r |
| 827 | UINT16 vol_out4;\r |
| 828 | UINT32 pad[2];\r |
| 829 | UINT32 phase1; /* 10 */\r |
| 830 | UINT32 phase2;\r |
| 831 | UINT32 phase3;\r |
| 832 | UINT32 phase4;\r |
| 833 | UINT32 incr1; /* 20: phase step */\r |
| 834 | UINT32 incr2;\r |
| 835 | UINT32 incr3;\r |
| 836 | UINT32 incr4;\r |
| 837 | UINT32 lfo_cnt; /* 30 */\r |
| 838 | UINT32 lfo_inc;\r |
| 839 | INT32 mem; /* one sample delay memory */\r |
| 840 | UINT32 eg_cnt; /* envelope generator counter */\r |
| 841 | FM_CH *CH; /* 40: envelope generator counter */\r |
| 842 | UINT32 eg_timer;\r |
| 843 | UINT32 eg_timer_add;\r |
| 844 | UINT32 pack; // 4c: stereo, lastchan, disabled, lfo_enabled | pan_r, pan_l, ams[2] | AMmasks[4] | FB[4] | lfo_ampm[16]\r |
| 845 | UINT32 algo; /* 50: algo[3], was_update */\r |
| 846 | INT32 op1_out;\r |
| 847 | } chan_rend_context;\r |
| 848 | \r |
| 849 | \r |
| 850 | #if !defined(_ASM_YM2612_C) || defined(EXTERNAL_YM2612)\r |
| 851 | static void chan_render_loop(chan_rend_context *ct, int *buffer, int length)\r |
| 852 | {\r |
| 853 | int scounter; /* sample counter */\r |
| 854 | \r |
| 855 | /* sample generating loop */\r |
| 856 | for (scounter = 0; scounter < length; scounter++)\r |
| 857 | {\r |
| 858 | int smp = 0; /* produced sample */\r |
| 859 | unsigned int eg_out, eg_out2, eg_out4;\r |
| 860 | \r |
| 861 | if (ct->pack & 8) { /* LFO enabled ? (test Earthworm Jim in between demo 1 and 2) */\r |
| 862 | ct->pack = (ct->pack&0xffff) | (advance_lfo(ct->pack >> 16, ct->lfo_cnt, ct->lfo_cnt + ct->lfo_inc) << 16);\r |
| 863 | ct->lfo_cnt += ct->lfo_inc;\r |
| 864 | }\r |
| 865 | \r |
| 866 | ct->eg_timer += ct->eg_timer_add;\r |
| 867 | while (ct->eg_timer >= EG_TIMER_OVERFLOW)\r |
| 868 | {\r |
| 869 | ct->eg_timer -= EG_TIMER_OVERFLOW;\r |
| 870 | ct->eg_cnt++;\r |
| 871 | \r |
| 872 | if (ct->CH->SLOT[SLOT1].state != EG_OFF) ct->vol_out1 = update_eg_phase(&ct->CH->SLOT[SLOT1], ct->eg_cnt);\r |
| 873 | if (ct->CH->SLOT[SLOT2].state != EG_OFF) ct->vol_out2 = update_eg_phase(&ct->CH->SLOT[SLOT2], ct->eg_cnt);\r |
| 874 | if (ct->CH->SLOT[SLOT3].state != EG_OFF) ct->vol_out3 = update_eg_phase(&ct->CH->SLOT[SLOT3], ct->eg_cnt);\r |
| 875 | if (ct->CH->SLOT[SLOT4].state != EG_OFF) ct->vol_out4 = update_eg_phase(&ct->CH->SLOT[SLOT4], ct->eg_cnt);\r |
| 876 | }\r |
| 877 | \r |
| 878 | if (ct->pack & 4) continue; /* output disabled */\r |
| 879 | \r |
| 880 | /* calculate channel sample */\r |
| 881 | eg_out = ct->vol_out1;\r |
| 882 | if ( (ct->pack & 8) && (ct->pack&(1<<(SLOT1+8))) ) eg_out += ct->pack >> (((ct->pack&0xc0)>>6)+24);\r |
| 883 | \r |
| 884 | if( eg_out < ENV_QUIET ) /* SLOT 1 */\r |
| 885 | {\r |
| 886 | int out = 0;\r |
| 887 | \r |
| 888 | if (ct->pack&0xf000) out = ((ct->op1_out>>16) + (ct->op1_out<<16>>16)) << ((ct->pack&0xf000)>>12); /* op1_out0 + op1_out1 */\r |
| 889 | ct->op1_out <<= 16;\r |
| 890 | ct->op1_out |= (unsigned short)op_calc1(ct->phase1, eg_out, out);\r |
| 891 | } else {\r |
| 892 | ct->op1_out <<= 16; /* op1_out0 = op1_out1; op1_out1 = 0; */\r |
| 893 | }\r |
| 894 | \r |
| 895 | eg_out = ct->vol_out3; // volume_calc(&CH->SLOT[SLOT3]);\r |
| 896 | eg_out2 = ct->vol_out2; // volume_calc(&CH->SLOT[SLOT2]);\r |
| 897 | eg_out4 = ct->vol_out4; // volume_calc(&CH->SLOT[SLOT4]);\r |
| 898 | \r |
| 899 | if (ct->pack & 8) {\r |
| 900 | unsigned int add = ct->pack >> (((ct->pack&0xc0)>>6)+24);\r |
| 901 | if (ct->pack & (1<<(SLOT3+8))) eg_out += add;\r |
| 902 | if (ct->pack & (1<<(SLOT2+8))) eg_out2 += add;\r |
| 903 | if (ct->pack & (1<<(SLOT4+8))) eg_out4 += add;\r |
| 904 | }\r |
| 905 | \r |
| 906 | switch( ct->CH->ALGO )\r |
| 907 | {\r |
| 908 | #if 0\r |
| 909 | case 0: smp = upd_algo0(ct); break;\r |
| 910 | case 1: smp = upd_algo1(ct); break;\r |
| 911 | case 2: smp = upd_algo2(ct); break;\r |
| 912 | case 3: smp = upd_algo3(ct); break;\r |
| 913 | case 4: smp = upd_algo4(ct); break;\r |
| 914 | case 5: smp = upd_algo5(ct); break;\r |
| 915 | case 6: smp = upd_algo6(ct); break;\r |
| 916 | case 7: smp = upd_algo7(ct); break;\r |
| 917 | #else\r |
| 918 | case 0:\r |
| 919 | {\r |
| 920 | /* M1---C1---MEM---M2---C2---OUT */\r |
| 921 | int m2,c1,c2=0; /* Phase Modulation input for operators 2,3,4 */\r |
| 922 | m2 = ct->mem;\r |
| 923 | c1 = ct->op1_out>>16;\r |
| 924 | if( eg_out < ENV_QUIET ) { /* SLOT 3 */\r |
| 925 | c2 = op_calc(ct->phase3, eg_out, m2);\r |
| 926 | }\r |
| 927 | if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */\r |
| 928 | ct->mem = op_calc(ct->phase2, eg_out2, c1);\r |
| 929 | }\r |
| 930 | else ct->mem = 0;\r |
| 931 | if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */\r |
| 932 | smp = op_calc(ct->phase4, eg_out4, c2);\r |
| 933 | }\r |
| 934 | break;\r |
| 935 | }\r |
| 936 | case 1:\r |
| 937 | {\r |
| 938 | /* M1------+-MEM---M2---C2---OUT */\r |
| 939 | /* C1-+ */\r |
| 940 | int m2,c2=0;\r |
| 941 | m2 = ct->mem;\r |
| 942 | ct->mem = ct->op1_out>>16;\r |
| 943 | if( eg_out < ENV_QUIET ) { /* SLOT 3 */\r |
| 944 | c2 = op_calc(ct->phase3, eg_out, m2);\r |
| 945 | }\r |
| 946 | if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */\r |
| 947 | ct->mem+= op_calc(ct->phase2, eg_out2, 0);\r |
| 948 | }\r |
| 949 | if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */\r |
| 950 | smp = op_calc(ct->phase4, eg_out4, c2);\r |
| 951 | }\r |
| 952 | break;\r |
| 953 | }\r |
| 954 | case 2:\r |
| 955 | {\r |
| 956 | /* M1-----------------+-C2---OUT */\r |
| 957 | /* C1---MEM---M2-+ */\r |
| 958 | int m2,c2;\r |
| 959 | m2 = ct->mem;\r |
| 960 | c2 = ct->op1_out>>16;\r |
| 961 | if( eg_out < ENV_QUIET ) { /* SLOT 3 */\r |
| 962 | c2 += op_calc(ct->phase3, eg_out, m2);\r |
| 963 | }\r |
| 964 | if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */\r |
| 965 | ct->mem = op_calc(ct->phase2, eg_out2, 0);\r |
| 966 | }\r |
| 967 | else ct->mem = 0;\r |
| 968 | if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */\r |
| 969 | smp = op_calc(ct->phase4, eg_out4, c2);\r |
| 970 | }\r |
| 971 | break;\r |
| 972 | }\r |
| 973 | case 3:\r |
| 974 | {\r |
| 975 | /* M1---C1---MEM------+-C2---OUT */\r |
| 976 | /* M2-+ */\r |
| 977 | int c1,c2;\r |
| 978 | c2 = ct->mem;\r |
| 979 | c1 = ct->op1_out>>16;\r |
| 980 | if( eg_out < ENV_QUIET ) { /* SLOT 3 */\r |
| 981 | c2 += op_calc(ct->phase3, eg_out, 0);\r |
| 982 | }\r |
| 983 | if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */\r |
| 984 | ct->mem = op_calc(ct->phase2, eg_out2, c1);\r |
| 985 | }\r |
| 986 | else ct->mem = 0;\r |
| 987 | if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */\r |
| 988 | smp = op_calc(ct->phase4, eg_out4, c2);\r |
| 989 | }\r |
| 990 | break;\r |
| 991 | }\r |
| 992 | case 4:\r |
| 993 | {\r |
| 994 | /* M1---C1-+-OUT */\r |
| 995 | /* M2---C2-+ */\r |
| 996 | /* MEM: not used */\r |
| 997 | int c1,c2=0;\r |
| 998 | c1 = ct->op1_out>>16;\r |
| 999 | if( eg_out < ENV_QUIET ) { /* SLOT 3 */\r |
| 1000 | c2 = op_calc(ct->phase3, eg_out, 0);\r |
| 1001 | }\r |
| 1002 | if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */\r |
| 1003 | smp = op_calc(ct->phase2, eg_out2, c1);\r |
| 1004 | }\r |
| 1005 | if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */\r |
| 1006 | smp+= op_calc(ct->phase4, eg_out4, c2);\r |
| 1007 | }\r |
| 1008 | break;\r |
| 1009 | }\r |
| 1010 | case 5:\r |
| 1011 | {\r |
| 1012 | /* +----C1----+ */\r |
| 1013 | /* M1-+-MEM---M2-+-OUT */\r |
| 1014 | /* +----C2----+ */\r |
| 1015 | int m2,c1,c2;\r |
| 1016 | m2 = ct->mem;\r |
| 1017 | ct->mem = c1 = c2 = ct->op1_out>>16;\r |
| 1018 | if( eg_out < ENV_QUIET ) { /* SLOT 3 */\r |
| 1019 | smp = op_calc(ct->phase3, eg_out, m2);\r |
| 1020 | }\r |
| 1021 | if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */\r |
| 1022 | smp+= op_calc(ct->phase2, eg_out2, c1);\r |
| 1023 | }\r |
| 1024 | if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */\r |
| 1025 | smp+= op_calc(ct->phase4, eg_out4, c2);\r |
| 1026 | }\r |
| 1027 | break;\r |
| 1028 | }\r |
| 1029 | case 6:\r |
| 1030 | {\r |
| 1031 | /* M1---C1-+ */\r |
| 1032 | /* M2-+-OUT */\r |
| 1033 | /* C2-+ */\r |
| 1034 | /* MEM: not used */\r |
| 1035 | int c1;\r |
| 1036 | c1 = ct->op1_out>>16;\r |
| 1037 | if( eg_out < ENV_QUIET ) { /* SLOT 3 */\r |
| 1038 | smp = op_calc(ct->phase3, eg_out, 0);\r |
| 1039 | }\r |
| 1040 | if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */\r |
| 1041 | smp+= op_calc(ct->phase2, eg_out2, c1);\r |
| 1042 | }\r |
| 1043 | if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */\r |
| 1044 | smp+= op_calc(ct->phase4, eg_out4, 0);\r |
| 1045 | }\r |
| 1046 | break;\r |
| 1047 | }\r |
| 1048 | case 7:\r |
| 1049 | {\r |
| 1050 | /* M1-+ */\r |
| 1051 | /* C1-+-OUT */\r |
| 1052 | /* M2-+ */\r |
| 1053 | /* C2-+ */\r |
| 1054 | /* MEM: not used*/\r |
| 1055 | smp = ct->op1_out>>16;\r |
| 1056 | if( eg_out < ENV_QUIET ) { /* SLOT 3 */\r |
| 1057 | smp += op_calc(ct->phase3, eg_out, 0);\r |
| 1058 | }\r |
| 1059 | if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */\r |
| 1060 | smp += op_calc(ct->phase2, eg_out2, 0);\r |
| 1061 | }\r |
| 1062 | if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */\r |
| 1063 | smp += op_calc(ct->phase4, eg_out4, 0);\r |
| 1064 | }\r |
| 1065 | break;\r |
| 1066 | }\r |
| 1067 | #endif\r |
| 1068 | }\r |
| 1069 | /* done calculating channel sample */\r |
| 1070 | \r |
| 1071 | /* mix sample to output buffer */\r |
| 1072 | if (smp) {\r |
| 1073 | if (ct->pack & 1) { /* stereo */\r |
| 1074 | if (ct->pack & 0x20) /* L */ /* TODO: check correctness */\r |
| 1075 | buffer[scounter*2] += smp;\r |
| 1076 | if (ct->pack & 0x10) /* R */\r |
| 1077 | buffer[scounter*2+1] += smp;\r |
| 1078 | } else {\r |
| 1079 | buffer[scounter] += smp;\r |
| 1080 | }\r |
| 1081 | ct->algo = 8; // algo is only used in asm, here only bit3 is used\r |
| 1082 | }\r |
| 1083 | \r |
| 1084 | /* update phase counters AFTER output calculations */\r |
| 1085 | ct->phase1 += ct->incr1;\r |
| 1086 | ct->phase2 += ct->incr2;\r |
| 1087 | ct->phase3 += ct->incr3;\r |
| 1088 | ct->phase4 += ct->incr4;\r |
| 1089 | }\r |
| 1090 | }\r |
| 1091 | #else\r |
| 1092 | void chan_render_loop(chan_rend_context *ct, int *buffer, unsigned short length);\r |
| 1093 | #endif\r |
| 1094 | \r |
| 1095 | \r |
| 1096 | static int chan_render(int *buffer, int length, FM_CH *CH, UINT32 flags) // flags: stereo, lastchan, disabled, ?, pan_r, pan_l\r |
| 1097 | {\r |
| 1098 | chan_rend_context ct;\r |
| 1099 | \r |
| 1100 | ct.CH = CH;\r |
| 1101 | ct.mem = CH->mem_value; /* one sample delay memory */\r |
| 1102 | ct.lfo_cnt = ym2612.OPN.lfo_cnt;\r |
| 1103 | ct.lfo_inc = ym2612.OPN.lfo_inc;\r |
| 1104 | \r |
| 1105 | flags &= 0x37;\r |
| 1106 | \r |
| 1107 | if (ct.lfo_inc) {\r |
| 1108 | flags |= 8;\r |
| 1109 | flags |= g_lfo_ampm << 16;\r |
| 1110 | flags |= CH->AMmasks << 8;\r |
| 1111 | if (CH->ams == 8) // no ams\r |
| 1112 | flags &= ~0xf00;\r |
| 1113 | else flags |= (CH->ams&3)<<6;\r |
| 1114 | }\r |
| 1115 | flags |= (CH->FB&0xf)<<12; /* feedback shift */\r |
| 1116 | ct.pack = flags;\r |
| 1117 | \r |
| 1118 | ct.eg_cnt = ym2612.OPN.eg_cnt; /* envelope generator counter */\r |
| 1119 | ct.eg_timer = ym2612.OPN.eg_timer;\r |
| 1120 | ct.eg_timer_add = ym2612.OPN.eg_timer_add;\r |
| 1121 | \r |
| 1122 | /* precalculate phase modulation incr */\r |
| 1123 | ct.phase1 = CH->SLOT[SLOT1].phase;\r |
| 1124 | ct.phase2 = CH->SLOT[SLOT2].phase;\r |
| 1125 | ct.phase3 = CH->SLOT[SLOT3].phase;\r |
| 1126 | ct.phase4 = CH->SLOT[SLOT4].phase;\r |
| 1127 | \r |
| 1128 | /* current output from EG circuit (without AM from LFO) */\r |
| 1129 | ct.vol_out1 = CH->SLOT[SLOT1].tl + ((UINT32)CH->SLOT[SLOT1].volume);\r |
| 1130 | ct.vol_out2 = CH->SLOT[SLOT2].tl + ((UINT32)CH->SLOT[SLOT2].volume);\r |
| 1131 | ct.vol_out3 = CH->SLOT[SLOT3].tl + ((UINT32)CH->SLOT[SLOT3].volume);\r |
| 1132 | ct.vol_out4 = CH->SLOT[SLOT4].tl + ((UINT32)CH->SLOT[SLOT4].volume);\r |
| 1133 | \r |
| 1134 | ct.op1_out = CH->op1_out;\r |
| 1135 | ct.algo = CH->ALGO & 7;\r |
| 1136 | \r |
| 1137 | if(CH->pms)\r |
| 1138 | {\r |
| 1139 | /* add support for 3 slot mode */\r |
| 1140 | UINT32 block_fnum = CH->block_fnum;\r |
| 1141 | \r |
| 1142 | UINT32 fnum_lfo = ((block_fnum & 0x7f0) >> 4) * 32 * 8;\r |
| 1143 | INT32 lfo_fn_table_index_offset = lfo_pm_table[ fnum_lfo + CH->pms + ((ct.pack>>16)&0xff) ];\r |
| 1144 | \r |
| 1145 | if (lfo_fn_table_index_offset) /* LFO phase modulation active */\r |
| 1146 | {\r |
| 1147 | UINT8 blk;\r |
| 1148 | UINT32 fn;\r |
| 1149 | int kc,fc;\r |
| 1150 | \r |
| 1151 | block_fnum = block_fnum*2 + lfo_fn_table_index_offset;\r |
| 1152 | \r |
| 1153 | blk = (block_fnum&0x7000) >> 12;\r |
| 1154 | fn = block_fnum & 0xfff;\r |
| 1155 | \r |
| 1156 | /* keyscale code */\r |
| 1157 | kc = (blk<<2) | opn_fktable[fn >> 8];\r |
| 1158 | /* phase increment counter */\r |
| 1159 | fc = fn_table[fn]>>(7-blk);\r |
| 1160 | \r |
| 1161 | ct.incr1 = ((fc+CH->SLOT[SLOT1].DT[kc])*CH->SLOT[SLOT1].mul) >> 1;\r |
| 1162 | ct.incr2 = ((fc+CH->SLOT[SLOT2].DT[kc])*CH->SLOT[SLOT2].mul) >> 1;\r |
| 1163 | ct.incr3 = ((fc+CH->SLOT[SLOT3].DT[kc])*CH->SLOT[SLOT3].mul) >> 1;\r |
| 1164 | ct.incr4 = ((fc+CH->SLOT[SLOT4].DT[kc])*CH->SLOT[SLOT4].mul) >> 1;\r |
| 1165 | }\r |
| 1166 | else /* LFO phase modulation = zero */\r |
| 1167 | {\r |
| 1168 | ct.incr1 = CH->SLOT[SLOT1].Incr;\r |
| 1169 | ct.incr2 = CH->SLOT[SLOT2].Incr;\r |
| 1170 | ct.incr3 = CH->SLOT[SLOT3].Incr;\r |
| 1171 | ct.incr4 = CH->SLOT[SLOT4].Incr;\r |
| 1172 | }\r |
| 1173 | }\r |
| 1174 | else /* no LFO phase modulation */\r |
| 1175 | {\r |
| 1176 | ct.incr1 = CH->SLOT[SLOT1].Incr;\r |
| 1177 | ct.incr2 = CH->SLOT[SLOT2].Incr;\r |
| 1178 | ct.incr3 = CH->SLOT[SLOT3].Incr;\r |
| 1179 | ct.incr4 = CH->SLOT[SLOT4].Incr;\r |
| 1180 | }\r |
| 1181 | \r |
| 1182 | chan_render_loop(&ct, buffer, length);\r |
| 1183 | \r |
| 1184 | // write back persistent stuff:\r |
| 1185 | if (flags & 2) { /* last channel */\r |
| 1186 | ym2612.OPN.eg_cnt = ct.eg_cnt;\r |
| 1187 | ym2612.OPN.eg_timer = ct.eg_timer;\r |
| 1188 | g_lfo_ampm = ct.pack >> 16;\r |
| 1189 | ym2612.OPN.lfo_cnt = ct.lfo_cnt;\r |
| 1190 | }\r |
| 1191 | \r |
| 1192 | CH->op1_out = ct.op1_out;\r |
| 1193 | CH->SLOT[SLOT1].phase = ct.phase1;\r |
| 1194 | CH->SLOT[SLOT2].phase = ct.phase2;\r |
| 1195 | CH->SLOT[SLOT3].phase = ct.phase3;\r |
| 1196 | CH->SLOT[SLOT4].phase = ct.phase4;\r |
| 1197 | CH->mem_value = ct.mem;\r |
| 1198 | \r |
| 1199 | return (ct.algo & 8) >> 3; // had output\r |
| 1200 | }\r |
| 1201 | \r |
| 1202 | /* update phase increment and envelope generator */\r |
| 1203 | INLINE void refresh_fc_eg_slot(FM_SLOT *SLOT, int fc, int kc)\r |
| 1204 | {\r |
| 1205 | int ksr;\r |
| 1206 | \r |
| 1207 | /* (frequency) phase increment counter */\r |
| 1208 | SLOT->Incr = ((fc+SLOT->DT[kc])*SLOT->mul) >> 1;\r |
| 1209 | \r |
| 1210 | ksr = kc >> SLOT->KSR;\r |
| 1211 | if( SLOT->ksr != ksr )\r |
| 1212 | {\r |
| 1213 | int eg_sh, eg_sel;\r |
| 1214 | SLOT->ksr = ksr;\r |
| 1215 | \r |
| 1216 | /* calculate envelope generator rates */\r |
| 1217 | if ((SLOT->ar + SLOT->ksr) < 32+62)\r |
| 1218 | {\r |
| 1219 | eg_sh = eg_rate_shift [SLOT->ar + SLOT->ksr ];\r |
| 1220 | eg_sel = eg_rate_select[SLOT->ar + SLOT->ksr ];\r |
| 1221 | }\r |
| 1222 | else\r |
| 1223 | {\r |
| 1224 | eg_sh = 0;\r |
| 1225 | eg_sel = 17;\r |
| 1226 | }\r |
| 1227 | \r |
| 1228 | SLOT->eg_pack_ar = eg_inc_pack[eg_sel] | (eg_sh<<24);\r |
| 1229 | \r |
| 1230 | eg_sh = eg_rate_shift [SLOT->d1r + SLOT->ksr];\r |
| 1231 | eg_sel = eg_rate_select[SLOT->d1r + SLOT->ksr];\r |
| 1232 | \r |
| 1233 | SLOT->eg_pack_d1r = eg_inc_pack[eg_sel] | (eg_sh<<24);\r |
| 1234 | \r |
| 1235 | eg_sh = eg_rate_shift [SLOT->d2r + SLOT->ksr];\r |
| 1236 | eg_sel = eg_rate_select[SLOT->d2r + SLOT->ksr];\r |
| 1237 | \r |
| 1238 | SLOT->eg_pack_d2r = eg_inc_pack[eg_sel] | (eg_sh<<24);\r |
| 1239 | \r |
| 1240 | eg_sh = eg_rate_shift [SLOT->rr + SLOT->ksr];\r |
| 1241 | eg_sel = eg_rate_select[SLOT->rr + SLOT->ksr];\r |
| 1242 | \r |
| 1243 | SLOT->eg_pack_rr = eg_inc_pack[eg_sel] | (eg_sh<<24);\r |
| 1244 | }\r |
| 1245 | }\r |
| 1246 | \r |
| 1247 | /* update phase increment counters */\r |
| 1248 | INLINE void refresh_fc_eg_chan(FM_CH *CH)\r |
| 1249 | {\r |
| 1250 | if( CH->SLOT[SLOT1].Incr==-1){\r |
| 1251 | int fc = CH->fc;\r |
| 1252 | int kc = CH->kcode;\r |
| 1253 | refresh_fc_eg_slot(&CH->SLOT[SLOT1] , fc , kc );\r |
| 1254 | refresh_fc_eg_slot(&CH->SLOT[SLOT2] , fc , kc );\r |
| 1255 | refresh_fc_eg_slot(&CH->SLOT[SLOT3] , fc , kc );\r |
| 1256 | refresh_fc_eg_slot(&CH->SLOT[SLOT4] , fc , kc );\r |
| 1257 | }\r |
| 1258 | }\r |
| 1259 | \r |
| 1260 | /* initialize time tables */\r |
| 1261 | static void init_timetables(const UINT8 *dttable)\r |
| 1262 | {\r |
| 1263 | int i,d;\r |
| 1264 | double rate;\r |
| 1265 | \r |
| 1266 | /* DeTune table */\r |
| 1267 | for (d = 0;d <= 3;d++){\r |
| 1268 | for (i = 0;i <= 31;i++){\r |
| 1269 | rate = ((double)dttable[d*32 + i]) * SIN_LEN * ym2612.OPN.ST.freqbase * (1<<FREQ_SH) / ((double)(1<<20));\r |
| 1270 | ym2612.OPN.ST.dt_tab[d][i] = (INT32) rate;\r |
| 1271 | ym2612.OPN.ST.dt_tab[d+4][i] = -ym2612.OPN.ST.dt_tab[d][i];\r |
| 1272 | }\r |
| 1273 | }\r |
| 1274 | }\r |
| 1275 | \r |
| 1276 | \r |
| 1277 | static void reset_channels(FM_CH *CH, int num)\r |
| 1278 | {\r |
| 1279 | int c,s;\r |
| 1280 | \r |
| 1281 | ym2612.OPN.ST.mode = 0; /* normal mode */\r |
| 1282 | ym2612.OPN.ST.TA = 0;\r |
| 1283 | ym2612.OPN.ST.TAC = 0;\r |
| 1284 | ym2612.OPN.ST.TB = 0;\r |
| 1285 | ym2612.OPN.ST.TBC = 0;\r |
| 1286 | \r |
| 1287 | for( c = 0 ; c < num ; c++ )\r |
| 1288 | {\r |
| 1289 | CH[c].fc = 0;\r |
| 1290 | for(s = 0 ; s < 4 ; s++ )\r |
| 1291 | {\r |
| 1292 | CH[c].SLOT[s].state= EG_OFF;\r |
| 1293 | CH[c].SLOT[s].volume = MAX_ATT_INDEX;\r |
| 1294 | }\r |
| 1295 | }\r |
| 1296 | }\r |
| 1297 | \r |
| 1298 | /* initialize generic tables */\r |
| 1299 | static void init_tables(void)\r |
| 1300 | {\r |
| 1301 | signed int i,x,y,p;\r |
| 1302 | signed int n;\r |
| 1303 | double o,m;\r |
| 1304 | \r |
| 1305 | for (i=0; i < 256; i++)\r |
| 1306 | {\r |
| 1307 | /* non-standard sinus */\r |
| 1308 | m = sin( ((i*2)+1) * M_PI / SIN_LEN ); /* checked against the real chip */\r |
| 1309 | \r |
| 1310 | /* we never reach zero here due to ((i*2)+1) */\r |
| 1311 | \r |
| 1312 | if (m>0.0)\r |
| 1313 | o = 8*log(1.0/m)/log(2); /* convert to 'decibels' */\r |
| 1314 | else\r |
| 1315 | o = 8*log(-1.0/m)/log(2); /* convert to 'decibels' */\r |
| 1316 | \r |
| 1317 | o = o / (ENV_STEP/4);\r |
| 1318 | \r |
| 1319 | n = (int)(2.0*o);\r |
| 1320 | if (n&1) /* round to nearest */\r |
| 1321 | n = (n>>1)+1;\r |
| 1322 | else\r |
| 1323 | n = n>>1;\r |
| 1324 | \r |
| 1325 | ym_sin_tab[ i ] = n;\r |
| 1326 | //dprintf("FM.C: sin [%4i]= %4i", i, ym_sin_tab[i]);\r |
| 1327 | }\r |
| 1328 | \r |
| 1329 | //dprintf("FM.C: ENV_QUIET= %08x", ENV_QUIET );\r |
| 1330 | \r |
| 1331 | \r |
| 1332 | for (x=0; x < TL_RES_LEN; x++)\r |
| 1333 | {\r |
| 1334 | m = (1<<16) / pow(2, (x+1) * (ENV_STEP/4.0) / 8.0);\r |
| 1335 | m = floor(m);\r |
| 1336 | \r |
| 1337 | /* we never reach (1<<16) here due to the (x+1) */\r |
| 1338 | /* result fits within 16 bits at maximum */\r |
| 1339 | \r |
| 1340 | n = (int)m; /* 16 bits here */\r |
| 1341 | n >>= 4; /* 12 bits here */\r |
| 1342 | if (n&1) /* round to nearest */\r |
| 1343 | n = (n>>1)+1;\r |
| 1344 | else\r |
| 1345 | n = n>>1;\r |
| 1346 | /* 11 bits here (rounded) */\r |
| 1347 | n <<= 2; /* 13 bits here (as in real chip) */\r |
| 1348 | ym_tl_tab2[ x ] = n;\r |
| 1349 | \r |
| 1350 | for (i=1; i < 13; i++)\r |
| 1351 | {\r |
| 1352 | ym_tl_tab2[ x + i*TL_RES_LEN ] = n >> i;\r |
| 1353 | }\r |
| 1354 | }\r |
| 1355 | \r |
| 1356 | for (x=0; x < 256; x++)\r |
| 1357 | {\r |
| 1358 | int sin = ym_sin_tab[ x ];\r |
| 1359 | \r |
| 1360 | for (y=0; y < 2*13*TL_RES_LEN/8; y+=2)\r |
| 1361 | {\r |
| 1362 | p = (y<<2) + sin;\r |
| 1363 | if (p >= 13*TL_RES_LEN)\r |
| 1364 | ym_tl_tab[(y<<7) | x] = 0;\r |
| 1365 | else ym_tl_tab[(y<<7) | x] = ym_tl_tab2[p];\r |
| 1366 | }\r |
| 1367 | }\r |
| 1368 | \r |
| 1369 | \r |
| 1370 | /* build LFO PM modulation table */\r |
| 1371 | for(i = 0; i < 8; i++) /* 8 PM depths */\r |
| 1372 | {\r |
| 1373 | UINT8 fnum;\r |
| 1374 | for (fnum=0; fnum<128; fnum++) /* 7 bits meaningful of F-NUMBER */\r |
| 1375 | {\r |
| 1376 | UINT8 value;\r |
| 1377 | UINT8 step;\r |
| 1378 | UINT32 offset_depth = i;\r |
| 1379 | UINT32 offset_fnum_bit;\r |
| 1380 | UINT32 bit_tmp;\r |
| 1381 | \r |
| 1382 | for (step=0; step<8; step++)\r |
| 1383 | {\r |
| 1384 | value = 0;\r |
| 1385 | for (bit_tmp=0; bit_tmp<7; bit_tmp++) /* 7 bits */\r |
| 1386 | {\r |
| 1387 | if (fnum & (1<<bit_tmp)) /* only if bit "bit_tmp" is set */\r |
| 1388 | {\r |
| 1389 | offset_fnum_bit = bit_tmp * 8;\r |
| 1390 | value += lfo_pm_output[offset_fnum_bit + offset_depth][step];\r |
| 1391 | }\r |
| 1392 | }\r |
| 1393 | lfo_pm_table[(fnum*32*8) + (i*32) + step + 0] = value;\r |
| 1394 | lfo_pm_table[(fnum*32*8) + (i*32) +(step^7)+ 8] = value;\r |
| 1395 | lfo_pm_table[(fnum*32*8) + (i*32) + step +16] = -value;\r |
| 1396 | lfo_pm_table[(fnum*32*8) + (i*32) +(step^7)+24] = -value;\r |
| 1397 | }\r |
| 1398 | }\r |
| 1399 | }\r |
| 1400 | }\r |
| 1401 | \r |
| 1402 | \r |
| 1403 | /* CSM Key Controll */\r |
| 1404 | INLINE void CSMKeyControll(FM_CH *CH)\r |
| 1405 | {\r |
| 1406 | /* this is wrong, atm */\r |
| 1407 | \r |
| 1408 | /* all key on */\r |
| 1409 | FM_KEYON(CH,SLOT1);\r |
| 1410 | FM_KEYON(CH,SLOT2);\r |
| 1411 | FM_KEYON(CH,SLOT3);\r |
| 1412 | FM_KEYON(CH,SLOT4);\r |
| 1413 | }\r |
| 1414 | \r |
| 1415 | \r |
| 1416 | /* prescaler set (and make time tables) */\r |
| 1417 | static void OPNSetPres(int pres)\r |
| 1418 | {\r |
| 1419 | int i;\r |
| 1420 | \r |
| 1421 | /* frequency base */\r |
| 1422 | ym2612.OPN.ST.freqbase = (ym2612.OPN.ST.rate) ? ((double)ym2612.OPN.ST.clock / ym2612.OPN.ST.rate) / pres : 0;\r |
| 1423 | \r |
| 1424 | ym2612.OPN.eg_timer_add = (1<<EG_SH) * ym2612.OPN.ST.freqbase;\r |
| 1425 | \r |
| 1426 | \r |
| 1427 | /* make time tables */\r |
| 1428 | init_timetables( dt_tab );\r |
| 1429 | \r |
| 1430 | /* there are 2048 FNUMs that can be generated using FNUM/BLK registers\r |
| 1431 | but LFO works with one more bit of a precision so we really need 4096 elements */\r |
| 1432 | /* calculate fnumber -> increment counter table */\r |
| 1433 | for(i = 0; i < 4096; i++)\r |
| 1434 | {\r |
| 1435 | /* freq table for octave 7 */\r |
| 1436 | /* OPN phase increment counter = 20bit */\r |
| 1437 | fn_table[i] = (UINT32)( (double)i * 32 * ym2612.OPN.ST.freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */\r |
| 1438 | }\r |
| 1439 | \r |
| 1440 | /* LFO freq. table */\r |
| 1441 | for(i = 0; i < 8; i++)\r |
| 1442 | {\r |
| 1443 | /* Amplitude modulation: 64 output levels (triangle waveform); 1 level lasts for one of "lfo_samples_per_step" samples */\r |
| 1444 | /* Phase modulation: one entry from lfo_pm_output lasts for one of 4 * "lfo_samples_per_step" samples */\r |
| 1445 | ym2612.OPN.lfo_freq[i] = (1.0 / lfo_samples_per_step[i]) * (1<<LFO_SH) * ym2612.OPN.ST.freqbase;\r |
| 1446 | }\r |
| 1447 | }\r |
| 1448 | \r |
| 1449 | \r |
| 1450 | /* write a OPN register (0x30-0xff) */\r |
| 1451 | static int OPNWriteReg(int r, int v)\r |
| 1452 | {\r |
| 1453 | int ret = 1;\r |
| 1454 | FM_CH *CH;\r |
| 1455 | FM_SLOT *SLOT;\r |
| 1456 | \r |
| 1457 | UINT8 c = OPN_CHAN(r);\r |
| 1458 | \r |
| 1459 | if (c == 3) return 0; /* 0xX3,0xX7,0xXB,0xXF */\r |
| 1460 | \r |
| 1461 | if (r >= 0x100) c+=3;\r |
| 1462 | \r |
| 1463 | CH = &ym2612.CH[c];\r |
| 1464 | \r |
| 1465 | SLOT = &(CH->SLOT[OPN_SLOT(r)]);\r |
| 1466 | \r |
| 1467 | switch( r & 0xf0 ) {\r |
| 1468 | case 0x30: /* DET , MUL */\r |
| 1469 | set_det_mul(CH,SLOT,v);\r |
| 1470 | break;\r |
| 1471 | \r |
| 1472 | case 0x40: /* TL */\r |
| 1473 | set_tl(SLOT,v);\r |
| 1474 | break;\r |
| 1475 | \r |
| 1476 | case 0x50: /* KS, AR */\r |
| 1477 | set_ar_ksr(CH,SLOT,v);\r |
| 1478 | break;\r |
| 1479 | \r |
| 1480 | case 0x60: /* bit7 = AM ENABLE, DR */\r |
| 1481 | set_dr(SLOT,v);\r |
| 1482 | if(v&0x80) CH->AMmasks |= 1<<OPN_SLOT(r);\r |
| 1483 | else CH->AMmasks &= ~(1<<OPN_SLOT(r));\r |
| 1484 | break;\r |
| 1485 | \r |
| 1486 | case 0x70: /* SR */\r |
| 1487 | set_sr(SLOT,v);\r |
| 1488 | break;\r |
| 1489 | \r |
| 1490 | case 0x80: /* SL, RR */\r |
| 1491 | set_sl_rr(SLOT,v);\r |
| 1492 | break;\r |
| 1493 | \r |
| 1494 | case 0x90: /* SSG-EG */\r |
| 1495 | // removed.\r |
| 1496 | ret = 0;\r |
| 1497 | break;\r |
| 1498 | \r |
| 1499 | case 0xa0:\r |
| 1500 | switch( OPN_SLOT(r) ){\r |
| 1501 | case 0: /* 0xa0-0xa2 : FNUM1 */\r |
| 1502 | {\r |
| 1503 | UINT32 fn = (((UINT32)( (ym2612.OPN.ST.fn_h)&7))<<8) + v;\r |
| 1504 | UINT8 blk = ym2612.OPN.ST.fn_h>>3;\r |
| 1505 | /* keyscale code */\r |
| 1506 | CH->kcode = (blk<<2) | opn_fktable[fn >> 7];\r |
| 1507 | /* phase increment counter */\r |
| 1508 | CH->fc = fn_table[fn*2]>>(7-blk);\r |
| 1509 | \r |
| 1510 | /* store fnum in clear form for LFO PM calculations */\r |
| 1511 | CH->block_fnum = (blk<<11) | fn;\r |
| 1512 | \r |
| 1513 | CH->SLOT[SLOT1].Incr=-1;\r |
| 1514 | }\r |
| 1515 | break;\r |
| 1516 | case 1: /* 0xa4-0xa6 : FNUM2,BLK */\r |
| 1517 | ym2612.OPN.ST.fn_h = v&0x3f;\r |
| 1518 | ret = 0;\r |
| 1519 | break;\r |
| 1520 | case 2: /* 0xa8-0xaa : 3CH FNUM1 */\r |
| 1521 | if(r < 0x100)\r |
| 1522 | {\r |
| 1523 | UINT32 fn = (((UINT32)(ym2612.OPN.SL3.fn_h&7))<<8) + v;\r |
| 1524 | UINT8 blk = ym2612.OPN.SL3.fn_h>>3;\r |
| 1525 | /* keyscale code */\r |
| 1526 | ym2612.OPN.SL3.kcode[c]= (blk<<2) | opn_fktable[fn >> 7];\r |
| 1527 | /* phase increment counter */\r |
| 1528 | ym2612.OPN.SL3.fc[c] = fn_table[fn*2]>>(7-blk);\r |
| 1529 | ym2612.OPN.SL3.block_fnum[c] = fn;\r |
| 1530 | ym2612.CH[2].SLOT[SLOT1].Incr=-1;\r |
| 1531 | }\r |
| 1532 | break;\r |
| 1533 | case 3: /* 0xac-0xae : 3CH FNUM2,BLK */\r |
| 1534 | if(r < 0x100)\r |
| 1535 | ym2612.OPN.SL3.fn_h = v&0x3f;\r |
| 1536 | ret = 0;\r |
| 1537 | break;\r |
| 1538 | default:\r |
| 1539 | ret = 0;\r |
| 1540 | break;\r |
| 1541 | }\r |
| 1542 | break;\r |
| 1543 | \r |
| 1544 | case 0xb0:\r |
| 1545 | switch( OPN_SLOT(r) ){\r |
| 1546 | case 0: /* 0xb0-0xb2 : FB,ALGO */\r |
| 1547 | {\r |
| 1548 | int feedback = (v>>3)&7;\r |
| 1549 | CH->ALGO = v&7;\r |
| 1550 | CH->FB = feedback ? feedback+6 : 0;\r |
| 1551 | }\r |
| 1552 | break;\r |
| 1553 | case 1: /* 0xb4-0xb6 : L , R , AMS , PMS (YM2612/YM2610B/YM2610/YM2608) */\r |
| 1554 | {\r |
| 1555 | int panshift = c<<1;\r |
| 1556 | \r |
| 1557 | /* b0-2 PMS */\r |
| 1558 | CH->pms = (v & 7) * 32; /* CH->pms = PM depth * 32 (index in lfo_pm_table) */\r |
| 1559 | \r |
| 1560 | /* b4-5 AMS */\r |
| 1561 | CH->ams = lfo_ams_depth_shift[(v>>4) & 3];\r |
| 1562 | \r |
| 1563 | /* PAN : b7 = L, b6 = R */\r |
| 1564 | ym2612.OPN.pan &= ~(3<<panshift);\r |
| 1565 | ym2612.OPN.pan |= ((v & 0xc0) >> 6) << panshift; // ..LRLR\r |
| 1566 | }\r |
| 1567 | break;\r |
| 1568 | default:\r |
| 1569 | ret = 0;\r |
| 1570 | break;\r |
| 1571 | }\r |
| 1572 | break;\r |
| 1573 | default:\r |
| 1574 | ret = 0;\r |
| 1575 | break;\r |
| 1576 | }\r |
| 1577 | \r |
| 1578 | return ret;\r |
| 1579 | }\r |
| 1580 | \r |
| 1581 | \r |
| 1582 | /*******************************************************************************/\r |
| 1583 | /* YM2612 local section */\r |
| 1584 | /*******************************************************************************/\r |
| 1585 | \r |
| 1586 | int *ym2612_dacen;\r |
| 1587 | INT32 *ym2612_dacout;\r |
| 1588 | \r |
| 1589 | \r |
| 1590 | /* Generate samples for YM2612 */\r |
| 1591 | int YM2612UpdateOne_(int *buffer, int length, int stereo, int is_buf_empty)\r |
| 1592 | {\r |
| 1593 | int pan;\r |
| 1594 | int active_chs = 0;\r |
| 1595 | \r |
| 1596 | // if !is_buf_empty, it means it has valid samples to mix with, else it may contain trash\r |
| 1597 | if (is_buf_empty) memset32(buffer, 0, length<<stereo);\r |
| 1598 | \r |
| 1599 | /* refresh PG and EG */\r |
| 1600 | refresh_fc_eg_chan( &ym2612.CH[0] );\r |
| 1601 | refresh_fc_eg_chan( &ym2612.CH[1] );\r |
| 1602 | if( (ym2612.OPN.ST.mode & 0xc0) )\r |
| 1603 | {\r |
| 1604 | /* 3SLOT MODE */\r |
| 1605 | if( ym2612.CH[2].SLOT[SLOT1].Incr==-1)\r |
| 1606 | {\r |
| 1607 | refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT1], ym2612.OPN.SL3.fc[1], ym2612.OPN.SL3.kcode[1] );\r |
| 1608 | refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT2], ym2612.OPN.SL3.fc[2], ym2612.OPN.SL3.kcode[2] );\r |
| 1609 | refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT3], ym2612.OPN.SL3.fc[0], ym2612.OPN.SL3.kcode[0] );\r |
| 1610 | refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT4], ym2612.CH[2].fc , ym2612.CH[2].kcode );\r |
| 1611 | }\r |
| 1612 | } else refresh_fc_eg_chan( &ym2612.CH[2] );\r |
| 1613 | refresh_fc_eg_chan( &ym2612.CH[3] );\r |
| 1614 | refresh_fc_eg_chan( &ym2612.CH[4] );\r |
| 1615 | refresh_fc_eg_chan( &ym2612.CH[5] );\r |
| 1616 | \r |
| 1617 | pan = ym2612.OPN.pan;\r |
| 1618 | if (stereo) stereo = 1;\r |
| 1619 | \r |
| 1620 | /* mix to 32bit dest */\r |
| 1621 | // flags: stereo, lastchan, disabled, ?, pan_r, pan_l\r |
| 1622 | active_chs |= chan_render(buffer, length, &ym2612.CH[0], stereo|((pan&0x003)<<4)) << 0;\r |
| 1623 | active_chs |= chan_render(buffer, length, &ym2612.CH[1], stereo|((pan&0x00c)<<2)) << 1;\r |
| 1624 | active_chs |= chan_render(buffer, length, &ym2612.CH[2], stereo|((pan&0x030) )) << 2;\r |
| 1625 | active_chs |= chan_render(buffer, length, &ym2612.CH[3], stereo|((pan&0x0c0)>>2)) << 3;\r |
| 1626 | active_chs |= chan_render(buffer, length, &ym2612.CH[4], stereo|((pan&0x300)>>4)) << 4;\r |
| 1627 | active_chs |= chan_render(buffer, length, &ym2612.CH[5], stereo|((pan&0xc00)>>6)|(ym2612.dacen<<2)|2) << 5;\r |
| 1628 | \r |
| 1629 | return active_chs; // 1 if buffer updated\r |
| 1630 | }\r |
| 1631 | \r |
| 1632 | \r |
| 1633 | /* initialize YM2612 emulator */\r |
| 1634 | void YM2612Init_(int clock, int rate)\r |
| 1635 | {\r |
| 1636 | // notaz\r |
| 1637 | ym2612_dacen = &ym2612.dacen;\r |
| 1638 | ym2612_dacout = &ym2612.dacout;\r |
| 1639 | \r |
| 1640 | /* clear everything but the regs */\r |
| 1641 | memset(ym2612.CH, 0, sizeof(ym2612)-sizeof(ym2612.REGS)-4);\r |
| 1642 | init_tables();\r |
| 1643 | \r |
| 1644 | ym2612.OPN.ST.clock = clock;\r |
| 1645 | ym2612.OPN.ST.rate = rate;\r |
| 1646 | \r |
| 1647 | /* Extend handler */\r |
| 1648 | YM2612ResetChip_();\r |
| 1649 | }\r |
| 1650 | \r |
| 1651 | \r |
| 1652 | /* reset */\r |
| 1653 | void YM2612ResetChip_(void)\r |
| 1654 | {\r |
| 1655 | int i;\r |
| 1656 | \r |
| 1657 | OPNSetPres( 6*24 );\r |
| 1658 | set_timers( 0x30 ); /* mode 0 , timer reset */\r |
| 1659 | \r |
| 1660 | ym2612.OPN.eg_timer = 0;\r |
| 1661 | ym2612.OPN.eg_cnt = 0;\r |
| 1662 | ym2612.OPN.ST.status = 0;\r |
| 1663 | \r |
| 1664 | reset_channels( &ym2612.CH[0] , 6 );\r |
| 1665 | for(i = 0xb6 ; i >= 0xb4 ; i-- )\r |
| 1666 | {\r |
| 1667 | OPNWriteReg(i ,0xc0);\r |
| 1668 | OPNWriteReg(i|0x100,0xc0);\r |
| 1669 | }\r |
| 1670 | for(i = 0xb2 ; i >= 0x30 ; i-- )\r |
| 1671 | {\r |
| 1672 | OPNWriteReg(i ,0);\r |
| 1673 | OPNWriteReg(i|0x100,0);\r |
| 1674 | }\r |
| 1675 | for(i = 0x26 ; i >= 0x20 ; i-- ) OPNWriteReg(i,0);\r |
| 1676 | /* DAC mode clear */\r |
| 1677 | ym2612.dacen = 0;\r |
| 1678 | }\r |
| 1679 | \r |
| 1680 | \r |
| 1681 | /* YM2612 write */\r |
| 1682 | /* a = address */\r |
| 1683 | /* v = value */\r |
| 1684 | /* returns 1 if sample affecting state changed */\r |
| 1685 | int YM2612Write_(unsigned int a, unsigned int v)\r |
| 1686 | {\r |
| 1687 | int addr, ret=1;\r |
| 1688 | \r |
| 1689 | v &= 0xff; /* adjust to 8 bit bus */\r |
| 1690 | \r |
| 1691 | switch( a&3){\r |
| 1692 | case 0: /* address port 0 */\r |
| 1693 | ym2612.OPN.ST.address = v;\r |
| 1694 | ym2612.addr_A1 = 0;\r |
| 1695 | ret=0;\r |
| 1696 | break;\r |
| 1697 | \r |
| 1698 | case 1: /* data port 0 */\r |
| 1699 | if (ym2612.addr_A1 != 0) {\r |
| 1700 | ret=0;\r |
| 1701 | break; /* verified on real YM2608 */\r |
| 1702 | }\r |
| 1703 | \r |
| 1704 | addr = ym2612.OPN.ST.address;\r |
| 1705 | #ifndef EXTERNAL_YM2612\r |
| 1706 | ym2612.REGS[addr] = v;\r |
| 1707 | #endif\r |
| 1708 | \r |
| 1709 | switch( addr & 0xf0 )\r |
| 1710 | {\r |
| 1711 | case 0x20: /* 0x20-0x2f Mode */\r |
| 1712 | switch( addr )\r |
| 1713 | {\r |
| 1714 | case 0x22: /* LFO FREQ (YM2608/YM2610/YM2610B/YM2612) */\r |
| 1715 | if (v&0x08) /* LFO enabled ? */\r |
| 1716 | {\r |
| 1717 | ym2612.OPN.lfo_inc = ym2612.OPN.lfo_freq[v&7];\r |
| 1718 | }\r |
| 1719 | else\r |
| 1720 | {\r |
| 1721 | ym2612.OPN.lfo_inc = 0;\r |
| 1722 | }\r |
| 1723 | break;\r |
| 1724 | case 0x24: { // timer A High 8\r |
| 1725 | int TAnew = (ym2612.OPN.ST.TA & 0x03)|(((int)v)<<2);\r |
| 1726 | if(ym2612.OPN.ST.TA != TAnew) {\r |
| 1727 | // we should reset ticker only if new value is written. Outrun requires this.\r |
| 1728 | ym2612.OPN.ST.TA = TAnew;\r |
| 1729 | ym2612.OPN.ST.TAC = (1024-TAnew)*18;\r |
| 1730 | ym2612.OPN.ST.TAT = 0;\r |
| 1731 | }\r |
| 1732 | }\r |
| 1733 | ret=0;\r |
| 1734 | break;\r |
| 1735 | case 0x25: { // timer A Low 2\r |
| 1736 | int TAnew = (ym2612.OPN.ST.TA & 0x3fc)|(v&3);\r |
| 1737 | if(ym2612.OPN.ST.TA != TAnew) {\r |
| 1738 | ym2612.OPN.ST.TA = TAnew;\r |
| 1739 | ym2612.OPN.ST.TAC = (1024-TAnew)*18;\r |
| 1740 | ym2612.OPN.ST.TAT = 0;\r |
| 1741 | }\r |
| 1742 | }\r |
| 1743 | ret=0;\r |
| 1744 | break;\r |
| 1745 | case 0x26: // timer B\r |
| 1746 | if(ym2612.OPN.ST.TB != v) {\r |
| 1747 | ym2612.OPN.ST.TB = v;\r |
| 1748 | ym2612.OPN.ST.TBC = (256-v)<<4;\r |
| 1749 | ym2612.OPN.ST.TBC *= 18;\r |
| 1750 | ym2612.OPN.ST.TBT = 0;\r |
| 1751 | }\r |
| 1752 | ret=0;\r |
| 1753 | break;\r |
| 1754 | case 0x27: /* mode, timer control */\r |
| 1755 | set_timers( v );\r |
| 1756 | ret=0;\r |
| 1757 | break;\r |
| 1758 | case 0x28: /* key on / off */\r |
| 1759 | {\r |
| 1760 | UINT8 c;\r |
| 1761 | FM_CH *CH;\r |
| 1762 | \r |
| 1763 | c = v & 0x03;\r |
| 1764 | if( c == 3 ) { ret=0; break; }\r |
| 1765 | if( v&0x04 ) c+=3;\r |
| 1766 | CH = &ym2612.CH[c];\r |
| 1767 | if(v&0x10) FM_KEYON(CH,SLOT1); else FM_KEYOFF(CH,SLOT1);\r |
| 1768 | if(v&0x20) FM_KEYON(CH,SLOT2); else FM_KEYOFF(CH,SLOT2);\r |
| 1769 | if(v&0x40) FM_KEYON(CH,SLOT3); else FM_KEYOFF(CH,SLOT3);\r |
| 1770 | if(v&0x80) FM_KEYON(CH,SLOT4); else FM_KEYOFF(CH,SLOT4);\r |
| 1771 | break;\r |
| 1772 | }\r |
| 1773 | case 0x2a: /* DAC data (YM2612) */\r |
| 1774 | ym2612.dacout = ((int)v - 0x80) << 6; /* level unknown (notaz: 8 seems to be too much) */\r |
| 1775 | ret=0;\r |
| 1776 | break;\r |
| 1777 | case 0x2b: /* DAC Sel (YM2612) */\r |
| 1778 | /* b7 = dac enable */\r |
| 1779 | ym2612.dacen = v & 0x80;\r |
| 1780 | ret=0;\r |
| 1781 | break;\r |
| 1782 | default:\r |
| 1783 | break;\r |
| 1784 | }\r |
| 1785 | break;\r |
| 1786 | default: /* 0x30-0xff OPN section */\r |
| 1787 | /* write register */\r |
| 1788 | ret = OPNWriteReg(addr,v);\r |
| 1789 | }\r |
| 1790 | break;\r |
| 1791 | \r |
| 1792 | case 2: /* address port 1 */\r |
| 1793 | ym2612.OPN.ST.address = v;\r |
| 1794 | ym2612.addr_A1 = 1;\r |
| 1795 | ret=0;\r |
| 1796 | break;\r |
| 1797 | \r |
| 1798 | case 3: /* data port 1 */\r |
| 1799 | if (ym2612.addr_A1 != 1) {\r |
| 1800 | ret=0;\r |
| 1801 | break; /* verified on real YM2608 */\r |
| 1802 | }\r |
| 1803 | \r |
| 1804 | addr = ym2612.OPN.ST.address | 0x100;\r |
| 1805 | #ifndef EXTERNAL_YM2612\r |
| 1806 | ym2612.REGS[addr] = v;\r |
| 1807 | #endif\r |
| 1808 | \r |
| 1809 | ret = OPNWriteReg(addr, v);\r |
| 1810 | break;\r |
| 1811 | }\r |
| 1812 | /*\r |
| 1813 | if(ret) {\r |
| 1814 | extern int Scanline;\r |
| 1815 | dprintf("ymw [%i]", Scanline);\r |
| 1816 | }\r |
| 1817 | */\r |
| 1818 | return ret;\r |
| 1819 | }\r |
| 1820 | \r |
| 1821 | UINT8 YM2612Read_(void)\r |
| 1822 | {\r |
| 1823 | return ym2612.OPN.ST.status;\r |
| 1824 | }\r |
| 1825 | \r |
| 1826 | \r |
| 1827 | int YM2612PicoTick_(int n)\r |
| 1828 | {\r |
| 1829 | int ret = 0;\r |
| 1830 | \r |
| 1831 | // timer A\r |
| 1832 | if(ym2612.OPN.ST.mode & 0x01 && (ym2612.OPN.ST.TAT+=64*n) >= ym2612.OPN.ST.TAC) {\r |
| 1833 | ym2612.OPN.ST.TAT -= ym2612.OPN.ST.TAC;\r |
| 1834 | if(ym2612.OPN.ST.mode & 0x04) ym2612.OPN.ST.status |= 1;\r |
| 1835 | // CSM mode total level latch and auto key on\r |
| 1836 | if(ym2612.OPN.ST.mode & 0x80) {\r |
| 1837 | CSMKeyControll( &(ym2612.CH[2]) ); // Vectorman2, etc.\r |
| 1838 | ret = 1;\r |
| 1839 | }\r |
| 1840 | }\r |
| 1841 | \r |
| 1842 | // timer B\r |
| 1843 | if(ym2612.OPN.ST.mode & 0x02 && (ym2612.OPN.ST.TBT+=64*n) >= ym2612.OPN.ST.TBC) {\r |
| 1844 | ym2612.OPN.ST.TBT -= ym2612.OPN.ST.TBC;\r |
| 1845 | if(ym2612.OPN.ST.mode & 0x08) ym2612.OPN.ST.status |= 2;\r |
| 1846 | }\r |
| 1847 | \r |
| 1848 | return ret;\r |
| 1849 | }\r |
| 1850 | \r |
| 1851 | \r |
| 1852 | void YM2612PicoStateLoad_(void)\r |
| 1853 | {\r |
| 1854 | #ifndef EXTERNAL_YM2612\r |
| 1855 | int i, old_A1 = ym2612.addr_A1;\r |
| 1856 | \r |
| 1857 | reset_channels( &ym2612.CH[0], 6 );\r |
| 1858 | \r |
| 1859 | // feed all the registers and update internal state\r |
| 1860 | for(i = 0; i < 0x100; i++) {\r |
| 1861 | YM2612Write_(0, i);\r |
| 1862 | YM2612Write_(1, ym2612.REGS[i]);\r |
| 1863 | }\r |
| 1864 | for(i = 0; i < 0x100; i++) {\r |
| 1865 | YM2612Write_(2, i);\r |
| 1866 | YM2612Write_(3, ym2612.REGS[i|0x100]);\r |
| 1867 | }\r |
| 1868 | \r |
| 1869 | ym2612.addr_A1 = old_A1;\r |
| 1870 | #else\r |
| 1871 | reset_channels( &ym2612.CH[0], 6 );\r |
| 1872 | #endif\r |
| 1873 | }\r |
| 1874 | \r |
| 1875 | \r |
| 1876 | #ifndef EXTERNAL_YM2612\r |
| 1877 | void *YM2612GetRegs(void)\r |
| 1878 | {\r |
| 1879 | return ym2612.REGS;\r |
| 1880 | }\r |
| 1881 | #endif\r |
| 1882 | \r |