| 1 | // SPDX-License-Identifier: LGPL-2.1-or-later |
| 2 | /* |
| 3 | * Copyright (C) 2022 Paul Cercueil <paul@crapouillou.net> |
| 4 | */ |
| 5 | |
| 6 | #include "constprop.h" |
| 7 | #include "disassembler.h" |
| 8 | #include "lightrec-private.h" |
| 9 | |
| 10 | #include <stdbool.h> |
| 11 | #include <string.h> |
| 12 | |
| 13 | static u32 get_min_value(const struct constprop_data *d) |
| 14 | { |
| 15 | /* Min value: all sign bits to 1, all unknown bits but MSB to 0 */ |
| 16 | return (d->value & d->known) | d->sign | (~d->known & BIT(31)); |
| 17 | } |
| 18 | |
| 19 | static u32 get_max_value(const struct constprop_data *d) |
| 20 | { |
| 21 | /* Max value: all sign bits to 0, all unknown bits to 1 */ |
| 22 | return ((d->value & d->known) | ~d->known) & ~d->sign; |
| 23 | } |
| 24 | |
| 25 | static u32 lightrec_same_sign(const struct constprop_data *d1, |
| 26 | const struct constprop_data *d2) |
| 27 | { |
| 28 | u32 min1, min2, max1, max2, a, b, c, d; |
| 29 | |
| 30 | min1 = get_min_value(d1); |
| 31 | max1 = get_max_value(d1); |
| 32 | min2 = get_min_value(d2); |
| 33 | max2 = get_max_value(d2); |
| 34 | |
| 35 | a = min1 + min2; |
| 36 | b = min1 + max2; |
| 37 | c = max1 + min2; |
| 38 | d = max1 + max2; |
| 39 | |
| 40 | return ((a & b & c & d) | (~a & ~b & ~c & ~d)) & BIT(31); |
| 41 | } |
| 42 | |
| 43 | static u32 lightrec_get_sign_mask(const struct constprop_data *d) |
| 44 | { |
| 45 | u32 imm; |
| 46 | |
| 47 | if (d->sign) |
| 48 | return d->sign; |
| 49 | |
| 50 | imm = (d->value & BIT(31)) ? d->value : ~d->value; |
| 51 | imm = ~(imm & d->known); |
| 52 | if (imm) |
| 53 | imm = 32 - clz32(imm); |
| 54 | |
| 55 | return imm < 32 ? GENMASK(31, imm) : 0; |
| 56 | } |
| 57 | |
| 58 | static void lightrec_propagate_addi(u32 rs, u32 rd, |
| 59 | const struct constprop_data *d, |
| 60 | struct constprop_data *v) |
| 61 | { |
| 62 | u32 end, bit, sum, min, mask, imm, value; |
| 63 | struct constprop_data result = { |
| 64 | .value = v[rd].value, |
| 65 | .known = v[rd].known, |
| 66 | .sign = v[rd].sign, |
| 67 | }; |
| 68 | bool carry = false; |
| 69 | |
| 70 | /* clear unknown bits to ease processing */ |
| 71 | v[rs].value &= v[rs].known; |
| 72 | value = d->value & d->known; |
| 73 | |
| 74 | mask = ~(lightrec_get_sign_mask(d) & lightrec_get_sign_mask(&v[rs])); |
| 75 | end = mask ? 32 - clz32(mask) : 0; |
| 76 | |
| 77 | for (bit = 0; bit < 32; bit++) { |
| 78 | if (v[rs].known & d->known & BIT(bit)) { |
| 79 | /* the bits are known - compute the resulting bit and |
| 80 | * the carry */ |
| 81 | sum = ((u32)carry << bit) + (v[rs].value & BIT(bit)) |
| 82 | + (value & BIT(bit)); |
| 83 | |
| 84 | if (sum & BIT(bit)) |
| 85 | result.value |= BIT(bit); |
| 86 | else |
| 87 | result.value &= ~BIT(bit); |
| 88 | |
| 89 | result.known |= BIT(bit); |
| 90 | result.sign &= ~BIT(bit); |
| 91 | carry = sum & BIT(bit + 1); |
| 92 | continue; |
| 93 | } |
| 94 | |
| 95 | if (bit >= end) { |
| 96 | /* We're past the last significant bits of the values |
| 97 | * (extra sign bits excepted). |
| 98 | * The destination register will be sign-extended |
| 99 | * starting from here (if no carry) or from the next |
| 100 | * bit (if carry). |
| 101 | * If the source registers are not sign-extended and we |
| 102 | * have no carry, the algorithm is done here. */ |
| 103 | |
| 104 | if ((v[rs].sign | d->sign) & BIT(bit)) { |
| 105 | mask = GENMASK(31, bit); |
| 106 | |
| 107 | if (lightrec_same_sign(&v[rs], d)) { |
| 108 | /* Theorical minimum and maximum values |
| 109 | * have the same sign; therefore the |
| 110 | * sign bits are known. */ |
| 111 | min = get_min_value(&v[rs]) |
| 112 | + get_min_value(d); |
| 113 | result.value = (min & mask) |
| 114 | | (result.value & ~mask); |
| 115 | result.known |= mask << carry; |
| 116 | result.sign = 0; |
| 117 | } else { |
| 118 | /* min/max have different signs. */ |
| 119 | result.sign = mask << 1; |
| 120 | result.known &= ~mask; |
| 121 | } |
| 122 | break; |
| 123 | } else if (!carry) { |
| 124 | /* Past end bit, no carry; we're done here. */ |
| 125 | break; |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | result.known &= ~BIT(bit); |
| 130 | result.sign &= ~BIT(bit); |
| 131 | |
| 132 | /* Found an unknown bit in one of the registers. |
| 133 | * If the carry and the bit in the other register are both zero, |
| 134 | * we can continue the algorithm. */ |
| 135 | if (!carry && (((d->known & ~value) |
| 136 | | (v[rs].known & ~v[rs].value)) & BIT(bit))) |
| 137 | continue; |
| 138 | |
| 139 | /* We have an unknown bit in one of the source registers, and we |
| 140 | * may generate a carry: there's nothing to do. Everything from |
| 141 | * this bit till the next known 0 bit or sign bit will be marked |
| 142 | * as unknown. The algorithm can then restart at the following |
| 143 | * bit. */ |
| 144 | |
| 145 | imm = (v[rs].known & d->known & ~v[rs].value & ~value) |
| 146 | | v[rs].sign | d->sign; |
| 147 | |
| 148 | imm &= GENMASK(31, bit); |
| 149 | imm = imm ? ctz32(imm) : 31; |
| 150 | mask = GENMASK(imm, bit); |
| 151 | result.known &= ~mask; |
| 152 | result.sign &= ~mask; |
| 153 | |
| 154 | bit = imm; |
| 155 | carry = false; |
| 156 | } |
| 157 | |
| 158 | v[rd] = result; |
| 159 | } |
| 160 | |
| 161 | static void lightrec_propagate_sub(u32 rs, u32 rt, u32 rd, |
| 162 | struct constprop_data *v) |
| 163 | { |
| 164 | struct constprop_data d = { |
| 165 | .value = ~v[rt].value, |
| 166 | .known = v[rt].known, |
| 167 | .sign = v[rt].sign, |
| 168 | }; |
| 169 | u32 imm, mask, bit; |
| 170 | |
| 171 | /* Negate the known Rt value, then propagate as a regular ADD. */ |
| 172 | |
| 173 | for (bit = 0; bit < 32; bit++) { |
| 174 | if (!(d.known & BIT(bit))) { |
| 175 | /* Unknown bit - mark bits unknown up to the next known 0 */ |
| 176 | |
| 177 | imm = (d.known & ~d.value) | d.sign; |
| 178 | imm &= GENMASK(31, bit); |
| 179 | imm = imm ? ctz32(imm) : 31; |
| 180 | mask = GENMASK(imm, bit); |
| 181 | d.known &= ~mask; |
| 182 | d.sign &= ~mask; |
| 183 | break; |
| 184 | } |
| 185 | |
| 186 | if (!(d.value & BIT(bit))) { |
| 187 | /* Bit is 0: we can set our carry, and the algorithm is done. */ |
| 188 | d.value |= BIT(bit); |
| 189 | break; |
| 190 | } |
| 191 | |
| 192 | /* Bit is 1 - set to 0 and continue algorithm */ |
| 193 | d.value &= ~BIT(bit); |
| 194 | } |
| 195 | |
| 196 | lightrec_propagate_addi(rs, rd, &d, v); |
| 197 | } |
| 198 | |
| 199 | static void lightrec_propagate_slt(u32 rs, u32 rd, bool is_signed, |
| 200 | const struct constprop_data *d, |
| 201 | struct constprop_data *v) |
| 202 | { |
| 203 | unsigned int bit; |
| 204 | |
| 205 | if (is_signed && (v[rs].known & d->known |
| 206 | & (v[rs].value ^ d->value) & BIT(31))) { |
| 207 | /* If doing a signed comparison and the two bits 31 are known |
| 208 | * to be opposite, we can deduce the value. */ |
| 209 | v[rd].value = v[rs].value >> 31; |
| 210 | v[rd].known = 0xffffffff; |
| 211 | v[rd].sign = 0; |
| 212 | return; |
| 213 | } |
| 214 | |
| 215 | for (bit = 32; bit > 0; bit--) { |
| 216 | if (!(v[rs].known & d->known & BIT(bit - 1))) { |
| 217 | /* One bit is unknown and we cannot figure out which |
| 218 | * value is smaller. We still know that the upper 31 |
| 219 | * bits are zero. */ |
| 220 | v[rd].value = 0; |
| 221 | v[rd].known = 0xfffffffe; |
| 222 | v[rd].sign = 0; |
| 223 | break; |
| 224 | } |
| 225 | |
| 226 | /* The two bits are equal - continue to the next bit. */ |
| 227 | if (~(v[rs].value ^ d->value) & BIT(bit - 1)) |
| 228 | continue; |
| 229 | |
| 230 | /* The two bits aren't equal; we can therefore deduce which |
| 231 | * value is smaller. */ |
| 232 | v[rd].value = !(v[rs].value & BIT(bit - 1)); |
| 233 | v[rd].known = 0xffffffff; |
| 234 | v[rd].sign = 0; |
| 235 | break; |
| 236 | } |
| 237 | |
| 238 | if (bit == 0) { |
| 239 | /* rs == rt and all bits are known */ |
| 240 | v[rd].value = 0; |
| 241 | v[rd].known = 0xffffffff; |
| 242 | v[rd].sign = 0; |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | void lightrec_consts_propagate(const struct block *block, |
| 247 | unsigned int idx, |
| 248 | struct constprop_data *v) |
| 249 | { |
| 250 | const struct opcode *list = block->opcode_list; |
| 251 | union code c; |
| 252 | u32 imm, flags; |
| 253 | |
| 254 | if (idx == 0) |
| 255 | return; |
| 256 | |
| 257 | /* Register $zero is always, well, zero */ |
| 258 | v[0].value = 0; |
| 259 | v[0].sign = 0; |
| 260 | v[0].known = 0xffffffff; |
| 261 | |
| 262 | if (op_flag_sync(list[idx].flags)) { |
| 263 | memset(&v[1], 0, sizeof(*v) * 31); |
| 264 | return; |
| 265 | } |
| 266 | |
| 267 | flags = list[idx - 1].flags; |
| 268 | |
| 269 | if (idx > 1 && !op_flag_sync(flags)) { |
| 270 | if (op_flag_no_ds(flags)) |
| 271 | c = list[idx - 1].c; |
| 272 | else |
| 273 | c = list[idx - 2].c; |
| 274 | |
| 275 | switch (c.i.op) { |
| 276 | case OP_BNE: |
| 277 | /* After a BNE $zero + delay slot, we know that the |
| 278 | * branch wasn't taken, and therefore the other register |
| 279 | * is zero. */ |
| 280 | if (c.i.rs == 0) { |
| 281 | v[c.i.rt].value = 0; |
| 282 | v[c.i.rt].sign = 0; |
| 283 | v[c.i.rt].known = 0xffffffff; |
| 284 | } else if (c.i.rt == 0) { |
| 285 | v[c.i.rs].value = 0; |
| 286 | v[c.i.rs].sign = 0; |
| 287 | v[c.i.rs].known = 0xffffffff; |
| 288 | } |
| 289 | break; |
| 290 | case OP_BLEZ: |
| 291 | v[c.i.rs].value &= ~BIT(31); |
| 292 | v[c.i.rs].known |= BIT(31); |
| 293 | fallthrough; |
| 294 | case OP_BEQ: |
| 295 | /* TODO: handle non-zero? */ |
| 296 | break; |
| 297 | case OP_REGIMM: |
| 298 | switch (c.r.rt) { |
| 299 | case OP_REGIMM_BLTZ: |
| 300 | case OP_REGIMM_BLTZAL: |
| 301 | v[c.i.rs].value &= ~BIT(31); |
| 302 | v[c.i.rs].known |= BIT(31); |
| 303 | break; |
| 304 | case OP_REGIMM_BGEZ: |
| 305 | case OP_REGIMM_BGEZAL: |
| 306 | v[c.i.rs].value |= BIT(31); |
| 307 | v[c.i.rs].known |= BIT(31); |
| 308 | /* TODO: handle non-zero? */ |
| 309 | break; |
| 310 | } |
| 311 | break; |
| 312 | default: |
| 313 | break; |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | c = list[idx - 1].c; |
| 318 | |
| 319 | switch (c.i.op) { |
| 320 | case OP_SPECIAL: |
| 321 | switch (c.r.op) { |
| 322 | case OP_SPECIAL_SLL: |
| 323 | v[c.r.rd].value = v[c.r.rt].value << c.r.imm; |
| 324 | v[c.r.rd].known = (v[c.r.rt].known << c.r.imm) |
| 325 | | (BIT(c.r.imm) - 1); |
| 326 | v[c.r.rd].sign = v[c.r.rt].sign << c.r.imm; |
| 327 | break; |
| 328 | |
| 329 | case OP_SPECIAL_SRL: |
| 330 | v[c.r.rd].value = v[c.r.rt].value >> c.r.imm; |
| 331 | v[c.r.rd].known = (v[c.r.rt].known >> c.r.imm) |
| 332 | | ((BIT(c.r.imm) - 1) << (32 - c.r.imm)); |
| 333 | v[c.r.rd].sign = c.r.imm ? 0 : v[c.r.rt].sign; |
| 334 | break; |
| 335 | |
| 336 | case OP_SPECIAL_SRA: |
| 337 | v[c.r.rd].value = (s32)v[c.r.rt].value >> c.r.imm; |
| 338 | v[c.r.rd].known = (s32)v[c.r.rt].known >> c.r.imm; |
| 339 | v[c.r.rd].sign = (s32)v[c.r.rt].sign >> c.r.imm; |
| 340 | break; |
| 341 | |
| 342 | case OP_SPECIAL_SLLV: |
| 343 | if ((v[c.r.rs].known & 0x1f) == 0x1f) { |
| 344 | imm = v[c.r.rs].value & 0x1f; |
| 345 | v[c.r.rd].value = v[c.r.rt].value << imm; |
| 346 | v[c.r.rd].known = (v[c.r.rt].known << imm) |
| 347 | | (BIT(imm) - 1); |
| 348 | v[c.r.rd].sign = v[c.r.rt].sign << imm; |
| 349 | } else { |
| 350 | v[c.r.rd].known = 0; |
| 351 | v[c.r.rd].sign = 0; |
| 352 | } |
| 353 | break; |
| 354 | |
| 355 | case OP_SPECIAL_SRLV: |
| 356 | if ((v[c.r.rs].known & 0x1f) == 0x1f) { |
| 357 | imm = v[c.r.rs].value & 0x1f; |
| 358 | v[c.r.rd].value = v[c.r.rt].value >> imm; |
| 359 | v[c.r.rd].known = (v[c.r.rt].known >> imm) |
| 360 | | ((BIT(imm) - 1) << (32 - imm)); |
| 361 | if (imm) |
| 362 | v[c.r.rd].sign = 0; |
| 363 | } else { |
| 364 | v[c.r.rd].known = 0; |
| 365 | v[c.r.rd].sign = 0; |
| 366 | } |
| 367 | break; |
| 368 | |
| 369 | case OP_SPECIAL_SRAV: |
| 370 | if ((v[c.r.rs].known & 0x1f) == 0x1f) { |
| 371 | imm = v[c.r.rs].value & 0x1f; |
| 372 | v[c.r.rd].value = (s32)v[c.r.rt].value >> imm; |
| 373 | v[c.r.rd].known = (s32)v[c.r.rt].known >> imm; |
| 374 | v[c.r.rd].sign = (s32)v[c.r.rt].sign >> imm; |
| 375 | } else { |
| 376 | v[c.r.rd].known = 0; |
| 377 | v[c.r.rd].sign = 0; |
| 378 | } |
| 379 | break; |
| 380 | |
| 381 | case OP_SPECIAL_ADD: |
| 382 | case OP_SPECIAL_ADDU: |
| 383 | if (is_known_zero(v, c.r.rs)) |
| 384 | v[c.r.rd] = v[c.r.rt]; |
| 385 | else if (is_known_zero(v, c.r.rt)) |
| 386 | v[c.r.rd] = v[c.r.rs]; |
| 387 | else |
| 388 | lightrec_propagate_addi(c.r.rs, c.r.rd, &v[c.r.rt], v); |
| 389 | break; |
| 390 | |
| 391 | case OP_SPECIAL_SUB: |
| 392 | case OP_SPECIAL_SUBU: |
| 393 | if (c.r.rs == c.r.rt) { |
| 394 | v[c.r.rd].value = 0; |
| 395 | v[c.r.rd].known = 0xffffffff; |
| 396 | v[c.r.rd].sign = 0; |
| 397 | } else { |
| 398 | lightrec_propagate_sub(c.r.rs, c.r.rt, c.r.rd, v); |
| 399 | } |
| 400 | break; |
| 401 | |
| 402 | case OP_SPECIAL_AND: |
| 403 | v[c.r.rd].known = (v[c.r.rt].known & v[c.r.rs].known) |
| 404 | | (~v[c.r.rt].value & v[c.r.rt].known) |
| 405 | | (~v[c.r.rs].value & v[c.r.rs].known); |
| 406 | v[c.r.rd].value = v[c.r.rt].value & v[c.r.rs].value & v[c.r.rd].known; |
| 407 | v[c.r.rd].sign = v[c.r.rt].sign & v[c.r.rs].sign; |
| 408 | break; |
| 409 | |
| 410 | case OP_SPECIAL_OR: |
| 411 | v[c.r.rd].known = (v[c.r.rt].known & v[c.r.rs].known) |
| 412 | | (v[c.r.rt].value & v[c.r.rt].known) |
| 413 | | (v[c.r.rs].value & v[c.r.rs].known); |
| 414 | v[c.r.rd].value = (v[c.r.rt].value | v[c.r.rs].value) & v[c.r.rd].known; |
| 415 | v[c.r.rd].sign = v[c.r.rt].sign & v[c.r.rs].sign; |
| 416 | break; |
| 417 | |
| 418 | case OP_SPECIAL_XOR: |
| 419 | v[c.r.rd].value = v[c.r.rt].value ^ v[c.r.rs].value; |
| 420 | v[c.r.rd].known = v[c.r.rt].known & v[c.r.rs].known; |
| 421 | v[c.r.rd].sign = v[c.r.rt].sign & v[c.r.rs].sign; |
| 422 | break; |
| 423 | |
| 424 | case OP_SPECIAL_NOR: |
| 425 | v[c.r.rd].known = (v[c.r.rt].known & v[c.r.rs].known) |
| 426 | | (v[c.r.rt].value & v[c.r.rt].known) |
| 427 | | (v[c.r.rs].value & v[c.r.rs].known); |
| 428 | v[c.r.rd].value = ~(v[c.r.rt].value | v[c.r.rs].value) & v[c.r.rd].known; |
| 429 | v[c.r.rd].sign = v[c.r.rt].sign & v[c.r.rs].sign; |
| 430 | break; |
| 431 | |
| 432 | case OP_SPECIAL_SLT: |
| 433 | case OP_SPECIAL_SLTU: |
| 434 | lightrec_propagate_slt(c.r.rs, c.r.rd, |
| 435 | c.r.op == OP_SPECIAL_SLT, |
| 436 | &v[c.r.rt], v); |
| 437 | break; |
| 438 | |
| 439 | case OP_SPECIAL_MULT: |
| 440 | case OP_SPECIAL_MULTU: |
| 441 | case OP_SPECIAL_DIV: |
| 442 | case OP_SPECIAL_DIVU: |
| 443 | if (OPT_FLAG_MULT_DIV && c.r.rd) { |
| 444 | v[c.r.rd].known = 0; |
| 445 | v[c.r.rd].sign = 0; |
| 446 | } |
| 447 | if (OPT_FLAG_MULT_DIV && c.r.imm) { |
| 448 | v[c.r.imm].known = 0; |
| 449 | v[c.r.imm].sign = 0; |
| 450 | } |
| 451 | break; |
| 452 | |
| 453 | case OP_SPECIAL_MFLO: |
| 454 | case OP_SPECIAL_MFHI: |
| 455 | v[c.r.rd].known = 0; |
| 456 | v[c.r.rd].sign = 0; |
| 457 | break; |
| 458 | |
| 459 | case OP_SPECIAL_JALR: |
| 460 | v[c.r.rd].known = 0xffffffff; |
| 461 | v[c.r.rd].sign = 0; |
| 462 | v[c.r.rd].value = block->pc + ((idx + 2) << 2); |
| 463 | break; |
| 464 | |
| 465 | default: |
| 466 | break; |
| 467 | } |
| 468 | break; |
| 469 | |
| 470 | case OP_META_MULT2: |
| 471 | case OP_META_MULTU2: |
| 472 | if (OPT_FLAG_MULT_DIV && c.r.rd) { |
| 473 | if (c.r.op < 32) { |
| 474 | v[c.r.rd].value = v[c.r.rs].value << c.r.op; |
| 475 | v[c.r.rd].known = (v[c.r.rs].known << c.r.op) |
| 476 | | (BIT(c.r.op) - 1); |
| 477 | v[c.r.rd].sign = v[c.r.rs].sign << c.r.op; |
| 478 | } else { |
| 479 | v[c.r.rd].value = 0; |
| 480 | v[c.r.rd].known = 0xffffffff; |
| 481 | v[c.r.rd].sign = 0; |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | if (OPT_FLAG_MULT_DIV && c.r.imm) { |
| 486 | if (c.r.op >= 32) { |
| 487 | v[c.r.imm].value = v[c.r.rs].value << (c.r.op - 32); |
| 488 | v[c.r.imm].known = (v[c.r.rs].known << (c.r.op - 32)) |
| 489 | | (BIT(c.r.op - 32) - 1); |
| 490 | v[c.r.imm].sign = v[c.r.rs].sign << (c.r.op - 32); |
| 491 | } else if (c.i.op == OP_META_MULT2) { |
| 492 | v[c.r.imm].value = (s32)v[c.r.rs].value >> (32 - c.r.op); |
| 493 | v[c.r.imm].known = (s32)v[c.r.rs].known >> (32 - c.r.op); |
| 494 | v[c.r.imm].sign = (s32)v[c.r.rs].sign >> (32 - c.r.op); |
| 495 | } else { |
| 496 | v[c.r.imm].value = v[c.r.rs].value >> (32 - c.r.op); |
| 497 | v[c.r.imm].known = v[c.r.rs].known >> (32 - c.r.op); |
| 498 | v[c.r.imm].sign = v[c.r.rs].sign >> (32 - c.r.op); |
| 499 | } |
| 500 | } |
| 501 | break; |
| 502 | |
| 503 | case OP_REGIMM: |
| 504 | break; |
| 505 | |
| 506 | case OP_ADDI: |
| 507 | case OP_ADDIU: |
| 508 | if (c.i.imm) { |
| 509 | struct constprop_data d = { |
| 510 | .value = (s32)(s16)c.i.imm, |
| 511 | .known = 0xffffffff, |
| 512 | .sign = 0, |
| 513 | }; |
| 514 | |
| 515 | lightrec_propagate_addi(c.i.rs, c.i.rt, &d, v); |
| 516 | } else { |
| 517 | /* immediate is zero - that's just a register copy. */ |
| 518 | v[c.i.rt] = v[c.i.rs]; |
| 519 | } |
| 520 | break; |
| 521 | |
| 522 | case OP_SLTI: |
| 523 | case OP_SLTIU: |
| 524 | { |
| 525 | struct constprop_data d = { |
| 526 | .value = (s32)(s16)c.i.imm, |
| 527 | .known = 0xffffffff, |
| 528 | .sign = 0, |
| 529 | }; |
| 530 | |
| 531 | lightrec_propagate_slt(c.i.rs, c.i.rt, |
| 532 | c.i.op == OP_SLTI, &d, v); |
| 533 | } |
| 534 | break; |
| 535 | |
| 536 | case OP_ANDI: |
| 537 | v[c.i.rt].value = v[c.i.rs].value & c.i.imm; |
| 538 | v[c.i.rt].known = v[c.i.rs].known | ~c.i.imm; |
| 539 | v[c.i.rt].sign = 0; |
| 540 | break; |
| 541 | |
| 542 | case OP_ORI: |
| 543 | v[c.i.rt].value = v[c.i.rs].value | c.i.imm; |
| 544 | v[c.i.rt].known = v[c.i.rs].known | c.i.imm; |
| 545 | v[c.i.rt].sign = (v[c.i.rs].sign & 0xffff) ? 0xffff0000 : v[c.i.rs].sign; |
| 546 | break; |
| 547 | |
| 548 | case OP_XORI: |
| 549 | v[c.i.rt].value = v[c.i.rs].value ^ c.i.imm; |
| 550 | v[c.i.rt].known = v[c.i.rs].known; |
| 551 | v[c.i.rt].sign = (v[c.i.rs].sign & 0xffff) ? 0xffff0000 : v[c.i.rs].sign; |
| 552 | break; |
| 553 | |
| 554 | case OP_LUI: |
| 555 | v[c.i.rt].value = c.i.imm << 16; |
| 556 | v[c.i.rt].known = 0xffffffff; |
| 557 | v[c.i.rt].sign = 0; |
| 558 | break; |
| 559 | |
| 560 | case OP_CP0: |
| 561 | switch (c.r.rs) { |
| 562 | case OP_CP0_MFC0: |
| 563 | case OP_CP0_CFC0: |
| 564 | v[c.r.rt].known = 0; |
| 565 | v[c.r.rt].sign = 0; |
| 566 | break; |
| 567 | default: |
| 568 | break; |
| 569 | } |
| 570 | break; |
| 571 | |
| 572 | case OP_CP2: |
| 573 | if (c.r.op == OP_CP2_BASIC) { |
| 574 | switch (c.r.rs) { |
| 575 | case OP_CP2_BASIC_MFC2: |
| 576 | switch (c.r.rd) { |
| 577 | case 1: |
| 578 | case 3: |
| 579 | case 5: |
| 580 | case 8: |
| 581 | case 9: |
| 582 | case 10: |
| 583 | case 11: |
| 584 | /* Signed 16-bit */ |
| 585 | v[c.r.rt].known = 0; |
| 586 | v[c.r.rt].sign = 0xffff8000; |
| 587 | break; |
| 588 | case 7: |
| 589 | case 16: |
| 590 | case 17: |
| 591 | case 18: |
| 592 | case 19: |
| 593 | /* Unsigned 16-bit */ |
| 594 | v[c.r.rt].value = 0; |
| 595 | v[c.r.rt].known = 0xffff0000; |
| 596 | v[c.r.rt].sign = 0; |
| 597 | break; |
| 598 | default: |
| 599 | /* 32-bit */ |
| 600 | v[c.r.rt].known = 0; |
| 601 | v[c.r.rt].sign = 0; |
| 602 | break; |
| 603 | } |
| 604 | break; |
| 605 | case OP_CP2_BASIC_CFC2: |
| 606 | switch (c.r.rd) { |
| 607 | case 4: |
| 608 | case 12: |
| 609 | case 20: |
| 610 | case 26: |
| 611 | case 27: |
| 612 | case 29: |
| 613 | case 30: |
| 614 | /* Signed 16-bit */ |
| 615 | v[c.r.rt].known = 0; |
| 616 | v[c.r.rt].sign = 0xffff8000; |
| 617 | break; |
| 618 | default: |
| 619 | /* 32-bit */ |
| 620 | v[c.r.rt].known = 0; |
| 621 | v[c.r.rt].sign = 0; |
| 622 | break; |
| 623 | } |
| 624 | break; |
| 625 | } |
| 626 | } |
| 627 | break; |
| 628 | case OP_LB: |
| 629 | v[c.i.rt].known = 0; |
| 630 | v[c.i.rt].sign = 0xffffff80; |
| 631 | break; |
| 632 | case OP_LH: |
| 633 | v[c.i.rt].known = 0; |
| 634 | v[c.i.rt].sign = 0xffff8000; |
| 635 | break; |
| 636 | case OP_LBU: |
| 637 | v[c.i.rt].value = 0; |
| 638 | v[c.i.rt].known = 0xffffff00; |
| 639 | v[c.i.rt].sign = 0; |
| 640 | break; |
| 641 | case OP_LHU: |
| 642 | v[c.i.rt].value = 0; |
| 643 | v[c.i.rt].known = 0xffff0000; |
| 644 | v[c.i.rt].sign = 0; |
| 645 | break; |
| 646 | case OP_LWL: |
| 647 | case OP_LWR: |
| 648 | /* LWL/LWR don't write the full register if the address is |
| 649 | * unaligned, so we only need to know the low 2 bits */ |
| 650 | if (v[c.i.rs].known & 0x3) { |
| 651 | imm = (v[c.i.rs].value & 0x3) * 8; |
| 652 | |
| 653 | if (c.i.op == OP_LWL) { |
| 654 | imm = BIT(24 - imm) - 1; |
| 655 | v[c.i.rt].sign &= ~imm; |
| 656 | } else { |
| 657 | imm = imm ? GENMASK(31, 32 - imm) : 0; |
| 658 | v[c.i.rt].sign = 0; |
| 659 | } |
| 660 | v[c.i.rt].known &= imm; |
| 661 | break; |
| 662 | } |
| 663 | fallthrough; |
| 664 | case OP_LW: |
| 665 | case OP_META_LWU: |
| 666 | v[c.i.rt].known = 0; |
| 667 | v[c.i.rt].sign = 0; |
| 668 | break; |
| 669 | case OP_META: |
| 670 | switch (c.m.op) { |
| 671 | case OP_META_MOV: |
| 672 | v[c.m.rd] = v[c.m.rs]; |
| 673 | break; |
| 674 | |
| 675 | case OP_META_EXTC: |
| 676 | v[c.m.rd].value = (s32)(s8)v[c.m.rs].value; |
| 677 | if (v[c.m.rs].known & BIT(7)) { |
| 678 | v[c.m.rd].known = v[c.m.rs].known | 0xffffff00; |
| 679 | v[c.m.rd].sign = 0; |
| 680 | } else { |
| 681 | v[c.m.rd].known = v[c.m.rs].known & 0x7f; |
| 682 | v[c.m.rd].sign = 0xffffff80; |
| 683 | } |
| 684 | break; |
| 685 | |
| 686 | case OP_META_EXTS: |
| 687 | v[c.m.rd].value = (s32)(s16)v[c.m.rs].value; |
| 688 | if (v[c.m.rs].known & BIT(15)) { |
| 689 | v[c.m.rd].known = v[c.m.rs].known | 0xffff0000; |
| 690 | v[c.m.rd].sign = 0; |
| 691 | } else { |
| 692 | v[c.m.rd].known = v[c.m.rs].known & 0x7fff; |
| 693 | v[c.m.rd].sign = 0xffff8000; |
| 694 | } |
| 695 | break; |
| 696 | |
| 697 | case OP_META_COM: |
| 698 | v[c.m.rd].known = v[c.m.rs].known; |
| 699 | v[c.m.rd].value = ~v[c.m.rs].value; |
| 700 | v[c.m.rd].sign = v[c.m.rs].sign; |
| 701 | break; |
| 702 | default: |
| 703 | break; |
| 704 | } |
| 705 | break; |
| 706 | case OP_JAL: |
| 707 | v[31].known = 0xffffffff; |
| 708 | v[31].sign = 0; |
| 709 | v[31].value = block->pc + ((idx + 2) << 2); |
| 710 | break; |
| 711 | |
| 712 | default: |
| 713 | break; |
| 714 | } |
| 715 | |
| 716 | /* Reset register 0 which may have been used as a target */ |
| 717 | v[0].value = 0; |
| 718 | v[0].sign = 0; |
| 719 | v[0].known = 0xffffffff; |
| 720 | } |
| 721 | |
| 722 | enum psx_map |
| 723 | lightrec_get_constprop_map(const struct lightrec_state *state, |
| 724 | const struct constprop_data *v, u8 reg, s16 imm) |
| 725 | { |
| 726 | const struct lightrec_mem_map *map; |
| 727 | unsigned int i; |
| 728 | u32 min, max; |
| 729 | |
| 730 | min = get_min_value(&v[reg]) + imm; |
| 731 | max = get_max_value(&v[reg]) + imm; |
| 732 | |
| 733 | /* Handle the case where max + imm overflows */ |
| 734 | if ((min & 0xe0000000) != (max & 0xe0000000)) |
| 735 | return PSX_MAP_UNKNOWN; |
| 736 | |
| 737 | pr_debug("Min: 0x%08x max: 0x%08x Known: 0x%08x Sign: 0x%08x\n", |
| 738 | min, max, v[reg].known, v[reg].sign); |
| 739 | |
| 740 | min = kunseg(min); |
| 741 | max = kunseg(max); |
| 742 | |
| 743 | for (i = 0; i < state->nb_maps; i++) { |
| 744 | map = &state->maps[i]; |
| 745 | |
| 746 | if (min >= map->pc && min < map->pc + map->length |
| 747 | && max >= map->pc && max < map->pc + map->length) |
| 748 | return (enum psx_map) i; |
| 749 | } |
| 750 | |
| 751 | return PSX_MAP_UNKNOWN; |
| 752 | } |