| 1 | // SPDX-License-Identifier: LGPL-2.1-or-later |
| 2 | /* |
| 3 | * Copyright (C) 2019-2021 Paul Cercueil <paul@crapouillou.net> |
| 4 | */ |
| 5 | |
| 6 | #include "disassembler.h" |
| 7 | #include "interpreter.h" |
| 8 | #include "lightrec-private.h" |
| 9 | #include "optimizer.h" |
| 10 | #include "regcache.h" |
| 11 | |
| 12 | #include <stdbool.h> |
| 13 | |
| 14 | struct interpreter; |
| 15 | |
| 16 | static u32 int_CP0(struct interpreter *inter); |
| 17 | static u32 int_CP2(struct interpreter *inter); |
| 18 | static u32 int_SPECIAL(struct interpreter *inter); |
| 19 | static u32 int_META(struct interpreter *inter); |
| 20 | static u32 int_REGIMM(struct interpreter *inter); |
| 21 | static u32 int_branch(struct interpreter *inter, u32 pc, |
| 22 | union code code, bool branch); |
| 23 | |
| 24 | typedef u32 (*lightrec_int_func_t)(struct interpreter *inter); |
| 25 | |
| 26 | static const lightrec_int_func_t int_standard[64]; |
| 27 | |
| 28 | struct interpreter { |
| 29 | struct lightrec_state *state; |
| 30 | struct block *block; |
| 31 | struct opcode *op; |
| 32 | u32 cycles; |
| 33 | bool delay_slot; |
| 34 | bool load_delay; |
| 35 | u16 offset; |
| 36 | }; |
| 37 | |
| 38 | static u32 int_get_branch_pc(const struct interpreter *inter) |
| 39 | { |
| 40 | return get_branch_pc(inter->block, inter->offset, 0); |
| 41 | } |
| 42 | |
| 43 | static inline u32 int_get_ds_pc(const struct interpreter *inter, s16 imm) |
| 44 | { |
| 45 | return get_ds_pc(inter->block, inter->offset, imm); |
| 46 | } |
| 47 | |
| 48 | static inline struct opcode *next_op(const struct interpreter *inter) |
| 49 | { |
| 50 | return &inter->op[1]; |
| 51 | } |
| 52 | |
| 53 | static inline u32 execute(lightrec_int_func_t func, struct interpreter *inter) |
| 54 | { |
| 55 | return (*func)(inter); |
| 56 | } |
| 57 | |
| 58 | static inline u32 lightrec_int_op(struct interpreter *inter) |
| 59 | { |
| 60 | return execute(int_standard[inter->op->i.op], inter); |
| 61 | } |
| 62 | |
| 63 | static inline u32 jump_skip(struct interpreter *inter) |
| 64 | { |
| 65 | inter->op = next_op(inter); |
| 66 | inter->offset++; |
| 67 | |
| 68 | if (op_flag_sync(inter->op->flags)) { |
| 69 | inter->state->current_cycle += inter->cycles; |
| 70 | inter->cycles = 0; |
| 71 | } |
| 72 | |
| 73 | return lightrec_int_op(inter); |
| 74 | } |
| 75 | |
| 76 | static inline u32 jump_next(struct interpreter *inter) |
| 77 | { |
| 78 | inter->cycles += lightrec_cycles_of_opcode(inter->state, inter->op->c); |
| 79 | |
| 80 | if (unlikely(inter->delay_slot)) |
| 81 | return 0; |
| 82 | |
| 83 | return jump_skip(inter); |
| 84 | } |
| 85 | |
| 86 | static inline u32 jump_after_branch(struct interpreter *inter) |
| 87 | { |
| 88 | inter->cycles += lightrec_cycles_of_opcode(inter->state, inter->op->c); |
| 89 | |
| 90 | if (unlikely(inter->delay_slot)) |
| 91 | return 0; |
| 92 | |
| 93 | inter->op = next_op(inter); |
| 94 | inter->offset++; |
| 95 | |
| 96 | return jump_skip(inter); |
| 97 | } |
| 98 | |
| 99 | static void update_cycles_before_branch(struct interpreter *inter) |
| 100 | { |
| 101 | u32 cycles; |
| 102 | |
| 103 | if (!inter->delay_slot) { |
| 104 | cycles = lightrec_cycles_of_opcode(inter->state, inter->op->c); |
| 105 | |
| 106 | if (!op_flag_no_ds(inter->op->flags) && |
| 107 | has_delay_slot(inter->op->c)) |
| 108 | cycles += lightrec_cycles_of_opcode(inter->state, next_op(inter)->c); |
| 109 | |
| 110 | inter->cycles += cycles; |
| 111 | inter->state->current_cycle += inter->cycles; |
| 112 | inter->cycles = -cycles; |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | static bool is_branch_taken(const u32 *reg_cache, union code op) |
| 117 | { |
| 118 | switch (op.i.op) { |
| 119 | case OP_SPECIAL: |
| 120 | return op.r.op == OP_SPECIAL_JR || op.r.op == OP_SPECIAL_JALR; |
| 121 | case OP_J: |
| 122 | case OP_JAL: |
| 123 | return true; |
| 124 | case OP_BEQ: |
| 125 | return reg_cache[op.r.rs] == reg_cache[op.r.rt]; |
| 126 | case OP_BNE: |
| 127 | return reg_cache[op.r.rs] != reg_cache[op.r.rt]; |
| 128 | case OP_REGIMM: |
| 129 | switch (op.r.rt) { |
| 130 | case OP_REGIMM_BLTZ: |
| 131 | case OP_REGIMM_BLTZAL: |
| 132 | return (s32)reg_cache[op.r.rs] < 0; |
| 133 | case OP_REGIMM_BGEZ: |
| 134 | case OP_REGIMM_BGEZAL: |
| 135 | return (s32)reg_cache[op.r.rs] >= 0; |
| 136 | } |
| 137 | default: |
| 138 | break; |
| 139 | } |
| 140 | |
| 141 | return false; |
| 142 | } |
| 143 | |
| 144 | static u32 int_delay_slot(struct interpreter *inter, u32 pc, bool branch) |
| 145 | { |
| 146 | struct lightrec_state *state = inter->state; |
| 147 | u32 *reg_cache = state->regs.gpr; |
| 148 | struct opcode new_op, *op = next_op(inter); |
| 149 | union code op_next; |
| 150 | struct interpreter inter2 = { |
| 151 | .state = state, |
| 152 | .cycles = inter->cycles, |
| 153 | .delay_slot = true, |
| 154 | .load_delay = true, |
| 155 | }; |
| 156 | bool run_first_op = false, dummy_ld = false, save_rs = false, |
| 157 | load_in_ds, branch_in_ds = false, branch_at_addr = false, |
| 158 | branch_taken; |
| 159 | u32 new_rt, old_rs = 0, new_rs = 0; |
| 160 | u32 next_pc, ds_next_pc, epc; |
| 161 | |
| 162 | if (op->i.op == OP_CP0 && op->r.rs == OP_CP0_RFE) { |
| 163 | /* When an IRQ happens, the PSX exception handlers (when done) |
| 164 | * will jump back to the instruction that was executed right |
| 165 | * before the IRQ, unless it was a GTE opcode; in that case, it |
| 166 | * jumps to the instruction right after. |
| 167 | * Since we will never handle the IRQ right after a GTE opcode, |
| 168 | * but on branch boundaries, we need to adjust the return |
| 169 | * address so that the GTE opcode is effectively executed. |
| 170 | */ |
| 171 | epc = state->regs.cp0[14]; |
| 172 | |
| 173 | if (epc == pc - 4) { |
| 174 | op_next = lightrec_read_opcode(state, epc); |
| 175 | if (op_next.i.op == OP_CP2) |
| 176 | pc -= 4; |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | if (inter->delay_slot) { |
| 181 | /* The branch opcode was in a delay slot of another branch |
| 182 | * opcode. Just return the target address of the second |
| 183 | * branch. */ |
| 184 | return pc; |
| 185 | } |
| 186 | |
| 187 | /* An opcode located in the delay slot performing a delayed read |
| 188 | * requires special handling; we will always resort to using the |
| 189 | * interpreter in that case. |
| 190 | * Same goes for when we have a branch in a delay slot of another |
| 191 | * branch. */ |
| 192 | load_in_ds = opcode_is_load(op->c) || opcode_is_mfc(op->c); |
| 193 | branch_in_ds = has_delay_slot(op->c); |
| 194 | |
| 195 | if (branch) { |
| 196 | if (load_in_ds || branch_in_ds) |
| 197 | op_next = lightrec_read_opcode(state, pc); |
| 198 | |
| 199 | if (load_in_ds) { |
| 200 | /* Verify that the next block actually reads the |
| 201 | * destination register of the delay slot opcode. */ |
| 202 | run_first_op = opcode_reads_register(op_next, op->r.rt); |
| 203 | } |
| 204 | |
| 205 | if (branch_in_ds) { |
| 206 | run_first_op = true; |
| 207 | next_pc = pc + 4; |
| 208 | } |
| 209 | |
| 210 | if (load_in_ds && run_first_op) { |
| 211 | next_pc = pc + 4; |
| 212 | |
| 213 | /* If the first opcode of the next block writes the |
| 214 | * regiser used as the address for the load, we need to |
| 215 | * reset to the old value after it has been executed, |
| 216 | * then restore the new value after the delay slot |
| 217 | * opcode has been executed. */ |
| 218 | save_rs = opcode_reads_register(op->c, op->r.rs) && |
| 219 | opcode_writes_register(op_next, op->r.rs); |
| 220 | if (save_rs) |
| 221 | old_rs = reg_cache[op->r.rs]; |
| 222 | |
| 223 | /* If both the first opcode of the next block and the |
| 224 | * delay slot opcode write to the same register, the |
| 225 | * value written by the delay slot opcode is |
| 226 | * discarded. */ |
| 227 | dummy_ld = opcode_writes_register(op_next, op->r.rt); |
| 228 | } |
| 229 | |
| 230 | if (!run_first_op) { |
| 231 | next_pc = pc; |
| 232 | } else if (has_delay_slot(op_next)) { |
| 233 | /* The first opcode of the next block is a branch, so we |
| 234 | * cannot execute it here, because of the load delay. |
| 235 | * Just check whether or not the branch would be taken, |
| 236 | * and save that info into the interpreter struct. */ |
| 237 | branch_at_addr = true; |
| 238 | branch_taken = is_branch_taken(reg_cache, op_next); |
| 239 | pr_debug("Target of impossible branch is a branch, " |
| 240 | "%staken.\n", branch_taken ? "" : "not "); |
| 241 | inter->cycles += lightrec_cycles_of_opcode(inter->state, op_next); |
| 242 | old_rs = reg_cache[op_next.r.rs]; |
| 243 | } else { |
| 244 | new_op.c = op_next; |
| 245 | new_op.flags = 0; |
| 246 | inter2.op = &new_op; |
| 247 | inter2.offset = 0; |
| 248 | |
| 249 | /* Execute the first opcode of the next block */ |
| 250 | lightrec_int_op(&inter2); |
| 251 | |
| 252 | if (save_rs) { |
| 253 | new_rs = reg_cache[op->r.rs]; |
| 254 | reg_cache[op->r.rs] = old_rs; |
| 255 | } |
| 256 | |
| 257 | inter->cycles += lightrec_cycles_of_opcode(inter->state, op_next); |
| 258 | } |
| 259 | } else { |
| 260 | next_pc = int_get_ds_pc(inter, 2); |
| 261 | } |
| 262 | |
| 263 | inter2.block = inter->block; |
| 264 | inter2.op = op; |
| 265 | inter2.cycles = inter->cycles; |
| 266 | inter2.offset = inter->offset + 1; |
| 267 | |
| 268 | if (dummy_ld) |
| 269 | new_rt = reg_cache[op->r.rt]; |
| 270 | |
| 271 | /* Execute delay slot opcode */ |
| 272 | ds_next_pc = lightrec_int_op(&inter2); |
| 273 | |
| 274 | if (branch_at_addr) { |
| 275 | if (op_next.i.op == OP_SPECIAL) |
| 276 | /* TODO: Handle JALR setting $ra */ |
| 277 | ds_next_pc = old_rs; |
| 278 | else if (op_next.i.op == OP_J || op_next.i.op == OP_JAL) |
| 279 | /* TODO: Handle JAL setting $ra */ |
| 280 | ds_next_pc = (pc & 0xf0000000) | (op_next.j.imm << 2); |
| 281 | else |
| 282 | ds_next_pc = pc + 4 + ((s16)op_next.i.imm << 2); |
| 283 | } |
| 284 | |
| 285 | if (branch_at_addr && !branch_taken) { |
| 286 | /* If the branch at the target of the branch opcode is not |
| 287 | * taken, we jump to its delay slot */ |
| 288 | next_pc = pc + sizeof(u32); |
| 289 | } else if (branch_at_addr || (!branch && branch_in_ds)) { |
| 290 | next_pc = ds_next_pc; |
| 291 | } |
| 292 | |
| 293 | if (save_rs) |
| 294 | reg_cache[op->r.rs] = new_rs; |
| 295 | if (dummy_ld) |
| 296 | reg_cache[op->r.rt] = new_rt; |
| 297 | |
| 298 | inter->cycles += lightrec_cycles_of_opcode(inter->state, op->c); |
| 299 | |
| 300 | if (branch_at_addr && branch_taken) { |
| 301 | /* If the branch at the target of the branch opcode is taken, |
| 302 | * we execute its delay slot here, and jump to its target |
| 303 | * address. */ |
| 304 | op_next = lightrec_read_opcode(state, pc + 4); |
| 305 | |
| 306 | new_op.c = op_next; |
| 307 | new_op.flags = 0; |
| 308 | inter2.op = &new_op; |
| 309 | inter2.block = NULL; |
| 310 | |
| 311 | inter->cycles += lightrec_cycles_of_opcode(inter->state, op_next); |
| 312 | |
| 313 | pr_debug("Running delay slot of branch at target of impossible " |
| 314 | "branch\n"); |
| 315 | lightrec_int_op(&inter2); |
| 316 | } |
| 317 | |
| 318 | return next_pc; |
| 319 | } |
| 320 | |
| 321 | static u32 int_unimplemented(struct interpreter *inter) |
| 322 | { |
| 323 | lightrec_set_exit_flags(inter->state, LIGHTREC_EXIT_UNKNOWN_OP); |
| 324 | |
| 325 | return inter->block->pc + (inter->offset << 2); |
| 326 | } |
| 327 | |
| 328 | static u32 int_jump(struct interpreter *inter, bool link) |
| 329 | { |
| 330 | struct lightrec_state *state = inter->state; |
| 331 | u32 old_pc = int_get_branch_pc(inter); |
| 332 | u32 pc = (old_pc & 0xf0000000) | (inter->op->j.imm << 2); |
| 333 | |
| 334 | if (link) |
| 335 | state->regs.gpr[31] = old_pc + 8; |
| 336 | |
| 337 | if (op_flag_no_ds(inter->op->flags)) |
| 338 | return pc; |
| 339 | |
| 340 | return int_delay_slot(inter, pc, true); |
| 341 | } |
| 342 | |
| 343 | static u32 int_J(struct interpreter *inter) |
| 344 | { |
| 345 | return int_jump(inter, false); |
| 346 | } |
| 347 | |
| 348 | static u32 int_JAL(struct interpreter *inter) |
| 349 | { |
| 350 | return int_jump(inter, true); |
| 351 | } |
| 352 | |
| 353 | static u32 int_jumpr(struct interpreter *inter, u8 link_reg) |
| 354 | { |
| 355 | struct lightrec_state *state = inter->state; |
| 356 | u32 old_pc = int_get_branch_pc(inter); |
| 357 | u32 next_pc = state->regs.gpr[inter->op->r.rs]; |
| 358 | |
| 359 | if (link_reg) |
| 360 | state->regs.gpr[link_reg] = old_pc + 8; |
| 361 | |
| 362 | if (op_flag_no_ds(inter->op->flags)) |
| 363 | return next_pc; |
| 364 | |
| 365 | return int_delay_slot(inter, next_pc, true); |
| 366 | } |
| 367 | |
| 368 | static u32 int_special_JR(struct interpreter *inter) |
| 369 | { |
| 370 | return int_jumpr(inter, 0); |
| 371 | } |
| 372 | |
| 373 | static u32 int_special_JALR(struct interpreter *inter) |
| 374 | { |
| 375 | return int_jumpr(inter, inter->op->r.rd); |
| 376 | } |
| 377 | |
| 378 | static u32 int_do_branch(struct interpreter *inter, u32 old_pc, u32 next_pc) |
| 379 | { |
| 380 | if (!inter->delay_slot && op_flag_local_branch(inter->op->flags) && |
| 381 | (s16)inter->op->c.i.imm >= 0) { |
| 382 | next_pc = old_pc + ((1 + (s16)inter->op->c.i.imm) << 2); |
| 383 | next_pc = lightrec_emulate_block(inter->state, inter->block, next_pc); |
| 384 | } |
| 385 | |
| 386 | return next_pc; |
| 387 | } |
| 388 | |
| 389 | static u32 int_branch(struct interpreter *inter, u32 pc, |
| 390 | union code code, bool branch) |
| 391 | { |
| 392 | u32 next_pc = pc + 4 + ((s16)code.i.imm << 2); |
| 393 | |
| 394 | update_cycles_before_branch(inter); |
| 395 | |
| 396 | if (op_flag_no_ds(inter->op->flags)) { |
| 397 | if (branch) |
| 398 | return int_do_branch(inter, pc, next_pc); |
| 399 | else |
| 400 | return jump_next(inter); |
| 401 | } |
| 402 | |
| 403 | if (!inter->delay_slot) |
| 404 | next_pc = int_delay_slot(inter, next_pc, branch); |
| 405 | |
| 406 | if (branch) |
| 407 | return int_do_branch(inter, pc, next_pc); |
| 408 | |
| 409 | if (op_flag_emulate_branch(inter->op->flags)) |
| 410 | return pc + 8; |
| 411 | else |
| 412 | return jump_after_branch(inter); |
| 413 | } |
| 414 | |
| 415 | static u32 int_beq(struct interpreter *inter, bool bne) |
| 416 | { |
| 417 | u32 rs, rt, old_pc = int_get_branch_pc(inter); |
| 418 | |
| 419 | rs = inter->state->regs.gpr[inter->op->i.rs]; |
| 420 | rt = inter->state->regs.gpr[inter->op->i.rt]; |
| 421 | |
| 422 | return int_branch(inter, old_pc, inter->op->c, (rs == rt) ^ bne); |
| 423 | } |
| 424 | |
| 425 | static u32 int_BEQ(struct interpreter *inter) |
| 426 | { |
| 427 | return int_beq(inter, false); |
| 428 | } |
| 429 | |
| 430 | static u32 int_BNE(struct interpreter *inter) |
| 431 | { |
| 432 | return int_beq(inter, true); |
| 433 | } |
| 434 | |
| 435 | static u32 int_bgez(struct interpreter *inter, bool link, bool lt, bool regimm) |
| 436 | { |
| 437 | u32 old_pc = int_get_branch_pc(inter); |
| 438 | s32 rs; |
| 439 | |
| 440 | if (link) |
| 441 | inter->state->regs.gpr[31] = old_pc + 8; |
| 442 | |
| 443 | rs = (s32)inter->state->regs.gpr[inter->op->i.rs]; |
| 444 | |
| 445 | return int_branch(inter, old_pc, inter->op->c, |
| 446 | ((regimm && !rs) || rs > 0) ^ lt); |
| 447 | } |
| 448 | |
| 449 | static u32 int_regimm_BLTZ(struct interpreter *inter) |
| 450 | { |
| 451 | return int_bgez(inter, false, true, true); |
| 452 | } |
| 453 | |
| 454 | static u32 int_regimm_BGEZ(struct interpreter *inter) |
| 455 | { |
| 456 | return int_bgez(inter, false, false, true); |
| 457 | } |
| 458 | |
| 459 | static u32 int_regimm_BLTZAL(struct interpreter *inter) |
| 460 | { |
| 461 | return int_bgez(inter, true, true, true); |
| 462 | } |
| 463 | |
| 464 | static u32 int_regimm_BGEZAL(struct interpreter *inter) |
| 465 | { |
| 466 | return int_bgez(inter, true, false, true); |
| 467 | } |
| 468 | |
| 469 | static u32 int_BLEZ(struct interpreter *inter) |
| 470 | { |
| 471 | return int_bgez(inter, false, true, false); |
| 472 | } |
| 473 | |
| 474 | static u32 int_BGTZ(struct interpreter *inter) |
| 475 | { |
| 476 | return int_bgez(inter, false, false, false); |
| 477 | } |
| 478 | |
| 479 | static u32 int_cfc(struct interpreter *inter) |
| 480 | { |
| 481 | struct lightrec_state *state = inter->state; |
| 482 | const struct opcode *op = inter->op; |
| 483 | u32 val; |
| 484 | |
| 485 | val = lightrec_mfc(state, op->c); |
| 486 | |
| 487 | if (likely(op->r.rt)) |
| 488 | state->regs.gpr[op->r.rt] = val; |
| 489 | |
| 490 | return jump_next(inter); |
| 491 | } |
| 492 | |
| 493 | static u32 int_ctc(struct interpreter *inter) |
| 494 | { |
| 495 | struct lightrec_state *state = inter->state; |
| 496 | const struct opcode *op = inter->op; |
| 497 | |
| 498 | lightrec_mtc(state, op->c, op->r.rd, state->regs.gpr[op->r.rt]); |
| 499 | |
| 500 | /* If we have a MTC0 or CTC0 to CP0 register 12 (Status) or 13 (Cause), |
| 501 | * return early so that the emulator will be able to check software |
| 502 | * interrupt status. */ |
| 503 | if (!op_flag_no_ds(inter->op->flags) && |
| 504 | op->i.op == OP_CP0 && (op->r.rd == 12 || op->r.rd == 13)) |
| 505 | return int_get_ds_pc(inter, 1); |
| 506 | else |
| 507 | return jump_next(inter); |
| 508 | } |
| 509 | |
| 510 | static u32 int_cp0_RFE(struct interpreter *inter) |
| 511 | { |
| 512 | lightrec_rfe(inter->state); |
| 513 | |
| 514 | return jump_next(inter); |
| 515 | } |
| 516 | |
| 517 | static u32 int_CP(struct interpreter *inter) |
| 518 | { |
| 519 | lightrec_cp(inter->state, inter->op->c); |
| 520 | |
| 521 | return jump_next(inter); |
| 522 | } |
| 523 | |
| 524 | static u32 int_ADDI(struct interpreter *inter) |
| 525 | { |
| 526 | u32 *reg_cache = inter->state->regs.gpr; |
| 527 | struct opcode_i *op = &inter->op->i; |
| 528 | |
| 529 | if (likely(op->rt)) |
| 530 | reg_cache[op->rt] = reg_cache[op->rs] + (s32)(s16)op->imm; |
| 531 | |
| 532 | return jump_next(inter); |
| 533 | } |
| 534 | |
| 535 | static u32 int_SLTI(struct interpreter *inter) |
| 536 | { |
| 537 | u32 *reg_cache = inter->state->regs.gpr; |
| 538 | struct opcode_i *op = &inter->op->i; |
| 539 | |
| 540 | if (likely(op->rt)) |
| 541 | reg_cache[op->rt] = (s32)reg_cache[op->rs] < (s32)(s16)op->imm; |
| 542 | |
| 543 | return jump_next(inter); |
| 544 | } |
| 545 | |
| 546 | static u32 int_SLTIU(struct interpreter *inter) |
| 547 | { |
| 548 | u32 *reg_cache = inter->state->regs.gpr; |
| 549 | struct opcode_i *op = &inter->op->i; |
| 550 | |
| 551 | if (likely(op->rt)) |
| 552 | reg_cache[op->rt] = reg_cache[op->rs] < (u32)(s32)(s16)op->imm; |
| 553 | |
| 554 | return jump_next(inter); |
| 555 | } |
| 556 | |
| 557 | static u32 int_ANDI(struct interpreter *inter) |
| 558 | { |
| 559 | u32 *reg_cache = inter->state->regs.gpr; |
| 560 | struct opcode_i *op = &inter->op->i; |
| 561 | |
| 562 | if (likely(op->rt)) |
| 563 | reg_cache[op->rt] = reg_cache[op->rs] & op->imm; |
| 564 | |
| 565 | return jump_next(inter); |
| 566 | } |
| 567 | |
| 568 | static u32 int_ORI(struct interpreter *inter) |
| 569 | { |
| 570 | u32 *reg_cache = inter->state->regs.gpr; |
| 571 | struct opcode_i *op = &inter->op->i; |
| 572 | |
| 573 | if (likely(op->rt)) |
| 574 | reg_cache[op->rt] = reg_cache[op->rs] | op->imm; |
| 575 | |
| 576 | return jump_next(inter); |
| 577 | } |
| 578 | |
| 579 | static u32 int_XORI(struct interpreter *inter) |
| 580 | { |
| 581 | u32 *reg_cache = inter->state->regs.gpr; |
| 582 | struct opcode_i *op = &inter->op->i; |
| 583 | |
| 584 | if (likely(op->rt)) |
| 585 | reg_cache[op->rt] = reg_cache[op->rs] ^ op->imm; |
| 586 | |
| 587 | return jump_next(inter); |
| 588 | } |
| 589 | |
| 590 | static u32 int_LUI(struct interpreter *inter) |
| 591 | { |
| 592 | struct opcode_i *op = &inter->op->i; |
| 593 | |
| 594 | inter->state->regs.gpr[op->rt] = op->imm << 16; |
| 595 | |
| 596 | return jump_next(inter); |
| 597 | } |
| 598 | |
| 599 | static u32 int_io(struct interpreter *inter, bool is_load) |
| 600 | { |
| 601 | struct opcode_i *op = &inter->op->i; |
| 602 | u32 *reg_cache = inter->state->regs.gpr; |
| 603 | u32 val, *flags = NULL; |
| 604 | |
| 605 | if (!inter->load_delay && inter->block) |
| 606 | flags = &inter->op->flags; |
| 607 | |
| 608 | val = lightrec_rw(inter->state, inter->op->c, |
| 609 | reg_cache[op->rs], reg_cache[op->rt], |
| 610 | flags, inter->block, inter->offset); |
| 611 | |
| 612 | if (is_load && op->rt) |
| 613 | reg_cache[op->rt] = val; |
| 614 | |
| 615 | return jump_next(inter); |
| 616 | } |
| 617 | |
| 618 | static u32 int_load(struct interpreter *inter) |
| 619 | { |
| 620 | return int_io(inter, true); |
| 621 | } |
| 622 | |
| 623 | static u32 int_store(struct interpreter *inter) |
| 624 | { |
| 625 | u32 next_pc; |
| 626 | |
| 627 | if (likely(!op_flag_smc(inter->op->flags))) |
| 628 | return int_io(inter, false); |
| 629 | |
| 630 | lightrec_rw(inter->state, inter->op->c, |
| 631 | inter->state->regs.gpr[inter->op->i.rs], |
| 632 | inter->state->regs.gpr[inter->op->i.rt], |
| 633 | &inter->op->flags, inter->block, inter->offset); |
| 634 | |
| 635 | next_pc = int_get_ds_pc(inter, 1); |
| 636 | |
| 637 | /* Invalidate next PC, to force the rest of the block to be rebuilt */ |
| 638 | lightrec_invalidate(inter->state, next_pc, 4); |
| 639 | |
| 640 | return next_pc; |
| 641 | } |
| 642 | |
| 643 | static u32 int_LWC2(struct interpreter *inter) |
| 644 | { |
| 645 | return int_io(inter, false); |
| 646 | } |
| 647 | |
| 648 | static u32 int_special_SLL(struct interpreter *inter) |
| 649 | { |
| 650 | struct opcode *op = inter->op; |
| 651 | u32 rt; |
| 652 | |
| 653 | if (op->opcode) { /* Handle NOPs */ |
| 654 | rt = inter->state->regs.gpr[op->r.rt]; |
| 655 | inter->state->regs.gpr[op->r.rd] = rt << op->r.imm; |
| 656 | } |
| 657 | |
| 658 | return jump_next(inter); |
| 659 | } |
| 660 | |
| 661 | static u32 int_special_SRL(struct interpreter *inter) |
| 662 | { |
| 663 | struct opcode *op = inter->op; |
| 664 | u32 rt = inter->state->regs.gpr[op->r.rt]; |
| 665 | |
| 666 | inter->state->regs.gpr[op->r.rd] = rt >> op->r.imm; |
| 667 | |
| 668 | return jump_next(inter); |
| 669 | } |
| 670 | |
| 671 | static u32 int_special_SRA(struct interpreter *inter) |
| 672 | { |
| 673 | struct opcode *op = inter->op; |
| 674 | s32 rt = inter->state->regs.gpr[op->r.rt]; |
| 675 | |
| 676 | inter->state->regs.gpr[op->r.rd] = rt >> op->r.imm; |
| 677 | |
| 678 | return jump_next(inter); |
| 679 | } |
| 680 | |
| 681 | static u32 int_special_SLLV(struct interpreter *inter) |
| 682 | { |
| 683 | struct opcode *op = inter->op; |
| 684 | u32 rs = inter->state->regs.gpr[op->r.rs]; |
| 685 | u32 rt = inter->state->regs.gpr[op->r.rt]; |
| 686 | |
| 687 | inter->state->regs.gpr[op->r.rd] = rt << (rs & 0x1f); |
| 688 | |
| 689 | return jump_next(inter); |
| 690 | } |
| 691 | |
| 692 | static u32 int_special_SRLV(struct interpreter *inter) |
| 693 | { |
| 694 | struct opcode *op = inter->op; |
| 695 | u32 rs = inter->state->regs.gpr[op->r.rs]; |
| 696 | u32 rt = inter->state->regs.gpr[op->r.rt]; |
| 697 | |
| 698 | inter->state->regs.gpr[op->r.rd] = rt >> (rs & 0x1f); |
| 699 | |
| 700 | return jump_next(inter); |
| 701 | } |
| 702 | |
| 703 | static u32 int_special_SRAV(struct interpreter *inter) |
| 704 | { |
| 705 | struct opcode *op = inter->op; |
| 706 | u32 rs = inter->state->regs.gpr[op->r.rs]; |
| 707 | s32 rt = inter->state->regs.gpr[op->r.rt]; |
| 708 | |
| 709 | inter->state->regs.gpr[op->r.rd] = rt >> (rs & 0x1f); |
| 710 | |
| 711 | return jump_next(inter); |
| 712 | } |
| 713 | |
| 714 | static u32 int_syscall_break(struct interpreter *inter) |
| 715 | { |
| 716 | |
| 717 | if (inter->op->r.op == OP_SPECIAL_BREAK) |
| 718 | lightrec_set_exit_flags(inter->state, LIGHTREC_EXIT_BREAK); |
| 719 | else |
| 720 | lightrec_set_exit_flags(inter->state, LIGHTREC_EXIT_SYSCALL); |
| 721 | |
| 722 | return int_get_ds_pc(inter, 0); |
| 723 | } |
| 724 | |
| 725 | static u32 int_special_MFHI(struct interpreter *inter) |
| 726 | { |
| 727 | u32 *reg_cache = inter->state->regs.gpr; |
| 728 | struct opcode_r *op = &inter->op->r; |
| 729 | |
| 730 | if (likely(op->rd)) |
| 731 | reg_cache[op->rd] = reg_cache[REG_HI]; |
| 732 | |
| 733 | return jump_next(inter); |
| 734 | } |
| 735 | |
| 736 | static u32 int_special_MTHI(struct interpreter *inter) |
| 737 | { |
| 738 | u32 *reg_cache = inter->state->regs.gpr; |
| 739 | |
| 740 | reg_cache[REG_HI] = reg_cache[inter->op->r.rs]; |
| 741 | |
| 742 | return jump_next(inter); |
| 743 | } |
| 744 | |
| 745 | static u32 int_special_MFLO(struct interpreter *inter) |
| 746 | { |
| 747 | u32 *reg_cache = inter->state->regs.gpr; |
| 748 | struct opcode_r *op = &inter->op->r; |
| 749 | |
| 750 | if (likely(op->rd)) |
| 751 | reg_cache[op->rd] = reg_cache[REG_LO]; |
| 752 | |
| 753 | return jump_next(inter); |
| 754 | } |
| 755 | |
| 756 | static u32 int_special_MTLO(struct interpreter *inter) |
| 757 | { |
| 758 | u32 *reg_cache = inter->state->regs.gpr; |
| 759 | |
| 760 | reg_cache[REG_LO] = reg_cache[inter->op->r.rs]; |
| 761 | |
| 762 | return jump_next(inter); |
| 763 | } |
| 764 | |
| 765 | static u32 int_special_MULT(struct interpreter *inter) |
| 766 | { |
| 767 | u32 *reg_cache = inter->state->regs.gpr; |
| 768 | s32 rs = reg_cache[inter->op->r.rs]; |
| 769 | s32 rt = reg_cache[inter->op->r.rt]; |
| 770 | u8 reg_lo = get_mult_div_lo(inter->op->c); |
| 771 | u8 reg_hi = get_mult_div_hi(inter->op->c); |
| 772 | u64 res = (s64)rs * (s64)rt; |
| 773 | |
| 774 | if (!op_flag_no_hi(inter->op->flags)) |
| 775 | reg_cache[reg_hi] = res >> 32; |
| 776 | if (!op_flag_no_lo(inter->op->flags)) |
| 777 | reg_cache[reg_lo] = res; |
| 778 | |
| 779 | return jump_next(inter); |
| 780 | } |
| 781 | |
| 782 | static u32 int_special_MULTU(struct interpreter *inter) |
| 783 | { |
| 784 | u32 *reg_cache = inter->state->regs.gpr; |
| 785 | u32 rs = reg_cache[inter->op->r.rs]; |
| 786 | u32 rt = reg_cache[inter->op->r.rt]; |
| 787 | u8 reg_lo = get_mult_div_lo(inter->op->c); |
| 788 | u8 reg_hi = get_mult_div_hi(inter->op->c); |
| 789 | u64 res = (u64)rs * (u64)rt; |
| 790 | |
| 791 | if (!op_flag_no_hi(inter->op->flags)) |
| 792 | reg_cache[reg_hi] = res >> 32; |
| 793 | if (!op_flag_no_lo(inter->op->flags)) |
| 794 | reg_cache[reg_lo] = res; |
| 795 | |
| 796 | return jump_next(inter); |
| 797 | } |
| 798 | |
| 799 | static u32 int_special_DIV(struct interpreter *inter) |
| 800 | { |
| 801 | u32 *reg_cache = inter->state->regs.gpr; |
| 802 | s32 rs = reg_cache[inter->op->r.rs]; |
| 803 | s32 rt = reg_cache[inter->op->r.rt]; |
| 804 | u8 reg_lo = get_mult_div_lo(inter->op->c); |
| 805 | u8 reg_hi = get_mult_div_hi(inter->op->c); |
| 806 | u32 lo, hi; |
| 807 | |
| 808 | if (rt == 0) { |
| 809 | hi = rs; |
| 810 | lo = (rs < 0) * 2 - 1; |
| 811 | } else { |
| 812 | lo = rs / rt; |
| 813 | hi = rs % rt; |
| 814 | } |
| 815 | |
| 816 | if (!op_flag_no_hi(inter->op->flags)) |
| 817 | reg_cache[reg_hi] = hi; |
| 818 | if (!op_flag_no_lo(inter->op->flags)) |
| 819 | reg_cache[reg_lo] = lo; |
| 820 | |
| 821 | return jump_next(inter); |
| 822 | } |
| 823 | |
| 824 | static u32 int_special_DIVU(struct interpreter *inter) |
| 825 | { |
| 826 | u32 *reg_cache = inter->state->regs.gpr; |
| 827 | u32 rs = reg_cache[inter->op->r.rs]; |
| 828 | u32 rt = reg_cache[inter->op->r.rt]; |
| 829 | u8 reg_lo = get_mult_div_lo(inter->op->c); |
| 830 | u8 reg_hi = get_mult_div_hi(inter->op->c); |
| 831 | u32 lo, hi; |
| 832 | |
| 833 | if (rt == 0) { |
| 834 | hi = rs; |
| 835 | lo = (u32)-1; |
| 836 | } else { |
| 837 | lo = rs / rt; |
| 838 | hi = rs % rt; |
| 839 | } |
| 840 | |
| 841 | if (!op_flag_no_hi(inter->op->flags)) |
| 842 | reg_cache[reg_hi] = hi; |
| 843 | if (!op_flag_no_lo(inter->op->flags)) |
| 844 | reg_cache[reg_lo] = lo; |
| 845 | |
| 846 | return jump_next(inter); |
| 847 | } |
| 848 | |
| 849 | static u32 int_special_ADD(struct interpreter *inter) |
| 850 | { |
| 851 | u32 *reg_cache = inter->state->regs.gpr; |
| 852 | struct opcode_r *op = &inter->op->r; |
| 853 | s32 rs = reg_cache[op->rs]; |
| 854 | s32 rt = reg_cache[op->rt]; |
| 855 | |
| 856 | if (likely(op->rd)) |
| 857 | reg_cache[op->rd] = rs + rt; |
| 858 | |
| 859 | return jump_next(inter); |
| 860 | } |
| 861 | |
| 862 | static u32 int_special_SUB(struct interpreter *inter) |
| 863 | { |
| 864 | u32 *reg_cache = inter->state->regs.gpr; |
| 865 | struct opcode_r *op = &inter->op->r; |
| 866 | u32 rs = reg_cache[op->rs]; |
| 867 | u32 rt = reg_cache[op->rt]; |
| 868 | |
| 869 | if (likely(op->rd)) |
| 870 | reg_cache[op->rd] = rs - rt; |
| 871 | |
| 872 | return jump_next(inter); |
| 873 | } |
| 874 | |
| 875 | static u32 int_special_AND(struct interpreter *inter) |
| 876 | { |
| 877 | u32 *reg_cache = inter->state->regs.gpr; |
| 878 | struct opcode_r *op = &inter->op->r; |
| 879 | u32 rs = reg_cache[op->rs]; |
| 880 | u32 rt = reg_cache[op->rt]; |
| 881 | |
| 882 | if (likely(op->rd)) |
| 883 | reg_cache[op->rd] = rs & rt; |
| 884 | |
| 885 | return jump_next(inter); |
| 886 | } |
| 887 | |
| 888 | static u32 int_special_OR(struct interpreter *inter) |
| 889 | { |
| 890 | u32 *reg_cache = inter->state->regs.gpr; |
| 891 | struct opcode_r *op = &inter->op->r; |
| 892 | u32 rs = reg_cache[op->rs]; |
| 893 | u32 rt = reg_cache[op->rt]; |
| 894 | |
| 895 | if (likely(op->rd)) |
| 896 | reg_cache[op->rd] = rs | rt; |
| 897 | |
| 898 | return jump_next(inter); |
| 899 | } |
| 900 | |
| 901 | static u32 int_special_XOR(struct interpreter *inter) |
| 902 | { |
| 903 | u32 *reg_cache = inter->state->regs.gpr; |
| 904 | struct opcode_r *op = &inter->op->r; |
| 905 | u32 rs = reg_cache[op->rs]; |
| 906 | u32 rt = reg_cache[op->rt]; |
| 907 | |
| 908 | if (likely(op->rd)) |
| 909 | reg_cache[op->rd] = rs ^ rt; |
| 910 | |
| 911 | return jump_next(inter); |
| 912 | } |
| 913 | |
| 914 | static u32 int_special_NOR(struct interpreter *inter) |
| 915 | { |
| 916 | u32 *reg_cache = inter->state->regs.gpr; |
| 917 | struct opcode_r *op = &inter->op->r; |
| 918 | u32 rs = reg_cache[op->rs]; |
| 919 | u32 rt = reg_cache[op->rt]; |
| 920 | |
| 921 | if (likely(op->rd)) |
| 922 | reg_cache[op->rd] = ~(rs | rt); |
| 923 | |
| 924 | return jump_next(inter); |
| 925 | } |
| 926 | |
| 927 | static u32 int_special_SLT(struct interpreter *inter) |
| 928 | { |
| 929 | u32 *reg_cache = inter->state->regs.gpr; |
| 930 | struct opcode_r *op = &inter->op->r; |
| 931 | s32 rs = reg_cache[op->rs]; |
| 932 | s32 rt = reg_cache[op->rt]; |
| 933 | |
| 934 | if (likely(op->rd)) |
| 935 | reg_cache[op->rd] = rs < rt; |
| 936 | |
| 937 | return jump_next(inter); |
| 938 | } |
| 939 | |
| 940 | static u32 int_special_SLTU(struct interpreter *inter) |
| 941 | { |
| 942 | u32 *reg_cache = inter->state->regs.gpr; |
| 943 | struct opcode_r *op = &inter->op->r; |
| 944 | u32 rs = reg_cache[op->rs]; |
| 945 | u32 rt = reg_cache[op->rt]; |
| 946 | |
| 947 | if (likely(op->rd)) |
| 948 | reg_cache[op->rd] = rs < rt; |
| 949 | |
| 950 | return jump_next(inter); |
| 951 | } |
| 952 | |
| 953 | static u32 int_META_MOV(struct interpreter *inter) |
| 954 | { |
| 955 | u32 *reg_cache = inter->state->regs.gpr; |
| 956 | struct opcode_m *op = &inter->op->m; |
| 957 | |
| 958 | if (likely(op->rd)) |
| 959 | reg_cache[op->rd] = reg_cache[op->rs]; |
| 960 | |
| 961 | return jump_next(inter); |
| 962 | } |
| 963 | |
| 964 | static u32 int_META_EXTC(struct interpreter *inter) |
| 965 | { |
| 966 | u32 *reg_cache = inter->state->regs.gpr; |
| 967 | struct opcode_m *op = &inter->op->m; |
| 968 | |
| 969 | if (likely(op->rd)) |
| 970 | reg_cache[op->rd] = (u32)(s32)(s8)reg_cache[op->rs]; |
| 971 | |
| 972 | return jump_next(inter); |
| 973 | } |
| 974 | |
| 975 | static u32 int_META_EXTS(struct interpreter *inter) |
| 976 | { |
| 977 | u32 *reg_cache = inter->state->regs.gpr; |
| 978 | struct opcode_m *op = &inter->op->m; |
| 979 | |
| 980 | if (likely(op->rd)) |
| 981 | reg_cache[op->rd] = (u32)(s32)(s16)reg_cache[op->rs]; |
| 982 | |
| 983 | return jump_next(inter); |
| 984 | } |
| 985 | |
| 986 | static u32 int_META_MULT2(struct interpreter *inter) |
| 987 | { |
| 988 | u32 *reg_cache = inter->state->regs.gpr; |
| 989 | union code c = inter->op->c; |
| 990 | u32 rs = reg_cache[c.r.rs]; |
| 991 | u8 reg_lo = get_mult_div_lo(c); |
| 992 | u8 reg_hi = get_mult_div_hi(c); |
| 993 | |
| 994 | if (!op_flag_no_lo(inter->op->flags)) { |
| 995 | if (c.r.op < 32) |
| 996 | reg_cache[reg_lo] = rs << c.r.op; |
| 997 | else |
| 998 | reg_cache[reg_lo] = 0; |
| 999 | } |
| 1000 | |
| 1001 | if (!op_flag_no_hi(inter->op->flags)) { |
| 1002 | if (c.r.op >= 32) { |
| 1003 | reg_cache[reg_hi] = rs << (c.r.op - 32); |
| 1004 | } |
| 1005 | else if (c.i.op == OP_META_MULT2) { |
| 1006 | if (c.r.op) |
| 1007 | reg_cache[reg_hi] = (s32) rs >> (32 - c.r.op); |
| 1008 | else |
| 1009 | reg_cache[reg_hi] = (s32) rs >> 31; |
| 1010 | } else { |
| 1011 | if (c.r.op) |
| 1012 | reg_cache[reg_hi] = rs >> (32 - c.r.op); |
| 1013 | else |
| 1014 | reg_cache[reg_hi] = 0; |
| 1015 | } |
| 1016 | } |
| 1017 | |
| 1018 | return jump_next(inter); |
| 1019 | } |
| 1020 | |
| 1021 | static u32 int_META_COM(struct interpreter *inter) |
| 1022 | { |
| 1023 | u32 *reg_cache = inter->state->regs.gpr; |
| 1024 | union code c = inter->op->c; |
| 1025 | |
| 1026 | if (likely(c.m.rd)) |
| 1027 | reg_cache[c.m.rd] = ~reg_cache[c.m.rs]; |
| 1028 | |
| 1029 | return jump_next(inter); |
| 1030 | } |
| 1031 | |
| 1032 | static const lightrec_int_func_t int_standard[64] = { |
| 1033 | SET_DEFAULT_ELM(int_standard, int_unimplemented), |
| 1034 | [OP_SPECIAL] = int_SPECIAL, |
| 1035 | [OP_REGIMM] = int_REGIMM, |
| 1036 | [OP_J] = int_J, |
| 1037 | [OP_JAL] = int_JAL, |
| 1038 | [OP_BEQ] = int_BEQ, |
| 1039 | [OP_BNE] = int_BNE, |
| 1040 | [OP_BLEZ] = int_BLEZ, |
| 1041 | [OP_BGTZ] = int_BGTZ, |
| 1042 | [OP_ADDI] = int_ADDI, |
| 1043 | [OP_ADDIU] = int_ADDI, |
| 1044 | [OP_SLTI] = int_SLTI, |
| 1045 | [OP_SLTIU] = int_SLTIU, |
| 1046 | [OP_ANDI] = int_ANDI, |
| 1047 | [OP_ORI] = int_ORI, |
| 1048 | [OP_XORI] = int_XORI, |
| 1049 | [OP_LUI] = int_LUI, |
| 1050 | [OP_CP0] = int_CP0, |
| 1051 | [OP_CP2] = int_CP2, |
| 1052 | [OP_LB] = int_load, |
| 1053 | [OP_LH] = int_load, |
| 1054 | [OP_LWL] = int_load, |
| 1055 | [OP_LW] = int_load, |
| 1056 | [OP_LBU] = int_load, |
| 1057 | [OP_LHU] = int_load, |
| 1058 | [OP_LWR] = int_load, |
| 1059 | [OP_SB] = int_store, |
| 1060 | [OP_SH] = int_store, |
| 1061 | [OP_SWL] = int_store, |
| 1062 | [OP_SW] = int_store, |
| 1063 | [OP_SWR] = int_store, |
| 1064 | [OP_LWC2] = int_LWC2, |
| 1065 | [OP_SWC2] = int_store, |
| 1066 | |
| 1067 | [OP_META] = int_META, |
| 1068 | [OP_META_MULT2] = int_META_MULT2, |
| 1069 | [OP_META_MULTU2] = int_META_MULT2, |
| 1070 | [OP_META_LWU] = int_load, |
| 1071 | [OP_META_SWU] = int_store, |
| 1072 | }; |
| 1073 | |
| 1074 | static const lightrec_int_func_t int_special[64] = { |
| 1075 | SET_DEFAULT_ELM(int_special, int_unimplemented), |
| 1076 | [OP_SPECIAL_SLL] = int_special_SLL, |
| 1077 | [OP_SPECIAL_SRL] = int_special_SRL, |
| 1078 | [OP_SPECIAL_SRA] = int_special_SRA, |
| 1079 | [OP_SPECIAL_SLLV] = int_special_SLLV, |
| 1080 | [OP_SPECIAL_SRLV] = int_special_SRLV, |
| 1081 | [OP_SPECIAL_SRAV] = int_special_SRAV, |
| 1082 | [OP_SPECIAL_JR] = int_special_JR, |
| 1083 | [OP_SPECIAL_JALR] = int_special_JALR, |
| 1084 | [OP_SPECIAL_SYSCALL] = int_syscall_break, |
| 1085 | [OP_SPECIAL_BREAK] = int_syscall_break, |
| 1086 | [OP_SPECIAL_MFHI] = int_special_MFHI, |
| 1087 | [OP_SPECIAL_MTHI] = int_special_MTHI, |
| 1088 | [OP_SPECIAL_MFLO] = int_special_MFLO, |
| 1089 | [OP_SPECIAL_MTLO] = int_special_MTLO, |
| 1090 | [OP_SPECIAL_MULT] = int_special_MULT, |
| 1091 | [OP_SPECIAL_MULTU] = int_special_MULTU, |
| 1092 | [OP_SPECIAL_DIV] = int_special_DIV, |
| 1093 | [OP_SPECIAL_DIVU] = int_special_DIVU, |
| 1094 | [OP_SPECIAL_ADD] = int_special_ADD, |
| 1095 | [OP_SPECIAL_ADDU] = int_special_ADD, |
| 1096 | [OP_SPECIAL_SUB] = int_special_SUB, |
| 1097 | [OP_SPECIAL_SUBU] = int_special_SUB, |
| 1098 | [OP_SPECIAL_AND] = int_special_AND, |
| 1099 | [OP_SPECIAL_OR] = int_special_OR, |
| 1100 | [OP_SPECIAL_XOR] = int_special_XOR, |
| 1101 | [OP_SPECIAL_NOR] = int_special_NOR, |
| 1102 | [OP_SPECIAL_SLT] = int_special_SLT, |
| 1103 | [OP_SPECIAL_SLTU] = int_special_SLTU, |
| 1104 | }; |
| 1105 | |
| 1106 | static const lightrec_int_func_t int_regimm[64] = { |
| 1107 | SET_DEFAULT_ELM(int_regimm, int_unimplemented), |
| 1108 | [OP_REGIMM_BLTZ] = int_regimm_BLTZ, |
| 1109 | [OP_REGIMM_BGEZ] = int_regimm_BGEZ, |
| 1110 | [OP_REGIMM_BLTZAL] = int_regimm_BLTZAL, |
| 1111 | [OP_REGIMM_BGEZAL] = int_regimm_BGEZAL, |
| 1112 | }; |
| 1113 | |
| 1114 | static const lightrec_int_func_t int_cp0[64] = { |
| 1115 | SET_DEFAULT_ELM(int_cp0, int_CP), |
| 1116 | [OP_CP0_MFC0] = int_cfc, |
| 1117 | [OP_CP0_CFC0] = int_cfc, |
| 1118 | [OP_CP0_MTC0] = int_ctc, |
| 1119 | [OP_CP0_CTC0] = int_ctc, |
| 1120 | [OP_CP0_RFE] = int_cp0_RFE, |
| 1121 | }; |
| 1122 | |
| 1123 | static const lightrec_int_func_t int_cp2_basic[64] = { |
| 1124 | SET_DEFAULT_ELM(int_cp2_basic, int_CP), |
| 1125 | [OP_CP2_BASIC_MFC2] = int_cfc, |
| 1126 | [OP_CP2_BASIC_CFC2] = int_cfc, |
| 1127 | [OP_CP2_BASIC_MTC2] = int_ctc, |
| 1128 | [OP_CP2_BASIC_CTC2] = int_ctc, |
| 1129 | }; |
| 1130 | |
| 1131 | static const lightrec_int_func_t int_meta[64] = { |
| 1132 | SET_DEFAULT_ELM(int_meta, int_unimplemented), |
| 1133 | [OP_META_MOV] = int_META_MOV, |
| 1134 | [OP_META_EXTC] = int_META_EXTC, |
| 1135 | [OP_META_EXTS] = int_META_EXTS, |
| 1136 | [OP_META_COM] = int_META_COM, |
| 1137 | }; |
| 1138 | |
| 1139 | static u32 int_SPECIAL(struct interpreter *inter) |
| 1140 | { |
| 1141 | lightrec_int_func_t f = int_special[inter->op->r.op]; |
| 1142 | |
| 1143 | if (!HAS_DEFAULT_ELM && unlikely(!f)) |
| 1144 | return int_unimplemented(inter); |
| 1145 | |
| 1146 | return execute(f, inter); |
| 1147 | } |
| 1148 | |
| 1149 | static u32 int_REGIMM(struct interpreter *inter) |
| 1150 | { |
| 1151 | lightrec_int_func_t f = int_regimm[inter->op->r.rt]; |
| 1152 | |
| 1153 | if (!HAS_DEFAULT_ELM && unlikely(!f)) |
| 1154 | return int_unimplemented(inter); |
| 1155 | |
| 1156 | return execute(f, inter); |
| 1157 | } |
| 1158 | |
| 1159 | static u32 int_CP0(struct interpreter *inter) |
| 1160 | { |
| 1161 | lightrec_int_func_t f = int_cp0[inter->op->r.rs]; |
| 1162 | |
| 1163 | if (!HAS_DEFAULT_ELM && unlikely(!f)) |
| 1164 | return int_CP(inter); |
| 1165 | |
| 1166 | return execute(f, inter); |
| 1167 | } |
| 1168 | |
| 1169 | static u32 int_CP2(struct interpreter *inter) |
| 1170 | { |
| 1171 | if (inter->op->r.op == OP_CP2_BASIC) { |
| 1172 | lightrec_int_func_t f = int_cp2_basic[inter->op->r.rs]; |
| 1173 | if (HAS_DEFAULT_ELM || likely(f)) |
| 1174 | return execute(f, inter); |
| 1175 | } |
| 1176 | |
| 1177 | return int_CP(inter); |
| 1178 | } |
| 1179 | |
| 1180 | static u32 int_META(struct interpreter *inter) |
| 1181 | { |
| 1182 | lightrec_int_func_t f = int_meta[inter->op->m.op]; |
| 1183 | |
| 1184 | if (!HAS_DEFAULT_ELM && unlikely(!f)) |
| 1185 | return int_unimplemented(inter); |
| 1186 | |
| 1187 | return execute(f, inter); |
| 1188 | } |
| 1189 | |
| 1190 | static u32 lightrec_emulate_block_list(struct lightrec_state *state, |
| 1191 | struct block *block, u32 offset) |
| 1192 | { |
| 1193 | struct interpreter inter = { |
| 1194 | .block = block, |
| 1195 | .state = state, |
| 1196 | .offset = offset, |
| 1197 | .op = &block->opcode_list[offset], |
| 1198 | }; |
| 1199 | u32 pc; |
| 1200 | |
| 1201 | pc = lightrec_int_op(&inter); |
| 1202 | |
| 1203 | /* Add the cycles of the last branch */ |
| 1204 | inter.cycles += lightrec_cycles_of_opcode(inter.state, inter.op->c); |
| 1205 | |
| 1206 | state->current_cycle += inter.cycles; |
| 1207 | |
| 1208 | return pc; |
| 1209 | } |
| 1210 | |
| 1211 | u32 lightrec_emulate_block(struct lightrec_state *state, struct block *block, u32 pc) |
| 1212 | { |
| 1213 | u32 offset = (kunseg(pc) - kunseg(block->pc)) >> 2; |
| 1214 | |
| 1215 | if (offset < block->nb_ops) |
| 1216 | return lightrec_emulate_block_list(state, block, offset); |
| 1217 | |
| 1218 | pr_err(PC_FMT" is outside block at "PC_FMT"\n", pc, block->pc); |
| 1219 | |
| 1220 | lightrec_set_exit_flags(state, LIGHTREC_EXIT_SEGFAULT); |
| 1221 | |
| 1222 | return 0; |
| 1223 | } |
| 1224 | |
| 1225 | static u32 branch_get_next_pc(struct lightrec_state *state, union code c, u32 pc) |
| 1226 | { |
| 1227 | switch (c.i.op) { |
| 1228 | case OP_SPECIAL: |
| 1229 | /* JR / JALR */ |
| 1230 | return state->regs.gpr[c.r.rs]; |
| 1231 | case OP_J: |
| 1232 | case OP_JAL: |
| 1233 | return (pc & 0xf0000000) | (c.j.imm << 2); |
| 1234 | default: |
| 1235 | /* Branch opcodes */ |
| 1236 | return pc + 4 + ((s16)c.i.imm << 2); |
| 1237 | } |
| 1238 | } |
| 1239 | |
| 1240 | u32 lightrec_handle_load_delay(struct lightrec_state *state, |
| 1241 | struct block *block, u32 pc, u32 reg) |
| 1242 | { |
| 1243 | union code c = lightrec_read_opcode(state, pc); |
| 1244 | struct opcode op[2] = { |
| 1245 | { |
| 1246 | .c = c, |
| 1247 | .flags = 0, |
| 1248 | }, |
| 1249 | { |
| 1250 | .flags = 0, |
| 1251 | }, |
| 1252 | }; |
| 1253 | struct interpreter inter = { |
| 1254 | .block = block, |
| 1255 | .state = state, |
| 1256 | .op = op, |
| 1257 | .load_delay = true, |
| 1258 | }; |
| 1259 | bool branch_taken; |
| 1260 | u32 reg_mask, next_pc; |
| 1261 | |
| 1262 | if (has_delay_slot(c)) { |
| 1263 | op[1].c = lightrec_read_opcode(state, pc + 4); |
| 1264 | |
| 1265 | branch_taken = is_branch_taken(state->regs.gpr, c); |
| 1266 | next_pc = branch_get_next_pc(state, c, pc); |
| 1267 | |
| 1268 | /* Branch was evaluated, we can write the load opcode's target |
| 1269 | * register now. */ |
| 1270 | state->regs.gpr[reg] = state->temp_reg; |
| 1271 | |
| 1272 | /* Handle JALR / regimm opcodes setting $ra (or any other |
| 1273 | * register in the case of JALR) */ |
| 1274 | reg_mask = (u32)opcode_write_mask(c); |
| 1275 | if (reg_mask) |
| 1276 | state->regs.gpr[ctz32(reg_mask)] = pc + 8; |
| 1277 | |
| 1278 | /* Handle delay slot of the branch opcode */ |
| 1279 | pc = int_delay_slot(&inter, next_pc, branch_taken); |
| 1280 | } else { |
| 1281 | /* Make sure we only run one instruction */ |
| 1282 | inter.delay_slot = true; |
| 1283 | |
| 1284 | lightrec_int_op(&inter); |
| 1285 | pc += 4; |
| 1286 | |
| 1287 | if (!opcode_writes_register(c, reg)) |
| 1288 | state->regs.gpr[reg] = state->temp_reg; |
| 1289 | } |
| 1290 | |
| 1291 | state->current_cycle += inter.cycles; |
| 1292 | |
| 1293 | return pc; |
| 1294 | } |