| 1 | // SPDX-License-Identifier: LGPL-2.1-or-later |
| 2 | /* |
| 3 | * Copyright (C) 2014-2021 Paul Cercueil <paul@crapouillou.net> |
| 4 | */ |
| 5 | |
| 6 | #include "blockcache.h" |
| 7 | #include "debug.h" |
| 8 | #include "disassembler.h" |
| 9 | #include "emitter.h" |
| 10 | #include "interpreter.h" |
| 11 | #include "lightrec-config.h" |
| 12 | #include "lightning-wrapper.h" |
| 13 | #include "lightrec.h" |
| 14 | #include "memmanager.h" |
| 15 | #include "reaper.h" |
| 16 | #include "recompiler.h" |
| 17 | #include "regcache.h" |
| 18 | #include "optimizer.h" |
| 19 | #include "tlsf/tlsf.h" |
| 20 | |
| 21 | #include <errno.h> |
| 22 | #include <inttypes.h> |
| 23 | #include <limits.h> |
| 24 | #if ENABLE_THREADED_COMPILER |
| 25 | #include <stdatomic.h> |
| 26 | #endif |
| 27 | #include <stdbool.h> |
| 28 | #include <stddef.h> |
| 29 | #include <string.h> |
| 30 | |
| 31 | static struct block * lightrec_precompile_block(struct lightrec_state *state, |
| 32 | u32 pc); |
| 33 | static bool lightrec_block_is_fully_tagged(const struct block *block); |
| 34 | |
| 35 | static void lightrec_mtc2(struct lightrec_state *state, u8 reg, u32 data); |
| 36 | static u32 lightrec_mfc2(struct lightrec_state *state, u8 reg); |
| 37 | |
| 38 | static void lightrec_default_sb(struct lightrec_state *state, u32 opcode, |
| 39 | void *host, u32 addr, u8 data) |
| 40 | { |
| 41 | *(u8 *)host = data; |
| 42 | |
| 43 | if (!(state->opt_flags & LIGHTREC_OPT_INV_DMA_ONLY)) |
| 44 | lightrec_invalidate(state, addr, 1); |
| 45 | } |
| 46 | |
| 47 | static void lightrec_default_sh(struct lightrec_state *state, u32 opcode, |
| 48 | void *host, u32 addr, u16 data) |
| 49 | { |
| 50 | *(u16 *)host = HTOLE16(data); |
| 51 | |
| 52 | if (!(state->opt_flags & LIGHTREC_OPT_INV_DMA_ONLY)) |
| 53 | lightrec_invalidate(state, addr, 2); |
| 54 | } |
| 55 | |
| 56 | static void lightrec_default_sw(struct lightrec_state *state, u32 opcode, |
| 57 | void *host, u32 addr, u32 data) |
| 58 | { |
| 59 | *(u32 *)host = HTOLE32(data); |
| 60 | |
| 61 | if (!(state->opt_flags & LIGHTREC_OPT_INV_DMA_ONLY)) |
| 62 | lightrec_invalidate(state, addr, 4); |
| 63 | } |
| 64 | |
| 65 | static u8 lightrec_default_lb(struct lightrec_state *state, |
| 66 | u32 opcode, void *host, u32 addr) |
| 67 | { |
| 68 | return *(u8 *)host; |
| 69 | } |
| 70 | |
| 71 | static u16 lightrec_default_lh(struct lightrec_state *state, |
| 72 | u32 opcode, void *host, u32 addr) |
| 73 | { |
| 74 | return LE16TOH(*(u16 *)host); |
| 75 | } |
| 76 | |
| 77 | static u32 lightrec_default_lw(struct lightrec_state *state, |
| 78 | u32 opcode, void *host, u32 addr) |
| 79 | { |
| 80 | return LE32TOH(*(u32 *)host); |
| 81 | } |
| 82 | |
| 83 | static u32 lightrec_default_lwu(struct lightrec_state *state, |
| 84 | u32 opcode, void *host, u32 addr) |
| 85 | { |
| 86 | u32 val; |
| 87 | |
| 88 | memcpy(&val, host, 4); |
| 89 | |
| 90 | return LE32TOH(val); |
| 91 | } |
| 92 | |
| 93 | static void lightrec_default_swu(struct lightrec_state *state, u32 opcode, |
| 94 | void *host, u32 addr, u32 data) |
| 95 | { |
| 96 | data = HTOLE32(data); |
| 97 | |
| 98 | memcpy(host, &data, 4); |
| 99 | |
| 100 | if (!(state->opt_flags & LIGHTREC_OPT_INV_DMA_ONLY)) |
| 101 | lightrec_invalidate(state, addr & ~0x3, 8); |
| 102 | } |
| 103 | |
| 104 | static const struct lightrec_mem_map_ops lightrec_default_ops = { |
| 105 | .sb = lightrec_default_sb, |
| 106 | .sh = lightrec_default_sh, |
| 107 | .sw = lightrec_default_sw, |
| 108 | .lb = lightrec_default_lb, |
| 109 | .lh = lightrec_default_lh, |
| 110 | .lw = lightrec_default_lw, |
| 111 | .lwu = lightrec_default_lwu, |
| 112 | .swu = lightrec_default_swu, |
| 113 | }; |
| 114 | |
| 115 | static void __segfault_cb(struct lightrec_state *state, u32 addr, |
| 116 | const struct block *block) |
| 117 | { |
| 118 | lightrec_set_exit_flags(state, LIGHTREC_EXIT_SEGFAULT); |
| 119 | pr_err("Segmentation fault in recompiled code: invalid " |
| 120 | "load/store at address "PC_FMT"\n", addr); |
| 121 | if (block) |
| 122 | pr_err("Was executing block "PC_FMT"\n", block->pc); |
| 123 | } |
| 124 | |
| 125 | static void lightrec_swl(struct lightrec_state *state, |
| 126 | const struct lightrec_mem_map_ops *ops, |
| 127 | u32 opcode, void *host, u32 addr, u32 data) |
| 128 | { |
| 129 | unsigned int shift = addr & 0x3; |
| 130 | unsigned int mask = shift < 3 ? GENMASK(31, (shift + 1) * 8) : 0; |
| 131 | u32 old_data; |
| 132 | |
| 133 | /* Align to 32 bits */ |
| 134 | addr &= ~3; |
| 135 | host = (void *)((uintptr_t)host & ~3); |
| 136 | |
| 137 | old_data = ops->lw(state, opcode, host, addr); |
| 138 | |
| 139 | data = (data >> ((3 - shift) * 8)) | (old_data & mask); |
| 140 | |
| 141 | ops->sw(state, opcode, host, addr, data); |
| 142 | } |
| 143 | |
| 144 | static void lightrec_swr(struct lightrec_state *state, |
| 145 | const struct lightrec_mem_map_ops *ops, |
| 146 | u32 opcode, void *host, u32 addr, u32 data) |
| 147 | { |
| 148 | unsigned int shift = addr & 0x3; |
| 149 | unsigned int mask = (1 << (shift * 8)) - 1; |
| 150 | u32 old_data; |
| 151 | |
| 152 | /* Align to 32 bits */ |
| 153 | addr &= ~3; |
| 154 | host = (void *)((uintptr_t)host & ~3); |
| 155 | |
| 156 | old_data = ops->lw(state, opcode, host, addr); |
| 157 | |
| 158 | data = (data << (shift * 8)) | (old_data & mask); |
| 159 | |
| 160 | ops->sw(state, opcode, host, addr, data); |
| 161 | } |
| 162 | |
| 163 | static void lightrec_swc2(struct lightrec_state *state, union code op, |
| 164 | const struct lightrec_mem_map_ops *ops, |
| 165 | void *host, u32 addr) |
| 166 | { |
| 167 | u32 data = lightrec_mfc2(state, op.i.rt); |
| 168 | |
| 169 | ops->sw(state, op.opcode, host, addr, data); |
| 170 | } |
| 171 | |
| 172 | static u32 lightrec_lwl(struct lightrec_state *state, |
| 173 | const struct lightrec_mem_map_ops *ops, |
| 174 | u32 opcode, void *host, u32 addr, u32 data) |
| 175 | { |
| 176 | unsigned int shift = addr & 0x3; |
| 177 | unsigned int mask = (1 << (24 - shift * 8)) - 1; |
| 178 | u32 old_data; |
| 179 | |
| 180 | /* Align to 32 bits */ |
| 181 | addr &= ~3; |
| 182 | host = (void *)((uintptr_t)host & ~3); |
| 183 | |
| 184 | old_data = ops->lw(state, opcode, host, addr); |
| 185 | |
| 186 | return (data & mask) | (old_data << (24 - shift * 8)); |
| 187 | } |
| 188 | |
| 189 | static u32 lightrec_lwr(struct lightrec_state *state, |
| 190 | const struct lightrec_mem_map_ops *ops, |
| 191 | u32 opcode, void *host, u32 addr, u32 data) |
| 192 | { |
| 193 | unsigned int shift = addr & 0x3; |
| 194 | unsigned int mask = shift ? GENMASK(31, 32 - shift * 8) : 0; |
| 195 | u32 old_data; |
| 196 | |
| 197 | /* Align to 32 bits */ |
| 198 | addr &= ~3; |
| 199 | host = (void *)((uintptr_t)host & ~3); |
| 200 | |
| 201 | old_data = ops->lw(state, opcode, host, addr); |
| 202 | |
| 203 | return (data & mask) | (old_data >> (shift * 8)); |
| 204 | } |
| 205 | |
| 206 | static void lightrec_lwc2(struct lightrec_state *state, union code op, |
| 207 | const struct lightrec_mem_map_ops *ops, |
| 208 | void *host, u32 addr) |
| 209 | { |
| 210 | u32 data = ops->lw(state, op.opcode, host, addr); |
| 211 | |
| 212 | lightrec_mtc2(state, op.i.rt, data); |
| 213 | } |
| 214 | |
| 215 | static void lightrec_invalidate_map(struct lightrec_state *state, |
| 216 | const struct lightrec_mem_map *map, u32 addr, u32 len) |
| 217 | { |
| 218 | if (map == &state->maps[PSX_MAP_KERNEL_USER_RAM]) { |
| 219 | memset(lut_address(state, lut_offset(addr)), 0, |
| 220 | ((len + 3) / 4) * lut_elm_size(state)); |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | static enum psx_map |
| 225 | lightrec_get_map_idx(struct lightrec_state *state, u32 kaddr) |
| 226 | { |
| 227 | const struct lightrec_mem_map *map; |
| 228 | unsigned int i; |
| 229 | |
| 230 | for (i = 0; i < state->nb_maps; i++) { |
| 231 | map = &state->maps[i]; |
| 232 | |
| 233 | if (kaddr >= map->pc && kaddr < map->pc + map->length) |
| 234 | return (enum psx_map) i; |
| 235 | } |
| 236 | |
| 237 | return PSX_MAP_UNKNOWN; |
| 238 | } |
| 239 | |
| 240 | const struct lightrec_mem_map * |
| 241 | lightrec_get_map(struct lightrec_state *state, void **host, u32 kaddr) |
| 242 | { |
| 243 | const struct lightrec_mem_map *map; |
| 244 | enum psx_map idx; |
| 245 | u32 addr; |
| 246 | |
| 247 | idx = lightrec_get_map_idx(state, kaddr); |
| 248 | if (idx == PSX_MAP_UNKNOWN) |
| 249 | return NULL; |
| 250 | |
| 251 | map = &state->maps[idx]; |
| 252 | addr = kaddr - map->pc; |
| 253 | |
| 254 | while (map->mirror_of) |
| 255 | map = map->mirror_of; |
| 256 | |
| 257 | if (host) |
| 258 | *host = map->address + addr; |
| 259 | |
| 260 | return map; |
| 261 | } |
| 262 | |
| 263 | u32 lightrec_rw(struct lightrec_state *state, union code op, u32 base, |
| 264 | u32 data, u32 *flags, struct block *block, u16 offset) |
| 265 | { |
| 266 | const struct lightrec_mem_map *map; |
| 267 | const struct lightrec_mem_map_ops *ops; |
| 268 | u32 opcode = op.opcode; |
| 269 | bool was_tagged = true; |
| 270 | u16 old_flags; |
| 271 | u32 addr; |
| 272 | void *host; |
| 273 | |
| 274 | addr = kunseg(base + (s16) op.i.imm); |
| 275 | |
| 276 | map = lightrec_get_map(state, &host, addr); |
| 277 | if (!map) { |
| 278 | __segfault_cb(state, addr, block); |
| 279 | return 0; |
| 280 | } |
| 281 | |
| 282 | if (flags) |
| 283 | was_tagged = LIGHTREC_FLAGS_GET_IO_MODE(*flags); |
| 284 | |
| 285 | if (likely(!map->ops)) { |
| 286 | if (flags && !LIGHTREC_FLAGS_GET_IO_MODE(*flags)) { |
| 287 | /* Force parallel port accesses as HW accesses, because |
| 288 | * the direct-I/O emitters can't differenciate it. */ |
| 289 | if (unlikely(map == &state->maps[PSX_MAP_PARALLEL_PORT])) |
| 290 | *flags |= LIGHTREC_IO_MODE(LIGHTREC_IO_HW); |
| 291 | /* If the base register is 0x0, be extra suspicious. |
| 292 | * Some games (e.g. Sled Storm) actually do segmentation |
| 293 | * faults by using uninitialized pointers, which are |
| 294 | * later initialized to point to hardware registers. */ |
| 295 | else if (op.i.rs && base == 0x0) |
| 296 | *flags |= LIGHTREC_IO_MODE(LIGHTREC_IO_HW); |
| 297 | else |
| 298 | *flags |= LIGHTREC_IO_MODE(LIGHTREC_IO_DIRECT); |
| 299 | } |
| 300 | |
| 301 | ops = &lightrec_default_ops; |
| 302 | } else if (flags && |
| 303 | LIGHTREC_FLAGS_GET_IO_MODE(*flags) == LIGHTREC_IO_DIRECT_HW) { |
| 304 | ops = &lightrec_default_ops; |
| 305 | } else { |
| 306 | if (flags && !LIGHTREC_FLAGS_GET_IO_MODE(*flags)) |
| 307 | *flags |= LIGHTREC_IO_MODE(LIGHTREC_IO_HW); |
| 308 | |
| 309 | ops = map->ops; |
| 310 | } |
| 311 | |
| 312 | if (!was_tagged) { |
| 313 | old_flags = block_set_flags(block, BLOCK_SHOULD_RECOMPILE); |
| 314 | |
| 315 | if (!(old_flags & BLOCK_SHOULD_RECOMPILE)) { |
| 316 | pr_debug("Opcode of block at "PC_FMT" has been tagged" |
| 317 | " - flag for recompilation\n", block->pc); |
| 318 | |
| 319 | lut_write(state, lut_offset(block->pc), NULL); |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | switch (op.i.op) { |
| 324 | case OP_SB: |
| 325 | ops->sb(state, opcode, host, addr, (u8) data); |
| 326 | return 0; |
| 327 | case OP_SH: |
| 328 | ops->sh(state, opcode, host, addr, (u16) data); |
| 329 | return 0; |
| 330 | case OP_SWL: |
| 331 | lightrec_swl(state, ops, opcode, host, addr, data); |
| 332 | return 0; |
| 333 | case OP_SWR: |
| 334 | lightrec_swr(state, ops, opcode, host, addr, data); |
| 335 | return 0; |
| 336 | case OP_SW: |
| 337 | ops->sw(state, opcode, host, addr, data); |
| 338 | return 0; |
| 339 | case OP_SWC2: |
| 340 | lightrec_swc2(state, op, ops, host, addr); |
| 341 | return 0; |
| 342 | case OP_LB: |
| 343 | return (s32) (s8) ops->lb(state, opcode, host, addr); |
| 344 | case OP_LBU: |
| 345 | return ops->lb(state, opcode, host, addr); |
| 346 | case OP_LH: |
| 347 | return (s32) (s16) ops->lh(state, opcode, host, addr); |
| 348 | case OP_LHU: |
| 349 | return ops->lh(state, opcode, host, addr); |
| 350 | case OP_LWC2: |
| 351 | lightrec_lwc2(state, op, ops, host, addr); |
| 352 | return 0; |
| 353 | case OP_LWL: |
| 354 | return lightrec_lwl(state, ops, opcode, host, addr, data); |
| 355 | case OP_LWR: |
| 356 | return lightrec_lwr(state, ops, opcode, host, addr, data); |
| 357 | case OP_META_LWU: |
| 358 | return ops->lwu(state, opcode, host, addr); |
| 359 | case OP_META_SWU: |
| 360 | ops->swu(state, opcode, host, addr, data); |
| 361 | return 0; |
| 362 | case OP_LW: |
| 363 | default: |
| 364 | return ops->lw(state, opcode, host, addr); |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | static void lightrec_rw_helper(struct lightrec_state *state, |
| 369 | union code op, u32 *flags, |
| 370 | struct block *block, u16 offset) |
| 371 | { |
| 372 | u32 ret = lightrec_rw(state, op, state->regs.gpr[op.i.rs], |
| 373 | state->regs.gpr[op.i.rt], flags, block, offset); |
| 374 | |
| 375 | switch (op.i.op) { |
| 376 | case OP_LB: |
| 377 | case OP_LBU: |
| 378 | case OP_LH: |
| 379 | case OP_LHU: |
| 380 | case OP_LWL: |
| 381 | case OP_LWR: |
| 382 | case OP_LW: |
| 383 | case OP_META_LWU: |
| 384 | if (OPT_HANDLE_LOAD_DELAYS && unlikely(!state->in_delay_slot_n)) { |
| 385 | state->temp_reg = ret; |
| 386 | state->in_delay_slot_n = 0xff; |
| 387 | } else if (op.i.rt) { |
| 388 | state->regs.gpr[op.i.rt] = ret; |
| 389 | } |
| 390 | fallthrough; |
| 391 | default: |
| 392 | break; |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | static void lightrec_rw_cb(struct lightrec_state *state, u32 arg) |
| 397 | { |
| 398 | lightrec_rw_helper(state, (union code) arg, NULL, NULL, 0); |
| 399 | } |
| 400 | |
| 401 | static void lightrec_rw_generic_cb(struct lightrec_state *state, u32 arg) |
| 402 | { |
| 403 | struct block *block; |
| 404 | struct opcode *op; |
| 405 | u16 offset = (u16)arg; |
| 406 | |
| 407 | block = lightrec_find_block_from_lut(state->block_cache, |
| 408 | arg >> 16, state->curr_pc); |
| 409 | if (unlikely(!block)) { |
| 410 | pr_err("rw_generic: No block found in LUT for "PC_FMT" offset 0x%"PRIx16"\n", |
| 411 | state->curr_pc, offset); |
| 412 | lightrec_set_exit_flags(state, LIGHTREC_EXIT_SEGFAULT); |
| 413 | return; |
| 414 | } |
| 415 | |
| 416 | op = &block->opcode_list[offset]; |
| 417 | lightrec_rw_helper(state, op->c, &op->flags, block, offset); |
| 418 | } |
| 419 | |
| 420 | static u32 clamp_s32(s32 val, s32 min, s32 max) |
| 421 | { |
| 422 | return val < min ? min : val > max ? max : val; |
| 423 | } |
| 424 | |
| 425 | static u16 load_u16(u32 *ptr) |
| 426 | { |
| 427 | return ((struct u16x2 *) ptr)->l; |
| 428 | } |
| 429 | |
| 430 | static void store_u16(u32 *ptr, u16 value) |
| 431 | { |
| 432 | ((struct u16x2 *) ptr)->l = value; |
| 433 | } |
| 434 | |
| 435 | static u32 lightrec_mfc2(struct lightrec_state *state, u8 reg) |
| 436 | { |
| 437 | s16 gteir1, gteir2, gteir3; |
| 438 | |
| 439 | switch (reg) { |
| 440 | case 1: |
| 441 | case 3: |
| 442 | case 5: |
| 443 | case 8: |
| 444 | case 9: |
| 445 | case 10: |
| 446 | case 11: |
| 447 | return (s32)(s16) load_u16(&state->regs.cp2d[reg]); |
| 448 | case 7: |
| 449 | case 16: |
| 450 | case 17: |
| 451 | case 18: |
| 452 | case 19: |
| 453 | return load_u16(&state->regs.cp2d[reg]); |
| 454 | case 28: |
| 455 | case 29: |
| 456 | gteir1 = (s16) load_u16(&state->regs.cp2d[9]); |
| 457 | gteir2 = (s16) load_u16(&state->regs.cp2d[10]); |
| 458 | gteir3 = (s16) load_u16(&state->regs.cp2d[11]); |
| 459 | |
| 460 | return clamp_s32(gteir1 >> 7, 0, 0x1f) << 0 | |
| 461 | clamp_s32(gteir2 >> 7, 0, 0x1f) << 5 | |
| 462 | clamp_s32(gteir3 >> 7, 0, 0x1f) << 10; |
| 463 | case 15: |
| 464 | reg = 14; |
| 465 | fallthrough; |
| 466 | default: |
| 467 | return state->regs.cp2d[reg]; |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | u32 lightrec_mfc(struct lightrec_state *state, union code op) |
| 472 | { |
| 473 | u32 val; |
| 474 | |
| 475 | if (op.i.op == OP_CP0) |
| 476 | return state->regs.cp0[op.r.rd]; |
| 477 | |
| 478 | if (op.i.op == OP_SWC2) { |
| 479 | val = lightrec_mfc2(state, op.i.rt); |
| 480 | } else if (op.r.rs == OP_CP2_BASIC_MFC2) |
| 481 | val = lightrec_mfc2(state, op.r.rd); |
| 482 | else { |
| 483 | val = state->regs.cp2c[op.r.rd]; |
| 484 | |
| 485 | switch (op.r.rd) { |
| 486 | case 4: |
| 487 | case 12: |
| 488 | case 20: |
| 489 | case 26: |
| 490 | case 27: |
| 491 | case 29: |
| 492 | case 30: |
| 493 | val = (u32)(s16)val; |
| 494 | fallthrough; |
| 495 | default: |
| 496 | break; |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | if (state->ops.cop2_notify) |
| 501 | (*state->ops.cop2_notify)(state, op.opcode, val); |
| 502 | |
| 503 | return val; |
| 504 | } |
| 505 | |
| 506 | static void lightrec_mfc_cb(struct lightrec_state *state, union code op) |
| 507 | { |
| 508 | u32 rt = lightrec_mfc(state, op); |
| 509 | |
| 510 | if (op.i.op == OP_SWC2) |
| 511 | state->temp_reg = rt; |
| 512 | else if (op.r.rt) |
| 513 | state->regs.gpr[op.r.rt] = rt; |
| 514 | } |
| 515 | |
| 516 | static void lightrec_mtc0(struct lightrec_state *state, u8 reg, u32 data) |
| 517 | { |
| 518 | u32 status, oldstatus, cause; |
| 519 | |
| 520 | switch (reg) { |
| 521 | case 1: |
| 522 | case 4: |
| 523 | case 8: |
| 524 | case 14: |
| 525 | case 15: |
| 526 | /* Those registers are read-only */ |
| 527 | return; |
| 528 | default: |
| 529 | break; |
| 530 | } |
| 531 | |
| 532 | if (reg == 12) { |
| 533 | status = state->regs.cp0[12]; |
| 534 | oldstatus = status; |
| 535 | |
| 536 | if (status & ~data & BIT(16)) { |
| 537 | state->ops.enable_ram(state, true); |
| 538 | lightrec_invalidate_all(state); |
| 539 | } else if (~status & data & BIT(16)) { |
| 540 | state->ops.enable_ram(state, false); |
| 541 | } |
| 542 | } |
| 543 | |
| 544 | if (reg == 13) { |
| 545 | state->regs.cp0[13] &= ~0x300; |
| 546 | state->regs.cp0[13] |= data & 0x300; |
| 547 | } else { |
| 548 | state->regs.cp0[reg] = data; |
| 549 | } |
| 550 | |
| 551 | if (reg == 12 || reg == 13) { |
| 552 | cause = state->regs.cp0[13]; |
| 553 | status = state->regs.cp0[12]; |
| 554 | |
| 555 | /* Handle software interrupts */ |
| 556 | if ((!!(status & cause & 0x300)) & status) |
| 557 | lightrec_set_exit_flags(state, LIGHTREC_EXIT_CHECK_INTERRUPT); |
| 558 | |
| 559 | /* Handle hardware interrupts */ |
| 560 | if (reg == 12 && !(~status & 0x401) && (~oldstatus & 0x401)) |
| 561 | lightrec_set_exit_flags(state, LIGHTREC_EXIT_CHECK_INTERRUPT); |
| 562 | } |
| 563 | } |
| 564 | |
| 565 | static u32 count_leading_bits(s32 data) |
| 566 | { |
| 567 | u32 cnt = 33; |
| 568 | |
| 569 | #ifdef __has_builtin |
| 570 | #if __has_builtin(__builtin_clrsb) |
| 571 | return 1 + __builtin_clrsb(data); |
| 572 | #endif |
| 573 | #endif |
| 574 | |
| 575 | data = (data ^ (data >> 31)) << 1; |
| 576 | |
| 577 | do { |
| 578 | cnt -= 1; |
| 579 | data >>= 1; |
| 580 | } while (data); |
| 581 | |
| 582 | return cnt; |
| 583 | } |
| 584 | |
| 585 | static void lightrec_mtc2(struct lightrec_state *state, u8 reg, u32 data) |
| 586 | { |
| 587 | switch (reg) { |
| 588 | case 15: |
| 589 | state->regs.cp2d[12] = state->regs.cp2d[13]; |
| 590 | state->regs.cp2d[13] = state->regs.cp2d[14]; |
| 591 | state->regs.cp2d[14] = data; |
| 592 | break; |
| 593 | case 28: |
| 594 | state->regs.cp2d[9] = (data << 7) & 0xf80; |
| 595 | state->regs.cp2d[10] = (data << 2) & 0xf80; |
| 596 | state->regs.cp2d[11] = (data >> 3) & 0xf80; |
| 597 | break; |
| 598 | case 31: |
| 599 | return; |
| 600 | case 30: |
| 601 | state->regs.cp2d[31] = count_leading_bits((s32) data); |
| 602 | fallthrough; |
| 603 | default: |
| 604 | state->regs.cp2d[reg] = data; |
| 605 | break; |
| 606 | } |
| 607 | } |
| 608 | |
| 609 | static void lightrec_ctc2(struct lightrec_state *state, u8 reg, u32 data) |
| 610 | { |
| 611 | switch (reg) { |
| 612 | case 4: |
| 613 | case 12: |
| 614 | case 20: |
| 615 | case 26: |
| 616 | case 27: |
| 617 | case 29: |
| 618 | case 30: |
| 619 | store_u16(&state->regs.cp2c[reg], data); |
| 620 | break; |
| 621 | case 31: |
| 622 | data = (data & 0x7ffff000) | !!(data & 0x7f87e000) << 31; |
| 623 | fallthrough; |
| 624 | default: |
| 625 | state->regs.cp2c[reg] = data; |
| 626 | break; |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | void lightrec_mtc(struct lightrec_state *state, union code op, u8 reg, u32 data) |
| 631 | { |
| 632 | if (op.i.op == OP_CP0) { |
| 633 | lightrec_mtc0(state, reg, data); |
| 634 | } else { |
| 635 | if (op.i.op == OP_LWC2 || op.r.rs != OP_CP2_BASIC_CTC2) |
| 636 | lightrec_mtc2(state, reg, data); |
| 637 | else |
| 638 | lightrec_ctc2(state, reg, data); |
| 639 | |
| 640 | if (state->ops.cop2_notify) |
| 641 | (*state->ops.cop2_notify)(state, op.opcode, data); |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | static void lightrec_mtc_cb(struct lightrec_state *state, u32 arg) |
| 646 | { |
| 647 | union code op = (union code) arg; |
| 648 | u32 data; |
| 649 | u8 reg; |
| 650 | |
| 651 | if (op.i.op == OP_LWC2) { |
| 652 | data = state->temp_reg; |
| 653 | reg = op.i.rt; |
| 654 | } else { |
| 655 | data = state->regs.gpr[op.r.rt]; |
| 656 | reg = op.r.rd; |
| 657 | } |
| 658 | |
| 659 | lightrec_mtc(state, op, reg, data); |
| 660 | } |
| 661 | |
| 662 | void lightrec_rfe(struct lightrec_state *state) |
| 663 | { |
| 664 | u32 status; |
| 665 | |
| 666 | /* Read CP0 Status register (r12) */ |
| 667 | status = state->regs.cp0[12]; |
| 668 | |
| 669 | /* Switch the bits */ |
| 670 | status = ((status & 0x3c) >> 2) | (status & ~0xf); |
| 671 | |
| 672 | /* Write it back */ |
| 673 | lightrec_mtc0(state, 12, status); |
| 674 | } |
| 675 | |
| 676 | void lightrec_cp(struct lightrec_state *state, union code op) |
| 677 | { |
| 678 | if (op.i.op == OP_CP0) { |
| 679 | pr_err("Invalid CP opcode to coprocessor #0\n"); |
| 680 | return; |
| 681 | } |
| 682 | |
| 683 | (*state->ops.cop2_op)(state, op.opcode); |
| 684 | } |
| 685 | |
| 686 | static void lightrec_cp_cb(struct lightrec_state *state, u32 arg) |
| 687 | { |
| 688 | lightrec_cp(state, (union code) arg); |
| 689 | } |
| 690 | |
| 691 | static struct block * lightrec_get_block(struct lightrec_state *state, u32 pc) |
| 692 | { |
| 693 | struct block *block = lightrec_find_block(state->block_cache, pc); |
| 694 | u8 old_flags; |
| 695 | |
| 696 | if (block && lightrec_block_is_outdated(state, block)) { |
| 697 | pr_debug("Block at "PC_FMT" is outdated!\n", block->pc); |
| 698 | |
| 699 | old_flags = block_set_flags(block, BLOCK_IS_DEAD); |
| 700 | if (!(old_flags & BLOCK_IS_DEAD)) { |
| 701 | /* Make sure the recompiler isn't processing the block |
| 702 | * we'll destroy */ |
| 703 | if (ENABLE_THREADED_COMPILER) |
| 704 | lightrec_recompiler_remove(state->rec, block); |
| 705 | |
| 706 | lightrec_unregister_block(state->block_cache, block); |
| 707 | remove_from_code_lut(state->block_cache, block); |
| 708 | lightrec_free_block(state, block); |
| 709 | } |
| 710 | |
| 711 | block = NULL; |
| 712 | } |
| 713 | |
| 714 | if (!block) { |
| 715 | block = lightrec_precompile_block(state, pc); |
| 716 | if (!block) { |
| 717 | pr_err("Unable to recompile block at "PC_FMT"\n", pc); |
| 718 | lightrec_set_exit_flags(state, LIGHTREC_EXIT_SEGFAULT); |
| 719 | return NULL; |
| 720 | } |
| 721 | |
| 722 | lightrec_register_block(state->block_cache, block); |
| 723 | } |
| 724 | |
| 725 | return block; |
| 726 | } |
| 727 | |
| 728 | static void * get_next_block_func(struct lightrec_state *state, u32 pc) |
| 729 | { |
| 730 | struct block *block; |
| 731 | bool should_recompile; |
| 732 | void *func; |
| 733 | int err; |
| 734 | |
| 735 | do { |
| 736 | func = lut_read(state, lut_offset(pc)); |
| 737 | if (func && func != state->get_next_block) |
| 738 | break; |
| 739 | |
| 740 | block = lightrec_get_block(state, pc); |
| 741 | |
| 742 | if (unlikely(!block)) |
| 743 | break; |
| 744 | |
| 745 | if (OPT_REPLACE_MEMSET && |
| 746 | block_has_flag(block, BLOCK_IS_MEMSET)) { |
| 747 | func = state->memset_func; |
| 748 | break; |
| 749 | } |
| 750 | |
| 751 | should_recompile = block_has_flag(block, BLOCK_SHOULD_RECOMPILE) && |
| 752 | !block_has_flag(block, BLOCK_NEVER_COMPILE) && |
| 753 | !block_has_flag(block, BLOCK_IS_DEAD); |
| 754 | |
| 755 | if (unlikely(should_recompile)) { |
| 756 | pr_debug("Block at "PC_FMT" should recompile\n", pc); |
| 757 | |
| 758 | if (ENABLE_THREADED_COMPILER) { |
| 759 | lightrec_recompiler_add(state->rec, block); |
| 760 | } else { |
| 761 | err = lightrec_compile_block(state->cstate, block); |
| 762 | if (err) { |
| 763 | state->exit_flags = LIGHTREC_EXIT_NOMEM; |
| 764 | return NULL; |
| 765 | } |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | if (ENABLE_THREADED_COMPILER && likely(!should_recompile)) |
| 770 | func = lightrec_recompiler_run_first_pass(state, block, &pc); |
| 771 | else |
| 772 | func = block->function; |
| 773 | |
| 774 | if (likely(func)) |
| 775 | break; |
| 776 | |
| 777 | if (unlikely(block_has_flag(block, BLOCK_NEVER_COMPILE))) { |
| 778 | pc = lightrec_emulate_block(state, block, pc); |
| 779 | |
| 780 | } else if (!ENABLE_THREADED_COMPILER) { |
| 781 | /* Block wasn't compiled yet - run the interpreter */ |
| 782 | if (block_has_flag(block, BLOCK_FULLY_TAGGED)) |
| 783 | pr_debug("Block fully tagged, skipping first pass\n"); |
| 784 | else if (ENABLE_FIRST_PASS && likely(!should_recompile)) |
| 785 | pc = lightrec_emulate_block(state, block, pc); |
| 786 | |
| 787 | /* Then compile it using the profiled data */ |
| 788 | err = lightrec_compile_block(state->cstate, block); |
| 789 | if (err) { |
| 790 | state->exit_flags = LIGHTREC_EXIT_NOMEM; |
| 791 | return NULL; |
| 792 | } |
| 793 | } else if (unlikely(block_has_flag(block, BLOCK_IS_DEAD))) { |
| 794 | /* |
| 795 | * If the block is dead but has never been compiled, |
| 796 | * then its function pointer is NULL and we cannot |
| 797 | * execute the block. In that case, reap all the dead |
| 798 | * blocks now, and in the next loop we will create a |
| 799 | * new block. |
| 800 | */ |
| 801 | lightrec_reaper_reap(state->reaper); |
| 802 | } else { |
| 803 | lightrec_recompiler_add(state->rec, block); |
| 804 | } |
| 805 | } while (state->exit_flags == LIGHTREC_EXIT_NORMAL |
| 806 | && state->current_cycle < state->target_cycle); |
| 807 | |
| 808 | state->curr_pc = pc; |
| 809 | return func; |
| 810 | } |
| 811 | |
| 812 | static void * lightrec_alloc_code(struct lightrec_state *state, size_t size) |
| 813 | { |
| 814 | void *code; |
| 815 | |
| 816 | if (ENABLE_THREADED_COMPILER) |
| 817 | lightrec_code_alloc_lock(state); |
| 818 | |
| 819 | code = tlsf_malloc(state->tlsf, size); |
| 820 | |
| 821 | if (ENABLE_THREADED_COMPILER) |
| 822 | lightrec_code_alloc_unlock(state); |
| 823 | |
| 824 | return code; |
| 825 | } |
| 826 | |
| 827 | static void lightrec_realloc_code(struct lightrec_state *state, |
| 828 | void *ptr, size_t size) |
| 829 | { |
| 830 | /* NOTE: 'size' MUST be smaller than the size specified during |
| 831 | * the allocation. */ |
| 832 | |
| 833 | if (ENABLE_THREADED_COMPILER) |
| 834 | lightrec_code_alloc_lock(state); |
| 835 | |
| 836 | tlsf_realloc(state->tlsf, ptr, size); |
| 837 | |
| 838 | if (ENABLE_THREADED_COMPILER) |
| 839 | lightrec_code_alloc_unlock(state); |
| 840 | } |
| 841 | |
| 842 | static void lightrec_free_code(struct lightrec_state *state, void *ptr) |
| 843 | { |
| 844 | if (ENABLE_THREADED_COMPILER) |
| 845 | lightrec_code_alloc_lock(state); |
| 846 | |
| 847 | tlsf_free(state->tlsf, ptr); |
| 848 | |
| 849 | if (ENABLE_THREADED_COMPILER) |
| 850 | lightrec_code_alloc_unlock(state); |
| 851 | } |
| 852 | |
| 853 | static char lightning_code_data[0x80000]; |
| 854 | |
| 855 | static void * lightrec_emit_code(struct lightrec_state *state, |
| 856 | const struct block *block, |
| 857 | jit_state_t *_jit, unsigned int *size) |
| 858 | { |
| 859 | bool has_code_buffer = ENABLE_CODE_BUFFER && state->tlsf; |
| 860 | jit_word_t code_size, new_code_size; |
| 861 | void *code; |
| 862 | |
| 863 | jit_realize(); |
| 864 | |
| 865 | if (ENABLE_DISASSEMBLER) |
| 866 | jit_set_data(lightning_code_data, sizeof(lightning_code_data), 0); |
| 867 | else |
| 868 | jit_set_data(NULL, 0, JIT_DISABLE_DATA | JIT_DISABLE_NOTE); |
| 869 | |
| 870 | if (has_code_buffer) { |
| 871 | jit_get_code(&code_size); |
| 872 | code = lightrec_alloc_code(state, (size_t) code_size); |
| 873 | |
| 874 | if (!code) { |
| 875 | if (ENABLE_THREADED_COMPILER) { |
| 876 | /* If we're using the threaded compiler, return |
| 877 | * an allocation error here. The threaded |
| 878 | * compiler will then empty its job queue and |
| 879 | * request a code flush using the reaper. */ |
| 880 | return NULL; |
| 881 | } |
| 882 | |
| 883 | /* Remove outdated blocks, and try again */ |
| 884 | lightrec_remove_outdated_blocks(state->block_cache, block); |
| 885 | |
| 886 | pr_debug("Re-try to alloc %zu bytes...\n", code_size); |
| 887 | |
| 888 | code = lightrec_alloc_code(state, code_size); |
| 889 | if (!code) { |
| 890 | pr_err("Could not alloc even after removing old blocks!\n"); |
| 891 | return NULL; |
| 892 | } |
| 893 | } |
| 894 | |
| 895 | jit_set_code(code, code_size); |
| 896 | } |
| 897 | |
| 898 | code = jit_emit(); |
| 899 | |
| 900 | jit_get_code(&new_code_size); |
| 901 | lightrec_register(MEM_FOR_CODE, new_code_size); |
| 902 | |
| 903 | if (has_code_buffer) { |
| 904 | lightrec_realloc_code(state, code, (size_t) new_code_size); |
| 905 | |
| 906 | pr_debug("Creating code block at address 0x%" PRIxPTR ", " |
| 907 | "code size: %" PRIuPTR " new: %" PRIuPTR "\n", |
| 908 | (uintptr_t) code, code_size, new_code_size); |
| 909 | } |
| 910 | |
| 911 | *size = (unsigned int) new_code_size; |
| 912 | |
| 913 | if (state->ops.code_inv) |
| 914 | state->ops.code_inv(code, new_code_size); |
| 915 | |
| 916 | return code; |
| 917 | } |
| 918 | |
| 919 | static struct block * generate_wrapper(struct lightrec_state *state) |
| 920 | { |
| 921 | struct block *block; |
| 922 | jit_state_t *_jit; |
| 923 | unsigned int i; |
| 924 | jit_node_t *addr[C_WRAPPERS_COUNT - 1]; |
| 925 | jit_node_t *to_end[C_WRAPPERS_COUNT - 1]; |
| 926 | u8 tmp = JIT_R1; |
| 927 | |
| 928 | #ifdef __sh__ |
| 929 | /* On SH, GBR-relative loads target the r0 register. |
| 930 | * Use it as the temporary register to factorize the move to |
| 931 | * JIT_R1. */ |
| 932 | if (LIGHTREC_REG_STATE == _GBR) |
| 933 | tmp = _R0; |
| 934 | #endif |
| 935 | |
| 936 | block = lightrec_malloc(state, MEM_FOR_IR, sizeof(*block)); |
| 937 | if (!block) |
| 938 | goto err_no_mem; |
| 939 | |
| 940 | _jit = jit_new_state(); |
| 941 | if (!_jit) |
| 942 | goto err_free_block; |
| 943 | |
| 944 | jit_name("RW wrapper"); |
| 945 | jit_note(__FILE__, __LINE__); |
| 946 | |
| 947 | /* Wrapper entry point */ |
| 948 | jit_prolog(); |
| 949 | jit_tramp(256); |
| 950 | |
| 951 | /* Add entry points */ |
| 952 | for (i = C_WRAPPERS_COUNT - 1; i > 0; i--) { |
| 953 | jit_ldxi(tmp, LIGHTREC_REG_STATE, |
| 954 | offsetof(struct lightrec_state, c_wrappers[i])); |
| 955 | to_end[i - 1] = jit_b(); |
| 956 | addr[i - 1] = jit_indirect(); |
| 957 | } |
| 958 | |
| 959 | jit_ldxi(tmp, LIGHTREC_REG_STATE, |
| 960 | offsetof(struct lightrec_state, c_wrappers[0])); |
| 961 | |
| 962 | for (i = 0; i < C_WRAPPERS_COUNT - 1; i++) |
| 963 | jit_patch(to_end[i]); |
| 964 | jit_movr(JIT_R1, tmp); |
| 965 | |
| 966 | jit_epilog(); |
| 967 | jit_prolog(); |
| 968 | |
| 969 | /* Save all temporaries on stack */ |
| 970 | for (i = 0; i < NUM_TEMPS; i++) { |
| 971 | if (i + FIRST_TEMP != 1) { |
| 972 | jit_stxi(offsetof(struct lightrec_state, wrapper_regs[i]), |
| 973 | LIGHTREC_REG_STATE, JIT_R(i + FIRST_TEMP)); |
| 974 | } |
| 975 | } |
| 976 | |
| 977 | jit_getarg(JIT_R2, jit_arg()); |
| 978 | |
| 979 | jit_prepare(); |
| 980 | jit_pushargr(LIGHTREC_REG_STATE); |
| 981 | jit_pushargr(JIT_R2); |
| 982 | |
| 983 | jit_ldxi_ui(JIT_R2, LIGHTREC_REG_STATE, |
| 984 | offsetof(struct lightrec_state, target_cycle)); |
| 985 | |
| 986 | /* state->current_cycle = state->target_cycle - delta; */ |
| 987 | jit_subr(LIGHTREC_REG_CYCLE, JIT_R2, LIGHTREC_REG_CYCLE); |
| 988 | jit_stxi_i(offsetof(struct lightrec_state, current_cycle), |
| 989 | LIGHTREC_REG_STATE, LIGHTREC_REG_CYCLE); |
| 990 | |
| 991 | /* Call the wrapper function */ |
| 992 | jit_finishr(JIT_R1); |
| 993 | |
| 994 | /* delta = state->target_cycle - state->current_cycle */; |
| 995 | jit_ldxi_ui(LIGHTREC_REG_CYCLE, LIGHTREC_REG_STATE, |
| 996 | offsetof(struct lightrec_state, current_cycle)); |
| 997 | jit_ldxi_ui(JIT_R1, LIGHTREC_REG_STATE, |
| 998 | offsetof(struct lightrec_state, target_cycle)); |
| 999 | jit_subr(LIGHTREC_REG_CYCLE, JIT_R1, LIGHTREC_REG_CYCLE); |
| 1000 | |
| 1001 | /* Restore temporaries from stack */ |
| 1002 | for (i = 0; i < NUM_TEMPS; i++) { |
| 1003 | if (i + FIRST_TEMP != 1) { |
| 1004 | jit_ldxi(JIT_R(i + FIRST_TEMP), LIGHTREC_REG_STATE, |
| 1005 | offsetof(struct lightrec_state, wrapper_regs[i])); |
| 1006 | } |
| 1007 | } |
| 1008 | |
| 1009 | jit_ret(); |
| 1010 | jit_epilog(); |
| 1011 | |
| 1012 | block->_jit = _jit; |
| 1013 | block->opcode_list = NULL; |
| 1014 | block->flags = BLOCK_NO_OPCODE_LIST; |
| 1015 | block->nb_ops = 0; |
| 1016 | |
| 1017 | block->function = lightrec_emit_code(state, block, _jit, |
| 1018 | &block->code_size); |
| 1019 | if (!block->function) |
| 1020 | goto err_free_block; |
| 1021 | |
| 1022 | state->wrappers_eps[C_WRAPPERS_COUNT - 1] = block->function; |
| 1023 | |
| 1024 | for (i = 0; i < C_WRAPPERS_COUNT - 1; i++) |
| 1025 | state->wrappers_eps[i] = jit_address(addr[i]); |
| 1026 | |
| 1027 | if (ENABLE_DISASSEMBLER) { |
| 1028 | pr_debug("Wrapper block:\n"); |
| 1029 | jit_disassemble(); |
| 1030 | } |
| 1031 | |
| 1032 | jit_clear_state(); |
| 1033 | return block; |
| 1034 | |
| 1035 | err_free_block: |
| 1036 | lightrec_free(state, MEM_FOR_IR, sizeof(*block), block); |
| 1037 | err_no_mem: |
| 1038 | pr_err("Unable to compile wrapper: Out of memory\n"); |
| 1039 | return NULL; |
| 1040 | } |
| 1041 | |
| 1042 | static u32 lightrec_memset(struct lightrec_state *state) |
| 1043 | { |
| 1044 | u32 kunseg_pc = kunseg(state->regs.gpr[4]); |
| 1045 | void *host; |
| 1046 | const struct lightrec_mem_map *map = lightrec_get_map(state, &host, kunseg_pc); |
| 1047 | u32 length = state->regs.gpr[5] * 4; |
| 1048 | |
| 1049 | if (!map) { |
| 1050 | pr_err("Unable to find memory map for memset target address "PC_FMT"\n", |
| 1051 | kunseg_pc); |
| 1052 | return 0; |
| 1053 | } |
| 1054 | |
| 1055 | pr_debug("Calling host memset, "PC_FMT" (host address 0x%"PRIxPTR") for %u bytes\n", |
| 1056 | kunseg_pc, (uintptr_t)host, length); |
| 1057 | memset(host, 0, length); |
| 1058 | |
| 1059 | if (!(state->opt_flags & LIGHTREC_OPT_INV_DMA_ONLY)) |
| 1060 | lightrec_invalidate_map(state, map, kunseg_pc, length); |
| 1061 | |
| 1062 | /* Rough estimation of the number of cycles consumed */ |
| 1063 | return 8 + 5 * (length + 3 / 4); |
| 1064 | } |
| 1065 | |
| 1066 | static u32 lightrec_check_load_delay(struct lightrec_state *state, u32 pc, u8 reg) |
| 1067 | { |
| 1068 | struct block *block; |
| 1069 | union code first_op; |
| 1070 | |
| 1071 | first_op = lightrec_read_opcode(state, pc); |
| 1072 | |
| 1073 | if (likely(!opcode_reads_register(first_op, reg))) { |
| 1074 | state->regs.gpr[reg] = state->temp_reg; |
| 1075 | } else { |
| 1076 | block = lightrec_get_block(state, pc); |
| 1077 | if (unlikely(!block)) { |
| 1078 | pr_err("Unable to get block at "PC_FMT"\n", pc); |
| 1079 | lightrec_set_exit_flags(state, LIGHTREC_EXIT_SEGFAULT); |
| 1080 | pc = 0; |
| 1081 | } else { |
| 1082 | pc = lightrec_handle_load_delay(state, block, pc, reg); |
| 1083 | } |
| 1084 | } |
| 1085 | |
| 1086 | return pc; |
| 1087 | } |
| 1088 | |
| 1089 | static void update_cycle_counter_before_c(jit_state_t *_jit) |
| 1090 | { |
| 1091 | /* update state->current_cycle */ |
| 1092 | jit_ldxi_i(JIT_R2, LIGHTREC_REG_STATE, |
| 1093 | offsetof(struct lightrec_state, target_cycle)); |
| 1094 | jit_subr(JIT_R1, JIT_R2, LIGHTREC_REG_CYCLE); |
| 1095 | jit_stxi_i(offsetof(struct lightrec_state, current_cycle), |
| 1096 | LIGHTREC_REG_STATE, JIT_R1); |
| 1097 | } |
| 1098 | |
| 1099 | static void update_cycle_counter_after_c(jit_state_t *_jit) |
| 1100 | { |
| 1101 | /* Recalc the delta */ |
| 1102 | jit_ldxi_i(JIT_R1, LIGHTREC_REG_STATE, |
| 1103 | offsetof(struct lightrec_state, current_cycle)); |
| 1104 | jit_ldxi_i(JIT_R2, LIGHTREC_REG_STATE, |
| 1105 | offsetof(struct lightrec_state, target_cycle)); |
| 1106 | jit_subr(LIGHTREC_REG_CYCLE, JIT_R2, JIT_R1); |
| 1107 | } |
| 1108 | |
| 1109 | static void sync_next_pc(jit_state_t *_jit) |
| 1110 | { |
| 1111 | if (lightrec_store_next_pc()) { |
| 1112 | jit_ldxi_ui(JIT_V0, LIGHTREC_REG_STATE, |
| 1113 | offsetof(struct lightrec_state, next_pc)); |
| 1114 | } |
| 1115 | } |
| 1116 | |
| 1117 | static struct block * generate_dispatcher(struct lightrec_state *state) |
| 1118 | { |
| 1119 | struct block *block; |
| 1120 | jit_state_t *_jit; |
| 1121 | jit_node_t *to_end, *loop, *addr, *addr2, *addr3, *addr4, *addr5, *jmp, *jmp2; |
| 1122 | unsigned int i; |
| 1123 | u32 offset; |
| 1124 | |
| 1125 | block = lightrec_malloc(state, MEM_FOR_IR, sizeof(*block)); |
| 1126 | if (!block) |
| 1127 | goto err_no_mem; |
| 1128 | |
| 1129 | _jit = jit_new_state(); |
| 1130 | if (!_jit) |
| 1131 | goto err_free_block; |
| 1132 | |
| 1133 | jit_name("dispatcher"); |
| 1134 | jit_note(__FILE__, __LINE__); |
| 1135 | |
| 1136 | jit_prolog(); |
| 1137 | jit_frame(256); |
| 1138 | |
| 1139 | jit_getarg(LIGHTREC_REG_STATE, jit_arg()); |
| 1140 | jit_getarg(JIT_V0, jit_arg()); |
| 1141 | jit_getarg(JIT_V1, jit_arg()); |
| 1142 | jit_getarg_i(LIGHTREC_REG_CYCLE, jit_arg()); |
| 1143 | |
| 1144 | /* Force all callee-saved registers to be pushed on the stack */ |
| 1145 | for (i = 0; i < NUM_REGS; i++) |
| 1146 | jit_movr(JIT_V(i + FIRST_REG), JIT_V(i + FIRST_REG)); |
| 1147 | |
| 1148 | loop = jit_label(); |
| 1149 | |
| 1150 | /* Call the block's code */ |
| 1151 | jit_jmpr(JIT_V1); |
| 1152 | |
| 1153 | if (OPT_REPLACE_MEMSET) { |
| 1154 | /* Blocks will jump here when they need to call |
| 1155 | * lightrec_memset() */ |
| 1156 | addr3 = jit_indirect(); |
| 1157 | |
| 1158 | jit_movr(JIT_V1, LIGHTREC_REG_CYCLE); |
| 1159 | |
| 1160 | jit_prepare(); |
| 1161 | jit_pushargr(LIGHTREC_REG_STATE); |
| 1162 | |
| 1163 | jit_finishi(lightrec_memset); |
| 1164 | jit_retval(LIGHTREC_REG_CYCLE); |
| 1165 | |
| 1166 | jit_ldxi_ui(JIT_V0, LIGHTREC_REG_STATE, |
| 1167 | offsetof(struct lightrec_state, regs.gpr[31])); |
| 1168 | jit_subr(LIGHTREC_REG_CYCLE, JIT_V1, LIGHTREC_REG_CYCLE); |
| 1169 | |
| 1170 | if (OPT_DETECT_IMPOSSIBLE_BRANCHES || OPT_HANDLE_LOAD_DELAYS) |
| 1171 | jmp = jit_b(); |
| 1172 | } |
| 1173 | |
| 1174 | if (OPT_DETECT_IMPOSSIBLE_BRANCHES) { |
| 1175 | /* Blocks will jump here when they reach a branch that should |
| 1176 | * be executed with the interpreter, passing the branch's PC |
| 1177 | * in JIT_V0 and the address of the block in JIT_V1. */ |
| 1178 | addr4 = jit_indirect(); |
| 1179 | |
| 1180 | sync_next_pc(_jit); |
| 1181 | update_cycle_counter_before_c(_jit); |
| 1182 | |
| 1183 | jit_prepare(); |
| 1184 | jit_pushargr(LIGHTREC_REG_STATE); |
| 1185 | jit_pushargr(JIT_V1); |
| 1186 | jit_pushargr(JIT_V0); |
| 1187 | jit_finishi(lightrec_emulate_block); |
| 1188 | |
| 1189 | jit_retval(JIT_V0); |
| 1190 | |
| 1191 | update_cycle_counter_after_c(_jit); |
| 1192 | |
| 1193 | if (OPT_HANDLE_LOAD_DELAYS) |
| 1194 | jmp2 = jit_b(); |
| 1195 | |
| 1196 | } |
| 1197 | |
| 1198 | if (OPT_HANDLE_LOAD_DELAYS) { |
| 1199 | /* Blocks will jump here when they reach a branch with a load |
| 1200 | * opcode in its delay slot. The delay slot has already been |
| 1201 | * executed; the load value is in (state->temp_reg), and the |
| 1202 | * register number is in JIT_V1. |
| 1203 | * Jump to a C function which will evaluate the branch target's |
| 1204 | * first opcode, to make sure that it does not read the register |
| 1205 | * in question; and if it does, handle it accordingly. */ |
| 1206 | addr5 = jit_indirect(); |
| 1207 | |
| 1208 | sync_next_pc(_jit); |
| 1209 | update_cycle_counter_before_c(_jit); |
| 1210 | |
| 1211 | jit_prepare(); |
| 1212 | jit_pushargr(LIGHTREC_REG_STATE); |
| 1213 | jit_pushargr(JIT_V0); |
| 1214 | jit_pushargr(JIT_V1); |
| 1215 | jit_finishi(lightrec_check_load_delay); |
| 1216 | |
| 1217 | jit_retval(JIT_V0); |
| 1218 | |
| 1219 | update_cycle_counter_after_c(_jit); |
| 1220 | } |
| 1221 | |
| 1222 | /* The block will jump here, with the number of cycles remaining in |
| 1223 | * LIGHTREC_REG_CYCLE */ |
| 1224 | addr2 = jit_indirect(); |
| 1225 | |
| 1226 | sync_next_pc(_jit); |
| 1227 | |
| 1228 | if (OPT_HANDLE_LOAD_DELAYS && OPT_DETECT_IMPOSSIBLE_BRANCHES) |
| 1229 | jit_patch(jmp2); |
| 1230 | |
| 1231 | if (OPT_REPLACE_MEMSET |
| 1232 | && (OPT_DETECT_IMPOSSIBLE_BRANCHES || OPT_HANDLE_LOAD_DELAYS)) { |
| 1233 | jit_patch(jmp); |
| 1234 | } |
| 1235 | |
| 1236 | /* Store back the next PC to the lightrec_state structure */ |
| 1237 | offset = offsetof(struct lightrec_state, curr_pc); |
| 1238 | jit_stxi_i(offset, LIGHTREC_REG_STATE, JIT_V0); |
| 1239 | |
| 1240 | /* Jump to end if state->target_cycle < state->current_cycle */ |
| 1241 | to_end = jit_blei(LIGHTREC_REG_CYCLE, 0); |
| 1242 | |
| 1243 | /* Convert next PC to KUNSEG and avoid mirrors */ |
| 1244 | jit_andi(JIT_V1, JIT_V0, 0x10000000 | (RAM_SIZE - 1)); |
| 1245 | jit_rshi_u(JIT_R1, JIT_V1, 28); |
| 1246 | jit_andi(JIT_R2, JIT_V0, BIOS_SIZE - 1); |
| 1247 | jit_addi(JIT_R2, JIT_R2, RAM_SIZE); |
| 1248 | jit_movnr(JIT_V1, JIT_R2, JIT_R1); |
| 1249 | |
| 1250 | /* If possible, use the code LUT */ |
| 1251 | if (!lut_is_32bit(state)) |
| 1252 | jit_lshi(JIT_V1, JIT_V1, 1); |
| 1253 | jit_add_state(JIT_V1, JIT_V1); |
| 1254 | |
| 1255 | offset = offsetof(struct lightrec_state, code_lut); |
| 1256 | if (lut_is_32bit(state)) |
| 1257 | jit_ldxi_ui(JIT_V1, JIT_V1, offset); |
| 1258 | else |
| 1259 | jit_ldxi(JIT_V1, JIT_V1, offset); |
| 1260 | |
| 1261 | /* If we get non-NULL, loop */ |
| 1262 | jit_patch_at(jit_bnei(JIT_V1, 0), loop); |
| 1263 | |
| 1264 | /* The code LUT will be set to this address when the block at the target |
| 1265 | * PC has been preprocessed but not yet compiled by the threaded |
| 1266 | * recompiler */ |
| 1267 | addr = jit_indirect(); |
| 1268 | |
| 1269 | /* Slow path: call C function get_next_block_func() */ |
| 1270 | |
| 1271 | if (ENABLE_FIRST_PASS || OPT_DETECT_IMPOSSIBLE_BRANCHES) { |
| 1272 | /* We may call the interpreter - update state->current_cycle */ |
| 1273 | update_cycle_counter_before_c(_jit); |
| 1274 | } |
| 1275 | |
| 1276 | jit_prepare(); |
| 1277 | jit_pushargr(LIGHTREC_REG_STATE); |
| 1278 | jit_pushargr(JIT_V0); |
| 1279 | |
| 1280 | /* Save the cycles register if needed */ |
| 1281 | if (!(ENABLE_FIRST_PASS || OPT_DETECT_IMPOSSIBLE_BRANCHES)) |
| 1282 | jit_movr(JIT_V0, LIGHTREC_REG_CYCLE); |
| 1283 | |
| 1284 | /* Get the next block */ |
| 1285 | jit_finishi(&get_next_block_func); |
| 1286 | jit_retval(JIT_V1); |
| 1287 | |
| 1288 | if (ENABLE_FIRST_PASS || OPT_DETECT_IMPOSSIBLE_BRANCHES) { |
| 1289 | /* The interpreter may have updated state->current_cycle and |
| 1290 | * state->target_cycle - recalc the delta */ |
| 1291 | update_cycle_counter_after_c(_jit); |
| 1292 | } else { |
| 1293 | jit_movr(LIGHTREC_REG_CYCLE, JIT_V0); |
| 1294 | } |
| 1295 | |
| 1296 | /* Reset JIT_V0 to the next PC */ |
| 1297 | jit_ldxi_ui(JIT_V0, LIGHTREC_REG_STATE, |
| 1298 | offsetof(struct lightrec_state, curr_pc)); |
| 1299 | |
| 1300 | /* If we get non-NULL, loop */ |
| 1301 | jit_patch_at(jit_bnei(JIT_V1, 0), loop); |
| 1302 | |
| 1303 | /* When exiting, the recompiled code will jump to that address */ |
| 1304 | jit_note(__FILE__, __LINE__); |
| 1305 | jit_patch(to_end); |
| 1306 | |
| 1307 | jit_retr(LIGHTREC_REG_CYCLE); |
| 1308 | jit_epilog(); |
| 1309 | |
| 1310 | block->_jit = _jit; |
| 1311 | block->opcode_list = NULL; |
| 1312 | block->flags = BLOCK_NO_OPCODE_LIST; |
| 1313 | block->nb_ops = 0; |
| 1314 | |
| 1315 | block->function = lightrec_emit_code(state, block, _jit, |
| 1316 | &block->code_size); |
| 1317 | if (!block->function) |
| 1318 | goto err_free_block; |
| 1319 | |
| 1320 | state->eob_wrapper_func = jit_address(addr2); |
| 1321 | if (OPT_DETECT_IMPOSSIBLE_BRANCHES) |
| 1322 | state->interpreter_func = jit_address(addr4); |
| 1323 | if (OPT_HANDLE_LOAD_DELAYS) |
| 1324 | state->ds_check_func = jit_address(addr5); |
| 1325 | if (OPT_REPLACE_MEMSET) |
| 1326 | state->memset_func = jit_address(addr3); |
| 1327 | state->get_next_block = jit_address(addr); |
| 1328 | |
| 1329 | if (ENABLE_DISASSEMBLER) { |
| 1330 | pr_debug("Dispatcher block:\n"); |
| 1331 | jit_disassemble(); |
| 1332 | } |
| 1333 | |
| 1334 | /* We're done! */ |
| 1335 | jit_clear_state(); |
| 1336 | return block; |
| 1337 | |
| 1338 | err_free_block: |
| 1339 | lightrec_free(state, MEM_FOR_IR, sizeof(*block), block); |
| 1340 | err_no_mem: |
| 1341 | pr_err("Unable to compile dispatcher: Out of memory\n"); |
| 1342 | return NULL; |
| 1343 | } |
| 1344 | |
| 1345 | union code lightrec_read_opcode(struct lightrec_state *state, u32 pc) |
| 1346 | { |
| 1347 | void *host = NULL; |
| 1348 | |
| 1349 | lightrec_get_map(state, &host, kunseg(pc)); |
| 1350 | |
| 1351 | const u32 *code = (u32 *)host; |
| 1352 | return (union code) LE32TOH(*code); |
| 1353 | } |
| 1354 | |
| 1355 | unsigned int lightrec_cycles_of_opcode(const struct lightrec_state *state, |
| 1356 | union code code) |
| 1357 | { |
| 1358 | return state->cycles_per_op; |
| 1359 | } |
| 1360 | |
| 1361 | void lightrec_free_opcode_list(struct lightrec_state *state, struct opcode *ops) |
| 1362 | { |
| 1363 | struct opcode_list *list = container_of(ops, struct opcode_list, ops); |
| 1364 | |
| 1365 | lightrec_free(state, MEM_FOR_IR, |
| 1366 | sizeof(*list) + list->nb_ops * sizeof(struct opcode), |
| 1367 | list); |
| 1368 | } |
| 1369 | |
| 1370 | static unsigned int lightrec_get_mips_block_len(const u32 *src) |
| 1371 | { |
| 1372 | unsigned int i; |
| 1373 | union code c; |
| 1374 | |
| 1375 | for (i = 1; ; i++) { |
| 1376 | c.opcode = LE32TOH(*src++); |
| 1377 | |
| 1378 | if (is_syscall(c)) |
| 1379 | return i; |
| 1380 | |
| 1381 | if (is_unconditional_jump(c)) |
| 1382 | return i + 1; |
| 1383 | } |
| 1384 | } |
| 1385 | |
| 1386 | static struct opcode * lightrec_disassemble(struct lightrec_state *state, |
| 1387 | const u32 *src, unsigned int *len) |
| 1388 | { |
| 1389 | struct opcode_list *list; |
| 1390 | unsigned int i, length; |
| 1391 | |
| 1392 | length = lightrec_get_mips_block_len(src); |
| 1393 | |
| 1394 | list = lightrec_malloc(state, MEM_FOR_IR, |
| 1395 | sizeof(*list) + sizeof(struct opcode) * length); |
| 1396 | if (!list) { |
| 1397 | pr_err("Unable to allocate memory\n"); |
| 1398 | return NULL; |
| 1399 | } |
| 1400 | |
| 1401 | list->nb_ops = (u16) length; |
| 1402 | |
| 1403 | for (i = 0; i < length; i++) { |
| 1404 | list->ops[i].opcode = LE32TOH(src[i]); |
| 1405 | list->ops[i].flags = 0; |
| 1406 | } |
| 1407 | |
| 1408 | *len = length * sizeof(u32); |
| 1409 | |
| 1410 | return list->ops; |
| 1411 | } |
| 1412 | |
| 1413 | static struct block * lightrec_precompile_block(struct lightrec_state *state, |
| 1414 | u32 pc) |
| 1415 | { |
| 1416 | struct opcode *list; |
| 1417 | struct block *block; |
| 1418 | void *host, *addr; |
| 1419 | const struct lightrec_mem_map *map = lightrec_get_map(state, &host, kunseg(pc)); |
| 1420 | const u32 *code = (u32 *) host; |
| 1421 | unsigned int length; |
| 1422 | bool fully_tagged; |
| 1423 | u8 block_flags = 0; |
| 1424 | |
| 1425 | if (!map) |
| 1426 | return NULL; |
| 1427 | |
| 1428 | block = lightrec_malloc(state, MEM_FOR_IR, sizeof(*block)); |
| 1429 | if (!block) { |
| 1430 | pr_err("Unable to recompile block: Out of memory\n"); |
| 1431 | return NULL; |
| 1432 | } |
| 1433 | |
| 1434 | list = lightrec_disassemble(state, code, &length); |
| 1435 | if (!list) { |
| 1436 | lightrec_free(state, MEM_FOR_IR, sizeof(*block), block); |
| 1437 | return NULL; |
| 1438 | } |
| 1439 | |
| 1440 | block->pc = pc; |
| 1441 | block->_jit = NULL; |
| 1442 | block->function = NULL; |
| 1443 | block->opcode_list = list; |
| 1444 | block->code = code; |
| 1445 | block->next = NULL; |
| 1446 | block->flags = 0; |
| 1447 | block->code_size = 0; |
| 1448 | block->precompile_date = state->current_cycle; |
| 1449 | block->nb_ops = length / sizeof(u32); |
| 1450 | |
| 1451 | lightrec_optimize(state, block); |
| 1452 | |
| 1453 | length = block->nb_ops * sizeof(u32); |
| 1454 | |
| 1455 | lightrec_register(MEM_FOR_MIPS_CODE, length); |
| 1456 | |
| 1457 | if (ENABLE_DISASSEMBLER) { |
| 1458 | pr_debug("Disassembled block at PC: 0x%08x\n", block->pc); |
| 1459 | lightrec_print_disassembly(block, code); |
| 1460 | } |
| 1461 | |
| 1462 | pr_debug("Block size: %hu opcodes\n", block->nb_ops); |
| 1463 | |
| 1464 | fully_tagged = lightrec_block_is_fully_tagged(block); |
| 1465 | if (fully_tagged) |
| 1466 | block_flags |= BLOCK_FULLY_TAGGED; |
| 1467 | |
| 1468 | if (block_flags) |
| 1469 | block_set_flags(block, block_flags); |
| 1470 | |
| 1471 | block->hash = lightrec_calculate_block_hash(block); |
| 1472 | |
| 1473 | if (OPT_REPLACE_MEMSET && block_has_flag(block, BLOCK_IS_MEMSET)) |
| 1474 | addr = state->memset_func; |
| 1475 | else |
| 1476 | addr = state->get_next_block; |
| 1477 | lut_write(state, lut_offset(pc), addr); |
| 1478 | |
| 1479 | pr_debug("Blocks created: %u\n", ++state->nb_precompile); |
| 1480 | |
| 1481 | return block; |
| 1482 | } |
| 1483 | |
| 1484 | static bool lightrec_block_is_fully_tagged(const struct block *block) |
| 1485 | { |
| 1486 | const struct opcode *op; |
| 1487 | unsigned int i; |
| 1488 | |
| 1489 | for (i = 0; i < block->nb_ops; i++) { |
| 1490 | op = &block->opcode_list[i]; |
| 1491 | |
| 1492 | /* If we have one branch that must be emulated, we cannot trash |
| 1493 | * the opcode list. */ |
| 1494 | if (should_emulate(op)) |
| 1495 | return false; |
| 1496 | |
| 1497 | /* Check all loads/stores of the opcode list and mark the |
| 1498 | * block as fully compiled if they all have been tagged. */ |
| 1499 | switch (op->c.i.op) { |
| 1500 | case OP_LB: |
| 1501 | case OP_LH: |
| 1502 | case OP_LWL: |
| 1503 | case OP_LW: |
| 1504 | case OP_LBU: |
| 1505 | case OP_LHU: |
| 1506 | case OP_LWR: |
| 1507 | case OP_SB: |
| 1508 | case OP_SH: |
| 1509 | case OP_SWL: |
| 1510 | case OP_SW: |
| 1511 | case OP_SWR: |
| 1512 | case OP_LWC2: |
| 1513 | case OP_SWC2: |
| 1514 | case OP_META_LWU: |
| 1515 | case OP_META_SWU: |
| 1516 | if (!LIGHTREC_FLAGS_GET_IO_MODE(op->flags)) |
| 1517 | return false; |
| 1518 | fallthrough; |
| 1519 | default: |
| 1520 | continue; |
| 1521 | } |
| 1522 | } |
| 1523 | |
| 1524 | return true; |
| 1525 | } |
| 1526 | |
| 1527 | static void lightrec_reap_block(struct lightrec_state *state, void *data) |
| 1528 | { |
| 1529 | struct block *block = data; |
| 1530 | |
| 1531 | pr_debug("Reap dead block at "PC_FMT"\n", block->pc); |
| 1532 | lightrec_unregister_block(state->block_cache, block); |
| 1533 | lightrec_free_block(state, block); |
| 1534 | } |
| 1535 | |
| 1536 | static void lightrec_reap_jit(struct lightrec_state *state, void *data) |
| 1537 | { |
| 1538 | _jit_destroy_state(data); |
| 1539 | } |
| 1540 | |
| 1541 | static void lightrec_free_function(struct lightrec_state *state, void *fn) |
| 1542 | { |
| 1543 | if (ENABLE_CODE_BUFFER && state->tlsf) { |
| 1544 | pr_debug("Freeing code block at 0x%" PRIxPTR "\n", (uintptr_t) fn); |
| 1545 | lightrec_free_code(state, fn); |
| 1546 | } |
| 1547 | } |
| 1548 | |
| 1549 | static void lightrec_reap_function(struct lightrec_state *state, void *data) |
| 1550 | { |
| 1551 | lightrec_free_function(state, data); |
| 1552 | } |
| 1553 | |
| 1554 | static void lightrec_reap_opcode_list(struct lightrec_state *state, void *data) |
| 1555 | { |
| 1556 | lightrec_free_opcode_list(state, data); |
| 1557 | } |
| 1558 | |
| 1559 | int lightrec_compile_block(struct lightrec_cstate *cstate, |
| 1560 | struct block *block) |
| 1561 | { |
| 1562 | struct lightrec_state *state = cstate->state; |
| 1563 | struct lightrec_branch_target *target; |
| 1564 | bool fully_tagged = false; |
| 1565 | struct block *block2; |
| 1566 | struct opcode *elm; |
| 1567 | jit_state_t *_jit, *oldjit; |
| 1568 | jit_node_t *start_of_block; |
| 1569 | bool skip_next = false; |
| 1570 | void *old_fn, *new_fn; |
| 1571 | size_t old_code_size; |
| 1572 | unsigned int i, j; |
| 1573 | u8 old_flags; |
| 1574 | u32 offset; |
| 1575 | |
| 1576 | fully_tagged = lightrec_block_is_fully_tagged(block); |
| 1577 | if (fully_tagged) |
| 1578 | block_set_flags(block, BLOCK_FULLY_TAGGED); |
| 1579 | |
| 1580 | _jit = jit_new_state(); |
| 1581 | if (!_jit) |
| 1582 | return -ENOMEM; |
| 1583 | |
| 1584 | oldjit = block->_jit; |
| 1585 | old_fn = block->function; |
| 1586 | old_code_size = block->code_size; |
| 1587 | block->_jit = _jit; |
| 1588 | |
| 1589 | lightrec_regcache_reset(cstate->reg_cache); |
| 1590 | |
| 1591 | if (OPT_PRELOAD_PC && (block->flags & BLOCK_PRELOAD_PC)) |
| 1592 | lightrec_preload_pc(cstate->reg_cache, _jit); |
| 1593 | |
| 1594 | cstate->cycles = 0; |
| 1595 | cstate->nb_local_branches = 0; |
| 1596 | cstate->nb_targets = 0; |
| 1597 | cstate->no_load_delay = false; |
| 1598 | |
| 1599 | jit_prolog(); |
| 1600 | jit_tramp(256); |
| 1601 | |
| 1602 | start_of_block = jit_label(); |
| 1603 | |
| 1604 | for (i = 0; i < block->nb_ops; i++) { |
| 1605 | elm = &block->opcode_list[i]; |
| 1606 | |
| 1607 | if (skip_next) { |
| 1608 | skip_next = false; |
| 1609 | continue; |
| 1610 | } |
| 1611 | |
| 1612 | if (should_emulate(elm)) { |
| 1613 | pr_debug("Branch at offset 0x%x will be emulated\n", |
| 1614 | i << 2); |
| 1615 | |
| 1616 | lightrec_emit_jump_to_interpreter(cstate, block, i); |
| 1617 | skip_next = !op_flag_no_ds(elm->flags); |
| 1618 | } else { |
| 1619 | lightrec_rec_opcode(cstate, block, i); |
| 1620 | skip_next = !op_flag_no_ds(elm->flags) && has_delay_slot(elm->c); |
| 1621 | #if _WIN32 |
| 1622 | /* FIXME: GNU Lightning on Windows seems to use our |
| 1623 | * mapped registers as temporaries. Until the actual bug |
| 1624 | * is found and fixed, unconditionally mark our |
| 1625 | * registers as live here. */ |
| 1626 | lightrec_regcache_mark_live(cstate->reg_cache, _jit); |
| 1627 | #endif |
| 1628 | } |
| 1629 | |
| 1630 | cstate->cycles += lightrec_cycles_of_opcode(state, elm->c); |
| 1631 | } |
| 1632 | |
| 1633 | for (i = 0; i < cstate->nb_local_branches; i++) { |
| 1634 | struct lightrec_branch *branch = &cstate->local_branches[i]; |
| 1635 | |
| 1636 | pr_debug("Patch local branch to offset 0x%x\n", |
| 1637 | branch->target << 2); |
| 1638 | |
| 1639 | if (branch->target == 0) { |
| 1640 | jit_patch_at(branch->branch, start_of_block); |
| 1641 | continue; |
| 1642 | } |
| 1643 | |
| 1644 | for (j = 0; j < cstate->nb_targets; j++) { |
| 1645 | if (cstate->targets[j].offset == branch->target) { |
| 1646 | jit_patch_at(branch->branch, |
| 1647 | cstate->targets[j].label); |
| 1648 | break; |
| 1649 | } |
| 1650 | } |
| 1651 | |
| 1652 | if (j == cstate->nb_targets) |
| 1653 | pr_err("Unable to find branch target\n"); |
| 1654 | } |
| 1655 | |
| 1656 | jit_ret(); |
| 1657 | jit_epilog(); |
| 1658 | |
| 1659 | new_fn = lightrec_emit_code(state, block, _jit, &block->code_size); |
| 1660 | if (!new_fn) { |
| 1661 | if (!ENABLE_THREADED_COMPILER) |
| 1662 | pr_err("Unable to compile block!\n"); |
| 1663 | block->_jit = oldjit; |
| 1664 | jit_clear_state(); |
| 1665 | _jit_destroy_state(_jit); |
| 1666 | return -ENOMEM; |
| 1667 | } |
| 1668 | |
| 1669 | /* Pause the reaper, because lightrec_reset_lut_offset() may try to set |
| 1670 | * the old block->function pointer to the code LUT. */ |
| 1671 | if (ENABLE_THREADED_COMPILER) |
| 1672 | lightrec_reaper_pause(state->reaper); |
| 1673 | |
| 1674 | block->function = new_fn; |
| 1675 | block_clear_flags(block, BLOCK_SHOULD_RECOMPILE); |
| 1676 | |
| 1677 | /* Add compiled function to the LUT */ |
| 1678 | lut_write(state, lut_offset(block->pc), block->function); |
| 1679 | |
| 1680 | if (ENABLE_THREADED_COMPILER) |
| 1681 | lightrec_reaper_continue(state->reaper); |
| 1682 | |
| 1683 | /* Detect old blocks that have been covered by the new one */ |
| 1684 | for (i = 0; i < cstate->nb_targets; i++) { |
| 1685 | target = &cstate->targets[i]; |
| 1686 | |
| 1687 | if (!target->offset) |
| 1688 | continue; |
| 1689 | |
| 1690 | offset = block->pc + target->offset * sizeof(u32); |
| 1691 | |
| 1692 | /* Pause the reaper while we search for the block until we set |
| 1693 | * the BLOCK_IS_DEAD flag, otherwise the block may be removed |
| 1694 | * under our feet. */ |
| 1695 | if (ENABLE_THREADED_COMPILER) |
| 1696 | lightrec_reaper_pause(state->reaper); |
| 1697 | |
| 1698 | block2 = lightrec_find_block(state->block_cache, offset); |
| 1699 | if (block2) { |
| 1700 | /* No need to check if block2 is compilable - it must |
| 1701 | * be, otherwise block wouldn't be compilable either */ |
| 1702 | |
| 1703 | /* Set the "block dead" flag to prevent the dynarec from |
| 1704 | * recompiling this block */ |
| 1705 | old_flags = block_set_flags(block2, BLOCK_IS_DEAD); |
| 1706 | } |
| 1707 | |
| 1708 | if (ENABLE_THREADED_COMPILER) { |
| 1709 | lightrec_reaper_continue(state->reaper); |
| 1710 | |
| 1711 | /* If block2 was pending for compilation, cancel it. |
| 1712 | * If it's being compiled right now, wait until it |
| 1713 | * finishes. */ |
| 1714 | if (block2) |
| 1715 | lightrec_recompiler_remove(state->rec, block2); |
| 1716 | } |
| 1717 | |
| 1718 | /* We know from now on that block2 (if present) isn't going to |
| 1719 | * be compiled. We can override the LUT entry with our new |
| 1720 | * block's entry point. */ |
| 1721 | offset = lut_offset(block->pc) + target->offset; |
| 1722 | lut_write(state, offset, jit_address(target->label)); |
| 1723 | |
| 1724 | if (block2) { |
| 1725 | pr_debug("Reap block 0x%08x as it's covered by block " |
| 1726 | "0x%08x\n", block2->pc, block->pc); |
| 1727 | |
| 1728 | /* Finally, reap the block. */ |
| 1729 | if (!ENABLE_THREADED_COMPILER) { |
| 1730 | lightrec_unregister_block(state->block_cache, block2); |
| 1731 | lightrec_free_block(state, block2); |
| 1732 | } else if (!(old_flags & BLOCK_IS_DEAD)) { |
| 1733 | lightrec_reaper_add(state->reaper, |
| 1734 | lightrec_reap_block, |
| 1735 | block2); |
| 1736 | } |
| 1737 | } |
| 1738 | } |
| 1739 | |
| 1740 | if (ENABLE_DISASSEMBLER) { |
| 1741 | pr_debug("Compiling block at PC: 0x%08x\n", block->pc); |
| 1742 | jit_disassemble(); |
| 1743 | } |
| 1744 | |
| 1745 | jit_clear_state(); |
| 1746 | |
| 1747 | if (fully_tagged) |
| 1748 | old_flags = block_set_flags(block, BLOCK_NO_OPCODE_LIST); |
| 1749 | |
| 1750 | if (fully_tagged && !(old_flags & BLOCK_NO_OPCODE_LIST)) { |
| 1751 | pr_debug("Block "PC_FMT" is fully tagged" |
| 1752 | " - free opcode list\n", block->pc); |
| 1753 | |
| 1754 | if (ENABLE_THREADED_COMPILER) { |
| 1755 | lightrec_reaper_add(state->reaper, |
| 1756 | lightrec_reap_opcode_list, |
| 1757 | block->opcode_list); |
| 1758 | } else { |
| 1759 | lightrec_free_opcode_list(state, block->opcode_list); |
| 1760 | } |
| 1761 | } |
| 1762 | |
| 1763 | if (oldjit) { |
| 1764 | pr_debug("Block 0x%08x recompiled, reaping old jit context.\n", |
| 1765 | block->pc); |
| 1766 | |
| 1767 | if (ENABLE_THREADED_COMPILER) { |
| 1768 | lightrec_reaper_add(state->reaper, |
| 1769 | lightrec_reap_jit, oldjit); |
| 1770 | lightrec_reaper_add(state->reaper, |
| 1771 | lightrec_reap_function, old_fn); |
| 1772 | } else { |
| 1773 | _jit_destroy_state(oldjit); |
| 1774 | lightrec_free_function(state, old_fn); |
| 1775 | } |
| 1776 | |
| 1777 | lightrec_unregister(MEM_FOR_CODE, old_code_size); |
| 1778 | } |
| 1779 | |
| 1780 | pr_debug("Blocks compiled: %u\n", ++state->nb_compile); |
| 1781 | |
| 1782 | return 0; |
| 1783 | } |
| 1784 | |
| 1785 | static void lightrec_print_info(struct lightrec_state *state) |
| 1786 | { |
| 1787 | if ((state->current_cycle & ~0xfffffff) != state->old_cycle_counter) { |
| 1788 | pr_info("Lightrec RAM usage: IR %u KiB, CODE %u KiB, " |
| 1789 | "MIPS %u KiB, TOTAL %u KiB, avg. IPI %f\n", |
| 1790 | lightrec_get_mem_usage(MEM_FOR_IR) / 1024, |
| 1791 | lightrec_get_mem_usage(MEM_FOR_CODE) / 1024, |
| 1792 | lightrec_get_mem_usage(MEM_FOR_MIPS_CODE) / 1024, |
| 1793 | lightrec_get_total_mem_usage() / 1024, |
| 1794 | lightrec_get_average_ipi()); |
| 1795 | state->old_cycle_counter = state->current_cycle & ~0xfffffff; |
| 1796 | } |
| 1797 | } |
| 1798 | |
| 1799 | u32 lightrec_execute(struct lightrec_state *state, u32 pc, u32 target_cycle) |
| 1800 | { |
| 1801 | s32 (*func)(struct lightrec_state *, u32, void *, s32) = (void *)state->dispatcher->function; |
| 1802 | void *block_trace; |
| 1803 | s32 cycles_delta; |
| 1804 | |
| 1805 | state->exit_flags = LIGHTREC_EXIT_NORMAL; |
| 1806 | |
| 1807 | /* Handle the cycle counter overflowing */ |
| 1808 | if (unlikely(target_cycle < state->current_cycle)) |
| 1809 | target_cycle = UINT_MAX; |
| 1810 | |
| 1811 | state->target_cycle = target_cycle; |
| 1812 | state->curr_pc = pc; |
| 1813 | |
| 1814 | block_trace = get_next_block_func(state, pc); |
| 1815 | if (block_trace) { |
| 1816 | cycles_delta = state->target_cycle - state->current_cycle; |
| 1817 | |
| 1818 | cycles_delta = (*func)(state, state->curr_pc, |
| 1819 | block_trace, cycles_delta); |
| 1820 | |
| 1821 | state->current_cycle = state->target_cycle - cycles_delta; |
| 1822 | } |
| 1823 | |
| 1824 | if (ENABLE_THREADED_COMPILER) |
| 1825 | lightrec_reaper_reap(state->reaper); |
| 1826 | |
| 1827 | if (LOG_LEVEL >= INFO_L) |
| 1828 | lightrec_print_info(state); |
| 1829 | |
| 1830 | return state->curr_pc; |
| 1831 | } |
| 1832 | |
| 1833 | u32 lightrec_run_interpreter(struct lightrec_state *state, u32 pc, |
| 1834 | u32 target_cycle) |
| 1835 | { |
| 1836 | struct block *block; |
| 1837 | |
| 1838 | state->exit_flags = LIGHTREC_EXIT_NORMAL; |
| 1839 | state->target_cycle = target_cycle; |
| 1840 | |
| 1841 | do { |
| 1842 | block = lightrec_get_block(state, pc); |
| 1843 | if (!block) |
| 1844 | break; |
| 1845 | |
| 1846 | pc = lightrec_emulate_block(state, block, pc); |
| 1847 | |
| 1848 | if (ENABLE_THREADED_COMPILER) |
| 1849 | lightrec_reaper_reap(state->reaper); |
| 1850 | } while (state->current_cycle < state->target_cycle); |
| 1851 | |
| 1852 | if (LOG_LEVEL >= INFO_L) |
| 1853 | lightrec_print_info(state); |
| 1854 | |
| 1855 | return pc; |
| 1856 | } |
| 1857 | |
| 1858 | void lightrec_free_block(struct lightrec_state *state, struct block *block) |
| 1859 | { |
| 1860 | u8 old_flags; |
| 1861 | |
| 1862 | lightrec_unregister(MEM_FOR_MIPS_CODE, block->nb_ops * sizeof(u32)); |
| 1863 | old_flags = block_set_flags(block, BLOCK_NO_OPCODE_LIST); |
| 1864 | |
| 1865 | if (!(old_flags & BLOCK_NO_OPCODE_LIST)) |
| 1866 | lightrec_free_opcode_list(state, block->opcode_list); |
| 1867 | if (block->_jit) |
| 1868 | _jit_destroy_state(block->_jit); |
| 1869 | if (block->function) { |
| 1870 | lightrec_free_function(state, block->function); |
| 1871 | lightrec_unregister(MEM_FOR_CODE, block->code_size); |
| 1872 | } |
| 1873 | lightrec_free(state, MEM_FOR_IR, sizeof(*block), block); |
| 1874 | } |
| 1875 | |
| 1876 | struct lightrec_cstate * lightrec_create_cstate(struct lightrec_state *state) |
| 1877 | { |
| 1878 | struct lightrec_cstate *cstate; |
| 1879 | |
| 1880 | cstate = lightrec_malloc(state, MEM_FOR_LIGHTREC, sizeof(*cstate)); |
| 1881 | if (!cstate) |
| 1882 | return NULL; |
| 1883 | |
| 1884 | cstate->reg_cache = lightrec_regcache_init(state); |
| 1885 | if (!cstate->reg_cache) { |
| 1886 | lightrec_free(state, MEM_FOR_LIGHTREC, sizeof(*cstate), cstate); |
| 1887 | return NULL; |
| 1888 | } |
| 1889 | |
| 1890 | cstate->state = state; |
| 1891 | |
| 1892 | return cstate; |
| 1893 | } |
| 1894 | |
| 1895 | void lightrec_free_cstate(struct lightrec_cstate *cstate) |
| 1896 | { |
| 1897 | lightrec_free_regcache(cstate->reg_cache); |
| 1898 | lightrec_free(cstate->state, MEM_FOR_LIGHTREC, sizeof(*cstate), cstate); |
| 1899 | } |
| 1900 | |
| 1901 | struct lightrec_state * lightrec_init(char *argv0, |
| 1902 | const struct lightrec_mem_map *map, |
| 1903 | size_t nb, |
| 1904 | const struct lightrec_ops *ops) |
| 1905 | { |
| 1906 | const struct lightrec_mem_map *codebuf_map = &map[PSX_MAP_CODE_BUFFER]; |
| 1907 | struct lightrec_state *state; |
| 1908 | uintptr_t addr; |
| 1909 | void *tlsf = NULL; |
| 1910 | bool with_32bit_lut = false; |
| 1911 | size_t lut_size; |
| 1912 | |
| 1913 | /* Sanity-check ops */ |
| 1914 | if (!ops || !ops->cop2_op || !ops->enable_ram) { |
| 1915 | pr_err("Missing callbacks in lightrec_ops structure\n"); |
| 1916 | return NULL; |
| 1917 | } |
| 1918 | |
| 1919 | if (ops->cop2_notify) |
| 1920 | pr_debug("Optional cop2_notify callback in lightrec_ops\n"); |
| 1921 | else |
| 1922 | pr_debug("No optional cop2_notify callback in lightrec_ops\n"); |
| 1923 | |
| 1924 | if (ENABLE_CODE_BUFFER && nb > PSX_MAP_CODE_BUFFER |
| 1925 | && codebuf_map->address) { |
| 1926 | tlsf = tlsf_create_with_pool(codebuf_map->address, |
| 1927 | codebuf_map->length); |
| 1928 | if (!tlsf) { |
| 1929 | pr_err("Unable to initialize code buffer\n"); |
| 1930 | return NULL; |
| 1931 | } |
| 1932 | |
| 1933 | if (__WORDSIZE == 64) { |
| 1934 | addr = (uintptr_t) codebuf_map->address + codebuf_map->length - 1; |
| 1935 | with_32bit_lut = addr == (u32) addr; |
| 1936 | } |
| 1937 | } |
| 1938 | |
| 1939 | if (with_32bit_lut) |
| 1940 | lut_size = CODE_LUT_SIZE * 4; |
| 1941 | else |
| 1942 | lut_size = CODE_LUT_SIZE * sizeof(void *); |
| 1943 | |
| 1944 | init_jit(argv0); |
| 1945 | |
| 1946 | state = calloc(1, sizeof(*state) + lut_size); |
| 1947 | if (!state) |
| 1948 | goto err_finish_jit; |
| 1949 | |
| 1950 | lightrec_register(MEM_FOR_LIGHTREC, sizeof(*state) + lut_size); |
| 1951 | |
| 1952 | state->tlsf = tlsf; |
| 1953 | state->with_32bit_lut = with_32bit_lut; |
| 1954 | state->in_delay_slot_n = 0xff; |
| 1955 | state->cycles_per_op = 2; |
| 1956 | |
| 1957 | state->block_cache = lightrec_blockcache_init(state); |
| 1958 | if (!state->block_cache) |
| 1959 | goto err_free_state; |
| 1960 | |
| 1961 | if (ENABLE_THREADED_COMPILER) { |
| 1962 | state->rec = lightrec_recompiler_init(state); |
| 1963 | if (!state->rec) |
| 1964 | goto err_free_block_cache; |
| 1965 | |
| 1966 | state->reaper = lightrec_reaper_init(state); |
| 1967 | if (!state->reaper) |
| 1968 | goto err_free_recompiler; |
| 1969 | } else { |
| 1970 | state->cstate = lightrec_create_cstate(state); |
| 1971 | if (!state->cstate) |
| 1972 | goto err_free_block_cache; |
| 1973 | } |
| 1974 | |
| 1975 | state->nb_maps = nb; |
| 1976 | state->maps = map; |
| 1977 | |
| 1978 | memcpy(&state->ops, ops, sizeof(*ops)); |
| 1979 | |
| 1980 | state->dispatcher = generate_dispatcher(state); |
| 1981 | if (!state->dispatcher) |
| 1982 | goto err_free_reaper; |
| 1983 | |
| 1984 | state->c_wrapper_block = generate_wrapper(state); |
| 1985 | if (!state->c_wrapper_block) |
| 1986 | goto err_free_dispatcher; |
| 1987 | |
| 1988 | state->c_wrappers[C_WRAPPER_RW] = lightrec_rw_cb; |
| 1989 | state->c_wrappers[C_WRAPPER_RW_GENERIC] = lightrec_rw_generic_cb; |
| 1990 | state->c_wrappers[C_WRAPPER_MFC] = lightrec_mfc_cb; |
| 1991 | state->c_wrappers[C_WRAPPER_MTC] = lightrec_mtc_cb; |
| 1992 | state->c_wrappers[C_WRAPPER_CP] = lightrec_cp_cb; |
| 1993 | |
| 1994 | map = &state->maps[PSX_MAP_BIOS]; |
| 1995 | state->offset_bios = (uintptr_t)map->address - map->pc; |
| 1996 | |
| 1997 | map = &state->maps[PSX_MAP_SCRATCH_PAD]; |
| 1998 | state->offset_scratch = (uintptr_t)map->address - map->pc; |
| 1999 | |
| 2000 | map = &state->maps[PSX_MAP_HW_REGISTERS]; |
| 2001 | state->offset_io = (uintptr_t)map->address - map->pc; |
| 2002 | |
| 2003 | map = &state->maps[PSX_MAP_KERNEL_USER_RAM]; |
| 2004 | state->offset_ram = (uintptr_t)map->address - map->pc; |
| 2005 | |
| 2006 | if (state->maps[PSX_MAP_MIRROR1].address == map->address + 0x200000 && |
| 2007 | state->maps[PSX_MAP_MIRROR2].address == map->address + 0x400000 && |
| 2008 | state->maps[PSX_MAP_MIRROR3].address == map->address + 0x600000) |
| 2009 | state->mirrors_mapped = true; |
| 2010 | |
| 2011 | if (state->offset_bios == 0 && |
| 2012 | state->offset_scratch == 0 && |
| 2013 | state->offset_ram == 0 && |
| 2014 | state->offset_io == 0 && |
| 2015 | state->mirrors_mapped) { |
| 2016 | pr_info("Memory map is perfect. Emitted code will be best.\n"); |
| 2017 | } else { |
| 2018 | pr_info("Memory map is sub-par. Emitted code will be slow.\n"); |
| 2019 | } |
| 2020 | |
| 2021 | if (state->with_32bit_lut) |
| 2022 | pr_info("Using 32-bit LUT\n"); |
| 2023 | |
| 2024 | return state; |
| 2025 | |
| 2026 | err_free_dispatcher: |
| 2027 | lightrec_free_block(state, state->dispatcher); |
| 2028 | err_free_reaper: |
| 2029 | if (ENABLE_THREADED_COMPILER) |
| 2030 | lightrec_reaper_destroy(state->reaper); |
| 2031 | err_free_recompiler: |
| 2032 | if (ENABLE_THREADED_COMPILER) |
| 2033 | lightrec_free_recompiler(state->rec); |
| 2034 | else |
| 2035 | lightrec_free_cstate(state->cstate); |
| 2036 | err_free_block_cache: |
| 2037 | lightrec_free_block_cache(state->block_cache); |
| 2038 | err_free_state: |
| 2039 | lightrec_unregister(MEM_FOR_LIGHTREC, sizeof(*state) + |
| 2040 | lut_elm_size(state) * CODE_LUT_SIZE); |
| 2041 | free(state); |
| 2042 | err_finish_jit: |
| 2043 | finish_jit(); |
| 2044 | if (ENABLE_CODE_BUFFER && tlsf) |
| 2045 | tlsf_destroy(tlsf); |
| 2046 | return NULL; |
| 2047 | } |
| 2048 | |
| 2049 | void lightrec_destroy(struct lightrec_state *state) |
| 2050 | { |
| 2051 | /* Force a print info on destroy*/ |
| 2052 | state->current_cycle = ~state->current_cycle; |
| 2053 | lightrec_print_info(state); |
| 2054 | |
| 2055 | lightrec_free_block_cache(state->block_cache); |
| 2056 | lightrec_free_block(state, state->dispatcher); |
| 2057 | lightrec_free_block(state, state->c_wrapper_block); |
| 2058 | |
| 2059 | if (ENABLE_THREADED_COMPILER) { |
| 2060 | lightrec_free_recompiler(state->rec); |
| 2061 | lightrec_reaper_destroy(state->reaper); |
| 2062 | } else { |
| 2063 | lightrec_free_cstate(state->cstate); |
| 2064 | } |
| 2065 | |
| 2066 | finish_jit(); |
| 2067 | if (ENABLE_CODE_BUFFER && state->tlsf) |
| 2068 | tlsf_destroy(state->tlsf); |
| 2069 | |
| 2070 | lightrec_unregister(MEM_FOR_LIGHTREC, sizeof(*state) + |
| 2071 | lut_elm_size(state) * CODE_LUT_SIZE); |
| 2072 | free(state); |
| 2073 | } |
| 2074 | |
| 2075 | void lightrec_invalidate(struct lightrec_state *state, u32 addr, u32 len) |
| 2076 | { |
| 2077 | u32 kaddr = kunseg(addr & ~0x3); |
| 2078 | enum psx_map idx = lightrec_get_map_idx(state, kaddr); |
| 2079 | |
| 2080 | switch (idx) { |
| 2081 | case PSX_MAP_MIRROR1: |
| 2082 | case PSX_MAP_MIRROR2: |
| 2083 | case PSX_MAP_MIRROR3: |
| 2084 | /* Handle mirrors */ |
| 2085 | kaddr &= RAM_SIZE - 1; |
| 2086 | fallthrough; |
| 2087 | case PSX_MAP_KERNEL_USER_RAM: |
| 2088 | break; |
| 2089 | default: |
| 2090 | return; |
| 2091 | } |
| 2092 | |
| 2093 | memset(lut_address(state, lut_offset(kaddr)), 0, |
| 2094 | ((len + 3) / 4) * lut_elm_size(state)); |
| 2095 | } |
| 2096 | |
| 2097 | void lightrec_invalidate_all(struct lightrec_state *state) |
| 2098 | { |
| 2099 | memset(state->code_lut, 0, lut_elm_size(state) * CODE_LUT_SIZE); |
| 2100 | } |
| 2101 | |
| 2102 | void lightrec_set_unsafe_opt_flags(struct lightrec_state *state, u32 flags) |
| 2103 | { |
| 2104 | if ((flags ^ state->opt_flags) & LIGHTREC_OPT_INV_DMA_ONLY) |
| 2105 | lightrec_invalidate_all(state); |
| 2106 | |
| 2107 | state->opt_flags = flags; |
| 2108 | } |
| 2109 | |
| 2110 | void lightrec_set_exit_flags(struct lightrec_state *state, u32 flags) |
| 2111 | { |
| 2112 | if (flags != LIGHTREC_EXIT_NORMAL) { |
| 2113 | state->exit_flags |= flags; |
| 2114 | state->target_cycle = state->current_cycle; |
| 2115 | } |
| 2116 | } |
| 2117 | |
| 2118 | u32 lightrec_exit_flags(struct lightrec_state *state) |
| 2119 | { |
| 2120 | return state->exit_flags; |
| 2121 | } |
| 2122 | |
| 2123 | u32 lightrec_current_cycle_count(const struct lightrec_state *state) |
| 2124 | { |
| 2125 | return state->current_cycle; |
| 2126 | } |
| 2127 | |
| 2128 | void lightrec_reset_cycle_count(struct lightrec_state *state, u32 cycles) |
| 2129 | { |
| 2130 | state->current_cycle = cycles; |
| 2131 | |
| 2132 | if (state->target_cycle < cycles) |
| 2133 | state->target_cycle = cycles; |
| 2134 | } |
| 2135 | |
| 2136 | void lightrec_set_target_cycle_count(struct lightrec_state *state, u32 cycles) |
| 2137 | { |
| 2138 | if (state->exit_flags == LIGHTREC_EXIT_NORMAL) { |
| 2139 | if (cycles < state->current_cycle) |
| 2140 | cycles = state->current_cycle; |
| 2141 | |
| 2142 | state->target_cycle = cycles; |
| 2143 | } |
| 2144 | } |
| 2145 | |
| 2146 | struct lightrec_registers * lightrec_get_registers(struct lightrec_state *state) |
| 2147 | { |
| 2148 | return &state->regs; |
| 2149 | } |
| 2150 | |
| 2151 | void lightrec_set_cycles_per_opcode(struct lightrec_state *state, u32 cycles) |
| 2152 | { |
| 2153 | state->cycles_per_op = cycles; |
| 2154 | } |