drc: get rid of SPAN
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2011 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24#include <errno.h>
25#include <sys/mman.h>
26#ifdef __MACH__
27#include <libkern/OSCacheControl.h>
28#endif
29#ifdef _3DS
30#include <3ds_utils.h>
31#endif
32
33#include "new_dynarec_config.h"
34#include "../psxhle.h"
35#include "../psxinterpreter.h"
36#include "../gte.h"
37#include "emu_if.h" // emulator interface
38#include "arm_features.h"
39
40#define noinline __attribute__((noinline,noclone))
41#ifndef ARRAY_SIZE
42#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
43#endif
44#ifndef min
45#define min(a, b) ((b) < (a) ? (b) : (a))
46#endif
47#ifndef max
48#define max(a, b) ((b) > (a) ? (b) : (a))
49#endif
50
51//#define DISASM
52//#define ASSEM_PRINT
53//#define STAT_PRINT
54
55#ifdef ASSEM_PRINT
56#define assem_debug printf
57#else
58#define assem_debug(...)
59#endif
60//#define inv_debug printf
61#define inv_debug(...)
62
63#ifdef __i386__
64#include "assem_x86.h"
65#endif
66#ifdef __x86_64__
67#include "assem_x64.h"
68#endif
69#ifdef __arm__
70#include "assem_arm.h"
71#endif
72#ifdef __aarch64__
73#include "assem_arm64.h"
74#endif
75
76#define RAM_SIZE 0x200000
77#define MAXBLOCK 4096
78#define MAX_OUTPUT_BLOCK_SIZE 262144
79
80#ifdef VITA
81// apparently Vita has a 16MB limit, so either we cut tc in half,
82// or use this hack (it's a hack because tc size was designed to be power-of-2)
83#define TC_REDUCE_BYTES 4096
84#else
85#define TC_REDUCE_BYTES 0
86#endif
87
88struct ndrc_mem
89{
90 u_char translation_cache[(1 << TARGET_SIZE_2) - TC_REDUCE_BYTES];
91 struct
92 {
93 struct tramp_insns ops[2048 / sizeof(struct tramp_insns)];
94 const void *f[2048 / sizeof(void *)];
95 } tramp;
96};
97
98#ifdef BASE_ADDR_DYNAMIC
99static struct ndrc_mem *ndrc;
100#else
101static struct ndrc_mem ndrc_ __attribute__((aligned(4096)));
102static struct ndrc_mem *ndrc = &ndrc_;
103#endif
104
105// stubs
106enum stub_type {
107 CC_STUB = 1,
108 FP_STUB = 2,
109 LOADB_STUB = 3,
110 LOADH_STUB = 4,
111 LOADW_STUB = 5,
112 LOADD_STUB = 6,
113 LOADBU_STUB = 7,
114 LOADHU_STUB = 8,
115 STOREB_STUB = 9,
116 STOREH_STUB = 10,
117 STOREW_STUB = 11,
118 STORED_STUB = 12,
119 STORELR_STUB = 13,
120 INVCODE_STUB = 14,
121};
122
123// regmap_pre[i] - regs before [i] insn starts; dirty things here that
124// don't match .regmap will be written back
125// [i].regmap_entry - regs that must be set up if someone jumps here
126// [i].regmap - regs [i] insn will read/(over)write
127// branch_regs[i].* - same as above but for branches, takes delay slot into account
128struct regstat
129{
130 signed char regmap_entry[HOST_REGS];
131 signed char regmap[HOST_REGS];
132 uint64_t wasdirty;
133 uint64_t dirty;
134 uint64_t u;
135 u_int wasconst; // before; for example 'lw r2, (r2)' wasconst is true
136 u_int isconst; // ... but isconst is false when r2 is known
137 u_int loadedconst; // host regs that have constants loaded
138 u_int waswritten; // MIPS regs that were used as store base before
139};
140
141// note: asm depends on this layout
142struct ll_entry
143{
144 u_int vaddr;
145 u_int reg_sv_flags;
146 void *addr;
147 struct ll_entry *next;
148};
149
150struct ht_entry
151{
152 u_int vaddr[2];
153 void *tcaddr[2];
154};
155
156struct code_stub
157{
158 enum stub_type type;
159 void *addr;
160 void *retaddr;
161 u_int a;
162 uintptr_t b;
163 uintptr_t c;
164 u_int d;
165 u_int e;
166};
167
168struct link_entry
169{
170 void *addr;
171 u_int target;
172 u_int ext;
173};
174
175static struct decoded_insn
176{
177 u_char itype;
178 u_char opcode;
179 u_char opcode2;
180 u_char rs1;
181 u_char rs2;
182 u_char rt1;
183 u_char rt2;
184 u_char use_lt1:1;
185 u_char bt:1;
186 u_char ooo:1;
187 u_char is_ds:1;
188 u_char is_jump:1;
189 u_char is_ujump:1;
190 u_char is_load:1;
191 u_char is_store:1;
192} dops[MAXBLOCK];
193
194 // used by asm:
195 struct ht_entry hash_table[65536] __attribute__((aligned(16)));
196 struct ll_entry *jump_in[4096] __attribute__((aligned(16)));
197
198 static u_char *out;
199 static struct ll_entry *jump_dirty[4096];
200 static struct ll_entry *jump_out[4096];
201 static u_int start;
202 static u_int *source;
203 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
204 static uint64_t gte_rt[MAXBLOCK];
205 static uint64_t gte_unneeded[MAXBLOCK];
206 static u_int smrv[32]; // speculated MIPS register values
207 static u_int smrv_strong; // mask or regs that are likely to have correct values
208 static u_int smrv_weak; // same, but somewhat less likely
209 static u_int smrv_strong_next; // same, but after current insn executes
210 static u_int smrv_weak_next;
211 static int imm[MAXBLOCK];
212 static u_int ba[MAXBLOCK];
213 static uint64_t unneeded_reg[MAXBLOCK];
214 static uint64_t branch_unneeded_reg[MAXBLOCK];
215 // see 'struct regstat' for a description
216 static signed char regmap_pre[MAXBLOCK][HOST_REGS];
217 // contains 'real' consts at [i] insn, but may differ from what's actually
218 // loaded in host reg as 'final' value is always loaded, see get_final_value()
219 static uint32_t current_constmap[HOST_REGS];
220 static uint32_t constmap[MAXBLOCK][HOST_REGS];
221 static struct regstat regs[MAXBLOCK];
222 static struct regstat branch_regs[MAXBLOCK];
223 static signed char minimum_free_regs[MAXBLOCK];
224 static int ccadj[MAXBLOCK];
225 static int slen;
226 static void *instr_addr[MAXBLOCK];
227 static struct link_entry link_addr[MAXBLOCK];
228 static int linkcount;
229 static struct code_stub stubs[MAXBLOCK*3];
230 static int stubcount;
231 static u_int literals[1024][2];
232 static int literalcount;
233 static int is_delayslot;
234 static char shadow[1048576] __attribute__((aligned(16)));
235 static void *copy;
236 static int expirep;
237 static u_int stop_after_jal;
238 static u_int f1_hack;
239#ifdef STAT_PRINT
240 static int stat_bc_direct;
241 static int stat_bc_pre;
242 static int stat_bc_restore;
243 static int stat_jump_in_lookups;
244 static int stat_restore_tries;
245 static int stat_restore_compares;
246 static int stat_inv_addr_calls;
247 static int stat_inv_hits;
248 #define stat_inc(s) s++
249#else
250 #define stat_inc(s)
251#endif
252
253 int new_dynarec_hacks;
254 int new_dynarec_hacks_pergame;
255 int new_dynarec_hacks_old;
256 int new_dynarec_did_compile;
257
258 #define HACK_ENABLED(x) ((new_dynarec_hacks | new_dynarec_hacks_pergame) & (x))
259
260 extern int cycle_count; // ... until end of the timeslice, counts -N -> 0
261 extern int last_count; // last absolute target, often = next_interupt
262 extern int pcaddr;
263 extern int pending_exception;
264 extern int branch_target;
265 extern uintptr_t ram_offset;
266 extern uintptr_t mini_ht[32][2];
267
268 /* registers that may be allocated */
269 /* 1-31 gpr */
270#define LOREG 32 // lo
271#define HIREG 33 // hi
272//#define FSREG 34 // FPU status (FCSR)
273#define CSREG 35 // Coprocessor status
274#define CCREG 36 // Cycle count
275#define INVCP 37 // Pointer to invalid_code
276//#define MMREG 38 // Pointer to memory_map
277#define ROREG 39 // ram offset (if rdram!=0x80000000)
278#define TEMPREG 40
279#define FTEMP 40 // FPU temporary register
280#define PTEMP 41 // Prefetch temporary register
281//#define TLREG 42 // TLB mapping offset
282#define RHASH 43 // Return address hash
283#define RHTBL 44 // Return address hash table address
284#define RTEMP 45 // JR/JALR address register
285#define MAXREG 45
286#define AGEN1 46 // Address generation temporary register
287//#define AGEN2 47 // Address generation temporary register
288//#define MGEN1 48 // Maptable address generation temporary register
289//#define MGEN2 49 // Maptable address generation temporary register
290#define BTREG 50 // Branch target temporary register
291
292 /* instruction types */
293#define NOP 0 // No operation
294#define LOAD 1 // Load
295#define STORE 2 // Store
296#define LOADLR 3 // Unaligned load
297#define STORELR 4 // Unaligned store
298#define MOV 5 // Move
299#define ALU 6 // Arithmetic/logic
300#define MULTDIV 7 // Multiply/divide
301#define SHIFT 8 // Shift by register
302#define SHIFTIMM 9// Shift by immediate
303#define IMM16 10 // 16-bit immediate
304#define RJUMP 11 // Unconditional jump to register
305#define UJUMP 12 // Unconditional jump
306#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
307#define SJUMP 14 // Conditional branch (regimm format)
308#define COP0 15 // Coprocessor 0
309#define COP1 16 // Coprocessor 1
310#define C1LS 17 // Coprocessor 1 load/store
311//#define FJUMP 18 // Conditional branch (floating point)
312//#define FLOAT 19 // Floating point unit
313//#define FCONV 20 // Convert integer to float
314//#define FCOMP 21 // Floating point compare (sets FSREG)
315#define SYSCALL 22// SYSCALL,BREAK
316#define OTHER 23 // Other
317//#define SPAN 24 // Branch/delay slot spans 2 pages
318#define NI 25 // Not implemented
319#define HLECALL 26// PCSX fake opcodes for HLE
320#define COP2 27 // Coprocessor 2 move
321#define C2LS 28 // Coprocessor 2 load/store
322#define C2OP 29 // Coprocessor 2 operation
323#define INTCALL 30// Call interpreter to handle rare corner cases
324
325 /* branch codes */
326#define TAKEN 1
327#define NOTTAKEN 2
328#define NULLDS 3
329
330#define DJT_1 (void *)1l // no function, just a label in assem_debug log
331#define DJT_2 (void *)2l
332
333// asm linkage
334int new_recompile_block(u_int addr);
335void *get_addr_ht(u_int vaddr);
336void invalidate_block(u_int block);
337void invalidate_addr(u_int addr);
338void dyna_linker();
339void verify_code();
340void cc_interrupt();
341void fp_exception();
342void fp_exception_ds();
343void jump_syscall (u_int u0, u_int u1, u_int pc);
344void jump_syscall_ds(u_int u0, u_int u1, u_int pc);
345void jump_break (u_int u0, u_int u1, u_int pc);
346void jump_break_ds(u_int u0, u_int u1, u_int pc);
347void jump_to_new_pc();
348void call_gteStall();
349void add_jump_out(u_int vaddr, void *src);
350void new_dyna_leave();
351
352static void *get_clean_addr(void *addr);
353static void get_bounds(void *addr, u_char **start, u_char **end);
354static void ll_add_flags(struct ll_entry **head,int vaddr,u_int reg_sv_flags,void *addr);
355
356// Needed by assembler
357static void wb_register(signed char r, const signed char regmap[], uint64_t dirty);
358static void wb_dirtys(const signed char i_regmap[], uint64_t i_dirty);
359static void wb_needed_dirtys(const signed char i_regmap[], uint64_t i_dirty, int addr);
360static void load_all_regs(const signed char i_regmap[]);
361static void load_needed_regs(const signed char i_regmap[], const signed char next_regmap[]);
362static void load_regs_entry(int t);
363static void load_all_consts(const signed char regmap[], u_int dirty, int i);
364static u_int get_host_reglist(const signed char *regmap);
365
366static int verify_dirty(const u_int *ptr);
367static int get_final_value(int hr, int i, int *value);
368static void add_stub(enum stub_type type, void *addr, void *retaddr,
369 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e);
370static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
371 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist);
372static void add_to_linker(void *addr, u_int target, int ext);
373static void *emit_fastpath_cmp_jump(int i, const struct regstat *i_regs,
374 int addr, int *offset_reg, int *addr_reg_override);
375static void *get_direct_memhandler(void *table, u_int addr,
376 enum stub_type type, uintptr_t *addr_host);
377static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist);
378static void pass_args(int a0, int a1);
379static void emit_far_jump(const void *f);
380static void emit_far_call(const void *f);
381
382#ifdef VITA
383#include <psp2/kernel/sysmem.h>
384static int sceBlock;
385// note: this interacts with RetroArch's Vita bootstrap code: bootstrap/vita/sbrk.c
386extern int getVMBlock();
387int _newlib_vm_size_user = sizeof(*ndrc);
388#endif
389
390static void mprotect_w_x(void *start, void *end, int is_x)
391{
392#ifdef NO_WRITE_EXEC
393 #if defined(VITA)
394 // *Open* enables write on all memory that was
395 // allocated by sceKernelAllocMemBlockForVM()?
396 if (is_x)
397 sceKernelCloseVMDomain();
398 else
399 sceKernelOpenVMDomain();
400 #else
401 u_long mstart = (u_long)start & ~4095ul;
402 u_long mend = (u_long)end;
403 if (mprotect((void *)mstart, mend - mstart,
404 PROT_READ | (is_x ? PROT_EXEC : PROT_WRITE)) != 0)
405 SysPrintf("mprotect(%c) failed: %s\n", is_x ? 'x' : 'w', strerror(errno));
406 #endif
407#endif
408}
409
410static void start_tcache_write(void *start, void *end)
411{
412 mprotect_w_x(start, end, 0);
413}
414
415static void end_tcache_write(void *start, void *end)
416{
417#if defined(__arm__) || defined(__aarch64__)
418 size_t len = (char *)end - (char *)start;
419 #if defined(__BLACKBERRY_QNX__)
420 msync(start, len, MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
421 #elif defined(__MACH__)
422 sys_cache_control(kCacheFunctionPrepareForExecution, start, len);
423 #elif defined(VITA)
424 sceKernelSyncVMDomain(sceBlock, start, len);
425 #elif defined(_3DS)
426 ctr_flush_invalidate_cache();
427 #elif defined(__aarch64__)
428 // as of 2021, __clear_cache() is still broken on arm64
429 // so here is a custom one :(
430 clear_cache_arm64(start, end);
431 #else
432 __clear_cache(start, end);
433 #endif
434 (void)len;
435#endif
436
437 mprotect_w_x(start, end, 1);
438}
439
440static void *start_block(void)
441{
442 u_char *end = out + MAX_OUTPUT_BLOCK_SIZE;
443 if (end > ndrc->translation_cache + sizeof(ndrc->translation_cache))
444 end = ndrc->translation_cache + sizeof(ndrc->translation_cache);
445 start_tcache_write(out, end);
446 return out;
447}
448
449static void end_block(void *start)
450{
451 end_tcache_write(start, out);
452}
453
454// also takes care of w^x mappings when patching code
455static u_int needs_clear_cache[1<<(TARGET_SIZE_2-17)];
456
457static void mark_clear_cache(void *target)
458{
459 uintptr_t offset = (u_char *)target - ndrc->translation_cache;
460 u_int mask = 1u << ((offset >> 12) & 31);
461 if (!(needs_clear_cache[offset >> 17] & mask)) {
462 char *start = (char *)((uintptr_t)target & ~4095l);
463 start_tcache_write(start, start + 4095);
464 needs_clear_cache[offset >> 17] |= mask;
465 }
466}
467
468// Clearing the cache is rather slow on ARM Linux, so mark the areas
469// that need to be cleared, and then only clear these areas once.
470static void do_clear_cache(void)
471{
472 int i, j;
473 for (i = 0; i < (1<<(TARGET_SIZE_2-17)); i++)
474 {
475 u_int bitmap = needs_clear_cache[i];
476 if (!bitmap)
477 continue;
478 for (j = 0; j < 32; j++)
479 {
480 u_char *start, *end;
481 if (!(bitmap & (1<<j)))
482 continue;
483
484 start = ndrc->translation_cache + i*131072 + j*4096;
485 end = start + 4095;
486 for (j++; j < 32; j++) {
487 if (!(bitmap & (1<<j)))
488 break;
489 end += 4096;
490 }
491 end_tcache_write(start, end);
492 }
493 needs_clear_cache[i] = 0;
494 }
495}
496
497//#define DEBUG_CYCLE_COUNT 1
498
499#define NO_CYCLE_PENALTY_THR 12
500
501int cycle_multiplier = CYCLE_MULT_DEFAULT; // 100 for 1.0
502int cycle_multiplier_override;
503int cycle_multiplier_old;
504static int cycle_multiplier_active;
505
506static int CLOCK_ADJUST(int x)
507{
508 int m = cycle_multiplier_active;
509 int s = (x >> 31) | 1;
510 return (x * m + s * 50) / 100;
511}
512
513static int ds_writes_rjump_rs(int i)
514{
515 return dops[i].rs1 != 0 && (dops[i].rs1 == dops[i+1].rt1 || dops[i].rs1 == dops[i+1].rt2);
516}
517
518static u_int get_page(u_int vaddr)
519{
520 u_int page=vaddr&~0xe0000000;
521 if (page < 0x1000000)
522 page &= ~0x0e00000; // RAM mirrors
523 page>>=12;
524 if(page>2048) page=2048+(page&2047);
525 return page;
526}
527
528// no virtual mem in PCSX
529static u_int get_vpage(u_int vaddr)
530{
531 return get_page(vaddr);
532}
533
534static struct ht_entry *hash_table_get(u_int vaddr)
535{
536 return &hash_table[((vaddr>>16)^vaddr)&0xFFFF];
537}
538
539static void hash_table_add(struct ht_entry *ht_bin, u_int vaddr, void *tcaddr)
540{
541 ht_bin->vaddr[1] = ht_bin->vaddr[0];
542 ht_bin->tcaddr[1] = ht_bin->tcaddr[0];
543 ht_bin->vaddr[0] = vaddr;
544 ht_bin->tcaddr[0] = tcaddr;
545}
546
547static void mark_valid_code(u_int vaddr, u_int len)
548{
549 u_int i, j;
550 vaddr &= 0x1fffffff;
551 for (i = vaddr & ~0xfff; i < vaddr + len; i += 0x1000) {
552 // ram mirrors, but should not hurt bios
553 for (j = 0; j < 0x800000; j += 0x200000) {
554 invalid_code[(i|j) >> 12] =
555 invalid_code[(i|j|0x80000000u) >> 12] =
556 invalid_code[(i|j|0xa0000000u) >> 12] = 0;
557 }
558 }
559 inv_code_start = inv_code_end = ~0;
560}
561
562// some messy ari64's code, seems to rely on unsigned 32bit overflow
563static int doesnt_expire_soon(void *tcaddr)
564{
565 u_int diff = (u_int)((u_char *)tcaddr - out) << (32-TARGET_SIZE_2);
566 return diff > (u_int)(0x60000000 + (MAX_OUTPUT_BLOCK_SIZE << (32-TARGET_SIZE_2)));
567}
568
569void *ndrc_try_restore_block(u_int vaddr)
570{
571 u_char *source_start = NULL, *source_end = NULL;
572 void *found_stub = NULL, *found_clean = NULL;
573 u_int len, page = get_page(vaddr);
574 const struct ll_entry *head;
575 int ep_count = 0;
576
577 stat_inc(stat_restore_tries);
578 for (head = jump_dirty[page]; head != NULL; head = head->next)
579 {
580 if (head->vaddr != vaddr)
581 continue;
582 // don't restore blocks which are about to expire from the cache
583 if (!doesnt_expire_soon(head->addr))
584 continue;
585 stat_inc(stat_restore_compares);
586 if (!verify_dirty(head->addr))
587 continue;
588
589 found_stub = head->addr;
590 break;
591 }
592 if (!found_stub)
593 return NULL;
594
595 found_clean = get_clean_addr(found_stub);
596 get_bounds(found_stub, &source_start, &source_end);
597 assert(source_start < source_end);
598 len = source_end - source_start;
599 mark_valid_code(vaddr, len);
600
601 // restore all entry points
602 for (head = jump_dirty[page]; head != NULL; head = head->next)
603 {
604 if (head->vaddr < vaddr || head->vaddr >= vaddr + len)
605 continue;
606
607 u_char *start = NULL, *end = NULL;
608 get_bounds(head->addr, &start, &end);
609 if (start != source_start || end != source_end)
610 continue;
611
612 void *clean_addr = get_clean_addr(head->addr);
613 ll_add_flags(jump_in + page, head->vaddr, head->reg_sv_flags, clean_addr);
614
615 int in_ht = 0;
616 struct ht_entry *ht_bin = hash_table_get(head->vaddr);
617 if (ht_bin->vaddr[0] == head->vaddr) {
618 ht_bin->tcaddr[0] = clean_addr; // Replace existing entry
619 in_ht = 1;
620 }
621 if (ht_bin->vaddr[1] == head->vaddr) {
622 ht_bin->tcaddr[1] = clean_addr; // Replace existing entry
623 in_ht = 1;
624 }
625 if (!in_ht)
626 hash_table_add(ht_bin, head->vaddr, clean_addr);
627 ep_count++;
628 }
629 inv_debug("INV: Restored %08x %p (%d)\n", vaddr, found_stub, ep_count);
630 stat_inc(stat_bc_restore);
631 return found_clean;
632}
633
634// Get address from virtual address
635// This is called from the recompiled JR/JALR instructions
636void noinline *get_addr(u_int vaddr)
637{
638 u_int page = get_page(vaddr);
639 struct ll_entry *head;
640 void *code;
641
642 stat_inc(stat_jump_in_lookups);
643 for (head = jump_in[page]; head != NULL; head = head->next) {
644 if (head->vaddr == vaddr) {
645 hash_table_add(hash_table_get(vaddr), vaddr, head->addr);
646 return head->addr;
647 }
648 }
649 code = ndrc_try_restore_block(vaddr);
650 if (code)
651 return code;
652
653 int r = new_recompile_block(vaddr);
654 if (r == 0)
655 return get_addr(vaddr);
656
657 // generate an address error
658 Status|=2;
659 Cause=(vaddr<<31)|(4<<2);
660 EPC=(vaddr&1)?vaddr-5:vaddr;
661 BadVAddr=(vaddr&~1);
662 return get_addr_ht(0x80000080);
663}
664// Look up address in hash table first
665void *get_addr_ht(u_int vaddr)
666{
667 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
668 const struct ht_entry *ht_bin = hash_table_get(vaddr);
669 if (ht_bin->vaddr[0] == vaddr) return ht_bin->tcaddr[0];
670 if (ht_bin->vaddr[1] == vaddr) return ht_bin->tcaddr[1];
671 return get_addr(vaddr);
672}
673
674static void clear_all_regs(signed char regmap[])
675{
676 memset(regmap, -1, sizeof(regmap[0]) * HOST_REGS);
677}
678
679// get_reg: get allocated host reg from mips reg
680// returns -1 if no such mips reg was allocated
681#if defined(__arm__) && defined(HAVE_ARMV6) && HOST_REGS == 13 && EXCLUDE_REG == 11
682
683extern signed char get_reg(const signed char regmap[], signed char r);
684
685#else
686
687static signed char get_reg(const signed char regmap[], signed char r)
688{
689 int hr;
690 for (hr = 0; hr < HOST_REGS; hr++) {
691 if (hr == EXCLUDE_REG)
692 continue;
693 if (regmap[hr] == r)
694 return hr;
695 }
696 return -1;
697}
698
699#endif
700
701// get reg as mask bit (1 << hr)
702static u_int get_regm(const signed char regmap[], signed char r)
703{
704 return (1u << (get_reg(regmap, r) & 31)) & ~(1u << 31);
705}
706
707static signed char get_reg_temp(const signed char regmap[])
708{
709 int hr;
710 for (hr = 0; hr < HOST_REGS; hr++) {
711 if (hr == EXCLUDE_REG)
712 continue;
713 if (regmap[hr] == (signed char)-1)
714 return hr;
715 }
716 return -1;
717}
718
719// Find a register that is available for two consecutive cycles
720static signed char get_reg2(signed char regmap1[], const signed char regmap2[], int r)
721{
722 int hr;
723 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
724 return -1;
725}
726
727// reverse reg map: mips -> host
728#define RRMAP_SIZE 64
729static void make_rregs(const signed char regmap[], signed char rrmap[RRMAP_SIZE],
730 u_int *regs_can_change)
731{
732 u_int r, hr, hr_can_change = 0;
733 memset(rrmap, -1, RRMAP_SIZE);
734 for (hr = 0; hr < HOST_REGS; )
735 {
736 r = regmap[hr];
737 rrmap[r & (RRMAP_SIZE - 1)] = hr;
738 // only add mips $1-$31+$lo, others shifted out
739 hr_can_change |= (uint64_t)1 << (hr + ((r - 1) & 32));
740 hr++;
741 if (hr == EXCLUDE_REG)
742 hr++;
743 }
744 hr_can_change |= 1u << (rrmap[33] & 31);
745 hr_can_change |= 1u << (rrmap[CCREG] & 31);
746 hr_can_change &= ~(1u << 31);
747 *regs_can_change = hr_can_change;
748}
749
750// same as get_reg, but takes rrmap
751static signed char get_rreg(signed char rrmap[RRMAP_SIZE], signed char r)
752{
753 assert(0 <= r && r < RRMAP_SIZE);
754 return rrmap[r];
755}
756
757static int count_free_regs(const signed char regmap[])
758{
759 int count=0;
760 int hr;
761 for(hr=0;hr<HOST_REGS;hr++)
762 {
763 if(hr!=EXCLUDE_REG) {
764 if(regmap[hr]<0) count++;
765 }
766 }
767 return count;
768}
769
770static void dirty_reg(struct regstat *cur, signed char reg)
771{
772 int hr;
773 if (!reg) return;
774 hr = get_reg(cur->regmap, reg);
775 if (hr >= 0)
776 cur->dirty |= 1<<hr;
777}
778
779static void set_const(struct regstat *cur, signed char reg, uint32_t value)
780{
781 int hr;
782 if (!reg) return;
783 hr = get_reg(cur->regmap, reg);
784 if (hr >= 0) {
785 cur->isconst |= 1<<hr;
786 current_constmap[hr] = value;
787 }
788}
789
790static void clear_const(struct regstat *cur, signed char reg)
791{
792 int hr;
793 if (!reg) return;
794 hr = get_reg(cur->regmap, reg);
795 if (hr >= 0)
796 cur->isconst &= ~(1<<hr);
797}
798
799static int is_const(const struct regstat *cur, signed char reg)
800{
801 int hr;
802 if (reg < 0) return 0;
803 if (!reg) return 1;
804 hr = get_reg(cur->regmap, reg);
805 if (hr >= 0)
806 return (cur->isconst>>hr)&1;
807 return 0;
808}
809
810static uint32_t get_const(const struct regstat *cur, signed char reg)
811{
812 int hr;
813 if (!reg) return 0;
814 hr = get_reg(cur->regmap, reg);
815 if (hr >= 0)
816 return current_constmap[hr];
817
818 SysPrintf("Unknown constant in r%d\n", reg);
819 abort();
820}
821
822// Least soon needed registers
823// Look at the next ten instructions and see which registers
824// will be used. Try not to reallocate these.
825static void lsn(u_char hsn[], int i, int *preferred_reg)
826{
827 int j;
828 int b=-1;
829 for(j=0;j<9;j++)
830 {
831 if(i+j>=slen) {
832 j=slen-i-1;
833 break;
834 }
835 if (dops[i+j].is_ujump)
836 {
837 // Don't go past an unconditonal jump
838 j++;
839 break;
840 }
841 }
842 for(;j>=0;j--)
843 {
844 if(dops[i+j].rs1) hsn[dops[i+j].rs1]=j;
845 if(dops[i+j].rs2) hsn[dops[i+j].rs2]=j;
846 if(dops[i+j].rt1) hsn[dops[i+j].rt1]=j;
847 if(dops[i+j].rt2) hsn[dops[i+j].rt2]=j;
848 if(dops[i+j].itype==STORE || dops[i+j].itype==STORELR) {
849 // Stores can allocate zero
850 hsn[dops[i+j].rs1]=j;
851 hsn[dops[i+j].rs2]=j;
852 }
853 if (ram_offset && (dops[i+j].is_load || dops[i+j].is_store))
854 hsn[ROREG] = j;
855 // On some architectures stores need invc_ptr
856 #if defined(HOST_IMM8)
857 if (dops[i+j].is_store)
858 hsn[INVCP] = j;
859 #endif
860 if(i+j>=0&&(dops[i+j].itype==UJUMP||dops[i+j].itype==CJUMP||dops[i+j].itype==SJUMP))
861 {
862 hsn[CCREG]=j;
863 b=j;
864 }
865 }
866 if(b>=0)
867 {
868 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
869 {
870 // Follow first branch
871 int t=(ba[i+b]-start)>>2;
872 j=7-b;if(t+j>=slen) j=slen-t-1;
873 for(;j>=0;j--)
874 {
875 if(dops[t+j].rs1) if(hsn[dops[t+j].rs1]>j+b+2) hsn[dops[t+j].rs1]=j+b+2;
876 if(dops[t+j].rs2) if(hsn[dops[t+j].rs2]>j+b+2) hsn[dops[t+j].rs2]=j+b+2;
877 //if(dops[t+j].rt1) if(hsn[dops[t+j].rt1]>j+b+2) hsn[dops[t+j].rt1]=j+b+2;
878 //if(dops[t+j].rt2) if(hsn[dops[t+j].rt2]>j+b+2) hsn[dops[t+j].rt2]=j+b+2;
879 }
880 }
881 // TODO: preferred register based on backward branch
882 }
883 // Delay slot should preferably not overwrite branch conditions or cycle count
884 if (i > 0 && dops[i-1].is_jump) {
885 if(dops[i-1].rs1) if(hsn[dops[i-1].rs1]>1) hsn[dops[i-1].rs1]=1;
886 if(dops[i-1].rs2) if(hsn[dops[i-1].rs2]>1) hsn[dops[i-1].rs2]=1;
887 hsn[CCREG]=1;
888 // ...or hash tables
889 hsn[RHASH]=1;
890 hsn[RHTBL]=1;
891 }
892 // Coprocessor load/store needs FTEMP, even if not declared
893 if(dops[i].itype==C2LS) {
894 hsn[FTEMP]=0;
895 }
896 // Load L/R also uses FTEMP as a temporary register
897 if(dops[i].itype==LOADLR) {
898 hsn[FTEMP]=0;
899 }
900 // Also SWL/SWR/SDL/SDR
901 if(dops[i].opcode==0x2a||dops[i].opcode==0x2e||dops[i].opcode==0x2c||dops[i].opcode==0x2d) {
902 hsn[FTEMP]=0;
903 }
904 // Don't remove the miniht registers
905 if(dops[i].itype==UJUMP||dops[i].itype==RJUMP)
906 {
907 hsn[RHASH]=0;
908 hsn[RHTBL]=0;
909 }
910}
911
912// We only want to allocate registers if we're going to use them again soon
913static int needed_again(int r, int i)
914{
915 int j;
916 int b=-1;
917 int rn=10;
918
919 if (i > 0 && dops[i-1].is_ujump)
920 {
921 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
922 return 0; // Don't need any registers if exiting the block
923 }
924 for(j=0;j<9;j++)
925 {
926 if(i+j>=slen) {
927 j=slen-i-1;
928 break;
929 }
930 if (dops[i+j].is_ujump)
931 {
932 // Don't go past an unconditonal jump
933 j++;
934 break;
935 }
936 if(dops[i+j].itype==SYSCALL||dops[i+j].itype==HLECALL||dops[i+j].itype==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
937 {
938 break;
939 }
940 }
941 for(;j>=1;j--)
942 {
943 if(dops[i+j].rs1==r) rn=j;
944 if(dops[i+j].rs2==r) rn=j;
945 if((unneeded_reg[i+j]>>r)&1) rn=10;
946 if(i+j>=0&&(dops[i+j].itype==UJUMP||dops[i+j].itype==CJUMP||dops[i+j].itype==SJUMP))
947 {
948 b=j;
949 }
950 }
951 if(rn<10) return 1;
952 (void)b;
953 return 0;
954}
955
956// Try to match register allocations at the end of a loop with those
957// at the beginning
958static int loop_reg(int i, int r, int hr)
959{
960 int j,k;
961 for(j=0;j<9;j++)
962 {
963 if(i+j>=slen) {
964 j=slen-i-1;
965 break;
966 }
967 if (dops[i+j].is_ujump)
968 {
969 // Don't go past an unconditonal jump
970 j++;
971 break;
972 }
973 }
974 k=0;
975 if(i>0){
976 if(dops[i-1].itype==UJUMP||dops[i-1].itype==CJUMP||dops[i-1].itype==SJUMP)
977 k--;
978 }
979 for(;k<j;k++)
980 {
981 assert(r < 64);
982 if((unneeded_reg[i+k]>>r)&1) return hr;
983 if(i+k>=0&&(dops[i+k].itype==UJUMP||dops[i+k].itype==CJUMP||dops[i+k].itype==SJUMP))
984 {
985 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
986 {
987 int t=(ba[i+k]-start)>>2;
988 int reg=get_reg(regs[t].regmap_entry,r);
989 if(reg>=0) return reg;
990 //reg=get_reg(regs[t+1].regmap_entry,r);
991 //if(reg>=0) return reg;
992 }
993 }
994 }
995 return hr;
996}
997
998
999// Allocate every register, preserving source/target regs
1000static void alloc_all(struct regstat *cur,int i)
1001{
1002 int hr;
1003
1004 for(hr=0;hr<HOST_REGS;hr++) {
1005 if(hr!=EXCLUDE_REG) {
1006 if((cur->regmap[hr]!=dops[i].rs1)&&(cur->regmap[hr]!=dops[i].rs2)&&
1007 (cur->regmap[hr]!=dops[i].rt1)&&(cur->regmap[hr]!=dops[i].rt2))
1008 {
1009 cur->regmap[hr]=-1;
1010 cur->dirty&=~(1<<hr);
1011 }
1012 // Don't need zeros
1013 if(cur->regmap[hr]==0)
1014 {
1015 cur->regmap[hr]=-1;
1016 cur->dirty&=~(1<<hr);
1017 }
1018 }
1019 }
1020}
1021
1022#ifndef NDEBUG
1023static int host_tempreg_in_use;
1024
1025static void host_tempreg_acquire(void)
1026{
1027 assert(!host_tempreg_in_use);
1028 host_tempreg_in_use = 1;
1029}
1030
1031static void host_tempreg_release(void)
1032{
1033 host_tempreg_in_use = 0;
1034}
1035#else
1036static void host_tempreg_acquire(void) {}
1037static void host_tempreg_release(void) {}
1038#endif
1039
1040#ifdef ASSEM_PRINT
1041extern void gen_interupt();
1042extern void do_insn_cmp();
1043#define FUNCNAME(f) { f, " " #f }
1044static const struct {
1045 void *addr;
1046 const char *name;
1047} function_names[] = {
1048 FUNCNAME(cc_interrupt),
1049 FUNCNAME(gen_interupt),
1050 FUNCNAME(get_addr_ht),
1051 FUNCNAME(get_addr),
1052 FUNCNAME(jump_handler_read8),
1053 FUNCNAME(jump_handler_read16),
1054 FUNCNAME(jump_handler_read32),
1055 FUNCNAME(jump_handler_write8),
1056 FUNCNAME(jump_handler_write16),
1057 FUNCNAME(jump_handler_write32),
1058 FUNCNAME(invalidate_addr),
1059 FUNCNAME(jump_to_new_pc),
1060 FUNCNAME(jump_break),
1061 FUNCNAME(jump_break_ds),
1062 FUNCNAME(jump_syscall),
1063 FUNCNAME(jump_syscall_ds),
1064 FUNCNAME(call_gteStall),
1065 FUNCNAME(new_dyna_leave),
1066 FUNCNAME(pcsx_mtc0),
1067 FUNCNAME(pcsx_mtc0_ds),
1068#ifdef DRC_DBG
1069 FUNCNAME(do_insn_cmp),
1070#endif
1071#ifdef __arm__
1072 FUNCNAME(verify_code),
1073#endif
1074};
1075
1076static const char *func_name(const void *a)
1077{
1078 int i;
1079 for (i = 0; i < sizeof(function_names)/sizeof(function_names[0]); i++)
1080 if (function_names[i].addr == a)
1081 return function_names[i].name;
1082 return "";
1083}
1084#else
1085#define func_name(x) ""
1086#endif
1087
1088#ifdef __i386__
1089#include "assem_x86.c"
1090#endif
1091#ifdef __x86_64__
1092#include "assem_x64.c"
1093#endif
1094#ifdef __arm__
1095#include "assem_arm.c"
1096#endif
1097#ifdef __aarch64__
1098#include "assem_arm64.c"
1099#endif
1100
1101static void *get_trampoline(const void *f)
1102{
1103 size_t i;
1104
1105 for (i = 0; i < ARRAY_SIZE(ndrc->tramp.f); i++) {
1106 if (ndrc->tramp.f[i] == f || ndrc->tramp.f[i] == NULL)
1107 break;
1108 }
1109 if (i == ARRAY_SIZE(ndrc->tramp.f)) {
1110 SysPrintf("trampoline table is full, last func %p\n", f);
1111 abort();
1112 }
1113 if (ndrc->tramp.f[i] == NULL) {
1114 start_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
1115 ndrc->tramp.f[i] = f;
1116 end_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
1117 }
1118 return &ndrc->tramp.ops[i];
1119}
1120
1121static void emit_far_jump(const void *f)
1122{
1123 if (can_jump_or_call(f)) {
1124 emit_jmp(f);
1125 return;
1126 }
1127
1128 f = get_trampoline(f);
1129 emit_jmp(f);
1130}
1131
1132static void emit_far_call(const void *f)
1133{
1134 if (can_jump_or_call(f)) {
1135 emit_call(f);
1136 return;
1137 }
1138
1139 f = get_trampoline(f);
1140 emit_call(f);
1141}
1142
1143// Add virtual address mapping to linked list
1144static void ll_add(struct ll_entry **head,int vaddr,void *addr)
1145{
1146 struct ll_entry *new_entry;
1147 new_entry=malloc(sizeof(struct ll_entry));
1148 assert(new_entry!=NULL);
1149 new_entry->vaddr=vaddr;
1150 new_entry->reg_sv_flags=0;
1151 new_entry->addr=addr;
1152 new_entry->next=*head;
1153 *head=new_entry;
1154}
1155
1156static void ll_add_flags(struct ll_entry **head,int vaddr,u_int reg_sv_flags,void *addr)
1157{
1158 ll_add(head,vaddr,addr);
1159 (*head)->reg_sv_flags=reg_sv_flags;
1160}
1161
1162// Check if an address is already compiled
1163// but don't return addresses which are about to expire from the cache
1164static void *check_addr(u_int vaddr)
1165{
1166 struct ht_entry *ht_bin = hash_table_get(vaddr);
1167 size_t i;
1168 for (i = 0; i < ARRAY_SIZE(ht_bin->vaddr); i++) {
1169 if (ht_bin->vaddr[i] == vaddr)
1170 if (doesnt_expire_soon((u_char *)ht_bin->tcaddr[i] - MAX_OUTPUT_BLOCK_SIZE))
1171 if (isclean(ht_bin->tcaddr[i]))
1172 return ht_bin->tcaddr[i];
1173 }
1174 u_int page=get_page(vaddr);
1175 struct ll_entry *head;
1176 head=jump_in[page];
1177 while (head != NULL) {
1178 if (head->vaddr == vaddr) {
1179 if (doesnt_expire_soon(head->addr)) {
1180 // Update existing entry with current address
1181 if (ht_bin->vaddr[0] == vaddr) {
1182 ht_bin->tcaddr[0] = head->addr;
1183 return head->addr;
1184 }
1185 if (ht_bin->vaddr[1] == vaddr) {
1186 ht_bin->tcaddr[1] = head->addr;
1187 return head->addr;
1188 }
1189 // Insert into hash table with low priority.
1190 // Don't evict existing entries, as they are probably
1191 // addresses that are being accessed frequently.
1192 if (ht_bin->vaddr[0] == -1) {
1193 ht_bin->vaddr[0] = vaddr;
1194 ht_bin->tcaddr[0] = head->addr;
1195 }
1196 else if (ht_bin->vaddr[1] == -1) {
1197 ht_bin->vaddr[1] = vaddr;
1198 ht_bin->tcaddr[1] = head->addr;
1199 }
1200 return head->addr;
1201 }
1202 }
1203 head=head->next;
1204 }
1205 return 0;
1206}
1207
1208static void remove_hash(int vaddr)
1209{
1210 //printf("remove hash: %x\n",vaddr);
1211 struct ht_entry *ht_bin = hash_table_get(vaddr);
1212 if (ht_bin->vaddr[1] == vaddr) {
1213 ht_bin->vaddr[1] = -1;
1214 ht_bin->tcaddr[1] = NULL;
1215 }
1216 if (ht_bin->vaddr[0] == vaddr) {
1217 ht_bin->vaddr[0] = ht_bin->vaddr[1];
1218 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
1219 ht_bin->vaddr[1] = -1;
1220 ht_bin->tcaddr[1] = NULL;
1221 }
1222}
1223
1224static void ll_remove_matching_addrs(struct ll_entry **head,
1225 uintptr_t base_offs_s, int shift)
1226{
1227 struct ll_entry *next;
1228 while(*head) {
1229 uintptr_t o1 = (u_char *)(*head)->addr - ndrc->translation_cache;
1230 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
1231 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s)
1232 {
1233 inv_debug("EXP: Remove pointer to %p (%x)\n",(*head)->addr,(*head)->vaddr);
1234 remove_hash((*head)->vaddr);
1235 next=(*head)->next;
1236 free(*head);
1237 *head=next;
1238 }
1239 else
1240 {
1241 head=&((*head)->next);
1242 }
1243 }
1244}
1245
1246// Remove all entries from linked list
1247static void ll_clear(struct ll_entry **head)
1248{
1249 struct ll_entry *cur;
1250 struct ll_entry *next;
1251 if((cur=*head)) {
1252 *head=0;
1253 while(cur) {
1254 next=cur->next;
1255 free(cur);
1256 cur=next;
1257 }
1258 }
1259}
1260
1261// Dereference the pointers and remove if it matches
1262static void ll_kill_pointers(struct ll_entry *head,
1263 uintptr_t base_offs_s, int shift)
1264{
1265 while(head) {
1266 u_char *ptr = get_pointer(head->addr);
1267 uintptr_t o1 = ptr - ndrc->translation_cache;
1268 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
1269 inv_debug("EXP: Lookup pointer to %p at %p (%x)\n",ptr,head->addr,head->vaddr);
1270 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s)
1271 {
1272 inv_debug("EXP: Kill pointer at %p (%x)\n",head->addr,head->vaddr);
1273 void *host_addr=find_extjump_insn(head->addr);
1274 mark_clear_cache(host_addr);
1275 set_jump_target(host_addr, head->addr);
1276 }
1277 head=head->next;
1278 }
1279}
1280
1281// This is called when we write to a compiled block (see do_invstub)
1282static void invalidate_page(u_int page)
1283{
1284 struct ll_entry *head;
1285 struct ll_entry *next;
1286 head=jump_in[page];
1287 if (head) stat_inc(stat_inv_hits);
1288 jump_in[page]=0;
1289 while(head!=NULL) {
1290 inv_debug("INVALIDATE: %x\n",head->vaddr);
1291 remove_hash(head->vaddr);
1292 next=head->next;
1293 free(head);
1294 head=next;
1295 }
1296 head=jump_out[page];
1297 jump_out[page]=0;
1298 while(head!=NULL) {
1299 inv_debug("INVALIDATE: kill pointer to %x (%p)\n",head->vaddr,head->addr);
1300 void *host_addr=find_extjump_insn(head->addr);
1301 mark_clear_cache(host_addr);
1302 set_jump_target(host_addr, head->addr); // point back to dyna_linker
1303 next=head->next;
1304 free(head);
1305 head=next;
1306 }
1307}
1308
1309static void invalidate_block_range(u_int block, u_int first, u_int last)
1310{
1311 u_int page=get_page(block<<12);
1312 //printf("first=%d last=%d\n",first,last);
1313 invalidate_page(page);
1314 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1315 assert(last<page+5);
1316 // Invalidate the adjacent pages if a block crosses a 4K boundary
1317 while(first<page) {
1318 invalidate_page(first);
1319 first++;
1320 }
1321 for(first=page+1;first<last;first++) {
1322 invalidate_page(first);
1323 }
1324 do_clear_cache();
1325
1326 // Don't trap writes
1327 invalid_code[block]=1;
1328
1329 #ifdef USE_MINI_HT
1330 memset(mini_ht,-1,sizeof(mini_ht));
1331 #endif
1332}
1333
1334void invalidate_block(u_int block)
1335{
1336 u_int page=get_page(block<<12);
1337 u_int vpage=get_vpage(block<<12);
1338 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1339 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1340 u_int first,last;
1341 first=last=page;
1342 struct ll_entry *head;
1343 head=jump_dirty[vpage];
1344 //printf("page=%d vpage=%d\n",page,vpage);
1345 while(head!=NULL) {
1346 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1347 u_char *start, *end;
1348 get_bounds(head->addr, &start, &end);
1349 //printf("start: %p end: %p\n", start, end);
1350 if (page < 2048 && start >= rdram && end < rdram+RAM_SIZE) {
1351 if (((start-rdram)>>12) <= page && ((end-1-rdram)>>12) >= page) {
1352 if ((((start-rdram)>>12)&2047) < first) first = ((start-rdram)>>12)&2047;
1353 if ((((end-1-rdram)>>12)&2047) > last) last = ((end-1-rdram)>>12)&2047;
1354 }
1355 }
1356 }
1357 head=head->next;
1358 }
1359 invalidate_block_range(block,first,last);
1360}
1361
1362void invalidate_addr(u_int addr)
1363{
1364 //static int rhits;
1365 // this check is done by the caller
1366 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1367 stat_inc(stat_inv_addr_calls);
1368 u_int page=get_vpage(addr);
1369 if(page<2048) { // RAM
1370 struct ll_entry *head;
1371 u_int addr_min=~0, addr_max=0;
1372 u_int mask=RAM_SIZE-1;
1373 u_int addr_main=0x80000000|(addr&mask);
1374 int pg1;
1375 inv_code_start=addr_main&~0xfff;
1376 inv_code_end=addr_main|0xfff;
1377 pg1=page;
1378 if (pg1>0) {
1379 // must check previous page too because of spans..
1380 pg1--;
1381 inv_code_start-=0x1000;
1382 }
1383 for(;pg1<=page;pg1++) {
1384 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1385 u_char *start_h, *end_h;
1386 u_int start, end;
1387 get_bounds(head->addr, &start_h, &end_h);
1388 start = (uintptr_t)start_h - ram_offset;
1389 end = (uintptr_t)end_h - ram_offset;
1390 if(start<=addr_main&&addr_main<end) {
1391 if(start<addr_min) addr_min=start;
1392 if(end>addr_max) addr_max=end;
1393 }
1394 else if(addr_main<start) {
1395 if(start<inv_code_end)
1396 inv_code_end=start-1;
1397 }
1398 else {
1399 if(end>inv_code_start)
1400 inv_code_start=end;
1401 }
1402 }
1403 }
1404 if (addr_min!=~0) {
1405 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1406 inv_code_start=inv_code_end=~0;
1407 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1408 return;
1409 }
1410 else {
1411 inv_code_start=(addr&~mask)|(inv_code_start&mask);
1412 inv_code_end=(addr&~mask)|(inv_code_end&mask);
1413 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
1414 return;
1415 }
1416 }
1417 invalidate_block(addr>>12);
1418}
1419
1420// This is called when loading a save state.
1421// Anything could have changed, so invalidate everything.
1422void invalidate_all_pages(void)
1423{
1424 u_int page;
1425 for(page=0;page<4096;page++)
1426 invalidate_page(page);
1427 #ifdef USE_MINI_HT
1428 memset(mini_ht,-1,sizeof(mini_ht));
1429 #endif
1430 do_clear_cache();
1431}
1432
1433static void do_invstub(int n)
1434{
1435 literal_pool(20);
1436 u_int reglist=stubs[n].a;
1437 set_jump_target(stubs[n].addr, out);
1438 save_regs(reglist);
1439 if(stubs[n].b!=0) emit_mov(stubs[n].b,0);
1440 emit_far_call(invalidate_addr);
1441 restore_regs(reglist);
1442 emit_jmp(stubs[n].retaddr); // return address
1443}
1444
1445// Add an entry to jump_out after making a link
1446// src should point to code by emit_extjump2()
1447void add_jump_out(u_int vaddr,void *src)
1448{
1449 u_int page=get_page(vaddr);
1450 inv_debug("add_jump_out: %p -> %x (%d)\n",src,vaddr,page);
1451 check_extjump2(src);
1452 ll_add(jump_out+page,vaddr,src);
1453 //inv_debug("add_jump_out: to %p\n",get_pointer(src));
1454}
1455
1456/* Register allocation */
1457
1458// Note: registers are allocated clean (unmodified state)
1459// if you intend to modify the register, you must call dirty_reg().
1460static void alloc_reg(struct regstat *cur,int i,signed char reg)
1461{
1462 int r,hr;
1463 int preferred_reg = PREFERRED_REG_FIRST
1464 + reg % (PREFERRED_REG_LAST - PREFERRED_REG_FIRST + 1);
1465 if (reg == CCREG) preferred_reg = HOST_CCREG;
1466 if (reg == PTEMP || reg == FTEMP) preferred_reg = 12;
1467 assert(PREFERRED_REG_FIRST != EXCLUDE_REG && EXCLUDE_REG != HOST_REGS);
1468 assert(reg >= 0);
1469
1470 // Don't allocate unused registers
1471 if((cur->u>>reg)&1) return;
1472
1473 // see if it's already allocated
1474 if (get_reg(cur->regmap, reg) >= 0)
1475 return;
1476
1477 // Keep the same mapping if the register was already allocated in a loop
1478 preferred_reg = loop_reg(i,reg,preferred_reg);
1479
1480 // Try to allocate the preferred register
1481 if(cur->regmap[preferred_reg]==-1) {
1482 cur->regmap[preferred_reg]=reg;
1483 cur->dirty&=~(1<<preferred_reg);
1484 cur->isconst&=~(1<<preferred_reg);
1485 return;
1486 }
1487 r=cur->regmap[preferred_reg];
1488 assert(r < 64);
1489 if((cur->u>>r)&1) {
1490 cur->regmap[preferred_reg]=reg;
1491 cur->dirty&=~(1<<preferred_reg);
1492 cur->isconst&=~(1<<preferred_reg);
1493 return;
1494 }
1495
1496 // Clear any unneeded registers
1497 // We try to keep the mapping consistent, if possible, because it
1498 // makes branches easier (especially loops). So we try to allocate
1499 // first (see above) before removing old mappings. If this is not
1500 // possible then go ahead and clear out the registers that are no
1501 // longer needed.
1502 for(hr=0;hr<HOST_REGS;hr++)
1503 {
1504 r=cur->regmap[hr];
1505 if(r>=0) {
1506 assert(r < 64);
1507 if((cur->u>>r)&1) {cur->regmap[hr]=-1;break;}
1508 }
1509 }
1510
1511 // Try to allocate any available register, but prefer
1512 // registers that have not been used recently.
1513 if (i > 0) {
1514 for (hr = PREFERRED_REG_FIRST; ; ) {
1515 if (cur->regmap[hr] < 0) {
1516 int oldreg = regs[i-1].regmap[hr];
1517 if (oldreg < 0 || (oldreg != dops[i-1].rs1 && oldreg != dops[i-1].rs2
1518 && oldreg != dops[i-1].rt1 && oldreg != dops[i-1].rt2))
1519 {
1520 cur->regmap[hr]=reg;
1521 cur->dirty&=~(1<<hr);
1522 cur->isconst&=~(1<<hr);
1523 return;
1524 }
1525 }
1526 hr++;
1527 if (hr == EXCLUDE_REG)
1528 hr++;
1529 if (hr == HOST_REGS)
1530 hr = 0;
1531 if (hr == PREFERRED_REG_FIRST)
1532 break;
1533 }
1534 }
1535
1536 // Try to allocate any available register
1537 for (hr = PREFERRED_REG_FIRST; ; ) {
1538 if (cur->regmap[hr] < 0) {
1539 cur->regmap[hr]=reg;
1540 cur->dirty&=~(1<<hr);
1541 cur->isconst&=~(1<<hr);
1542 return;
1543 }
1544 hr++;
1545 if (hr == EXCLUDE_REG)
1546 hr++;
1547 if (hr == HOST_REGS)
1548 hr = 0;
1549 if (hr == PREFERRED_REG_FIRST)
1550 break;
1551 }
1552
1553 // Ok, now we have to evict someone
1554 // Pick a register we hopefully won't need soon
1555 u_char hsn[MAXREG+1];
1556 memset(hsn,10,sizeof(hsn));
1557 int j;
1558 lsn(hsn,i,&preferred_reg);
1559 //printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",cur->regmap[0],cur->regmap[1],cur->regmap[2],cur->regmap[3],cur->regmap[5],cur->regmap[6],cur->regmap[7]);
1560 //printf("hsn(%x): %d %d %d %d %d %d %d\n",start+i*4,hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1561 if(i>0) {
1562 // Don't evict the cycle count at entry points, otherwise the entry
1563 // stub will have to write it.
1564 if(dops[i].bt&&hsn[CCREG]>2) hsn[CCREG]=2;
1565 if (i>1 && hsn[CCREG] > 2 && dops[i-2].is_jump) hsn[CCREG]=2;
1566 for(j=10;j>=3;j--)
1567 {
1568 // Alloc preferred register if available
1569 if(hsn[r=cur->regmap[preferred_reg]&63]==j) {
1570 for(hr=0;hr<HOST_REGS;hr++) {
1571 // Evict both parts of a 64-bit register
1572 if(cur->regmap[hr]==r) {
1573 cur->regmap[hr]=-1;
1574 cur->dirty&=~(1<<hr);
1575 cur->isconst&=~(1<<hr);
1576 }
1577 }
1578 cur->regmap[preferred_reg]=reg;
1579 return;
1580 }
1581 for(r=1;r<=MAXREG;r++)
1582 {
1583 if(hsn[r]==j&&r!=dops[i-1].rs1&&r!=dops[i-1].rs2&&r!=dops[i-1].rt1&&r!=dops[i-1].rt2) {
1584 for(hr=0;hr<HOST_REGS;hr++) {
1585 if(hr!=HOST_CCREG||j<hsn[CCREG]) {
1586 if(cur->regmap[hr]==r) {
1587 cur->regmap[hr]=reg;
1588 cur->dirty&=~(1<<hr);
1589 cur->isconst&=~(1<<hr);
1590 return;
1591 }
1592 }
1593 }
1594 }
1595 }
1596 }
1597 }
1598 for(j=10;j>=0;j--)
1599 {
1600 for(r=1;r<=MAXREG;r++)
1601 {
1602 if(hsn[r]==j) {
1603 for(hr=0;hr<HOST_REGS;hr++) {
1604 if(cur->regmap[hr]==r) {
1605 cur->regmap[hr]=reg;
1606 cur->dirty&=~(1<<hr);
1607 cur->isconst&=~(1<<hr);
1608 return;
1609 }
1610 }
1611 }
1612 }
1613 }
1614 SysPrintf("This shouldn't happen (alloc_reg)");abort();
1615}
1616
1617// Allocate a temporary register. This is done without regard to
1618// dirty status or whether the register we request is on the unneeded list
1619// Note: This will only allocate one register, even if called multiple times
1620static void alloc_reg_temp(struct regstat *cur,int i,signed char reg)
1621{
1622 int r,hr;
1623 int preferred_reg = -1;
1624
1625 // see if it's already allocated
1626 for(hr=0;hr<HOST_REGS;hr++)
1627 {
1628 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==reg) return;
1629 }
1630
1631 // Try to allocate any available register
1632 for(hr=HOST_REGS-1;hr>=0;hr--) {
1633 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1634 cur->regmap[hr]=reg;
1635 cur->dirty&=~(1<<hr);
1636 cur->isconst&=~(1<<hr);
1637 return;
1638 }
1639 }
1640
1641 // Find an unneeded register
1642 for(hr=HOST_REGS-1;hr>=0;hr--)
1643 {
1644 r=cur->regmap[hr];
1645 if(r>=0) {
1646 assert(r < 64);
1647 if((cur->u>>r)&1) {
1648 if(i==0||((unneeded_reg[i-1]>>r)&1)) {
1649 cur->regmap[hr]=reg;
1650 cur->dirty&=~(1<<hr);
1651 cur->isconst&=~(1<<hr);
1652 return;
1653 }
1654 }
1655 }
1656 }
1657
1658 // Ok, now we have to evict someone
1659 // Pick a register we hopefully won't need soon
1660 // TODO: we might want to follow unconditional jumps here
1661 // TODO: get rid of dupe code and make this into a function
1662 u_char hsn[MAXREG+1];
1663 memset(hsn,10,sizeof(hsn));
1664 int j;
1665 lsn(hsn,i,&preferred_reg);
1666 //printf("hsn: %d %d %d %d %d %d %d\n",hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1667 if(i>0) {
1668 // Don't evict the cycle count at entry points, otherwise the entry
1669 // stub will have to write it.
1670 if(dops[i].bt&&hsn[CCREG]>2) hsn[CCREG]=2;
1671 if (i>1 && hsn[CCREG] > 2 && dops[i-2].is_jump) hsn[CCREG]=2;
1672 for(j=10;j>=3;j--)
1673 {
1674 for(r=1;r<=MAXREG;r++)
1675 {
1676 if(hsn[r]==j&&r!=dops[i-1].rs1&&r!=dops[i-1].rs2&&r!=dops[i-1].rt1&&r!=dops[i-1].rt2) {
1677 for(hr=0;hr<HOST_REGS;hr++) {
1678 if(hr!=HOST_CCREG||hsn[CCREG]>2) {
1679 if(cur->regmap[hr]==r) {
1680 cur->regmap[hr]=reg;
1681 cur->dirty&=~(1<<hr);
1682 cur->isconst&=~(1<<hr);
1683 return;
1684 }
1685 }
1686 }
1687 }
1688 }
1689 }
1690 }
1691 for(j=10;j>=0;j--)
1692 {
1693 for(r=1;r<=MAXREG;r++)
1694 {
1695 if(hsn[r]==j) {
1696 for(hr=0;hr<HOST_REGS;hr++) {
1697 if(cur->regmap[hr]==r) {
1698 cur->regmap[hr]=reg;
1699 cur->dirty&=~(1<<hr);
1700 cur->isconst&=~(1<<hr);
1701 return;
1702 }
1703 }
1704 }
1705 }
1706 }
1707 SysPrintf("This shouldn't happen");abort();
1708}
1709
1710static void mov_alloc(struct regstat *current,int i)
1711{
1712 if (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG) {
1713 alloc_cc(current,i); // for stalls
1714 dirty_reg(current,CCREG);
1715 }
1716
1717 // Note: Don't need to actually alloc the source registers
1718 //alloc_reg(current,i,dops[i].rs1);
1719 alloc_reg(current,i,dops[i].rt1);
1720
1721 clear_const(current,dops[i].rs1);
1722 clear_const(current,dops[i].rt1);
1723 dirty_reg(current,dops[i].rt1);
1724}
1725
1726static void shiftimm_alloc(struct regstat *current,int i)
1727{
1728 if(dops[i].opcode2<=0x3) // SLL/SRL/SRA
1729 {
1730 if(dops[i].rt1) {
1731 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1732 else dops[i].use_lt1=!!dops[i].rs1;
1733 alloc_reg(current,i,dops[i].rt1);
1734 dirty_reg(current,dops[i].rt1);
1735 if(is_const(current,dops[i].rs1)) {
1736 int v=get_const(current,dops[i].rs1);
1737 if(dops[i].opcode2==0x00) set_const(current,dops[i].rt1,v<<imm[i]);
1738 if(dops[i].opcode2==0x02) set_const(current,dops[i].rt1,(u_int)v>>imm[i]);
1739 if(dops[i].opcode2==0x03) set_const(current,dops[i].rt1,v>>imm[i]);
1740 }
1741 else clear_const(current,dops[i].rt1);
1742 }
1743 }
1744 else
1745 {
1746 clear_const(current,dops[i].rs1);
1747 clear_const(current,dops[i].rt1);
1748 }
1749
1750 if(dops[i].opcode2>=0x38&&dops[i].opcode2<=0x3b) // DSLL/DSRL/DSRA
1751 {
1752 assert(0);
1753 }
1754 if(dops[i].opcode2==0x3c) // DSLL32
1755 {
1756 assert(0);
1757 }
1758 if(dops[i].opcode2==0x3e) // DSRL32
1759 {
1760 assert(0);
1761 }
1762 if(dops[i].opcode2==0x3f) // DSRA32
1763 {
1764 assert(0);
1765 }
1766}
1767
1768static void shift_alloc(struct regstat *current,int i)
1769{
1770 if(dops[i].rt1) {
1771 if(dops[i].opcode2<=0x07) // SLLV/SRLV/SRAV
1772 {
1773 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
1774 if(dops[i].rs2) alloc_reg(current,i,dops[i].rs2);
1775 alloc_reg(current,i,dops[i].rt1);
1776 if(dops[i].rt1==dops[i].rs2) {
1777 alloc_reg_temp(current,i,-1);
1778 minimum_free_regs[i]=1;
1779 }
1780 } else { // DSLLV/DSRLV/DSRAV
1781 assert(0);
1782 }
1783 clear_const(current,dops[i].rs1);
1784 clear_const(current,dops[i].rs2);
1785 clear_const(current,dops[i].rt1);
1786 dirty_reg(current,dops[i].rt1);
1787 }
1788}
1789
1790static void alu_alloc(struct regstat *current,int i)
1791{
1792 if(dops[i].opcode2>=0x20&&dops[i].opcode2<=0x23) { // ADD/ADDU/SUB/SUBU
1793 if(dops[i].rt1) {
1794 if(dops[i].rs1&&dops[i].rs2) {
1795 alloc_reg(current,i,dops[i].rs1);
1796 alloc_reg(current,i,dops[i].rs2);
1797 }
1798 else {
1799 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1800 if(dops[i].rs2&&needed_again(dops[i].rs2,i)) alloc_reg(current,i,dops[i].rs2);
1801 }
1802 alloc_reg(current,i,dops[i].rt1);
1803 }
1804 }
1805 if(dops[i].opcode2==0x2a||dops[i].opcode2==0x2b) { // SLT/SLTU
1806 if(dops[i].rt1) {
1807 alloc_reg(current,i,dops[i].rs1);
1808 alloc_reg(current,i,dops[i].rs2);
1809 alloc_reg(current,i,dops[i].rt1);
1810 }
1811 }
1812 if(dops[i].opcode2>=0x24&&dops[i].opcode2<=0x27) { // AND/OR/XOR/NOR
1813 if(dops[i].rt1) {
1814 if(dops[i].rs1&&dops[i].rs2) {
1815 alloc_reg(current,i,dops[i].rs1);
1816 alloc_reg(current,i,dops[i].rs2);
1817 }
1818 else
1819 {
1820 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1821 if(dops[i].rs2&&needed_again(dops[i].rs2,i)) alloc_reg(current,i,dops[i].rs2);
1822 }
1823 alloc_reg(current,i,dops[i].rt1);
1824 }
1825 }
1826 if(dops[i].opcode2>=0x2c&&dops[i].opcode2<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1827 assert(0);
1828 }
1829 clear_const(current,dops[i].rs1);
1830 clear_const(current,dops[i].rs2);
1831 clear_const(current,dops[i].rt1);
1832 dirty_reg(current,dops[i].rt1);
1833}
1834
1835static void imm16_alloc(struct regstat *current,int i)
1836{
1837 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1838 else dops[i].use_lt1=!!dops[i].rs1;
1839 if(dops[i].rt1) alloc_reg(current,i,dops[i].rt1);
1840 if(dops[i].opcode==0x18||dops[i].opcode==0x19) { // DADDI/DADDIU
1841 assert(0);
1842 }
1843 else if(dops[i].opcode==0x0a||dops[i].opcode==0x0b) { // SLTI/SLTIU
1844 clear_const(current,dops[i].rs1);
1845 clear_const(current,dops[i].rt1);
1846 }
1847 else if(dops[i].opcode>=0x0c&&dops[i].opcode<=0x0e) { // ANDI/ORI/XORI
1848 if(is_const(current,dops[i].rs1)) {
1849 int v=get_const(current,dops[i].rs1);
1850 if(dops[i].opcode==0x0c) set_const(current,dops[i].rt1,v&imm[i]);
1851 if(dops[i].opcode==0x0d) set_const(current,dops[i].rt1,v|imm[i]);
1852 if(dops[i].opcode==0x0e) set_const(current,dops[i].rt1,v^imm[i]);
1853 }
1854 else clear_const(current,dops[i].rt1);
1855 }
1856 else if(dops[i].opcode==0x08||dops[i].opcode==0x09) { // ADDI/ADDIU
1857 if(is_const(current,dops[i].rs1)) {
1858 int v=get_const(current,dops[i].rs1);
1859 set_const(current,dops[i].rt1,v+imm[i]);
1860 }
1861 else clear_const(current,dops[i].rt1);
1862 }
1863 else {
1864 set_const(current,dops[i].rt1,imm[i]<<16); // LUI
1865 }
1866 dirty_reg(current,dops[i].rt1);
1867}
1868
1869static void load_alloc(struct regstat *current,int i)
1870{
1871 clear_const(current,dops[i].rt1);
1872 //if(dops[i].rs1!=dops[i].rt1&&needed_again(dops[i].rs1,i)) clear_const(current,dops[i].rs1); // Does this help or hurt?
1873 if(!dops[i].rs1) current->u&=~1LL; // Allow allocating r0 if it's the source register
1874 if (needed_again(dops[i].rs1, i))
1875 alloc_reg(current, i, dops[i].rs1);
1876 if (ram_offset)
1877 alloc_reg(current, i, ROREG);
1878 if(dops[i].rt1&&!((current->u>>dops[i].rt1)&1)) {
1879 alloc_reg(current,i,dops[i].rt1);
1880 assert(get_reg(current->regmap,dops[i].rt1)>=0);
1881 if(dops[i].opcode==0x27||dops[i].opcode==0x37) // LWU/LD
1882 {
1883 assert(0);
1884 }
1885 else if(dops[i].opcode==0x1A||dops[i].opcode==0x1B) // LDL/LDR
1886 {
1887 assert(0);
1888 }
1889 dirty_reg(current,dops[i].rt1);
1890 // LWL/LWR need a temporary register for the old value
1891 if(dops[i].opcode==0x22||dops[i].opcode==0x26)
1892 {
1893 alloc_reg(current,i,FTEMP);
1894 alloc_reg_temp(current,i,-1);
1895 minimum_free_regs[i]=1;
1896 }
1897 }
1898 else
1899 {
1900 // Load to r0 or unneeded register (dummy load)
1901 // but we still need a register to calculate the address
1902 if(dops[i].opcode==0x22||dops[i].opcode==0x26)
1903 {
1904 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1905 }
1906 alloc_reg_temp(current,i,-1);
1907 minimum_free_regs[i]=1;
1908 if(dops[i].opcode==0x1A||dops[i].opcode==0x1B) // LDL/LDR
1909 {
1910 assert(0);
1911 }
1912 }
1913}
1914
1915static void store_alloc(struct regstat *current,int i)
1916{
1917 clear_const(current,dops[i].rs2);
1918 if(!(dops[i].rs2)) current->u&=~1LL; // Allow allocating r0 if necessary
1919 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1920 alloc_reg(current,i,dops[i].rs2);
1921 if(dops[i].opcode==0x2c||dops[i].opcode==0x2d||dops[i].opcode==0x3f) { // 64-bit SDL/SDR/SD
1922 assert(0);
1923 }
1924 if (ram_offset)
1925 alloc_reg(current, i, ROREG);
1926 #if defined(HOST_IMM8)
1927 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1928 alloc_reg(current, i, INVCP);
1929 #endif
1930 if(dops[i].opcode==0x2a||dops[i].opcode==0x2e||dops[i].opcode==0x2c||dops[i].opcode==0x2d) { // SWL/SWL/SDL/SDR
1931 alloc_reg(current,i,FTEMP);
1932 }
1933 // We need a temporary register for address generation
1934 alloc_reg_temp(current,i,-1);
1935 minimum_free_regs[i]=1;
1936}
1937
1938static void c1ls_alloc(struct regstat *current,int i)
1939{
1940 clear_const(current,dops[i].rt1);
1941 alloc_reg(current,i,CSREG); // Status
1942}
1943
1944static void c2ls_alloc(struct regstat *current,int i)
1945{
1946 clear_const(current,dops[i].rt1);
1947 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1948 alloc_reg(current,i,FTEMP);
1949 if (ram_offset)
1950 alloc_reg(current, i, ROREG);
1951 #if defined(HOST_IMM8)
1952 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1953 if (dops[i].opcode == 0x3a) // SWC2
1954 alloc_reg(current,i,INVCP);
1955 #endif
1956 // We need a temporary register for address generation
1957 alloc_reg_temp(current,i,-1);
1958 minimum_free_regs[i]=1;
1959}
1960
1961#ifndef multdiv_alloc
1962static void multdiv_alloc(struct regstat *current,int i)
1963{
1964 // case 0x18: MULT
1965 // case 0x19: MULTU
1966 // case 0x1A: DIV
1967 // case 0x1B: DIVU
1968 // case 0x1C: DMULT
1969 // case 0x1D: DMULTU
1970 // case 0x1E: DDIV
1971 // case 0x1F: DDIVU
1972 clear_const(current,dops[i].rs1);
1973 clear_const(current,dops[i].rs2);
1974 alloc_cc(current,i); // for stalls
1975 if(dops[i].rs1&&dops[i].rs2)
1976 {
1977 if((dops[i].opcode2&4)==0) // 32-bit
1978 {
1979 current->u&=~(1LL<<HIREG);
1980 current->u&=~(1LL<<LOREG);
1981 alloc_reg(current,i,HIREG);
1982 alloc_reg(current,i,LOREG);
1983 alloc_reg(current,i,dops[i].rs1);
1984 alloc_reg(current,i,dops[i].rs2);
1985 dirty_reg(current,HIREG);
1986 dirty_reg(current,LOREG);
1987 }
1988 else // 64-bit
1989 {
1990 assert(0);
1991 }
1992 }
1993 else
1994 {
1995 // Multiply by zero is zero.
1996 // MIPS does not have a divide by zero exception.
1997 // The result is undefined, we return zero.
1998 alloc_reg(current,i,HIREG);
1999 alloc_reg(current,i,LOREG);
2000 dirty_reg(current,HIREG);
2001 dirty_reg(current,LOREG);
2002 }
2003}
2004#endif
2005
2006static void cop0_alloc(struct regstat *current,int i)
2007{
2008 if(dops[i].opcode2==0) // MFC0
2009 {
2010 if(dops[i].rt1) {
2011 clear_const(current,dops[i].rt1);
2012 alloc_all(current,i);
2013 alloc_reg(current,i,dops[i].rt1);
2014 dirty_reg(current,dops[i].rt1);
2015 }
2016 }
2017 else if(dops[i].opcode2==4) // MTC0
2018 {
2019 if(dops[i].rs1){
2020 clear_const(current,dops[i].rs1);
2021 alloc_reg(current,i,dops[i].rs1);
2022 alloc_all(current,i);
2023 }
2024 else {
2025 alloc_all(current,i); // FIXME: Keep r0
2026 current->u&=~1LL;
2027 alloc_reg(current,i,0);
2028 }
2029 }
2030 else
2031 {
2032 // TLBR/TLBWI/TLBWR/TLBP/ERET
2033 assert(dops[i].opcode2==0x10);
2034 alloc_all(current,i);
2035 }
2036 minimum_free_regs[i]=HOST_REGS;
2037}
2038
2039static void cop2_alloc(struct regstat *current,int i)
2040{
2041 if (dops[i].opcode2 < 3) // MFC2/CFC2
2042 {
2043 alloc_cc(current,i); // for stalls
2044 dirty_reg(current,CCREG);
2045 if(dops[i].rt1){
2046 clear_const(current,dops[i].rt1);
2047 alloc_reg(current,i,dops[i].rt1);
2048 dirty_reg(current,dops[i].rt1);
2049 }
2050 }
2051 else if (dops[i].opcode2 > 3) // MTC2/CTC2
2052 {
2053 if(dops[i].rs1){
2054 clear_const(current,dops[i].rs1);
2055 alloc_reg(current,i,dops[i].rs1);
2056 }
2057 else {
2058 current->u&=~1LL;
2059 alloc_reg(current,i,0);
2060 }
2061 }
2062 alloc_reg_temp(current,i,-1);
2063 minimum_free_regs[i]=1;
2064}
2065
2066static void c2op_alloc(struct regstat *current,int i)
2067{
2068 alloc_cc(current,i); // for stalls
2069 dirty_reg(current,CCREG);
2070 alloc_reg_temp(current,i,-1);
2071}
2072
2073static void syscall_alloc(struct regstat *current,int i)
2074{
2075 alloc_cc(current,i);
2076 dirty_reg(current,CCREG);
2077 alloc_all(current,i);
2078 minimum_free_regs[i]=HOST_REGS;
2079 current->isconst=0;
2080}
2081
2082static void delayslot_alloc(struct regstat *current,int i)
2083{
2084 switch(dops[i].itype) {
2085 case UJUMP:
2086 case CJUMP:
2087 case SJUMP:
2088 case RJUMP:
2089 case SYSCALL:
2090 case HLECALL:
2091 case IMM16:
2092 imm16_alloc(current,i);
2093 break;
2094 case LOAD:
2095 case LOADLR:
2096 load_alloc(current,i);
2097 break;
2098 case STORE:
2099 case STORELR:
2100 store_alloc(current,i);
2101 break;
2102 case ALU:
2103 alu_alloc(current,i);
2104 break;
2105 case SHIFT:
2106 shift_alloc(current,i);
2107 break;
2108 case MULTDIV:
2109 multdiv_alloc(current,i);
2110 break;
2111 case SHIFTIMM:
2112 shiftimm_alloc(current,i);
2113 break;
2114 case MOV:
2115 mov_alloc(current,i);
2116 break;
2117 case COP0:
2118 cop0_alloc(current,i);
2119 break;
2120 case COP1:
2121 break;
2122 case COP2:
2123 cop2_alloc(current,i);
2124 break;
2125 case C1LS:
2126 c1ls_alloc(current,i);
2127 break;
2128 case C2LS:
2129 c2ls_alloc(current,i);
2130 break;
2131 case C2OP:
2132 c2op_alloc(current,i);
2133 break;
2134 }
2135}
2136
2137static void add_stub(enum stub_type type, void *addr, void *retaddr,
2138 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e)
2139{
2140 assert(stubcount < ARRAY_SIZE(stubs));
2141 stubs[stubcount].type = type;
2142 stubs[stubcount].addr = addr;
2143 stubs[stubcount].retaddr = retaddr;
2144 stubs[stubcount].a = a;
2145 stubs[stubcount].b = b;
2146 stubs[stubcount].c = c;
2147 stubs[stubcount].d = d;
2148 stubs[stubcount].e = e;
2149 stubcount++;
2150}
2151
2152static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
2153 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist)
2154{
2155 add_stub(type, addr, retaddr, i, addr_reg, (uintptr_t)i_regs, ccadj, reglist);
2156}
2157
2158// Write out a single register
2159static void wb_register(signed char r, const signed char regmap[], uint64_t dirty)
2160{
2161 int hr;
2162 for(hr=0;hr<HOST_REGS;hr++) {
2163 if(hr!=EXCLUDE_REG) {
2164 if(regmap[hr]==r) {
2165 if((dirty>>hr)&1) {
2166 assert(regmap[hr]<64);
2167 emit_storereg(r,hr);
2168 }
2169 }
2170 }
2171 }
2172}
2173
2174static void wb_valid(signed char pre[],signed char entry[],u_int dirty_pre,u_int dirty,uint64_t u)
2175{
2176 //if(dirty_pre==dirty) return;
2177 int hr, r;
2178 for (hr = 0; hr < HOST_REGS; hr++) {
2179 r = pre[hr];
2180 if (r < 1 || r > 33 || ((u >> r) & 1))
2181 continue;
2182 if (((dirty_pre & ~dirty) >> hr) & 1)
2183 emit_storereg(r, hr);
2184 }
2185}
2186
2187// trashes r2
2188static void pass_args(int a0, int a1)
2189{
2190 if(a0==1&&a1==0) {
2191 // must swap
2192 emit_mov(a0,2); emit_mov(a1,1); emit_mov(2,0);
2193 }
2194 else if(a0!=0&&a1==0) {
2195 emit_mov(a1,1);
2196 if (a0>=0) emit_mov(a0,0);
2197 }
2198 else {
2199 if(a0>=0&&a0!=0) emit_mov(a0,0);
2200 if(a1>=0&&a1!=1) emit_mov(a1,1);
2201 }
2202}
2203
2204static void alu_assemble(int i, const struct regstat *i_regs)
2205{
2206 if(dops[i].opcode2>=0x20&&dops[i].opcode2<=0x23) { // ADD/ADDU/SUB/SUBU
2207 if(dops[i].rt1) {
2208 signed char s1,s2,t;
2209 t=get_reg(i_regs->regmap,dops[i].rt1);
2210 if(t>=0) {
2211 s1=get_reg(i_regs->regmap,dops[i].rs1);
2212 s2=get_reg(i_regs->regmap,dops[i].rs2);
2213 if(dops[i].rs1&&dops[i].rs2) {
2214 assert(s1>=0);
2215 assert(s2>=0);
2216 if(dops[i].opcode2&2) emit_sub(s1,s2,t);
2217 else emit_add(s1,s2,t);
2218 }
2219 else if(dops[i].rs1) {
2220 if(s1>=0) emit_mov(s1,t);
2221 else emit_loadreg(dops[i].rs1,t);
2222 }
2223 else if(dops[i].rs2) {
2224 if(s2>=0) {
2225 if(dops[i].opcode2&2) emit_neg(s2,t);
2226 else emit_mov(s2,t);
2227 }
2228 else {
2229 emit_loadreg(dops[i].rs2,t);
2230 if(dops[i].opcode2&2) emit_neg(t,t);
2231 }
2232 }
2233 else emit_zeroreg(t);
2234 }
2235 }
2236 }
2237 if(dops[i].opcode2>=0x2c&&dops[i].opcode2<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2238 assert(0);
2239 }
2240 if(dops[i].opcode2==0x2a||dops[i].opcode2==0x2b) { // SLT/SLTU
2241 if(dops[i].rt1) {
2242 signed char s1l,s2l,t;
2243 {
2244 t=get_reg(i_regs->regmap,dops[i].rt1);
2245 //assert(t>=0);
2246 if(t>=0) {
2247 s1l=get_reg(i_regs->regmap,dops[i].rs1);
2248 s2l=get_reg(i_regs->regmap,dops[i].rs2);
2249 if(dops[i].rs2==0) // rx<r0
2250 {
2251 if(dops[i].opcode2==0x2a&&dops[i].rs1!=0) { // SLT
2252 assert(s1l>=0);
2253 emit_shrimm(s1l,31,t);
2254 }
2255 else // SLTU (unsigned can not be less than zero, 0<0)
2256 emit_zeroreg(t);
2257 }
2258 else if(dops[i].rs1==0) // r0<rx
2259 {
2260 assert(s2l>=0);
2261 if(dops[i].opcode2==0x2a) // SLT
2262 emit_set_gz32(s2l,t);
2263 else // SLTU (set if not zero)
2264 emit_set_nz32(s2l,t);
2265 }
2266 else{
2267 assert(s1l>=0);assert(s2l>=0);
2268 if(dops[i].opcode2==0x2a) // SLT
2269 emit_set_if_less32(s1l,s2l,t);
2270 else // SLTU
2271 emit_set_if_carry32(s1l,s2l,t);
2272 }
2273 }
2274 }
2275 }
2276 }
2277 if(dops[i].opcode2>=0x24&&dops[i].opcode2<=0x27) { // AND/OR/XOR/NOR
2278 if(dops[i].rt1) {
2279 signed char s1l,s2l,tl;
2280 tl=get_reg(i_regs->regmap,dops[i].rt1);
2281 {
2282 if(tl>=0) {
2283 s1l=get_reg(i_regs->regmap,dops[i].rs1);
2284 s2l=get_reg(i_regs->regmap,dops[i].rs2);
2285 if(dops[i].rs1&&dops[i].rs2) {
2286 assert(s1l>=0);
2287 assert(s2l>=0);
2288 if(dops[i].opcode2==0x24) { // AND
2289 emit_and(s1l,s2l,tl);
2290 } else
2291 if(dops[i].opcode2==0x25) { // OR
2292 emit_or(s1l,s2l,tl);
2293 } else
2294 if(dops[i].opcode2==0x26) { // XOR
2295 emit_xor(s1l,s2l,tl);
2296 } else
2297 if(dops[i].opcode2==0x27) { // NOR
2298 emit_or(s1l,s2l,tl);
2299 emit_not(tl,tl);
2300 }
2301 }
2302 else
2303 {
2304 if(dops[i].opcode2==0x24) { // AND
2305 emit_zeroreg(tl);
2306 } else
2307 if(dops[i].opcode2==0x25||dops[i].opcode2==0x26) { // OR/XOR
2308 if(dops[i].rs1){
2309 if(s1l>=0) emit_mov(s1l,tl);
2310 else emit_loadreg(dops[i].rs1,tl); // CHECK: regmap_entry?
2311 }
2312 else
2313 if(dops[i].rs2){
2314 if(s2l>=0) emit_mov(s2l,tl);
2315 else emit_loadreg(dops[i].rs2,tl); // CHECK: regmap_entry?
2316 }
2317 else emit_zeroreg(tl);
2318 } else
2319 if(dops[i].opcode2==0x27) { // NOR
2320 if(dops[i].rs1){
2321 if(s1l>=0) emit_not(s1l,tl);
2322 else {
2323 emit_loadreg(dops[i].rs1,tl);
2324 emit_not(tl,tl);
2325 }
2326 }
2327 else
2328 if(dops[i].rs2){
2329 if(s2l>=0) emit_not(s2l,tl);
2330 else {
2331 emit_loadreg(dops[i].rs2,tl);
2332 emit_not(tl,tl);
2333 }
2334 }
2335 else emit_movimm(-1,tl);
2336 }
2337 }
2338 }
2339 }
2340 }
2341 }
2342}
2343
2344static void imm16_assemble(int i, const struct regstat *i_regs)
2345{
2346 if (dops[i].opcode==0x0f) { // LUI
2347 if(dops[i].rt1) {
2348 signed char t;
2349 t=get_reg(i_regs->regmap,dops[i].rt1);
2350 //assert(t>=0);
2351 if(t>=0) {
2352 if(!((i_regs->isconst>>t)&1))
2353 emit_movimm(imm[i]<<16,t);
2354 }
2355 }
2356 }
2357 if(dops[i].opcode==0x08||dops[i].opcode==0x09) { // ADDI/ADDIU
2358 if(dops[i].rt1) {
2359 signed char s,t;
2360 t=get_reg(i_regs->regmap,dops[i].rt1);
2361 s=get_reg(i_regs->regmap,dops[i].rs1);
2362 if(dops[i].rs1) {
2363 //assert(t>=0);
2364 //assert(s>=0);
2365 if(t>=0) {
2366 if(!((i_regs->isconst>>t)&1)) {
2367 if(s<0) {
2368 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2369 emit_addimm(t,imm[i],t);
2370 }else{
2371 if(!((i_regs->wasconst>>s)&1))
2372 emit_addimm(s,imm[i],t);
2373 else
2374 emit_movimm(constmap[i][s]+imm[i],t);
2375 }
2376 }
2377 }
2378 } else {
2379 if(t>=0) {
2380 if(!((i_regs->isconst>>t)&1))
2381 emit_movimm(imm[i],t);
2382 }
2383 }
2384 }
2385 }
2386 if(dops[i].opcode==0x18||dops[i].opcode==0x19) { // DADDI/DADDIU
2387 if(dops[i].rt1) {
2388 signed char sl,tl;
2389 tl=get_reg(i_regs->regmap,dops[i].rt1);
2390 sl=get_reg(i_regs->regmap,dops[i].rs1);
2391 if(tl>=0) {
2392 if(dops[i].rs1) {
2393 assert(sl>=0);
2394 emit_addimm(sl,imm[i],tl);
2395 } else {
2396 emit_movimm(imm[i],tl);
2397 }
2398 }
2399 }
2400 }
2401 else if(dops[i].opcode==0x0a||dops[i].opcode==0x0b) { // SLTI/SLTIU
2402 if(dops[i].rt1) {
2403 //assert(dops[i].rs1!=0); // r0 might be valid, but it's probably a bug
2404 signed char sl,t;
2405 t=get_reg(i_regs->regmap,dops[i].rt1);
2406 sl=get_reg(i_regs->regmap,dops[i].rs1);
2407 //assert(t>=0);
2408 if(t>=0) {
2409 if(dops[i].rs1>0) {
2410 if(dops[i].opcode==0x0a) { // SLTI
2411 if(sl<0) {
2412 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2413 emit_slti32(t,imm[i],t);
2414 }else{
2415 emit_slti32(sl,imm[i],t);
2416 }
2417 }
2418 else { // SLTIU
2419 if(sl<0) {
2420 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2421 emit_sltiu32(t,imm[i],t);
2422 }else{
2423 emit_sltiu32(sl,imm[i],t);
2424 }
2425 }
2426 }else{
2427 // SLTI(U) with r0 is just stupid,
2428 // nonetheless examples can be found
2429 if(dops[i].opcode==0x0a) // SLTI
2430 if(0<imm[i]) emit_movimm(1,t);
2431 else emit_zeroreg(t);
2432 else // SLTIU
2433 {
2434 if(imm[i]) emit_movimm(1,t);
2435 else emit_zeroreg(t);
2436 }
2437 }
2438 }
2439 }
2440 }
2441 else if(dops[i].opcode>=0x0c&&dops[i].opcode<=0x0e) { // ANDI/ORI/XORI
2442 if(dops[i].rt1) {
2443 signed char sl,tl;
2444 tl=get_reg(i_regs->regmap,dops[i].rt1);
2445 sl=get_reg(i_regs->regmap,dops[i].rs1);
2446 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2447 if(dops[i].opcode==0x0c) //ANDI
2448 {
2449 if(dops[i].rs1) {
2450 if(sl<0) {
2451 if(i_regs->regmap_entry[tl]!=dops[i].rs1) emit_loadreg(dops[i].rs1,tl);
2452 emit_andimm(tl,imm[i],tl);
2453 }else{
2454 if(!((i_regs->wasconst>>sl)&1))
2455 emit_andimm(sl,imm[i],tl);
2456 else
2457 emit_movimm(constmap[i][sl]&imm[i],tl);
2458 }
2459 }
2460 else
2461 emit_zeroreg(tl);
2462 }
2463 else
2464 {
2465 if(dops[i].rs1) {
2466 if(sl<0) {
2467 if(i_regs->regmap_entry[tl]!=dops[i].rs1) emit_loadreg(dops[i].rs1,tl);
2468 }
2469 if(dops[i].opcode==0x0d) { // ORI
2470 if(sl<0) {
2471 emit_orimm(tl,imm[i],tl);
2472 }else{
2473 if(!((i_regs->wasconst>>sl)&1))
2474 emit_orimm(sl,imm[i],tl);
2475 else
2476 emit_movimm(constmap[i][sl]|imm[i],tl);
2477 }
2478 }
2479 if(dops[i].opcode==0x0e) { // XORI
2480 if(sl<0) {
2481 emit_xorimm(tl,imm[i],tl);
2482 }else{
2483 if(!((i_regs->wasconst>>sl)&1))
2484 emit_xorimm(sl,imm[i],tl);
2485 else
2486 emit_movimm(constmap[i][sl]^imm[i],tl);
2487 }
2488 }
2489 }
2490 else {
2491 emit_movimm(imm[i],tl);
2492 }
2493 }
2494 }
2495 }
2496 }
2497}
2498
2499static void shiftimm_assemble(int i, const struct regstat *i_regs)
2500{
2501 if(dops[i].opcode2<=0x3) // SLL/SRL/SRA
2502 {
2503 if(dops[i].rt1) {
2504 signed char s,t;
2505 t=get_reg(i_regs->regmap,dops[i].rt1);
2506 s=get_reg(i_regs->regmap,dops[i].rs1);
2507 //assert(t>=0);
2508 if(t>=0&&!((i_regs->isconst>>t)&1)){
2509 if(dops[i].rs1==0)
2510 {
2511 emit_zeroreg(t);
2512 }
2513 else
2514 {
2515 if(s<0&&i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2516 if(imm[i]) {
2517 if(dops[i].opcode2==0) // SLL
2518 {
2519 emit_shlimm(s<0?t:s,imm[i],t);
2520 }
2521 if(dops[i].opcode2==2) // SRL
2522 {
2523 emit_shrimm(s<0?t:s,imm[i],t);
2524 }
2525 if(dops[i].opcode2==3) // SRA
2526 {
2527 emit_sarimm(s<0?t:s,imm[i],t);
2528 }
2529 }else{
2530 // Shift by zero
2531 if(s>=0 && s!=t) emit_mov(s,t);
2532 }
2533 }
2534 }
2535 //emit_storereg(dops[i].rt1,t); //DEBUG
2536 }
2537 }
2538 if(dops[i].opcode2>=0x38&&dops[i].opcode2<=0x3b) // DSLL/DSRL/DSRA
2539 {
2540 assert(0);
2541 }
2542 if(dops[i].opcode2==0x3c) // DSLL32
2543 {
2544 assert(0);
2545 }
2546 if(dops[i].opcode2==0x3e) // DSRL32
2547 {
2548 assert(0);
2549 }
2550 if(dops[i].opcode2==0x3f) // DSRA32
2551 {
2552 assert(0);
2553 }
2554}
2555
2556#ifndef shift_assemble
2557static void shift_assemble(int i, const struct regstat *i_regs)
2558{
2559 signed char s,t,shift;
2560 if (dops[i].rt1 == 0)
2561 return;
2562 assert(dops[i].opcode2<=0x07); // SLLV/SRLV/SRAV
2563 t = get_reg(i_regs->regmap, dops[i].rt1);
2564 s = get_reg(i_regs->regmap, dops[i].rs1);
2565 shift = get_reg(i_regs->regmap, dops[i].rs2);
2566 if (t < 0)
2567 return;
2568
2569 if(dops[i].rs1==0)
2570 emit_zeroreg(t);
2571 else if(dops[i].rs2==0) {
2572 assert(s>=0);
2573 if(s!=t) emit_mov(s,t);
2574 }
2575 else {
2576 host_tempreg_acquire();
2577 emit_andimm(shift,31,HOST_TEMPREG);
2578 switch(dops[i].opcode2) {
2579 case 4: // SLLV
2580 emit_shl(s,HOST_TEMPREG,t);
2581 break;
2582 case 6: // SRLV
2583 emit_shr(s,HOST_TEMPREG,t);
2584 break;
2585 case 7: // SRAV
2586 emit_sar(s,HOST_TEMPREG,t);
2587 break;
2588 default:
2589 assert(0);
2590 }
2591 host_tempreg_release();
2592 }
2593}
2594
2595#endif
2596
2597enum {
2598 MTYPE_8000 = 0,
2599 MTYPE_8020,
2600 MTYPE_0000,
2601 MTYPE_A000,
2602 MTYPE_1F80,
2603};
2604
2605static int get_ptr_mem_type(u_int a)
2606{
2607 if(a < 0x00200000) {
2608 if(a<0x1000&&((start>>20)==0xbfc||(start>>24)==0xa0))
2609 // return wrong, must use memhandler for BIOS self-test to pass
2610 // 007 does similar stuff from a00 mirror, weird stuff
2611 return MTYPE_8000;
2612 return MTYPE_0000;
2613 }
2614 if(0x1f800000 <= a && a < 0x1f801000)
2615 return MTYPE_1F80;
2616 if(0x80200000 <= a && a < 0x80800000)
2617 return MTYPE_8020;
2618 if(0xa0000000 <= a && a < 0xa0200000)
2619 return MTYPE_A000;
2620 return MTYPE_8000;
2621}
2622
2623static int get_ro_reg(const struct regstat *i_regs, int host_tempreg_free)
2624{
2625 int r = get_reg(i_regs->regmap, ROREG);
2626 if (r < 0 && host_tempreg_free) {
2627 host_tempreg_acquire();
2628 emit_loadreg(ROREG, r = HOST_TEMPREG);
2629 }
2630 if (r < 0)
2631 abort();
2632 return r;
2633}
2634
2635static void *emit_fastpath_cmp_jump(int i, const struct regstat *i_regs,
2636 int addr, int *offset_reg, int *addr_reg_override)
2637{
2638 void *jaddr = NULL;
2639 int type = 0;
2640 int mr = dops[i].rs1;
2641 *offset_reg = -1;
2642 if(((smrv_strong|smrv_weak)>>mr)&1) {
2643 type=get_ptr_mem_type(smrv[mr]);
2644 //printf("set %08x @%08x r%d %d\n", smrv[mr], start+i*4, mr, type);
2645 }
2646 else {
2647 // use the mirror we are running on
2648 type=get_ptr_mem_type(start);
2649 //printf("set nospec @%08x r%d %d\n", start+i*4, mr, type);
2650 }
2651
2652 if(type==MTYPE_8020) { // RAM 80200000+ mirror
2653 host_tempreg_acquire();
2654 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2655 addr=*addr_reg_override=HOST_TEMPREG;
2656 type=0;
2657 }
2658 else if(type==MTYPE_0000) { // RAM 0 mirror
2659 host_tempreg_acquire();
2660 emit_orimm(addr,0x80000000,HOST_TEMPREG);
2661 addr=*addr_reg_override=HOST_TEMPREG;
2662 type=0;
2663 }
2664 else if(type==MTYPE_A000) { // RAM A mirror
2665 host_tempreg_acquire();
2666 emit_andimm(addr,~0x20000000,HOST_TEMPREG);
2667 addr=*addr_reg_override=HOST_TEMPREG;
2668 type=0;
2669 }
2670 else if(type==MTYPE_1F80) { // scratchpad
2671 if (psxH == (void *)0x1f800000) {
2672 host_tempreg_acquire();
2673 emit_xorimm(addr,0x1f800000,HOST_TEMPREG);
2674 emit_cmpimm(HOST_TEMPREG,0x1000);
2675 host_tempreg_release();
2676 jaddr=out;
2677 emit_jc(0);
2678 }
2679 else {
2680 // do the usual RAM check, jump will go to the right handler
2681 type=0;
2682 }
2683 }
2684
2685 if (type == 0) // need ram check
2686 {
2687 emit_cmpimm(addr,RAM_SIZE);
2688 jaddr = out;
2689 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2690 // Hint to branch predictor that the branch is unlikely to be taken
2691 if (dops[i].rs1 >= 28)
2692 emit_jno_unlikely(0);
2693 else
2694 #endif
2695 emit_jno(0);
2696 if (ram_offset != 0)
2697 *offset_reg = get_ro_reg(i_regs, 0);
2698 }
2699
2700 return jaddr;
2701}
2702
2703// return memhandler, or get directly accessable address and return 0
2704static void *get_direct_memhandler(void *table, u_int addr,
2705 enum stub_type type, uintptr_t *addr_host)
2706{
2707 uintptr_t msb = 1ull << (sizeof(uintptr_t)*8 - 1);
2708 uintptr_t l1, l2 = 0;
2709 l1 = ((uintptr_t *)table)[addr>>12];
2710 if (!(l1 & msb)) {
2711 uintptr_t v = l1 << 1;
2712 *addr_host = v + addr;
2713 return NULL;
2714 }
2715 else {
2716 l1 <<= 1;
2717 if (type == LOADB_STUB || type == LOADBU_STUB || type == STOREB_STUB)
2718 l2 = ((uintptr_t *)l1)[0x1000/4 + 0x1000/2 + (addr&0xfff)];
2719 else if (type == LOADH_STUB || type == LOADHU_STUB || type == STOREH_STUB)
2720 l2 = ((uintptr_t *)l1)[0x1000/4 + (addr&0xfff)/2];
2721 else
2722 l2 = ((uintptr_t *)l1)[(addr&0xfff)/4];
2723 if (!(l2 & msb)) {
2724 uintptr_t v = l2 << 1;
2725 *addr_host = v + (addr&0xfff);
2726 return NULL;
2727 }
2728 return (void *)(l2 << 1);
2729 }
2730}
2731
2732static u_int get_host_reglist(const signed char *regmap)
2733{
2734 u_int reglist = 0, hr;
2735 for (hr = 0; hr < HOST_REGS; hr++) {
2736 if (hr != EXCLUDE_REG && regmap[hr] >= 0)
2737 reglist |= 1 << hr;
2738 }
2739 return reglist;
2740}
2741
2742static u_int reglist_exclude(u_int reglist, int r1, int r2)
2743{
2744 if (r1 >= 0)
2745 reglist &= ~(1u << r1);
2746 if (r2 >= 0)
2747 reglist &= ~(1u << r2);
2748 return reglist;
2749}
2750
2751// find a temp caller-saved register not in reglist (so assumed to be free)
2752static int reglist_find_free(u_int reglist)
2753{
2754 u_int free_regs = ~reglist & CALLER_SAVE_REGS;
2755 if (free_regs == 0)
2756 return -1;
2757 return __builtin_ctz(free_regs);
2758}
2759
2760static void do_load_word(int a, int rt, int offset_reg)
2761{
2762 if (offset_reg >= 0)
2763 emit_ldr_dualindexed(offset_reg, a, rt);
2764 else
2765 emit_readword_indexed(0, a, rt);
2766}
2767
2768static void do_store_word(int a, int ofs, int rt, int offset_reg, int preseve_a)
2769{
2770 if (offset_reg < 0) {
2771 emit_writeword_indexed(rt, ofs, a);
2772 return;
2773 }
2774 if (ofs != 0)
2775 emit_addimm(a, ofs, a);
2776 emit_str_dualindexed(offset_reg, a, rt);
2777 if (ofs != 0 && preseve_a)
2778 emit_addimm(a, -ofs, a);
2779}
2780
2781static void do_store_hword(int a, int ofs, int rt, int offset_reg, int preseve_a)
2782{
2783 if (offset_reg < 0) {
2784 emit_writehword_indexed(rt, ofs, a);
2785 return;
2786 }
2787 if (ofs != 0)
2788 emit_addimm(a, ofs, a);
2789 emit_strh_dualindexed(offset_reg, a, rt);
2790 if (ofs != 0 && preseve_a)
2791 emit_addimm(a, -ofs, a);
2792}
2793
2794static void do_store_byte(int a, int rt, int offset_reg)
2795{
2796 if (offset_reg >= 0)
2797 emit_strb_dualindexed(offset_reg, a, rt);
2798 else
2799 emit_writebyte_indexed(rt, 0, a);
2800}
2801
2802static void load_assemble(int i, const struct regstat *i_regs, int ccadj_)
2803{
2804 int s,tl,addr;
2805 int offset;
2806 void *jaddr=0;
2807 int memtarget=0,c=0;
2808 int offset_reg = -1;
2809 int fastio_reg_override = -1;
2810 u_int reglist=get_host_reglist(i_regs->regmap);
2811 tl=get_reg(i_regs->regmap,dops[i].rt1);
2812 s=get_reg(i_regs->regmap,dops[i].rs1);
2813 offset=imm[i];
2814 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2815 if(s>=0) {
2816 c=(i_regs->wasconst>>s)&1;
2817 if (c) {
2818 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2819 }
2820 }
2821 //printf("load_assemble: c=%d\n",c);
2822 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2823 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2824 if((tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80))
2825 ||dops[i].rt1==0) {
2826 // could be FIFO, must perform the read
2827 // ||dummy read
2828 assem_debug("(forced read)\n");
2829 tl=get_reg_temp(i_regs->regmap);
2830 assert(tl>=0);
2831 }
2832 if(offset||s<0||c) addr=tl;
2833 else addr=s;
2834 //if(tl<0) tl=get_reg_temp(i_regs->regmap);
2835 if(tl>=0) {
2836 //printf("load_assemble: c=%d\n",c);
2837 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2838 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2839 reglist&=~(1<<tl);
2840 if(!c) {
2841 #ifdef R29_HACK
2842 // Strmnnrmn's speed hack
2843 if(dops[i].rs1!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2844 #endif
2845 {
2846 jaddr = emit_fastpath_cmp_jump(i, i_regs, addr,
2847 &offset_reg, &fastio_reg_override);
2848 }
2849 }
2850 else if (ram_offset && memtarget) {
2851 offset_reg = get_ro_reg(i_regs, 0);
2852 }
2853 int dummy=(dops[i].rt1==0)||(tl!=get_reg(i_regs->regmap,dops[i].rt1)); // ignore loads to r0 and unneeded reg
2854 switch (dops[i].opcode) {
2855 case 0x20: // LB
2856 if(!c||memtarget) {
2857 if(!dummy) {
2858 int a = tl;
2859 if (!c) a = addr;
2860 if (fastio_reg_override >= 0)
2861 a = fastio_reg_override;
2862
2863 if (offset_reg >= 0)
2864 emit_ldrsb_dualindexed(offset_reg, a, tl);
2865 else
2866 emit_movsbl_indexed(0, a, tl);
2867 }
2868 if(jaddr)
2869 add_stub_r(LOADB_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2870 }
2871 else
2872 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2873 break;
2874 case 0x21: // LH
2875 if(!c||memtarget) {
2876 if(!dummy) {
2877 int a = tl;
2878 if (!c) a = addr;
2879 if (fastio_reg_override >= 0)
2880 a = fastio_reg_override;
2881 if (offset_reg >= 0)
2882 emit_ldrsh_dualindexed(offset_reg, a, tl);
2883 else
2884 emit_movswl_indexed(0, a, tl);
2885 }
2886 if(jaddr)
2887 add_stub_r(LOADH_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2888 }
2889 else
2890 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2891 break;
2892 case 0x23: // LW
2893 if(!c||memtarget) {
2894 if(!dummy) {
2895 int a = addr;
2896 if (fastio_reg_override >= 0)
2897 a = fastio_reg_override;
2898 do_load_word(a, tl, offset_reg);
2899 }
2900 if(jaddr)
2901 add_stub_r(LOADW_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2902 }
2903 else
2904 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2905 break;
2906 case 0x24: // LBU
2907 if(!c||memtarget) {
2908 if(!dummy) {
2909 int a = tl;
2910 if (!c) a = addr;
2911 if (fastio_reg_override >= 0)
2912 a = fastio_reg_override;
2913
2914 if (offset_reg >= 0)
2915 emit_ldrb_dualindexed(offset_reg, a, tl);
2916 else
2917 emit_movzbl_indexed(0, a, tl);
2918 }
2919 if(jaddr)
2920 add_stub_r(LOADBU_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2921 }
2922 else
2923 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2924 break;
2925 case 0x25: // LHU
2926 if(!c||memtarget) {
2927 if(!dummy) {
2928 int a = tl;
2929 if(!c) a = addr;
2930 if (fastio_reg_override >= 0)
2931 a = fastio_reg_override;
2932 if (offset_reg >= 0)
2933 emit_ldrh_dualindexed(offset_reg, a, tl);
2934 else
2935 emit_movzwl_indexed(0, a, tl);
2936 }
2937 if(jaddr)
2938 add_stub_r(LOADHU_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2939 }
2940 else
2941 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2942 break;
2943 case 0x27: // LWU
2944 case 0x37: // LD
2945 default:
2946 assert(0);
2947 }
2948 }
2949 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
2950 host_tempreg_release();
2951}
2952
2953#ifndef loadlr_assemble
2954static void loadlr_assemble(int i, const struct regstat *i_regs, int ccadj_)
2955{
2956 int s,tl,temp,temp2,addr;
2957 int offset;
2958 void *jaddr=0;
2959 int memtarget=0,c=0;
2960 int offset_reg = -1;
2961 int fastio_reg_override = -1;
2962 u_int reglist=get_host_reglist(i_regs->regmap);
2963 tl=get_reg(i_regs->regmap,dops[i].rt1);
2964 s=get_reg(i_regs->regmap,dops[i].rs1);
2965 temp=get_reg_temp(i_regs->regmap);
2966 temp2=get_reg(i_regs->regmap,FTEMP);
2967 addr=get_reg(i_regs->regmap,AGEN1+(i&1));
2968 assert(addr<0);
2969 offset=imm[i];
2970 reglist|=1<<temp;
2971 if(offset||s<0||c) addr=temp2;
2972 else addr=s;
2973 if(s>=0) {
2974 c=(i_regs->wasconst>>s)&1;
2975 if(c) {
2976 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2977 }
2978 }
2979 if(!c) {
2980 emit_shlimm(addr,3,temp);
2981 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
2982 emit_andimm(addr,0xFFFFFFFC,temp2); // LWL/LWR
2983 }else{
2984 emit_andimm(addr,0xFFFFFFF8,temp2); // LDL/LDR
2985 }
2986 jaddr = emit_fastpath_cmp_jump(i, i_regs, temp2,
2987 &offset_reg, &fastio_reg_override);
2988 }
2989 else {
2990 if (ram_offset && memtarget) {
2991 offset_reg = get_ro_reg(i_regs, 0);
2992 }
2993 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
2994 emit_movimm(((constmap[i][s]+offset)<<3)&24,temp); // LWL/LWR
2995 }else{
2996 emit_movimm(((constmap[i][s]+offset)<<3)&56,temp); // LDL/LDR
2997 }
2998 }
2999 if (dops[i].opcode==0x22||dops[i].opcode==0x26) { // LWL/LWR
3000 if(!c||memtarget) {
3001 int a = temp2;
3002 if (fastio_reg_override >= 0)
3003 a = fastio_reg_override;
3004 do_load_word(a, temp2, offset_reg);
3005 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3006 host_tempreg_release();
3007 if(jaddr) add_stub_r(LOADW_STUB,jaddr,out,i,temp2,i_regs,ccadj_,reglist);
3008 }
3009 else
3010 inline_readstub(LOADW_STUB,i,(constmap[i][s]+offset)&0xFFFFFFFC,i_regs->regmap,FTEMP,ccadj_,reglist);
3011 if(dops[i].rt1) {
3012 assert(tl>=0);
3013 emit_andimm(temp,24,temp);
3014 if (dops[i].opcode==0x22) // LWL
3015 emit_xorimm(temp,24,temp);
3016 host_tempreg_acquire();
3017 emit_movimm(-1,HOST_TEMPREG);
3018 if (dops[i].opcode==0x26) {
3019 emit_shr(temp2,temp,temp2);
3020 emit_bic_lsr(tl,HOST_TEMPREG,temp,tl);
3021 }else{
3022 emit_shl(temp2,temp,temp2);
3023 emit_bic_lsl(tl,HOST_TEMPREG,temp,tl);
3024 }
3025 host_tempreg_release();
3026 emit_or(temp2,tl,tl);
3027 }
3028 //emit_storereg(dops[i].rt1,tl); // DEBUG
3029 }
3030 if (dops[i].opcode==0x1A||dops[i].opcode==0x1B) { // LDL/LDR
3031 assert(0);
3032 }
3033}
3034#endif
3035
3036static void store_assemble(int i, const struct regstat *i_regs, int ccadj_)
3037{
3038 int s,tl;
3039 int addr,temp;
3040 int offset;
3041 void *jaddr=0;
3042 enum stub_type type=0;
3043 int memtarget=0,c=0;
3044 int agr=AGEN1+(i&1);
3045 int offset_reg = -1;
3046 int fastio_reg_override = -1;
3047 u_int reglist=get_host_reglist(i_regs->regmap);
3048 tl=get_reg(i_regs->regmap,dops[i].rs2);
3049 s=get_reg(i_regs->regmap,dops[i].rs1);
3050 temp=get_reg(i_regs->regmap,agr);
3051 if(temp<0) temp=get_reg_temp(i_regs->regmap);
3052 offset=imm[i];
3053 if(s>=0) {
3054 c=(i_regs->wasconst>>s)&1;
3055 if(c) {
3056 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3057 }
3058 }
3059 assert(tl>=0);
3060 assert(temp>=0);
3061 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3062 if(offset||s<0||c) addr=temp;
3063 else addr=s;
3064 if (!c) {
3065 jaddr = emit_fastpath_cmp_jump(i, i_regs, addr,
3066 &offset_reg, &fastio_reg_override);
3067 }
3068 else if (ram_offset && memtarget) {
3069 offset_reg = get_ro_reg(i_regs, 0);
3070 }
3071
3072 switch (dops[i].opcode) {
3073 case 0x28: // SB
3074 if(!c||memtarget) {
3075 int a = temp;
3076 if (!c) a = addr;
3077 if (fastio_reg_override >= 0)
3078 a = fastio_reg_override;
3079 do_store_byte(a, tl, offset_reg);
3080 }
3081 type = STOREB_STUB;
3082 break;
3083 case 0x29: // SH
3084 if(!c||memtarget) {
3085 int a = temp;
3086 if (!c) a = addr;
3087 if (fastio_reg_override >= 0)
3088 a = fastio_reg_override;
3089 do_store_hword(a, 0, tl, offset_reg, 1);
3090 }
3091 type = STOREH_STUB;
3092 break;
3093 case 0x2B: // SW
3094 if(!c||memtarget) {
3095 int a = addr;
3096 if (fastio_reg_override >= 0)
3097 a = fastio_reg_override;
3098 do_store_word(a, 0, tl, offset_reg, 1);
3099 }
3100 type = STOREW_STUB;
3101 break;
3102 case 0x3F: // SD
3103 default:
3104 assert(0);
3105 }
3106 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3107 host_tempreg_release();
3108 if(jaddr) {
3109 // PCSX store handlers don't check invcode again
3110 reglist|=1<<addr;
3111 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3112 jaddr=0;
3113 }
3114 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3115 if(!c||memtarget) {
3116 #ifdef DESTRUCTIVE_SHIFT
3117 // The x86 shift operation is 'destructive'; it overwrites the
3118 // source register, so we need to make a copy first and use that.
3119 addr=temp;
3120 #endif
3121 #if defined(HOST_IMM8)
3122 int ir=get_reg(i_regs->regmap,INVCP);
3123 assert(ir>=0);
3124 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3125 #else
3126 emit_cmpmem_indexedsr12_imm(invalid_code,addr,1);
3127 #endif
3128 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3129 emit_callne(invalidate_addr_reg[addr]);
3130 #else
3131 void *jaddr2 = out;
3132 emit_jne(0);
3133 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3134 #endif
3135 }
3136 }
3137 u_int addr_val=constmap[i][s]+offset;
3138 if(jaddr) {
3139 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3140 } else if(c&&!memtarget) {
3141 inline_writestub(type,i,addr_val,i_regs->regmap,dops[i].rs2,ccadj_,reglist);
3142 }
3143 // basic current block modification detection..
3144 // not looking back as that should be in mips cache already
3145 // (see Spyro2 title->attract mode)
3146 if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
3147 SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
3148 assert(i_regs->regmap==regs[i].regmap); // not delay slot
3149 if(i_regs->regmap==regs[i].regmap) {
3150 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3151 wb_dirtys(regs[i].regmap_entry,regs[i].wasdirty);
3152 emit_movimm(start+i*4+4,0);
3153 emit_writeword(0,&pcaddr);
3154 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3155 emit_far_call(get_addr_ht);
3156 emit_jmpreg(0);
3157 }
3158 }
3159}
3160
3161static void storelr_assemble(int i, const struct regstat *i_regs, int ccadj_)
3162{
3163 int s,tl;
3164 int temp;
3165 int offset;
3166 void *jaddr=0;
3167 void *case1, *case23, *case3;
3168 void *done0, *done1, *done2;
3169 int memtarget=0,c=0;
3170 int agr=AGEN1+(i&1);
3171 int offset_reg = -1;
3172 u_int reglist=get_host_reglist(i_regs->regmap);
3173 tl=get_reg(i_regs->regmap,dops[i].rs2);
3174 s=get_reg(i_regs->regmap,dops[i].rs1);
3175 temp=get_reg(i_regs->regmap,agr);
3176 if(temp<0) temp=get_reg_temp(i_regs->regmap);
3177 offset=imm[i];
3178 if(s>=0) {
3179 c=(i_regs->isconst>>s)&1;
3180 if(c) {
3181 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3182 }
3183 }
3184 assert(tl>=0);
3185 assert(temp>=0);
3186 if(!c) {
3187 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3188 if(!offset&&s!=temp) emit_mov(s,temp);
3189 jaddr=out;
3190 emit_jno(0);
3191 }
3192 else
3193 {
3194 if(!memtarget||!dops[i].rs1) {
3195 jaddr=out;
3196 emit_jmp(0);
3197 }
3198 }
3199 if (ram_offset)
3200 offset_reg = get_ro_reg(i_regs, 0);
3201
3202 if (dops[i].opcode==0x2C||dops[i].opcode==0x2D) { // SDL/SDR
3203 assert(0);
3204 }
3205
3206 emit_testimm(temp,2);
3207 case23=out;
3208 emit_jne(0);
3209 emit_testimm(temp,1);
3210 case1=out;
3211 emit_jne(0);
3212 // 0
3213 if (dops[i].opcode == 0x2A) { // SWL
3214 // Write msb into least significant byte
3215 if (dops[i].rs2) emit_rorimm(tl, 24, tl);
3216 do_store_byte(temp, tl, offset_reg);
3217 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3218 }
3219 else if (dops[i].opcode == 0x2E) { // SWR
3220 // Write entire word
3221 do_store_word(temp, 0, tl, offset_reg, 1);
3222 }
3223 done0 = out;
3224 emit_jmp(0);
3225 // 1
3226 set_jump_target(case1, out);
3227 if (dops[i].opcode == 0x2A) { // SWL
3228 // Write two msb into two least significant bytes
3229 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3230 do_store_hword(temp, -1, tl, offset_reg, 0);
3231 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3232 }
3233 else if (dops[i].opcode == 0x2E) { // SWR
3234 // Write 3 lsb into three most significant bytes
3235 do_store_byte(temp, tl, offset_reg);
3236 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3237 do_store_hword(temp, 1, tl, offset_reg, 0);
3238 if (dops[i].rs2) emit_rorimm(tl, 24, tl);
3239 }
3240 done1=out;
3241 emit_jmp(0);
3242 // 2,3
3243 set_jump_target(case23, out);
3244 emit_testimm(temp,1);
3245 case3 = out;
3246 emit_jne(0);
3247 // 2
3248 if (dops[i].opcode==0x2A) { // SWL
3249 // Write 3 msb into three least significant bytes
3250 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3251 do_store_hword(temp, -2, tl, offset_reg, 1);
3252 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3253 do_store_byte(temp, tl, offset_reg);
3254 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3255 }
3256 else if (dops[i].opcode == 0x2E) { // SWR
3257 // Write two lsb into two most significant bytes
3258 do_store_hword(temp, 0, tl, offset_reg, 1);
3259 }
3260 done2 = out;
3261 emit_jmp(0);
3262 // 3
3263 set_jump_target(case3, out);
3264 if (dops[i].opcode == 0x2A) { // SWL
3265 do_store_word(temp, -3, tl, offset_reg, 0);
3266 }
3267 else if (dops[i].opcode == 0x2E) { // SWR
3268 do_store_byte(temp, tl, offset_reg);
3269 }
3270 set_jump_target(done0, out);
3271 set_jump_target(done1, out);
3272 set_jump_target(done2, out);
3273 if (offset_reg == HOST_TEMPREG)
3274 host_tempreg_release();
3275 if(!c||!memtarget)
3276 add_stub_r(STORELR_STUB,jaddr,out,i,temp,i_regs,ccadj_,reglist);
3277 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3278 #if defined(HOST_IMM8)
3279 int ir=get_reg(i_regs->regmap,INVCP);
3280 assert(ir>=0);
3281 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3282 #else
3283 emit_cmpmem_indexedsr12_imm(invalid_code,temp,1);
3284 #endif
3285 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3286 emit_callne(invalidate_addr_reg[temp]);
3287 #else
3288 void *jaddr2 = out;
3289 emit_jne(0);
3290 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3291 #endif
3292 }
3293}
3294
3295static void cop0_assemble(int i, const struct regstat *i_regs, int ccadj_)
3296{
3297 if(dops[i].opcode2==0) // MFC0
3298 {
3299 signed char t=get_reg(i_regs->regmap,dops[i].rt1);
3300 u_int copr=(source[i]>>11)&0x1f;
3301 //assert(t>=0); // Why does this happen? OOT is weird
3302 if(t>=0&&dops[i].rt1!=0) {
3303 emit_readword(&reg_cop0[copr],t);
3304 }
3305 }
3306 else if(dops[i].opcode2==4) // MTC0
3307 {
3308 signed char s=get_reg(i_regs->regmap,dops[i].rs1);
3309 char copr=(source[i]>>11)&0x1f;
3310 assert(s>=0);
3311 wb_register(dops[i].rs1,i_regs->regmap,i_regs->dirty);
3312 if(copr==9||copr==11||copr==12||copr==13) {
3313 emit_readword(&last_count,HOST_TEMPREG);
3314 emit_loadreg(CCREG,HOST_CCREG); // TODO: do proper reg alloc
3315 emit_add(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3316 emit_addimm(HOST_CCREG,ccadj_,HOST_CCREG);
3317 emit_writeword(HOST_CCREG,&Count);
3318 }
3319 // What a mess. The status register (12) can enable interrupts,
3320 // so needs a special case to handle a pending interrupt.
3321 // The interrupt must be taken immediately, because a subsequent
3322 // instruction might disable interrupts again.
3323 if(copr==12||copr==13) {
3324 if (is_delayslot) {
3325 // burn cycles to cause cc_interrupt, which will
3326 // reschedule next_interupt. Relies on CCREG from above.
3327 assem_debug("MTC0 DS %d\n", copr);
3328 emit_writeword(HOST_CCREG,&last_count);
3329 emit_movimm(0,HOST_CCREG);
3330 emit_storereg(CCREG,HOST_CCREG);
3331 emit_loadreg(dops[i].rs1,1);
3332 emit_movimm(copr,0);
3333 emit_far_call(pcsx_mtc0_ds);
3334 emit_loadreg(dops[i].rs1,s);
3335 return;
3336 }
3337 emit_movimm(start+i*4+4,HOST_TEMPREG);
3338 emit_writeword(HOST_TEMPREG,&pcaddr);
3339 emit_movimm(0,HOST_TEMPREG);
3340 emit_writeword(HOST_TEMPREG,&pending_exception);
3341 }
3342 if(s==HOST_CCREG)
3343 emit_loadreg(dops[i].rs1,1);
3344 else if(s!=1)
3345 emit_mov(s,1);
3346 emit_movimm(copr,0);
3347 emit_far_call(pcsx_mtc0);
3348 if(copr==9||copr==11||copr==12||copr==13) {
3349 emit_readword(&Count,HOST_CCREG);
3350 emit_readword(&next_interupt,HOST_TEMPREG);
3351 emit_addimm(HOST_CCREG,-ccadj_,HOST_CCREG);
3352 emit_sub(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3353 emit_writeword(HOST_TEMPREG,&last_count);
3354 emit_storereg(CCREG,HOST_CCREG);
3355 }
3356 if(copr==12||copr==13) {
3357 assert(!is_delayslot);
3358 emit_readword(&pending_exception,14);
3359 emit_test(14,14);
3360 void *jaddr = out;
3361 emit_jeq(0);
3362 emit_readword(&pcaddr, 0);
3363 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3364 emit_far_call(get_addr_ht);
3365 emit_jmpreg(0);
3366 set_jump_target(jaddr, out);
3367 }
3368 emit_loadreg(dops[i].rs1,s);
3369 }
3370 else
3371 {
3372 assert(dops[i].opcode2==0x10);
3373 //if((source[i]&0x3f)==0x10) // RFE
3374 {
3375 emit_readword(&Status,0);
3376 emit_andimm(0,0x3c,1);
3377 emit_andimm(0,~0xf,0);
3378 emit_orrshr_imm(1,2,0);
3379 emit_writeword(0,&Status);
3380 }
3381 }
3382}
3383
3384static void cop1_unusable(int i, const struct regstat *i_regs)
3385{
3386 // XXX: should just just do the exception instead
3387 //if(!cop1_usable)
3388 {
3389 void *jaddr=out;
3390 emit_jmp(0);
3391 add_stub_r(FP_STUB,jaddr,out,i,0,i_regs,is_delayslot,0);
3392 }
3393}
3394
3395static void cop1_assemble(int i, const struct regstat *i_regs)
3396{
3397 cop1_unusable(i, i_regs);
3398}
3399
3400static void c1ls_assemble(int i, const struct regstat *i_regs)
3401{
3402 cop1_unusable(i, i_regs);
3403}
3404
3405// FP_STUB
3406static void do_cop1stub(int n)
3407{
3408 literal_pool(256);
3409 assem_debug("do_cop1stub %x\n",start+stubs[n].a*4);
3410 set_jump_target(stubs[n].addr, out);
3411 int i=stubs[n].a;
3412// int rs=stubs[n].b;
3413 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3414 int ds=stubs[n].d;
3415 if(!ds) {
3416 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3417 //if(i_regs!=&regs[i]) printf("oops: regs[i]=%x i_regs=%x",(int)&regs[i],(int)i_regs);
3418 }
3419 //else {printf("fp exception in delay slot\n");}
3420 wb_dirtys(i_regs->regmap_entry,i_regs->wasdirty);
3421 if(regs[i].regmap_entry[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
3422 emit_movimm(start+(i-ds)*4,EAX); // Get PC
3423 emit_addimm(HOST_CCREG,ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3424 emit_far_jump(ds?fp_exception_ds:fp_exception);
3425}
3426
3427static int cop2_is_stalling_op(int i, int *cycles)
3428{
3429 if (dops[i].opcode == 0x3a) { // SWC2
3430 *cycles = 0;
3431 return 1;
3432 }
3433 if (dops[i].itype == COP2 && (dops[i].opcode2 == 0 || dops[i].opcode2 == 2)) { // MFC2/CFC2
3434 *cycles = 0;
3435 return 1;
3436 }
3437 if (dops[i].itype == C2OP) {
3438 *cycles = gte_cycletab[source[i] & 0x3f];
3439 return 1;
3440 }
3441 // ... what about MTC2/CTC2/LWC2?
3442 return 0;
3443}
3444
3445#if 0
3446static void log_gte_stall(int stall, u_int cycle)
3447{
3448 if ((u_int)stall <= 44)
3449 printf("x stall %2d %u\n", stall, cycle + last_count);
3450}
3451
3452static void emit_log_gte_stall(int i, int stall, u_int reglist)
3453{
3454 save_regs(reglist);
3455 if (stall > 0)
3456 emit_movimm(stall, 0);
3457 else
3458 emit_mov(HOST_TEMPREG, 0);
3459 emit_addimm(HOST_CCREG, ccadj[i], 1);
3460 emit_far_call(log_gte_stall);
3461 restore_regs(reglist);
3462}
3463#endif
3464
3465static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist)
3466{
3467 int j = i, other_gte_op_cycles = -1, stall = -MAXBLOCK, cycles_passed;
3468 int rtmp = reglist_find_free(reglist);
3469
3470 if (HACK_ENABLED(NDHACK_NO_STALLS))
3471 return;
3472 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3473 // happens occasionally... cc evicted? Don't bother then
3474 //printf("no cc %08x\n", start + i*4);
3475 return;
3476 }
3477 if (!dops[i].bt) {
3478 for (j = i - 1; j >= 0; j--) {
3479 //if (dops[j].is_ds) break;
3480 if (cop2_is_stalling_op(j, &other_gte_op_cycles) || dops[j].bt)
3481 break;
3482 if (j > 0 && ccadj[j - 1] > ccadj[j])
3483 break;
3484 }
3485 j = max(j, 0);
3486 }
3487 cycles_passed = ccadj[i] - ccadj[j];
3488 if (other_gte_op_cycles >= 0)
3489 stall = other_gte_op_cycles - cycles_passed;
3490 else if (cycles_passed >= 44)
3491 stall = 0; // can't stall
3492 if (stall == -MAXBLOCK && rtmp >= 0) {
3493 // unknown stall, do the expensive runtime check
3494 assem_debug("; cop2_do_stall_check\n");
3495#if 0 // too slow
3496 save_regs(reglist);
3497 emit_movimm(gte_cycletab[op], 0);
3498 emit_addimm(HOST_CCREG, ccadj[i], 1);
3499 emit_far_call(call_gteStall);
3500 restore_regs(reglist);
3501#else
3502 host_tempreg_acquire();
3503 emit_readword(&psxRegs.gteBusyCycle, rtmp);
3504 emit_addimm(rtmp, -ccadj[i], rtmp);
3505 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3506 emit_cmpimm(HOST_TEMPREG, 44);
3507 emit_cmovb_reg(rtmp, HOST_CCREG);
3508 //emit_log_gte_stall(i, 0, reglist);
3509 host_tempreg_release();
3510#endif
3511 }
3512 else if (stall > 0) {
3513 //emit_log_gte_stall(i, stall, reglist);
3514 emit_addimm(HOST_CCREG, stall, HOST_CCREG);
3515 }
3516
3517 // save gteBusyCycle, if needed
3518 if (gte_cycletab[op] == 0)
3519 return;
3520 other_gte_op_cycles = -1;
3521 for (j = i + 1; j < slen; j++) {
3522 if (cop2_is_stalling_op(j, &other_gte_op_cycles))
3523 break;
3524 if (dops[j].is_jump) {
3525 // check ds
3526 if (j + 1 < slen && cop2_is_stalling_op(j + 1, &other_gte_op_cycles))
3527 j++;
3528 break;
3529 }
3530 }
3531 if (other_gte_op_cycles >= 0)
3532 // will handle stall when assembling that op
3533 return;
3534 cycles_passed = ccadj[min(j, slen -1)] - ccadj[i];
3535 if (cycles_passed >= 44)
3536 return;
3537 assem_debug("; save gteBusyCycle\n");
3538 host_tempreg_acquire();
3539#if 0
3540 emit_readword(&last_count, HOST_TEMPREG);
3541 emit_add(HOST_TEMPREG, HOST_CCREG, HOST_TEMPREG);
3542 emit_addimm(HOST_TEMPREG, ccadj[i], HOST_TEMPREG);
3543 emit_addimm(HOST_TEMPREG, gte_cycletab[op]), HOST_TEMPREG);
3544 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3545#else
3546 emit_addimm(HOST_CCREG, ccadj[i] + gte_cycletab[op], HOST_TEMPREG);
3547 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3548#endif
3549 host_tempreg_release();
3550}
3551
3552static int is_mflohi(int i)
3553{
3554 return (dops[i].itype == MOV && (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG));
3555}
3556
3557static int check_multdiv(int i, int *cycles)
3558{
3559 if (dops[i].itype != MULTDIV)
3560 return 0;
3561 if (dops[i].opcode2 == 0x18 || dops[i].opcode2 == 0x19) // MULT(U)
3562 *cycles = 11; // approx from 7 11 14
3563 else
3564 *cycles = 37;
3565 return 1;
3566}
3567
3568static void multdiv_prepare_stall(int i, const struct regstat *i_regs, int ccadj_)
3569{
3570 int j, found = 0, c = 0;
3571 if (HACK_ENABLED(NDHACK_NO_STALLS))
3572 return;
3573 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3574 // happens occasionally... cc evicted? Don't bother then
3575 return;
3576 }
3577 for (j = i + 1; j < slen; j++) {
3578 if (dops[j].bt)
3579 break;
3580 if ((found = is_mflohi(j)))
3581 break;
3582 if (dops[j].is_jump) {
3583 // check ds
3584 if (j + 1 < slen && (found = is_mflohi(j + 1)))
3585 j++;
3586 break;
3587 }
3588 }
3589 if (found)
3590 // handle all in multdiv_do_stall()
3591 return;
3592 check_multdiv(i, &c);
3593 assert(c > 0);
3594 assem_debug("; muldiv prepare stall %d\n", c);
3595 host_tempreg_acquire();
3596 emit_addimm(HOST_CCREG, ccadj_ + c, HOST_TEMPREG);
3597 emit_writeword(HOST_TEMPREG, &psxRegs.muldivBusyCycle);
3598 host_tempreg_release();
3599}
3600
3601static void multdiv_do_stall(int i, const struct regstat *i_regs)
3602{
3603 int j, known_cycles = 0;
3604 u_int reglist = get_host_reglist(i_regs->regmap);
3605 int rtmp = get_reg_temp(i_regs->regmap);
3606 if (rtmp < 0)
3607 rtmp = reglist_find_free(reglist);
3608 if (HACK_ENABLED(NDHACK_NO_STALLS))
3609 return;
3610 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG || rtmp < 0) {
3611 // happens occasionally... cc evicted? Don't bother then
3612 //printf("no cc/rtmp %08x\n", start + i*4);
3613 return;
3614 }
3615 if (!dops[i].bt) {
3616 for (j = i - 1; j >= 0; j--) {
3617 if (dops[j].is_ds) break;
3618 if (check_multdiv(j, &known_cycles))
3619 break;
3620 if (is_mflohi(j))
3621 // already handled by this op
3622 return;
3623 if (dops[j].bt || (j > 0 && ccadj[j - 1] > ccadj[j]))
3624 break;
3625 }
3626 j = max(j, 0);
3627 }
3628 if (known_cycles > 0) {
3629 known_cycles -= ccadj[i] - ccadj[j];
3630 assem_debug("; muldiv stall resolved %d\n", known_cycles);
3631 if (known_cycles > 0)
3632 emit_addimm(HOST_CCREG, known_cycles, HOST_CCREG);
3633 return;
3634 }
3635 assem_debug("; muldiv stall unresolved\n");
3636 host_tempreg_acquire();
3637 emit_readword(&psxRegs.muldivBusyCycle, rtmp);
3638 emit_addimm(rtmp, -ccadj[i], rtmp);
3639 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3640 emit_cmpimm(HOST_TEMPREG, 37);
3641 emit_cmovb_reg(rtmp, HOST_CCREG);
3642 //emit_log_gte_stall(i, 0, reglist);
3643 host_tempreg_release();
3644}
3645
3646static void cop2_get_dreg(u_int copr,signed char tl,signed char temp)
3647{
3648 switch (copr) {
3649 case 1:
3650 case 3:
3651 case 5:
3652 case 8:
3653 case 9:
3654 case 10:
3655 case 11:
3656 emit_readword(&reg_cop2d[copr],tl);
3657 emit_signextend16(tl,tl);
3658 emit_writeword(tl,&reg_cop2d[copr]); // hmh
3659 break;
3660 case 7:
3661 case 16:
3662 case 17:
3663 case 18:
3664 case 19:
3665 emit_readword(&reg_cop2d[copr],tl);
3666 emit_andimm(tl,0xffff,tl);
3667 emit_writeword(tl,&reg_cop2d[copr]);
3668 break;
3669 case 15:
3670 emit_readword(&reg_cop2d[14],tl); // SXY2
3671 emit_writeword(tl,&reg_cop2d[copr]);
3672 break;
3673 case 28:
3674 case 29:
3675 c2op_mfc2_29_assemble(tl,temp);
3676 break;
3677 default:
3678 emit_readword(&reg_cop2d[copr],tl);
3679 break;
3680 }
3681}
3682
3683static void cop2_put_dreg(u_int copr,signed char sl,signed char temp)
3684{
3685 switch (copr) {
3686 case 15:
3687 emit_readword(&reg_cop2d[13],temp); // SXY1
3688 emit_writeword(sl,&reg_cop2d[copr]);
3689 emit_writeword(temp,&reg_cop2d[12]); // SXY0
3690 emit_readword(&reg_cop2d[14],temp); // SXY2
3691 emit_writeword(sl,&reg_cop2d[14]);
3692 emit_writeword(temp,&reg_cop2d[13]); // SXY1
3693 break;
3694 case 28:
3695 emit_andimm(sl,0x001f,temp);
3696 emit_shlimm(temp,7,temp);
3697 emit_writeword(temp,&reg_cop2d[9]);
3698 emit_andimm(sl,0x03e0,temp);
3699 emit_shlimm(temp,2,temp);
3700 emit_writeword(temp,&reg_cop2d[10]);
3701 emit_andimm(sl,0x7c00,temp);
3702 emit_shrimm(temp,3,temp);
3703 emit_writeword(temp,&reg_cop2d[11]);
3704 emit_writeword(sl,&reg_cop2d[28]);
3705 break;
3706 case 30:
3707 emit_xorsar_imm(sl,sl,31,temp);
3708#if defined(HAVE_ARMV5) || defined(__aarch64__)
3709 emit_clz(temp,temp);
3710#else
3711 emit_movs(temp,HOST_TEMPREG);
3712 emit_movimm(0,temp);
3713 emit_jeq((int)out+4*4);
3714 emit_addpl_imm(temp,1,temp);
3715 emit_lslpls_imm(HOST_TEMPREG,1,HOST_TEMPREG);
3716 emit_jns((int)out-2*4);
3717#endif
3718 emit_writeword(sl,&reg_cop2d[30]);
3719 emit_writeword(temp,&reg_cop2d[31]);
3720 break;
3721 case 31:
3722 break;
3723 default:
3724 emit_writeword(sl,&reg_cop2d[copr]);
3725 break;
3726 }
3727}
3728
3729static void c2ls_assemble(int i, const struct regstat *i_regs, int ccadj_)
3730{
3731 int s,tl;
3732 int ar;
3733 int offset;
3734 int memtarget=0,c=0;
3735 void *jaddr2=NULL;
3736 enum stub_type type;
3737 int agr=AGEN1+(i&1);
3738 int offset_reg = -1;
3739 int fastio_reg_override = -1;
3740 u_int reglist=get_host_reglist(i_regs->regmap);
3741 u_int copr=(source[i]>>16)&0x1f;
3742 s=get_reg(i_regs->regmap,dops[i].rs1);
3743 tl=get_reg(i_regs->regmap,FTEMP);
3744 offset=imm[i];
3745 assert(dops[i].rs1>0);
3746 assert(tl>=0);
3747
3748 if(i_regs->regmap[HOST_CCREG]==CCREG)
3749 reglist&=~(1<<HOST_CCREG);
3750
3751 // get the address
3752 if (dops[i].opcode==0x3a) { // SWC2
3753 ar=get_reg(i_regs->regmap,agr);
3754 if(ar<0) ar=get_reg_temp(i_regs->regmap);
3755 reglist|=1<<ar;
3756 } else { // LWC2
3757 ar=tl;
3758 }
3759 if(s>=0) c=(i_regs->wasconst>>s)&1;
3760 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3761 if (!offset&&!c&&s>=0) ar=s;
3762 assert(ar>=0);
3763
3764 cop2_do_stall_check(0, i, i_regs, reglist);
3765
3766 if (dops[i].opcode==0x3a) { // SWC2
3767 cop2_get_dreg(copr,tl,-1);
3768 type=STOREW_STUB;
3769 }
3770 else
3771 type=LOADW_STUB;
3772
3773 if(c&&!memtarget) {
3774 jaddr2=out;
3775 emit_jmp(0); // inline_readstub/inline_writestub?
3776 }
3777 else {
3778 if(!c) {
3779 jaddr2 = emit_fastpath_cmp_jump(i, i_regs, ar,
3780 &offset_reg, &fastio_reg_override);
3781 }
3782 else if (ram_offset && memtarget) {
3783 offset_reg = get_ro_reg(i_regs, 0);
3784 }
3785 switch (dops[i].opcode) {
3786 case 0x32: { // LWC2
3787 int a = ar;
3788 if (fastio_reg_override >= 0)
3789 a = fastio_reg_override;
3790 do_load_word(a, tl, offset_reg);
3791 break;
3792 }
3793 case 0x3a: { // SWC2
3794 #ifdef DESTRUCTIVE_SHIFT
3795 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3796 #endif
3797 int a = ar;
3798 if (fastio_reg_override >= 0)
3799 a = fastio_reg_override;
3800 do_store_word(a, 0, tl, offset_reg, 1);
3801 break;
3802 }
3803 default:
3804 assert(0);
3805 }
3806 }
3807 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3808 host_tempreg_release();
3809 if(jaddr2)
3810 add_stub_r(type,jaddr2,out,i,ar,i_regs,ccadj_,reglist);
3811 if(dops[i].opcode==0x3a) // SWC2
3812 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3813#if defined(HOST_IMM8)
3814 int ir=get_reg(i_regs->regmap,INVCP);
3815 assert(ir>=0);
3816 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3817#else
3818 emit_cmpmem_indexedsr12_imm(invalid_code,ar,1);
3819#endif
3820 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3821 emit_callne(invalidate_addr_reg[ar]);
3822 #else
3823 void *jaddr3 = out;
3824 emit_jne(0);
3825 add_stub(INVCODE_STUB,jaddr3,out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3826 #endif
3827 }
3828 if (dops[i].opcode==0x32) { // LWC2
3829 host_tempreg_acquire();
3830 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3831 host_tempreg_release();
3832 }
3833}
3834
3835static void cop2_assemble(int i, const struct regstat *i_regs)
3836{
3837 u_int copr = (source[i]>>11) & 0x1f;
3838 signed char temp = get_reg_temp(i_regs->regmap);
3839
3840 if (!HACK_ENABLED(NDHACK_NO_STALLS)) {
3841 u_int reglist = reglist_exclude(get_host_reglist(i_regs->regmap), temp, -1);
3842 if (dops[i].opcode2 == 0 || dops[i].opcode2 == 2) { // MFC2/CFC2
3843 signed char tl = get_reg(i_regs->regmap, dops[i].rt1);
3844 reglist = reglist_exclude(reglist, tl, -1);
3845 }
3846 cop2_do_stall_check(0, i, i_regs, reglist);
3847 }
3848 if (dops[i].opcode2==0) { // MFC2
3849 signed char tl=get_reg(i_regs->regmap,dops[i].rt1);
3850 if(tl>=0&&dops[i].rt1!=0)
3851 cop2_get_dreg(copr,tl,temp);
3852 }
3853 else if (dops[i].opcode2==4) { // MTC2
3854 signed char sl=get_reg(i_regs->regmap,dops[i].rs1);
3855 cop2_put_dreg(copr,sl,temp);
3856 }
3857 else if (dops[i].opcode2==2) // CFC2
3858 {
3859 signed char tl=get_reg(i_regs->regmap,dops[i].rt1);
3860 if(tl>=0&&dops[i].rt1!=0)
3861 emit_readword(&reg_cop2c[copr],tl);
3862 }
3863 else if (dops[i].opcode2==6) // CTC2
3864 {
3865 signed char sl=get_reg(i_regs->regmap,dops[i].rs1);
3866 switch(copr) {
3867 case 4:
3868 case 12:
3869 case 20:
3870 case 26:
3871 case 27:
3872 case 29:
3873 case 30:
3874 emit_signextend16(sl,temp);
3875 break;
3876 case 31:
3877 c2op_ctc2_31_assemble(sl,temp);
3878 break;
3879 default:
3880 temp=sl;
3881 break;
3882 }
3883 emit_writeword(temp,&reg_cop2c[copr]);
3884 assert(sl>=0);
3885 }
3886}
3887
3888static void do_unalignedwritestub(int n)
3889{
3890 assem_debug("do_unalignedwritestub %x\n",start+stubs[n].a*4);
3891 literal_pool(256);
3892 set_jump_target(stubs[n].addr, out);
3893
3894 int i=stubs[n].a;
3895 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3896 int addr=stubs[n].b;
3897 u_int reglist=stubs[n].e;
3898 signed char *i_regmap=i_regs->regmap;
3899 int temp2=get_reg(i_regmap,FTEMP);
3900 int rt;
3901 rt=get_reg(i_regmap,dops[i].rs2);
3902 assert(rt>=0);
3903 assert(addr>=0);
3904 assert(dops[i].opcode==0x2a||dops[i].opcode==0x2e); // SWL/SWR only implemented
3905 reglist|=(1<<addr);
3906 reglist&=~(1<<temp2);
3907
3908 // don't bother with it and call write handler
3909 save_regs(reglist);
3910 pass_args(addr,rt);
3911 int cc=get_reg(i_regmap,CCREG);
3912 if(cc<0)
3913 emit_loadreg(CCREG,2);
3914 emit_addimm(cc<0?2:cc,(int)stubs[n].d+1,2);
3915 emit_far_call((dops[i].opcode==0x2a?jump_handle_swl:jump_handle_swr));
3916 emit_addimm(0,-((int)stubs[n].d+1),cc<0?2:cc);
3917 if(cc<0)
3918 emit_storereg(CCREG,2);
3919 restore_regs(reglist);
3920 emit_jmp(stubs[n].retaddr); // return address
3921}
3922
3923#ifndef multdiv_assemble
3924void multdiv_assemble(int i,struct regstat *i_regs)
3925{
3926 printf("Need multdiv_assemble for this architecture.\n");
3927 abort();
3928}
3929#endif
3930
3931static void mov_assemble(int i, const struct regstat *i_regs)
3932{
3933 //if(dops[i].opcode2==0x10||dops[i].opcode2==0x12) { // MFHI/MFLO
3934 //if(dops[i].opcode2==0x11||dops[i].opcode2==0x13) { // MTHI/MTLO
3935 if(dops[i].rt1) {
3936 signed char sl,tl;
3937 tl=get_reg(i_regs->regmap,dops[i].rt1);
3938 //assert(tl>=0);
3939 if(tl>=0) {
3940 sl=get_reg(i_regs->regmap,dops[i].rs1);
3941 if(sl>=0) emit_mov(sl,tl);
3942 else emit_loadreg(dops[i].rs1,tl);
3943 }
3944 }
3945 if (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG) // MFHI/MFLO
3946 multdiv_do_stall(i, i_regs);
3947}
3948
3949// call interpreter, exception handler, things that change pc/regs/cycles ...
3950static void call_c_cpu_handler(int i, const struct regstat *i_regs, int ccadj_, u_int pc, void *func)
3951{
3952 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3953 assert(ccreg==HOST_CCREG);
3954 assert(!is_delayslot);
3955 (void)ccreg;
3956
3957 emit_movimm(pc,3); // Get PC
3958 emit_readword(&last_count,2);
3959 emit_writeword(3,&psxRegs.pc);
3960 emit_addimm(HOST_CCREG,ccadj_,HOST_CCREG);
3961 emit_add(2,HOST_CCREG,2);
3962 emit_writeword(2,&psxRegs.cycle);
3963 emit_far_call(func);
3964 emit_far_jump(jump_to_new_pc);
3965}
3966
3967static void syscall_assemble(int i, const struct regstat *i_regs, int ccadj_)
3968{
3969 // 'break' tends to be littered around to catch things like
3970 // division by 0 and is almost never executed, so don't emit much code here
3971 void *func = (dops[i].opcode2 == 0x0C)
3972 ? (is_delayslot ? jump_syscall_ds : jump_syscall)
3973 : (is_delayslot ? jump_break_ds : jump_break);
3974 assert(get_reg(i_regs->regmap, CCREG) == HOST_CCREG);
3975 emit_movimm(start + i*4, 2); // pc
3976 emit_addimm(HOST_CCREG, ccadj_ + CLOCK_ADJUST(1), HOST_CCREG);
3977 emit_far_jump(func);
3978}
3979
3980static void hlecall_assemble(int i, const struct regstat *i_regs, int ccadj_)
3981{
3982 void *hlefunc = psxNULL;
3983 uint32_t hleCode = source[i] & 0x03ffffff;
3984 if (hleCode < ARRAY_SIZE(psxHLEt))
3985 hlefunc = psxHLEt[hleCode];
3986
3987 call_c_cpu_handler(i, i_regs, ccadj_, start + i*4+4, hlefunc);
3988}
3989
3990static void intcall_assemble(int i, const struct regstat *i_regs, int ccadj_)
3991{
3992 call_c_cpu_handler(i, i_regs, ccadj_, start + i*4, execI);
3993}
3994
3995static void speculate_mov(int rs,int rt)
3996{
3997 if(rt!=0) {
3998 smrv_strong_next|=1<<rt;
3999 smrv[rt]=smrv[rs];
4000 }
4001}
4002
4003static void speculate_mov_weak(int rs,int rt)
4004{
4005 if(rt!=0) {
4006 smrv_weak_next|=1<<rt;
4007 smrv[rt]=smrv[rs];
4008 }
4009}
4010
4011static void speculate_register_values(int i)
4012{
4013 if(i==0) {
4014 memcpy(smrv,psxRegs.GPR.r,sizeof(smrv));
4015 // gp,sp are likely to stay the same throughout the block
4016 smrv_strong_next=(1<<28)|(1<<29)|(1<<30);
4017 smrv_weak_next=~smrv_strong_next;
4018 //printf(" llr %08x\n", smrv[4]);
4019 }
4020 smrv_strong=smrv_strong_next;
4021 smrv_weak=smrv_weak_next;
4022 switch(dops[i].itype) {
4023 case ALU:
4024 if ((smrv_strong>>dops[i].rs1)&1) speculate_mov(dops[i].rs1,dops[i].rt1);
4025 else if((smrv_strong>>dops[i].rs2)&1) speculate_mov(dops[i].rs2,dops[i].rt1);
4026 else if((smrv_weak>>dops[i].rs1)&1) speculate_mov_weak(dops[i].rs1,dops[i].rt1);
4027 else if((smrv_weak>>dops[i].rs2)&1) speculate_mov_weak(dops[i].rs2,dops[i].rt1);
4028 else {
4029 smrv_strong_next&=~(1<<dops[i].rt1);
4030 smrv_weak_next&=~(1<<dops[i].rt1);
4031 }
4032 break;
4033 case SHIFTIMM:
4034 smrv_strong_next&=~(1<<dops[i].rt1);
4035 smrv_weak_next&=~(1<<dops[i].rt1);
4036 // fallthrough
4037 case IMM16:
4038 if(dops[i].rt1&&is_const(&regs[i],dops[i].rt1)) {
4039 int value,hr=get_reg(regs[i].regmap,dops[i].rt1);
4040 if(hr>=0) {
4041 if(get_final_value(hr,i,&value))
4042 smrv[dops[i].rt1]=value;
4043 else smrv[dops[i].rt1]=constmap[i][hr];
4044 smrv_strong_next|=1<<dops[i].rt1;
4045 }
4046 }
4047 else {
4048 if ((smrv_strong>>dops[i].rs1)&1) speculate_mov(dops[i].rs1,dops[i].rt1);
4049 else if((smrv_weak>>dops[i].rs1)&1) speculate_mov_weak(dops[i].rs1,dops[i].rt1);
4050 }
4051 break;
4052 case LOAD:
4053 if(start<0x2000&&(dops[i].rt1==26||(smrv[dops[i].rt1]>>24)==0xa0)) {
4054 // special case for BIOS
4055 smrv[dops[i].rt1]=0xa0000000;
4056 smrv_strong_next|=1<<dops[i].rt1;
4057 break;
4058 }
4059 // fallthrough
4060 case SHIFT:
4061 case LOADLR:
4062 case MOV:
4063 smrv_strong_next&=~(1<<dops[i].rt1);
4064 smrv_weak_next&=~(1<<dops[i].rt1);
4065 break;
4066 case COP0:
4067 case COP2:
4068 if(dops[i].opcode2==0||dops[i].opcode2==2) { // MFC/CFC
4069 smrv_strong_next&=~(1<<dops[i].rt1);
4070 smrv_weak_next&=~(1<<dops[i].rt1);
4071 }
4072 break;
4073 case C2LS:
4074 if (dops[i].opcode==0x32) { // LWC2
4075 smrv_strong_next&=~(1<<dops[i].rt1);
4076 smrv_weak_next&=~(1<<dops[i].rt1);
4077 }
4078 break;
4079 }
4080#if 0
4081 int r=4;
4082 printf("x %08x %08x %d %d c %08x %08x\n",smrv[r],start+i*4,
4083 ((smrv_strong>>r)&1),(smrv_weak>>r)&1,regs[i].isconst,regs[i].wasconst);
4084#endif
4085}
4086
4087static void ujump_assemble(int i, const struct regstat *i_regs);
4088static void rjump_assemble(int i, const struct regstat *i_regs);
4089static void cjump_assemble(int i, const struct regstat *i_regs);
4090static void sjump_assemble(int i, const struct regstat *i_regs);
4091
4092static int assemble(int i, const struct regstat *i_regs, int ccadj_)
4093{
4094 int ds = 0;
4095 switch (dops[i].itype) {
4096 case ALU:
4097 alu_assemble(i, i_regs);
4098 break;
4099 case IMM16:
4100 imm16_assemble(i, i_regs);
4101 break;
4102 case SHIFT:
4103 shift_assemble(i, i_regs);
4104 break;
4105 case SHIFTIMM:
4106 shiftimm_assemble(i, i_regs);
4107 break;
4108 case LOAD:
4109 load_assemble(i, i_regs, ccadj_);
4110 break;
4111 case LOADLR:
4112 loadlr_assemble(i, i_regs, ccadj_);
4113 break;
4114 case STORE:
4115 store_assemble(i, i_regs, ccadj_);
4116 break;
4117 case STORELR:
4118 storelr_assemble(i, i_regs, ccadj_);
4119 break;
4120 case COP0:
4121 cop0_assemble(i, i_regs, ccadj_);
4122 break;
4123 case COP1:
4124 cop1_assemble(i, i_regs);
4125 break;
4126 case C1LS:
4127 c1ls_assemble(i, i_regs);
4128 break;
4129 case COP2:
4130 cop2_assemble(i, i_regs);
4131 break;
4132 case C2LS:
4133 c2ls_assemble(i, i_regs, ccadj_);
4134 break;
4135 case C2OP:
4136 c2op_assemble(i, i_regs);
4137 break;
4138 case MULTDIV:
4139 multdiv_assemble(i, i_regs);
4140 multdiv_prepare_stall(i, i_regs, ccadj_);
4141 break;
4142 case MOV:
4143 mov_assemble(i, i_regs);
4144 break;
4145 case SYSCALL:
4146 syscall_assemble(i, i_regs, ccadj_);
4147 break;
4148 case HLECALL:
4149 hlecall_assemble(i, i_regs, ccadj_);
4150 break;
4151 case INTCALL:
4152 intcall_assemble(i, i_regs, ccadj_);
4153 break;
4154 case UJUMP:
4155 ujump_assemble(i, i_regs);
4156 ds = 1;
4157 break;
4158 case RJUMP:
4159 rjump_assemble(i, i_regs);
4160 ds = 1;
4161 break;
4162 case CJUMP:
4163 cjump_assemble(i, i_regs);
4164 ds = 1;
4165 break;
4166 case SJUMP:
4167 sjump_assemble(i, i_regs);
4168 ds = 1;
4169 break;
4170 case NOP:
4171 case OTHER:
4172 case NI:
4173 // not handled, just skip
4174 break;
4175 default:
4176 assert(0);
4177 }
4178 return ds;
4179}
4180
4181static void ds_assemble(int i, const struct regstat *i_regs)
4182{
4183 speculate_register_values(i);
4184 is_delayslot = 1;
4185 switch (dops[i].itype) {
4186 case SYSCALL:
4187 case HLECALL:
4188 case INTCALL:
4189 case UJUMP:
4190 case RJUMP:
4191 case CJUMP:
4192 case SJUMP:
4193 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4194 break;
4195 default:
4196 assemble(i, i_regs, ccadj[i]);
4197 }
4198 is_delayslot = 0;
4199}
4200
4201// Is the branch target a valid internal jump?
4202static int internal_branch(int addr)
4203{
4204 if(addr&1) return 0; // Indirect (register) jump
4205 if(addr>=start && addr<start+slen*4-4)
4206 {
4207 return 1;
4208 }
4209 return 0;
4210}
4211
4212static void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t u)
4213{
4214 int hr;
4215 for(hr=0;hr<HOST_REGS;hr++) {
4216 if(hr!=EXCLUDE_REG) {
4217 if(pre[hr]!=entry[hr]) {
4218 if(pre[hr]>=0) {
4219 if((dirty>>hr)&1) {
4220 if(get_reg(entry,pre[hr])<0) {
4221 assert(pre[hr]<64);
4222 if(!((u>>pre[hr])&1))
4223 emit_storereg(pre[hr],hr);
4224 }
4225 }
4226 }
4227 }
4228 }
4229 }
4230 // Move from one register to another (no writeback)
4231 for(hr=0;hr<HOST_REGS;hr++) {
4232 if(hr!=EXCLUDE_REG) {
4233 if(pre[hr]!=entry[hr]) {
4234 if(pre[hr]>=0&&pre[hr]<TEMPREG) {
4235 int nr;
4236 if((nr=get_reg(entry,pre[hr]))>=0) {
4237 emit_mov(hr,nr);
4238 }
4239 }
4240 }
4241 }
4242 }
4243}
4244
4245// Load the specified registers
4246// This only loads the registers given as arguments because
4247// we don't want to load things that will be overwritten
4248static inline void load_reg(signed char entry[], signed char regmap[], int rs)
4249{
4250 int hr = get_reg(regmap, rs);
4251 if (hr >= 0 && entry[hr] != regmap[hr])
4252 emit_loadreg(regmap[hr], hr);
4253}
4254
4255static void load_regs(signed char entry[], signed char regmap[], int rs1, int rs2)
4256{
4257 load_reg(entry, regmap, rs1);
4258 if (rs1 != rs2)
4259 load_reg(entry, regmap, rs2);
4260}
4261
4262// Load registers prior to the start of a loop
4263// so that they are not loaded within the loop
4264static void loop_preload(signed char pre[],signed char entry[])
4265{
4266 int hr;
4267 for (hr = 0; hr < HOST_REGS; hr++) {
4268 int r = entry[hr];
4269 if (r >= 0 && pre[hr] != r && get_reg(pre, r) < 0) {
4270 assem_debug("loop preload:\n");
4271 if (r < TEMPREG)
4272 emit_loadreg(r, hr);
4273 }
4274 }
4275}
4276
4277// Generate address for load/store instruction
4278// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4279static void address_generation(int i, const struct regstat *i_regs, signed char entry[])
4280{
4281 if (dops[i].is_load || dops[i].is_store) {
4282 int ra=-1;
4283 int agr=AGEN1+(i&1);
4284 if(dops[i].itype==LOAD) {
4285 ra=get_reg(i_regs->regmap,dops[i].rt1);
4286 if(ra<0) ra=get_reg_temp(i_regs->regmap);
4287 assert(ra>=0);
4288 }
4289 if(dops[i].itype==LOADLR) {
4290 ra=get_reg(i_regs->regmap,FTEMP);
4291 }
4292 if(dops[i].itype==STORE||dops[i].itype==STORELR) {
4293 ra=get_reg(i_regs->regmap,agr);
4294 if(ra<0) ra=get_reg_temp(i_regs->regmap);
4295 }
4296 if(dops[i].itype==C2LS) {
4297 if ((dops[i].opcode&0x3b)==0x31||(dops[i].opcode&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4298 ra=get_reg(i_regs->regmap,FTEMP);
4299 else { // SWC1/SDC1/SWC2/SDC2
4300 ra=get_reg(i_regs->regmap,agr);
4301 if(ra<0) ra=get_reg_temp(i_regs->regmap);
4302 }
4303 }
4304 int rs=get_reg(i_regs->regmap,dops[i].rs1);
4305 if(ra>=0) {
4306 int offset=imm[i];
4307 int c=(i_regs->wasconst>>rs)&1;
4308 if(dops[i].rs1==0) {
4309 // Using r0 as a base address
4310 if(!entry||entry[ra]!=agr) {
4311 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
4312 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4313 }else if (dops[i].opcode==0x1a||dops[i].opcode==0x1b) {
4314 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4315 }else{
4316 emit_movimm(offset,ra);
4317 }
4318 } // else did it in the previous cycle
4319 }
4320 else if(rs<0) {
4321 if(!entry||entry[ra]!=dops[i].rs1)
4322 emit_loadreg(dops[i].rs1,ra);
4323 //if(!entry||entry[ra]!=dops[i].rs1)
4324 // printf("poor load scheduling!\n");
4325 }
4326 else if(c) {
4327 if(dops[i].rs1!=dops[i].rt1||dops[i].itype!=LOAD) {
4328 if(!entry||entry[ra]!=agr) {
4329 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
4330 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4331 }else if (dops[i].opcode==0x1a||dops[i].opcode==0x1b) {
4332 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4333 }else{
4334 emit_movimm(constmap[i][rs]+offset,ra);
4335 regs[i].loadedconst|=1<<ra;
4336 }
4337 } // else did it in the previous cycle
4338 } // else load_consts already did it
4339 }
4340 if(offset&&!c&&dops[i].rs1) {
4341 if(rs>=0) {
4342 emit_addimm(rs,offset,ra);
4343 }else{
4344 emit_addimm(ra,offset,ra);
4345 }
4346 }
4347 }
4348 }
4349 // Preload constants for next instruction
4350 if (dops[i+1].is_load || dops[i+1].is_store) {
4351 int agr,ra;
4352 // Actual address
4353 agr=AGEN1+((i+1)&1);
4354 ra=get_reg(i_regs->regmap,agr);
4355 if(ra>=0) {
4356 int rs=get_reg(regs[i+1].regmap,dops[i+1].rs1);
4357 int offset=imm[i+1];
4358 int c=(regs[i+1].wasconst>>rs)&1;
4359 if(c&&(dops[i+1].rs1!=dops[i+1].rt1||dops[i+1].itype!=LOAD)) {
4360 if (dops[i+1].opcode==0x22||dops[i+1].opcode==0x26) {
4361 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4362 }else if (dops[i+1].opcode==0x1a||dops[i+1].opcode==0x1b) {
4363 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4364 }else{
4365 emit_movimm(constmap[i+1][rs]+offset,ra);
4366 regs[i+1].loadedconst|=1<<ra;
4367 }
4368 }
4369 else if(dops[i+1].rs1==0) {
4370 // Using r0 as a base address
4371 if (dops[i+1].opcode==0x22||dops[i+1].opcode==0x26) {
4372 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4373 }else if (dops[i+1].opcode==0x1a||dops[i+1].opcode==0x1b) {
4374 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4375 }else{
4376 emit_movimm(offset,ra);
4377 }
4378 }
4379 }
4380 }
4381}
4382
4383static int get_final_value(int hr, int i, int *value)
4384{
4385 int reg=regs[i].regmap[hr];
4386 while(i<slen-1) {
4387 if(regs[i+1].regmap[hr]!=reg) break;
4388 if(!((regs[i+1].isconst>>hr)&1)) break;
4389 if(dops[i+1].bt) break;
4390 i++;
4391 }
4392 if(i<slen-1) {
4393 if (dops[i].is_jump) {
4394 *value=constmap[i][hr];
4395 return 1;
4396 }
4397 if(!dops[i+1].bt) {
4398 if (dops[i+1].is_jump) {
4399 // Load in delay slot, out-of-order execution
4400 if(dops[i+2].itype==LOAD&&dops[i+2].rs1==reg&&dops[i+2].rt1==reg&&((regs[i+1].wasconst>>hr)&1))
4401 {
4402 // Precompute load address
4403 *value=constmap[i][hr]+imm[i+2];
4404 return 1;
4405 }
4406 }
4407 if(dops[i+1].itype==LOAD&&dops[i+1].rs1==reg&&dops[i+1].rt1==reg)
4408 {
4409 // Precompute load address
4410 *value=constmap[i][hr]+imm[i+1];
4411 //printf("c=%x imm=%lx\n",(long)constmap[i][hr],imm[i+1]);
4412 return 1;
4413 }
4414 }
4415 }
4416 *value=constmap[i][hr];
4417 //printf("c=%lx\n",(long)constmap[i][hr]);
4418 if(i==slen-1) return 1;
4419 assert(reg < 64);
4420 return !((unneeded_reg[i+1]>>reg)&1);
4421}
4422
4423// Load registers with known constants
4424static void load_consts(signed char pre[],signed char regmap[],int i)
4425{
4426 int hr,hr2;
4427 // propagate loaded constant flags
4428 if(i==0||dops[i].bt)
4429 regs[i].loadedconst=0;
4430 else {
4431 for(hr=0;hr<HOST_REGS;hr++) {
4432 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4433 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4434 {
4435 regs[i].loadedconst|=1<<hr;
4436 }
4437 }
4438 }
4439 // Load 32-bit regs
4440 for(hr=0;hr<HOST_REGS;hr++) {
4441 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4442 //if(entry[hr]!=regmap[hr]) {
4443 if(!((regs[i].loadedconst>>hr)&1)) {
4444 assert(regmap[hr]<64);
4445 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4446 int value,similar=0;
4447 if(get_final_value(hr,i,&value)) {
4448 // see if some other register has similar value
4449 for(hr2=0;hr2<HOST_REGS;hr2++) {
4450 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4451 if(is_similar_value(value,constmap[i][hr2])) {
4452 similar=1;
4453 break;
4454 }
4455 }
4456 }
4457 if(similar) {
4458 int value2;
4459 if(get_final_value(hr2,i,&value2)) // is this needed?
4460 emit_movimm_from(value2,hr2,value,hr);
4461 else
4462 emit_movimm(value,hr);
4463 }
4464 else if(value==0) {
4465 emit_zeroreg(hr);
4466 }
4467 else {
4468 emit_movimm(value,hr);
4469 }
4470 }
4471 regs[i].loadedconst|=1<<hr;
4472 }
4473 }
4474 }
4475 }
4476}
4477
4478static void load_all_consts(const signed char regmap[], u_int dirty, int i)
4479{
4480 int hr;
4481 // Load 32-bit regs
4482 for(hr=0;hr<HOST_REGS;hr++) {
4483 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4484 assert(regmap[hr] < 64);
4485 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4486 int value=constmap[i][hr];
4487 if(value==0) {
4488 emit_zeroreg(hr);
4489 }
4490 else {
4491 emit_movimm(value,hr);
4492 }
4493 }
4494 }
4495 }
4496}
4497
4498// Write out all dirty registers (except cycle count)
4499static void wb_dirtys(const signed char i_regmap[], uint64_t i_dirty)
4500{
4501 int hr;
4502 for(hr=0;hr<HOST_REGS;hr++) {
4503 if(hr!=EXCLUDE_REG) {
4504 if(i_regmap[hr]>0) {
4505 if(i_regmap[hr]!=CCREG) {
4506 if((i_dirty>>hr)&1) {
4507 assert(i_regmap[hr]<64);
4508 emit_storereg(i_regmap[hr],hr);
4509 }
4510 }
4511 }
4512 }
4513 }
4514}
4515
4516// Write out dirty registers that we need to reload (pair with load_needed_regs)
4517// This writes the registers not written by store_regs_bt
4518static void wb_needed_dirtys(const signed char i_regmap[], uint64_t i_dirty, int addr)
4519{
4520 int hr;
4521 int t=(addr-start)>>2;
4522 for(hr=0;hr<HOST_REGS;hr++) {
4523 if(hr!=EXCLUDE_REG) {
4524 if(i_regmap[hr]>0) {
4525 if(i_regmap[hr]!=CCREG) {
4526 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1)) {
4527 if((i_dirty>>hr)&1) {
4528 assert(i_regmap[hr]<64);
4529 emit_storereg(i_regmap[hr],hr);
4530 }
4531 }
4532 }
4533 }
4534 }
4535 }
4536}
4537
4538// Load all registers (except cycle count)
4539static void load_all_regs(const signed char i_regmap[])
4540{
4541 int hr;
4542 for(hr=0;hr<HOST_REGS;hr++) {
4543 if(hr!=EXCLUDE_REG) {
4544 if(i_regmap[hr]==0) {
4545 emit_zeroreg(hr);
4546 }
4547 else
4548 if(i_regmap[hr]>0 && i_regmap[hr]<TEMPREG && i_regmap[hr]!=CCREG)
4549 {
4550 emit_loadreg(i_regmap[hr],hr);
4551 }
4552 }
4553 }
4554}
4555
4556// Load all current registers also needed by next instruction
4557static void load_needed_regs(const signed char i_regmap[], const signed char next_regmap[])
4558{
4559 int hr;
4560 for(hr=0;hr<HOST_REGS;hr++) {
4561 if(hr!=EXCLUDE_REG) {
4562 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4563 if(i_regmap[hr]==0) {
4564 emit_zeroreg(hr);
4565 }
4566 else
4567 if(i_regmap[hr]>0 && i_regmap[hr]<TEMPREG && i_regmap[hr]!=CCREG)
4568 {
4569 emit_loadreg(i_regmap[hr],hr);
4570 }
4571 }
4572 }
4573 }
4574}
4575
4576// Load all regs, storing cycle count if necessary
4577static void load_regs_entry(int t)
4578{
4579 int hr;
4580 if(dops[t].is_ds) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4581 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t],HOST_CCREG);
4582 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4583 emit_storereg(CCREG,HOST_CCREG);
4584 }
4585 // Load 32-bit regs
4586 for(hr=0;hr<HOST_REGS;hr++) {
4587 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4588 if(regs[t].regmap_entry[hr]==0) {
4589 emit_zeroreg(hr);
4590 }
4591 else if(regs[t].regmap_entry[hr]!=CCREG)
4592 {
4593 emit_loadreg(regs[t].regmap_entry[hr],hr);
4594 }
4595 }
4596 }
4597}
4598
4599// Store dirty registers prior to branch
4600static void store_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4601{
4602 if(internal_branch(addr))
4603 {
4604 int t=(addr-start)>>2;
4605 int hr;
4606 for(hr=0;hr<HOST_REGS;hr++) {
4607 if(hr!=EXCLUDE_REG) {
4608 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4609 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1)) {
4610 if((i_dirty>>hr)&1) {
4611 assert(i_regmap[hr]<64);
4612 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4613 emit_storereg(i_regmap[hr],hr);
4614 }
4615 }
4616 }
4617 }
4618 }
4619 }
4620 else
4621 {
4622 // Branch out of this block, write out all dirty regs
4623 wb_dirtys(i_regmap,i_dirty);
4624 }
4625}
4626
4627// Load all needed registers for branch target
4628static void load_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4629{
4630 //if(addr>=start && addr<(start+slen*4))
4631 if(internal_branch(addr))
4632 {
4633 int t=(addr-start)>>2;
4634 int hr;
4635 // Store the cycle count before loading something else
4636 if(i_regmap[HOST_CCREG]!=CCREG) {
4637 assert(i_regmap[HOST_CCREG]==-1);
4638 }
4639 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4640 emit_storereg(CCREG,HOST_CCREG);
4641 }
4642 // Load 32-bit regs
4643 for(hr=0;hr<HOST_REGS;hr++) {
4644 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4645 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4646 if(regs[t].regmap_entry[hr]==0) {
4647 emit_zeroreg(hr);
4648 }
4649 else if(regs[t].regmap_entry[hr]!=CCREG)
4650 {
4651 emit_loadreg(regs[t].regmap_entry[hr],hr);
4652 }
4653 }
4654 }
4655 }
4656 }
4657}
4658
4659static int match_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4660{
4661 if(addr>=start && addr<start+slen*4-4)
4662 {
4663 int t=(addr-start)>>2;
4664 int hr;
4665 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4666 for(hr=0;hr<HOST_REGS;hr++)
4667 {
4668 if(hr!=EXCLUDE_REG)
4669 {
4670 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4671 {
4672 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4673 {
4674 return 0;
4675 }
4676 else
4677 if((i_dirty>>hr)&1)
4678 {
4679 if(i_regmap[hr]<TEMPREG)
4680 {
4681 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4682 return 0;
4683 }
4684 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4685 {
4686 assert(0);
4687 }
4688 }
4689 }
4690 else // Same register but is it 32-bit or dirty?
4691 if(i_regmap[hr]>=0)
4692 {
4693 if(!((regs[t].dirty>>hr)&1))
4694 {
4695 if((i_dirty>>hr)&1)
4696 {
4697 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4698 {
4699 //printf("%x: dirty no match\n",addr);
4700 return 0;
4701 }
4702 }
4703 }
4704 }
4705 }
4706 }
4707 // Delay slots are not valid branch targets
4708 //if(t>0&&(dops[t-1].is_jump) return 0;
4709 // Delay slots require additional processing, so do not match
4710 if(dops[t].is_ds) return 0;
4711 }
4712 else
4713 {
4714 int hr;
4715 for(hr=0;hr<HOST_REGS;hr++)
4716 {
4717 if(hr!=EXCLUDE_REG)
4718 {
4719 if(i_regmap[hr]>=0)
4720 {
4721 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4722 {
4723 if((i_dirty>>hr)&1)
4724 {
4725 return 0;
4726 }
4727 }
4728 }
4729 }
4730 }
4731 }
4732 return 1;
4733}
4734
4735#ifdef DRC_DBG
4736static void drc_dbg_emit_do_cmp(int i, int ccadj_)
4737{
4738 extern void do_insn_cmp();
4739 //extern int cycle;
4740 u_int hr, reglist = get_host_reglist(regs[i].regmap);
4741
4742 assem_debug("//do_insn_cmp %08x\n", start+i*4);
4743 save_regs(reglist);
4744 // write out changed consts to match the interpreter
4745 if (i > 0 && !dops[i].bt) {
4746 for (hr = 0; hr < HOST_REGS; hr++) {
4747 int reg = regs[i].regmap_entry[hr]; // regs[i-1].regmap[hr];
4748 if (hr == EXCLUDE_REG || reg < 0)
4749 continue;
4750 if (!((regs[i-1].isconst >> hr) & 1))
4751 continue;
4752 if (i > 1 && reg == regs[i-2].regmap[hr] && constmap[i-1][hr] == constmap[i-2][hr])
4753 continue;
4754 emit_movimm(constmap[i-1][hr],0);
4755 emit_storereg(reg, 0);
4756 }
4757 }
4758 emit_movimm(start+i*4,0);
4759 emit_writeword(0,&pcaddr);
4760 int cc = get_reg(regs[i].regmap_entry, CCREG);
4761 if (cc < 0)
4762 emit_loadreg(CCREG, cc = 0);
4763 emit_addimm(cc, ccadj_, 0);
4764 emit_writeword(0, &psxRegs.cycle);
4765 emit_far_call(do_insn_cmp);
4766 //emit_readword(&cycle,0);
4767 //emit_addimm(0,2,0);
4768 //emit_writeword(0,&cycle);
4769 (void)get_reg2;
4770 restore_regs(reglist);
4771 assem_debug("\\\\do_insn_cmp\n");
4772}
4773#else
4774#define drc_dbg_emit_do_cmp(x,y)
4775#endif
4776
4777// Used when a branch jumps into the delay slot of another branch
4778static void ds_assemble_entry(int i)
4779{
4780 int t = (ba[i] - start) >> 2;
4781 int ccadj_ = -CLOCK_ADJUST(1);
4782 if (!instr_addr[t])
4783 instr_addr[t] = out;
4784 assem_debug("Assemble delay slot at %x\n",ba[i]);
4785 assem_debug("<->\n");
4786 drc_dbg_emit_do_cmp(t, ccadj_);
4787 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4788 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty);
4789 load_regs(regs[t].regmap_entry,regs[t].regmap,dops[t].rs1,dops[t].rs2);
4790 address_generation(t,&regs[t],regs[t].regmap_entry);
4791 if (ram_offset && (dops[t].is_load || dops[t].is_store))
4792 load_reg(regs[t].regmap_entry,regs[t].regmap,ROREG);
4793 if (dops[t].is_store)
4794 load_reg(regs[t].regmap_entry,regs[t].regmap,INVCP);
4795 is_delayslot=0;
4796 switch (dops[t].itype) {
4797 case SYSCALL:
4798 case HLECALL:
4799 case INTCALL:
4800 case UJUMP:
4801 case RJUMP:
4802 case CJUMP:
4803 case SJUMP:
4804 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4805 break;
4806 default:
4807 assemble(t, &regs[t], ccadj_);
4808 }
4809 store_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4810 load_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4811 if(internal_branch(ba[i]+4))
4812 assem_debug("branch: internal\n");
4813 else
4814 assem_debug("branch: external\n");
4815 assert(internal_branch(ba[i]+4));
4816 add_to_linker(out,ba[i]+4,internal_branch(ba[i]+4));
4817 emit_jmp(0);
4818}
4819
4820static void emit_extjump(void *addr, u_int target)
4821{
4822 emit_extjump2(addr, target, dyna_linker);
4823}
4824
4825// Load 2 immediates optimizing for small code size
4826static void emit_mov2imm_compact(int imm1,u_int rt1,int imm2,u_int rt2)
4827{
4828 emit_movimm(imm1,rt1);
4829 emit_movimm_from(imm1,rt1,imm2,rt2);
4830}
4831
4832static void do_cc(int i, const signed char i_regmap[], int *adj,
4833 int addr, int taken, int invert)
4834{
4835 int count, count_plus2;
4836 void *jaddr;
4837 void *idle=NULL;
4838 int t=0;
4839 if(dops[i].itype==RJUMP)
4840 {
4841 *adj=0;
4842 }
4843 //if(ba[i]>=start && ba[i]<(start+slen*4))
4844 if(internal_branch(ba[i]))
4845 {
4846 t=(ba[i]-start)>>2;
4847 if(dops[t].is_ds) *adj=-CLOCK_ADJUST(1); // Branch into delay slot adds an extra cycle
4848 else *adj=ccadj[t];
4849 }
4850 else
4851 {
4852 *adj=0;
4853 }
4854 count = ccadj[i];
4855 count_plus2 = count + CLOCK_ADJUST(2);
4856 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4857 // Idle loop
4858 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4859 idle=out;
4860 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4861 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4862 jaddr=out;
4863 emit_jmp(0);
4864 }
4865 else if(*adj==0||invert) {
4866 int cycles = count_plus2;
4867 // faster loop HACK
4868#if 0
4869 if (t&&*adj) {
4870 int rel=t-i;
4871 if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
4872 cycles=*adj+count+2-*adj;
4873 }
4874#endif
4875 emit_addimm_and_set_flags(cycles, HOST_CCREG);
4876 jaddr = out;
4877 emit_jns(0);
4878 }
4879 else
4880 {
4881 emit_cmpimm(HOST_CCREG, -count_plus2);
4882 jaddr = out;
4883 emit_jns(0);
4884 }
4885 add_stub(CC_STUB,jaddr,idle?idle:out,(*adj==0||invert||idle)?0:count_plus2,i,addr,taken,0);
4886}
4887
4888static void do_ccstub(int n)
4889{
4890 literal_pool(256);
4891 assem_debug("do_ccstub %x\n",start+(u_int)stubs[n].b*4);
4892 set_jump_target(stubs[n].addr, out);
4893 int i=stubs[n].b;
4894 if(stubs[n].d==NULLDS) {
4895 // Delay slot instruction is nullified ("likely" branch)
4896 wb_dirtys(regs[i].regmap,regs[i].dirty);
4897 }
4898 else if(stubs[n].d!=TAKEN) {
4899 wb_dirtys(branch_regs[i].regmap,branch_regs[i].dirty);
4900 }
4901 else {
4902 if(internal_branch(ba[i]))
4903 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4904 }
4905 if(stubs[n].c!=-1)
4906 {
4907 // Save PC as return address
4908 emit_movimm(stubs[n].c,EAX);
4909 emit_writeword(EAX,&pcaddr);
4910 }
4911 else
4912 {
4913 // Return address depends on which way the branch goes
4914 if(dops[i].itype==CJUMP||dops[i].itype==SJUMP)
4915 {
4916 int s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
4917 int s2l=get_reg(branch_regs[i].regmap,dops[i].rs2);
4918 if(dops[i].rs1==0)
4919 {
4920 s1l=s2l;
4921 s2l=-1;
4922 }
4923 else if(dops[i].rs2==0)
4924 {
4925 s2l=-1;
4926 }
4927 assert(s1l>=0);
4928 #ifdef DESTRUCTIVE_WRITEBACK
4929 if(dops[i].rs1) {
4930 if((branch_regs[i].dirty>>s1l)&&1)
4931 emit_loadreg(dops[i].rs1,s1l);
4932 }
4933 else {
4934 if((branch_regs[i].dirty>>s1l)&1)
4935 emit_loadreg(dops[i].rs2,s1l);
4936 }
4937 if(s2l>=0)
4938 if((branch_regs[i].dirty>>s2l)&1)
4939 emit_loadreg(dops[i].rs2,s2l);
4940 #endif
4941 int hr=0;
4942 int addr=-1,alt=-1,ntaddr=-1;
4943 while(hr<HOST_REGS)
4944 {
4945 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4946 branch_regs[i].regmap[hr]!=dops[i].rs1 &&
4947 branch_regs[i].regmap[hr]!=dops[i].rs2 )
4948 {
4949 addr=hr++;break;
4950 }
4951 hr++;
4952 }
4953 while(hr<HOST_REGS)
4954 {
4955 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4956 branch_regs[i].regmap[hr]!=dops[i].rs1 &&
4957 branch_regs[i].regmap[hr]!=dops[i].rs2 )
4958 {
4959 alt=hr++;break;
4960 }
4961 hr++;
4962 }
4963 if((dops[i].opcode&0x2E)==6) // BLEZ/BGTZ needs another register
4964 {
4965 while(hr<HOST_REGS)
4966 {
4967 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4968 branch_regs[i].regmap[hr]!=dops[i].rs1 &&
4969 branch_regs[i].regmap[hr]!=dops[i].rs2 )
4970 {
4971 ntaddr=hr;break;
4972 }
4973 hr++;
4974 }
4975 assert(hr<HOST_REGS);
4976 }
4977 if((dops[i].opcode&0x2f)==4) // BEQ
4978 {
4979 #ifdef HAVE_CMOV_IMM
4980 if(s2l>=0) emit_cmp(s1l,s2l);
4981 else emit_test(s1l,s1l);
4982 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4983 #else
4984 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4985 if(s2l>=0) emit_cmp(s1l,s2l);
4986 else emit_test(s1l,s1l);
4987 emit_cmovne_reg(alt,addr);
4988 #endif
4989 }
4990 if((dops[i].opcode&0x2f)==5) // BNE
4991 {
4992 #ifdef HAVE_CMOV_IMM
4993 if(s2l>=0) emit_cmp(s1l,s2l);
4994 else emit_test(s1l,s1l);
4995 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4996 #else
4997 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4998 if(s2l>=0) emit_cmp(s1l,s2l);
4999 else emit_test(s1l,s1l);
5000 emit_cmovne_reg(alt,addr);
5001 #endif
5002 }
5003 if((dops[i].opcode&0x2f)==6) // BLEZ
5004 {
5005 //emit_movimm(ba[i],alt);
5006 //emit_movimm(start+i*4+8,addr);
5007 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5008 emit_cmpimm(s1l,1);
5009 emit_cmovl_reg(alt,addr);
5010 }
5011 if((dops[i].opcode&0x2f)==7) // BGTZ
5012 {
5013 //emit_movimm(ba[i],addr);
5014 //emit_movimm(start+i*4+8,ntaddr);
5015 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5016 emit_cmpimm(s1l,1);
5017 emit_cmovl_reg(ntaddr,addr);
5018 }
5019 if((dops[i].opcode==1)&&(dops[i].opcode2&0x2D)==0) // BLTZ
5020 {
5021 //emit_movimm(ba[i],alt);
5022 //emit_movimm(start+i*4+8,addr);
5023 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5024 emit_test(s1l,s1l);
5025 emit_cmovs_reg(alt,addr);
5026 }
5027 if((dops[i].opcode==1)&&(dops[i].opcode2&0x2D)==1) // BGEZ
5028 {
5029 //emit_movimm(ba[i],addr);
5030 //emit_movimm(start+i*4+8,alt);
5031 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5032 emit_test(s1l,s1l);
5033 emit_cmovs_reg(alt,addr);
5034 }
5035 if(dops[i].opcode==0x11 && dops[i].opcode2==0x08 ) {
5036 if(source[i]&0x10000) // BC1T
5037 {
5038 //emit_movimm(ba[i],alt);
5039 //emit_movimm(start+i*4+8,addr);
5040 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5041 emit_testimm(s1l,0x800000);
5042 emit_cmovne_reg(alt,addr);
5043 }
5044 else // BC1F
5045 {
5046 //emit_movimm(ba[i],addr);
5047 //emit_movimm(start+i*4+8,alt);
5048 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5049 emit_testimm(s1l,0x800000);
5050 emit_cmovne_reg(alt,addr);
5051 }
5052 }
5053 emit_writeword(addr,&pcaddr);
5054 }
5055 else
5056 if(dops[i].itype==RJUMP)
5057 {
5058 int r=get_reg(branch_regs[i].regmap,dops[i].rs1);
5059 if (ds_writes_rjump_rs(i)) {
5060 r=get_reg(branch_regs[i].regmap,RTEMP);
5061 }
5062 emit_writeword(r,&pcaddr);
5063 }
5064 else {SysPrintf("Unknown branch type in do_ccstub\n");abort();}
5065 }
5066 // Update cycle count
5067 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5068 if(stubs[n].a) emit_addimm(HOST_CCREG,(int)stubs[n].a,HOST_CCREG);
5069 emit_far_call(cc_interrupt);
5070 if(stubs[n].a) emit_addimm(HOST_CCREG,-(int)stubs[n].a,HOST_CCREG);
5071 if(stubs[n].d==TAKEN) {
5072 if(internal_branch(ba[i]))
5073 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5074 else if(dops[i].itype==RJUMP) {
5075 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5076 emit_readword(&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5077 else
5078 emit_loadreg(dops[i].rs1,get_reg(branch_regs[i].regmap,dops[i].rs1));
5079 }
5080 }else if(stubs[n].d==NOTTAKEN) {
5081 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5082 else load_all_regs(branch_regs[i].regmap);
5083 }else if(stubs[n].d==NULLDS) {
5084 // Delay slot instruction is nullified ("likely" branch)
5085 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5086 else load_all_regs(regs[i].regmap);
5087 }else{
5088 load_all_regs(branch_regs[i].regmap);
5089 }
5090 if (stubs[n].retaddr)
5091 emit_jmp(stubs[n].retaddr);
5092 else
5093 do_jump_vaddr(stubs[n].e);
5094}
5095
5096static void add_to_linker(void *addr, u_int target, int ext)
5097{
5098 assert(linkcount < ARRAY_SIZE(link_addr));
5099 link_addr[linkcount].addr = addr;
5100 link_addr[linkcount].target = target;
5101 link_addr[linkcount].ext = ext;
5102 linkcount++;
5103}
5104
5105static void ujump_assemble_write_ra(int i)
5106{
5107 int rt;
5108 unsigned int return_address;
5109 rt=get_reg(branch_regs[i].regmap,31);
5110 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5111 //assert(rt>=0);
5112 return_address=start+i*4+8;
5113 if(rt>=0) {
5114 #ifdef USE_MINI_HT
5115 if(internal_branch(return_address)&&dops[i+1].rt1!=31) {
5116 int temp=-1; // note: must be ds-safe
5117 #ifdef HOST_TEMPREG
5118 temp=HOST_TEMPREG;
5119 #endif
5120 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5121 else emit_movimm(return_address,rt);
5122 }
5123 else
5124 #endif
5125 {
5126 #ifdef REG_PREFETCH
5127 if(temp>=0)
5128 {
5129 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5130 }
5131 #endif
5132 emit_movimm(return_address,rt); // PC into link register
5133 #ifdef IMM_PREFETCH
5134 emit_prefetch(hash_table_get(return_address));
5135 #endif
5136 }
5137 }
5138}
5139
5140static void ujump_assemble(int i, const struct regstat *i_regs)
5141{
5142 int ra_done=0;
5143 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5144 address_generation(i+1,i_regs,regs[i].regmap_entry);
5145 #ifdef REG_PREFETCH
5146 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5147 if(dops[i].rt1==31&&temp>=0)
5148 {
5149 signed char *i_regmap=i_regs->regmap;
5150 int return_address=start+i*4+8;
5151 if(get_reg(branch_regs[i].regmap,31)>0)
5152 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5153 }
5154 #endif
5155 if(dops[i].rt1==31&&(dops[i].rt1==dops[i+1].rs1||dops[i].rt1==dops[i+1].rs2)) {
5156 ujump_assemble_write_ra(i); // writeback ra for DS
5157 ra_done=1;
5158 }
5159 ds_assemble(i+1,i_regs);
5160 uint64_t bc_unneeded=branch_regs[i].u;
5161 bc_unneeded|=1|(1LL<<dops[i].rt1);
5162 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5163 load_reg(regs[i].regmap,branch_regs[i].regmap,CCREG);
5164 if(!ra_done&&dops[i].rt1==31)
5165 ujump_assemble_write_ra(i);
5166 int cc,adj;
5167 cc=get_reg(branch_regs[i].regmap,CCREG);
5168 assert(cc==HOST_CCREG);
5169 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5170 #ifdef REG_PREFETCH
5171 if(dops[i].rt1==31&&temp>=0) emit_prefetchreg(temp);
5172 #endif
5173 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5174 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5175 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5176 if(internal_branch(ba[i]))
5177 assem_debug("branch: internal\n");
5178 else
5179 assem_debug("branch: external\n");
5180 if (internal_branch(ba[i]) && dops[(ba[i]-start)>>2].is_ds) {
5181 ds_assemble_entry(i);
5182 }
5183 else {
5184 add_to_linker(out,ba[i],internal_branch(ba[i]));
5185 emit_jmp(0);
5186 }
5187}
5188
5189static void rjump_assemble_write_ra(int i)
5190{
5191 int rt,return_address;
5192 assert(dops[i+1].rt1!=dops[i].rt1);
5193 assert(dops[i+1].rt2!=dops[i].rt1);
5194 rt=get_reg(branch_regs[i].regmap,dops[i].rt1);
5195 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5196 assert(rt>=0);
5197 return_address=start+i*4+8;
5198 #ifdef REG_PREFETCH
5199 if(temp>=0)
5200 {
5201 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5202 }
5203 #endif
5204 emit_movimm(return_address,rt); // PC into link register
5205 #ifdef IMM_PREFETCH
5206 emit_prefetch(hash_table_get(return_address));
5207 #endif
5208}
5209
5210static void rjump_assemble(int i, const struct regstat *i_regs)
5211{
5212 int temp;
5213 int rs,cc;
5214 int ra_done=0;
5215 rs=get_reg(branch_regs[i].regmap,dops[i].rs1);
5216 assert(rs>=0);
5217 if (ds_writes_rjump_rs(i)) {
5218 // Delay slot abuse, make a copy of the branch address register
5219 temp=get_reg(branch_regs[i].regmap,RTEMP);
5220 assert(temp>=0);
5221 assert(regs[i].regmap[temp]==RTEMP);
5222 emit_mov(rs,temp);
5223 rs=temp;
5224 }
5225 address_generation(i+1,i_regs,regs[i].regmap_entry);
5226 #ifdef REG_PREFETCH
5227 if(dops[i].rt1==31)
5228 {
5229 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5230 signed char *i_regmap=i_regs->regmap;
5231 int return_address=start+i*4+8;
5232 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5233 }
5234 }
5235 #endif
5236 #ifdef USE_MINI_HT
5237 if(dops[i].rs1==31) {
5238 int rh=get_reg(regs[i].regmap,RHASH);
5239 if(rh>=0) do_preload_rhash(rh);
5240 }
5241 #endif
5242 if(dops[i].rt1!=0&&(dops[i].rt1==dops[i+1].rs1||dops[i].rt1==dops[i+1].rs2)) {
5243 rjump_assemble_write_ra(i);
5244 ra_done=1;
5245 }
5246 ds_assemble(i+1,i_regs);
5247 uint64_t bc_unneeded=branch_regs[i].u;
5248 bc_unneeded|=1|(1LL<<dops[i].rt1);
5249 bc_unneeded&=~(1LL<<dops[i].rs1);
5250 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5251 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,CCREG);
5252 if(!ra_done&&dops[i].rt1!=0)
5253 rjump_assemble_write_ra(i);
5254 cc=get_reg(branch_regs[i].regmap,CCREG);
5255 assert(cc==HOST_CCREG);
5256 (void)cc;
5257 #ifdef USE_MINI_HT
5258 int rh=get_reg(branch_regs[i].regmap,RHASH);
5259 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5260 if(dops[i].rs1==31) {
5261 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5262 do_preload_rhtbl(ht);
5263 do_rhash(rs,rh);
5264 }
5265 #endif
5266 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5267 #ifdef DESTRUCTIVE_WRITEBACK
5268 if((branch_regs[i].dirty>>rs)&1) {
5269 if(dops[i].rs1!=dops[i+1].rt1&&dops[i].rs1!=dops[i+1].rt2) {
5270 emit_loadreg(dops[i].rs1,rs);
5271 }
5272 }
5273 #endif
5274 #ifdef REG_PREFETCH
5275 if(dops[i].rt1==31&&temp>=0) emit_prefetchreg(temp);
5276 #endif
5277 #ifdef USE_MINI_HT
5278 if(dops[i].rs1==31) {
5279 do_miniht_load(ht,rh);
5280 }
5281 #endif
5282 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5283 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5284 //assert(adj==0);
5285 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), HOST_CCREG);
5286 add_stub(CC_STUB,out,NULL,0,i,-1,TAKEN,rs);
5287 if(dops[i+1].itype==COP0&&(source[i+1]&0x3f)==0x10)
5288 // special case for RFE
5289 emit_jmp(0);
5290 else
5291 emit_jns(0);
5292 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5293 #ifdef USE_MINI_HT
5294 if(dops[i].rs1==31) {
5295 do_miniht_jump(rs,rh,ht);
5296 }
5297 else
5298 #endif
5299 {
5300 do_jump_vaddr(rs);
5301 }
5302 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5303 if(dops[i].rt1!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5304 #endif
5305}
5306
5307static void cjump_assemble(int i, const struct regstat *i_regs)
5308{
5309 const signed char *i_regmap = i_regs->regmap;
5310 int cc;
5311 int match;
5312 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5313 assem_debug("match=%d\n",match);
5314 int s1l,s2l;
5315 int unconditional=0,nop=0;
5316 int invert=0;
5317 int internal=internal_branch(ba[i]);
5318 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5319 if(!match) invert=1;
5320 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5321 if(i>(ba[i]-start)>>2) invert=1;
5322 #endif
5323 #ifdef __aarch64__
5324 invert=1; // because of near cond. branches
5325 #endif
5326
5327 if(dops[i].ooo) {
5328 s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5329 s2l=get_reg(branch_regs[i].regmap,dops[i].rs2);
5330 }
5331 else {
5332 s1l=get_reg(i_regmap,dops[i].rs1);
5333 s2l=get_reg(i_regmap,dops[i].rs2);
5334 }
5335 if(dops[i].rs1==0&&dops[i].rs2==0)
5336 {
5337 if(dops[i].opcode&1) nop=1;
5338 else unconditional=1;
5339 //assert(dops[i].opcode!=5);
5340 //assert(dops[i].opcode!=7);
5341 //assert(dops[i].opcode!=0x15);
5342 //assert(dops[i].opcode!=0x17);
5343 }
5344 else if(dops[i].rs1==0)
5345 {
5346 s1l=s2l;
5347 s2l=-1;
5348 }
5349 else if(dops[i].rs2==0)
5350 {
5351 s2l=-1;
5352 }
5353
5354 if(dops[i].ooo) {
5355 // Out of order execution (delay slot first)
5356 //printf("OOOE\n");
5357 address_generation(i+1,i_regs,regs[i].regmap_entry);
5358 ds_assemble(i+1,i_regs);
5359 int adj;
5360 uint64_t bc_unneeded=branch_regs[i].u;
5361 bc_unneeded&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
5362 bc_unneeded|=1;
5363 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5364 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,dops[i].rs2);
5365 load_reg(regs[i].regmap,branch_regs[i].regmap,CCREG);
5366 cc=get_reg(branch_regs[i].regmap,CCREG);
5367 assert(cc==HOST_CCREG);
5368 if(unconditional)
5369 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5370 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5371 //assem_debug("cycle count (adj)\n");
5372 if(unconditional) {
5373 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5374 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5375 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5376 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5377 if(internal)
5378 assem_debug("branch: internal\n");
5379 else
5380 assem_debug("branch: external\n");
5381 if (internal && dops[(ba[i]-start)>>2].is_ds) {
5382 ds_assemble_entry(i);
5383 }
5384 else {
5385 add_to_linker(out,ba[i],internal);
5386 emit_jmp(0);
5387 }
5388 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5389 if(((u_int)out)&7) emit_addnop(0);
5390 #endif
5391 }
5392 }
5393 else if(nop) {
5394 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5395 void *jaddr=out;
5396 emit_jns(0);
5397 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5398 }
5399 else {
5400 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5401 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5402 if(adj&&!invert) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5403
5404 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5405 assert(s1l>=0);
5406 if(dops[i].opcode==4) // BEQ
5407 {
5408 if(s2l>=0) emit_cmp(s1l,s2l);
5409 else emit_test(s1l,s1l);
5410 if(invert){
5411 nottaken=out;
5412 emit_jne(DJT_1);
5413 }else{
5414 add_to_linker(out,ba[i],internal);
5415 emit_jeq(0);
5416 }
5417 }
5418 if(dops[i].opcode==5) // BNE
5419 {
5420 if(s2l>=0) emit_cmp(s1l,s2l);
5421 else emit_test(s1l,s1l);
5422 if(invert){
5423 nottaken=out;
5424 emit_jeq(DJT_1);
5425 }else{
5426 add_to_linker(out,ba[i],internal);
5427 emit_jne(0);
5428 }
5429 }
5430 if(dops[i].opcode==6) // BLEZ
5431 {
5432 emit_cmpimm(s1l,1);
5433 if(invert){
5434 nottaken=out;
5435 emit_jge(DJT_1);
5436 }else{
5437 add_to_linker(out,ba[i],internal);
5438 emit_jl(0);
5439 }
5440 }
5441 if(dops[i].opcode==7) // BGTZ
5442 {
5443 emit_cmpimm(s1l,1);
5444 if(invert){
5445 nottaken=out;
5446 emit_jl(DJT_1);
5447 }else{
5448 add_to_linker(out,ba[i],internal);
5449 emit_jge(0);
5450 }
5451 }
5452 if(invert) {
5453 if(taken) set_jump_target(taken, out);
5454 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5455 if (match && (!internal || !dops[(ba[i]-start)>>2].is_ds)) {
5456 if(adj) {
5457 emit_addimm(cc,-adj,cc);
5458 add_to_linker(out,ba[i],internal);
5459 }else{
5460 emit_addnop(13);
5461 add_to_linker(out,ba[i],internal*2);
5462 }
5463 emit_jmp(0);
5464 }else
5465 #endif
5466 {
5467 if(adj) emit_addimm(cc,-adj,cc);
5468 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5469 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5470 if(internal)
5471 assem_debug("branch: internal\n");
5472 else
5473 assem_debug("branch: external\n");
5474 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5475 ds_assemble_entry(i);
5476 }
5477 else {
5478 add_to_linker(out,ba[i],internal);
5479 emit_jmp(0);
5480 }
5481 }
5482 set_jump_target(nottaken, out);
5483 }
5484
5485 if(nottaken1) set_jump_target(nottaken1, out);
5486 if(adj) {
5487 if(!invert) emit_addimm(cc,adj,cc);
5488 }
5489 } // (!unconditional)
5490 } // if(ooo)
5491 else
5492 {
5493 // In-order execution (branch first)
5494 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5495 if(!unconditional&&!nop) {
5496 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5497 assert(s1l>=0);
5498 if((dops[i].opcode&0x2f)==4) // BEQ
5499 {
5500 if(s2l>=0) emit_cmp(s1l,s2l);
5501 else emit_test(s1l,s1l);
5502 nottaken=out;
5503 emit_jne(DJT_2);
5504 }
5505 if((dops[i].opcode&0x2f)==5) // BNE
5506 {
5507 if(s2l>=0) emit_cmp(s1l,s2l);
5508 else emit_test(s1l,s1l);
5509 nottaken=out;
5510 emit_jeq(DJT_2);
5511 }
5512 if((dops[i].opcode&0x2f)==6) // BLEZ
5513 {
5514 emit_cmpimm(s1l,1);
5515 nottaken=out;
5516 emit_jge(DJT_2);
5517 }
5518 if((dops[i].opcode&0x2f)==7) // BGTZ
5519 {
5520 emit_cmpimm(s1l,1);
5521 nottaken=out;
5522 emit_jl(DJT_2);
5523 }
5524 } // if(!unconditional)
5525 int adj;
5526 uint64_t ds_unneeded=branch_regs[i].u;
5527 ds_unneeded&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
5528 ds_unneeded|=1;
5529 // branch taken
5530 if(!nop) {
5531 if(taken) set_jump_target(taken, out);
5532 assem_debug("1:\n");
5533 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5534 // load regs
5535 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5536 address_generation(i+1,&branch_regs[i],0);
5537 if (ram_offset)
5538 load_reg(regs[i].regmap,branch_regs[i].regmap,ROREG);
5539 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5540 ds_assemble(i+1,&branch_regs[i]);
5541 cc=get_reg(branch_regs[i].regmap,CCREG);
5542 if(cc==-1) {
5543 emit_loadreg(CCREG,cc=HOST_CCREG);
5544 // CHECK: Is the following instruction (fall thru) allocated ok?
5545 }
5546 assert(cc==HOST_CCREG);
5547 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5548 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5549 assem_debug("cycle count (adj)\n");
5550 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5551 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5552 if(internal)
5553 assem_debug("branch: internal\n");
5554 else
5555 assem_debug("branch: external\n");
5556 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5557 ds_assemble_entry(i);
5558 }
5559 else {
5560 add_to_linker(out,ba[i],internal);
5561 emit_jmp(0);
5562 }
5563 }
5564 // branch not taken
5565 if(!unconditional) {
5566 if(nottaken1) set_jump_target(nottaken1, out);
5567 set_jump_target(nottaken, out);
5568 assem_debug("2:\n");
5569 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5570 // load regs
5571 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5572 address_generation(i+1,&branch_regs[i],0);
5573 if (ram_offset)
5574 load_reg(regs[i].regmap,branch_regs[i].regmap,ROREG);
5575 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5576 ds_assemble(i+1,&branch_regs[i]);
5577 cc=get_reg(branch_regs[i].regmap,CCREG);
5578 if (cc == -1) {
5579 // Cycle count isn't in a register, temporarily load it then write it out
5580 emit_loadreg(CCREG,HOST_CCREG);
5581 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), HOST_CCREG);
5582 void *jaddr=out;
5583 emit_jns(0);
5584 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5585 emit_storereg(CCREG,HOST_CCREG);
5586 }
5587 else{
5588 cc=get_reg(i_regmap,CCREG);
5589 assert(cc==HOST_CCREG);
5590 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5591 void *jaddr=out;
5592 emit_jns(0);
5593 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5594 }
5595 }
5596 }
5597}
5598
5599static void sjump_assemble(int i, const struct regstat *i_regs)
5600{
5601 const signed char *i_regmap = i_regs->regmap;
5602 int cc;
5603 int match;
5604 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5605 assem_debug("smatch=%d ooo=%d\n", match, dops[i].ooo);
5606 int s1l;
5607 int unconditional=0,nevertaken=0;
5608 int invert=0;
5609 int internal=internal_branch(ba[i]);
5610 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5611 if(!match) invert=1;
5612 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5613 if(i>(ba[i]-start)>>2) invert=1;
5614 #endif
5615 #ifdef __aarch64__
5616 invert=1; // because of near cond. branches
5617 #endif
5618
5619 //if(dops[i].opcode2>=0x10) return; // FIXME (BxxZAL)
5620 //assert(dops[i].opcode2<0x10||dops[i].rs1==0); // FIXME (BxxZAL)
5621
5622 if(dops[i].ooo) {
5623 s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5624 }
5625 else {
5626 s1l=get_reg(i_regmap,dops[i].rs1);
5627 }
5628 if(dops[i].rs1==0)
5629 {
5630 if(dops[i].opcode2&1) unconditional=1;
5631 else nevertaken=1;
5632 // These are never taken (r0 is never less than zero)
5633 //assert(dops[i].opcode2!=0);
5634 //assert(dops[i].opcode2!=2);
5635 //assert(dops[i].opcode2!=0x10);
5636 //assert(dops[i].opcode2!=0x12);
5637 }
5638
5639 if(dops[i].ooo) {
5640 // Out of order execution (delay slot first)
5641 //printf("OOOE\n");
5642 address_generation(i+1,i_regs,regs[i].regmap_entry);
5643 ds_assemble(i+1,i_regs);
5644 int adj;
5645 uint64_t bc_unneeded=branch_regs[i].u;
5646 bc_unneeded&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
5647 bc_unneeded|=1;
5648 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5649 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,dops[i].rs1);
5650 load_reg(regs[i].regmap,branch_regs[i].regmap,CCREG);
5651 if(dops[i].rt1==31) {
5652 int rt,return_address;
5653 rt=get_reg(branch_regs[i].regmap,31);
5654 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5655 if(rt>=0) {
5656 // Save the PC even if the branch is not taken
5657 return_address=start+i*4+8;
5658 emit_movimm(return_address,rt); // PC into link register
5659 #ifdef IMM_PREFETCH
5660 if(!nevertaken) emit_prefetch(hash_table_get(return_address));
5661 #endif
5662 }
5663 }
5664 cc=get_reg(branch_regs[i].regmap,CCREG);
5665 assert(cc==HOST_CCREG);
5666 if(unconditional)
5667 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5668 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5669 assem_debug("cycle count (adj)\n");
5670 if(unconditional) {
5671 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5672 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5673 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5674 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5675 if(internal)
5676 assem_debug("branch: internal\n");
5677 else
5678 assem_debug("branch: external\n");
5679 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5680 ds_assemble_entry(i);
5681 }
5682 else {
5683 add_to_linker(out,ba[i],internal);
5684 emit_jmp(0);
5685 }
5686 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5687 if(((u_int)out)&7) emit_addnop(0);
5688 #endif
5689 }
5690 }
5691 else if(nevertaken) {
5692 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5693 void *jaddr=out;
5694 emit_jns(0);
5695 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5696 }
5697 else {
5698 void *nottaken = NULL;
5699 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5700 if(adj&&!invert) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5701 {
5702 assert(s1l>=0);
5703 if((dops[i].opcode2&0xf)==0) // BLTZ/BLTZAL
5704 {
5705 emit_test(s1l,s1l);
5706 if(invert){
5707 nottaken=out;
5708 emit_jns(DJT_1);
5709 }else{
5710 add_to_linker(out,ba[i],internal);
5711 emit_js(0);
5712 }
5713 }
5714 if((dops[i].opcode2&0xf)==1) // BGEZ/BLTZAL
5715 {
5716 emit_test(s1l,s1l);
5717 if(invert){
5718 nottaken=out;
5719 emit_js(DJT_1);
5720 }else{
5721 add_to_linker(out,ba[i],internal);
5722 emit_jns(0);
5723 }
5724 }
5725 }
5726
5727 if(invert) {
5728 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5729 if (match && (!internal || !dops[(ba[i] - start) >> 2].is_ds)) {
5730 if(adj) {
5731 emit_addimm(cc,-adj,cc);
5732 add_to_linker(out,ba[i],internal);
5733 }else{
5734 emit_addnop(13);
5735 add_to_linker(out,ba[i],internal*2);
5736 }
5737 emit_jmp(0);
5738 }else
5739 #endif
5740 {
5741 if(adj) emit_addimm(cc,-adj,cc);
5742 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5743 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5744 if(internal)
5745 assem_debug("branch: internal\n");
5746 else
5747 assem_debug("branch: external\n");
5748 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5749 ds_assemble_entry(i);
5750 }
5751 else {
5752 add_to_linker(out,ba[i],internal);
5753 emit_jmp(0);
5754 }
5755 }
5756 set_jump_target(nottaken, out);
5757 }
5758
5759 if(adj) {
5760 if(!invert) emit_addimm(cc,adj,cc);
5761 }
5762 } // (!unconditional)
5763 } // if(ooo)
5764 else
5765 {
5766 // In-order execution (branch first)
5767 //printf("IOE\n");
5768 void *nottaken = NULL;
5769 if(dops[i].rt1==31) {
5770 int rt,return_address;
5771 rt=get_reg(branch_regs[i].regmap,31);
5772 if(rt>=0) {
5773 // Save the PC even if the branch is not taken
5774 return_address=start+i*4+8;
5775 emit_movimm(return_address,rt); // PC into link register
5776 #ifdef IMM_PREFETCH
5777 emit_prefetch(hash_table_get(return_address));
5778 #endif
5779 }
5780 }
5781 if(!unconditional) {
5782 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5783 assert(s1l>=0);
5784 if((dops[i].opcode2&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5785 {
5786 emit_test(s1l,s1l);
5787 nottaken=out;
5788 emit_jns(DJT_1);
5789 }
5790 if((dops[i].opcode2&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5791 {
5792 emit_test(s1l,s1l);
5793 nottaken=out;
5794 emit_js(DJT_1);
5795 }
5796 } // if(!unconditional)
5797 int adj;
5798 uint64_t ds_unneeded=branch_regs[i].u;
5799 ds_unneeded&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
5800 ds_unneeded|=1;
5801 // branch taken
5802 if(!nevertaken) {
5803 //assem_debug("1:\n");
5804 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5805 // load regs
5806 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5807 address_generation(i+1,&branch_regs[i],0);
5808 if (ram_offset)
5809 load_reg(regs[i].regmap,branch_regs[i].regmap,ROREG);
5810 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5811 ds_assemble(i+1,&branch_regs[i]);
5812 cc=get_reg(branch_regs[i].regmap,CCREG);
5813 if(cc==-1) {
5814 emit_loadreg(CCREG,cc=HOST_CCREG);
5815 // CHECK: Is the following instruction (fall thru) allocated ok?
5816 }
5817 assert(cc==HOST_CCREG);
5818 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5819 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5820 assem_debug("cycle count (adj)\n");
5821 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5822 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5823 if(internal)
5824 assem_debug("branch: internal\n");
5825 else
5826 assem_debug("branch: external\n");
5827 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5828 ds_assemble_entry(i);
5829 }
5830 else {
5831 add_to_linker(out,ba[i],internal);
5832 emit_jmp(0);
5833 }
5834 }
5835 // branch not taken
5836 if(!unconditional) {
5837 set_jump_target(nottaken, out);
5838 assem_debug("1:\n");
5839 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5840 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5841 address_generation(i+1,&branch_regs[i],0);
5842 if (ram_offset)
5843 load_reg(regs[i].regmap,branch_regs[i].regmap,ROREG);
5844 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5845 ds_assemble(i+1,&branch_regs[i]);
5846 cc=get_reg(branch_regs[i].regmap,CCREG);
5847 if (cc == -1) {
5848 // Cycle count isn't in a register, temporarily load it then write it out
5849 emit_loadreg(CCREG,HOST_CCREG);
5850 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), HOST_CCREG);
5851 void *jaddr=out;
5852 emit_jns(0);
5853 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5854 emit_storereg(CCREG,HOST_CCREG);
5855 }
5856 else{
5857 cc=get_reg(i_regmap,CCREG);
5858 assert(cc==HOST_CCREG);
5859 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5860 void *jaddr=out;
5861 emit_jns(0);
5862 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5863 }
5864 }
5865 }
5866}
5867
5868static void check_regmap(signed char *regmap)
5869{
5870#ifndef NDEBUG
5871 int i,j;
5872 for (i = 0; i < HOST_REGS; i++) {
5873 if (regmap[i] < 0)
5874 continue;
5875 for (j = i + 1; j < HOST_REGS; j++)
5876 assert(regmap[i] != regmap[j]);
5877 }
5878#endif
5879}
5880
5881#ifdef DISASM
5882#include <inttypes.h>
5883static char insn[MAXBLOCK][10];
5884
5885#define set_mnemonic(i_, n_) \
5886 strcpy(insn[i_], n_)
5887
5888void print_regmap(const char *name, const signed char *regmap)
5889{
5890 char buf[5];
5891 int i, l;
5892 fputs(name, stdout);
5893 for (i = 0; i < HOST_REGS; i++) {
5894 l = 0;
5895 if (regmap[i] >= 0)
5896 l = snprintf(buf, sizeof(buf), "$%d", regmap[i]);
5897 for (; l < 3; l++)
5898 buf[l] = ' ';
5899 buf[l] = 0;
5900 printf(" r%d=%s", i, buf);
5901 }
5902 fputs("\n", stdout);
5903}
5904
5905 /* disassembly */
5906void disassemble_inst(int i)
5907{
5908 if (dops[i].bt) printf("*"); else printf(" ");
5909 switch(dops[i].itype) {
5910 case UJUMP:
5911 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
5912 case CJUMP:
5913 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2,i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
5914 case SJUMP:
5915 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
5916 case RJUMP:
5917 if (dops[i].opcode==0x9&&dops[i].rt1!=31)
5918 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1);
5919 else
5920 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rs1);
5921 break;
5922 case IMM16:
5923 if(dops[i].opcode==0xf) //LUI
5924 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],dops[i].rt1,imm[i]&0xffff);
5925 else
5926 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
5927 break;
5928 case LOAD:
5929 case LOADLR:
5930 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
5931 break;
5932 case STORE:
5933 case STORELR:
5934 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],dops[i].rs2,dops[i].rs1,imm[i]);
5935 break;
5936 case ALU:
5937 case SHIFT:
5938 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,dops[i].rs2);
5939 break;
5940 case MULTDIV:
5941 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2);
5942 break;
5943 case SHIFTIMM:
5944 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
5945 break;
5946 case MOV:
5947 if((dops[i].opcode2&0x1d)==0x10)
5948 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rt1);
5949 else if((dops[i].opcode2&0x1d)==0x11)
5950 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rs1);
5951 else
5952 printf (" %x: %s\n",start+i*4,insn[i]);
5953 break;
5954 case COP0:
5955 if(dops[i].opcode2==0)
5956 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC0
5957 else if(dops[i].opcode2==4)
5958 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC0
5959 else printf (" %x: %s\n",start+i*4,insn[i]);
5960 break;
5961 case COP1:
5962 if(dops[i].opcode2<3)
5963 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC1
5964 else if(dops[i].opcode2>3)
5965 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC1
5966 else printf (" %x: %s\n",start+i*4,insn[i]);
5967 break;
5968 case COP2:
5969 if(dops[i].opcode2<3)
5970 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC2
5971 else if(dops[i].opcode2>3)
5972 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC2
5973 else printf (" %x: %s\n",start+i*4,insn[i]);
5974 break;
5975 case C1LS:
5976 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,dops[i].rs1,imm[i]);
5977 break;
5978 case C2LS:
5979 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,dops[i].rs1,imm[i]);
5980 break;
5981 case INTCALL:
5982 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
5983 break;
5984 default:
5985 //printf (" %s %8x\n",insn[i],source[i]);
5986 printf (" %x: %s\n",start+i*4,insn[i]);
5987 }
5988 return;
5989 printf("D: %"PRIu64" WD: %"PRIu64" U: %"PRIu64"\n",
5990 regs[i].dirty, regs[i].wasdirty, unneeded_reg[i]);
5991 print_regmap("pre: ", regmap_pre[i]);
5992 print_regmap("entry: ", regs[i].regmap_entry);
5993 print_regmap("map: ", regs[i].regmap);
5994 if (dops[i].is_jump) {
5995 print_regmap("bentry:", branch_regs[i].regmap_entry);
5996 print_regmap("bmap: ", branch_regs[i].regmap);
5997 }
5998}
5999#else
6000#define set_mnemonic(i_, n_)
6001static void disassemble_inst(int i) {}
6002#endif // DISASM
6003
6004#define DRC_TEST_VAL 0x74657374
6005
6006static void new_dynarec_test(void)
6007{
6008 int (*testfunc)(void);
6009 void *beginning;
6010 int ret[2];
6011 size_t i;
6012
6013 // check structure linkage
6014 if ((u_char *)rcnts - (u_char *)&psxRegs != sizeof(psxRegs))
6015 {
6016 SysPrintf("linkage_arm* miscompilation/breakage detected.\n");
6017 }
6018
6019 SysPrintf("testing if we can run recompiled code @%p...\n", out);
6020 ((volatile u_int *)out)[0]++; // make cache dirty
6021
6022 for (i = 0; i < ARRAY_SIZE(ret); i++) {
6023 out = ndrc->translation_cache;
6024 beginning = start_block();
6025 emit_movimm(DRC_TEST_VAL + i, 0); // test
6026 emit_ret();
6027 literal_pool(0);
6028 end_block(beginning);
6029 testfunc = beginning;
6030 ret[i] = testfunc();
6031 }
6032
6033 if (ret[0] == DRC_TEST_VAL && ret[1] == DRC_TEST_VAL + 1)
6034 SysPrintf("test passed.\n");
6035 else
6036 SysPrintf("test failed, will likely crash soon (r=%08x %08x)\n", ret[0], ret[1]);
6037 out = ndrc->translation_cache;
6038}
6039
6040// clear the state completely, instead of just marking
6041// things invalid like invalidate_all_pages() does
6042void new_dynarec_clear_full(void)
6043{
6044 int n;
6045 out = ndrc->translation_cache;
6046 memset(invalid_code,1,sizeof(invalid_code));
6047 memset(hash_table,0xff,sizeof(hash_table));
6048 memset(mini_ht,-1,sizeof(mini_ht));
6049 memset(shadow,0,sizeof(shadow));
6050 copy=shadow;
6051 expirep=16384; // Expiry pointer, +2 blocks
6052 pending_exception=0;
6053 literalcount=0;
6054 stop_after_jal=0;
6055 inv_code_start=inv_code_end=~0;
6056 hack_addr=0;
6057 f1_hack=0;
6058 // TLB
6059 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6060 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6061 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6062
6063 cycle_multiplier_old = cycle_multiplier;
6064 new_dynarec_hacks_old = new_dynarec_hacks;
6065}
6066
6067void new_dynarec_init(void)
6068{
6069 SysPrintf("Init new dynarec, ndrc size %x\n", (int)sizeof(*ndrc));
6070
6071#ifdef _3DS
6072 check_rosalina();
6073#endif
6074#ifdef BASE_ADDR_DYNAMIC
6075 #ifdef VITA
6076 sceBlock = getVMBlock(); //sceKernelAllocMemBlockForVM("code", sizeof(*ndrc));
6077 if (sceBlock <= 0)
6078 SysPrintf("sceKernelAllocMemBlockForVM failed: %x\n", sceBlock);
6079 int ret = sceKernelGetMemBlockBase(sceBlock, (void **)&ndrc);
6080 if (ret < 0)
6081 SysPrintf("sceKernelGetMemBlockBase failed: %x\n", ret);
6082 sceKernelOpenVMDomain();
6083 sceClibPrintf("translation_cache = 0x%08lx\n ", (long)ndrc->translation_cache);
6084 #elif defined(_MSC_VER)
6085 ndrc = VirtualAlloc(NULL, sizeof(*ndrc), MEM_COMMIT | MEM_RESERVE,
6086 PAGE_EXECUTE_READWRITE);
6087 #else
6088 uintptr_t desired_addr = 0;
6089 #ifdef __ELF__
6090 extern char _end;
6091 desired_addr = ((uintptr_t)&_end + 0xffffff) & ~0xffffffl;
6092 #endif
6093 ndrc = mmap((void *)desired_addr, sizeof(*ndrc),
6094 PROT_READ | PROT_WRITE | PROT_EXEC,
6095 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
6096 if (ndrc == MAP_FAILED) {
6097 SysPrintf("mmap() failed: %s\n", strerror(errno));
6098 abort();
6099 }
6100 #endif
6101#else
6102 #ifndef NO_WRITE_EXEC
6103 // not all systems allow execute in data segment by default
6104 // size must be 4K aligned for 3DS?
6105 if (mprotect(ndrc, sizeof(*ndrc),
6106 PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
6107 SysPrintf("mprotect() failed: %s\n", strerror(errno));
6108 #endif
6109#endif
6110 out = ndrc->translation_cache;
6111 cycle_multiplier=200;
6112 new_dynarec_clear_full();
6113#ifdef HOST_IMM8
6114 // Copy this into local area so we don't have to put it in every literal pool
6115 invc_ptr=invalid_code;
6116#endif
6117 arch_init();
6118 new_dynarec_test();
6119 ram_offset=(uintptr_t)rdram-0x80000000;
6120 if (ram_offset!=0)
6121 SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
6122 SysPrintf("Mapped (RAM/scrp/ROM/LUTs/TC):\n");
6123 SysPrintf("%p/%p/%p/%p/%p\n", psxM, psxH, psxR, mem_rtab, out);
6124}
6125
6126void new_dynarec_cleanup(void)
6127{
6128 int n;
6129#ifdef BASE_ADDR_DYNAMIC
6130 #ifdef VITA
6131 // sceBlock is managed by retroarch's bootstrap code
6132 //sceKernelFreeMemBlock(sceBlock);
6133 //sceBlock = -1;
6134 #else
6135 if (munmap(ndrc, sizeof(*ndrc)) < 0)
6136 SysPrintf("munmap() failed\n");
6137 #endif
6138#endif
6139 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6140 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6141 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6142 #ifdef ROM_COPY
6143 if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
6144 #endif
6145 new_dynarec_print_stats();
6146}
6147
6148static u_int *get_source_start(u_int addr, u_int *limit)
6149{
6150 if (addr < 0x00200000 ||
6151 (0xa0000000 <= addr && addr < 0xa0200000))
6152 {
6153 // used for BIOS calls mostly?
6154 *limit = (addr&0xa0000000)|0x00200000;
6155 return (u_int *)(rdram + (addr&0x1fffff));
6156 }
6157 else if (!Config.HLE && (
6158 /* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
6159 (0xbfc00000 <= addr && addr < 0xbfc80000)))
6160 {
6161 // BIOS. The multiplier should be much higher as it's uncached 8bit mem,
6162 // but timings in PCSX are too tied to the interpreter's BIAS
6163 if (!HACK_ENABLED(NDHACK_OVERRIDE_CYCLE_M))
6164 cycle_multiplier_active = 200;
6165
6166 *limit = (addr & 0xfff00000) | 0x80000;
6167 return (u_int *)((u_char *)psxR + (addr&0x7ffff));
6168 }
6169 else if (addr >= 0x80000000 && addr < 0x80000000+RAM_SIZE) {
6170 *limit = (addr & 0x80600000) + 0x00200000;
6171 return (u_int *)(rdram + (addr&0x1fffff));
6172 }
6173 return NULL;
6174}
6175
6176static u_int scan_for_ret(u_int addr)
6177{
6178 u_int limit = 0;
6179 u_int *mem;
6180
6181 mem = get_source_start(addr, &limit);
6182 if (mem == NULL)
6183 return addr;
6184
6185 if (limit > addr + 0x1000)
6186 limit = addr + 0x1000;
6187 for (; addr < limit; addr += 4, mem++) {
6188 if (*mem == 0x03e00008) // jr $ra
6189 return addr + 8;
6190 }
6191 return addr;
6192}
6193
6194struct savestate_block {
6195 uint32_t addr;
6196 uint32_t regflags;
6197};
6198
6199static int addr_cmp(const void *p1_, const void *p2_)
6200{
6201 const struct savestate_block *p1 = p1_, *p2 = p2_;
6202 return p1->addr - p2->addr;
6203}
6204
6205int new_dynarec_save_blocks(void *save, int size)
6206{
6207 struct savestate_block *blocks = save;
6208 int maxcount = size / sizeof(blocks[0]);
6209 struct savestate_block tmp_blocks[1024];
6210 struct ll_entry *head;
6211 int p, s, d, o, bcnt;
6212 u_int addr;
6213
6214 o = 0;
6215 for (p = 0; p < ARRAY_SIZE(jump_in); p++) {
6216 bcnt = 0;
6217 for (head = jump_in[p]; head != NULL; head = head->next) {
6218 tmp_blocks[bcnt].addr = head->vaddr;
6219 tmp_blocks[bcnt].regflags = head->reg_sv_flags;
6220 bcnt++;
6221 }
6222 if (bcnt < 1)
6223 continue;
6224 qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
6225
6226 addr = tmp_blocks[0].addr;
6227 for (s = d = 0; s < bcnt; s++) {
6228 if (tmp_blocks[s].addr < addr)
6229 continue;
6230 if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
6231 tmp_blocks[d++] = tmp_blocks[s];
6232 addr = scan_for_ret(tmp_blocks[s].addr);
6233 }
6234
6235 if (o + d > maxcount)
6236 d = maxcount - o;
6237 memcpy(&blocks[o], tmp_blocks, d * sizeof(blocks[0]));
6238 o += d;
6239 }
6240
6241 return o * sizeof(blocks[0]);
6242}
6243
6244void new_dynarec_load_blocks(const void *save, int size)
6245{
6246 const struct savestate_block *blocks = save;
6247 int count = size / sizeof(blocks[0]);
6248 u_int regs_save[32];
6249 uint32_t f;
6250 int i, b;
6251
6252 get_addr(psxRegs.pc);
6253
6254 // change GPRs for speculation to at least partially work..
6255 memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
6256 for (i = 1; i < 32; i++)
6257 psxRegs.GPR.r[i] = 0x80000000;
6258
6259 for (b = 0; b < count; b++) {
6260 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
6261 if (f & 1)
6262 psxRegs.GPR.r[i] = 0x1f800000;
6263 }
6264
6265 get_addr(blocks[b].addr);
6266
6267 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
6268 if (f & 1)
6269 psxRegs.GPR.r[i] = 0x80000000;
6270 }
6271 }
6272
6273 memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
6274}
6275
6276void new_dynarec_print_stats(void)
6277{
6278#ifdef STAT_PRINT
6279 printf("cc %3d,%3d,%3d lu%3d,%3d c%3d inv%3d,%3d tc_offs %zu\n",
6280 stat_bc_pre, stat_bc_direct, stat_bc_restore,
6281 stat_jump_in_lookups, stat_restore_tries, stat_restore_compares,
6282 stat_inv_addr_calls, stat_inv_hits,
6283 out - ndrc->translation_cache);
6284 stat_bc_direct = stat_bc_pre = stat_bc_restore =
6285 stat_jump_in_lookups = stat_restore_tries = stat_restore_compares =
6286 stat_inv_addr_calls = stat_inv_hits = 0;
6287#endif
6288}
6289
6290static int apply_hacks(void)
6291{
6292 int i;
6293 if (HACK_ENABLED(NDHACK_NO_COMPAT_HACKS))
6294 return 0;
6295 /* special hack(s) */
6296 for (i = 0; i < slen - 4; i++)
6297 {
6298 // lui a4, 0xf200; jal <rcnt_read>; addu a0, 2; slti v0, 28224
6299 if (source[i] == 0x3c04f200 && dops[i+1].itype == UJUMP
6300 && source[i+2] == 0x34840002 && dops[i+3].opcode == 0x0a
6301 && imm[i+3] == 0x6e40 && dops[i+3].rs1 == 2)
6302 {
6303 SysPrintf("PE2 hack @%08x\n", start + (i+3)*4);
6304 dops[i + 3].itype = NOP;
6305 }
6306 }
6307 i = slen;
6308 if (i > 10 && source[i-1] == 0 && source[i-2] == 0x03e00008
6309 && source[i-4] == 0x8fbf0018 && source[i-6] == 0x00c0f809
6310 && dops[i-7].itype == STORE)
6311 {
6312 i = i-8;
6313 if (dops[i].itype == IMM16)
6314 i--;
6315 // swl r2, 15(r6); swr r2, 12(r6); sw r6, *; jalr r6
6316 if (dops[i].itype == STORELR && dops[i].rs1 == 6
6317 && dops[i-1].itype == STORELR && dops[i-1].rs1 == 6)
6318 {
6319 SysPrintf("F1 hack from %08x, old dst %08x\n", start, hack_addr);
6320 f1_hack = 1;
6321 return 1;
6322 }
6323 }
6324 return 0;
6325}
6326
6327static noinline void pass1_disassemble(u_int pagelimit)
6328{
6329 int i, j, done = 0, ni_count = 0;
6330 unsigned int type,op,op2;
6331
6332 for (i = 0; !done; i++)
6333 {
6334 memset(&dops[i], 0, sizeof(dops[i]));
6335 op2=0;
6336 minimum_free_regs[i]=0;
6337 dops[i].opcode=op=source[i]>>26;
6338 switch(op)
6339 {
6340 case 0x00: set_mnemonic(i, "special"); type=NI;
6341 op2=source[i]&0x3f;
6342 switch(op2)
6343 {
6344 case 0x00: set_mnemonic(i, "SLL"); type=SHIFTIMM; break;
6345 case 0x02: set_mnemonic(i, "SRL"); type=SHIFTIMM; break;
6346 case 0x03: set_mnemonic(i, "SRA"); type=SHIFTIMM; break;
6347 case 0x04: set_mnemonic(i, "SLLV"); type=SHIFT; break;
6348 case 0x06: set_mnemonic(i, "SRLV"); type=SHIFT; break;
6349 case 0x07: set_mnemonic(i, "SRAV"); type=SHIFT; break;
6350 case 0x08: set_mnemonic(i, "JR"); type=RJUMP; break;
6351 case 0x09: set_mnemonic(i, "JALR"); type=RJUMP; break;
6352 case 0x0C: set_mnemonic(i, "SYSCALL"); type=SYSCALL; break;
6353 case 0x0D: set_mnemonic(i, "BREAK"); type=SYSCALL; break;
6354 case 0x0F: set_mnemonic(i, "SYNC"); type=OTHER; break;
6355 case 0x10: set_mnemonic(i, "MFHI"); type=MOV; break;
6356 case 0x11: set_mnemonic(i, "MTHI"); type=MOV; break;
6357 case 0x12: set_mnemonic(i, "MFLO"); type=MOV; break;
6358 case 0x13: set_mnemonic(i, "MTLO"); type=MOV; break;
6359 case 0x18: set_mnemonic(i, "MULT"); type=MULTDIV; break;
6360 case 0x19: set_mnemonic(i, "MULTU"); type=MULTDIV; break;
6361 case 0x1A: set_mnemonic(i, "DIV"); type=MULTDIV; break;
6362 case 0x1B: set_mnemonic(i, "DIVU"); type=MULTDIV; break;
6363 case 0x20: set_mnemonic(i, "ADD"); type=ALU; break;
6364 case 0x21: set_mnemonic(i, "ADDU"); type=ALU; break;
6365 case 0x22: set_mnemonic(i, "SUB"); type=ALU; break;
6366 case 0x23: set_mnemonic(i, "SUBU"); type=ALU; break;
6367 case 0x24: set_mnemonic(i, "AND"); type=ALU; break;
6368 case 0x25: set_mnemonic(i, "OR"); type=ALU; break;
6369 case 0x26: set_mnemonic(i, "XOR"); type=ALU; break;
6370 case 0x27: set_mnemonic(i, "NOR"); type=ALU; break;
6371 case 0x2A: set_mnemonic(i, "SLT"); type=ALU; break;
6372 case 0x2B: set_mnemonic(i, "SLTU"); type=ALU; break;
6373 case 0x30: set_mnemonic(i, "TGE"); type=NI; break;
6374 case 0x31: set_mnemonic(i, "TGEU"); type=NI; break;
6375 case 0x32: set_mnemonic(i, "TLT"); type=NI; break;
6376 case 0x33: set_mnemonic(i, "TLTU"); type=NI; break;
6377 case 0x34: set_mnemonic(i, "TEQ"); type=NI; break;
6378 case 0x36: set_mnemonic(i, "TNE"); type=NI; break;
6379#if 0
6380 case 0x14: set_mnemonic(i, "DSLLV"); type=SHIFT; break;
6381 case 0x16: set_mnemonic(i, "DSRLV"); type=SHIFT; break;
6382 case 0x17: set_mnemonic(i, "DSRAV"); type=SHIFT; break;
6383 case 0x1C: set_mnemonic(i, "DMULT"); type=MULTDIV; break;
6384 case 0x1D: set_mnemonic(i, "DMULTU"); type=MULTDIV; break;
6385 case 0x1E: set_mnemonic(i, "DDIV"); type=MULTDIV; break;
6386 case 0x1F: set_mnemonic(i, "DDIVU"); type=MULTDIV; break;
6387 case 0x2C: set_mnemonic(i, "DADD"); type=ALU; break;
6388 case 0x2D: set_mnemonic(i, "DADDU"); type=ALU; break;
6389 case 0x2E: set_mnemonic(i, "DSUB"); type=ALU; break;
6390 case 0x2F: set_mnemonic(i, "DSUBU"); type=ALU; break;
6391 case 0x38: set_mnemonic(i, "DSLL"); type=SHIFTIMM; break;
6392 case 0x3A: set_mnemonic(i, "DSRL"); type=SHIFTIMM; break;
6393 case 0x3B: set_mnemonic(i, "DSRA"); type=SHIFTIMM; break;
6394 case 0x3C: set_mnemonic(i, "DSLL32"); type=SHIFTIMM; break;
6395 case 0x3E: set_mnemonic(i, "DSRL32"); type=SHIFTIMM; break;
6396 case 0x3F: set_mnemonic(i, "DSRA32"); type=SHIFTIMM; break;
6397#endif
6398 }
6399 break;
6400 case 0x01: set_mnemonic(i, "regimm"); type=NI;
6401 op2=(source[i]>>16)&0x1f;
6402 switch(op2)
6403 {
6404 case 0x00: set_mnemonic(i, "BLTZ"); type=SJUMP; break;
6405 case 0x01: set_mnemonic(i, "BGEZ"); type=SJUMP; break;
6406 //case 0x02: set_mnemonic(i, "BLTZL"); type=SJUMP; break;
6407 //case 0x03: set_mnemonic(i, "BGEZL"); type=SJUMP; break;
6408 //case 0x08: set_mnemonic(i, "TGEI"); type=NI; break;
6409 //case 0x09: set_mnemonic(i, "TGEIU"); type=NI; break;
6410 //case 0x0A: set_mnemonic(i, "TLTI"); type=NI; break;
6411 //case 0x0B: set_mnemonic(i, "TLTIU"); type=NI; break;
6412 //case 0x0C: set_mnemonic(i, "TEQI"); type=NI; break;
6413 //case 0x0E: set_mnemonic(i, "TNEI"); type=NI; break;
6414 case 0x10: set_mnemonic(i, "BLTZAL"); type=SJUMP; break;
6415 case 0x11: set_mnemonic(i, "BGEZAL"); type=SJUMP; break;
6416 //case 0x12: set_mnemonic(i, "BLTZALL"); type=SJUMP; break;
6417 //case 0x13: set_mnemonic(i, "BGEZALL"); type=SJUMP; break;
6418 }
6419 break;
6420 case 0x02: set_mnemonic(i, "J"); type=UJUMP; break;
6421 case 0x03: set_mnemonic(i, "JAL"); type=UJUMP; break;
6422 case 0x04: set_mnemonic(i, "BEQ"); type=CJUMP; break;
6423 case 0x05: set_mnemonic(i, "BNE"); type=CJUMP; break;
6424 case 0x06: set_mnemonic(i, "BLEZ"); type=CJUMP; break;
6425 case 0x07: set_mnemonic(i, "BGTZ"); type=CJUMP; break;
6426 case 0x08: set_mnemonic(i, "ADDI"); type=IMM16; break;
6427 case 0x09: set_mnemonic(i, "ADDIU"); type=IMM16; break;
6428 case 0x0A: set_mnemonic(i, "SLTI"); type=IMM16; break;
6429 case 0x0B: set_mnemonic(i, "SLTIU"); type=IMM16; break;
6430 case 0x0C: set_mnemonic(i, "ANDI"); type=IMM16; break;
6431 case 0x0D: set_mnemonic(i, "ORI"); type=IMM16; break;
6432 case 0x0E: set_mnemonic(i, "XORI"); type=IMM16; break;
6433 case 0x0F: set_mnemonic(i, "LUI"); type=IMM16; break;
6434 case 0x10: set_mnemonic(i, "cop0"); type=NI;
6435 op2=(source[i]>>21)&0x1f;
6436 switch(op2)
6437 {
6438 case 0x00: set_mnemonic(i, "MFC0"); type=COP0; break;
6439 case 0x02: set_mnemonic(i, "CFC0"); type=COP0; break;
6440 case 0x04: set_mnemonic(i, "MTC0"); type=COP0; break;
6441 case 0x06: set_mnemonic(i, "CTC0"); type=COP0; break;
6442 case 0x10: set_mnemonic(i, "RFE"); type=COP0; break;
6443 }
6444 break;
6445 case 0x11: set_mnemonic(i, "cop1"); type=COP1;
6446 op2=(source[i]>>21)&0x1f;
6447 break;
6448#if 0
6449 case 0x14: set_mnemonic(i, "BEQL"); type=CJUMP; break;
6450 case 0x15: set_mnemonic(i, "BNEL"); type=CJUMP; break;
6451 case 0x16: set_mnemonic(i, "BLEZL"); type=CJUMP; break;
6452 case 0x17: set_mnemonic(i, "BGTZL"); type=CJUMP; break;
6453 case 0x18: set_mnemonic(i, "DADDI"); type=IMM16; break;
6454 case 0x19: set_mnemonic(i, "DADDIU"); type=IMM16; break;
6455 case 0x1A: set_mnemonic(i, "LDL"); type=LOADLR; break;
6456 case 0x1B: set_mnemonic(i, "LDR"); type=LOADLR; break;
6457#endif
6458 case 0x20: set_mnemonic(i, "LB"); type=LOAD; break;
6459 case 0x21: set_mnemonic(i, "LH"); type=LOAD; break;
6460 case 0x22: set_mnemonic(i, "LWL"); type=LOADLR; break;
6461 case 0x23: set_mnemonic(i, "LW"); type=LOAD; break;
6462 case 0x24: set_mnemonic(i, "LBU"); type=LOAD; break;
6463 case 0x25: set_mnemonic(i, "LHU"); type=LOAD; break;
6464 case 0x26: set_mnemonic(i, "LWR"); type=LOADLR; break;
6465#if 0
6466 case 0x27: set_mnemonic(i, "LWU"); type=LOAD; break;
6467#endif
6468 case 0x28: set_mnemonic(i, "SB"); type=STORE; break;
6469 case 0x29: set_mnemonic(i, "SH"); type=STORE; break;
6470 case 0x2A: set_mnemonic(i, "SWL"); type=STORELR; break;
6471 case 0x2B: set_mnemonic(i, "SW"); type=STORE; break;
6472#if 0
6473 case 0x2C: set_mnemonic(i, "SDL"); type=STORELR; break;
6474 case 0x2D: set_mnemonic(i, "SDR"); type=STORELR; break;
6475#endif
6476 case 0x2E: set_mnemonic(i, "SWR"); type=STORELR; break;
6477 case 0x2F: set_mnemonic(i, "CACHE"); type=NOP; break;
6478 case 0x30: set_mnemonic(i, "LL"); type=NI; break;
6479 case 0x31: set_mnemonic(i, "LWC1"); type=C1LS; break;
6480#if 0
6481 case 0x34: set_mnemonic(i, "LLD"); type=NI; break;
6482 case 0x35: set_mnemonic(i, "LDC1"); type=C1LS; break;
6483 case 0x37: set_mnemonic(i, "LD"); type=LOAD; break;
6484#endif
6485 case 0x38: set_mnemonic(i, "SC"); type=NI; break;
6486 case 0x39: set_mnemonic(i, "SWC1"); type=C1LS; break;
6487#if 0
6488 case 0x3C: set_mnemonic(i, "SCD"); type=NI; break;
6489 case 0x3D: set_mnemonic(i, "SDC1"); type=C1LS; break;
6490 case 0x3F: set_mnemonic(i, "SD"); type=STORE; break;
6491#endif
6492 case 0x12: set_mnemonic(i, "COP2"); type=NI;
6493 op2=(source[i]>>21)&0x1f;
6494 //if (op2 & 0x10)
6495 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
6496 if (gte_handlers[source[i]&0x3f]!=NULL) {
6497#ifdef DISASM
6498 if (gte_regnames[source[i]&0x3f]!=NULL)
6499 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
6500 else
6501 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
6502#endif
6503 type=C2OP;
6504 }
6505 }
6506 else switch(op2)
6507 {
6508 case 0x00: set_mnemonic(i, "MFC2"); type=COP2; break;
6509 case 0x02: set_mnemonic(i, "CFC2"); type=COP2; break;
6510 case 0x04: set_mnemonic(i, "MTC2"); type=COP2; break;
6511 case 0x06: set_mnemonic(i, "CTC2"); type=COP2; break;
6512 }
6513 break;
6514 case 0x32: set_mnemonic(i, "LWC2"); type=C2LS; break;
6515 case 0x3A: set_mnemonic(i, "SWC2"); type=C2LS; break;
6516 case 0x3B: set_mnemonic(i, "HLECALL"); type=HLECALL; break;
6517 default: set_mnemonic(i, "???"); type=NI;
6518 SysPrintf("NI %08x @%08x (%08x)\n", source[i], start + i*4, start);
6519 break;
6520 }
6521 dops[i].itype=type;
6522 dops[i].opcode2=op2;
6523 /* Get registers/immediates */
6524 dops[i].use_lt1=0;
6525 gte_rs[i]=gte_rt[i]=0;
6526 switch(type) {
6527 case LOAD:
6528 dops[i].rs1=(source[i]>>21)&0x1f;
6529 dops[i].rs2=0;
6530 dops[i].rt1=(source[i]>>16)&0x1f;
6531 dops[i].rt2=0;
6532 imm[i]=(short)source[i];
6533 break;
6534 case STORE:
6535 case STORELR:
6536 dops[i].rs1=(source[i]>>21)&0x1f;
6537 dops[i].rs2=(source[i]>>16)&0x1f;
6538 dops[i].rt1=0;
6539 dops[i].rt2=0;
6540 imm[i]=(short)source[i];
6541 break;
6542 case LOADLR:
6543 // LWL/LWR only load part of the register,
6544 // therefore the target register must be treated as a source too
6545 dops[i].rs1=(source[i]>>21)&0x1f;
6546 dops[i].rs2=(source[i]>>16)&0x1f;
6547 dops[i].rt1=(source[i]>>16)&0x1f;
6548 dops[i].rt2=0;
6549 imm[i]=(short)source[i];
6550 break;
6551 case IMM16:
6552 if (op==0x0f) dops[i].rs1=0; // LUI instruction has no source register
6553 else dops[i].rs1=(source[i]>>21)&0x1f;
6554 dops[i].rs2=0;
6555 dops[i].rt1=(source[i]>>16)&0x1f;
6556 dops[i].rt2=0;
6557 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
6558 imm[i]=(unsigned short)source[i];
6559 }else{
6560 imm[i]=(short)source[i];
6561 }
6562 break;
6563 case UJUMP:
6564 dops[i].rs1=0;
6565 dops[i].rs2=0;
6566 dops[i].rt1=0;
6567 dops[i].rt2=0;
6568 // The JAL instruction writes to r31.
6569 if (op&1) {
6570 dops[i].rt1=31;
6571 }
6572 dops[i].rs2=CCREG;
6573 break;
6574 case RJUMP:
6575 dops[i].rs1=(source[i]>>21)&0x1f;
6576 dops[i].rs2=0;
6577 dops[i].rt1=0;
6578 dops[i].rt2=0;
6579 // The JALR instruction writes to rd.
6580 if (op2&1) {
6581 dops[i].rt1=(source[i]>>11)&0x1f;
6582 }
6583 dops[i].rs2=CCREG;
6584 break;
6585 case CJUMP:
6586 dops[i].rs1=(source[i]>>21)&0x1f;
6587 dops[i].rs2=(source[i]>>16)&0x1f;
6588 dops[i].rt1=0;
6589 dops[i].rt2=0;
6590 if(op&2) { // BGTZ/BLEZ
6591 dops[i].rs2=0;
6592 }
6593 break;
6594 case SJUMP:
6595 dops[i].rs1=(source[i]>>21)&0x1f;
6596 dops[i].rs2=CCREG;
6597 dops[i].rt1=0;
6598 dops[i].rt2=0;
6599 if(op2&0x10) { // BxxAL
6600 dops[i].rt1=31;
6601 // NOTE: If the branch is not taken, r31 is still overwritten
6602 }
6603 break;
6604 case ALU:
6605 dops[i].rs1=(source[i]>>21)&0x1f; // source
6606 dops[i].rs2=(source[i]>>16)&0x1f; // subtract amount
6607 dops[i].rt1=(source[i]>>11)&0x1f; // destination
6608 dops[i].rt2=0;
6609 break;
6610 case MULTDIV:
6611 dops[i].rs1=(source[i]>>21)&0x1f; // source
6612 dops[i].rs2=(source[i]>>16)&0x1f; // divisor
6613 dops[i].rt1=HIREG;
6614 dops[i].rt2=LOREG;
6615 break;
6616 case MOV:
6617 dops[i].rs1=0;
6618 dops[i].rs2=0;
6619 dops[i].rt1=0;
6620 dops[i].rt2=0;
6621 if(op2==0x10) dops[i].rs1=HIREG; // MFHI
6622 if(op2==0x11) dops[i].rt1=HIREG; // MTHI
6623 if(op2==0x12) dops[i].rs1=LOREG; // MFLO
6624 if(op2==0x13) dops[i].rt1=LOREG; // MTLO
6625 if((op2&0x1d)==0x10) dops[i].rt1=(source[i]>>11)&0x1f; // MFxx
6626 if((op2&0x1d)==0x11) dops[i].rs1=(source[i]>>21)&0x1f; // MTxx
6627 break;
6628 case SHIFT:
6629 dops[i].rs1=(source[i]>>16)&0x1f; // target of shift
6630 dops[i].rs2=(source[i]>>21)&0x1f; // shift amount
6631 dops[i].rt1=(source[i]>>11)&0x1f; // destination
6632 dops[i].rt2=0;
6633 break;
6634 case SHIFTIMM:
6635 dops[i].rs1=(source[i]>>16)&0x1f;
6636 dops[i].rs2=0;
6637 dops[i].rt1=(source[i]>>11)&0x1f;
6638 dops[i].rt2=0;
6639 imm[i]=(source[i]>>6)&0x1f;
6640 // DSxx32 instructions
6641 if(op2>=0x3c) imm[i]|=0x20;
6642 break;
6643 case COP0:
6644 dops[i].rs1=0;
6645 dops[i].rs2=0;
6646 dops[i].rt1=0;
6647 dops[i].rt2=0;
6648 if(op2==0||op2==2) dops[i].rt1=(source[i]>>16)&0x1F; // MFC0/CFC0
6649 if(op2==4||op2==6) dops[i].rs1=(source[i]>>16)&0x1F; // MTC0/CTC0
6650 if(op2==4&&((source[i]>>11)&0x1f)==12) dops[i].rt2=CSREG; // Status
6651 if(op2==16) if((source[i]&0x3f)==0x18) dops[i].rs2=CCREG; // ERET
6652 break;
6653 case COP1:
6654 dops[i].rs1=0;
6655 dops[i].rs2=0;
6656 dops[i].rt1=0;
6657 dops[i].rt2=0;
6658 if(op2<3) dops[i].rt1=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
6659 if(op2>3) dops[i].rs1=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
6660 dops[i].rs2=CSREG;
6661 break;
6662 case COP2:
6663 dops[i].rs1=0;
6664 dops[i].rs2=0;
6665 dops[i].rt1=0;
6666 dops[i].rt2=0;
6667 if(op2<3) dops[i].rt1=(source[i]>>16)&0x1F; // MFC2/CFC2
6668 if(op2>3) dops[i].rs1=(source[i]>>16)&0x1F; // MTC2/CTC2
6669 dops[i].rs2=CSREG;
6670 int gr=(source[i]>>11)&0x1F;
6671 switch(op2)
6672 {
6673 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
6674 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
6675 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
6676 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
6677 }
6678 break;
6679 case C1LS:
6680 dops[i].rs1=(source[i]>>21)&0x1F;
6681 dops[i].rs2=CSREG;
6682 dops[i].rt1=0;
6683 dops[i].rt2=0;
6684 imm[i]=(short)source[i];
6685 break;
6686 case C2LS:
6687 dops[i].rs1=(source[i]>>21)&0x1F;
6688 dops[i].rs2=0;
6689 dops[i].rt1=0;
6690 dops[i].rt2=0;
6691 imm[i]=(short)source[i];
6692 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
6693 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
6694 break;
6695 case C2OP:
6696 dops[i].rs1=0;
6697 dops[i].rs2=0;
6698 dops[i].rt1=0;
6699 dops[i].rt2=0;
6700 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
6701 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
6702 gte_rt[i]|=1ll<<63; // every op changes flags
6703 if((source[i]&0x3f)==GTE_MVMVA) {
6704 int v = (source[i] >> 15) & 3;
6705 gte_rs[i]&=~0xe3fll;
6706 if(v==3) gte_rs[i]|=0xe00ll;
6707 else gte_rs[i]|=3ll<<(v*2);
6708 }
6709 break;
6710 case SYSCALL:
6711 case HLECALL:
6712 case INTCALL:
6713 dops[i].rs1=CCREG;
6714 dops[i].rs2=0;
6715 dops[i].rt1=0;
6716 dops[i].rt2=0;
6717 break;
6718 default:
6719 dops[i].rs1=0;
6720 dops[i].rs2=0;
6721 dops[i].rt1=0;
6722 dops[i].rt2=0;
6723 }
6724 /* Calculate branch target addresses */
6725 if(type==UJUMP)
6726 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
6727 else if(type==CJUMP&&dops[i].rs1==dops[i].rs2&&(op&1))
6728 ba[i]=start+i*4+8; // Ignore never taken branch
6729 else if(type==SJUMP&&dops[i].rs1==0&&!(op2&1))
6730 ba[i]=start+i*4+8; // Ignore never taken branch
6731 else if(type==CJUMP||type==SJUMP)
6732 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
6733 else ba[i]=-1;
6734
6735 /* simplify always (not)taken branches */
6736 if (type == CJUMP && dops[i].rs1 == dops[i].rs2) {
6737 dops[i].rs1 = dops[i].rs2 = 0;
6738 if (!(op & 1)) {
6739 dops[i].itype = type = UJUMP;
6740 dops[i].rs2 = CCREG;
6741 }
6742 }
6743 else if (type == SJUMP && dops[i].rs1 == 0 && (op2 & 1))
6744 dops[i].itype = type = UJUMP;
6745
6746 dops[i].is_jump = (dops[i].itype == RJUMP || dops[i].itype == UJUMP || dops[i].itype == CJUMP || dops[i].itype == SJUMP);
6747 dops[i].is_ujump = (dops[i].itype == RJUMP || dops[i].itype == UJUMP); // || (source[i] >> 16) == 0x1000 // beq r0,r0
6748 dops[i].is_load = (dops[i].itype == LOAD || dops[i].itype == LOADLR || op == 0x32); // LWC2
6749 dops[i].is_store = (dops[i].itype == STORE || dops[i].itype == STORELR || op == 0x3a); // SWC2
6750
6751 /* messy cases to just pass over to the interpreter */
6752 if (i > 0 && dops[i-1].is_jump) {
6753 int do_in_intrp=0;
6754 // branch in delay slot?
6755 if (dops[i].is_jump) {
6756 // don't handle first branch and call interpreter if it's hit
6757 SysPrintf("branch in delay slot @%08x (%08x)\n", start + i*4, start);
6758 do_in_intrp=1;
6759 }
6760 // basic load delay detection
6761 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&dops[i].rt1!=0) {
6762 int t=(ba[i-1]-start)/4;
6763 if(0 <= t && t < i &&(dops[i].rt1==dops[t].rs1||dops[i].rt1==dops[t].rs2)&&dops[t].itype!=CJUMP&&dops[t].itype!=SJUMP) {
6764 // jump target wants DS result - potential load delay effect
6765 SysPrintf("load delay @%08x (%08x)\n", start + i*4, start);
6766 do_in_intrp=1;
6767 dops[t+1].bt=1; // expected return from interpreter
6768 }
6769 else if(i>=2&&dops[i-2].rt1==2&&dops[i].rt1==2&&dops[i].rs1!=2&&dops[i].rs2!=2&&dops[i-1].rs1!=2&&dops[i-1].rs2!=2&&
6770 !(i>=3&&dops[i-3].is_jump)) {
6771 // v0 overwrite like this is a sign of trouble, bail out
6772 SysPrintf("v0 overwrite @%08x (%08x)\n", start + i*4, start);
6773 do_in_intrp=1;
6774 }
6775 }
6776 if (do_in_intrp) {
6777 memset(&dops[i-1], 0, sizeof(dops[i-1]));
6778 dops[i-1].itype = INTCALL;
6779 dops[i-1].rs1 = CCREG;
6780 ba[i-1] = -1;
6781 done = 2;
6782 i--; // don't compile the DS
6783 }
6784 }
6785
6786 /* Is this the end of the block? */
6787 if (i > 0 && dops[i-1].is_ujump) {
6788 if (dops[i-1].rt1 == 0) { // not jal
6789 int found_bbranch = 0, t = (ba[i-1] - start) / 4;
6790 if ((u_int)(t - i) < 64 && start + (t+64)*4 < pagelimit) {
6791 // scan for a branch back to i+1
6792 for (j = t; j < t + 64; j++) {
6793 int tmpop = source[j] >> 26;
6794 if (tmpop == 1 || ((tmpop & ~3) == 4)) {
6795 int t2 = j + 1 + (int)(signed short)source[j];
6796 if (t2 == i + 1) {
6797 //printf("blk expand %08x<-%08x\n", start + (i+1)*4, start + j*4);
6798 found_bbranch = 1;
6799 break;
6800 }
6801 }
6802 }
6803 }
6804 if (!found_bbranch)
6805 done = 2;
6806 }
6807 else {
6808 if(stop_after_jal) done=1;
6809 // Stop on BREAK
6810 if((source[i+1]&0xfc00003f)==0x0d) done=1;
6811 }
6812 // Don't recompile stuff that's already compiled
6813 if(check_addr(start+i*4+4)) done=1;
6814 // Don't get too close to the limit
6815 if(i>MAXBLOCK/2) done=1;
6816 }
6817 if (dops[i].itype == SYSCALL || dops[i].itype == HLECALL || dops[i].itype == INTCALL)
6818 done = stop_after_jal ? 1 : 2;
6819 if (done == 2) {
6820 // Does the block continue due to a branch?
6821 for(j=i-1;j>=0;j--)
6822 {
6823 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
6824 if(ba[j]==start+i*4+4) done=j=0;
6825 if(ba[j]==start+i*4+8) done=j=0;
6826 }
6827 }
6828 //assert(i<MAXBLOCK-1);
6829 if(start+i*4==pagelimit-4) done=1;
6830 assert(start+i*4<pagelimit);
6831 if (i==MAXBLOCK-1) done=1;
6832 // Stop if we're compiling junk
6833 if(dops[i].itype == NI && (++ni_count > 8 || dops[i].opcode == 0x11)) {
6834 done=stop_after_jal=1;
6835 SysPrintf("Disabled speculative precompilation\n");
6836 }
6837 }
6838 while (i > 0 && dops[i-1].is_jump)
6839 i--;
6840 assert(i > 0);
6841 assert(!dops[i-1].is_jump);
6842 slen = i;
6843}
6844
6845// Basic liveness analysis for MIPS registers
6846static noinline void pass2_unneeded_regs(int istart,int iend,int r)
6847{
6848 int i;
6849 uint64_t u,gte_u,b,gte_b;
6850 uint64_t temp_u,temp_gte_u=0;
6851 uint64_t gte_u_unknown=0;
6852 if (HACK_ENABLED(NDHACK_GTE_UNNEEDED))
6853 gte_u_unknown=~0ll;
6854 if(iend==slen-1) {
6855 u=1;
6856 gte_u=gte_u_unknown;
6857 }else{
6858 //u=unneeded_reg[iend+1];
6859 u=1;
6860 gte_u=gte_unneeded[iend+1];
6861 }
6862
6863 for (i=iend;i>=istart;i--)
6864 {
6865 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6866 if(dops[i].is_jump)
6867 {
6868 // If subroutine call, flag return address as a possible branch target
6869 if(dops[i].rt1==31 && i<slen-2) dops[i+2].bt=1;
6870
6871 if(ba[i]<start || ba[i]>=(start+slen*4))
6872 {
6873 // Branch out of this block, flush all regs
6874 u=1;
6875 gte_u=gte_u_unknown;
6876 branch_unneeded_reg[i]=u;
6877 // Merge in delay slot
6878 u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6879 u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6880 u|=1;
6881 gte_u|=gte_rt[i+1];
6882 gte_u&=~gte_rs[i+1];
6883 }
6884 else
6885 {
6886 // Internal branch, flag target
6887 dops[(ba[i]-start)>>2].bt=1;
6888 if(ba[i]<=start+i*4) {
6889 // Backward branch
6890 if(dops[i].is_ujump)
6891 {
6892 // Unconditional branch
6893 temp_u=1;
6894 temp_gte_u=0;
6895 } else {
6896 // Conditional branch (not taken case)
6897 temp_u=unneeded_reg[i+2];
6898 temp_gte_u&=gte_unneeded[i+2];
6899 }
6900 // Merge in delay slot
6901 temp_u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6902 temp_u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6903 temp_u|=1;
6904 temp_gte_u|=gte_rt[i+1];
6905 temp_gte_u&=~gte_rs[i+1];
6906 temp_u|=(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2);
6907 temp_u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
6908 temp_u|=1;
6909 temp_gte_u|=gte_rt[i];
6910 temp_gte_u&=~gte_rs[i];
6911 unneeded_reg[i]=temp_u;
6912 gte_unneeded[i]=temp_gte_u;
6913 // Only go three levels deep. This recursion can take an
6914 // excessive amount of time if there are a lot of nested loops.
6915 if(r<2) {
6916 pass2_unneeded_regs((ba[i]-start)>>2,i-1,r+1);
6917 }else{
6918 unneeded_reg[(ba[i]-start)>>2]=1;
6919 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
6920 }
6921 } /*else*/ if(1) {
6922 if (dops[i].is_ujump)
6923 {
6924 // Unconditional branch
6925 u=unneeded_reg[(ba[i]-start)>>2];
6926 gte_u=gte_unneeded[(ba[i]-start)>>2];
6927 branch_unneeded_reg[i]=u;
6928 // Merge in delay slot
6929 u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6930 u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6931 u|=1;
6932 gte_u|=gte_rt[i+1];
6933 gte_u&=~gte_rs[i+1];
6934 } else {
6935 // Conditional branch
6936 b=unneeded_reg[(ba[i]-start)>>2];
6937 gte_b=gte_unneeded[(ba[i]-start)>>2];
6938 branch_unneeded_reg[i]=b;
6939 // Branch delay slot
6940 b|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6941 b&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6942 b|=1;
6943 gte_b|=gte_rt[i+1];
6944 gte_b&=~gte_rs[i+1];
6945 u&=b;
6946 gte_u&=gte_b;
6947 if(i<slen-1) {
6948 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6949 } else {
6950 branch_unneeded_reg[i]=1;
6951 }
6952 }
6953 }
6954 }
6955 }
6956 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
6957 {
6958 // SYSCALL instruction (software interrupt)
6959 u=1;
6960 }
6961 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
6962 {
6963 // ERET instruction (return from interrupt)
6964 u=1;
6965 }
6966 //u=1; // DEBUG
6967 // Written registers are unneeded
6968 u|=1LL<<dops[i].rt1;
6969 u|=1LL<<dops[i].rt2;
6970 gte_u|=gte_rt[i];
6971 // Accessed registers are needed
6972 u&=~(1LL<<dops[i].rs1);
6973 u&=~(1LL<<dops[i].rs2);
6974 gte_u&=~gte_rs[i];
6975 if(gte_rs[i]&&dops[i].rt1&&(unneeded_reg[i+1]&(1ll<<dops[i].rt1)))
6976 gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
6977 // Source-target dependencies
6978 // R0 is always unneeded
6979 u|=1;
6980 // Save it
6981 unneeded_reg[i]=u;
6982 gte_unneeded[i]=gte_u;
6983 /*
6984 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6985 printf("U:");
6986 int r;
6987 for(r=1;r<=CCREG;r++) {
6988 if((unneeded_reg[i]>>r)&1) {
6989 if(r==HIREG) printf(" HI");
6990 else if(r==LOREG) printf(" LO");
6991 else printf(" r%d",r);
6992 }
6993 }
6994 printf("\n");
6995 */
6996 }
6997}
6998
6999static noinline void pass3_register_alloc(u_int addr)
7000{
7001 struct regstat current; // Current register allocations/status
7002 clear_all_regs(current.regmap_entry);
7003 clear_all_regs(current.regmap);
7004 current.wasdirty = current.dirty = 0;
7005 current.u = unneeded_reg[0];
7006 alloc_reg(&current, 0, CCREG);
7007 dirty_reg(&current, CCREG);
7008 current.wasconst = 0;
7009 current.isconst = 0;
7010 current.loadedconst = 0;
7011 current.waswritten = 0;
7012 int ds=0;
7013 int cc=0;
7014 int hr;
7015 int i, j;
7016
7017 if (addr & 1) {
7018 // First instruction is delay slot
7019 cc=-1;
7020 dops[1].bt=1;
7021 ds=1;
7022 unneeded_reg[0]=1;
7023 current.regmap[HOST_BTREG]=BTREG;
7024 }
7025
7026 for(i=0;i<slen;i++)
7027 {
7028 if(dops[i].bt)
7029 {
7030 for(hr=0;hr<HOST_REGS;hr++)
7031 {
7032 // Is this really necessary?
7033 if(current.regmap[hr]==0) current.regmap[hr]=-1;
7034 }
7035 current.isconst=0;
7036 current.waswritten=0;
7037 }
7038
7039 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
7040 regs[i].wasconst=current.isconst;
7041 regs[i].wasdirty=current.dirty;
7042 regs[i].dirty=0;
7043 regs[i].u=0;
7044 regs[i].isconst=0;
7045 regs[i].loadedconst=0;
7046 if (!dops[i].is_jump) {
7047 if(i+1<slen) {
7048 current.u=unneeded_reg[i+1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7049 current.u|=1;
7050 } else {
7051 current.u=1;
7052 }
7053 } else {
7054 if(i+1<slen) {
7055 current.u=branch_unneeded_reg[i]&~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
7056 current.u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7057 current.u|=1;
7058 } else {
7059 SysPrintf("oops, branch at end of block with no delay slot @%08x\n", start + i*4);
7060 abort();
7061 }
7062 }
7063 dops[i].is_ds=ds;
7064 if(ds) {
7065 ds=0; // Skip delay slot, already allocated as part of branch
7066 // ...but we need to alloc it in case something jumps here
7067 if(i+1<slen) {
7068 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
7069 }else{
7070 current.u=branch_unneeded_reg[i-1];
7071 }
7072 current.u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7073 current.u|=1;
7074 struct regstat temp;
7075 memcpy(&temp,&current,sizeof(current));
7076 temp.wasdirty=temp.dirty;
7077 // TODO: Take into account unconditional branches, as below
7078 delayslot_alloc(&temp,i);
7079 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
7080 regs[i].wasdirty=temp.wasdirty;
7081 regs[i].dirty=temp.dirty;
7082 regs[i].isconst=0;
7083 regs[i].wasconst=0;
7084 current.isconst=0;
7085 // Create entry (branch target) regmap
7086 for(hr=0;hr<HOST_REGS;hr++)
7087 {
7088 int r=temp.regmap[hr];
7089 if(r>=0) {
7090 if(r!=regmap_pre[i][hr]) {
7091 regs[i].regmap_entry[hr]=-1;
7092 }
7093 else
7094 {
7095 assert(r < 64);
7096 if((current.u>>r)&1) {
7097 regs[i].regmap_entry[hr]=-1;
7098 regs[i].regmap[hr]=-1;
7099 //Don't clear regs in the delay slot as the branch might need them
7100 //current.regmap[hr]=-1;
7101 }else
7102 regs[i].regmap_entry[hr]=r;
7103 }
7104 } else {
7105 // First instruction expects CCREG to be allocated
7106 if(i==0&&hr==HOST_CCREG)
7107 regs[i].regmap_entry[hr]=CCREG;
7108 else
7109 regs[i].regmap_entry[hr]=-1;
7110 }
7111 }
7112 }
7113 else { // Not delay slot
7114 switch(dops[i].itype) {
7115 case UJUMP:
7116 //current.isconst=0; // DEBUG
7117 //current.wasconst=0; // DEBUG
7118 //regs[i].wasconst=0; // DEBUG
7119 clear_const(&current,dops[i].rt1);
7120 alloc_cc(&current,i);
7121 dirty_reg(&current,CCREG);
7122 if (dops[i].rt1==31) {
7123 alloc_reg(&current,i,31);
7124 dirty_reg(&current,31);
7125 //assert(dops[i+1].rs1!=31&&dops[i+1].rs2!=31);
7126 //assert(dops[i+1].rt1!=dops[i].rt1);
7127 #ifdef REG_PREFETCH
7128 alloc_reg(&current,i,PTEMP);
7129 #endif
7130 }
7131 dops[i].ooo=1;
7132 delayslot_alloc(&current,i+1);
7133 //current.isconst=0; // DEBUG
7134 ds=1;
7135 //printf("i=%d, isconst=%x\n",i,current.isconst);
7136 break;
7137 case RJUMP:
7138 //current.isconst=0;
7139 //current.wasconst=0;
7140 //regs[i].wasconst=0;
7141 clear_const(&current,dops[i].rs1);
7142 clear_const(&current,dops[i].rt1);
7143 alloc_cc(&current,i);
7144 dirty_reg(&current,CCREG);
7145 if (!ds_writes_rjump_rs(i)) {
7146 alloc_reg(&current,i,dops[i].rs1);
7147 if (dops[i].rt1!=0) {
7148 alloc_reg(&current,i,dops[i].rt1);
7149 dirty_reg(&current,dops[i].rt1);
7150 assert(dops[i+1].rs1!=dops[i].rt1&&dops[i+1].rs2!=dops[i].rt1);
7151 assert(dops[i+1].rt1!=dops[i].rt1);
7152 #ifdef REG_PREFETCH
7153 alloc_reg(&current,i,PTEMP);
7154 #endif
7155 }
7156 #ifdef USE_MINI_HT
7157 if(dops[i].rs1==31) { // JALR
7158 alloc_reg(&current,i,RHASH);
7159 alloc_reg(&current,i,RHTBL);
7160 }
7161 #endif
7162 delayslot_alloc(&current,i+1);
7163 } else {
7164 // The delay slot overwrites our source register,
7165 // allocate a temporary register to hold the old value.
7166 current.isconst=0;
7167 current.wasconst=0;
7168 regs[i].wasconst=0;
7169 delayslot_alloc(&current,i+1);
7170 current.isconst=0;
7171 alloc_reg(&current,i,RTEMP);
7172 }
7173 //current.isconst=0; // DEBUG
7174 dops[i].ooo=1;
7175 ds=1;
7176 break;
7177 case CJUMP:
7178 //current.isconst=0;
7179 //current.wasconst=0;
7180 //regs[i].wasconst=0;
7181 clear_const(&current,dops[i].rs1);
7182 clear_const(&current,dops[i].rs2);
7183 if((dops[i].opcode&0x3E)==4) // BEQ/BNE
7184 {
7185 alloc_cc(&current,i);
7186 dirty_reg(&current,CCREG);
7187 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7188 if(dops[i].rs2) alloc_reg(&current,i,dops[i].rs2);
7189 if((dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2))||
7190 (dops[i].rs2&&(dops[i].rs2==dops[i+1].rt1||dops[i].rs2==dops[i+1].rt2))) {
7191 // The delay slot overwrites one of our conditions.
7192 // Allocate the branch condition registers instead.
7193 current.isconst=0;
7194 current.wasconst=0;
7195 regs[i].wasconst=0;
7196 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7197 if(dops[i].rs2) alloc_reg(&current,i,dops[i].rs2);
7198 }
7199 else
7200 {
7201 dops[i].ooo=1;
7202 delayslot_alloc(&current,i+1);
7203 }
7204 }
7205 else
7206 if((dops[i].opcode&0x3E)==6) // BLEZ/BGTZ
7207 {
7208 alloc_cc(&current,i);
7209 dirty_reg(&current,CCREG);
7210 alloc_reg(&current,i,dops[i].rs1);
7211 if(dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2)) {
7212 // The delay slot overwrites one of our conditions.
7213 // Allocate the branch condition registers instead.
7214 current.isconst=0;
7215 current.wasconst=0;
7216 regs[i].wasconst=0;
7217 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7218 }
7219 else
7220 {
7221 dops[i].ooo=1;
7222 delayslot_alloc(&current,i+1);
7223 }
7224 }
7225 else
7226 // Don't alloc the delay slot yet because we might not execute it
7227 if((dops[i].opcode&0x3E)==0x14) // BEQL/BNEL
7228 {
7229 current.isconst=0;
7230 current.wasconst=0;
7231 regs[i].wasconst=0;
7232 alloc_cc(&current,i);
7233 dirty_reg(&current,CCREG);
7234 alloc_reg(&current,i,dops[i].rs1);
7235 alloc_reg(&current,i,dops[i].rs2);
7236 }
7237 else
7238 if((dops[i].opcode&0x3E)==0x16) // BLEZL/BGTZL
7239 {
7240 current.isconst=0;
7241 current.wasconst=0;
7242 regs[i].wasconst=0;
7243 alloc_cc(&current,i);
7244 dirty_reg(&current,CCREG);
7245 alloc_reg(&current,i,dops[i].rs1);
7246 }
7247 ds=1;
7248 //current.isconst=0;
7249 break;
7250 case SJUMP:
7251 //current.isconst=0;
7252 //current.wasconst=0;
7253 //regs[i].wasconst=0;
7254 clear_const(&current,dops[i].rs1);
7255 clear_const(&current,dops[i].rt1);
7256 //if((dops[i].opcode2&0x1E)==0x0) // BLTZ/BGEZ
7257 if((dops[i].opcode2&0x0E)==0x0) // BLTZ/BGEZ
7258 {
7259 alloc_cc(&current,i);
7260 dirty_reg(&current,CCREG);
7261 alloc_reg(&current,i,dops[i].rs1);
7262 if (dops[i].rt1==31) { // BLTZAL/BGEZAL
7263 alloc_reg(&current,i,31);
7264 dirty_reg(&current,31);
7265 //#ifdef REG_PREFETCH
7266 //alloc_reg(&current,i,PTEMP);
7267 //#endif
7268 }
7269 if((dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2)) // The delay slot overwrites the branch condition.
7270 ||(dops[i].rt1==31&&(dops[i+1].rs1==31||dops[i+1].rs2==31||dops[i+1].rt1==31||dops[i+1].rt2==31))) { // DS touches $ra
7271 // Allocate the branch condition registers instead.
7272 current.isconst=0;
7273 current.wasconst=0;
7274 regs[i].wasconst=0;
7275 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7276 }
7277 else
7278 {
7279 dops[i].ooo=1;
7280 delayslot_alloc(&current,i+1);
7281 }
7282 }
7283 else
7284 // Don't alloc the delay slot yet because we might not execute it
7285 if((dops[i].opcode2&0x1E)==0x2) // BLTZL/BGEZL
7286 {
7287 current.isconst=0;
7288 current.wasconst=0;
7289 regs[i].wasconst=0;
7290 alloc_cc(&current,i);
7291 dirty_reg(&current,CCREG);
7292 alloc_reg(&current,i,dops[i].rs1);
7293 }
7294 ds=1;
7295 //current.isconst=0;
7296 break;
7297 case IMM16:
7298 imm16_alloc(&current,i);
7299 break;
7300 case LOAD:
7301 case LOADLR:
7302 load_alloc(&current,i);
7303 break;
7304 case STORE:
7305 case STORELR:
7306 store_alloc(&current,i);
7307 break;
7308 case ALU:
7309 alu_alloc(&current,i);
7310 break;
7311 case SHIFT:
7312 shift_alloc(&current,i);
7313 break;
7314 case MULTDIV:
7315 multdiv_alloc(&current,i);
7316 break;
7317 case SHIFTIMM:
7318 shiftimm_alloc(&current,i);
7319 break;
7320 case MOV:
7321 mov_alloc(&current,i);
7322 break;
7323 case COP0:
7324 cop0_alloc(&current,i);
7325 break;
7326 case COP1:
7327 break;
7328 case COP2:
7329 cop2_alloc(&current,i);
7330 break;
7331 case C1LS:
7332 c1ls_alloc(&current,i);
7333 break;
7334 case C2LS:
7335 c2ls_alloc(&current,i);
7336 break;
7337 case C2OP:
7338 c2op_alloc(&current,i);
7339 break;
7340 case SYSCALL:
7341 case HLECALL:
7342 case INTCALL:
7343 syscall_alloc(&current,i);
7344 break;
7345 }
7346
7347 // Create entry (branch target) regmap
7348 for(hr=0;hr<HOST_REGS;hr++)
7349 {
7350 int r,or;
7351 r=current.regmap[hr];
7352 if(r>=0) {
7353 if(r!=regmap_pre[i][hr]) {
7354 // TODO: delay slot (?)
7355 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
7356 if(or<0||r>=TEMPREG){
7357 regs[i].regmap_entry[hr]=-1;
7358 }
7359 else
7360 {
7361 // Just move it to a different register
7362 regs[i].regmap_entry[hr]=r;
7363 // If it was dirty before, it's still dirty
7364 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r);
7365 }
7366 }
7367 else
7368 {
7369 // Unneeded
7370 if(r==0){
7371 regs[i].regmap_entry[hr]=0;
7372 }
7373 else
7374 {
7375 assert(r<64);
7376 if((current.u>>r)&1) {
7377 regs[i].regmap_entry[hr]=-1;
7378 //regs[i].regmap[hr]=-1;
7379 current.regmap[hr]=-1;
7380 }else
7381 regs[i].regmap_entry[hr]=r;
7382 }
7383 }
7384 } else {
7385 // Branches expect CCREG to be allocated at the target
7386 if(regmap_pre[i][hr]==CCREG)
7387 regs[i].regmap_entry[hr]=CCREG;
7388 else
7389 regs[i].regmap_entry[hr]=-1;
7390 }
7391 }
7392 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
7393 }
7394
7395 if(i>0&&(dops[i-1].itype==STORE||dops[i-1].itype==STORELR||(dops[i-1].itype==C2LS&&dops[i-1].opcode==0x3a))&&(u_int)imm[i-1]<0x800)
7396 current.waswritten|=1<<dops[i-1].rs1;
7397 current.waswritten&=~(1<<dops[i].rt1);
7398 current.waswritten&=~(1<<dops[i].rt2);
7399 if((dops[i].itype==STORE||dops[i].itype==STORELR||(dops[i].itype==C2LS&&dops[i].opcode==0x3a))&&(u_int)imm[i]>=0x800)
7400 current.waswritten&=~(1<<dops[i].rs1);
7401
7402 /* Branch post-alloc */
7403 if(i>0)
7404 {
7405 current.wasdirty=current.dirty;
7406 switch(dops[i-1].itype) {
7407 case UJUMP:
7408 memcpy(&branch_regs[i-1],&current,sizeof(current));
7409 branch_regs[i-1].isconst=0;
7410 branch_regs[i-1].wasconst=0;
7411 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
7412 alloc_cc(&branch_regs[i-1],i-1);
7413 dirty_reg(&branch_regs[i-1],CCREG);
7414 if(dops[i-1].rt1==31) { // JAL
7415 alloc_reg(&branch_regs[i-1],i-1,31);
7416 dirty_reg(&branch_regs[i-1],31);
7417 }
7418 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7419 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7420 break;
7421 case RJUMP:
7422 memcpy(&branch_regs[i-1],&current,sizeof(current));
7423 branch_regs[i-1].isconst=0;
7424 branch_regs[i-1].wasconst=0;
7425 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
7426 alloc_cc(&branch_regs[i-1],i-1);
7427 dirty_reg(&branch_regs[i-1],CCREG);
7428 alloc_reg(&branch_regs[i-1],i-1,dops[i-1].rs1);
7429 if(dops[i-1].rt1!=0) { // JALR
7430 alloc_reg(&branch_regs[i-1],i-1,dops[i-1].rt1);
7431 dirty_reg(&branch_regs[i-1],dops[i-1].rt1);
7432 }
7433 #ifdef USE_MINI_HT
7434 if(dops[i-1].rs1==31) { // JALR
7435 alloc_reg(&branch_regs[i-1],i-1,RHASH);
7436 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
7437 }
7438 #endif
7439 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7440 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7441 break;
7442 case CJUMP:
7443 if((dops[i-1].opcode&0x3E)==4) // BEQ/BNE
7444 {
7445 alloc_cc(&current,i-1);
7446 dirty_reg(&current,CCREG);
7447 if((dops[i-1].rs1&&(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2))||
7448 (dops[i-1].rs2&&(dops[i-1].rs2==dops[i].rt1||dops[i-1].rs2==dops[i].rt2))) {
7449 // The delay slot overwrote one of our conditions
7450 // Delay slot goes after the test (in order)
7451 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7452 current.u|=1;
7453 delayslot_alloc(&current,i);
7454 current.isconst=0;
7455 }
7456 else
7457 {
7458 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
7459 // Alloc the branch condition registers
7460 if(dops[i-1].rs1) alloc_reg(&current,i-1,dops[i-1].rs1);
7461 if(dops[i-1].rs2) alloc_reg(&current,i-1,dops[i-1].rs2);
7462 }
7463 memcpy(&branch_regs[i-1],&current,sizeof(current));
7464 branch_regs[i-1].isconst=0;
7465 branch_regs[i-1].wasconst=0;
7466 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7467 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7468 }
7469 else
7470 if((dops[i-1].opcode&0x3E)==6) // BLEZ/BGTZ
7471 {
7472 alloc_cc(&current,i-1);
7473 dirty_reg(&current,CCREG);
7474 if(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2) {
7475 // The delay slot overwrote the branch condition
7476 // Delay slot goes after the test (in order)
7477 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7478 current.u|=1;
7479 delayslot_alloc(&current,i);
7480 current.isconst=0;
7481 }
7482 else
7483 {
7484 current.u=branch_unneeded_reg[i-1]&~(1LL<<dops[i-1].rs1);
7485 // Alloc the branch condition register
7486 alloc_reg(&current,i-1,dops[i-1].rs1);
7487 }
7488 memcpy(&branch_regs[i-1],&current,sizeof(current));
7489 branch_regs[i-1].isconst=0;
7490 branch_regs[i-1].wasconst=0;
7491 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7492 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7493 }
7494 else
7495 // Alloc the delay slot in case the branch is taken
7496 if((dops[i-1].opcode&0x3E)==0x14) // BEQL/BNEL
7497 {
7498 memcpy(&branch_regs[i-1],&current,sizeof(current));
7499 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
7500 alloc_cc(&branch_regs[i-1],i);
7501 dirty_reg(&branch_regs[i-1],CCREG);
7502 delayslot_alloc(&branch_regs[i-1],i);
7503 branch_regs[i-1].isconst=0;
7504 alloc_reg(&current,i,CCREG); // Not taken path
7505 dirty_reg(&current,CCREG);
7506 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7507 }
7508 else
7509 if((dops[i-1].opcode&0x3E)==0x16) // BLEZL/BGTZL
7510 {
7511 memcpy(&branch_regs[i-1],&current,sizeof(current));
7512 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
7513 alloc_cc(&branch_regs[i-1],i);
7514 dirty_reg(&branch_regs[i-1],CCREG);
7515 delayslot_alloc(&branch_regs[i-1],i);
7516 branch_regs[i-1].isconst=0;
7517 alloc_reg(&current,i,CCREG); // Not taken path
7518 dirty_reg(&current,CCREG);
7519 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7520 }
7521 break;
7522 case SJUMP:
7523 //if((dops[i-1].opcode2&0x1E)==0) // BLTZ/BGEZ
7524 if((dops[i-1].opcode2&0x0E)==0) // BLTZ/BGEZ
7525 {
7526 alloc_cc(&current,i-1);
7527 dirty_reg(&current,CCREG);
7528 if(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2) {
7529 // The delay slot overwrote the branch condition
7530 // Delay slot goes after the test (in order)
7531 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7532 current.u|=1;
7533 delayslot_alloc(&current,i);
7534 current.isconst=0;
7535 }
7536 else
7537 {
7538 current.u=branch_unneeded_reg[i-1]&~(1LL<<dops[i-1].rs1);
7539 // Alloc the branch condition register
7540 alloc_reg(&current,i-1,dops[i-1].rs1);
7541 }
7542 memcpy(&branch_regs[i-1],&current,sizeof(current));
7543 branch_regs[i-1].isconst=0;
7544 branch_regs[i-1].wasconst=0;
7545 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7546 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7547 }
7548 else
7549 // Alloc the delay slot in case the branch is taken
7550 if((dops[i-1].opcode2&0x1E)==2) // BLTZL/BGEZL
7551 {
7552 memcpy(&branch_regs[i-1],&current,sizeof(current));
7553 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
7554 alloc_cc(&branch_regs[i-1],i);
7555 dirty_reg(&branch_regs[i-1],CCREG);
7556 delayslot_alloc(&branch_regs[i-1],i);
7557 branch_regs[i-1].isconst=0;
7558 alloc_reg(&current,i,CCREG); // Not taken path
7559 dirty_reg(&current,CCREG);
7560 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7561 }
7562 // FIXME: BLTZAL/BGEZAL
7563 if(dops[i-1].opcode2&0x10) { // BxxZAL
7564 alloc_reg(&branch_regs[i-1],i-1,31);
7565 dirty_reg(&branch_regs[i-1],31);
7566 }
7567 break;
7568 }
7569
7570 if (dops[i-1].is_ujump)
7571 {
7572 if(dops[i-1].rt1==31) // JAL/JALR
7573 {
7574 // Subroutine call will return here, don't alloc any registers
7575 current.dirty=0;
7576 clear_all_regs(current.regmap);
7577 alloc_reg(&current,i,CCREG);
7578 dirty_reg(&current,CCREG);
7579 }
7580 else if(i+1<slen)
7581 {
7582 // Internal branch will jump here, match registers to caller
7583 current.dirty=0;
7584 clear_all_regs(current.regmap);
7585 alloc_reg(&current,i,CCREG);
7586 dirty_reg(&current,CCREG);
7587 for(j=i-1;j>=0;j--)
7588 {
7589 if(ba[j]==start+i*4+4) {
7590 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
7591 current.dirty=branch_regs[j].dirty;
7592 break;
7593 }
7594 }
7595 while(j>=0) {
7596 if(ba[j]==start+i*4+4) {
7597 for(hr=0;hr<HOST_REGS;hr++) {
7598 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
7599 current.regmap[hr]=-1;
7600 }
7601 current.dirty&=branch_regs[j].dirty;
7602 }
7603 }
7604 j--;
7605 }
7606 }
7607 }
7608 }
7609
7610 // Count cycles in between branches
7611 ccadj[i] = CLOCK_ADJUST(cc);
7612 if (i > 0 && (dops[i-1].is_jump || dops[i].itype == SYSCALL || dops[i].itype == HLECALL))
7613 {
7614 cc=0;
7615 }
7616#if !defined(DRC_DBG)
7617 else if(dops[i].itype==C2OP&&gte_cycletab[source[i]&0x3f]>2)
7618 {
7619 // this should really be removed since the real stalls have been implemented,
7620 // but doing so causes sizeable perf regression against the older version
7621 u_int gtec = gte_cycletab[source[i] & 0x3f];
7622 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? gtec/2 : 2;
7623 }
7624 else if(i>1&&dops[i].itype==STORE&&dops[i-1].itype==STORE&&dops[i-2].itype==STORE&&!dops[i].bt)
7625 {
7626 cc+=4;
7627 }
7628 else if(dops[i].itype==C2LS)
7629 {
7630 // same as with C2OP
7631 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? 4 : 2;
7632 }
7633#endif
7634 else
7635 {
7636 cc++;
7637 }
7638
7639 if(!dops[i].is_ds) {
7640 regs[i].dirty=current.dirty;
7641 regs[i].isconst=current.isconst;
7642 memcpy(constmap[i],current_constmap,sizeof(constmap[i]));
7643 }
7644 for(hr=0;hr<HOST_REGS;hr++) {
7645 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
7646 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
7647 regs[i].wasconst&=~(1<<hr);
7648 }
7649 }
7650 }
7651 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
7652 regs[i].waswritten=current.waswritten;
7653 }
7654}
7655
7656static noinline void pass4_cull_unused_regs(void)
7657{
7658 u_int last_needed_regs[4] = {0,0,0,0};
7659 u_int nr=0;
7660 int i;
7661
7662 for (i=slen-1;i>=0;i--)
7663 {
7664 int hr;
7665 __builtin_prefetch(regs[i-2].regmap);
7666 if(dops[i].is_jump)
7667 {
7668 if(ba[i]<start || ba[i]>=(start+slen*4))
7669 {
7670 // Branch out of this block, don't need anything
7671 nr=0;
7672 }
7673 else
7674 {
7675 // Internal branch
7676 // Need whatever matches the target
7677 nr=0;
7678 int t=(ba[i]-start)>>2;
7679 for(hr=0;hr<HOST_REGS;hr++)
7680 {
7681 if(regs[i].regmap_entry[hr]>=0) {
7682 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
7683 }
7684 }
7685 }
7686 // Conditional branch may need registers for following instructions
7687 if (!dops[i].is_ujump)
7688 {
7689 if(i<slen-2) {
7690 nr |= last_needed_regs[(i+2) & 3];
7691 for(hr=0;hr<HOST_REGS;hr++)
7692 {
7693 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
7694 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
7695 }
7696 }
7697 }
7698 // Don't need stuff which is overwritten
7699 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
7700 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
7701 // Merge in delay slot
7702 if (dops[i+1].rt1) nr &= ~get_regm(regs[i].regmap, dops[i+1].rt1);
7703 if (dops[i+1].rt2) nr &= ~get_regm(regs[i].regmap, dops[i+1].rt2);
7704 nr |= get_regm(regmap_pre[i], dops[i+1].rs1);
7705 nr |= get_regm(regmap_pre[i], dops[i+1].rs2);
7706 nr |= get_regm(regs[i].regmap_entry, dops[i+1].rs1);
7707 nr |= get_regm(regs[i].regmap_entry, dops[i+1].rs2);
7708 if (ram_offset && (dops[i+1].is_load || dops[i+1].is_store)) {
7709 nr |= get_regm(regmap_pre[i], ROREG);
7710 nr |= get_regm(regs[i].regmap_entry, ROREG);
7711 }
7712 if (dops[i+1].is_store) {
7713 nr |= get_regm(regmap_pre[i], INVCP);
7714 nr |= get_regm(regs[i].regmap_entry, INVCP);
7715 }
7716 }
7717 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
7718 {
7719 // SYSCALL instruction (software interrupt)
7720 nr=0;
7721 }
7722 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
7723 {
7724 // ERET instruction (return from interrupt)
7725 nr=0;
7726 }
7727 else // Non-branch
7728 {
7729 if(i<slen-1) {
7730 for(hr=0;hr<HOST_REGS;hr++) {
7731 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
7732 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
7733 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
7734 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
7735 }
7736 }
7737 }
7738 // Overwritten registers are not needed
7739 if (dops[i].rt1) nr &= ~get_regm(regs[i].regmap, dops[i].rt1);
7740 if (dops[i].rt2) nr &= ~get_regm(regs[i].regmap, dops[i].rt2);
7741 nr &= ~get_regm(regs[i].regmap, FTEMP);
7742 // Source registers are needed
7743 nr |= get_regm(regmap_pre[i], dops[i].rs1);
7744 nr |= get_regm(regmap_pre[i], dops[i].rs2);
7745 nr |= get_regm(regs[i].regmap_entry, dops[i].rs1);
7746 nr |= get_regm(regs[i].regmap_entry, dops[i].rs2);
7747 if (ram_offset && (dops[i].is_load || dops[i].is_store)) {
7748 nr |= get_regm(regmap_pre[i], ROREG);
7749 nr |= get_regm(regs[i].regmap_entry, ROREG);
7750 }
7751 if (dops[i].is_store) {
7752 nr |= get_regm(regmap_pre[i], INVCP);
7753 nr |= get_regm(regs[i].regmap_entry, INVCP);
7754 }
7755
7756 if (i > 0 && !dops[i].bt && regs[i].wasdirty)
7757 for(hr=0;hr<HOST_REGS;hr++)
7758 {
7759 // Don't store a register immediately after writing it,
7760 // may prevent dual-issue.
7761 // But do so if this is a branch target, otherwise we
7762 // might have to load the register before the branch.
7763 if((regs[i].wasdirty>>hr)&1) {
7764 if((regmap_pre[i][hr]>0&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1))) {
7765 if(dops[i-1].rt1==regmap_pre[i][hr]) nr|=1<<hr;
7766 if(dops[i-1].rt2==regmap_pre[i][hr]) nr|=1<<hr;
7767 }
7768 if((regs[i].regmap_entry[hr]>0&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1))) {
7769 if(dops[i-1].rt1==regs[i].regmap_entry[hr]) nr|=1<<hr;
7770 if(dops[i-1].rt2==regs[i].regmap_entry[hr]) nr|=1<<hr;
7771 }
7772 }
7773 }
7774 // Cycle count is needed at branches. Assume it is needed at the target too.
7775 if(i==0||dops[i].bt||dops[i].itype==CJUMP) {
7776 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
7777 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
7778 }
7779 // Save it
7780 last_needed_regs[i & 3] = nr;
7781
7782 // Deallocate unneeded registers
7783 for(hr=0;hr<HOST_REGS;hr++)
7784 {
7785 if(!((nr>>hr)&1)) {
7786 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
7787 if(dops[i].is_jump)
7788 {
7789 int map1 = 0, map2 = 0, temp = 0; // or -1 ??
7790 if (dops[i+1].is_load || dops[i+1].is_store)
7791 map1 = ROREG;
7792 if (dops[i+1].is_store)
7793 map2 = INVCP;
7794 if(dops[i+1].itype==LOADLR || dops[i+1].itype==STORELR || dops[i+1].itype==C2LS)
7795 temp = FTEMP;
7796 if(regs[i].regmap[hr]!=dops[i].rs1 && regs[i].regmap[hr]!=dops[i].rs2 &&
7797 regs[i].regmap[hr]!=dops[i].rt1 && regs[i].regmap[hr]!=dops[i].rt2 &&
7798 regs[i].regmap[hr]!=dops[i+1].rt1 && regs[i].regmap[hr]!=dops[i+1].rt2 &&
7799 regs[i].regmap[hr]!=dops[i+1].rs1 && regs[i].regmap[hr]!=dops[i+1].rs2 &&
7800 regs[i].regmap[hr]!=temp && regs[i].regmap[hr]!=PTEMP &&
7801 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
7802 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
7803 regs[i].regmap[hr]!=map1 && regs[i].regmap[hr]!=map2)
7804 {
7805 regs[i].regmap[hr]=-1;
7806 regs[i].isconst&=~(1<<hr);
7807 regs[i].dirty&=~(1<<hr);
7808 regs[i+1].wasdirty&=~(1<<hr);
7809 if(branch_regs[i].regmap[hr]!=dops[i].rs1 && branch_regs[i].regmap[hr]!=dops[i].rs2 &&
7810 branch_regs[i].regmap[hr]!=dops[i].rt1 && branch_regs[i].regmap[hr]!=dops[i].rt2 &&
7811 branch_regs[i].regmap[hr]!=dops[i+1].rt1 && branch_regs[i].regmap[hr]!=dops[i+1].rt2 &&
7812 branch_regs[i].regmap[hr]!=dops[i+1].rs1 && branch_regs[i].regmap[hr]!=dops[i+1].rs2 &&
7813 branch_regs[i].regmap[hr]!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
7814 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
7815 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
7816 branch_regs[i].regmap[hr]!=map1 && branch_regs[i].regmap[hr]!=map2)
7817 {
7818 branch_regs[i].regmap[hr]=-1;
7819 branch_regs[i].regmap_entry[hr]=-1;
7820 if (!dops[i].is_ujump)
7821 {
7822 if (i < slen-2) {
7823 regmap_pre[i+2][hr]=-1;
7824 regs[i+2].wasconst&=~(1<<hr);
7825 }
7826 }
7827 }
7828 }
7829 }
7830 else
7831 {
7832 // Non-branch
7833 if(i>0)
7834 {
7835 int map1 = -1, map2 = -1, temp=-1;
7836 if (dops[i].is_load || dops[i].is_store)
7837 map1 = ROREG;
7838 if (dops[i].is_store)
7839 map2 = INVCP;
7840 if (dops[i].itype==LOADLR || dops[i].itype==STORELR || dops[i].itype==C2LS)
7841 temp = FTEMP;
7842 if(regs[i].regmap[hr]!=dops[i].rt1 && regs[i].regmap[hr]!=dops[i].rt2 &&
7843 regs[i].regmap[hr]!=dops[i].rs1 && regs[i].regmap[hr]!=dops[i].rs2 &&
7844 regs[i].regmap[hr]!=temp && regs[i].regmap[hr]!=map1 && regs[i].regmap[hr]!=map2 &&
7845 //(dops[i].itype!=SPAN||regs[i].regmap[hr]!=CCREG)
7846 regs[i].regmap[hr] != CCREG)
7847 {
7848 if(i<slen-1&&!dops[i].is_ds) {
7849 assert(regs[i].regmap[hr]<64);
7850 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]>0)
7851 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
7852 {
7853 SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
7854 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
7855 }
7856 regmap_pre[i+1][hr]=-1;
7857 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
7858 regs[i+1].wasconst&=~(1<<hr);
7859 }
7860 regs[i].regmap[hr]=-1;
7861 regs[i].isconst&=~(1<<hr);
7862 regs[i].dirty&=~(1<<hr);
7863 regs[i+1].wasdirty&=~(1<<hr);
7864 }
7865 }
7866 }
7867 } // if needed
7868 } // for hr
7869 }
7870}
7871
7872// If a register is allocated during a loop, try to allocate it for the
7873// entire loop, if possible. This avoids loading/storing registers
7874// inside of the loop.
7875static noinline void pass5a_preallocate1(void)
7876{
7877 int i, j, hr;
7878 signed char f_regmap[HOST_REGS];
7879 clear_all_regs(f_regmap);
7880 for(i=0;i<slen-1;i++)
7881 {
7882 if(dops[i].itype==UJUMP||dops[i].itype==CJUMP||dops[i].itype==SJUMP)
7883 {
7884 if(ba[i]>=start && ba[i]<(start+i*4))
7885 if(dops[i+1].itype==NOP||dops[i+1].itype==MOV||dops[i+1].itype==ALU
7886 ||dops[i+1].itype==SHIFTIMM||dops[i+1].itype==IMM16||dops[i+1].itype==LOAD
7887 ||dops[i+1].itype==STORE||dops[i+1].itype==STORELR||dops[i+1].itype==C1LS
7888 ||dops[i+1].itype==SHIFT||dops[i+1].itype==COP1
7889 ||dops[i+1].itype==COP2||dops[i+1].itype==C2LS||dops[i+1].itype==C2OP)
7890 {
7891 int t=(ba[i]-start)>>2;
7892 if(t > 0 && !dops[t-1].is_jump) // loop_preload can't handle jumps into delay slots
7893 if(t<2||(dops[t-2].itype!=UJUMP&&dops[t-2].itype!=RJUMP)||dops[t-2].rt1!=31) // call/ret assumes no registers allocated
7894 for(hr=0;hr<HOST_REGS;hr++)
7895 {
7896 if(regs[i].regmap[hr]>=0) {
7897 if(f_regmap[hr]!=regs[i].regmap[hr]) {
7898 // dealloc old register
7899 int n;
7900 for(n=0;n<HOST_REGS;n++)
7901 {
7902 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
7903 }
7904 // and alloc new one
7905 f_regmap[hr]=regs[i].regmap[hr];
7906 }
7907 }
7908 if(branch_regs[i].regmap[hr]>=0) {
7909 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
7910 // dealloc old register
7911 int n;
7912 for(n=0;n<HOST_REGS;n++)
7913 {
7914 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
7915 }
7916 // and alloc new one
7917 f_regmap[hr]=branch_regs[i].regmap[hr];
7918 }
7919 }
7920 if(dops[i].ooo) {
7921 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
7922 f_regmap[hr]=branch_regs[i].regmap[hr];
7923 }else{
7924 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
7925 f_regmap[hr]=branch_regs[i].regmap[hr];
7926 }
7927 // Avoid dirty->clean transition
7928 #ifdef DESTRUCTIVE_WRITEBACK
7929 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
7930 #endif
7931 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
7932 // case above, however it's always a good idea. We can't hoist the
7933 // load if the register was already allocated, so there's no point
7934 // wasting time analyzing most of these cases. It only "succeeds"
7935 // when the mapping was different and the load can be replaced with
7936 // a mov, which is of negligible benefit. So such cases are
7937 // skipped below.
7938 if(f_regmap[hr]>0) {
7939 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
7940 int r=f_regmap[hr];
7941 for(j=t;j<=i;j++)
7942 {
7943 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
7944 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
7945 assert(r < 64);
7946 if(regs[j].regmap[hr]==f_regmap[hr]&&f_regmap[hr]<TEMPREG) {
7947 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
7948 int k;
7949 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
7950 if(get_reg(regs[i].regmap,f_regmap[hr])>=0) break;
7951 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
7952 k=i;
7953 while(k>1&&regs[k-1].regmap[hr]==-1) {
7954 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
7955 //printf("no free regs for store %x\n",start+(k-1)*4);
7956 break;
7957 }
7958 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
7959 //printf("no-match due to different register\n");
7960 break;
7961 }
7962 if (dops[k-2].is_jump) {
7963 //printf("no-match due to branch\n");
7964 break;
7965 }
7966 // call/ret fast path assumes no registers allocated
7967 if(k>2&&(dops[k-3].itype==UJUMP||dops[k-3].itype==RJUMP)&&dops[k-3].rt1==31) {
7968 break;
7969 }
7970 k--;
7971 }
7972 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
7973 //printf("Extend r%d, %x ->\n",hr,start+k*4);
7974 while(k<i) {
7975 regs[k].regmap_entry[hr]=f_regmap[hr];
7976 regs[k].regmap[hr]=f_regmap[hr];
7977 regmap_pre[k+1][hr]=f_regmap[hr];
7978 regs[k].wasdirty&=~(1<<hr);
7979 regs[k].dirty&=~(1<<hr);
7980 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
7981 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
7982 regs[k].wasconst&=~(1<<hr);
7983 regs[k].isconst&=~(1<<hr);
7984 k++;
7985 }
7986 }
7987 else {
7988 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
7989 break;
7990 }
7991 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
7992 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
7993 //printf("OK fill %x (r%d)\n",start+i*4,hr);
7994 regs[i].regmap_entry[hr]=f_regmap[hr];
7995 regs[i].regmap[hr]=f_regmap[hr];
7996 regs[i].wasdirty&=~(1<<hr);
7997 regs[i].dirty&=~(1<<hr);
7998 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
7999 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
8000 regs[i].wasconst&=~(1<<hr);
8001 regs[i].isconst&=~(1<<hr);
8002 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
8003 branch_regs[i].wasdirty&=~(1<<hr);
8004 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
8005 branch_regs[i].regmap[hr]=f_regmap[hr];
8006 branch_regs[i].dirty&=~(1<<hr);
8007 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
8008 branch_regs[i].wasconst&=~(1<<hr);
8009 branch_regs[i].isconst&=~(1<<hr);
8010 if (!dops[i].is_ujump) {
8011 regmap_pre[i+2][hr]=f_regmap[hr];
8012 regs[i+2].wasdirty&=~(1<<hr);
8013 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
8014 }
8015 }
8016 }
8017 for(k=t;k<j;k++) {
8018 // Alloc register clean at beginning of loop,
8019 // but may dirty it in pass 6
8020 regs[k].regmap_entry[hr]=f_regmap[hr];
8021 regs[k].regmap[hr]=f_regmap[hr];
8022 regs[k].dirty&=~(1<<hr);
8023 regs[k].wasconst&=~(1<<hr);
8024 regs[k].isconst&=~(1<<hr);
8025 if (dops[k].is_jump) {
8026 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
8027 branch_regs[k].regmap[hr]=f_regmap[hr];
8028 branch_regs[k].dirty&=~(1<<hr);
8029 branch_regs[k].wasconst&=~(1<<hr);
8030 branch_regs[k].isconst&=~(1<<hr);
8031 if (!dops[k].is_ujump) {
8032 regmap_pre[k+2][hr]=f_regmap[hr];
8033 regs[k+2].wasdirty&=~(1<<hr);
8034 }
8035 }
8036 else
8037 {
8038 regmap_pre[k+1][hr]=f_regmap[hr];
8039 regs[k+1].wasdirty&=~(1<<hr);
8040 }
8041 }
8042 if(regs[j].regmap[hr]==f_regmap[hr])
8043 regs[j].regmap_entry[hr]=f_regmap[hr];
8044 break;
8045 }
8046 if(j==i) break;
8047 if(regs[j].regmap[hr]>=0)
8048 break;
8049 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
8050 //printf("no-match due to different register\n");
8051 break;
8052 }
8053 if (dops[j].is_ujump)
8054 {
8055 // Stop on unconditional branch
8056 break;
8057 }
8058 if(dops[j].itype==CJUMP||dops[j].itype==SJUMP)
8059 {
8060 if(dops[j].ooo) {
8061 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
8062 break;
8063 }else{
8064 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
8065 break;
8066 }
8067 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
8068 //printf("no-match due to different register (branch)\n");
8069 break;
8070 }
8071 }
8072 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8073 //printf("No free regs for store %x\n",start+j*4);
8074 break;
8075 }
8076 assert(f_regmap[hr]<64);
8077 }
8078 }
8079 }
8080 }
8081 }
8082 }else{
8083 // Non branch or undetermined branch target
8084 for(hr=0;hr<HOST_REGS;hr++)
8085 {
8086 if(hr!=EXCLUDE_REG) {
8087 if(regs[i].regmap[hr]>=0) {
8088 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8089 // dealloc old register
8090 int n;
8091 for(n=0;n<HOST_REGS;n++)
8092 {
8093 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8094 }
8095 // and alloc new one
8096 f_regmap[hr]=regs[i].regmap[hr];
8097 }
8098 }
8099 }
8100 }
8101 // Try to restore cycle count at branch targets
8102 if(dops[i].bt) {
8103 for(j=i;j<slen-1;j++) {
8104 if(regs[j].regmap[HOST_CCREG]!=-1) break;
8105 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8106 //printf("no free regs for store %x\n",start+j*4);
8107 break;
8108 }
8109 }
8110 if(regs[j].regmap[HOST_CCREG]==CCREG) {
8111 int k=i;
8112 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
8113 while(k<j) {
8114 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8115 regs[k].regmap[HOST_CCREG]=CCREG;
8116 regmap_pre[k+1][HOST_CCREG]=CCREG;
8117 regs[k+1].wasdirty|=1<<HOST_CCREG;
8118 regs[k].dirty|=1<<HOST_CCREG;
8119 regs[k].wasconst&=~(1<<HOST_CCREG);
8120 regs[k].isconst&=~(1<<HOST_CCREG);
8121 k++;
8122 }
8123 regs[j].regmap_entry[HOST_CCREG]=CCREG;
8124 }
8125 // Work backwards from the branch target
8126 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
8127 {
8128 //printf("Extend backwards\n");
8129 int k;
8130 k=i;
8131 while(regs[k-1].regmap[HOST_CCREG]==-1) {
8132 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8133 //printf("no free regs for store %x\n",start+(k-1)*4);
8134 break;
8135 }
8136 k--;
8137 }
8138 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
8139 //printf("Extend CC, %x ->\n",start+k*4);
8140 while(k<=i) {
8141 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8142 regs[k].regmap[HOST_CCREG]=CCREG;
8143 regmap_pre[k+1][HOST_CCREG]=CCREG;
8144 regs[k+1].wasdirty|=1<<HOST_CCREG;
8145 regs[k].dirty|=1<<HOST_CCREG;
8146 regs[k].wasconst&=~(1<<HOST_CCREG);
8147 regs[k].isconst&=~(1<<HOST_CCREG);
8148 k++;
8149 }
8150 }
8151 else {
8152 //printf("Fail Extend CC, %x ->\n",start+k*4);
8153 }
8154 }
8155 }
8156 if(dops[i].itype!=STORE&&dops[i].itype!=STORELR&&dops[i].itype!=C1LS&&dops[i].itype!=SHIFT&&
8157 dops[i].itype!=NOP&&dops[i].itype!=MOV&&dops[i].itype!=ALU&&dops[i].itype!=SHIFTIMM&&
8158 dops[i].itype!=IMM16&&dops[i].itype!=LOAD&&dops[i].itype!=COP1)
8159 {
8160 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
8161 }
8162 }
8163 }
8164}
8165
8166// This allocates registers (if possible) one instruction prior
8167// to use, which can avoid a load-use penalty on certain CPUs.
8168static noinline void pass5b_preallocate2(void)
8169{
8170 int i, hr;
8171 for(i=0;i<slen-1;i++)
8172 {
8173 if (!i || !dops[i-1].is_jump)
8174 {
8175 if(!dops[i+1].bt)
8176 {
8177 if(dops[i].itype==ALU||dops[i].itype==MOV||dops[i].itype==LOAD||dops[i].itype==SHIFTIMM||dops[i].itype==IMM16
8178 ||((dops[i].itype==COP1||dops[i].itype==COP2)&&dops[i].opcode2<3))
8179 {
8180 if(dops[i+1].rs1) {
8181 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rs1))>=0)
8182 {
8183 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8184 {
8185 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8186 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8187 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8188 regs[i].isconst&=~(1<<hr);
8189 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8190 constmap[i][hr]=constmap[i+1][hr];
8191 regs[i+1].wasdirty&=~(1<<hr);
8192 regs[i].dirty&=~(1<<hr);
8193 }
8194 }
8195 }
8196 if(dops[i+1].rs2) {
8197 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rs2))>=0)
8198 {
8199 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8200 {
8201 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8202 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8203 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8204 regs[i].isconst&=~(1<<hr);
8205 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8206 constmap[i][hr]=constmap[i+1][hr];
8207 regs[i+1].wasdirty&=~(1<<hr);
8208 regs[i].dirty&=~(1<<hr);
8209 }
8210 }
8211 }
8212 // Preload target address for load instruction (non-constant)
8213 if(dops[i+1].itype==LOAD&&dops[i+1].rs1&&get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8214 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rt1))>=0)
8215 {
8216 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8217 {
8218 regs[i].regmap[hr]=dops[i+1].rs1;
8219 regmap_pre[i+1][hr]=dops[i+1].rs1;
8220 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8221 regs[i].isconst&=~(1<<hr);
8222 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8223 constmap[i][hr]=constmap[i+1][hr];
8224 regs[i+1].wasdirty&=~(1<<hr);
8225 regs[i].dirty&=~(1<<hr);
8226 }
8227 }
8228 }
8229 // Load source into target register
8230 if(dops[i+1].use_lt1&&get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8231 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rt1))>=0)
8232 {
8233 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8234 {
8235 regs[i].regmap[hr]=dops[i+1].rs1;
8236 regmap_pre[i+1][hr]=dops[i+1].rs1;
8237 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8238 regs[i].isconst&=~(1<<hr);
8239 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8240 constmap[i][hr]=constmap[i+1][hr];
8241 regs[i+1].wasdirty&=~(1<<hr);
8242 regs[i].dirty&=~(1<<hr);
8243 }
8244 }
8245 }
8246 // Address for store instruction (non-constant)
8247 if(dops[i+1].itype==STORE||dops[i+1].itype==STORELR
8248 ||(dops[i+1].opcode&0x3b)==0x39||(dops[i+1].opcode&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
8249 if(get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8250 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
8251 if(hr<0) hr=get_reg_temp(regs[i+1].regmap);
8252 else {
8253 regs[i+1].regmap[hr]=AGEN1+((i+1)&1);
8254 regs[i+1].isconst&=~(1<<hr);
8255 }
8256 assert(hr>=0);
8257 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8258 {
8259 regs[i].regmap[hr]=dops[i+1].rs1;
8260 regmap_pre[i+1][hr]=dops[i+1].rs1;
8261 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8262 regs[i].isconst&=~(1<<hr);
8263 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8264 constmap[i][hr]=constmap[i+1][hr];
8265 regs[i+1].wasdirty&=~(1<<hr);
8266 regs[i].dirty&=~(1<<hr);
8267 }
8268 }
8269 }
8270 if(dops[i+1].itype==LOADLR||(dops[i+1].opcode&0x3b)==0x31||(dops[i+1].opcode&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
8271 if(get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8272 int nr;
8273 hr=get_reg(regs[i+1].regmap,FTEMP);
8274 assert(hr>=0);
8275 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8276 {
8277 regs[i].regmap[hr]=dops[i+1].rs1;
8278 regmap_pre[i+1][hr]=dops[i+1].rs1;
8279 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8280 regs[i].isconst&=~(1<<hr);
8281 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8282 constmap[i][hr]=constmap[i+1][hr];
8283 regs[i+1].wasdirty&=~(1<<hr);
8284 regs[i].dirty&=~(1<<hr);
8285 }
8286 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
8287 {
8288 // move it to another register
8289 regs[i+1].regmap[hr]=-1;
8290 regmap_pre[i+2][hr]=-1;
8291 regs[i+1].regmap[nr]=FTEMP;
8292 regmap_pre[i+2][nr]=FTEMP;
8293 regs[i].regmap[nr]=dops[i+1].rs1;
8294 regmap_pre[i+1][nr]=dops[i+1].rs1;
8295 regs[i+1].regmap_entry[nr]=dops[i+1].rs1;
8296 regs[i].isconst&=~(1<<nr);
8297 regs[i+1].isconst&=~(1<<nr);
8298 regs[i].dirty&=~(1<<nr);
8299 regs[i+1].wasdirty&=~(1<<nr);
8300 regs[i+1].dirty&=~(1<<nr);
8301 regs[i+2].wasdirty&=~(1<<nr);
8302 }
8303 }
8304 }
8305 if(dops[i+1].itype==LOAD||dops[i+1].itype==LOADLR||dops[i+1].itype==STORE||dops[i+1].itype==STORELR/*||dops[i+1].itype==C1LS||||dops[i+1].itype==C2LS*/) {
8306 hr = -1;
8307 if(dops[i+1].itype==LOAD)
8308 hr=get_reg(regs[i+1].regmap,dops[i+1].rt1);
8309 if(dops[i+1].itype==LOADLR||(dops[i+1].opcode&0x3b)==0x31||(dops[i+1].opcode&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
8310 hr=get_reg(regs[i+1].regmap,FTEMP);
8311 if(dops[i+1].itype==STORE||dops[i+1].itype==STORELR||(dops[i+1].opcode&0x3b)==0x39||(dops[i+1].opcode&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
8312 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
8313 if(hr<0) hr=get_reg_temp(regs[i+1].regmap);
8314 }
8315 if(hr>=0&&regs[i].regmap[hr]<0) {
8316 int rs=get_reg(regs[i+1].regmap,dops[i+1].rs1);
8317 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
8318 regs[i].regmap[hr]=AGEN1+((i+1)&1);
8319 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
8320 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
8321 regs[i].isconst&=~(1<<hr);
8322 regs[i+1].wasdirty&=~(1<<hr);
8323 regs[i].dirty&=~(1<<hr);
8324 }
8325 }
8326 }
8327 }
8328 }
8329 }
8330 }
8331}
8332
8333// Write back dirty registers as soon as we will no longer modify them,
8334// so that we don't end up with lots of writes at the branches.
8335static noinline void pass6_clean_registers(int istart, int iend, int wr)
8336{
8337 static u_int wont_dirty[MAXBLOCK];
8338 static u_int will_dirty[MAXBLOCK];
8339 int i;
8340 int r;
8341 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
8342 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
8343 if(iend==slen-1) {
8344 will_dirty_i=will_dirty_next=0;
8345 wont_dirty_i=wont_dirty_next=0;
8346 }else{
8347 will_dirty_i=will_dirty_next=will_dirty[iend+1];
8348 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
8349 }
8350 for (i=iend;i>=istart;i--)
8351 {
8352 signed char rregmap_i[RRMAP_SIZE];
8353 u_int hr_candirty = 0;
8354 assert(HOST_REGS < 32);
8355 make_rregs(regs[i].regmap, rregmap_i, &hr_candirty);
8356 __builtin_prefetch(regs[i-1].regmap);
8357 if(dops[i].is_jump)
8358 {
8359 signed char branch_rregmap_i[RRMAP_SIZE];
8360 u_int branch_hr_candirty = 0;
8361 make_rregs(branch_regs[i].regmap, branch_rregmap_i, &branch_hr_candirty);
8362 if(ba[i]<start || ba[i]>=(start+slen*4))
8363 {
8364 // Branch out of this block, flush all regs
8365 will_dirty_i = 0;
8366 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8367 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8368 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8369 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8370 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8371 will_dirty_i &= branch_hr_candirty;
8372 if (dops[i].is_ujump)
8373 {
8374 // Unconditional branch
8375 wont_dirty_i = 0;
8376 // Merge in delay slot (will dirty)
8377 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8378 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8379 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8380 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8381 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8382 will_dirty_i &= hr_candirty;
8383 }
8384 else
8385 {
8386 // Conditional branch
8387 wont_dirty_i = wont_dirty_next;
8388 // Merge in delay slot (will dirty)
8389 // (the original code had no explanation why these 2 are commented out)
8390 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8391 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8392 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8393 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8394 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8395 will_dirty_i &= hr_candirty;
8396 }
8397 // Merge in delay slot (wont dirty)
8398 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8399 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8400 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8401 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8402 wont_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8403 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8404 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8405 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8406 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8407 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8408 wont_dirty_i &= ~(1u << 31);
8409 if(wr) {
8410 #ifndef DESTRUCTIVE_WRITEBACK
8411 branch_regs[i].dirty&=wont_dirty_i;
8412 #endif
8413 branch_regs[i].dirty|=will_dirty_i;
8414 }
8415 }
8416 else
8417 {
8418 // Internal branch
8419 if(ba[i]<=start+i*4) {
8420 // Backward branch
8421 if (dops[i].is_ujump)
8422 {
8423 // Unconditional branch
8424 temp_will_dirty=0;
8425 temp_wont_dirty=0;
8426 // Merge in delay slot (will dirty)
8427 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8428 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8429 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8430 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8431 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8432 temp_will_dirty &= branch_hr_candirty;
8433 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8434 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8435 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8436 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8437 temp_will_dirty |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8438 temp_will_dirty &= hr_candirty;
8439 } else {
8440 // Conditional branch (not taken case)
8441 temp_will_dirty=will_dirty_next;
8442 temp_wont_dirty=wont_dirty_next;
8443 // Merge in delay slot (will dirty)
8444 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8445 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8446 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8447 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8448 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8449 temp_will_dirty &= branch_hr_candirty;
8450 //temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8451 //temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8452 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8453 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8454 temp_will_dirty |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8455 temp_will_dirty &= hr_candirty;
8456 }
8457 // Merge in delay slot (wont dirty)
8458 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8459 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8460 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8461 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8462 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8463 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8464 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8465 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8466 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8467 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8468 temp_wont_dirty &= ~(1u << 31);
8469 // Deal with changed mappings
8470 if(i<iend) {
8471 for(r=0;r<HOST_REGS;r++) {
8472 if(r!=EXCLUDE_REG) {
8473 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
8474 temp_will_dirty&=~(1<<r);
8475 temp_wont_dirty&=~(1<<r);
8476 if(regmap_pre[i][r]>0 && regmap_pre[i][r]<34) {
8477 temp_will_dirty|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
8478 temp_wont_dirty|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
8479 } else {
8480 temp_will_dirty|=1<<r;
8481 temp_wont_dirty|=1<<r;
8482 }
8483 }
8484 }
8485 }
8486 }
8487 if(wr) {
8488 will_dirty[i]=temp_will_dirty;
8489 wont_dirty[i]=temp_wont_dirty;
8490 pass6_clean_registers((ba[i]-start)>>2,i-1,0);
8491 }else{
8492 // Limit recursion. It can take an excessive amount
8493 // of time if there are a lot of nested loops.
8494 will_dirty[(ba[i]-start)>>2]=0;
8495 wont_dirty[(ba[i]-start)>>2]=-1;
8496 }
8497 }
8498 /*else*/ if(1)
8499 {
8500 if (dops[i].is_ujump)
8501 {
8502 // Unconditional branch
8503 will_dirty_i=0;
8504 wont_dirty_i=0;
8505 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
8506 for(r=0;r<HOST_REGS;r++) {
8507 if(r!=EXCLUDE_REG) {
8508 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
8509 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
8510 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
8511 }
8512 if(branch_regs[i].regmap[r]>=0) {
8513 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>branch_regs[i].regmap[r])&1)<<r;
8514 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>branch_regs[i].regmap[r])&1)<<r;
8515 }
8516 }
8517 }
8518 //}
8519 // Merge in delay slot
8520 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8521 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8522 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8523 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8524 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8525 will_dirty_i &= branch_hr_candirty;
8526 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8527 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8528 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8529 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8530 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8531 will_dirty_i &= hr_candirty;
8532 } else {
8533 // Conditional branch
8534 will_dirty_i=will_dirty_next;
8535 wont_dirty_i=wont_dirty_next;
8536 //if(ba[i]>start+i*4) // Disable recursion (for debugging)
8537 for(r=0;r<HOST_REGS;r++) {
8538 if(r!=EXCLUDE_REG) {
8539 signed char target_reg=branch_regs[i].regmap[r];
8540 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
8541 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
8542 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
8543 }
8544 else if(target_reg>=0) {
8545 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>target_reg)&1)<<r;
8546 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>target_reg)&1)<<r;
8547 }
8548 }
8549 }
8550 // Merge in delay slot
8551 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8552 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8553 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8554 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8555 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8556 will_dirty_i &= branch_hr_candirty;
8557 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8558 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8559 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8560 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8561 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8562 will_dirty_i &= hr_candirty;
8563 }
8564 // Merge in delay slot (won't dirty)
8565 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8566 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8567 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8568 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8569 wont_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8570 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8571 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8572 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8573 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8574 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8575 wont_dirty_i &= ~(1u << 31);
8576 if(wr) {
8577 #ifndef DESTRUCTIVE_WRITEBACK
8578 branch_regs[i].dirty&=wont_dirty_i;
8579 #endif
8580 branch_regs[i].dirty|=will_dirty_i;
8581 }
8582 }
8583 }
8584 }
8585 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
8586 {
8587 // SYSCALL instruction (software interrupt)
8588 will_dirty_i=0;
8589 wont_dirty_i=0;
8590 }
8591 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
8592 {
8593 // ERET instruction (return from interrupt)
8594 will_dirty_i=0;
8595 wont_dirty_i=0;
8596 }
8597 will_dirty_next=will_dirty_i;
8598 wont_dirty_next=wont_dirty_i;
8599 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8600 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8601 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8602 will_dirty_i &= hr_candirty;
8603 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8604 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8605 wont_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8606 wont_dirty_i &= ~(1u << 31);
8607 if (i > istart && !dops[i].is_jump) {
8608 // Don't store a register immediately after writing it,
8609 // may prevent dual-issue.
8610 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i-1].rt1) & 31);
8611 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i-1].rt2) & 31);
8612 }
8613 // Save it
8614 will_dirty[i]=will_dirty_i;
8615 wont_dirty[i]=wont_dirty_i;
8616 // Mark registers that won't be dirtied as not dirty
8617 if(wr) {
8618 regs[i].dirty|=will_dirty_i;
8619 #ifndef DESTRUCTIVE_WRITEBACK
8620 regs[i].dirty&=wont_dirty_i;
8621 if(dops[i].is_jump)
8622 {
8623 if (i < iend-1 && !dops[i].is_ujump) {
8624 for(r=0;r<HOST_REGS;r++) {
8625 if(r!=EXCLUDE_REG) {
8626 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
8627 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
8628 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
8629 }
8630 }
8631 }
8632 }
8633 else
8634 {
8635 if(i<iend) {
8636 for(r=0;r<HOST_REGS;r++) {
8637 if(r!=EXCLUDE_REG) {
8638 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
8639 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
8640 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
8641 }
8642 }
8643 }
8644 }
8645 #endif
8646 }
8647 // Deal with changed mappings
8648 temp_will_dirty=will_dirty_i;
8649 temp_wont_dirty=wont_dirty_i;
8650 for(r=0;r<HOST_REGS;r++) {
8651 if(r!=EXCLUDE_REG) {
8652 int nr;
8653 if(regs[i].regmap[r]==regmap_pre[i][r]) {
8654 if(wr) {
8655 #ifndef DESTRUCTIVE_WRITEBACK
8656 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
8657 #endif
8658 regs[i].wasdirty|=will_dirty_i&(1<<r);
8659 }
8660 }
8661 else if(regmap_pre[i][r]>=0&&(nr=get_rreg(rregmap_i,regmap_pre[i][r]))>=0) {
8662 // Register moved to a different register
8663 will_dirty_i&=~(1<<r);
8664 wont_dirty_i&=~(1<<r);
8665 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
8666 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
8667 if(wr) {
8668 #ifndef DESTRUCTIVE_WRITEBACK
8669 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
8670 #endif
8671 regs[i].wasdirty|=will_dirty_i&(1<<r);
8672 }
8673 }
8674 else {
8675 will_dirty_i&=~(1<<r);
8676 wont_dirty_i&=~(1<<r);
8677 if(regmap_pre[i][r]>0 && regmap_pre[i][r]<34) {
8678 will_dirty_i|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
8679 wont_dirty_i|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
8680 } else {
8681 wont_dirty_i|=1<<r;
8682 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);assert(!((will_dirty>>r)&1));*/
8683 }
8684 }
8685 }
8686 }
8687 }
8688}
8689
8690static noinline void pass10_expire_blocks(void)
8691{
8692 int i, end;
8693 end = (((out-ndrc->translation_cache)>>(TARGET_SIZE_2-16)) + 16384) & 65535;
8694 while (expirep != end)
8695 {
8696 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
8697 uintptr_t base_offs = ((uintptr_t)(expirep >> 13) << shift); // Base offset of this block
8698 uintptr_t base_offs_s = base_offs >> shift;
8699 inv_debug("EXP: Phase %d\n",expirep);
8700 switch((expirep>>11)&3)
8701 {
8702 case 0:
8703 // Clear jump_in and jump_dirty
8704 ll_remove_matching_addrs(jump_in+(expirep&2047),base_offs_s,shift);
8705 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base_offs_s,shift);
8706 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base_offs_s,shift);
8707 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base_offs_s,shift);
8708 break;
8709 case 1:
8710 // Clear pointers
8711 ll_kill_pointers(jump_out[expirep&2047],base_offs_s,shift);
8712 ll_kill_pointers(jump_out[(expirep&2047)+2048],base_offs_s,shift);
8713 break;
8714 case 2:
8715 // Clear hash table
8716 for(i=0;i<32;i++) {
8717 struct ht_entry *ht_bin = &hash_table[((expirep&2047)<<5)+i];
8718 uintptr_t o1 = (u_char *)ht_bin->tcaddr[1] - ndrc->translation_cache;
8719 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
8720 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s) {
8721 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[1],ht_bin->tcaddr[1]);
8722 ht_bin->vaddr[1] = -1;
8723 ht_bin->tcaddr[1] = NULL;
8724 }
8725 o1 = (u_char *)ht_bin->tcaddr[0] - ndrc->translation_cache;
8726 o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
8727 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s) {
8728 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[0],ht_bin->tcaddr[0]);
8729 ht_bin->vaddr[0] = ht_bin->vaddr[1];
8730 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
8731 ht_bin->vaddr[1] = -1;
8732 ht_bin->tcaddr[1] = NULL;
8733 }
8734 }
8735 break;
8736 case 3:
8737 // Clear jump_out
8738 if((expirep&2047)==0)
8739 do_clear_cache();
8740 ll_remove_matching_addrs(jump_out+(expirep&2047),base_offs_s,shift);
8741 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base_offs_s,shift);
8742 break;
8743 }
8744 expirep=(expirep+1)&65535;
8745 }
8746}
8747
8748int new_recompile_block(u_int addr)
8749{
8750 u_int pagelimit = 0;
8751 u_int state_rflags = 0;
8752 int i;
8753
8754 assem_debug("NOTCOMPILED: addr = %x -> %p\n", addr, out);
8755
8756 // this is just for speculation
8757 for (i = 1; i < 32; i++) {
8758 if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
8759 state_rflags |= 1 << i;
8760 }
8761
8762 assert(!(addr & 3));
8763 start = addr & ~3;
8764 new_dynarec_did_compile=1;
8765 if (Config.HLE && start == 0x80001000) // hlecall
8766 {
8767 // XXX: is this enough? Maybe check hleSoftCall?
8768 void *beginning=start_block();
8769 u_int page=get_page(start);
8770
8771 invalid_code[start>>12]=0;
8772 emit_movimm(start,0);
8773 emit_writeword(0,&pcaddr);
8774 emit_far_jump(new_dyna_leave);
8775 literal_pool(0);
8776 end_block(beginning);
8777 ll_add_flags(jump_in+page,start,state_rflags,(void *)beginning);
8778 return 0;
8779 }
8780 else if (f1_hack && hack_addr == 0) {
8781 void *beginning = start_block();
8782 u_int page = get_page(start);
8783 emit_movimm(start, 0);
8784 emit_writeword(0, &hack_addr);
8785 emit_readword(&psxRegs.GPR.n.sp, 0);
8786 emit_readptr(&mem_rtab, 1);
8787 emit_shrimm(0, 12, 2);
8788 emit_readptr_dualindexedx_ptrlen(1, 2, 1);
8789 emit_addimm(0, 0x18, 0);
8790 emit_adds_ptr(1, 1, 1);
8791 emit_ldr_dualindexed(1, 0, 0);
8792 emit_writeword(0, &psxRegs.GPR.r[26]); // lw k0, 0x18(sp)
8793 emit_far_call(get_addr_ht);
8794 emit_jmpreg(0); // jr k0
8795 literal_pool(0);
8796 end_block(beginning);
8797
8798 ll_add_flags(jump_in + page, start, state_rflags, beginning);
8799 SysPrintf("F1 hack to %08x\n", start);
8800 return 0;
8801 }
8802
8803 cycle_multiplier_active = cycle_multiplier_override && cycle_multiplier == CYCLE_MULT_DEFAULT
8804 ? cycle_multiplier_override : cycle_multiplier;
8805
8806 source = get_source_start(start, &pagelimit);
8807 if (source == NULL) {
8808 if (addr != hack_addr) {
8809 SysPrintf("Compile at bogus memory address: %08x\n", addr);
8810 hack_addr = addr;
8811 }
8812 //abort();
8813 return -1;
8814 }
8815
8816 /* Pass 1: disassemble */
8817 /* Pass 2: register dependencies, branch targets */
8818 /* Pass 3: register allocation */
8819 /* Pass 4: branch dependencies */
8820 /* Pass 5: pre-alloc */
8821 /* Pass 6: optimize clean/dirty state */
8822 /* Pass 7: flag 32-bit registers */
8823 /* Pass 8: assembly */
8824 /* Pass 9: linker */
8825 /* Pass 10: garbage collection / free memory */
8826
8827 /* Pass 1 disassembly */
8828
8829 pass1_disassemble(pagelimit);
8830
8831 int clear_hack_addr = apply_hacks();
8832
8833 /* Pass 2 - Register dependencies and branch targets */
8834
8835 pass2_unneeded_regs(0,slen-1,0);
8836
8837 /* Pass 3 - Register allocation */
8838
8839 pass3_register_alloc(addr);
8840
8841 /* Pass 4 - Cull unused host registers */
8842
8843 pass4_cull_unused_regs();
8844
8845 /* Pass 5 - Pre-allocate registers */
8846
8847 pass5a_preallocate1();
8848 pass5b_preallocate2();
8849
8850 /* Pass 6 - Optimize clean/dirty state */
8851 pass6_clean_registers(0, slen-1, 1);
8852
8853 /* Pass 7 - Identify 32-bit registers */
8854 for (i=slen-1;i>=0;i--)
8855 {
8856 if(dops[i].itype==CJUMP||dops[i].itype==SJUMP)
8857 {
8858 // Conditional branch
8859 if((source[i]>>16)!=0x1000&&i<slen-2) {
8860 // Mark this address as a branch target since it may be called
8861 // upon return from interrupt
8862 dops[i+2].bt=1;
8863 }
8864 }
8865 }
8866
8867 /* Pass 8 - Assembly */
8868 linkcount=0;stubcount=0;
8869 is_delayslot=0;
8870 u_int dirty_pre=0;
8871 void *beginning=start_block();
8872 void *instr_addr0_override = NULL;
8873 int ds = 0;
8874
8875 if (start == 0x80030000) {
8876 // nasty hack for the fastbios thing
8877 // override block entry to this code
8878 instr_addr0_override = out;
8879 emit_movimm(start,0);
8880 // abuse io address var as a flag that we
8881 // have already returned here once
8882 emit_readword(&address,1);
8883 emit_writeword(0,&pcaddr);
8884 emit_writeword(0,&address);
8885 emit_cmp(0,1);
8886 #ifdef __aarch64__
8887 emit_jeq(out + 4*2);
8888 emit_far_jump(new_dyna_leave);
8889 #else
8890 emit_jne(new_dyna_leave);
8891 #endif
8892 }
8893 for(i=0;i<slen;i++)
8894 {
8895 __builtin_prefetch(regs[i+1].regmap);
8896 check_regmap(regmap_pre[i]);
8897 check_regmap(regs[i].regmap_entry);
8898 check_regmap(regs[i].regmap);
8899 //if(ds) printf("ds: ");
8900 disassemble_inst(i);
8901 if(ds) {
8902 ds=0; // Skip delay slot
8903 if(dops[i].bt) assem_debug("OOPS - branch into delay slot\n");
8904 instr_addr[i] = NULL;
8905 } else {
8906 speculate_register_values(i);
8907 #ifndef DESTRUCTIVE_WRITEBACK
8908 if (i < 2 || !dops[i-2].is_ujump)
8909 {
8910 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,unneeded_reg[i]);
8911 }
8912 if((dops[i].itype==CJUMP||dops[i].itype==SJUMP)) {
8913 dirty_pre=branch_regs[i].dirty;
8914 }else{
8915 dirty_pre=regs[i].dirty;
8916 }
8917 #endif
8918 // write back
8919 if (i < 2 || !dops[i-2].is_ujump)
8920 {
8921 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,unneeded_reg[i]);
8922 loop_preload(regmap_pre[i],regs[i].regmap_entry);
8923 }
8924 // branch target entry point
8925 instr_addr[i] = out;
8926 assem_debug("<->\n");
8927 drc_dbg_emit_do_cmp(i, ccadj[i]);
8928 if (clear_hack_addr) {
8929 emit_movimm(0, 0);
8930 emit_writeword(0, &hack_addr);
8931 clear_hack_addr = 0;
8932 }
8933
8934 // load regs
8935 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
8936 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty);
8937 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i].rs1,dops[i].rs2);
8938 address_generation(i,&regs[i],regs[i].regmap_entry);
8939 load_consts(regmap_pre[i],regs[i].regmap,i);
8940 if(dops[i].is_jump)
8941 {
8942 // Load the delay slot registers if necessary
8943 if(dops[i+1].rs1!=dops[i].rs1&&dops[i+1].rs1!=dops[i].rs2&&(dops[i+1].rs1!=dops[i].rt1||dops[i].rt1==0))
8944 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs1,dops[i+1].rs1);
8945 if(dops[i+1].rs2!=dops[i+1].rs1&&dops[i+1].rs2!=dops[i].rs1&&dops[i+1].rs2!=dops[i].rs2&&(dops[i+1].rs2!=dops[i].rt1||dops[i].rt1==0))
8946 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs2,dops[i+1].rs2);
8947 if (ram_offset && (dops[i+1].is_load || dops[i+1].is_store))
8948 load_reg(regs[i].regmap_entry,regs[i].regmap,ROREG);
8949 if (dops[i+1].is_store)
8950 load_reg(regs[i].regmap_entry,regs[i].regmap,INVCP);
8951 }
8952 else if(i+1<slen)
8953 {
8954 // Preload registers for following instruction
8955 if(dops[i+1].rs1!=dops[i].rs1&&dops[i+1].rs1!=dops[i].rs2)
8956 if(dops[i+1].rs1!=dops[i].rt1&&dops[i+1].rs1!=dops[i].rt2)
8957 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs1,dops[i+1].rs1);
8958 if(dops[i+1].rs2!=dops[i+1].rs1&&dops[i+1].rs2!=dops[i].rs1&&dops[i+1].rs2!=dops[i].rs2)
8959 if(dops[i+1].rs2!=dops[i].rt1&&dops[i+1].rs2!=dops[i].rt2)
8960 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs2,dops[i+1].rs2);
8961 }
8962 // TODO: if(is_ooo(i)) address_generation(i+1);
8963 if (!dops[i].is_jump || dops[i].itype == CJUMP)
8964 load_reg(regs[i].regmap_entry,regs[i].regmap,CCREG);
8965 if (ram_offset && (dops[i].is_load || dops[i].is_store))
8966 load_reg(regs[i].regmap_entry,regs[i].regmap,ROREG);
8967 if (dops[i].is_store)
8968 load_reg(regs[i].regmap_entry,regs[i].regmap,INVCP);
8969
8970 ds = assemble(i, &regs[i], ccadj[i]);
8971
8972 if (dops[i].is_ujump)
8973 literal_pool(1024);
8974 else
8975 literal_pool_jumpover(256);
8976 }
8977 }
8978
8979 assert(slen > 0);
8980 if (slen > 0 && dops[slen-1].itype == INTCALL) {
8981 // no ending needed for this block since INTCALL never returns
8982 }
8983 // If the block did not end with an unconditional branch,
8984 // add a jump to the next instruction.
8985 else if (i > 1) {
8986 if (!dops[i-2].is_ujump) {
8987 assert(!dops[i-1].is_jump);
8988 assert(i==slen);
8989 if(dops[i-2].itype!=CJUMP&&dops[i-2].itype!=SJUMP) {
8990 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
8991 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
8992 emit_loadreg(CCREG,HOST_CCREG);
8993 emit_addimm(HOST_CCREG, ccadj[i-1] + CLOCK_ADJUST(1), HOST_CCREG);
8994 }
8995 else
8996 {
8997 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].dirty,start+i*4);
8998 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
8999 }
9000 add_to_linker(out,start+i*4,0);
9001 emit_jmp(0);
9002 }
9003 }
9004 else
9005 {
9006 assert(i>0);
9007 assert(!dops[i-1].is_jump);
9008 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9009 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9010 emit_loadreg(CCREG,HOST_CCREG);
9011 emit_addimm(HOST_CCREG, ccadj[i-1] + CLOCK_ADJUST(1), HOST_CCREG);
9012 add_to_linker(out,start+i*4,0);
9013 emit_jmp(0);
9014 }
9015
9016 // TODO: delay slot stubs?
9017 // Stubs
9018 for(i=0;i<stubcount;i++)
9019 {
9020 switch(stubs[i].type)
9021 {
9022 case LOADB_STUB:
9023 case LOADH_STUB:
9024 case LOADW_STUB:
9025 case LOADD_STUB:
9026 case LOADBU_STUB:
9027 case LOADHU_STUB:
9028 do_readstub(i);break;
9029 case STOREB_STUB:
9030 case STOREH_STUB:
9031 case STOREW_STUB:
9032 case STORED_STUB:
9033 do_writestub(i);break;
9034 case CC_STUB:
9035 do_ccstub(i);break;
9036 case INVCODE_STUB:
9037 do_invstub(i);break;
9038 case FP_STUB:
9039 do_cop1stub(i);break;
9040 case STORELR_STUB:
9041 do_unalignedwritestub(i);break;
9042 }
9043 }
9044
9045 if (instr_addr0_override)
9046 instr_addr[0] = instr_addr0_override;
9047
9048 /* Pass 9 - Linker */
9049 for(i=0;i<linkcount;i++)
9050 {
9051 assem_debug("%p -> %8x\n",link_addr[i].addr,link_addr[i].target);
9052 literal_pool(64);
9053 if (!link_addr[i].ext)
9054 {
9055 void *stub = out;
9056 void *addr = check_addr(link_addr[i].target);
9057 emit_extjump(link_addr[i].addr, link_addr[i].target);
9058 if (addr) {
9059 set_jump_target(link_addr[i].addr, addr);
9060 add_jump_out(link_addr[i].target,stub);
9061 }
9062 else
9063 set_jump_target(link_addr[i].addr, stub);
9064 }
9065 else
9066 {
9067 // Internal branch
9068 int target=(link_addr[i].target-start)>>2;
9069 assert(target>=0&&target<slen);
9070 assert(instr_addr[target]);
9071 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9072 //set_jump_target_fillslot(link_addr[i].addr,instr_addr[target],link_addr[i].ext>>1);
9073 //#else
9074 set_jump_target(link_addr[i].addr, instr_addr[target]);
9075 //#endif
9076 }
9077 }
9078
9079 u_int source_len = slen*4;
9080 if (dops[slen-1].itype == INTCALL && source_len > 4)
9081 // no need to treat the last instruction as compiled
9082 // as interpreter fully handles it
9083 source_len -= 4;
9084
9085 if ((u_char *)copy + source_len > (u_char *)shadow + sizeof(shadow))
9086 copy = shadow;
9087
9088 // External Branch Targets (jump_in)
9089 for(i=0;i<slen;i++)
9090 {
9091 if(dops[i].bt||i==0)
9092 {
9093 if(instr_addr[i]) // TODO - delay slots (=null)
9094 {
9095 u_int vaddr=start+i*4;
9096 u_int page=get_page(vaddr);
9097 u_int vpage=get_vpage(vaddr);
9098 literal_pool(256);
9099 {
9100 assem_debug("%p (%d) <- %8x\n",instr_addr[i],i,start+i*4);
9101 assem_debug("jump_in: %x\n",start+i*4);
9102 ll_add(jump_dirty+vpage,vaddr,out);
9103 void *entry_point = do_dirty_stub(i, source_len);
9104 ll_add_flags(jump_in+page,vaddr,state_rflags,entry_point);
9105 // If there was an existing entry in the hash table,
9106 // replace it with the new address.
9107 // Don't add new entries. We'll insert the
9108 // ones that actually get used in check_addr().
9109 struct ht_entry *ht_bin = hash_table_get(vaddr);
9110 if (ht_bin->vaddr[0] == vaddr)
9111 ht_bin->tcaddr[0] = entry_point;
9112 if (ht_bin->vaddr[1] == vaddr)
9113 ht_bin->tcaddr[1] = entry_point;
9114 }
9115 }
9116 }
9117 }
9118 // Write out the literal pool if necessary
9119 literal_pool(0);
9120 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9121 // Align code
9122 if(((u_int)out)&7) emit_addnop(13);
9123 #endif
9124 assert(out - (u_char *)beginning < MAX_OUTPUT_BLOCK_SIZE);
9125 //printf("shadow buffer: %p-%p\n",copy,(u_char *)copy+slen*4);
9126 memcpy(copy, source, source_len);
9127 copy += source_len;
9128
9129 end_block(beginning);
9130
9131 // If we're within 256K of the end of the buffer,
9132 // start over from the beginning. (Is 256K enough?)
9133 if (out > ndrc->translation_cache + sizeof(ndrc->translation_cache) - MAX_OUTPUT_BLOCK_SIZE)
9134 out = ndrc->translation_cache;
9135
9136 // Trap writes to any of the pages we compiled
9137 mark_valid_code(start, slen*4);
9138
9139 /* Pass 10 - Free memory by expiring oldest blocks */
9140
9141 pass10_expire_blocks();
9142
9143#ifdef ASSEM_PRINT
9144 fflush(stdout);
9145#endif
9146 stat_inc(stat_bc_direct);
9147 return 0;
9148}
9149
9150// vim:shiftwidth=2:expandtab