drc: adjust alignment checking
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2011 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24#include <errno.h>
25#include <sys/mman.h>
26#ifdef __MACH__
27#include <libkern/OSCacheControl.h>
28#endif
29#ifdef _3DS
30#include <3ds_utils.h>
31#endif
32#ifdef HAVE_LIBNX
33#include <switch.h>
34static Jit g_jit;
35#endif
36
37#include "new_dynarec_config.h"
38#include "../psxhle.h"
39#include "../psxinterpreter.h"
40#include "../gte.h"
41#include "emu_if.h" // emulator interface
42#include "linkage_offsets.h"
43#include "compiler_features.h"
44#include "arm_features.h"
45
46#ifndef ARRAY_SIZE
47#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
48#endif
49#ifndef min
50#define min(a, b) ((b) < (a) ? (b) : (a))
51#endif
52#ifndef max
53#define max(a, b) ((b) > (a) ? (b) : (a))
54#endif
55
56//#define DISASM
57//#define ASSEM_PRINT
58//#define REGMAP_PRINT // with DISASM only
59//#define INV_DEBUG_W
60//#define STAT_PRINT
61
62#ifdef ASSEM_PRINT
63#define assem_debug printf
64#else
65#define assem_debug(...)
66#endif
67//#define inv_debug printf
68#define inv_debug(...)
69
70#ifdef __i386__
71#include "assem_x86.h"
72#endif
73#ifdef __x86_64__
74#include "assem_x64.h"
75#endif
76#ifdef __arm__
77#include "assem_arm.h"
78#endif
79#ifdef __aarch64__
80#include "assem_arm64.h"
81#endif
82
83#define RAM_SIZE 0x200000
84#define MAXBLOCK 2048
85#define MAX_OUTPUT_BLOCK_SIZE 262144
86#define EXPIRITY_OFFSET (MAX_OUTPUT_BLOCK_SIZE * 2)
87#define PAGE_COUNT 1024
88
89#if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
90#define INVALIDATE_USE_COND_CALL
91#endif
92
93#ifdef VITA
94// apparently Vita has a 16MB limit, so either we cut tc in half,
95// or use this hack (it's a hack because tc size was designed to be power-of-2)
96#define TC_REDUCE_BYTES 4096
97#else
98#define TC_REDUCE_BYTES 0
99#endif
100
101struct ndrc_tramp
102{
103 struct tramp_insns ops[2048 / sizeof(struct tramp_insns)];
104 const void *f[2048 / sizeof(void *)];
105};
106
107struct ndrc_mem
108{
109 u_char translation_cache[(1 << TARGET_SIZE_2) - TC_REDUCE_BYTES];
110 struct ndrc_tramp tramp;
111};
112
113#ifdef BASE_ADDR_DYNAMIC
114static struct ndrc_mem *ndrc;
115#else
116static struct ndrc_mem ndrc_ __attribute__((aligned(4096)));
117static struct ndrc_mem *ndrc = &ndrc_;
118#endif
119#ifdef TC_WRITE_OFFSET
120# ifdef __GLIBC__
121# include <sys/types.h>
122# include <sys/stat.h>
123# include <fcntl.h>
124# include <unistd.h>
125# endif
126static long ndrc_write_ofs;
127#define NDRC_WRITE_OFFSET(x) (void *)((char *)(x) + ndrc_write_ofs)
128#else
129#define NDRC_WRITE_OFFSET(x) (x)
130#endif
131
132// stubs
133enum stub_type {
134 CC_STUB = 1,
135 //FP_STUB = 2,
136 LOADB_STUB = 3,
137 LOADH_STUB = 4,
138 LOADW_STUB = 5,
139 //LOADD_STUB = 6,
140 LOADBU_STUB = 7,
141 LOADHU_STUB = 8,
142 STOREB_STUB = 9,
143 STOREH_STUB = 10,
144 STOREW_STUB = 11,
145 //STORED_STUB = 12,
146 STORELR_STUB = 13,
147 INVCODE_STUB = 14,
148 OVERFLOW_STUB = 15,
149 ALIGNMENT_STUB = 16,
150};
151
152// regmap_pre[i] - regs before [i] insn starts; dirty things here that
153// don't match .regmap will be written back
154// [i].regmap_entry - regs that must be set up if someone jumps here
155// [i].regmap - regs [i] insn will read/(over)write
156// branch_regs[i].* - same as above but for branches, takes delay slot into account
157struct regstat
158{
159 signed char regmap_entry[HOST_REGS];
160 signed char regmap[HOST_REGS];
161 u_int wasdirty;
162 u_int dirty;
163 u_int wasconst; // before; for example 'lw r2, (r2)' wasconst is true
164 u_int isconst; // ... but isconst is false when r2 is known (hr)
165 u_int loadedconst; // host regs that have constants loaded
166 u_int noevict; // can't evict this hr (alloced by current op)
167 //u_int waswritten; // MIPS regs that were used as store base before
168 uint64_t u;
169};
170
171struct ht_entry
172{
173 u_int vaddr[2];
174 void *tcaddr[2];
175};
176
177struct code_stub
178{
179 enum stub_type type;
180 void *addr;
181 void *retaddr;
182 u_int a;
183 uintptr_t b;
184 uintptr_t c;
185 u_int d;
186 u_int e;
187};
188
189struct link_entry
190{
191 void *addr;
192 u_int target;
193 u_int internal;
194};
195
196struct block_info
197{
198 struct block_info *next;
199 const void *source;
200 const void *copy;
201 u_int start; // vaddr of the block start
202 u_int len; // of the whole block source
203 u_int tc_offs;
204 //u_int tc_len;
205 u_int reg_sv_flags;
206 u_char is_dirty;
207 u_char inv_near_misses;
208 u_short jump_in_cnt;
209 struct {
210 u_int vaddr;
211 void *addr;
212 } jump_in[0];
213};
214
215struct jump_info
216{
217 int alloc;
218 int count;
219 struct {
220 u_int target_vaddr;
221 void *stub;
222 } e[0];
223};
224
225static struct decoded_insn
226{
227 u_char itype;
228 u_char opcode; // bits 31-26
229 u_char opcode2; // (depends on opcode)
230 u_char rs1;
231 u_char rs2;
232 u_char rt1;
233 u_char rt2;
234 u_char use_lt1:1;
235 u_char bt:1;
236 u_char ooo:1;
237 u_char is_ds:1;
238 u_char is_jump:1;
239 u_char is_ujump:1;
240 u_char is_load:1;
241 u_char is_store:1;
242 u_char is_delay_load:1; // is_load + MFC/CFC
243 u_char is_exception:1; // unconditional, also interp. fallback
244 u_char may_except:1; // might generate an exception
245 u_char ls_type:2; // load/store type (ls_width_type)
246} dops[MAXBLOCK];
247
248enum ls_width_type {
249 LS_8 = 0, LS_16, LS_32, LS_LR
250};
251
252static struct compile_info
253{
254 int imm;
255 u_int ba;
256 int ccadj;
257 signed char min_free_regs;
258 signed char addr;
259 signed char reserved[2];
260} cinfo[MAXBLOCK];
261
262 static u_char *out;
263 static char invalid_code[0x100000];
264 static struct ht_entry hash_table[65536];
265 static struct block_info *blocks[PAGE_COUNT];
266 static struct jump_info *jumps[PAGE_COUNT];
267 static u_int start;
268 static u_int *source;
269 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
270 static uint64_t gte_rt[MAXBLOCK];
271 static uint64_t gte_unneeded[MAXBLOCK];
272 static u_int smrv[32]; // speculated MIPS register values
273 static u_int smrv_strong; // mask or regs that are likely to have correct values
274 static u_int smrv_weak; // same, but somewhat less likely
275 static u_int smrv_strong_next; // same, but after current insn executes
276 static u_int smrv_weak_next;
277 static uint64_t unneeded_reg[MAXBLOCK];
278 static uint64_t branch_unneeded_reg[MAXBLOCK];
279 // see 'struct regstat' for a description
280 static signed char regmap_pre[MAXBLOCK][HOST_REGS];
281 // contains 'real' consts at [i] insn, but may differ from what's actually
282 // loaded in host reg as 'final' value is always loaded, see get_final_value()
283 static uint32_t current_constmap[HOST_REGS];
284 static uint32_t constmap[MAXBLOCK][HOST_REGS];
285 static struct regstat regs[MAXBLOCK];
286 static struct regstat branch_regs[MAXBLOCK];
287 static int slen;
288 static void *instr_addr[MAXBLOCK];
289 static struct link_entry link_addr[MAXBLOCK];
290 static int linkcount;
291 static struct code_stub stubs[MAXBLOCK*3];
292 static int stubcount;
293 static u_int literals[1024][2];
294 static int literalcount;
295 static int is_delayslot;
296 static char shadow[1048576] __attribute__((aligned(16)));
297 static void *copy;
298 static u_int expirep;
299 static u_int stop_after_jal;
300 static u_int f1_hack;
301#ifdef STAT_PRINT
302 static int stat_bc_direct;
303 static int stat_bc_pre;
304 static int stat_bc_restore;
305 static int stat_ht_lookups;
306 static int stat_jump_in_lookups;
307 static int stat_restore_tries;
308 static int stat_restore_compares;
309 static int stat_inv_addr_calls;
310 static int stat_inv_hits;
311 static int stat_blocks;
312 static int stat_links;
313 #define stat_inc(s) s++
314 #define stat_dec(s) s--
315 #define stat_clear(s) s = 0
316#else
317 #define stat_inc(s)
318 #define stat_dec(s)
319 #define stat_clear(s)
320#endif
321
322 int new_dynarec_hacks;
323 int new_dynarec_hacks_pergame;
324 int new_dynarec_hacks_old;
325 int new_dynarec_did_compile;
326
327 #define HACK_ENABLED(x) ((new_dynarec_hacks | new_dynarec_hacks_pergame) & (x))
328
329 extern int cycle_count; // ... until end of the timeslice, counts -N -> 0 (CCREG)
330 extern int last_count; // last absolute target, often = next_interupt
331 extern int pcaddr;
332 extern int pending_exception;
333 extern int branch_target;
334 extern uintptr_t ram_offset;
335 extern uintptr_t mini_ht[32][2];
336
337 /* registers that may be allocated */
338 /* 1-31 gpr */
339#define LOREG 32 // lo
340#define HIREG 33 // hi
341//#define FSREG 34 // FPU status (FCSR)
342//#define CSREG 35 // Coprocessor status
343#define CCREG 36 // Cycle count
344#define INVCP 37 // Pointer to invalid_code
345//#define MMREG 38 // Pointer to memory_map
346#define ROREG 39 // ram offset (if psxM != 0x80000000)
347#define TEMPREG 40
348#define FTEMP 40 // Load/store temporary register (was fpu)
349#define PTEMP 41 // Prefetch temporary register
350//#define TLREG 42 // TLB mapping offset
351#define RHASH 43 // Return address hash
352#define RHTBL 44 // Return address hash table address
353#define RTEMP 45 // JR/JALR address register
354#define MAXREG 45
355#define AGEN1 46 // Address generation temporary register (pass5b_preallocate2)
356//#define AGEN2 47 // Address generation temporary register
357
358 /* instruction types */
359#define NOP 0 // No operation
360#define LOAD 1 // Load
361#define STORE 2 // Store
362#define LOADLR 3 // Unaligned load
363#define STORELR 4 // Unaligned store
364#define MOV 5 // Move (hi/lo only)
365#define ALU 6 // Arithmetic/logic
366#define MULTDIV 7 // Multiply/divide
367#define SHIFT 8 // Shift by register
368#define SHIFTIMM 9// Shift by immediate
369#define IMM16 10 // 16-bit immediate
370#define RJUMP 11 // Unconditional jump to register
371#define UJUMP 12 // Unconditional jump
372#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
373#define SJUMP 14 // Conditional branch (regimm format)
374#define COP0 15 // Coprocessor 0
375#define RFE 16
376#define SYSCALL 22// SYSCALL,BREAK
377#define OTHER 23 // Other/unknown - do nothing
378#define HLECALL 26// PCSX fake opcodes for HLE
379#define COP2 27 // Coprocessor 2 move
380#define C2LS 28 // Coprocessor 2 load/store
381#define C2OP 29 // Coprocessor 2 operation
382#define INTCALL 30// Call interpreter to handle rare corner cases
383
384 /* branch codes */
385#define TAKEN 1
386#define NOTTAKEN 2
387
388#define DJT_1 (void *)1l // no function, just a label in assem_debug log
389#define DJT_2 (void *)2l
390
391// asm linkage
392void dyna_linker();
393void cc_interrupt();
394void jump_syscall (u_int u0, u_int u1, u_int pc);
395void jump_syscall_ds(u_int u0, u_int u1, u_int pc);
396void jump_break (u_int u0, u_int u1, u_int pc);
397void jump_break_ds(u_int u0, u_int u1, u_int pc);
398void jump_overflow (u_int u0, u_int u1, u_int pc);
399void jump_overflow_ds(u_int u0, u_int u1, u_int pc);
400void jump_addrerror (u_int cause, u_int addr, u_int pc);
401void jump_addrerror_ds(u_int cause, u_int addr, u_int pc);
402void jump_to_new_pc();
403void call_gteStall();
404void new_dyna_leave();
405
406void *ndrc_get_addr_ht_param(u_int vaddr, int can_compile);
407void *ndrc_get_addr_ht(u_int vaddr);
408void ndrc_add_jump_out(u_int vaddr, void *src);
409void ndrc_write_invalidate_one(u_int addr);
410static void ndrc_write_invalidate_many(u_int addr, u_int end);
411
412static int new_recompile_block(u_int addr);
413static void invalidate_block(struct block_info *block);
414static void exception_assemble(int i, const struct regstat *i_regs, int ccadj_);
415
416// Needed by assembler
417static void wb_register(signed char r, const signed char regmap[], u_int dirty);
418static void wb_dirtys(const signed char i_regmap[], u_int i_dirty);
419static void wb_needed_dirtys(const signed char i_regmap[], u_int i_dirty, int addr);
420static void load_all_regs(const signed char i_regmap[]);
421static void load_needed_regs(const signed char i_regmap[], const signed char next_regmap[]);
422static void load_regs_entry(int t);
423static void load_all_consts(const signed char regmap[], u_int dirty, int i);
424static u_int get_host_reglist(const signed char *regmap);
425
426static int get_final_value(int hr, int i, u_int *value);
427static void add_stub(enum stub_type type, void *addr, void *retaddr,
428 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e);
429static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
430 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist);
431static void add_to_linker(void *addr, u_int target, int ext);
432static void *get_direct_memhandler(void *table, u_int addr,
433 enum stub_type type, uintptr_t *addr_host);
434static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist);
435static void pass_args(int a0, int a1);
436static void emit_far_jump(const void *f);
437static void emit_far_call(const void *f);
438
439#ifdef VITA
440#include <psp2/kernel/sysmem.h>
441static int sceBlock;
442// note: this interacts with RetroArch's Vita bootstrap code: bootstrap/vita/sbrk.c
443extern int getVMBlock();
444int _newlib_vm_size_user = sizeof(*ndrc);
445#endif
446
447static void mprotect_w_x(void *start, void *end, int is_x)
448{
449#ifdef NO_WRITE_EXEC
450 #if defined(VITA)
451 // *Open* enables write on all memory that was
452 // allocated by sceKernelAllocMemBlockForVM()?
453 if (is_x)
454 sceKernelCloseVMDomain();
455 else
456 sceKernelOpenVMDomain();
457 #elif defined(HAVE_LIBNX)
458 Result rc;
459 // check to avoid the full flush in jitTransitionToExecutable()
460 if (g_jit.type != JitType_CodeMemory) {
461 if (is_x)
462 rc = jitTransitionToExecutable(&g_jit);
463 else
464 rc = jitTransitionToWritable(&g_jit);
465 if (R_FAILED(rc))
466 ;//SysPrintf("jitTransition %d %08x\n", is_x, rc);
467 }
468 #elif defined(TC_WRITE_OFFSET)
469 // separated rx and rw areas are always available
470 #else
471 u_long mstart = (u_long)start & ~4095ul;
472 u_long mend = (u_long)end;
473 if (mprotect((void *)mstart, mend - mstart,
474 PROT_READ | (is_x ? PROT_EXEC : PROT_WRITE)) != 0)
475 SysPrintf("mprotect(%c) failed: %s\n", is_x ? 'x' : 'w', strerror(errno));
476 #endif
477#endif
478}
479
480static void start_tcache_write(void *start, void *end)
481{
482 mprotect_w_x(start, end, 0);
483}
484
485static void end_tcache_write(void *start, void *end)
486{
487#if defined(__arm__) || defined(__aarch64__)
488 size_t len = (char *)end - (char *)start;
489 #if defined(__BLACKBERRY_QNX__)
490 msync(start, len, MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
491 #elif defined(__MACH__)
492 sys_cache_control(kCacheFunctionPrepareForExecution, start, len);
493 #elif defined(VITA)
494 sceKernelSyncVMDomain(sceBlock, start, len);
495 #elif defined(_3DS)
496 ctr_flush_invalidate_cache();
497 #elif defined(HAVE_LIBNX)
498 if (g_jit.type == JitType_CodeMemory) {
499 armDCacheClean(start, len);
500 armICacheInvalidate((char *)start - ndrc_write_ofs, len);
501 // as of v4.2.1 libnx lacks isb
502 __asm__ volatile("isb" ::: "memory");
503 }
504 #elif defined(__aarch64__)
505 // as of 2021, __clear_cache() is still broken on arm64
506 // so here is a custom one :(
507 clear_cache_arm64(start, end);
508 #else
509 __clear_cache(start, end);
510 #endif
511 (void)len;
512#endif
513
514 mprotect_w_x(start, end, 1);
515}
516
517static void *start_block(void)
518{
519 u_char *end = out + MAX_OUTPUT_BLOCK_SIZE;
520 if (end > ndrc->translation_cache + sizeof(ndrc->translation_cache))
521 end = ndrc->translation_cache + sizeof(ndrc->translation_cache);
522 start_tcache_write(NDRC_WRITE_OFFSET(out), NDRC_WRITE_OFFSET(end));
523 return out;
524}
525
526static void end_block(void *start)
527{
528 end_tcache_write(NDRC_WRITE_OFFSET(start), NDRC_WRITE_OFFSET(out));
529}
530
531#ifdef NDRC_CACHE_FLUSH_ALL
532
533static int needs_clear_cache;
534
535static void mark_clear_cache(void *target)
536{
537 if (!needs_clear_cache) {
538 start_tcache_write(NDRC_WRITE_OFFSET(ndrc), NDRC_WRITE_OFFSET(ndrc + 1));
539 needs_clear_cache = 1;
540 }
541}
542
543static void do_clear_cache(void)
544{
545 if (needs_clear_cache) {
546 end_tcache_write(NDRC_WRITE_OFFSET(ndrc), NDRC_WRITE_OFFSET(ndrc + 1));
547 needs_clear_cache = 0;
548 }
549}
550
551#else
552
553// also takes care of w^x mappings when patching code
554static u_int needs_clear_cache[1<<(TARGET_SIZE_2-17)];
555
556static void mark_clear_cache(void *target)
557{
558 uintptr_t offset = (u_char *)target - ndrc->translation_cache;
559 u_int mask = 1u << ((offset >> 12) & 31);
560 if (!(needs_clear_cache[offset >> 17] & mask)) {
561 char *start = (char *)NDRC_WRITE_OFFSET((uintptr_t)target & ~4095l);
562 start_tcache_write(start, start + 4095);
563 needs_clear_cache[offset >> 17] |= mask;
564 }
565}
566
567// Clearing the cache is rather slow on ARM Linux, so mark the areas
568// that need to be cleared, and then only clear these areas once.
569static void do_clear_cache(void)
570{
571 int i, j;
572 for (i = 0; i < (1<<(TARGET_SIZE_2-17)); i++)
573 {
574 u_int bitmap = needs_clear_cache[i];
575 if (!bitmap)
576 continue;
577 for (j = 0; j < 32; j++)
578 {
579 u_char *start, *end;
580 if (!(bitmap & (1u << j)))
581 continue;
582
583 start = ndrc->translation_cache + i*131072 + j*4096;
584 end = start + 4095;
585 for (j++; j < 32; j++) {
586 if (!(bitmap & (1u << j)))
587 break;
588 end += 4096;
589 }
590 end_tcache_write(NDRC_WRITE_OFFSET(start), NDRC_WRITE_OFFSET(end));
591 }
592 needs_clear_cache[i] = 0;
593 }
594}
595
596#endif // NDRC_CACHE_FLUSH_ALL
597
598#define NO_CYCLE_PENALTY_THR 12
599
600int cycle_multiplier_old;
601static int cycle_multiplier_active;
602
603static int CLOCK_ADJUST(int x)
604{
605 int m = cycle_multiplier_active;
606 int s = (x >> 31) | 1;
607 return (x * m + s * 50) / 100;
608}
609
610static int ds_writes_rjump_rs(int i)
611{
612 return dops[i].rs1 != 0
613 && (dops[i].rs1 == dops[i+1].rt1 || dops[i].rs1 == dops[i+1].rt2
614 || dops[i].rs1 == dops[i].rt1); // overwrites itself - same effect
615}
616
617// psx addr mirror masking (for invalidation)
618static u_int pmmask(u_int vaddr)
619{
620 vaddr &= ~0xe0000000;
621 if (vaddr < 0x01000000)
622 vaddr &= ~0x00e00000; // RAM mirrors
623 return vaddr;
624}
625
626static u_int get_page(u_int vaddr)
627{
628 u_int page = pmmask(vaddr) >> 12;
629 if (page >= PAGE_COUNT / 2)
630 page = PAGE_COUNT / 2 + (page & (PAGE_COUNT / 2 - 1));
631 return page;
632}
633
634// get a page for looking for a block that has vaddr
635// (needed because the block may start in previous page)
636static u_int get_page_prev(u_int vaddr)
637{
638 assert(MAXBLOCK <= (1 << 12));
639 u_int page = get_page(vaddr);
640 if (page & 511)
641 page--;
642 return page;
643}
644
645static struct ht_entry *hash_table_get(u_int vaddr)
646{
647 return &hash_table[((vaddr>>16)^vaddr)&0xFFFF];
648}
649
650static void hash_table_add(u_int vaddr, void *tcaddr)
651{
652 struct ht_entry *ht_bin = hash_table_get(vaddr);
653 assert(tcaddr);
654 ht_bin->vaddr[1] = ht_bin->vaddr[0];
655 ht_bin->tcaddr[1] = ht_bin->tcaddr[0];
656 ht_bin->vaddr[0] = vaddr;
657 ht_bin->tcaddr[0] = tcaddr;
658}
659
660static void hash_table_remove(int vaddr)
661{
662 //printf("remove hash: %x\n",vaddr);
663 struct ht_entry *ht_bin = hash_table_get(vaddr);
664 if (ht_bin->vaddr[1] == vaddr) {
665 ht_bin->vaddr[1] = -1;
666 ht_bin->tcaddr[1] = NULL;
667 }
668 if (ht_bin->vaddr[0] == vaddr) {
669 ht_bin->vaddr[0] = ht_bin->vaddr[1];
670 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
671 ht_bin->vaddr[1] = -1;
672 ht_bin->tcaddr[1] = NULL;
673 }
674}
675
676static void mark_invalid_code(u_int vaddr, u_int len, char invalid)
677{
678 u_int vaddr_m = vaddr & 0x1fffffff;
679 u_int i, j;
680 for (i = vaddr_m & ~0xfff; i < vaddr_m + len; i += 0x1000) {
681 // ram mirrors, but should not hurt bios
682 for (j = 0; j < 0x800000; j += 0x200000) {
683 invalid_code[(i|j) >> 12] =
684 invalid_code[(i|j|0x80000000u) >> 12] =
685 invalid_code[(i|j|0xa0000000u) >> 12] = invalid;
686 }
687 }
688 if (!invalid && vaddr + len > inv_code_start && vaddr <= inv_code_end)
689 inv_code_start = inv_code_end = ~0;
690}
691
692static int doesnt_expire_soon(u_char *tcaddr)
693{
694 u_int diff = (u_int)(tcaddr - out) & ((1u << TARGET_SIZE_2) - 1u);
695 return diff > EXPIRITY_OFFSET + MAX_OUTPUT_BLOCK_SIZE;
696}
697
698static unused void check_for_block_changes(u_int start, u_int end)
699{
700 u_int start_page = get_page_prev(start);
701 u_int end_page = get_page(end - 1);
702 u_int page;
703
704 for (page = start_page; page <= end_page; page++) {
705 struct block_info *block;
706 for (block = blocks[page]; block != NULL; block = block->next) {
707 if (block->is_dirty)
708 continue;
709 if (memcmp(block->source, block->copy, block->len)) {
710 printf("bad block %08x-%08x %016llx %016llx @%08x\n",
711 block->start, block->start + block->len,
712 *(long long *)block->source, *(long long *)block->copy, psxRegs.pc);
713 fflush(stdout);
714 abort();
715 }
716 }
717 }
718}
719
720static void *try_restore_block(u_int vaddr, u_int start_page, u_int end_page)
721{
722 void *found_clean = NULL;
723 u_int i, page;
724
725 stat_inc(stat_restore_tries);
726 for (page = start_page; page <= end_page; page++) {
727 struct block_info *block;
728 for (block = blocks[page]; block != NULL; block = block->next) {
729 if (vaddr < block->start)
730 break;
731 if (!block->is_dirty || vaddr >= block->start + block->len)
732 continue;
733 for (i = 0; i < block->jump_in_cnt; i++)
734 if (block->jump_in[i].vaddr == vaddr)
735 break;
736 if (i == block->jump_in_cnt)
737 continue;
738 assert(block->source && block->copy);
739 stat_inc(stat_restore_compares);
740 if (memcmp(block->source, block->copy, block->len))
741 continue;
742
743 block->is_dirty = block->inv_near_misses = 0;
744 found_clean = block->jump_in[i].addr;
745 hash_table_add(vaddr, found_clean);
746 mark_invalid_code(block->start, block->len, 0);
747 stat_inc(stat_bc_restore);
748 inv_debug("INV: restored %08x %p (%d)\n", vaddr, found_clean, block->jump_in_cnt);
749 return found_clean;
750 }
751 }
752 return NULL;
753}
754
755// this doesn't normally happen
756static noinline u_int generate_exception(u_int pc)
757{
758 //if (execBreakCheck(&psxRegs, pc))
759 // return psxRegs.pc;
760
761 // generate an address or bus error
762 psxRegs.CP0.n.Cause &= 0x300;
763 psxRegs.CP0.n.EPC = pc;
764 if (pc & 3) {
765 psxRegs.CP0.n.Cause |= R3000E_AdEL << 2;
766 psxRegs.CP0.n.BadVAddr = pc;
767#ifdef DRC_DBG
768 last_count -= 2;
769#endif
770 } else
771 psxRegs.CP0.n.Cause |= R3000E_IBE << 2;
772 return (psxRegs.pc = 0x80000080);
773}
774
775// Get address from virtual address
776// This is called from the recompiled JR/JALR instructions
777static void noinline *get_addr(u_int vaddr, int can_compile)
778{
779 u_int start_page = get_page_prev(vaddr);
780 u_int i, page, end_page = get_page(vaddr);
781 void *found_clean = NULL;
782
783 stat_inc(stat_jump_in_lookups);
784 for (page = start_page; page <= end_page; page++) {
785 const struct block_info *block;
786 for (block = blocks[page]; block != NULL; block = block->next) {
787 if (vaddr < block->start)
788 break;
789 if (block->is_dirty || vaddr >= block->start + block->len)
790 continue;
791 for (i = 0; i < block->jump_in_cnt; i++)
792 if (block->jump_in[i].vaddr == vaddr)
793 break;
794 if (i == block->jump_in_cnt)
795 continue;
796 found_clean = block->jump_in[i].addr;
797 hash_table_add(vaddr, found_clean);
798 return found_clean;
799 }
800 }
801 found_clean = try_restore_block(vaddr, start_page, end_page);
802 if (found_clean)
803 return found_clean;
804
805 if (!can_compile)
806 return NULL;
807
808 int r = new_recompile_block(vaddr);
809 if (likely(r == 0))
810 return ndrc_get_addr_ht(vaddr);
811
812 return ndrc_get_addr_ht(generate_exception(vaddr));
813}
814
815// Look up address in hash table first
816void *ndrc_get_addr_ht_param(u_int vaddr, int can_compile)
817{
818 //check_for_block_changes(vaddr, vaddr + MAXBLOCK);
819 const struct ht_entry *ht_bin = hash_table_get(vaddr);
820 u_int vaddr_a = vaddr & ~3;
821 stat_inc(stat_ht_lookups);
822 if (ht_bin->vaddr[0] == vaddr_a) return ht_bin->tcaddr[0];
823 if (ht_bin->vaddr[1] == vaddr_a) return ht_bin->tcaddr[1];
824 return get_addr(vaddr, can_compile);
825}
826
827void *ndrc_get_addr_ht(u_int vaddr)
828{
829 return ndrc_get_addr_ht_param(vaddr, 1);
830}
831
832static void clear_all_regs(signed char regmap[])
833{
834 memset(regmap, -1, sizeof(regmap[0]) * HOST_REGS);
835}
836
837// get_reg: get allocated host reg from mips reg
838// returns -1 if no such mips reg was allocated
839#if defined(__arm__) && defined(HAVE_ARMV6) && HOST_REGS == 13 && EXCLUDE_REG == 11
840
841extern signed char get_reg(const signed char regmap[], signed char r);
842
843#else
844
845static signed char get_reg(const signed char regmap[], signed char r)
846{
847 int hr;
848 for (hr = 0; hr < HOST_REGS; hr++) {
849 if (hr == EXCLUDE_REG)
850 continue;
851 if (regmap[hr] == r)
852 return hr;
853 }
854 return -1;
855}
856
857#endif
858
859// get reg suitable for writing
860static signed char get_reg_w(const signed char regmap[], signed char r)
861{
862 return r == 0 ? -1 : get_reg(regmap, r);
863}
864
865// get reg as mask bit (1 << hr)
866static u_int get_regm(const signed char regmap[], signed char r)
867{
868 return (1u << (get_reg(regmap, r) & 31)) & ~(1u << 31);
869}
870
871static signed char get_reg_temp(const signed char regmap[])
872{
873 int hr;
874 for (hr = 0; hr < HOST_REGS; hr++) {
875 if (hr == EXCLUDE_REG)
876 continue;
877 if (regmap[hr] == (signed char)-1)
878 return hr;
879 }
880 return -1;
881}
882
883// Find a register that is available for two consecutive cycles
884static signed char get_reg2(signed char regmap1[], const signed char regmap2[], int r)
885{
886 int hr;
887 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
888 return -1;
889}
890
891// reverse reg map: mips -> host
892#define RRMAP_SIZE 64
893static void make_rregs(const signed char regmap[], signed char rrmap[RRMAP_SIZE],
894 u_int *regs_can_change)
895{
896 u_int r, hr, hr_can_change = 0;
897 memset(rrmap, -1, RRMAP_SIZE);
898 for (hr = 0; hr < HOST_REGS; )
899 {
900 r = regmap[hr];
901 rrmap[r & (RRMAP_SIZE - 1)] = hr;
902 // only add mips $1-$31+$lo, others shifted out
903 hr_can_change |= (uint64_t)1 << (hr + ((r - 1) & 32));
904 hr++;
905 if (hr == EXCLUDE_REG)
906 hr++;
907 }
908 hr_can_change |= 1u << (rrmap[33] & 31);
909 hr_can_change |= 1u << (rrmap[CCREG] & 31);
910 hr_can_change &= ~(1u << 31);
911 *regs_can_change = hr_can_change;
912}
913
914// same as get_reg, but takes rrmap
915static signed char get_rreg(signed char rrmap[RRMAP_SIZE], signed char r)
916{
917 assert(0 <= r && r < RRMAP_SIZE);
918 return rrmap[r];
919}
920
921static int count_free_regs(const signed char regmap[])
922{
923 int count=0;
924 int hr;
925 for(hr=0;hr<HOST_REGS;hr++)
926 {
927 if(hr!=EXCLUDE_REG) {
928 if(regmap[hr]<0) count++;
929 }
930 }
931 return count;
932}
933
934static void dirty_reg(struct regstat *cur, signed char reg)
935{
936 int hr;
937 if (!reg) return;
938 hr = get_reg(cur->regmap, reg);
939 if (hr >= 0)
940 cur->dirty |= 1<<hr;
941}
942
943static void set_const(struct regstat *cur, signed char reg, uint32_t value)
944{
945 int hr;
946 if (!reg) return;
947 hr = get_reg(cur->regmap, reg);
948 if (hr >= 0) {
949 cur->isconst |= 1<<hr;
950 current_constmap[hr] = value;
951 }
952}
953
954static void clear_const(struct regstat *cur, signed char reg)
955{
956 int hr;
957 if (!reg) return;
958 hr = get_reg(cur->regmap, reg);
959 if (hr >= 0)
960 cur->isconst &= ~(1<<hr);
961}
962
963static int is_const(const struct regstat *cur, signed char reg)
964{
965 int hr;
966 if (reg < 0) return 0;
967 if (!reg) return 1;
968 hr = get_reg(cur->regmap, reg);
969 if (hr >= 0)
970 return (cur->isconst>>hr)&1;
971 return 0;
972}
973
974static uint32_t get_const(const struct regstat *cur, signed char reg)
975{
976 int hr;
977 if (!reg) return 0;
978 hr = get_reg(cur->regmap, reg);
979 if (hr >= 0)
980 return current_constmap[hr];
981
982 SysPrintf("Unknown constant in r%d\n", reg);
983 abort();
984}
985
986// Least soon needed registers
987// Look at the next ten instructions and see which registers
988// will be used. Try not to reallocate these.
989static void lsn(u_char hsn[], int i)
990{
991 int j;
992 int b=-1;
993 for(j=0;j<9;j++)
994 {
995 if(i+j>=slen) {
996 j=slen-i-1;
997 break;
998 }
999 if (dops[i+j].is_ujump)
1000 {
1001 // Don't go past an unconditonal jump
1002 j++;
1003 break;
1004 }
1005 }
1006 for(;j>=0;j--)
1007 {
1008 if(dops[i+j].rs1) hsn[dops[i+j].rs1]=j;
1009 if(dops[i+j].rs2) hsn[dops[i+j].rs2]=j;
1010 if(dops[i+j].rt1) hsn[dops[i+j].rt1]=j;
1011 if(dops[i+j].rt2) hsn[dops[i+j].rt2]=j;
1012 if(dops[i+j].itype==STORE || dops[i+j].itype==STORELR) {
1013 // Stores can allocate zero
1014 hsn[dops[i+j].rs1]=j;
1015 hsn[dops[i+j].rs2]=j;
1016 }
1017 if (ram_offset && (dops[i+j].is_load || dops[i+j].is_store))
1018 hsn[ROREG] = j;
1019 // On some architectures stores need invc_ptr
1020 #if defined(HOST_IMM8)
1021 if (dops[i+j].is_store)
1022 hsn[INVCP] = j;
1023 #endif
1024 if(i+j>=0&&(dops[i+j].itype==UJUMP||dops[i+j].itype==CJUMP||dops[i+j].itype==SJUMP))
1025 {
1026 hsn[CCREG]=j;
1027 b=j;
1028 }
1029 }
1030 if(b>=0)
1031 {
1032 if(cinfo[i+b].ba>=start && cinfo[i+b].ba<(start+slen*4))
1033 {
1034 // Follow first branch
1035 int t=(cinfo[i+b].ba-start)>>2;
1036 j=7-b;if(t+j>=slen) j=slen-t-1;
1037 for(;j>=0;j--)
1038 {
1039 if(dops[t+j].rs1) if(hsn[dops[t+j].rs1]>j+b+2) hsn[dops[t+j].rs1]=j+b+2;
1040 if(dops[t+j].rs2) if(hsn[dops[t+j].rs2]>j+b+2) hsn[dops[t+j].rs2]=j+b+2;
1041 //if(dops[t+j].rt1) if(hsn[dops[t+j].rt1]>j+b+2) hsn[dops[t+j].rt1]=j+b+2;
1042 //if(dops[t+j].rt2) if(hsn[dops[t+j].rt2]>j+b+2) hsn[dops[t+j].rt2]=j+b+2;
1043 }
1044 }
1045 // TODO: preferred register based on backward branch
1046 }
1047 // Delay slot should preferably not overwrite branch conditions or cycle count
1048 if (i > 0 && dops[i-1].is_jump) {
1049 if(dops[i-1].rs1) if(hsn[dops[i-1].rs1]>1) hsn[dops[i-1].rs1]=1;
1050 if(dops[i-1].rs2) if(hsn[dops[i-1].rs2]>1) hsn[dops[i-1].rs2]=1;
1051 hsn[CCREG]=1;
1052 // ...or hash tables
1053 hsn[RHASH]=1;
1054 hsn[RHTBL]=1;
1055 }
1056 // Coprocessor load/store needs FTEMP, even if not declared
1057 if(dops[i].itype==C2LS) {
1058 hsn[FTEMP]=0;
1059 }
1060 // Load/store L/R also uses FTEMP as a temporary register
1061 if (dops[i].itype == LOADLR || dops[i].itype == STORELR) {
1062 hsn[FTEMP]=0;
1063 }
1064 // Don't remove the miniht registers
1065 if(dops[i].itype==UJUMP||dops[i].itype==RJUMP)
1066 {
1067 hsn[RHASH]=0;
1068 hsn[RHTBL]=0;
1069 }
1070}
1071
1072// We only want to allocate registers if we're going to use them again soon
1073static int needed_again(int r, int i)
1074{
1075 int j;
1076 int b=-1;
1077 int rn=10;
1078
1079 if (i > 0 && dops[i-1].is_ujump)
1080 {
1081 if(cinfo[i-1].ba<start || cinfo[i-1].ba>start+slen*4-4)
1082 return 0; // Don't need any registers if exiting the block
1083 }
1084 for(j=0;j<9;j++)
1085 {
1086 if(i+j>=slen) {
1087 j=slen-i-1;
1088 break;
1089 }
1090 if (dops[i+j].is_ujump)
1091 {
1092 // Don't go past an unconditonal jump
1093 j++;
1094 break;
1095 }
1096 if (dops[i+j].is_exception)
1097 {
1098 break;
1099 }
1100 }
1101 for(;j>=1;j--)
1102 {
1103 if(dops[i+j].rs1==r) rn=j;
1104 if(dops[i+j].rs2==r) rn=j;
1105 if((unneeded_reg[i+j]>>r)&1) rn=10;
1106 if(i+j>=0&&(dops[i+j].itype==UJUMP||dops[i+j].itype==CJUMP||dops[i+j].itype==SJUMP))
1107 {
1108 b=j;
1109 }
1110 }
1111 if(rn<10) return 1;
1112 (void)b;
1113 return 0;
1114}
1115
1116// Try to match register allocations at the end of a loop with those
1117// at the beginning
1118static int loop_reg(int i, int r, int hr)
1119{
1120 int j,k;
1121 for(j=0;j<9;j++)
1122 {
1123 if(i+j>=slen) {
1124 j=slen-i-1;
1125 break;
1126 }
1127 if (dops[i+j].is_ujump)
1128 {
1129 // Don't go past an unconditonal jump
1130 j++;
1131 break;
1132 }
1133 }
1134 k=0;
1135 if(i>0){
1136 if(dops[i-1].itype==UJUMP||dops[i-1].itype==CJUMP||dops[i-1].itype==SJUMP)
1137 k--;
1138 }
1139 for(;k<j;k++)
1140 {
1141 assert(r < 64);
1142 if((unneeded_reg[i+k]>>r)&1) return hr;
1143 if(i+k>=0&&(dops[i+k].itype==UJUMP||dops[i+k].itype==CJUMP||dops[i+k].itype==SJUMP))
1144 {
1145 if(cinfo[i+k].ba>=start && cinfo[i+k].ba<(start+i*4))
1146 {
1147 int t=(cinfo[i+k].ba-start)>>2;
1148 int reg=get_reg(regs[t].regmap_entry,r);
1149 if(reg>=0) return reg;
1150 //reg=get_reg(regs[t+1].regmap_entry,r);
1151 //if(reg>=0) return reg;
1152 }
1153 }
1154 }
1155 return hr;
1156}
1157
1158
1159// Allocate every register, preserving source/target regs
1160static void alloc_all(struct regstat *cur,int i)
1161{
1162 int hr;
1163
1164 for(hr=0;hr<HOST_REGS;hr++) {
1165 if(hr!=EXCLUDE_REG) {
1166 if((cur->regmap[hr]!=dops[i].rs1)&&(cur->regmap[hr]!=dops[i].rs2)&&
1167 (cur->regmap[hr]!=dops[i].rt1)&&(cur->regmap[hr]!=dops[i].rt2))
1168 {
1169 cur->regmap[hr]=-1;
1170 cur->dirty&=~(1<<hr);
1171 }
1172 // Don't need zeros
1173 if(cur->regmap[hr]==0)
1174 {
1175 cur->regmap[hr]=-1;
1176 cur->dirty&=~(1<<hr);
1177 }
1178 }
1179 }
1180}
1181
1182#ifndef NDEBUG
1183static int host_tempreg_in_use;
1184
1185static void host_tempreg_acquire(void)
1186{
1187 assert(!host_tempreg_in_use);
1188 host_tempreg_in_use = 1;
1189}
1190
1191static void host_tempreg_release(void)
1192{
1193 host_tempreg_in_use = 0;
1194}
1195#else
1196static void host_tempreg_acquire(void) {}
1197static void host_tempreg_release(void) {}
1198#endif
1199
1200#ifdef ASSEM_PRINT
1201extern void gen_interupt();
1202extern void do_insn_cmp();
1203#define FUNCNAME(f) { f, " " #f }
1204static const struct {
1205 void *addr;
1206 const char *name;
1207} function_names[] = {
1208 FUNCNAME(cc_interrupt),
1209 FUNCNAME(gen_interupt),
1210 FUNCNAME(ndrc_get_addr_ht),
1211 FUNCNAME(jump_handler_read8),
1212 FUNCNAME(jump_handler_read16),
1213 FUNCNAME(jump_handler_read32),
1214 FUNCNAME(jump_handler_write8),
1215 FUNCNAME(jump_handler_write16),
1216 FUNCNAME(jump_handler_write32),
1217 FUNCNAME(ndrc_write_invalidate_one),
1218 FUNCNAME(ndrc_write_invalidate_many),
1219 FUNCNAME(jump_to_new_pc),
1220 FUNCNAME(jump_break),
1221 FUNCNAME(jump_break_ds),
1222 FUNCNAME(jump_syscall),
1223 FUNCNAME(jump_syscall_ds),
1224 FUNCNAME(jump_overflow),
1225 FUNCNAME(jump_overflow_ds),
1226 FUNCNAME(jump_addrerror),
1227 FUNCNAME(jump_addrerror_ds),
1228 FUNCNAME(call_gteStall),
1229 FUNCNAME(new_dyna_leave),
1230 FUNCNAME(pcsx_mtc0),
1231 FUNCNAME(pcsx_mtc0_ds),
1232 FUNCNAME(execI),
1233#ifdef __aarch64__
1234 FUNCNAME(do_memhandler_pre),
1235 FUNCNAME(do_memhandler_post),
1236#endif
1237#ifdef DRC_DBG
1238# ifdef __aarch64__
1239 FUNCNAME(do_insn_cmp_arm64),
1240# else
1241 FUNCNAME(do_insn_cmp),
1242# endif
1243#endif
1244};
1245
1246static const char *func_name(const void *a)
1247{
1248 int i;
1249 for (i = 0; i < sizeof(function_names)/sizeof(function_names[0]); i++)
1250 if (function_names[i].addr == a)
1251 return function_names[i].name;
1252 return "";
1253}
1254
1255static const char *fpofs_name(u_int ofs)
1256{
1257 u_int *p = (u_int *)&dynarec_local + ofs/sizeof(u_int);
1258 static char buf[64];
1259 switch (ofs) {
1260 #define ofscase(x) case LO_##x: return " ; " #x
1261 ofscase(next_interupt);
1262 ofscase(cycle_count);
1263 ofscase(last_count);
1264 ofscase(pending_exception);
1265 ofscase(stop);
1266 ofscase(address);
1267 ofscase(lo);
1268 ofscase(hi);
1269 ofscase(PC);
1270 ofscase(cycle);
1271 ofscase(mem_rtab);
1272 ofscase(mem_wtab);
1273 ofscase(psxH_ptr);
1274 ofscase(invc_ptr);
1275 ofscase(ram_offset);
1276 #undef ofscase
1277 }
1278 buf[0] = 0;
1279 if (psxRegs.GPR.r <= p && p < &psxRegs.GPR.r[32])
1280 snprintf(buf, sizeof(buf), " ; r%d", (int)(p - psxRegs.GPR.r));
1281 else if (psxRegs.CP0.r <= p && p < &psxRegs.CP0.r[32])
1282 snprintf(buf, sizeof(buf), " ; cp0 $%d", (int)(p - psxRegs.CP0.r));
1283 else if (psxRegs.CP2D.r <= p && p < &psxRegs.CP2D.r[32])
1284 snprintf(buf, sizeof(buf), " ; cp2d $%d", (int)(p - psxRegs.CP2D.r));
1285 else if (psxRegs.CP2C.r <= p && p < &psxRegs.CP2C.r[32])
1286 snprintf(buf, sizeof(buf), " ; cp2c $%d", (int)(p - psxRegs.CP2C.r));
1287 return buf;
1288}
1289#else
1290#define func_name(x) ""
1291#define fpofs_name(x) ""
1292#endif
1293
1294#ifdef __i386__
1295#include "assem_x86.c"
1296#endif
1297#ifdef __x86_64__
1298#include "assem_x64.c"
1299#endif
1300#ifdef __arm__
1301#include "assem_arm.c"
1302#endif
1303#ifdef __aarch64__
1304#include "assem_arm64.c"
1305#endif
1306
1307static void *get_trampoline(const void *f)
1308{
1309 struct ndrc_tramp *tramp = NDRC_WRITE_OFFSET(&ndrc->tramp);
1310 size_t i;
1311
1312 for (i = 0; i < ARRAY_SIZE(tramp->f); i++) {
1313 if (tramp->f[i] == f || tramp->f[i] == NULL)
1314 break;
1315 }
1316 if (i == ARRAY_SIZE(tramp->f)) {
1317 SysPrintf("trampoline table is full, last func %p\n", f);
1318 abort();
1319 }
1320 if (tramp->f[i] == NULL) {
1321 start_tcache_write(&tramp->f[i], &tramp->f[i + 1]);
1322 tramp->f[i] = f;
1323 end_tcache_write(&tramp->f[i], &tramp->f[i + 1]);
1324#ifdef HAVE_LIBNX
1325 // invalidate the RX mirror (unsure if necessary, but just in case...)
1326 armDCacheFlush(&ndrc->tramp.f[i], sizeof(ndrc->tramp.f[i]));
1327#endif
1328 }
1329 return &ndrc->tramp.ops[i];
1330}
1331
1332static void emit_far_jump(const void *f)
1333{
1334 if (can_jump_or_call(f)) {
1335 emit_jmp(f);
1336 return;
1337 }
1338
1339 f = get_trampoline(f);
1340 emit_jmp(f);
1341}
1342
1343static void emit_far_call(const void *f)
1344{
1345 if (can_jump_or_call(f)) {
1346 emit_call(f);
1347 return;
1348 }
1349
1350 f = get_trampoline(f);
1351 emit_call(f);
1352}
1353
1354// Check if an address is already compiled
1355// but don't return addresses which are about to expire from the cache
1356static void *check_addr(u_int vaddr)
1357{
1358 struct ht_entry *ht_bin = hash_table_get(vaddr);
1359 size_t i;
1360 for (i = 0; i < ARRAY_SIZE(ht_bin->vaddr); i++) {
1361 if (ht_bin->vaddr[i] == vaddr)
1362 if (doesnt_expire_soon(ht_bin->tcaddr[i]))
1363 return ht_bin->tcaddr[i];
1364 }
1365
1366 // refactor to get_addr_nocompile?
1367 u_int start_page = get_page_prev(vaddr);
1368 u_int page, end_page = get_page(vaddr);
1369
1370 stat_inc(stat_jump_in_lookups);
1371 for (page = start_page; page <= end_page; page++) {
1372 const struct block_info *block;
1373 for (block = blocks[page]; block != NULL; block = block->next) {
1374 if (vaddr < block->start)
1375 break;
1376 if (block->is_dirty || vaddr >= block->start + block->len)
1377 continue;
1378 if (!doesnt_expire_soon(ndrc->translation_cache + block->tc_offs))
1379 continue;
1380 for (i = 0; i < block->jump_in_cnt; i++)
1381 if (block->jump_in[i].vaddr == vaddr)
1382 break;
1383 if (i == block->jump_in_cnt)
1384 continue;
1385
1386 // Update existing entry with current address
1387 void *addr = block->jump_in[i].addr;
1388 if (ht_bin->vaddr[0] == vaddr) {
1389 ht_bin->tcaddr[0] = addr;
1390 return addr;
1391 }
1392 if (ht_bin->vaddr[1] == vaddr) {
1393 ht_bin->tcaddr[1] = addr;
1394 return addr;
1395 }
1396 // Insert into hash table with low priority.
1397 // Don't evict existing entries, as they are probably
1398 // addresses that are being accessed frequently.
1399 if (ht_bin->vaddr[0] == -1) {
1400 ht_bin->vaddr[0] = vaddr;
1401 ht_bin->tcaddr[0] = addr;
1402 }
1403 else if (ht_bin->vaddr[1] == -1) {
1404 ht_bin->vaddr[1] = vaddr;
1405 ht_bin->tcaddr[1] = addr;
1406 }
1407 return addr;
1408 }
1409 }
1410 return NULL;
1411}
1412
1413static void blocks_clear(struct block_info **head)
1414{
1415 struct block_info *cur, *next;
1416
1417 if ((cur = *head)) {
1418 *head = NULL;
1419 while (cur) {
1420 next = cur->next;
1421 free(cur);
1422 cur = next;
1423 }
1424 }
1425}
1426
1427static int blocks_remove_matching_addrs(struct block_info **head,
1428 u_int base_offs, int shift)
1429{
1430 struct block_info *next;
1431 int hit = 0;
1432 while (*head) {
1433 if ((((*head)->tc_offs ^ base_offs) >> shift) == 0) {
1434 inv_debug("EXP: rm block %08x (tc_offs %x)\n", (*head)->start, (*head)->tc_offs);
1435 invalidate_block(*head);
1436 next = (*head)->next;
1437 free(*head);
1438 *head = next;
1439 stat_dec(stat_blocks);
1440 hit = 1;
1441 }
1442 else
1443 {
1444 head = &((*head)->next);
1445 }
1446 }
1447 return hit;
1448}
1449
1450// This is called when we write to a compiled block (see do_invstub)
1451static void unlink_jumps_vaddr_range(u_int start, u_int end)
1452{
1453 u_int page, start_page = get_page(start), end_page = get_page(end - 1);
1454 int i;
1455
1456 for (page = start_page; page <= end_page; page++) {
1457 struct jump_info *ji = jumps[page];
1458 if (ji == NULL)
1459 continue;
1460 for (i = 0; i < ji->count; ) {
1461 if (ji->e[i].target_vaddr < start || ji->e[i].target_vaddr >= end) {
1462 i++;
1463 continue;
1464 }
1465
1466 inv_debug("INV: rm link to %08x (tc_offs %zx)\n", ji->e[i].target_vaddr,
1467 (u_char *)ji->e[i].stub - ndrc->translation_cache);
1468 void *host_addr = find_extjump_insn(ji->e[i].stub);
1469 mark_clear_cache(host_addr);
1470 set_jump_target(host_addr, ji->e[i].stub); // point back to dyna_linker stub
1471
1472 stat_dec(stat_links);
1473 ji->count--;
1474 if (i < ji->count) {
1475 ji->e[i] = ji->e[ji->count];
1476 continue;
1477 }
1478 i++;
1479 }
1480 }
1481}
1482
1483static void unlink_jumps_tc_range(struct jump_info *ji, u_int base_offs, int shift)
1484{
1485 int i;
1486 if (ji == NULL)
1487 return;
1488 for (i = 0; i < ji->count; ) {
1489 u_int tc_offs = (u_char *)ji->e[i].stub - ndrc->translation_cache;
1490 if (((tc_offs ^ base_offs) >> shift) != 0) {
1491 i++;
1492 continue;
1493 }
1494
1495 inv_debug("EXP: rm link to %08x (tc_offs %x)\n", ji->e[i].target_vaddr, tc_offs);
1496 stat_dec(stat_links);
1497 ji->count--;
1498 if (i < ji->count) {
1499 ji->e[i] = ji->e[ji->count];
1500 continue;
1501 }
1502 i++;
1503 }
1504}
1505
1506static void invalidate_block(struct block_info *block)
1507{
1508 u_int i;
1509
1510 block->is_dirty = 1;
1511 unlink_jumps_vaddr_range(block->start, block->start + block->len);
1512 for (i = 0; i < block->jump_in_cnt; i++)
1513 hash_table_remove(block->jump_in[i].vaddr);
1514}
1515
1516static int invalidate_range(u_int start, u_int end,
1517 u32 *inv_start_ret, u32 *inv_end_ret)
1518{
1519 struct block_info *last_block = NULL;
1520 u_int start_page = get_page_prev(start);
1521 u_int end_page = get_page(end - 1);
1522 u_int start_m = pmmask(start);
1523 u_int end_m = pmmask(end - 1);
1524 u_int inv_start, inv_end;
1525 u_int blk_start_m, blk_end_m;
1526 u_int page;
1527 int hit = 0;
1528
1529 // additional area without code (to supplement invalid_code[]), [start, end)
1530 // avoids excessive ndrc_write_invalidate*() calls
1531 inv_start = start_m & ~0xfff;
1532 inv_end = end_m | 0xfff;
1533
1534 for (page = start_page; page <= end_page; page++) {
1535 struct block_info *block;
1536 for (block = blocks[page]; block != NULL; block = block->next) {
1537 if (block->is_dirty)
1538 continue;
1539 last_block = block;
1540 blk_end_m = pmmask(block->start + block->len);
1541 if (blk_end_m <= start_m) {
1542 inv_start = max(inv_start, blk_end_m);
1543 continue;
1544 }
1545 blk_start_m = pmmask(block->start);
1546 if (end_m <= blk_start_m) {
1547 inv_end = min(inv_end, blk_start_m - 1);
1548 continue;
1549 }
1550 if (!block->source) // "hack" block - leave it alone
1551 continue;
1552
1553 hit++;
1554 invalidate_block(block);
1555 stat_inc(stat_inv_hits);
1556 }
1557 }
1558
1559 if (!hit && last_block && last_block->source) {
1560 // could be some leftover unused block, uselessly trapping writes
1561 last_block->inv_near_misses++;
1562 if (last_block->inv_near_misses > 128) {
1563 invalidate_block(last_block);
1564 stat_inc(stat_inv_hits);
1565 hit++;
1566 }
1567 }
1568 if (hit) {
1569 do_clear_cache();
1570#ifdef USE_MINI_HT
1571 memset(mini_ht, -1, sizeof(mini_ht));
1572#endif
1573 }
1574
1575 if (inv_start <= (start_m & ~0xfff) && inv_end >= (start_m | 0xfff))
1576 // the whole page is empty now
1577 mark_invalid_code(start, 1, 1);
1578
1579 if (inv_start_ret) *inv_start_ret = inv_start | (start & 0xe0000000);
1580 if (inv_end_ret) *inv_end_ret = inv_end | (end & 0xe0000000);
1581 return hit;
1582}
1583
1584void new_dynarec_invalidate_range(unsigned int start, unsigned int end)
1585{
1586 invalidate_range(start, end, NULL, NULL);
1587}
1588
1589static void ndrc_write_invalidate_many(u_int start, u_int end)
1590{
1591 // this check is done by the caller
1592 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1593 int ret = invalidate_range(start, end, &inv_code_start, &inv_code_end);
1594#ifdef INV_DEBUG_W
1595 int invc = invalid_code[start >> 12];
1596 u_int len = end - start;
1597 if (ret)
1598 printf("INV ADDR: %08x/%02x hit %d blocks\n", start, len, ret);
1599 else
1600 printf("INV ADDR: %08x/%02x miss, inv %08x-%08x invc %d->%d\n", start, len,
1601 inv_code_start, inv_code_end, invc, invalid_code[start >> 12]);
1602 check_for_block_changes(start, end);
1603#endif
1604 stat_inc(stat_inv_addr_calls);
1605 (void)ret;
1606}
1607
1608void ndrc_write_invalidate_one(u_int addr)
1609{
1610 ndrc_write_invalidate_many(addr, addr + 4);
1611}
1612
1613// This is called when loading a save state.
1614// Anything could have changed, so invalidate everything.
1615void new_dynarec_invalidate_all_pages(void)
1616{
1617 struct block_info *block;
1618 u_int page;
1619 for (page = 0; page < ARRAY_SIZE(blocks); page++) {
1620 for (block = blocks[page]; block != NULL; block = block->next) {
1621 if (block->is_dirty)
1622 continue;
1623 if (!block->source) // hack block?
1624 continue;
1625 invalidate_block(block);
1626 }
1627 }
1628
1629 #ifdef USE_MINI_HT
1630 memset(mini_ht, -1, sizeof(mini_ht));
1631 #endif
1632 do_clear_cache();
1633}
1634
1635// Add an entry to jump_out after making a link
1636// src should point to code by emit_extjump()
1637void ndrc_add_jump_out(u_int vaddr, void *src)
1638{
1639 inv_debug("ndrc_add_jump_out: %p -> %x\n", src, vaddr);
1640 u_int page = get_page(vaddr);
1641 struct jump_info *ji;
1642
1643 stat_inc(stat_links);
1644 check_extjump2(src);
1645 ji = jumps[page];
1646 if (ji == NULL) {
1647 ji = malloc(sizeof(*ji) + sizeof(ji->e[0]) * 16);
1648 ji->alloc = 16;
1649 ji->count = 0;
1650 }
1651 else if (ji->count >= ji->alloc) {
1652 ji->alloc += 16;
1653 ji = realloc(ji, sizeof(*ji) + sizeof(ji->e[0]) * ji->alloc);
1654 }
1655 jumps[page] = ji;
1656 ji->e[ji->count].target_vaddr = vaddr;
1657 ji->e[ji->count].stub = src;
1658 ji->count++;
1659}
1660
1661/* Register allocation */
1662
1663static void alloc_set(struct regstat *cur, int reg, int hr)
1664{
1665 cur->regmap[hr] = reg;
1666 cur->dirty &= ~(1u << hr);
1667 cur->isconst &= ~(1u << hr);
1668 cur->noevict |= 1u << hr;
1669}
1670
1671static void evict_alloc_reg(struct regstat *cur, int i, int reg, int preferred_hr)
1672{
1673 u_char hsn[MAXREG+1];
1674 int j, r, hr;
1675 memset(hsn, 10, sizeof(hsn));
1676 lsn(hsn, i);
1677 //printf("hsn(%x): %d %d %d %d %d %d %d\n",start+i*4,hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1678 if(i>0) {
1679 // Don't evict the cycle count at entry points, otherwise the entry
1680 // stub will have to write it.
1681 if(dops[i].bt&&hsn[CCREG]>2) hsn[CCREG]=2;
1682 if (i>1 && hsn[CCREG] > 2 && dops[i-2].is_jump) hsn[CCREG]=2;
1683 for(j=10;j>=3;j--)
1684 {
1685 // Alloc preferred register if available
1686 if (!((cur->noevict >> preferred_hr) & 1)
1687 && hsn[cur->regmap[preferred_hr]] == j)
1688 {
1689 alloc_set(cur, reg, preferred_hr);
1690 return;
1691 }
1692 for(r=1;r<=MAXREG;r++)
1693 {
1694 if(hsn[r]==j&&r!=dops[i-1].rs1&&r!=dops[i-1].rs2&&r!=dops[i-1].rt1&&r!=dops[i-1].rt2) {
1695 for(hr=0;hr<HOST_REGS;hr++) {
1696 if (hr == EXCLUDE_REG || ((cur->noevict >> hr) & 1))
1697 continue;
1698 if(hr!=HOST_CCREG||j<hsn[CCREG]) {
1699 if(cur->regmap[hr]==r) {
1700 alloc_set(cur, reg, hr);
1701 return;
1702 }
1703 }
1704 }
1705 }
1706 }
1707 }
1708 }
1709 for(j=10;j>=0;j--)
1710 {
1711 for(r=1;r<=MAXREG;r++)
1712 {
1713 if(hsn[r]==j) {
1714 for(hr=0;hr<HOST_REGS;hr++) {
1715 if (hr == EXCLUDE_REG || ((cur->noevict >> hr) & 1))
1716 continue;
1717 if(cur->regmap[hr]==r) {
1718 alloc_set(cur, reg, hr);
1719 return;
1720 }
1721 }
1722 }
1723 }
1724 }
1725 SysPrintf("This shouldn't happen (evict_alloc_reg)\n");
1726 abort();
1727}
1728
1729// Note: registers are allocated clean (unmodified state)
1730// if you intend to modify the register, you must call dirty_reg().
1731static void alloc_reg(struct regstat *cur,int i,signed char reg)
1732{
1733 int r,hr;
1734 int preferred_reg = PREFERRED_REG_FIRST
1735 + reg % (PREFERRED_REG_LAST - PREFERRED_REG_FIRST + 1);
1736 if (reg == CCREG) preferred_reg = HOST_CCREG;
1737 if (reg == PTEMP || reg == FTEMP) preferred_reg = 12;
1738 assert(PREFERRED_REG_FIRST != EXCLUDE_REG && EXCLUDE_REG != HOST_REGS);
1739 assert(reg >= 0);
1740
1741 // Don't allocate unused registers
1742 if((cur->u>>reg)&1) return;
1743
1744 // see if it's already allocated
1745 if ((hr = get_reg(cur->regmap, reg)) >= 0) {
1746 cur->noevict |= 1u << hr;
1747 return;
1748 }
1749
1750 // Keep the same mapping if the register was already allocated in a loop
1751 preferred_reg = loop_reg(i,reg,preferred_reg);
1752
1753 // Try to allocate the preferred register
1754 if (cur->regmap[preferred_reg] == -1) {
1755 alloc_set(cur, reg, preferred_reg);
1756 return;
1757 }
1758 r=cur->regmap[preferred_reg];
1759 assert(r < 64);
1760 if((cur->u>>r)&1) {
1761 alloc_set(cur, reg, preferred_reg);
1762 return;
1763 }
1764
1765 // Clear any unneeded registers
1766 // We try to keep the mapping consistent, if possible, because it
1767 // makes branches easier (especially loops). So we try to allocate
1768 // first (see above) before removing old mappings. If this is not
1769 // possible then go ahead and clear out the registers that are no
1770 // longer needed.
1771 for(hr=0;hr<HOST_REGS;hr++)
1772 {
1773 r=cur->regmap[hr];
1774 if(r>=0) {
1775 assert(r < 64);
1776 if((cur->u>>r)&1) {cur->regmap[hr]=-1;break;}
1777 }
1778 }
1779
1780 // Try to allocate any available register, but prefer
1781 // registers that have not been used recently.
1782 if (i > 0) {
1783 for (hr = PREFERRED_REG_FIRST; ; ) {
1784 if (cur->regmap[hr] < 0) {
1785 int oldreg = regs[i-1].regmap[hr];
1786 if (oldreg < 0 || (oldreg != dops[i-1].rs1 && oldreg != dops[i-1].rs2
1787 && oldreg != dops[i-1].rt1 && oldreg != dops[i-1].rt2))
1788 {
1789 alloc_set(cur, reg, hr);
1790 return;
1791 }
1792 }
1793 hr++;
1794 if (hr == EXCLUDE_REG)
1795 hr++;
1796 if (hr == HOST_REGS)
1797 hr = 0;
1798 if (hr == PREFERRED_REG_FIRST)
1799 break;
1800 }
1801 }
1802
1803 // Try to allocate any available register
1804 for (hr = PREFERRED_REG_FIRST; ; ) {
1805 if (cur->regmap[hr] < 0) {
1806 alloc_set(cur, reg, hr);
1807 return;
1808 }
1809 hr++;
1810 if (hr == EXCLUDE_REG)
1811 hr++;
1812 if (hr == HOST_REGS)
1813 hr = 0;
1814 if (hr == PREFERRED_REG_FIRST)
1815 break;
1816 }
1817
1818 // Ok, now we have to evict someone
1819 // Pick a register we hopefully won't need soon
1820 evict_alloc_reg(cur, i, reg, preferred_reg);
1821}
1822
1823// Allocate a temporary register. This is done without regard to
1824// dirty status or whether the register we request is on the unneeded list
1825// Note: This will only allocate one register, even if called multiple times
1826static void alloc_reg_temp(struct regstat *cur,int i,signed char reg)
1827{
1828 int r,hr;
1829
1830 // see if it's already allocated
1831 for (hr = 0; hr < HOST_REGS; hr++)
1832 {
1833 if (hr != EXCLUDE_REG && cur->regmap[hr] == reg) {
1834 cur->noevict |= 1u << hr;
1835 return;
1836 }
1837 }
1838
1839 // Try to allocate any available register
1840 for(hr=HOST_REGS-1;hr>=0;hr--) {
1841 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1842 alloc_set(cur, reg, hr);
1843 return;
1844 }
1845 }
1846
1847 // Find an unneeded register
1848 for(hr=HOST_REGS-1;hr>=0;hr--)
1849 {
1850 r=cur->regmap[hr];
1851 if(r>=0) {
1852 assert(r < 64);
1853 if((cur->u>>r)&1) {
1854 if(i==0||((unneeded_reg[i-1]>>r)&1)) {
1855 alloc_set(cur, reg, hr);
1856 return;
1857 }
1858 }
1859 }
1860 }
1861
1862 // Ok, now we have to evict someone
1863 // Pick a register we hopefully won't need soon
1864 evict_alloc_reg(cur, i, reg, 0);
1865}
1866
1867static void mov_alloc(struct regstat *current,int i)
1868{
1869 if (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG) {
1870 alloc_cc(current,i); // for stalls
1871 dirty_reg(current,CCREG);
1872 }
1873
1874 // Note: Don't need to actually alloc the source registers
1875 //alloc_reg(current,i,dops[i].rs1);
1876 alloc_reg(current,i,dops[i].rt1);
1877
1878 clear_const(current,dops[i].rs1);
1879 clear_const(current,dops[i].rt1);
1880 dirty_reg(current,dops[i].rt1);
1881}
1882
1883static void shiftimm_alloc(struct regstat *current,int i)
1884{
1885 if(dops[i].opcode2<=0x3) // SLL/SRL/SRA
1886 {
1887 if(dops[i].rt1) {
1888 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1889 else dops[i].use_lt1=!!dops[i].rs1;
1890 alloc_reg(current,i,dops[i].rt1);
1891 dirty_reg(current,dops[i].rt1);
1892 if(is_const(current,dops[i].rs1)) {
1893 int v=get_const(current,dops[i].rs1);
1894 if(dops[i].opcode2==0x00) set_const(current,dops[i].rt1,v<<cinfo[i].imm);
1895 if(dops[i].opcode2==0x02) set_const(current,dops[i].rt1,(u_int)v>>cinfo[i].imm);
1896 if(dops[i].opcode2==0x03) set_const(current,dops[i].rt1,v>>cinfo[i].imm);
1897 }
1898 else clear_const(current,dops[i].rt1);
1899 }
1900 }
1901 else
1902 {
1903 clear_const(current,dops[i].rs1);
1904 clear_const(current,dops[i].rt1);
1905 }
1906
1907 if(dops[i].opcode2>=0x38&&dops[i].opcode2<=0x3b) // DSLL/DSRL/DSRA
1908 {
1909 assert(0);
1910 }
1911 if(dops[i].opcode2==0x3c) // DSLL32
1912 {
1913 assert(0);
1914 }
1915 if(dops[i].opcode2==0x3e) // DSRL32
1916 {
1917 assert(0);
1918 }
1919 if(dops[i].opcode2==0x3f) // DSRA32
1920 {
1921 assert(0);
1922 }
1923}
1924
1925static void shift_alloc(struct regstat *current,int i)
1926{
1927 if(dops[i].rt1) {
1928 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
1929 if(dops[i].rs2) alloc_reg(current,i,dops[i].rs2);
1930 alloc_reg(current,i,dops[i].rt1);
1931 if(dops[i].rt1==dops[i].rs2) {
1932 alloc_reg_temp(current,i,-1);
1933 cinfo[i].min_free_regs=1;
1934 }
1935 clear_const(current,dops[i].rs1);
1936 clear_const(current,dops[i].rs2);
1937 clear_const(current,dops[i].rt1);
1938 dirty_reg(current,dops[i].rt1);
1939 }
1940}
1941
1942static void alu_alloc(struct regstat *current,int i)
1943{
1944 if(dops[i].opcode2>=0x20&&dops[i].opcode2<=0x23) { // ADD/ADDU/SUB/SUBU
1945 if(dops[i].rt1) {
1946 if(dops[i].rs1&&dops[i].rs2) {
1947 alloc_reg(current,i,dops[i].rs1);
1948 alloc_reg(current,i,dops[i].rs2);
1949 }
1950 else {
1951 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1952 if(dops[i].rs2&&needed_again(dops[i].rs2,i)) alloc_reg(current,i,dops[i].rs2);
1953 }
1954 alloc_reg(current,i,dops[i].rt1);
1955 }
1956 if (dops[i].may_except) {
1957 alloc_cc_optional(current, i); // for exceptions
1958 alloc_reg_temp(current, i, -1);
1959 cinfo[i].min_free_regs = 1;
1960 }
1961 }
1962 else if(dops[i].opcode2==0x2a||dops[i].opcode2==0x2b) { // SLT/SLTU
1963 if(dops[i].rt1) {
1964 alloc_reg(current,i,dops[i].rs1);
1965 alloc_reg(current,i,dops[i].rs2);
1966 alloc_reg(current,i,dops[i].rt1);
1967 }
1968 }
1969 else if(dops[i].opcode2>=0x24&&dops[i].opcode2<=0x27) { // AND/OR/XOR/NOR
1970 if(dops[i].rt1) {
1971 if(dops[i].rs1&&dops[i].rs2) {
1972 alloc_reg(current,i,dops[i].rs1);
1973 alloc_reg(current,i,dops[i].rs2);
1974 }
1975 else
1976 {
1977 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1978 if(dops[i].rs2&&needed_again(dops[i].rs2,i)) alloc_reg(current,i,dops[i].rs2);
1979 }
1980 alloc_reg(current,i,dops[i].rt1);
1981 }
1982 }
1983 clear_const(current,dops[i].rs1);
1984 clear_const(current,dops[i].rs2);
1985 clear_const(current,dops[i].rt1);
1986 dirty_reg(current,dops[i].rt1);
1987}
1988
1989static void imm16_alloc(struct regstat *current,int i)
1990{
1991 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1992 else dops[i].use_lt1=!!dops[i].rs1;
1993 if(dops[i].rt1) alloc_reg(current,i,dops[i].rt1);
1994 if(dops[i].opcode==0x0a||dops[i].opcode==0x0b) { // SLTI/SLTIU
1995 clear_const(current,dops[i].rs1);
1996 clear_const(current,dops[i].rt1);
1997 }
1998 else if(dops[i].opcode>=0x0c&&dops[i].opcode<=0x0e) { // ANDI/ORI/XORI
1999 if(is_const(current,dops[i].rs1)) {
2000 int v=get_const(current,dops[i].rs1);
2001 if(dops[i].opcode==0x0c) set_const(current,dops[i].rt1,v&cinfo[i].imm);
2002 if(dops[i].opcode==0x0d) set_const(current,dops[i].rt1,v|cinfo[i].imm);
2003 if(dops[i].opcode==0x0e) set_const(current,dops[i].rt1,v^cinfo[i].imm);
2004 }
2005 else clear_const(current,dops[i].rt1);
2006 }
2007 else if(dops[i].opcode==0x08||dops[i].opcode==0x09) { // ADDI/ADDIU
2008 if(is_const(current,dops[i].rs1)) {
2009 int v=get_const(current,dops[i].rs1);
2010 set_const(current,dops[i].rt1,v+cinfo[i].imm);
2011 }
2012 else clear_const(current,dops[i].rt1);
2013 if (dops[i].may_except) {
2014 alloc_cc_optional(current, i); // for exceptions
2015 alloc_reg_temp(current, i, -1);
2016 cinfo[i].min_free_regs = 1;
2017 }
2018 }
2019 else {
2020 set_const(current,dops[i].rt1,cinfo[i].imm<<16); // LUI
2021 }
2022 dirty_reg(current,dops[i].rt1);
2023}
2024
2025static void load_alloc(struct regstat *current,int i)
2026{
2027 int need_temp = 0;
2028 clear_const(current,dops[i].rt1);
2029 //if(dops[i].rs1!=dops[i].rt1&&needed_again(dops[i].rs1,i)) clear_const(current,dops[i].rs1); // Does this help or hurt?
2030 if(!dops[i].rs1) current->u&=~1LL; // Allow allocating r0 if it's the source register
2031 if (needed_again(dops[i].rs1, i))
2032 alloc_reg(current, i, dops[i].rs1);
2033 if (ram_offset)
2034 alloc_reg(current, i, ROREG);
2035 if (dops[i].may_except) {
2036 alloc_cc_optional(current, i); // for exceptions
2037 need_temp = 1;
2038 }
2039 if(dops[i].rt1&&!((current->u>>dops[i].rt1)&1)) {
2040 alloc_reg(current,i,dops[i].rt1);
2041 assert(get_reg_w(current->regmap, dops[i].rt1)>=0);
2042 dirty_reg(current,dops[i].rt1);
2043 // LWL/LWR need a temporary register for the old value
2044 if(dops[i].opcode==0x22||dops[i].opcode==0x26)
2045 {
2046 alloc_reg(current,i,FTEMP);
2047 need_temp = 1;
2048 }
2049 }
2050 else
2051 {
2052 // Load to r0 or unneeded register (dummy load)
2053 // but we still need a register to calculate the address
2054 if(dops[i].opcode==0x22||dops[i].opcode==0x26)
2055 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
2056 need_temp = 1;
2057 }
2058 if (need_temp) {
2059 alloc_reg_temp(current, i, -1);
2060 cinfo[i].min_free_regs = 1;
2061 }
2062}
2063
2064// this may eat up to 7 registers
2065static void store_alloc(struct regstat *current, int i)
2066{
2067 clear_const(current,dops[i].rs2);
2068 if(!(dops[i].rs2)) current->u&=~1LL; // Allow allocating r0 if necessary
2069 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
2070 alloc_reg(current,i,dops[i].rs2);
2071 if (ram_offset)
2072 alloc_reg(current, i, ROREG);
2073 #if defined(HOST_IMM8)
2074 // On CPUs without 32-bit immediates we need a pointer to invalid_code
2075 alloc_reg(current, i, INVCP);
2076 #endif
2077 if (dops[i].opcode == 0x2a || dops[i].opcode == 0x2e) { // SWL/SWL
2078 alloc_reg(current,i,FTEMP);
2079 }
2080 if (dops[i].may_except)
2081 alloc_cc_optional(current, i); // for exceptions
2082 // We need a temporary register for address generation
2083 alloc_reg_temp(current,i,-1);
2084 cinfo[i].min_free_regs=1;
2085}
2086
2087static void c2ls_alloc(struct regstat *current, int i)
2088{
2089 clear_const(current,dops[i].rt1);
2090 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
2091 alloc_reg(current,i,FTEMP);
2092 if (ram_offset)
2093 alloc_reg(current, i, ROREG);
2094 #if defined(HOST_IMM8)
2095 // On CPUs without 32-bit immediates we need a pointer to invalid_code
2096 if (dops[i].opcode == 0x3a) // SWC2
2097 alloc_reg(current,i,INVCP);
2098 #endif
2099 if (dops[i].may_except)
2100 alloc_cc_optional(current, i); // for exceptions
2101 // We need a temporary register for address generation
2102 alloc_reg_temp(current,i,-1);
2103 cinfo[i].min_free_regs=1;
2104}
2105
2106#ifndef multdiv_alloc
2107static void multdiv_alloc(struct regstat *current,int i)
2108{
2109 // case 0x18: MULT
2110 // case 0x19: MULTU
2111 // case 0x1A: DIV
2112 // case 0x1B: DIVU
2113 clear_const(current,dops[i].rs1);
2114 clear_const(current,dops[i].rs2);
2115 alloc_cc(current,i); // for stalls
2116 dirty_reg(current,CCREG);
2117 if(dops[i].rs1&&dops[i].rs2)
2118 {
2119 current->u&=~(1LL<<HIREG);
2120 current->u&=~(1LL<<LOREG);
2121 alloc_reg(current,i,HIREG);
2122 alloc_reg(current,i,LOREG);
2123 alloc_reg(current,i,dops[i].rs1);
2124 alloc_reg(current,i,dops[i].rs2);
2125 dirty_reg(current,HIREG);
2126 dirty_reg(current,LOREG);
2127 }
2128 else
2129 {
2130 // Multiply by zero is zero.
2131 // MIPS does not have a divide by zero exception.
2132 alloc_reg(current,i,HIREG);
2133 alloc_reg(current,i,LOREG);
2134 dirty_reg(current,HIREG);
2135 dirty_reg(current,LOREG);
2136 if (dops[i].rs1 && ((dops[i].opcode2 & 0x3e) == 0x1a)) // div(u) 0
2137 alloc_reg(current, i, dops[i].rs1);
2138 }
2139}
2140#endif
2141
2142static void cop0_alloc(struct regstat *current,int i)
2143{
2144 if(dops[i].opcode2==0) // MFC0
2145 {
2146 if(dops[i].rt1) {
2147 clear_const(current,dops[i].rt1);
2148 alloc_reg(current,i,dops[i].rt1);
2149 dirty_reg(current,dops[i].rt1);
2150 }
2151 }
2152 else if(dops[i].opcode2==4) // MTC0
2153 {
2154 if (((source[i]>>11)&0x1e) == 12) {
2155 alloc_cc(current, i);
2156 dirty_reg(current, CCREG);
2157 }
2158 if(dops[i].rs1){
2159 clear_const(current,dops[i].rs1);
2160 alloc_reg(current,i,dops[i].rs1);
2161 alloc_all(current,i);
2162 }
2163 else {
2164 alloc_all(current,i); // FIXME: Keep r0
2165 current->u&=~1LL;
2166 alloc_reg(current,i,0);
2167 }
2168 cinfo[i].min_free_regs = HOST_REGS;
2169 }
2170}
2171
2172static void rfe_alloc(struct regstat *current, int i)
2173{
2174 alloc_all(current, i);
2175 cinfo[i].min_free_regs = HOST_REGS;
2176}
2177
2178static void cop2_alloc(struct regstat *current,int i)
2179{
2180 if (dops[i].opcode2 < 3) // MFC2/CFC2
2181 {
2182 alloc_cc(current,i); // for stalls
2183 dirty_reg(current,CCREG);
2184 if(dops[i].rt1){
2185 clear_const(current,dops[i].rt1);
2186 alloc_reg(current,i,dops[i].rt1);
2187 dirty_reg(current,dops[i].rt1);
2188 }
2189 }
2190 else if (dops[i].opcode2 > 3) // MTC2/CTC2
2191 {
2192 if(dops[i].rs1){
2193 clear_const(current,dops[i].rs1);
2194 alloc_reg(current,i,dops[i].rs1);
2195 }
2196 else {
2197 current->u&=~1LL;
2198 alloc_reg(current,i,0);
2199 }
2200 }
2201 alloc_reg_temp(current,i,-1);
2202 cinfo[i].min_free_regs=1;
2203}
2204
2205static void c2op_alloc(struct regstat *current,int i)
2206{
2207 alloc_cc(current,i); // for stalls
2208 dirty_reg(current,CCREG);
2209 alloc_reg_temp(current,i,-1);
2210}
2211
2212static void syscall_alloc(struct regstat *current,int i)
2213{
2214 alloc_cc(current,i);
2215 dirty_reg(current,CCREG);
2216 alloc_all(current,i);
2217 cinfo[i].min_free_regs=HOST_REGS;
2218 current->isconst=0;
2219}
2220
2221static void delayslot_alloc(struct regstat *current,int i)
2222{
2223 switch(dops[i].itype) {
2224 case UJUMP:
2225 case CJUMP:
2226 case SJUMP:
2227 case RJUMP:
2228 case SYSCALL:
2229 case HLECALL:
2230 case IMM16:
2231 imm16_alloc(current,i);
2232 break;
2233 case LOAD:
2234 case LOADLR:
2235 load_alloc(current,i);
2236 break;
2237 case STORE:
2238 case STORELR:
2239 store_alloc(current,i);
2240 break;
2241 case ALU:
2242 alu_alloc(current,i);
2243 break;
2244 case SHIFT:
2245 shift_alloc(current,i);
2246 break;
2247 case MULTDIV:
2248 multdiv_alloc(current,i);
2249 break;
2250 case SHIFTIMM:
2251 shiftimm_alloc(current,i);
2252 break;
2253 case MOV:
2254 mov_alloc(current,i);
2255 break;
2256 case COP0:
2257 cop0_alloc(current,i);
2258 break;
2259 case RFE:
2260 rfe_alloc(current,i);
2261 break;
2262 case COP2:
2263 cop2_alloc(current,i);
2264 break;
2265 case C2LS:
2266 c2ls_alloc(current,i);
2267 break;
2268 case C2OP:
2269 c2op_alloc(current,i);
2270 break;
2271 }
2272}
2273
2274static void add_stub(enum stub_type type, void *addr, void *retaddr,
2275 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e)
2276{
2277 assert(stubcount < ARRAY_SIZE(stubs));
2278 stubs[stubcount].type = type;
2279 stubs[stubcount].addr = addr;
2280 stubs[stubcount].retaddr = retaddr;
2281 stubs[stubcount].a = a;
2282 stubs[stubcount].b = b;
2283 stubs[stubcount].c = c;
2284 stubs[stubcount].d = d;
2285 stubs[stubcount].e = e;
2286 stubcount++;
2287}
2288
2289static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
2290 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist)
2291{
2292 add_stub(type, addr, retaddr, i, addr_reg, (uintptr_t)i_regs, ccadj, reglist);
2293}
2294
2295// Write out a single register
2296static void wb_register(signed char r, const signed char regmap[], u_int dirty)
2297{
2298 int hr;
2299 for(hr=0;hr<HOST_REGS;hr++) {
2300 if(hr!=EXCLUDE_REG) {
2301 if(regmap[hr]==r) {
2302 if((dirty>>hr)&1) {
2303 assert(regmap[hr]<64);
2304 emit_storereg(r,hr);
2305 }
2306 break;
2307 }
2308 }
2309 }
2310}
2311
2312static void wb_valid(signed char pre[],signed char entry[],u_int dirty_pre,u_int dirty,uint64_t u)
2313{
2314 //if(dirty_pre==dirty) return;
2315 int hr, r;
2316 for (hr = 0; hr < HOST_REGS; hr++) {
2317 r = pre[hr];
2318 if (r < 1 || r > 33 || ((u >> r) & 1))
2319 continue;
2320 if (((dirty_pre & ~dirty) >> hr) & 1)
2321 emit_storereg(r, hr);
2322 }
2323}
2324
2325// trashes r2
2326static void pass_args(int a0, int a1)
2327{
2328 if(a0==1&&a1==0) {
2329 // must swap
2330 emit_mov(a0,2); emit_mov(a1,1); emit_mov(2,0);
2331 }
2332 else if(a0!=0&&a1==0) {
2333 emit_mov(a1,1);
2334 if (a0>=0) emit_mov(a0,0);
2335 }
2336 else {
2337 if(a0>=0&&a0!=0) emit_mov(a0,0);
2338 if(a1>=0&&a1!=1) emit_mov(a1,1);
2339 }
2340}
2341
2342static void alu_assemble(int i, const struct regstat *i_regs, int ccadj_)
2343{
2344 if(dops[i].opcode2>=0x20&&dops[i].opcode2<=0x23) { // ADD/ADDU/SUB/SUBU
2345 int do_oflow = dops[i].may_except; // ADD/SUB with exceptions enabled
2346 if (dops[i].rt1 || do_oflow) {
2347 int do_exception_check = 0;
2348 signed char s1, s2, t, tmp;
2349 t = get_reg_w(i_regs->regmap, dops[i].rt1);
2350 tmp = get_reg_temp(i_regs->regmap);
2351 if (do_oflow)
2352 assert(tmp >= 0);
2353 if (t < 0 && do_oflow)
2354 t = tmp;
2355 if (t >= 0) {
2356 s1 = get_reg(i_regs->regmap, dops[i].rs1);
2357 s2 = get_reg(i_regs->regmap, dops[i].rs2);
2358 if (dops[i].rs1 && dops[i].rs2) {
2359 assert(s1>=0);
2360 assert(s2>=0);
2361 if (dops[i].opcode2 & 2) {
2362 if (do_oflow) {
2363 emit_subs(s1, s2, tmp);
2364 do_exception_check = 1;
2365 }
2366 else
2367 emit_sub(s1,s2,t);
2368 }
2369 else {
2370 if (do_oflow) {
2371 emit_adds(s1, s2, tmp);
2372 do_exception_check = 1;
2373 }
2374 else
2375 emit_add(s1,s2,t);
2376 }
2377 }
2378 else if(dops[i].rs1) {
2379 if(s1>=0) emit_mov(s1,t);
2380 else emit_loadreg(dops[i].rs1,t);
2381 }
2382 else if(dops[i].rs2) {
2383 if (s2 < 0) {
2384 emit_loadreg(dops[i].rs2, t);
2385 s2 = t;
2386 }
2387 if (dops[i].opcode2 & 2) {
2388 if (do_oflow) {
2389 emit_negs(s2, tmp);
2390 do_exception_check = 1;
2391 }
2392 else
2393 emit_neg(s2, t);
2394 }
2395 else if (s2 != t)
2396 emit_mov(s2, t);
2397 }
2398 else
2399 emit_zeroreg(t);
2400 }
2401 if (do_exception_check) {
2402 void *jaddr = out;
2403 emit_jo(0);
2404 if (t >= 0 && tmp != t)
2405 emit_mov(tmp, t);
2406 add_stub_r(OVERFLOW_STUB, jaddr, out, i, 0, i_regs, ccadj_, 0);
2407 }
2408 }
2409 }
2410 else if(dops[i].opcode2==0x2a||dops[i].opcode2==0x2b) { // SLT/SLTU
2411 if(dops[i].rt1) {
2412 signed char s1l,s2l,t;
2413 {
2414 t=get_reg_w(i_regs->regmap, dops[i].rt1);
2415 //assert(t>=0);
2416 if(t>=0) {
2417 s1l=get_reg(i_regs->regmap,dops[i].rs1);
2418 s2l=get_reg(i_regs->regmap,dops[i].rs2);
2419 if(dops[i].rs2==0) // rx<r0
2420 {
2421 if(dops[i].opcode2==0x2a&&dops[i].rs1!=0) { // SLT
2422 assert(s1l>=0);
2423 emit_shrimm(s1l,31,t);
2424 }
2425 else // SLTU (unsigned can not be less than zero, 0<0)
2426 emit_zeroreg(t);
2427 }
2428 else if(dops[i].rs1==0) // r0<rx
2429 {
2430 assert(s2l>=0);
2431 if(dops[i].opcode2==0x2a) // SLT
2432 emit_set_gz32(s2l,t);
2433 else // SLTU (set if not zero)
2434 emit_set_nz32(s2l,t);
2435 }
2436 else{
2437 assert(s1l>=0);assert(s2l>=0);
2438 if(dops[i].opcode2==0x2a) // SLT
2439 emit_set_if_less32(s1l,s2l,t);
2440 else // SLTU
2441 emit_set_if_carry32(s1l,s2l,t);
2442 }
2443 }
2444 }
2445 }
2446 }
2447 else if(dops[i].opcode2>=0x24&&dops[i].opcode2<=0x27) { // AND/OR/XOR/NOR
2448 if(dops[i].rt1) {
2449 signed char s1l,s2l,tl;
2450 tl=get_reg_w(i_regs->regmap, dops[i].rt1);
2451 {
2452 if(tl>=0) {
2453 s1l=get_reg(i_regs->regmap,dops[i].rs1);
2454 s2l=get_reg(i_regs->regmap,dops[i].rs2);
2455 if(dops[i].rs1&&dops[i].rs2) {
2456 assert(s1l>=0);
2457 assert(s2l>=0);
2458 if(dops[i].opcode2==0x24) { // AND
2459 emit_and(s1l,s2l,tl);
2460 } else
2461 if(dops[i].opcode2==0x25) { // OR
2462 emit_or(s1l,s2l,tl);
2463 } else
2464 if(dops[i].opcode2==0x26) { // XOR
2465 emit_xor(s1l,s2l,tl);
2466 } else
2467 if(dops[i].opcode2==0x27) { // NOR
2468 emit_or(s1l,s2l,tl);
2469 emit_not(tl,tl);
2470 }
2471 }
2472 else
2473 {
2474 if(dops[i].opcode2==0x24) { // AND
2475 emit_zeroreg(tl);
2476 } else
2477 if(dops[i].opcode2==0x25||dops[i].opcode2==0x26) { // OR/XOR
2478 if(dops[i].rs1){
2479 if(s1l>=0) emit_mov(s1l,tl);
2480 else emit_loadreg(dops[i].rs1,tl); // CHECK: regmap_entry?
2481 }
2482 else
2483 if(dops[i].rs2){
2484 if(s2l>=0) emit_mov(s2l,tl);
2485 else emit_loadreg(dops[i].rs2,tl); // CHECK: regmap_entry?
2486 }
2487 else emit_zeroreg(tl);
2488 } else
2489 if(dops[i].opcode2==0x27) { // NOR
2490 if(dops[i].rs1){
2491 if(s1l>=0) emit_not(s1l,tl);
2492 else {
2493 emit_loadreg(dops[i].rs1,tl);
2494 emit_not(tl,tl);
2495 }
2496 }
2497 else
2498 if(dops[i].rs2){
2499 if(s2l>=0) emit_not(s2l,tl);
2500 else {
2501 emit_loadreg(dops[i].rs2,tl);
2502 emit_not(tl,tl);
2503 }
2504 }
2505 else emit_movimm(-1,tl);
2506 }
2507 }
2508 }
2509 }
2510 }
2511 }
2512}
2513
2514static void imm16_assemble(int i, const struct regstat *i_regs, int ccadj_)
2515{
2516 if (dops[i].opcode==0x0f) { // LUI
2517 if(dops[i].rt1) {
2518 signed char t;
2519 t=get_reg_w(i_regs->regmap, dops[i].rt1);
2520 //assert(t>=0);
2521 if(t>=0) {
2522 if(!((i_regs->isconst>>t)&1))
2523 emit_movimm(cinfo[i].imm<<16,t);
2524 }
2525 }
2526 }
2527 if(dops[i].opcode==0x08||dops[i].opcode==0x09) { // ADDI/ADDIU
2528 int is_addi = dops[i].may_except;
2529 if (dops[i].rt1 || is_addi) {
2530 signed char s, t, tmp;
2531 t=get_reg_w(i_regs->regmap, dops[i].rt1);
2532 s=get_reg(i_regs->regmap,dops[i].rs1);
2533 if(dops[i].rs1) {
2534 tmp = get_reg_temp(i_regs->regmap);
2535 if (is_addi) {
2536 assert(tmp >= 0);
2537 if (t < 0) t = tmp;
2538 }
2539 if(t>=0) {
2540 if(!((i_regs->isconst>>t)&1)) {
2541 int sum, do_exception_check = 0;
2542 if (s < 0) {
2543 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2544 if (is_addi) {
2545 emit_addimm_and_set_flags3(t, cinfo[i].imm, tmp);
2546 do_exception_check = 1;
2547 }
2548 else
2549 emit_addimm(t, cinfo[i].imm, t);
2550 } else {
2551 if (!((i_regs->wasconst >> s) & 1)) {
2552 if (is_addi) {
2553 emit_addimm_and_set_flags3(s, cinfo[i].imm, tmp);
2554 do_exception_check = 1;
2555 }
2556 else
2557 emit_addimm(s, cinfo[i].imm, t);
2558 }
2559 else {
2560 int oflow = add_overflow(constmap[i][s], cinfo[i].imm, sum);
2561 if (is_addi && oflow)
2562 do_exception_check = 2;
2563 else
2564 emit_movimm(sum, t);
2565 }
2566 }
2567 if (do_exception_check) {
2568 void *jaddr = out;
2569 if (do_exception_check == 2)
2570 emit_jmp(0);
2571 else {
2572 emit_jo(0);
2573 if (tmp != t)
2574 emit_mov(tmp, t);
2575 }
2576 add_stub_r(OVERFLOW_STUB, jaddr, out, i, 0, i_regs, ccadj_, 0);
2577 }
2578 }
2579 }
2580 } else {
2581 if(t>=0) {
2582 if(!((i_regs->isconst>>t)&1))
2583 emit_movimm(cinfo[i].imm,t);
2584 }
2585 }
2586 }
2587 }
2588 else if(dops[i].opcode==0x0a||dops[i].opcode==0x0b) { // SLTI/SLTIU
2589 if(dops[i].rt1) {
2590 //assert(dops[i].rs1!=0); // r0 might be valid, but it's probably a bug
2591 signed char sl,t;
2592 t=get_reg_w(i_regs->regmap, dops[i].rt1);
2593 sl=get_reg(i_regs->regmap,dops[i].rs1);
2594 //assert(t>=0);
2595 if(t>=0) {
2596 if(dops[i].rs1>0) {
2597 if(dops[i].opcode==0x0a) { // SLTI
2598 if(sl<0) {
2599 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2600 emit_slti32(t,cinfo[i].imm,t);
2601 }else{
2602 emit_slti32(sl,cinfo[i].imm,t);
2603 }
2604 }
2605 else { // SLTIU
2606 if(sl<0) {
2607 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2608 emit_sltiu32(t,cinfo[i].imm,t);
2609 }else{
2610 emit_sltiu32(sl,cinfo[i].imm,t);
2611 }
2612 }
2613 }else{
2614 // SLTI(U) with r0 is just stupid,
2615 // nonetheless examples can be found
2616 if(dops[i].opcode==0x0a) // SLTI
2617 if(0<cinfo[i].imm) emit_movimm(1,t);
2618 else emit_zeroreg(t);
2619 else // SLTIU
2620 {
2621 if(cinfo[i].imm) emit_movimm(1,t);
2622 else emit_zeroreg(t);
2623 }
2624 }
2625 }
2626 }
2627 }
2628 else if(dops[i].opcode>=0x0c&&dops[i].opcode<=0x0e) { // ANDI/ORI/XORI
2629 if(dops[i].rt1) {
2630 signed char sl,tl;
2631 tl=get_reg_w(i_regs->regmap, dops[i].rt1);
2632 sl=get_reg(i_regs->regmap,dops[i].rs1);
2633 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2634 if(dops[i].opcode==0x0c) //ANDI
2635 {
2636 if(dops[i].rs1) {
2637 if(sl<0) {
2638 if(i_regs->regmap_entry[tl]!=dops[i].rs1) emit_loadreg(dops[i].rs1,tl);
2639 emit_andimm(tl,cinfo[i].imm,tl);
2640 }else{
2641 if(!((i_regs->wasconst>>sl)&1))
2642 emit_andimm(sl,cinfo[i].imm,tl);
2643 else
2644 emit_movimm(constmap[i][sl]&cinfo[i].imm,tl);
2645 }
2646 }
2647 else
2648 emit_zeroreg(tl);
2649 }
2650 else
2651 {
2652 if(dops[i].rs1) {
2653 if(sl<0) {
2654 if(i_regs->regmap_entry[tl]!=dops[i].rs1) emit_loadreg(dops[i].rs1,tl);
2655 }
2656 if(dops[i].opcode==0x0d) { // ORI
2657 if(sl<0) {
2658 emit_orimm(tl,cinfo[i].imm,tl);
2659 }else{
2660 if(!((i_regs->wasconst>>sl)&1))
2661 emit_orimm(sl,cinfo[i].imm,tl);
2662 else
2663 emit_movimm(constmap[i][sl]|cinfo[i].imm,tl);
2664 }
2665 }
2666 if(dops[i].opcode==0x0e) { // XORI
2667 if(sl<0) {
2668 emit_xorimm(tl,cinfo[i].imm,tl);
2669 }else{
2670 if(!((i_regs->wasconst>>sl)&1))
2671 emit_xorimm(sl,cinfo[i].imm,tl);
2672 else
2673 emit_movimm(constmap[i][sl]^cinfo[i].imm,tl);
2674 }
2675 }
2676 }
2677 else {
2678 emit_movimm(cinfo[i].imm,tl);
2679 }
2680 }
2681 }
2682 }
2683 }
2684}
2685
2686static void shiftimm_assemble(int i, const struct regstat *i_regs)
2687{
2688 if(dops[i].opcode2<=0x3) // SLL/SRL/SRA
2689 {
2690 if(dops[i].rt1) {
2691 signed char s,t;
2692 t=get_reg_w(i_regs->regmap, dops[i].rt1);
2693 s=get_reg(i_regs->regmap,dops[i].rs1);
2694 //assert(t>=0);
2695 if(t>=0&&!((i_regs->isconst>>t)&1)){
2696 if(dops[i].rs1==0)
2697 {
2698 emit_zeroreg(t);
2699 }
2700 else
2701 {
2702 if(s<0&&i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2703 if(cinfo[i].imm) {
2704 if(dops[i].opcode2==0) // SLL
2705 {
2706 emit_shlimm(s<0?t:s,cinfo[i].imm,t);
2707 }
2708 if(dops[i].opcode2==2) // SRL
2709 {
2710 emit_shrimm(s<0?t:s,cinfo[i].imm,t);
2711 }
2712 if(dops[i].opcode2==3) // SRA
2713 {
2714 emit_sarimm(s<0?t:s,cinfo[i].imm,t);
2715 }
2716 }else{
2717 // Shift by zero
2718 if(s>=0 && s!=t) emit_mov(s,t);
2719 }
2720 }
2721 }
2722 //emit_storereg(dops[i].rt1,t); //DEBUG
2723 }
2724 }
2725 if(dops[i].opcode2>=0x38&&dops[i].opcode2<=0x3b) // DSLL/DSRL/DSRA
2726 {
2727 assert(0);
2728 }
2729 if(dops[i].opcode2==0x3c) // DSLL32
2730 {
2731 assert(0);
2732 }
2733 if(dops[i].opcode2==0x3e) // DSRL32
2734 {
2735 assert(0);
2736 }
2737 if(dops[i].opcode2==0x3f) // DSRA32
2738 {
2739 assert(0);
2740 }
2741}
2742
2743#ifndef shift_assemble
2744static void shift_assemble(int i, const struct regstat *i_regs)
2745{
2746 signed char s,t,shift;
2747 if (dops[i].rt1 == 0)
2748 return;
2749 assert(dops[i].opcode2<=0x07); // SLLV/SRLV/SRAV
2750 t = get_reg(i_regs->regmap, dops[i].rt1);
2751 s = get_reg(i_regs->regmap, dops[i].rs1);
2752 shift = get_reg(i_regs->regmap, dops[i].rs2);
2753 if (t < 0)
2754 return;
2755
2756 if(dops[i].rs1==0)
2757 emit_zeroreg(t);
2758 else if(dops[i].rs2==0) {
2759 assert(s>=0);
2760 if(s!=t) emit_mov(s,t);
2761 }
2762 else {
2763 host_tempreg_acquire();
2764 emit_andimm(shift,31,HOST_TEMPREG);
2765 switch(dops[i].opcode2) {
2766 case 4: // SLLV
2767 emit_shl(s,HOST_TEMPREG,t);
2768 break;
2769 case 6: // SRLV
2770 emit_shr(s,HOST_TEMPREG,t);
2771 break;
2772 case 7: // SRAV
2773 emit_sar(s,HOST_TEMPREG,t);
2774 break;
2775 default:
2776 assert(0);
2777 }
2778 host_tempreg_release();
2779 }
2780}
2781
2782#endif
2783
2784enum {
2785 MTYPE_8000 = 0,
2786 MTYPE_8020,
2787 MTYPE_0000,
2788 MTYPE_A000,
2789 MTYPE_1F80,
2790};
2791
2792static int get_ptr_mem_type(u_int a)
2793{
2794 if(a < 0x00200000) {
2795 if(a<0x1000&&((start>>20)==0xbfc||(start>>24)==0xa0))
2796 // return wrong, must use memhandler for BIOS self-test to pass
2797 // 007 does similar stuff from a00 mirror, weird stuff
2798 return MTYPE_8000;
2799 return MTYPE_0000;
2800 }
2801 if(0x1f800000 <= a && a < 0x1f801000)
2802 return MTYPE_1F80;
2803 if(0x80200000 <= a && a < 0x80800000)
2804 return MTYPE_8020;
2805 if(0xa0000000 <= a && a < 0xa0200000)
2806 return MTYPE_A000;
2807 return MTYPE_8000;
2808}
2809
2810static int get_ro_reg(const struct regstat *i_regs, int host_tempreg_free)
2811{
2812 int r = get_reg(i_regs->regmap, ROREG);
2813 if (r < 0 && host_tempreg_free) {
2814 host_tempreg_acquire();
2815 emit_loadreg(ROREG, r = HOST_TEMPREG);
2816 }
2817 if (r < 0)
2818 abort();
2819 return r;
2820}
2821
2822static void *emit_fastpath_cmp_jump(int i, const struct regstat *i_regs,
2823 int addr, int *offset_reg, int *addr_reg_override, int ccadj_)
2824{
2825 void *jaddr = NULL;
2826 int type = 0;
2827 int mr = dops[i].rs1;
2828 assert(addr >= 0);
2829 *offset_reg = -1;
2830 if(((smrv_strong|smrv_weak)>>mr)&1) {
2831 type=get_ptr_mem_type(smrv[mr]);
2832 //printf("set %08x @%08x r%d %d\n", smrv[mr], start+i*4, mr, type);
2833 }
2834 else {
2835 // use the mirror we are running on
2836 type=get_ptr_mem_type(start);
2837 //printf("set nospec @%08x r%d %d\n", start+i*4, mr, type);
2838 }
2839
2840 if (dops[i].may_except) {
2841 // alignment check
2842 u_int op = dops[i].opcode;
2843 int mask = ((op & 0x37) == 0x21 || op == 0x25) ? 1 : 3; // LH/SH/LHU
2844 void *jaddr2;
2845 emit_testimm(addr, mask);
2846 jaddr2 = out;
2847 emit_jne(0);
2848 add_stub_r(ALIGNMENT_STUB, jaddr2, out, i, addr, i_regs, ccadj_, 0);
2849 }
2850
2851 if(type==MTYPE_8020) { // RAM 80200000+ mirror
2852 host_tempreg_acquire();
2853 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2854 addr=*addr_reg_override=HOST_TEMPREG;
2855 type=0;
2856 }
2857 else if(type==MTYPE_0000) { // RAM 0 mirror
2858 host_tempreg_acquire();
2859 emit_orimm(addr,0x80000000,HOST_TEMPREG);
2860 addr=*addr_reg_override=HOST_TEMPREG;
2861 type=0;
2862 }
2863 else if(type==MTYPE_A000) { // RAM A mirror
2864 host_tempreg_acquire();
2865 emit_andimm(addr,~0x20000000,HOST_TEMPREG);
2866 addr=*addr_reg_override=HOST_TEMPREG;
2867 type=0;
2868 }
2869 else if(type==MTYPE_1F80) { // scratchpad
2870 if (psxH == (void *)0x1f800000) {
2871 host_tempreg_acquire();
2872 emit_xorimm(addr,0x1f800000,HOST_TEMPREG);
2873 emit_cmpimm(HOST_TEMPREG,0x1000);
2874 host_tempreg_release();
2875 jaddr=out;
2876 emit_jc(0);
2877 }
2878 else {
2879 // do the usual RAM check, jump will go to the right handler
2880 type=0;
2881 }
2882 }
2883
2884 if (type == 0) // need ram check
2885 {
2886 emit_cmpimm(addr,RAM_SIZE);
2887 jaddr = out;
2888 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2889 // Hint to branch predictor that the branch is unlikely to be taken
2890 if (dops[i].rs1 >= 28)
2891 emit_jno_unlikely(0);
2892 else
2893 #endif
2894 emit_jno(0);
2895 if (ram_offset != 0)
2896 *offset_reg = get_ro_reg(i_regs, 0);
2897 }
2898
2899 return jaddr;
2900}
2901
2902// return memhandler, or get directly accessable address and return 0
2903static void *get_direct_memhandler(void *table, u_int addr,
2904 enum stub_type type, uintptr_t *addr_host)
2905{
2906 uintptr_t msb = 1ull << (sizeof(uintptr_t)*8 - 1);
2907 uintptr_t l1, l2 = 0;
2908 l1 = ((uintptr_t *)table)[addr>>12];
2909 if (!(l1 & msb)) {
2910 uintptr_t v = l1 << 1;
2911 *addr_host = v + addr;
2912 return NULL;
2913 }
2914 else {
2915 l1 <<= 1;
2916 if (type == LOADB_STUB || type == LOADBU_STUB || type == STOREB_STUB)
2917 l2 = ((uintptr_t *)l1)[0x1000/4 + 0x1000/2 + (addr&0xfff)];
2918 else if (type == LOADH_STUB || type == LOADHU_STUB || type == STOREH_STUB)
2919 l2 = ((uintptr_t *)l1)[0x1000/4 + (addr&0xfff)/2];
2920 else
2921 l2 = ((uintptr_t *)l1)[(addr&0xfff)/4];
2922 if (!(l2 & msb)) {
2923 uintptr_t v = l2 << 1;
2924 *addr_host = v + (addr&0xfff);
2925 return NULL;
2926 }
2927 return (void *)(l2 << 1);
2928 }
2929}
2930
2931static u_int get_host_reglist(const signed char *regmap)
2932{
2933 u_int reglist = 0, hr;
2934 for (hr = 0; hr < HOST_REGS; hr++) {
2935 if (hr != EXCLUDE_REG && regmap[hr] >= 0)
2936 reglist |= 1 << hr;
2937 }
2938 return reglist;
2939}
2940
2941static u_int reglist_exclude(u_int reglist, int r1, int r2)
2942{
2943 if (r1 >= 0)
2944 reglist &= ~(1u << r1);
2945 if (r2 >= 0)
2946 reglist &= ~(1u << r2);
2947 return reglist;
2948}
2949
2950// find a temp caller-saved register not in reglist (so assumed to be free)
2951static int reglist_find_free(u_int reglist)
2952{
2953 u_int free_regs = ~reglist & CALLER_SAVE_REGS;
2954 if (free_regs == 0)
2955 return -1;
2956 return __builtin_ctz(free_regs);
2957}
2958
2959static void do_load_word(int a, int rt, int offset_reg)
2960{
2961 if (offset_reg >= 0)
2962 emit_ldr_dualindexed(offset_reg, a, rt);
2963 else
2964 emit_readword_indexed(0, a, rt);
2965}
2966
2967static void do_store_word(int a, int ofs, int rt, int offset_reg, int preseve_a)
2968{
2969 if (offset_reg < 0) {
2970 emit_writeword_indexed(rt, ofs, a);
2971 return;
2972 }
2973 if (ofs != 0)
2974 emit_addimm(a, ofs, a);
2975 emit_str_dualindexed(offset_reg, a, rt);
2976 if (ofs != 0 && preseve_a)
2977 emit_addimm(a, -ofs, a);
2978}
2979
2980static void do_store_hword(int a, int ofs, int rt, int offset_reg, int preseve_a)
2981{
2982 if (offset_reg < 0) {
2983 emit_writehword_indexed(rt, ofs, a);
2984 return;
2985 }
2986 if (ofs != 0)
2987 emit_addimm(a, ofs, a);
2988 emit_strh_dualindexed(offset_reg, a, rt);
2989 if (ofs != 0 && preseve_a)
2990 emit_addimm(a, -ofs, a);
2991}
2992
2993static void do_store_byte(int a, int rt, int offset_reg)
2994{
2995 if (offset_reg >= 0)
2996 emit_strb_dualindexed(offset_reg, a, rt);
2997 else
2998 emit_writebyte_indexed(rt, 0, a);
2999}
3000
3001static void load_assemble(int i, const struct regstat *i_regs, int ccadj_)
3002{
3003 int addr = cinfo[i].addr;
3004 int s,tl;
3005 int offset;
3006 void *jaddr=0;
3007 int memtarget=0,c=0;
3008 int offset_reg = -1;
3009 int fastio_reg_override = -1;
3010 u_int reglist=get_host_reglist(i_regs->regmap);
3011 tl=get_reg_w(i_regs->regmap, dops[i].rt1);
3012 s=get_reg(i_regs->regmap,dops[i].rs1);
3013 offset=cinfo[i].imm;
3014 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3015 if(s>=0) {
3016 c=(i_regs->wasconst>>s)&1;
3017 if (c) {
3018 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3019 }
3020 }
3021 //printf("load_assemble: c=%d\n",c);
3022 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
3023 if(tl<0 && ((!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80) || dops[i].rt1==0)) {
3024 // could be FIFO, must perform the read
3025 // ||dummy read
3026 assem_debug("(forced read)\n");
3027 tl = get_reg_temp(i_regs->regmap); // may be == addr
3028 assert(tl>=0);
3029 }
3030 assert(addr >= 0);
3031 if(tl>=0) {
3032 //printf("load_assemble: c=%d\n",c);
3033 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
3034 reglist&=~(1<<tl);
3035 if(!c) {
3036 #ifdef R29_HACK
3037 // Strmnnrmn's speed hack
3038 if(dops[i].rs1!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3039 #endif
3040 {
3041 jaddr = emit_fastpath_cmp_jump(i, i_regs, addr,
3042 &offset_reg, &fastio_reg_override, ccadj_);
3043 }
3044 }
3045 else if (ram_offset && memtarget) {
3046 offset_reg = get_ro_reg(i_regs, 0);
3047 }
3048 int dummy=(dops[i].rt1==0)||(tl!=get_reg_w(i_regs->regmap, dops[i].rt1)); // ignore loads to r0 and unneeded reg
3049 switch (dops[i].opcode) {
3050 case 0x20: // LB
3051 if(!c||memtarget) {
3052 if(!dummy) {
3053 int a = addr;
3054 if (fastio_reg_override >= 0)
3055 a = fastio_reg_override;
3056
3057 if (offset_reg >= 0)
3058 emit_ldrsb_dualindexed(offset_reg, a, tl);
3059 else
3060 emit_movsbl_indexed(0, a, tl);
3061 }
3062 if(jaddr)
3063 add_stub_r(LOADB_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3064 }
3065 else
3066 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
3067 break;
3068 case 0x21: // LH
3069 if(!c||memtarget) {
3070 if(!dummy) {
3071 int a = addr;
3072 if (fastio_reg_override >= 0)
3073 a = fastio_reg_override;
3074 if (offset_reg >= 0)
3075 emit_ldrsh_dualindexed(offset_reg, a, tl);
3076 else
3077 emit_movswl_indexed(0, a, tl);
3078 }
3079 if(jaddr)
3080 add_stub_r(LOADH_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3081 }
3082 else
3083 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
3084 break;
3085 case 0x23: // LW
3086 if(!c||memtarget) {
3087 if(!dummy) {
3088 int a = addr;
3089 if (fastio_reg_override >= 0)
3090 a = fastio_reg_override;
3091 do_load_word(a, tl, offset_reg);
3092 }
3093 if(jaddr)
3094 add_stub_r(LOADW_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3095 }
3096 else
3097 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
3098 break;
3099 case 0x24: // LBU
3100 if(!c||memtarget) {
3101 if(!dummy) {
3102 int a = addr;
3103 if (fastio_reg_override >= 0)
3104 a = fastio_reg_override;
3105
3106 if (offset_reg >= 0)
3107 emit_ldrb_dualindexed(offset_reg, a, tl);
3108 else
3109 emit_movzbl_indexed(0, a, tl);
3110 }
3111 if(jaddr)
3112 add_stub_r(LOADBU_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3113 }
3114 else
3115 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
3116 break;
3117 case 0x25: // LHU
3118 if(!c||memtarget) {
3119 if(!dummy) {
3120 int a = addr;
3121 if (fastio_reg_override >= 0)
3122 a = fastio_reg_override;
3123 if (offset_reg >= 0)
3124 emit_ldrh_dualindexed(offset_reg, a, tl);
3125 else
3126 emit_movzwl_indexed(0, a, tl);
3127 }
3128 if(jaddr)
3129 add_stub_r(LOADHU_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3130 }
3131 else
3132 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
3133 break;
3134 default:
3135 assert(0);
3136 }
3137 } // tl >= 0
3138 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3139 host_tempreg_release();
3140}
3141
3142#ifndef loadlr_assemble
3143static void loadlr_assemble(int i, const struct regstat *i_regs, int ccadj_)
3144{
3145 int addr = cinfo[i].addr;
3146 int s,tl,temp,temp2;
3147 int offset;
3148 void *jaddr=0;
3149 int memtarget=0,c=0;
3150 int offset_reg = -1;
3151 int fastio_reg_override = -1;
3152 u_int reglist=get_host_reglist(i_regs->regmap);
3153 tl=get_reg_w(i_regs->regmap, dops[i].rt1);
3154 s=get_reg(i_regs->regmap,dops[i].rs1);
3155 temp=get_reg_temp(i_regs->regmap);
3156 temp2=get_reg(i_regs->regmap,FTEMP);
3157 offset=cinfo[i].imm;
3158 reglist|=1<<temp;
3159 assert(addr >= 0);
3160 if(s>=0) {
3161 c=(i_regs->wasconst>>s)&1;
3162 if(c) {
3163 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3164 }
3165 }
3166 if(!c) {
3167 emit_shlimm(addr,3,temp);
3168 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
3169 emit_andimm(addr,0xFFFFFFFC,temp2); // LWL/LWR
3170 }else{
3171 emit_andimm(addr,0xFFFFFFF8,temp2); // LDL/LDR
3172 }
3173 jaddr = emit_fastpath_cmp_jump(i, i_regs, temp2,
3174 &offset_reg, &fastio_reg_override, ccadj_);
3175 }
3176 else {
3177 if (ram_offset && memtarget) {
3178 offset_reg = get_ro_reg(i_regs, 0);
3179 }
3180 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
3181 emit_movimm(((constmap[i][s]+offset)<<3)&24,temp); // LWL/LWR
3182 }else{
3183 emit_movimm(((constmap[i][s]+offset)<<3)&56,temp); // LDL/LDR
3184 }
3185 }
3186 if (dops[i].opcode==0x22||dops[i].opcode==0x26) { // LWL/LWR
3187 if(!c||memtarget) {
3188 int a = temp2;
3189 if (fastio_reg_override >= 0)
3190 a = fastio_reg_override;
3191 do_load_word(a, temp2, offset_reg);
3192 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3193 host_tempreg_release();
3194 if(jaddr) add_stub_r(LOADW_STUB,jaddr,out,i,temp2,i_regs,ccadj_,reglist);
3195 }
3196 else
3197 inline_readstub(LOADW_STUB,i,(constmap[i][s]+offset)&0xFFFFFFFC,i_regs->regmap,FTEMP,ccadj_,reglist);
3198 if(dops[i].rt1) {
3199 assert(tl>=0);
3200 emit_andimm(temp,24,temp);
3201 if (dops[i].opcode==0x22) // LWL
3202 emit_xorimm(temp,24,temp);
3203 host_tempreg_acquire();
3204 emit_movimm(-1,HOST_TEMPREG);
3205 if (dops[i].opcode==0x26) {
3206 emit_shr(temp2,temp,temp2);
3207 emit_bic_lsr(tl,HOST_TEMPREG,temp,tl);
3208 }else{
3209 emit_shl(temp2,temp,temp2);
3210 emit_bic_lsl(tl,HOST_TEMPREG,temp,tl);
3211 }
3212 host_tempreg_release();
3213 emit_or(temp2,tl,tl);
3214 }
3215 //emit_storereg(dops[i].rt1,tl); // DEBUG
3216 }
3217 if (dops[i].opcode==0x1A||dops[i].opcode==0x1B) { // LDL/LDR
3218 assert(0);
3219 }
3220}
3221#endif
3222
3223static void do_invstub(int n)
3224{
3225 literal_pool(20);
3226 assem_debug("do_invstub\n");
3227 u_int reglist = stubs[n].a;
3228 u_int addrr = stubs[n].b;
3229 int ofs_start = stubs[n].c;
3230 int ofs_end = stubs[n].d;
3231 int len = ofs_end - ofs_start;
3232 u_int rightr = 0;
3233
3234 set_jump_target(stubs[n].addr, out);
3235 save_regs(reglist);
3236 if (addrr != 0 || ofs_start != 0)
3237 emit_addimm(addrr, ofs_start, 0);
3238 emit_readword(&inv_code_start, 2);
3239 emit_readword(&inv_code_end, 3);
3240 if (len != 0)
3241 emit_addimm(0, len + 4, (rightr = 1));
3242 emit_cmp(0, 2);
3243 emit_cmpcs(3, rightr);
3244 void *jaddr = out;
3245 emit_jc(0);
3246 void *func = (len != 0)
3247 ? (void *)ndrc_write_invalidate_many
3248 : (void *)ndrc_write_invalidate_one;
3249 emit_far_call(func);
3250 set_jump_target(jaddr, out);
3251 restore_regs(reglist);
3252 emit_jmp(stubs[n].retaddr);
3253}
3254
3255static void do_store_smc_check(int i, const struct regstat *i_regs, u_int reglist, int addr)
3256{
3257 if (HACK_ENABLED(NDHACK_NO_SMC_CHECK))
3258 return;
3259 // this can't be used any more since we started to check exact
3260 // block boundaries in invalidate_range()
3261 //if (i_regs->waswritten & (1<<dops[i].rs1))
3262 // return;
3263 // (naively) assume nobody will run code from stack
3264 if (dops[i].rs1 == 29)
3265 return;
3266
3267 int j, imm_maxdiff = 32, imm_min = cinfo[i].imm, imm_max = cinfo[i].imm, count = 1;
3268 if (i < slen - 1 && dops[i+1].is_store && dops[i+1].rs1 == dops[i].rs1
3269 && abs(cinfo[i+1].imm - cinfo[i].imm) <= imm_maxdiff)
3270 return;
3271 for (j = i - 1; j >= 0; j--) {
3272 if (!dops[j].is_store || dops[j].rs1 != dops[i].rs1
3273 || abs(cinfo[j].imm - cinfo[j+1].imm) > imm_maxdiff)
3274 break;
3275 count++;
3276 if (imm_min > cinfo[j].imm)
3277 imm_min = cinfo[j].imm;
3278 if (imm_max < cinfo[j].imm)
3279 imm_max = cinfo[j].imm;
3280 }
3281#if defined(HOST_IMM8)
3282 int ir = get_reg(i_regs->regmap, INVCP);
3283 assert(ir >= 0);
3284 host_tempreg_acquire();
3285 emit_ldrb_indexedsr12_reg(ir, addr, HOST_TEMPREG);
3286#else
3287 emit_cmpmem_indexedsr12_imm(invalid_code, addr, 1);
3288 #error not handled
3289#endif
3290#ifdef INVALIDATE_USE_COND_CALL
3291 if (count == 1) {
3292 emit_cmpimm(HOST_TEMPREG, 1);
3293 emit_callne(invalidate_addr_reg[addr]);
3294 host_tempreg_release();
3295 return;
3296 }
3297#endif
3298 void *jaddr = emit_cbz(HOST_TEMPREG, 0);
3299 host_tempreg_release();
3300 imm_min -= cinfo[i].imm;
3301 imm_max -= cinfo[i].imm;
3302 add_stub(INVCODE_STUB, jaddr, out, reglist|(1<<HOST_CCREG),
3303 addr, imm_min, imm_max, 0);
3304}
3305
3306static void store_assemble(int i, const struct regstat *i_regs, int ccadj_)
3307{
3308 int s,tl;
3309 int addr = cinfo[i].addr;
3310 int offset;
3311 void *jaddr=0;
3312 enum stub_type type=0;
3313 int memtarget=0,c=0;
3314 int offset_reg = -1;
3315 int fastio_reg_override = -1;
3316 u_int reglist=get_host_reglist(i_regs->regmap);
3317 tl=get_reg(i_regs->regmap,dops[i].rs2);
3318 s=get_reg(i_regs->regmap,dops[i].rs1);
3319 offset=cinfo[i].imm;
3320 if(s>=0) {
3321 c=(i_regs->wasconst>>s)&1;
3322 if(c) {
3323 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3324 }
3325 }
3326 assert(tl>=0);
3327 assert(addr >= 0);
3328 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3329 if (!c) {
3330 jaddr = emit_fastpath_cmp_jump(i, i_regs, addr,
3331 &offset_reg, &fastio_reg_override, ccadj_);
3332 }
3333 else if (ram_offset && memtarget) {
3334 offset_reg = get_ro_reg(i_regs, 0);
3335 }
3336
3337 switch (dops[i].opcode) {
3338 case 0x28: // SB
3339 if(!c||memtarget) {
3340 int a = addr;
3341 if (fastio_reg_override >= 0)
3342 a = fastio_reg_override;
3343 do_store_byte(a, tl, offset_reg);
3344 }
3345 type = STOREB_STUB;
3346 break;
3347 case 0x29: // SH
3348 if(!c||memtarget) {
3349 int a = addr;
3350 if (fastio_reg_override >= 0)
3351 a = fastio_reg_override;
3352 do_store_hword(a, 0, tl, offset_reg, 1);
3353 }
3354 type = STOREH_STUB;
3355 break;
3356 case 0x2B: // SW
3357 if(!c||memtarget) {
3358 int a = addr;
3359 if (fastio_reg_override >= 0)
3360 a = fastio_reg_override;
3361 do_store_word(a, 0, tl, offset_reg, 1);
3362 }
3363 type = STOREW_STUB;
3364 break;
3365 default:
3366 assert(0);
3367 }
3368 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3369 host_tempreg_release();
3370 if(jaddr) {
3371 // PCSX store handlers don't check invcode again
3372 reglist|=1<<addr;
3373 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3374 jaddr=0;
3375 }
3376 {
3377 if(!c||memtarget) {
3378 do_store_smc_check(i, i_regs, reglist, addr);
3379 }
3380 }
3381 u_int addr_val=constmap[i][s]+offset;
3382 if(jaddr) {
3383 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3384 } else if(c&&!memtarget) {
3385 inline_writestub(type,i,addr_val,i_regs->regmap,dops[i].rs2,ccadj_,reglist);
3386 }
3387 // basic current block modification detection..
3388 // not looking back as that should be in mips cache already
3389 // (see Spyro2 title->attract mode)
3390 if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
3391 SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
3392 assert(i_regs->regmap==regs[i].regmap); // not delay slot
3393 if(i_regs->regmap==regs[i].regmap) {
3394 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3395 wb_dirtys(regs[i].regmap_entry,regs[i].wasdirty);
3396 emit_movimm(start+i*4+4,0);
3397 emit_writeword(0,&pcaddr);
3398 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3399 emit_far_call(ndrc_get_addr_ht);
3400 emit_jmpreg(0);
3401 }
3402 }
3403}
3404
3405static void storelr_assemble(int i, const struct regstat *i_regs, int ccadj_)
3406{
3407 int addr = cinfo[i].addr;
3408 int s,tl;
3409 int offset;
3410 void *jaddr=0;
3411 void *case1, *case23, *case3;
3412 void *done0, *done1, *done2;
3413 int memtarget=0,c=0;
3414 int offset_reg = -1;
3415 u_int reglist=get_host_reglist(i_regs->regmap);
3416 tl=get_reg(i_regs->regmap,dops[i].rs2);
3417 s=get_reg(i_regs->regmap,dops[i].rs1);
3418 offset=cinfo[i].imm;
3419 if(s>=0) {
3420 c=(i_regs->isconst>>s)&1;
3421 if(c) {
3422 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3423 }
3424 }
3425 assert(tl>=0);
3426 assert(addr >= 0);
3427 if(!c) {
3428 emit_cmpimm(addr, RAM_SIZE);
3429 jaddr=out;
3430 emit_jno(0);
3431 }
3432 else
3433 {
3434 if(!memtarget||!dops[i].rs1) {
3435 jaddr=out;
3436 emit_jmp(0);
3437 }
3438 }
3439 if (ram_offset)
3440 offset_reg = get_ro_reg(i_regs, 0);
3441
3442 emit_testimm(addr,2);
3443 case23=out;
3444 emit_jne(0);
3445 emit_testimm(addr,1);
3446 case1=out;
3447 emit_jne(0);
3448 // 0
3449 if (dops[i].opcode == 0x2A) { // SWL
3450 // Write msb into least significant byte
3451 if (dops[i].rs2) emit_rorimm(tl, 24, tl);
3452 do_store_byte(addr, tl, offset_reg);
3453 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3454 }
3455 else if (dops[i].opcode == 0x2E) { // SWR
3456 // Write entire word
3457 do_store_word(addr, 0, tl, offset_reg, 1);
3458 }
3459 done0 = out;
3460 emit_jmp(0);
3461 // 1
3462 set_jump_target(case1, out);
3463 if (dops[i].opcode == 0x2A) { // SWL
3464 // Write two msb into two least significant bytes
3465 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3466 do_store_hword(addr, -1, tl, offset_reg, 0);
3467 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3468 }
3469 else if (dops[i].opcode == 0x2E) { // SWR
3470 // Write 3 lsb into three most significant bytes
3471 do_store_byte(addr, tl, offset_reg);
3472 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3473 do_store_hword(addr, 1, tl, offset_reg, 0);
3474 if (dops[i].rs2) emit_rorimm(tl, 24, tl);
3475 }
3476 done1=out;
3477 emit_jmp(0);
3478 // 2,3
3479 set_jump_target(case23, out);
3480 emit_testimm(addr,1);
3481 case3 = out;
3482 emit_jne(0);
3483 // 2
3484 if (dops[i].opcode==0x2A) { // SWL
3485 // Write 3 msb into three least significant bytes
3486 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3487 do_store_hword(addr, -2, tl, offset_reg, 1);
3488 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3489 do_store_byte(addr, tl, offset_reg);
3490 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3491 }
3492 else if (dops[i].opcode == 0x2E) { // SWR
3493 // Write two lsb into two most significant bytes
3494 do_store_hword(addr, 0, tl, offset_reg, 1);
3495 }
3496 done2 = out;
3497 emit_jmp(0);
3498 // 3
3499 set_jump_target(case3, out);
3500 if (dops[i].opcode == 0x2A) { // SWL
3501 do_store_word(addr, -3, tl, offset_reg, 0);
3502 }
3503 else if (dops[i].opcode == 0x2E) { // SWR
3504 do_store_byte(addr, tl, offset_reg);
3505 }
3506 set_jump_target(done0, out);
3507 set_jump_target(done1, out);
3508 set_jump_target(done2, out);
3509 if (offset_reg == HOST_TEMPREG)
3510 host_tempreg_release();
3511 if(!c||!memtarget)
3512 add_stub_r(STORELR_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3513 do_store_smc_check(i, i_regs, reglist, addr);
3514}
3515
3516static void cop0_assemble(int i, const struct regstat *i_regs, int ccadj_)
3517{
3518 if(dops[i].opcode2==0) // MFC0
3519 {
3520 signed char t=get_reg_w(i_regs->regmap, dops[i].rt1);
3521 u_int copr=(source[i]>>11)&0x1f;
3522 if(t>=0&&dops[i].rt1!=0) {
3523 emit_readword(&reg_cop0[copr],t);
3524 }
3525 }
3526 else if(dops[i].opcode2==4) // MTC0
3527 {
3528 int s = get_reg(i_regs->regmap, dops[i].rs1);
3529 int cc = get_reg(i_regs->regmap, CCREG);
3530 char copr=(source[i]>>11)&0x1f;
3531 assert(s>=0);
3532 wb_register(dops[i].rs1,i_regs->regmap,i_regs->dirty);
3533 if (copr == 12 || copr == 13) {
3534 emit_readword(&last_count,HOST_TEMPREG);
3535 if (cc != HOST_CCREG)
3536 emit_loadreg(CCREG, HOST_CCREG);
3537 emit_add(HOST_CCREG, HOST_TEMPREG, HOST_CCREG);
3538 emit_addimm(HOST_CCREG, ccadj_ + 2, HOST_CCREG);
3539 emit_writeword(HOST_CCREG, &psxRegs.cycle);
3540 if (is_delayslot) {
3541 // burn cycles to cause cc_interrupt, which will
3542 // reschedule next_interupt. Relies on CCREG from above.
3543 assem_debug("MTC0 DS %d\n", copr);
3544 emit_writeword(HOST_CCREG,&last_count);
3545 emit_movimm(0,HOST_CCREG);
3546 emit_storereg(CCREG,HOST_CCREG);
3547 emit_loadreg(dops[i].rs1,1);
3548 emit_movimm(copr,0);
3549 emit_far_call(pcsx_mtc0_ds);
3550 emit_loadreg(dops[i].rs1,s);
3551 return;
3552 }
3553 emit_movimm(start+i*4+4,HOST_TEMPREG);
3554 emit_writeword(HOST_TEMPREG,&pcaddr);
3555 emit_movimm(0,HOST_TEMPREG);
3556 emit_writeword(HOST_TEMPREG,&pending_exception);
3557 }
3558 if( s != 1)
3559 emit_mov(s, 1);
3560 emit_movimm(copr, 0);
3561 emit_far_call(pcsx_mtc0);
3562 if (copr == 12 || copr == 13) {
3563 emit_readword(&psxRegs.cycle,HOST_CCREG);
3564 emit_readword(&last_count,HOST_TEMPREG);
3565 emit_sub(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3566 //emit_writeword(HOST_TEMPREG,&last_count);
3567 assert(!is_delayslot);
3568 emit_readword(&pending_exception,HOST_TEMPREG);
3569 emit_test(HOST_TEMPREG,HOST_TEMPREG);
3570 void *jaddr = out;
3571 emit_jeq(0);
3572 emit_readword(&pcaddr, 0);
3573 emit_far_call(ndrc_get_addr_ht);
3574 emit_jmpreg(0);
3575 set_jump_target(jaddr, out);
3576 emit_addimm(HOST_CCREG, -ccadj_ - 2, HOST_CCREG);
3577 if (cc != HOST_CCREG)
3578 emit_storereg(CCREG, HOST_CCREG);
3579 }
3580 emit_loadreg(dops[i].rs1,s);
3581 }
3582}
3583
3584static void rfe_assemble(int i, const struct regstat *i_regs)
3585{
3586 emit_readword(&psxRegs.CP0.n.SR, 0);
3587 emit_andimm(0, 0x3c, 1);
3588 emit_andimm(0, ~0xf, 0);
3589 emit_orrshr_imm(1, 2, 0);
3590 emit_writeword(0, &psxRegs.CP0.n.SR);
3591}
3592
3593static int cop2_is_stalling_op(int i, int *cycles)
3594{
3595 if (dops[i].opcode == 0x3a) { // SWC2
3596 *cycles = 0;
3597 return 1;
3598 }
3599 if (dops[i].itype == COP2 && (dops[i].opcode2 == 0 || dops[i].opcode2 == 2)) { // MFC2/CFC2
3600 *cycles = 0;
3601 return 1;
3602 }
3603 if (dops[i].itype == C2OP) {
3604 *cycles = gte_cycletab[source[i] & 0x3f];
3605 return 1;
3606 }
3607 // ... what about MTC2/CTC2/LWC2?
3608 return 0;
3609}
3610
3611#if 0
3612static void log_gte_stall(int stall, u_int cycle)
3613{
3614 if ((u_int)stall <= 44)
3615 printf("x stall %2d %u\n", stall, cycle + last_count);
3616}
3617
3618static void emit_log_gte_stall(int i, int stall, u_int reglist)
3619{
3620 save_regs(reglist);
3621 if (stall > 0)
3622 emit_movimm(stall, 0);
3623 else
3624 emit_mov(HOST_TEMPREG, 0);
3625 emit_addimm(HOST_CCREG, cinfo[i].ccadj, 1);
3626 emit_far_call(log_gte_stall);
3627 restore_regs(reglist);
3628}
3629#endif
3630
3631static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist)
3632{
3633 int j = i, other_gte_op_cycles = -1, stall = -MAXBLOCK, cycles_passed;
3634 int rtmp = reglist_find_free(reglist);
3635
3636 if (HACK_ENABLED(NDHACK_NO_STALLS))
3637 return;
3638 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3639 // happens occasionally... cc evicted? Don't bother then
3640 //printf("no cc %08x\n", start + i*4);
3641 return;
3642 }
3643 if (!dops[i].bt) {
3644 for (j = i - 1; j >= 0; j--) {
3645 //if (dops[j].is_ds) break;
3646 if (cop2_is_stalling_op(j, &other_gte_op_cycles) || dops[j].bt)
3647 break;
3648 if (j > 0 && cinfo[j - 1].ccadj > cinfo[j].ccadj)
3649 break;
3650 }
3651 j = max(j, 0);
3652 }
3653 cycles_passed = cinfo[i].ccadj - cinfo[j].ccadj;
3654 if (other_gte_op_cycles >= 0)
3655 stall = other_gte_op_cycles - cycles_passed;
3656 else if (cycles_passed >= 44)
3657 stall = 0; // can't stall
3658 if (stall == -MAXBLOCK && rtmp >= 0) {
3659 // unknown stall, do the expensive runtime check
3660 assem_debug("; cop2_do_stall_check\n");
3661#if 0 // too slow
3662 save_regs(reglist);
3663 emit_movimm(gte_cycletab[op], 0);
3664 emit_addimm(HOST_CCREG, cinfo[i].ccadj, 1);
3665 emit_far_call(call_gteStall);
3666 restore_regs(reglist);
3667#else
3668 host_tempreg_acquire();
3669 emit_readword(&psxRegs.gteBusyCycle, rtmp);
3670 emit_addimm(rtmp, -cinfo[i].ccadj, rtmp);
3671 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3672 emit_cmpimm(HOST_TEMPREG, 44);
3673 emit_cmovb_reg(rtmp, HOST_CCREG);
3674 //emit_log_gte_stall(i, 0, reglist);
3675 host_tempreg_release();
3676#endif
3677 }
3678 else if (stall > 0) {
3679 //emit_log_gte_stall(i, stall, reglist);
3680 emit_addimm(HOST_CCREG, stall, HOST_CCREG);
3681 }
3682
3683 // save gteBusyCycle, if needed
3684 if (gte_cycletab[op] == 0)
3685 return;
3686 other_gte_op_cycles = -1;
3687 for (j = i + 1; j < slen; j++) {
3688 if (cop2_is_stalling_op(j, &other_gte_op_cycles))
3689 break;
3690 if (dops[j].is_jump) {
3691 // check ds
3692 if (j + 1 < slen && cop2_is_stalling_op(j + 1, &other_gte_op_cycles))
3693 j++;
3694 break;
3695 }
3696 }
3697 if (other_gte_op_cycles >= 0)
3698 // will handle stall when assembling that op
3699 return;
3700 cycles_passed = cinfo[min(j, slen -1)].ccadj - cinfo[i].ccadj;
3701 if (cycles_passed >= 44)
3702 return;
3703 assem_debug("; save gteBusyCycle\n");
3704 host_tempreg_acquire();
3705#if 0
3706 emit_readword(&last_count, HOST_TEMPREG);
3707 emit_add(HOST_TEMPREG, HOST_CCREG, HOST_TEMPREG);
3708 emit_addimm(HOST_TEMPREG, cinfo[i].ccadj, HOST_TEMPREG);
3709 emit_addimm(HOST_TEMPREG, gte_cycletab[op]), HOST_TEMPREG);
3710 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3711#else
3712 emit_addimm(HOST_CCREG, cinfo[i].ccadj + gte_cycletab[op], HOST_TEMPREG);
3713 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3714#endif
3715 host_tempreg_release();
3716}
3717
3718static int is_mflohi(int i)
3719{
3720 return (dops[i].itype == MOV && (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG));
3721}
3722
3723static int check_multdiv(int i, int *cycles)
3724{
3725 if (dops[i].itype != MULTDIV)
3726 return 0;
3727 if (dops[i].opcode2 == 0x18 || dops[i].opcode2 == 0x19) // MULT(U)
3728 *cycles = 11; // approx from 7 11 14
3729 else
3730 *cycles = 37;
3731 return 1;
3732}
3733
3734static void multdiv_prepare_stall(int i, const struct regstat *i_regs, int ccadj_)
3735{
3736 int j, found = 0, c = 0;
3737 if (HACK_ENABLED(NDHACK_NO_STALLS))
3738 return;
3739 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3740 // happens occasionally... cc evicted? Don't bother then
3741 return;
3742 }
3743 for (j = i + 1; j < slen; j++) {
3744 if (dops[j].bt)
3745 break;
3746 if ((found = is_mflohi(j)))
3747 break;
3748 if (dops[j].is_jump) {
3749 // check ds
3750 if (j + 1 < slen && (found = is_mflohi(j + 1)))
3751 j++;
3752 break;
3753 }
3754 }
3755 if (found)
3756 // handle all in multdiv_do_stall()
3757 return;
3758 check_multdiv(i, &c);
3759 assert(c > 0);
3760 assem_debug("; muldiv prepare stall %d\n", c);
3761 host_tempreg_acquire();
3762 emit_addimm(HOST_CCREG, ccadj_ + c, HOST_TEMPREG);
3763 emit_writeword(HOST_TEMPREG, &psxRegs.muldivBusyCycle);
3764 host_tempreg_release();
3765}
3766
3767static void multdiv_do_stall(int i, const struct regstat *i_regs)
3768{
3769 int j, known_cycles = 0;
3770 u_int reglist = get_host_reglist(i_regs->regmap);
3771 int rtmp = get_reg_temp(i_regs->regmap);
3772 if (rtmp < 0)
3773 rtmp = reglist_find_free(reglist);
3774 if (HACK_ENABLED(NDHACK_NO_STALLS))
3775 return;
3776 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG || rtmp < 0) {
3777 // happens occasionally... cc evicted? Don't bother then
3778 //printf("no cc/rtmp %08x\n", start + i*4);
3779 return;
3780 }
3781 if (!dops[i].bt) {
3782 for (j = i - 1; j >= 0; j--) {
3783 if (dops[j].is_ds) break;
3784 if (check_multdiv(j, &known_cycles))
3785 break;
3786 if (is_mflohi(j))
3787 // already handled by this op
3788 return;
3789 if (dops[j].bt || (j > 0 && cinfo[j - 1].ccadj > cinfo[j].ccadj))
3790 break;
3791 }
3792 j = max(j, 0);
3793 }
3794 if (known_cycles > 0) {
3795 known_cycles -= cinfo[i].ccadj - cinfo[j].ccadj;
3796 assem_debug("; muldiv stall resolved %d\n", known_cycles);
3797 if (known_cycles > 0)
3798 emit_addimm(HOST_CCREG, known_cycles, HOST_CCREG);
3799 return;
3800 }
3801 assem_debug("; muldiv stall unresolved\n");
3802 host_tempreg_acquire();
3803 emit_readword(&psxRegs.muldivBusyCycle, rtmp);
3804 emit_addimm(rtmp, -cinfo[i].ccadj, rtmp);
3805 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3806 emit_cmpimm(HOST_TEMPREG, 37);
3807 emit_cmovb_reg(rtmp, HOST_CCREG);
3808 //emit_log_gte_stall(i, 0, reglist);
3809 host_tempreg_release();
3810}
3811
3812static void cop2_get_dreg(u_int copr,signed char tl,signed char temp)
3813{
3814 switch (copr) {
3815 case 1:
3816 case 3:
3817 case 5:
3818 case 8:
3819 case 9:
3820 case 10:
3821 case 11:
3822 emit_readword(&reg_cop2d[copr],tl);
3823 emit_signextend16(tl,tl);
3824 emit_writeword(tl,&reg_cop2d[copr]); // hmh
3825 break;
3826 case 7:
3827 case 16:
3828 case 17:
3829 case 18:
3830 case 19:
3831 emit_readword(&reg_cop2d[copr],tl);
3832 emit_andimm(tl,0xffff,tl);
3833 emit_writeword(tl,&reg_cop2d[copr]);
3834 break;
3835 case 15:
3836 emit_readword(&reg_cop2d[14],tl); // SXY2
3837 emit_writeword(tl,&reg_cop2d[copr]);
3838 break;
3839 case 28:
3840 case 29:
3841 c2op_mfc2_29_assemble(tl,temp);
3842 break;
3843 default:
3844 emit_readword(&reg_cop2d[copr],tl);
3845 break;
3846 }
3847}
3848
3849static void cop2_put_dreg(u_int copr,signed char sl,signed char temp)
3850{
3851 switch (copr) {
3852 case 15:
3853 emit_readword(&reg_cop2d[13],temp); // SXY1
3854 emit_writeword(sl,&reg_cop2d[copr]);
3855 emit_writeword(temp,&reg_cop2d[12]); // SXY0
3856 emit_readword(&reg_cop2d[14],temp); // SXY2
3857 emit_writeword(sl,&reg_cop2d[14]);
3858 emit_writeword(temp,&reg_cop2d[13]); // SXY1
3859 break;
3860 case 28:
3861 emit_andimm(sl,0x001f,temp);
3862 emit_shlimm(temp,7,temp);
3863 emit_writeword(temp,&reg_cop2d[9]);
3864 emit_andimm(sl,0x03e0,temp);
3865 emit_shlimm(temp,2,temp);
3866 emit_writeword(temp,&reg_cop2d[10]);
3867 emit_andimm(sl,0x7c00,temp);
3868 emit_shrimm(temp,3,temp);
3869 emit_writeword(temp,&reg_cop2d[11]);
3870 emit_writeword(sl,&reg_cop2d[28]);
3871 break;
3872 case 30:
3873 emit_xorsar_imm(sl,sl,31,temp);
3874#if defined(HAVE_ARMV5) || defined(__aarch64__)
3875 emit_clz(temp,temp);
3876#else
3877 emit_movs(temp,HOST_TEMPREG);
3878 emit_movimm(0,temp);
3879 emit_jeq((int)out+4*4);
3880 emit_addpl_imm(temp,1,temp);
3881 emit_lslpls_imm(HOST_TEMPREG,1,HOST_TEMPREG);
3882 emit_jns((int)out-2*4);
3883#endif
3884 emit_writeword(sl,&reg_cop2d[30]);
3885 emit_writeword(temp,&reg_cop2d[31]);
3886 break;
3887 case 31:
3888 break;
3889 default:
3890 emit_writeword(sl,&reg_cop2d[copr]);
3891 break;
3892 }
3893}
3894
3895static void c2ls_assemble(int i, const struct regstat *i_regs, int ccadj_)
3896{
3897 int s,tl;
3898 int ar;
3899 int offset;
3900 int memtarget=0,c=0;
3901 void *jaddr2=NULL;
3902 enum stub_type type;
3903 int offset_reg = -1;
3904 int fastio_reg_override = -1;
3905 u_int reglist=get_host_reglist(i_regs->regmap);
3906 u_int copr=(source[i]>>16)&0x1f;
3907 s=get_reg(i_regs->regmap,dops[i].rs1);
3908 tl=get_reg(i_regs->regmap,FTEMP);
3909 offset=cinfo[i].imm;
3910 assert(tl>=0);
3911
3912 if(i_regs->regmap[HOST_CCREG]==CCREG)
3913 reglist&=~(1<<HOST_CCREG);
3914
3915 // get the address
3916 ar = cinfo[i].addr;
3917 assert(ar >= 0);
3918 if (dops[i].opcode==0x3a) { // SWC2
3919 reglist |= 1<<ar;
3920 }
3921 if(s>=0) c=(i_regs->wasconst>>s)&1;
3922 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3923
3924 cop2_do_stall_check(0, i, i_regs, reglist);
3925
3926 if (dops[i].opcode==0x3a) { // SWC2
3927 cop2_get_dreg(copr,tl,-1);
3928 type=STOREW_STUB;
3929 }
3930 else
3931 type=LOADW_STUB;
3932
3933 if(c&&!memtarget) {
3934 jaddr2=out;
3935 emit_jmp(0); // inline_readstub/inline_writestub?
3936 }
3937 else {
3938 if(!c) {
3939 jaddr2 = emit_fastpath_cmp_jump(i, i_regs, ar,
3940 &offset_reg, &fastio_reg_override, ccadj_);
3941 }
3942 else if (ram_offset && memtarget) {
3943 offset_reg = get_ro_reg(i_regs, 0);
3944 }
3945 switch (dops[i].opcode) {
3946 case 0x32: { // LWC2
3947 int a = ar;
3948 if (fastio_reg_override >= 0)
3949 a = fastio_reg_override;
3950 do_load_word(a, tl, offset_reg);
3951 break;
3952 }
3953 case 0x3a: { // SWC2
3954 #ifdef DESTRUCTIVE_SHIFT
3955 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3956 #endif
3957 int a = ar;
3958 if (fastio_reg_override >= 0)
3959 a = fastio_reg_override;
3960 do_store_word(a, 0, tl, offset_reg, 1);
3961 break;
3962 }
3963 default:
3964 assert(0);
3965 }
3966 }
3967 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3968 host_tempreg_release();
3969 if(jaddr2)
3970 add_stub_r(type,jaddr2,out,i,ar,i_regs,ccadj_,reglist);
3971 if(dops[i].opcode==0x3a) // SWC2
3972 do_store_smc_check(i, i_regs, reglist, ar);
3973 if (dops[i].opcode==0x32) { // LWC2
3974 host_tempreg_acquire();
3975 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3976 host_tempreg_release();
3977 }
3978}
3979
3980static void cop2_assemble(int i, const struct regstat *i_regs)
3981{
3982 u_int copr = (source[i]>>11) & 0x1f;
3983 signed char temp = get_reg_temp(i_regs->regmap);
3984
3985 if (!HACK_ENABLED(NDHACK_NO_STALLS)) {
3986 u_int reglist = reglist_exclude(get_host_reglist(i_regs->regmap), temp, -1);
3987 if (dops[i].opcode2 == 0 || dops[i].opcode2 == 2) { // MFC2/CFC2
3988 signed char tl = get_reg(i_regs->regmap, dops[i].rt1);
3989 reglist = reglist_exclude(reglist, tl, -1);
3990 }
3991 cop2_do_stall_check(0, i, i_regs, reglist);
3992 }
3993 if (dops[i].opcode2==0) { // MFC2
3994 signed char tl=get_reg_w(i_regs->regmap, dops[i].rt1);
3995 if(tl>=0&&dops[i].rt1!=0)
3996 cop2_get_dreg(copr,tl,temp);
3997 }
3998 else if (dops[i].opcode2==4) { // MTC2
3999 signed char sl=get_reg(i_regs->regmap,dops[i].rs1);
4000 cop2_put_dreg(copr,sl,temp);
4001 }
4002 else if (dops[i].opcode2==2) // CFC2
4003 {
4004 signed char tl=get_reg_w(i_regs->regmap, dops[i].rt1);
4005 if(tl>=0&&dops[i].rt1!=0)
4006 emit_readword(&reg_cop2c[copr],tl);
4007 }
4008 else if (dops[i].opcode2==6) // CTC2
4009 {
4010 signed char sl=get_reg(i_regs->regmap,dops[i].rs1);
4011 switch(copr) {
4012 case 4:
4013 case 12:
4014 case 20:
4015 case 26:
4016 case 27:
4017 case 29:
4018 case 30:
4019 emit_signextend16(sl,temp);
4020 break;
4021 case 31:
4022 c2op_ctc2_31_assemble(sl,temp);
4023 break;
4024 default:
4025 temp=sl;
4026 break;
4027 }
4028 emit_writeword(temp,&reg_cop2c[copr]);
4029 assert(sl>=0);
4030 }
4031}
4032
4033static void do_unalignedwritestub(int n)
4034{
4035 assem_debug("do_unalignedwritestub %x\n",start+stubs[n].a*4);
4036 literal_pool(256);
4037 set_jump_target(stubs[n].addr, out);
4038
4039 int i=stubs[n].a;
4040 struct regstat *i_regs=(struct regstat *)stubs[n].c;
4041 int addr=stubs[n].b;
4042 u_int reglist=stubs[n].e;
4043 signed char *i_regmap=i_regs->regmap;
4044 int temp2=get_reg(i_regmap,FTEMP);
4045 int rt;
4046 rt=get_reg(i_regmap,dops[i].rs2);
4047 assert(rt>=0);
4048 assert(addr>=0);
4049 assert(dops[i].opcode==0x2a||dops[i].opcode==0x2e); // SWL/SWR only implemented
4050 reglist|=(1<<addr);
4051 reglist&=~(1<<temp2);
4052
4053 // don't bother with it and call write handler
4054 save_regs(reglist);
4055 pass_args(addr,rt);
4056 int cc=get_reg(i_regmap,CCREG);
4057 if(cc<0)
4058 emit_loadreg(CCREG,2);
4059 emit_addimm(cc<0?2:cc,(int)stubs[n].d+1,2);
4060 emit_movimm(start + i*4,3);
4061 emit_writeword(3,&psxRegs.pc);
4062 emit_far_call((dops[i].opcode==0x2a?jump_handle_swl:jump_handle_swr));
4063 emit_addimm(0,-((int)stubs[n].d+1),cc<0?2:cc);
4064 if(cc<0)
4065 emit_storereg(CCREG,2);
4066 restore_regs(reglist);
4067 emit_jmp(stubs[n].retaddr); // return address
4068}
4069
4070static void do_overflowstub(int n)
4071{
4072 assem_debug("do_overflowstub %x\n", start + (u_int)stubs[n].a * 4);
4073 literal_pool(24);
4074 int i = stubs[n].a;
4075 struct regstat *i_regs = (struct regstat *)stubs[n].c;
4076 int ccadj = stubs[n].d;
4077 set_jump_target(stubs[n].addr, out);
4078 wb_dirtys(regs[i].regmap, regs[i].dirty);
4079 exception_assemble(i, i_regs, ccadj);
4080}
4081
4082static void do_alignmentstub(int n)
4083{
4084 assem_debug("do_alignmentstub %x\n", start + (u_int)stubs[n].a * 4);
4085 literal_pool(24);
4086 int i = stubs[n].a;
4087 struct regstat *i_regs = (struct regstat *)stubs[n].c;
4088 int ccadj = stubs[n].d;
4089 int is_store = dops[i].itype == STORE || dops[i].opcode == 0x3A; // SWC2
4090 int cause = (dops[i].opcode & 3) << 28;
4091 cause |= is_store ? (R3000E_AdES << 2) : (R3000E_AdEL << 2);
4092 set_jump_target(stubs[n].addr, out);
4093 wb_dirtys(regs[i].regmap, regs[i].dirty);
4094 if (stubs[n].b != 1)
4095 emit_mov(stubs[n].b, 1); // faulting address
4096 emit_movimm(cause, 0);
4097 exception_assemble(i, i_regs, ccadj);
4098}
4099
4100#ifndef multdiv_assemble
4101void multdiv_assemble(int i,struct regstat *i_regs)
4102{
4103 printf("Need multdiv_assemble for this architecture.\n");
4104 abort();
4105}
4106#endif
4107
4108static void mov_assemble(int i, const struct regstat *i_regs)
4109{
4110 //if(dops[i].opcode2==0x10||dops[i].opcode2==0x12) { // MFHI/MFLO
4111 //if(dops[i].opcode2==0x11||dops[i].opcode2==0x13) { // MTHI/MTLO
4112 if(dops[i].rt1) {
4113 signed char sl,tl;
4114 tl=get_reg_w(i_regs->regmap, dops[i].rt1);
4115 //assert(tl>=0);
4116 if(tl>=0) {
4117 sl=get_reg(i_regs->regmap,dops[i].rs1);
4118 if(sl>=0) emit_mov(sl,tl);
4119 else emit_loadreg(dops[i].rs1,tl);
4120 }
4121 }
4122 if (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG) // MFHI/MFLO
4123 multdiv_do_stall(i, i_regs);
4124}
4125
4126// call interpreter, exception handler, things that change pc/regs/cycles ...
4127static void call_c_cpu_handler(int i, const struct regstat *i_regs, int ccadj_, u_int pc, void *func)
4128{
4129 signed char ccreg=get_reg(i_regs->regmap,CCREG);
4130 assert(ccreg==HOST_CCREG);
4131 assert(!is_delayslot);
4132 (void)ccreg;
4133
4134 emit_movimm(pc,3); // Get PC
4135 emit_readword(&last_count,2);
4136 emit_writeword(3,&psxRegs.pc);
4137 emit_addimm(HOST_CCREG,ccadj_,HOST_CCREG);
4138 emit_add(2,HOST_CCREG,2);
4139 emit_writeword(2,&psxRegs.cycle);
4140 emit_addimm_ptr(FP,(u_char *)&psxRegs - (u_char *)&dynarec_local,0);
4141 emit_far_call(func);
4142 emit_far_jump(jump_to_new_pc);
4143}
4144
4145static void exception_assemble(int i, const struct regstat *i_regs, int ccadj_)
4146{
4147 // 'break' tends to be littered around to catch things like
4148 // division by 0 and is almost never executed, so don't emit much code here
4149 void *func;
4150 if (dops[i].itype == ALU || dops[i].itype == IMM16)
4151 func = is_delayslot ? jump_overflow_ds : jump_overflow;
4152 else if (dops[i].itype == LOAD || dops[i].itype == STORE)
4153 func = is_delayslot ? jump_addrerror_ds : jump_addrerror;
4154 else if (dops[i].opcode2 == 0x0C)
4155 func = is_delayslot ? jump_syscall_ds : jump_syscall;
4156 else
4157 func = is_delayslot ? jump_break_ds : jump_break;
4158 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) // evicted
4159 emit_loadreg(CCREG, HOST_CCREG);
4160 emit_movimm(start + i*4, 2); // pc
4161 emit_addimm(HOST_CCREG, ccadj_ + CLOCK_ADJUST(1), HOST_CCREG);
4162 emit_far_jump(func);
4163}
4164
4165static void hlecall_bad()
4166{
4167 assert(0);
4168}
4169
4170static void hlecall_assemble(int i, const struct regstat *i_regs, int ccadj_)
4171{
4172 void *hlefunc = hlecall_bad;
4173 uint32_t hleCode = source[i] & 0x03ffffff;
4174 if (hleCode < ARRAY_SIZE(psxHLEt))
4175 hlefunc = psxHLEt[hleCode];
4176
4177 call_c_cpu_handler(i, i_regs, ccadj_, start + i*4+4, hlefunc);
4178}
4179
4180static void intcall_assemble(int i, const struct regstat *i_regs, int ccadj_)
4181{
4182 call_c_cpu_handler(i, i_regs, ccadj_, start + i*4, execI);
4183}
4184
4185static void speculate_mov(int rs,int rt)
4186{
4187 if(rt!=0) {
4188 smrv_strong_next|=1<<rt;
4189 smrv[rt]=smrv[rs];
4190 }
4191}
4192
4193static void speculate_mov_weak(int rs,int rt)
4194{
4195 if(rt!=0) {
4196 smrv_weak_next|=1<<rt;
4197 smrv[rt]=smrv[rs];
4198 }
4199}
4200
4201static void speculate_register_values(int i)
4202{
4203 if(i==0) {
4204 memcpy(smrv,psxRegs.GPR.r,sizeof(smrv));
4205 // gp,sp are likely to stay the same throughout the block
4206 smrv_strong_next=(1<<28)|(1<<29)|(1<<30);
4207 smrv_weak_next=~smrv_strong_next;
4208 //printf(" llr %08x\n", smrv[4]);
4209 }
4210 smrv_strong=smrv_strong_next;
4211 smrv_weak=smrv_weak_next;
4212 switch(dops[i].itype) {
4213 case ALU:
4214 if ((smrv_strong>>dops[i].rs1)&1) speculate_mov(dops[i].rs1,dops[i].rt1);
4215 else if((smrv_strong>>dops[i].rs2)&1) speculate_mov(dops[i].rs2,dops[i].rt1);
4216 else if((smrv_weak>>dops[i].rs1)&1) speculate_mov_weak(dops[i].rs1,dops[i].rt1);
4217 else if((smrv_weak>>dops[i].rs2)&1) speculate_mov_weak(dops[i].rs2,dops[i].rt1);
4218 else {
4219 smrv_strong_next&=~(1<<dops[i].rt1);
4220 smrv_weak_next&=~(1<<dops[i].rt1);
4221 }
4222 break;
4223 case SHIFTIMM:
4224 smrv_strong_next&=~(1<<dops[i].rt1);
4225 smrv_weak_next&=~(1<<dops[i].rt1);
4226 // fallthrough
4227 case IMM16:
4228 if(dops[i].rt1&&is_const(&regs[i],dops[i].rt1)) {
4229 int hr = get_reg_w(regs[i].regmap, dops[i].rt1);
4230 u_int value;
4231 if(hr>=0) {
4232 if(get_final_value(hr,i,&value))
4233 smrv[dops[i].rt1]=value;
4234 else smrv[dops[i].rt1]=constmap[i][hr];
4235 smrv_strong_next|=1<<dops[i].rt1;
4236 }
4237 }
4238 else {
4239 if ((smrv_strong>>dops[i].rs1)&1) speculate_mov(dops[i].rs1,dops[i].rt1);
4240 else if((smrv_weak>>dops[i].rs1)&1) speculate_mov_weak(dops[i].rs1,dops[i].rt1);
4241 }
4242 break;
4243 case LOAD:
4244 if(start<0x2000&&(dops[i].rt1==26||(smrv[dops[i].rt1]>>24)==0xa0)) {
4245 // special case for BIOS
4246 smrv[dops[i].rt1]=0xa0000000;
4247 smrv_strong_next|=1<<dops[i].rt1;
4248 break;
4249 }
4250 // fallthrough
4251 case SHIFT:
4252 case LOADLR:
4253 case MOV:
4254 smrv_strong_next&=~(1<<dops[i].rt1);
4255 smrv_weak_next&=~(1<<dops[i].rt1);
4256 break;
4257 case COP0:
4258 case COP2:
4259 if(dops[i].opcode2==0||dops[i].opcode2==2) { // MFC/CFC
4260 smrv_strong_next&=~(1<<dops[i].rt1);
4261 smrv_weak_next&=~(1<<dops[i].rt1);
4262 }
4263 break;
4264 case C2LS:
4265 if (dops[i].opcode==0x32) { // LWC2
4266 smrv_strong_next&=~(1<<dops[i].rt1);
4267 smrv_weak_next&=~(1<<dops[i].rt1);
4268 }
4269 break;
4270 }
4271#if 0
4272 int r=4;
4273 printf("x %08x %08x %d %d c %08x %08x\n",smrv[r],start+i*4,
4274 ((smrv_strong>>r)&1),(smrv_weak>>r)&1,regs[i].isconst,regs[i].wasconst);
4275#endif
4276}
4277
4278static void ujump_assemble(int i, const struct regstat *i_regs);
4279static void rjump_assemble(int i, const struct regstat *i_regs);
4280static void cjump_assemble(int i, const struct regstat *i_regs);
4281static void sjump_assemble(int i, const struct regstat *i_regs);
4282
4283static int assemble(int i, const struct regstat *i_regs, int ccadj_)
4284{
4285 int ds = 0;
4286 switch (dops[i].itype) {
4287 case ALU:
4288 alu_assemble(i, i_regs, ccadj_);
4289 break;
4290 case IMM16:
4291 imm16_assemble(i, i_regs, ccadj_);
4292 break;
4293 case SHIFT:
4294 shift_assemble(i, i_regs);
4295 break;
4296 case SHIFTIMM:
4297 shiftimm_assemble(i, i_regs);
4298 break;
4299 case LOAD:
4300 load_assemble(i, i_regs, ccadj_);
4301 break;
4302 case LOADLR:
4303 loadlr_assemble(i, i_regs, ccadj_);
4304 break;
4305 case STORE:
4306 store_assemble(i, i_regs, ccadj_);
4307 break;
4308 case STORELR:
4309 storelr_assemble(i, i_regs, ccadj_);
4310 break;
4311 case COP0:
4312 cop0_assemble(i, i_regs, ccadj_);
4313 break;
4314 case RFE:
4315 rfe_assemble(i, i_regs);
4316 break;
4317 case COP2:
4318 cop2_assemble(i, i_regs);
4319 break;
4320 case C2LS:
4321 c2ls_assemble(i, i_regs, ccadj_);
4322 break;
4323 case C2OP:
4324 c2op_assemble(i, i_regs);
4325 break;
4326 case MULTDIV:
4327 multdiv_assemble(i, i_regs);
4328 multdiv_prepare_stall(i, i_regs, ccadj_);
4329 break;
4330 case MOV:
4331 mov_assemble(i, i_regs);
4332 break;
4333 case SYSCALL:
4334 exception_assemble(i, i_regs, ccadj_);
4335 break;
4336 case HLECALL:
4337 hlecall_assemble(i, i_regs, ccadj_);
4338 break;
4339 case INTCALL:
4340 intcall_assemble(i, i_regs, ccadj_);
4341 break;
4342 case UJUMP:
4343 ujump_assemble(i, i_regs);
4344 ds = 1;
4345 break;
4346 case RJUMP:
4347 rjump_assemble(i, i_regs);
4348 ds = 1;
4349 break;
4350 case CJUMP:
4351 cjump_assemble(i, i_regs);
4352 ds = 1;
4353 break;
4354 case SJUMP:
4355 sjump_assemble(i, i_regs);
4356 ds = 1;
4357 break;
4358 case NOP:
4359 case OTHER:
4360 // not handled, just skip
4361 break;
4362 default:
4363 assert(0);
4364 }
4365 return ds;
4366}
4367
4368static void ds_assemble(int i, const struct regstat *i_regs)
4369{
4370 speculate_register_values(i);
4371 is_delayslot = 1;
4372 switch (dops[i].itype) {
4373 case SYSCALL:
4374 case HLECALL:
4375 case INTCALL:
4376 case UJUMP:
4377 case RJUMP:
4378 case CJUMP:
4379 case SJUMP:
4380 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4381 break;
4382 default:
4383 assemble(i, i_regs, cinfo[i].ccadj);
4384 }
4385 is_delayslot = 0;
4386}
4387
4388// Is the branch target a valid internal jump?
4389static int internal_branch(int addr)
4390{
4391 if(addr&1) return 0; // Indirect (register) jump
4392 if(addr>=start && addr<start+slen*4-4)
4393 {
4394 return 1;
4395 }
4396 return 0;
4397}
4398
4399static void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t u)
4400{
4401 int hr;
4402 for(hr=0;hr<HOST_REGS;hr++) {
4403 if(hr!=EXCLUDE_REG) {
4404 if(pre[hr]!=entry[hr]) {
4405 if(pre[hr]>=0) {
4406 if((dirty>>hr)&1) {
4407 if(get_reg(entry,pre[hr])<0) {
4408 assert(pre[hr]<64);
4409 if(!((u>>pre[hr])&1))
4410 emit_storereg(pre[hr],hr);
4411 }
4412 }
4413 }
4414 }
4415 }
4416 }
4417 // Move from one register to another (no writeback)
4418 for(hr=0;hr<HOST_REGS;hr++) {
4419 if(hr!=EXCLUDE_REG) {
4420 if(pre[hr]!=entry[hr]) {
4421 if(pre[hr]>=0&&pre[hr]<TEMPREG) {
4422 int nr;
4423 if((nr=get_reg(entry,pre[hr]))>=0) {
4424 emit_mov(hr,nr);
4425 }
4426 }
4427 }
4428 }
4429 }
4430}
4431
4432// Load the specified registers
4433// This only loads the registers given as arguments because
4434// we don't want to load things that will be overwritten
4435static inline void load_reg(signed char entry[], signed char regmap[], int rs)
4436{
4437 int hr = get_reg(regmap, rs);
4438 if (hr >= 0 && entry[hr] != regmap[hr])
4439 emit_loadreg(regmap[hr], hr);
4440}
4441
4442static void load_regs(signed char entry[], signed char regmap[], int rs1, int rs2)
4443{
4444 load_reg(entry, regmap, rs1);
4445 if (rs1 != rs2)
4446 load_reg(entry, regmap, rs2);
4447}
4448
4449// Load registers prior to the start of a loop
4450// so that they are not loaded within the loop
4451static void loop_preload(signed char pre[],signed char entry[])
4452{
4453 int hr;
4454 for (hr = 0; hr < HOST_REGS; hr++) {
4455 int r = entry[hr];
4456 if (r >= 0 && pre[hr] != r && get_reg(pre, r) < 0) {
4457 assem_debug("loop preload:\n");
4458 if (r < TEMPREG)
4459 emit_loadreg(r, hr);
4460 }
4461 }
4462}
4463
4464// Generate address for load/store instruction
4465// goes to AGEN (or temp) for writes, FTEMP for LOADLR and cop1/2 loads
4466// AGEN is assigned by pass5b_preallocate2
4467static void address_generation(int i, const struct regstat *i_regs, signed char entry[])
4468{
4469 if (dops[i].is_load || dops[i].is_store) {
4470 int ra = -1;
4471 int agr = AGEN1 + (i&1);
4472 if(dops[i].itype==LOAD) {
4473 if (!dops[i].may_except)
4474 ra = get_reg_w(i_regs->regmap, dops[i].rt1); // reuse dest for agen
4475 if (ra < 0)
4476 ra = get_reg_temp(i_regs->regmap);
4477 }
4478 if(dops[i].itype==LOADLR) {
4479 ra=get_reg(i_regs->regmap,FTEMP);
4480 }
4481 if(dops[i].itype==STORE||dops[i].itype==STORELR) {
4482 ra=get_reg(i_regs->regmap,agr);
4483 if(ra<0) ra=get_reg_temp(i_regs->regmap);
4484 }
4485 if(dops[i].itype==C2LS) {
4486 if (dops[i].opcode == 0x32) // LWC2
4487 ra=get_reg(i_regs->regmap,FTEMP);
4488 else { // SWC2
4489 ra=get_reg(i_regs->regmap,agr);
4490 if(ra<0) ra=get_reg_temp(i_regs->regmap);
4491 }
4492 }
4493 int rs = get_reg(i_regs->regmap, dops[i].rs1);
4494 //if(ra>=0)
4495 {
4496 int offset = cinfo[i].imm;
4497 int add_offset = offset != 0;
4498 int c = rs >= 0 && ((i_regs->wasconst >> rs) & 1);
4499 if(dops[i].rs1==0) {
4500 // Using r0 as a base address
4501 assert(ra >= 0);
4502 if(!entry||entry[ra]!=agr) {
4503 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
4504 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4505 }else{
4506 emit_movimm(offset,ra);
4507 }
4508 } // else did it in the previous cycle
4509 cinfo[i].addr = ra;
4510 add_offset = 0;
4511 }
4512 else if (rs < 0) {
4513 assert(ra >= 0);
4514 if (!entry || entry[ra] != dops[i].rs1)
4515 emit_loadreg(dops[i].rs1, ra);
4516 cinfo[i].addr = ra;
4517 //if(!entry||entry[ra]!=dops[i].rs1)
4518 // printf("poor load scheduling!\n");
4519 }
4520 else if(c) {
4521 if(dops[i].rs1!=dops[i].rt1||dops[i].itype!=LOAD) {
4522 assert(ra >= 0);
4523 if(!entry||entry[ra]!=agr) {
4524 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
4525 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4526 }else{
4527 emit_movimm(constmap[i][rs]+offset,ra);
4528 regs[i].loadedconst|=1<<ra;
4529 }
4530 } // else did it in the previous cycle
4531 cinfo[i].addr = ra;
4532 }
4533 else // else load_consts already did it
4534 cinfo[i].addr = rs;
4535 add_offset = 0;
4536 }
4537 else if (dops[i].itype == STORELR) { // overwrites addr
4538 assert(ra >= 0);
4539 assert(rs != ra);
4540 emit_mov(rs, ra);
4541 cinfo[i].addr = ra;
4542 }
4543 else
4544 cinfo[i].addr = rs;
4545 if (add_offset) {
4546 assert(ra >= 0);
4547 if(rs>=0) {
4548 emit_addimm(rs,offset,ra);
4549 }else{
4550 emit_addimm(ra,offset,ra);
4551 }
4552 cinfo[i].addr = ra;
4553 }
4554 }
4555 assert(cinfo[i].addr >= 0);
4556 }
4557 // Preload constants for next instruction
4558 if (dops[i+1].is_load || dops[i+1].is_store) {
4559 int agr,ra;
4560 // Actual address
4561 agr=AGEN1+((i+1)&1);
4562 ra=get_reg(i_regs->regmap,agr);
4563 if(ra>=0) {
4564 int rs=get_reg(regs[i+1].regmap,dops[i+1].rs1);
4565 int offset=cinfo[i+1].imm;
4566 int c=(regs[i+1].wasconst>>rs)&1;
4567 if(c&&(dops[i+1].rs1!=dops[i+1].rt1||dops[i+1].itype!=LOAD)) {
4568 if (dops[i+1].opcode==0x22||dops[i+1].opcode==0x26) {
4569 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4570 }else if (dops[i+1].opcode==0x1a||dops[i+1].opcode==0x1b) {
4571 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4572 }else{
4573 emit_movimm(constmap[i+1][rs]+offset,ra);
4574 regs[i+1].loadedconst|=1<<ra;
4575 }
4576 }
4577 else if(dops[i+1].rs1==0) {
4578 // Using r0 as a base address
4579 if (dops[i+1].opcode==0x22||dops[i+1].opcode==0x26) {
4580 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4581 }else if (dops[i+1].opcode==0x1a||dops[i+1].opcode==0x1b) {
4582 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4583 }else{
4584 emit_movimm(offset,ra);
4585 }
4586 }
4587 }
4588 }
4589}
4590
4591static int get_final_value(int hr, int i, u_int *value)
4592{
4593 int reg=regs[i].regmap[hr];
4594 while(i<slen-1) {
4595 if(regs[i+1].regmap[hr]!=reg) break;
4596 if(!((regs[i+1].isconst>>hr)&1)) break;
4597 if(dops[i+1].bt) break;
4598 i++;
4599 }
4600 if(i<slen-1) {
4601 if (dops[i].is_jump) {
4602 *value=constmap[i][hr];
4603 return 1;
4604 }
4605 if(!dops[i+1].bt) {
4606 if (dops[i+1].is_jump) {
4607 // Load in delay slot, out-of-order execution
4608 if(dops[i+2].itype==LOAD&&dops[i+2].rs1==reg&&dops[i+2].rt1==reg&&((regs[i+1].wasconst>>hr)&1))
4609 {
4610 // Precompute load address
4611 *value=constmap[i][hr]+cinfo[i+2].imm;
4612 return 1;
4613 }
4614 }
4615 if(dops[i+1].itype==LOAD&&dops[i+1].rs1==reg&&dops[i+1].rt1==reg)
4616 {
4617 // Precompute load address
4618 *value=constmap[i][hr]+cinfo[i+1].imm;
4619 //printf("c=%x imm=%lx\n",(long)constmap[i][hr],cinfo[i+1].imm);
4620 return 1;
4621 }
4622 }
4623 }
4624 *value=constmap[i][hr];
4625 //printf("c=%lx\n",(long)constmap[i][hr]);
4626 if(i==slen-1) return 1;
4627 assert(reg < 64);
4628 return !((unneeded_reg[i+1]>>reg)&1);
4629}
4630
4631// Load registers with known constants
4632static void load_consts(signed char pre[],signed char regmap[],int i)
4633{
4634 int hr,hr2;
4635 // propagate loaded constant flags
4636 if(i==0||dops[i].bt)
4637 regs[i].loadedconst=0;
4638 else {
4639 for(hr=0;hr<HOST_REGS;hr++) {
4640 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4641 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4642 {
4643 regs[i].loadedconst|=1<<hr;
4644 }
4645 }
4646 }
4647 // Load 32-bit regs
4648 for(hr=0;hr<HOST_REGS;hr++) {
4649 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4650 //if(entry[hr]!=regmap[hr]) {
4651 if(!((regs[i].loadedconst>>hr)&1)) {
4652 assert(regmap[hr]<64);
4653 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4654 u_int value, similar=0;
4655 if(get_final_value(hr,i,&value)) {
4656 // see if some other register has similar value
4657 for(hr2=0;hr2<HOST_REGS;hr2++) {
4658 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4659 if(is_similar_value(value,constmap[i][hr2])) {
4660 similar=1;
4661 break;
4662 }
4663 }
4664 }
4665 if(similar) {
4666 u_int value2;
4667 if(get_final_value(hr2,i,&value2)) // is this needed?
4668 emit_movimm_from(value2,hr2,value,hr);
4669 else
4670 emit_movimm(value,hr);
4671 }
4672 else if(value==0) {
4673 emit_zeroreg(hr);
4674 }
4675 else {
4676 emit_movimm(value,hr);
4677 }
4678 }
4679 regs[i].loadedconst|=1<<hr;
4680 }
4681 }
4682 }
4683 }
4684}
4685
4686static void load_all_consts(const signed char regmap[], u_int dirty, int i)
4687{
4688 int hr;
4689 // Load 32-bit regs
4690 for(hr=0;hr<HOST_REGS;hr++) {
4691 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4692 assert(regmap[hr] < 64);
4693 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4694 int value=constmap[i][hr];
4695 if(value==0) {
4696 emit_zeroreg(hr);
4697 }
4698 else {
4699 emit_movimm(value,hr);
4700 }
4701 }
4702 }
4703 }
4704}
4705
4706// Write out all dirty registers (except cycle count)
4707#ifndef wb_dirtys
4708static void wb_dirtys(const signed char i_regmap[], u_int i_dirty)
4709{
4710 int hr;
4711 for(hr=0;hr<HOST_REGS;hr++) {
4712 if(hr!=EXCLUDE_REG) {
4713 if(i_regmap[hr]>0) {
4714 if(i_regmap[hr]!=CCREG) {
4715 if((i_dirty>>hr)&1) {
4716 assert(i_regmap[hr]<64);
4717 emit_storereg(i_regmap[hr],hr);
4718 }
4719 }
4720 }
4721 }
4722 }
4723}
4724#endif
4725
4726// Write out dirty registers that we need to reload (pair with load_needed_regs)
4727// This writes the registers not written by store_regs_bt
4728static void wb_needed_dirtys(const signed char i_regmap[], u_int i_dirty, int addr)
4729{
4730 int hr;
4731 int t=(addr-start)>>2;
4732 for(hr=0;hr<HOST_REGS;hr++) {
4733 if(hr!=EXCLUDE_REG) {
4734 if(i_regmap[hr]>0) {
4735 if(i_regmap[hr]!=CCREG) {
4736 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1)) {
4737 if((i_dirty>>hr)&1) {
4738 assert(i_regmap[hr]<64);
4739 emit_storereg(i_regmap[hr],hr);
4740 }
4741 }
4742 }
4743 }
4744 }
4745 }
4746}
4747
4748// Load all registers (except cycle count)
4749#ifndef load_all_regs
4750static void load_all_regs(const signed char i_regmap[])
4751{
4752 int hr;
4753 for(hr=0;hr<HOST_REGS;hr++) {
4754 if(hr!=EXCLUDE_REG) {
4755 if(i_regmap[hr]==0) {
4756 emit_zeroreg(hr);
4757 }
4758 else
4759 if(i_regmap[hr]>0 && i_regmap[hr]<TEMPREG && i_regmap[hr]!=CCREG)
4760 {
4761 emit_loadreg(i_regmap[hr],hr);
4762 }
4763 }
4764 }
4765}
4766#endif
4767
4768// Load all current registers also needed by next instruction
4769static void load_needed_regs(const signed char i_regmap[], const signed char next_regmap[])
4770{
4771 signed char regmap_sel[HOST_REGS];
4772 int hr;
4773 for (hr = 0; hr < HOST_REGS; hr++) {
4774 regmap_sel[hr] = -1;
4775 if (hr != EXCLUDE_REG)
4776 if (next_regmap[hr] == i_regmap[hr] || get_reg(next_regmap, i_regmap[hr]) >= 0)
4777 regmap_sel[hr] = i_regmap[hr];
4778 }
4779 load_all_regs(regmap_sel);
4780}
4781
4782// Load all regs, storing cycle count if necessary
4783static void load_regs_entry(int t)
4784{
4785 if(dops[t].is_ds) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4786 else if(cinfo[t].ccadj) emit_addimm(HOST_CCREG,-cinfo[t].ccadj,HOST_CCREG);
4787 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4788 emit_storereg(CCREG,HOST_CCREG);
4789 }
4790 load_all_regs(regs[t].regmap_entry);
4791}
4792
4793// Store dirty registers prior to branch
4794static void store_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4795{
4796 if(internal_branch(addr))
4797 {
4798 int t=(addr-start)>>2;
4799 int hr;
4800 for(hr=0;hr<HOST_REGS;hr++) {
4801 if(hr!=EXCLUDE_REG) {
4802 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4803 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1)) {
4804 if((i_dirty>>hr)&1) {
4805 assert(i_regmap[hr]<64);
4806 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4807 emit_storereg(i_regmap[hr],hr);
4808 }
4809 }
4810 }
4811 }
4812 }
4813 }
4814 else
4815 {
4816 // Branch out of this block, write out all dirty regs
4817 wb_dirtys(i_regmap,i_dirty);
4818 }
4819}
4820
4821// Load all needed registers for branch target
4822static void load_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4823{
4824 //if(addr>=start && addr<(start+slen*4))
4825 if(internal_branch(addr))
4826 {
4827 int t=(addr-start)>>2;
4828 int hr;
4829 // Store the cycle count before loading something else
4830 if(i_regmap[HOST_CCREG]!=CCREG) {
4831 assert(i_regmap[HOST_CCREG]==-1);
4832 }
4833 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4834 emit_storereg(CCREG,HOST_CCREG);
4835 }
4836 // Load 32-bit regs
4837 for(hr=0;hr<HOST_REGS;hr++) {
4838 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4839 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4840 if(regs[t].regmap_entry[hr]==0) {
4841 emit_zeroreg(hr);
4842 }
4843 else if(regs[t].regmap_entry[hr]!=CCREG)
4844 {
4845 emit_loadreg(regs[t].regmap_entry[hr],hr);
4846 }
4847 }
4848 }
4849 }
4850 }
4851}
4852
4853static int match_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4854{
4855 if(addr>=start && addr<start+slen*4-4)
4856 {
4857 int t=(addr-start)>>2;
4858 int hr;
4859 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4860 for(hr=0;hr<HOST_REGS;hr++)
4861 {
4862 if(hr!=EXCLUDE_REG)
4863 {
4864 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4865 {
4866 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4867 {
4868 return 0;
4869 }
4870 else
4871 if((i_dirty>>hr)&1)
4872 {
4873 if(i_regmap[hr]<TEMPREG)
4874 {
4875 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4876 return 0;
4877 }
4878 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4879 {
4880 assert(0);
4881 }
4882 }
4883 }
4884 else // Same register but is it 32-bit or dirty?
4885 if(i_regmap[hr]>=0)
4886 {
4887 if(!((regs[t].dirty>>hr)&1))
4888 {
4889 if((i_dirty>>hr)&1)
4890 {
4891 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4892 {
4893 //printf("%x: dirty no match\n",addr);
4894 return 0;
4895 }
4896 }
4897 }
4898 }
4899 }
4900 }
4901 // Delay slots are not valid branch targets
4902 //if(t>0&&(dops[t-1].is_jump) return 0;
4903 // Delay slots require additional processing, so do not match
4904 if(dops[t].is_ds) return 0;
4905 }
4906 else
4907 {
4908 int hr;
4909 for(hr=0;hr<HOST_REGS;hr++)
4910 {
4911 if(hr!=EXCLUDE_REG)
4912 {
4913 if(i_regmap[hr]>=0)
4914 {
4915 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4916 {
4917 if((i_dirty>>hr)&1)
4918 {
4919 return 0;
4920 }
4921 }
4922 }
4923 }
4924 }
4925 }
4926 return 1;
4927}
4928
4929#ifdef DRC_DBG
4930static void drc_dbg_emit_do_cmp(int i, int ccadj_)
4931{
4932 extern void do_insn_cmp();
4933 //extern int cycle;
4934 u_int hr, reglist = get_host_reglist(regs[i].regmap);
4935 reglist |= get_host_reglist(regs[i].regmap_entry);
4936 reglist &= DRC_DBG_REGMASK;
4937
4938 assem_debug("//do_insn_cmp %08x\n", start+i*4);
4939 save_regs(reglist);
4940 // write out changed consts to match the interpreter
4941 if (i > 0 && !dops[i].bt) {
4942 for (hr = 0; hr < HOST_REGS; hr++) {
4943 int reg = regs[i].regmap_entry[hr]; // regs[i-1].regmap[hr];
4944 if (hr == EXCLUDE_REG || reg <= 0)
4945 continue;
4946 if (!((regs[i-1].isconst >> hr) & 1))
4947 continue;
4948 if (i > 1 && reg == regs[i-2].regmap[hr] && constmap[i-1][hr] == constmap[i-2][hr])
4949 continue;
4950 emit_movimm(constmap[i-1][hr],0);
4951 emit_storereg(reg, 0);
4952 }
4953 }
4954 emit_movimm(start+i*4,0);
4955 emit_writeword(0,&pcaddr);
4956 int cc = get_reg(regs[i].regmap_entry, CCREG);
4957 if (cc < 0)
4958 emit_loadreg(CCREG, cc = 0);
4959 emit_addimm(cc, ccadj_, 0);
4960 emit_writeword(0, &psxRegs.cycle);
4961 emit_far_call(do_insn_cmp);
4962 //emit_readword(&cycle,0);
4963 //emit_addimm(0,2,0);
4964 //emit_writeword(0,&cycle);
4965 (void)get_reg2;
4966 restore_regs(reglist);
4967 assem_debug("\\\\do_insn_cmp\n");
4968}
4969#else
4970#define drc_dbg_emit_do_cmp(x,y)
4971#endif
4972
4973// Used when a branch jumps into the delay slot of another branch
4974static void ds_assemble_entry(int i)
4975{
4976 int t = (cinfo[i].ba - start) >> 2;
4977 int ccadj_ = -CLOCK_ADJUST(1);
4978 if (!instr_addr[t])
4979 instr_addr[t] = out;
4980 assem_debug("Assemble delay slot at %x\n",cinfo[i].ba);
4981 assem_debug("<->\n");
4982 drc_dbg_emit_do_cmp(t, ccadj_);
4983 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4984 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty);
4985 load_regs(regs[t].regmap_entry,regs[t].regmap,dops[t].rs1,dops[t].rs2);
4986 address_generation(t,&regs[t],regs[t].regmap_entry);
4987 if (ram_offset && (dops[t].is_load || dops[t].is_store))
4988 load_reg(regs[t].regmap_entry,regs[t].regmap,ROREG);
4989 if (dops[t].is_store)
4990 load_reg(regs[t].regmap_entry,regs[t].regmap,INVCP);
4991 is_delayslot=0;
4992 switch (dops[t].itype) {
4993 case SYSCALL:
4994 case HLECALL:
4995 case INTCALL:
4996 case UJUMP:
4997 case RJUMP:
4998 case CJUMP:
4999 case SJUMP:
5000 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
5001 break;
5002 default:
5003 assemble(t, &regs[t], ccadj_);
5004 }
5005 store_regs_bt(regs[t].regmap,regs[t].dirty,cinfo[i].ba+4);
5006 load_regs_bt(regs[t].regmap,regs[t].dirty,cinfo[i].ba+4);
5007 if(internal_branch(cinfo[i].ba+4))
5008 assem_debug("branch: internal\n");
5009 else
5010 assem_debug("branch: external\n");
5011 assert(internal_branch(cinfo[i].ba+4));
5012 add_to_linker(out,cinfo[i].ba+4,internal_branch(cinfo[i].ba+4));
5013 emit_jmp(0);
5014}
5015
5016// Load 2 immediates optimizing for small code size
5017static void emit_mov2imm_compact(int imm1,u_int rt1,int imm2,u_int rt2)
5018{
5019 emit_movimm(imm1,rt1);
5020 emit_movimm_from(imm1,rt1,imm2,rt2);
5021}
5022
5023static void do_cc(int i, const signed char i_regmap[], int *adj,
5024 int addr, int taken, int invert)
5025{
5026 int count, count_plus2;
5027 void *jaddr;
5028 void *idle=NULL;
5029 int t=0;
5030 if(dops[i].itype==RJUMP)
5031 {
5032 *adj=0;
5033 }
5034 //if(cinfo[i].ba>=start && cinfo[i].ba<(start+slen*4))
5035 if(internal_branch(cinfo[i].ba))
5036 {
5037 t=(cinfo[i].ba-start)>>2;
5038 if(dops[t].is_ds) *adj=-CLOCK_ADJUST(1); // Branch into delay slot adds an extra cycle
5039 else *adj=cinfo[t].ccadj;
5040 }
5041 else
5042 {
5043 *adj=0;
5044 }
5045 count = cinfo[i].ccadj;
5046 count_plus2 = count + CLOCK_ADJUST(2);
5047 if(taken==TAKEN && i==(cinfo[i].ba-start)>>2 && source[i+1]==0) {
5048 // Idle loop
5049 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
5050 idle=out;
5051 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
5052 emit_andimm(HOST_CCREG,3,HOST_CCREG);
5053 jaddr=out;
5054 emit_jmp(0);
5055 }
5056 else if(*adj==0||invert) {
5057 int cycles = count_plus2;
5058 // faster loop HACK
5059#if 0
5060 if (t&&*adj) {
5061 int rel=t-i;
5062 if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
5063 cycles=*adj+count+2-*adj;
5064 }
5065#endif
5066 emit_addimm_and_set_flags(cycles, HOST_CCREG);
5067 jaddr = out;
5068 emit_jns(0);
5069 }
5070 else
5071 {
5072 emit_cmpimm(HOST_CCREG, -count_plus2);
5073 jaddr = out;
5074 emit_jns(0);
5075 }
5076 add_stub(CC_STUB,jaddr,idle?idle:out,(*adj==0||invert||idle)?0:count_plus2,i,addr,taken,0);
5077}
5078
5079static void do_ccstub(int n)
5080{
5081 literal_pool(256);
5082 assem_debug("do_ccstub %x\n",start+(u_int)stubs[n].b*4);
5083 set_jump_target(stubs[n].addr, out);
5084 int i=stubs[n].b;
5085 if (stubs[n].d != TAKEN) {
5086 wb_dirtys(branch_regs[i].regmap,branch_regs[i].dirty);
5087 }
5088 else {
5089 if(internal_branch(cinfo[i].ba))
5090 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].dirty,cinfo[i].ba);
5091 }
5092 if(stubs[n].c!=-1)
5093 {
5094 // Save PC as return address
5095 emit_movimm(stubs[n].c,0);
5096 emit_writeword(0,&pcaddr);
5097 }
5098 else
5099 {
5100 // Return address depends on which way the branch goes
5101 if(dops[i].itype==CJUMP||dops[i].itype==SJUMP)
5102 {
5103 int s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5104 int s2l=get_reg(branch_regs[i].regmap,dops[i].rs2);
5105 if(dops[i].rs1==0)
5106 {
5107 s1l=s2l;
5108 s2l=-1;
5109 }
5110 else if(dops[i].rs2==0)
5111 {
5112 s2l=-1;
5113 }
5114 assert(s1l>=0);
5115 #ifdef DESTRUCTIVE_WRITEBACK
5116 if(dops[i].rs1) {
5117 if((branch_regs[i].dirty>>s1l)&&1)
5118 emit_loadreg(dops[i].rs1,s1l);
5119 }
5120 else {
5121 if((branch_regs[i].dirty>>s1l)&1)
5122 emit_loadreg(dops[i].rs2,s1l);
5123 }
5124 if(s2l>=0)
5125 if((branch_regs[i].dirty>>s2l)&1)
5126 emit_loadreg(dops[i].rs2,s2l);
5127 #endif
5128 int hr=0;
5129 int addr=-1,alt=-1,ntaddr=-1;
5130 while(hr<HOST_REGS)
5131 {
5132 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5133 branch_regs[i].regmap[hr]!=dops[i].rs1 &&
5134 branch_regs[i].regmap[hr]!=dops[i].rs2 )
5135 {
5136 addr=hr++;break;
5137 }
5138 hr++;
5139 }
5140 while(hr<HOST_REGS)
5141 {
5142 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5143 branch_regs[i].regmap[hr]!=dops[i].rs1 &&
5144 branch_regs[i].regmap[hr]!=dops[i].rs2 )
5145 {
5146 alt=hr++;break;
5147 }
5148 hr++;
5149 }
5150 if ((dops[i].opcode & 0x3e) == 6) // BLEZ/BGTZ needs another register
5151 {
5152 while(hr<HOST_REGS)
5153 {
5154 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5155 branch_regs[i].regmap[hr]!=dops[i].rs1 &&
5156 branch_regs[i].regmap[hr]!=dops[i].rs2 )
5157 {
5158 ntaddr=hr;break;
5159 }
5160 hr++;
5161 }
5162 assert(hr<HOST_REGS);
5163 }
5164 if (dops[i].opcode == 4) // BEQ
5165 {
5166 #ifdef HAVE_CMOV_IMM
5167 if(s2l>=0) emit_cmp(s1l,s2l);
5168 else emit_test(s1l,s1l);
5169 emit_cmov2imm_e_ne_compact(cinfo[i].ba,start+i*4+8,addr);
5170 #else
5171 emit_mov2imm_compact(cinfo[i].ba,addr,start+i*4+8,alt);
5172 if(s2l>=0) emit_cmp(s1l,s2l);
5173 else emit_test(s1l,s1l);
5174 emit_cmovne_reg(alt,addr);
5175 #endif
5176 }
5177 else if (dops[i].opcode == 5) // BNE
5178 {
5179 #ifdef HAVE_CMOV_IMM
5180 if(s2l>=0) emit_cmp(s1l,s2l);
5181 else emit_test(s1l,s1l);
5182 emit_cmov2imm_e_ne_compact(start+i*4+8,cinfo[i].ba,addr);
5183 #else
5184 emit_mov2imm_compact(start+i*4+8,addr,cinfo[i].ba,alt);
5185 if(s2l>=0) emit_cmp(s1l,s2l);
5186 else emit_test(s1l,s1l);
5187 emit_cmovne_reg(alt,addr);
5188 #endif
5189 }
5190 else if (dops[i].opcode == 6) // BLEZ
5191 {
5192 //emit_movimm(cinfo[i].ba,alt);
5193 //emit_movimm(start+i*4+8,addr);
5194 emit_mov2imm_compact(cinfo[i].ba,alt,start+i*4+8,addr);
5195 emit_cmpimm(s1l,1);
5196 emit_cmovl_reg(alt,addr);
5197 }
5198 else if (dops[i].opcode == 7) // BGTZ
5199 {
5200 //emit_movimm(cinfo[i].ba,addr);
5201 //emit_movimm(start+i*4+8,ntaddr);
5202 emit_mov2imm_compact(cinfo[i].ba,addr,start+i*4+8,ntaddr);
5203 emit_cmpimm(s1l,1);
5204 emit_cmovl_reg(ntaddr,addr);
5205 }
5206 else if (dops[i].itype == SJUMP) // BLTZ/BGEZ
5207 {
5208 //emit_movimm(cinfo[i].ba,alt);
5209 //emit_movimm(start+i*4+8,addr);
5210 if (dops[i].rs1) {
5211 emit_mov2imm_compact(cinfo[i].ba,
5212 (dops[i].opcode2 & 1) ? addr : alt, start + i*4 + 8,
5213 (dops[i].opcode2 & 1) ? alt : addr);
5214 emit_test(s1l,s1l);
5215 emit_cmovs_reg(alt,addr);
5216 }
5217 else
5218 emit_movimm((dops[i].opcode2 & 1) ? cinfo[i].ba : start + i*4 + 8, addr);
5219 }
5220 emit_writeword(addr, &pcaddr);
5221 }
5222 else
5223 if(dops[i].itype==RJUMP)
5224 {
5225 int r=get_reg(branch_regs[i].regmap,dops[i].rs1);
5226 if (ds_writes_rjump_rs(i)) {
5227 r=get_reg(branch_regs[i].regmap,RTEMP);
5228 }
5229 emit_writeword(r,&pcaddr);
5230 }
5231 else {SysPrintf("Unknown branch type in do_ccstub\n");abort();}
5232 }
5233 // Update cycle count
5234 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5235 if(stubs[n].a) emit_addimm(HOST_CCREG,(int)stubs[n].a,HOST_CCREG);
5236 emit_far_call(cc_interrupt);
5237 if(stubs[n].a) emit_addimm(HOST_CCREG,-(int)stubs[n].a,HOST_CCREG);
5238 if(stubs[n].d==TAKEN) {
5239 if(internal_branch(cinfo[i].ba))
5240 load_needed_regs(branch_regs[i].regmap,regs[(cinfo[i].ba-start)>>2].regmap_entry);
5241 else if(dops[i].itype==RJUMP) {
5242 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5243 emit_readword(&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5244 else
5245 emit_loadreg(dops[i].rs1,get_reg(branch_regs[i].regmap,dops[i].rs1));
5246 }
5247 }else if(stubs[n].d==NOTTAKEN) {
5248 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5249 else load_all_regs(branch_regs[i].regmap);
5250 }else{
5251 load_all_regs(branch_regs[i].regmap);
5252 }
5253 if (stubs[n].retaddr)
5254 emit_jmp(stubs[n].retaddr);
5255 else
5256 do_jump_vaddr(stubs[n].e);
5257}
5258
5259static void add_to_linker(void *addr, u_int target, int is_internal)
5260{
5261 assert(linkcount < ARRAY_SIZE(link_addr));
5262 link_addr[linkcount].addr = addr;
5263 link_addr[linkcount].target = target;
5264 link_addr[linkcount].internal = is_internal;
5265 linkcount++;
5266}
5267
5268static void ujump_assemble_write_ra(int i)
5269{
5270 int rt;
5271 unsigned int return_address;
5272 rt=get_reg(branch_regs[i].regmap,31);
5273 //assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5274 //assert(rt>=0);
5275 return_address=start+i*4+8;
5276 if(rt>=0) {
5277 #ifdef USE_MINI_HT
5278 if(internal_branch(return_address)&&dops[i+1].rt1!=31) {
5279 int temp=-1; // note: must be ds-safe
5280 #ifdef HOST_TEMPREG
5281 temp=HOST_TEMPREG;
5282 #endif
5283 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5284 else emit_movimm(return_address,rt);
5285 }
5286 else
5287 #endif
5288 {
5289 #ifdef REG_PREFETCH
5290 if(temp>=0)
5291 {
5292 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5293 }
5294 #endif
5295 if (!((regs[i].loadedconst >> rt) & 1))
5296 emit_movimm(return_address, rt); // PC into link register
5297 #ifdef IMM_PREFETCH
5298 emit_prefetch(hash_table_get(return_address));
5299 #endif
5300 }
5301 }
5302}
5303
5304static void ujump_assemble(int i, const struct regstat *i_regs)
5305{
5306 if(i==(cinfo[i].ba-start)>>2) assem_debug("idle loop\n");
5307 address_generation(i+1,i_regs,regs[i].regmap_entry);
5308 #ifdef REG_PREFETCH
5309 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5310 if(dops[i].rt1==31&&temp>=0)
5311 {
5312 signed char *i_regmap=i_regs->regmap;
5313 int return_address=start+i*4+8;
5314 if(get_reg(branch_regs[i].regmap,31)>0)
5315 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5316 }
5317 #endif
5318 if (dops[i].rt1 == 31)
5319 ujump_assemble_write_ra(i); // writeback ra for DS
5320 ds_assemble(i+1,i_regs);
5321 uint64_t bc_unneeded=branch_regs[i].u;
5322 bc_unneeded|=1|(1LL<<dops[i].rt1);
5323 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5324 load_reg(regs[i].regmap,branch_regs[i].regmap,CCREG);
5325 int cc,adj;
5326 cc=get_reg(branch_regs[i].regmap,CCREG);
5327 assert(cc==HOST_CCREG);
5328 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,cinfo[i].ba);
5329 #ifdef REG_PREFETCH
5330 if(dops[i].rt1==31&&temp>=0) emit_prefetchreg(temp);
5331 #endif
5332 do_cc(i,branch_regs[i].regmap,&adj,cinfo[i].ba,TAKEN,0);
5333 if(adj) emit_addimm(cc, cinfo[i].ccadj + CLOCK_ADJUST(2) - adj, cc);
5334 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,cinfo[i].ba);
5335 if(internal_branch(cinfo[i].ba))
5336 assem_debug("branch: internal\n");
5337 else
5338 assem_debug("branch: external\n");
5339 if (internal_branch(cinfo[i].ba) && dops[(cinfo[i].ba-start)>>2].is_ds) {
5340 ds_assemble_entry(i);
5341 }
5342 else {
5343 add_to_linker(out,cinfo[i].ba,internal_branch(cinfo[i].ba));
5344 emit_jmp(0);
5345 }
5346}
5347
5348static void rjump_assemble_write_ra(int i)
5349{
5350 int rt,return_address;
5351 rt=get_reg_w(branch_regs[i].regmap, dops[i].rt1);
5352 //assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5353 assert(rt>=0);
5354 return_address=start+i*4+8;
5355 #ifdef REG_PREFETCH
5356 if(temp>=0)
5357 {
5358 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5359 }
5360 #endif
5361 if (!((regs[i].loadedconst >> rt) & 1))
5362 emit_movimm(return_address, rt); // PC into link register
5363 #ifdef IMM_PREFETCH
5364 emit_prefetch(hash_table_get(return_address));
5365 #endif
5366}
5367
5368static void rjump_assemble(int i, const struct regstat *i_regs)
5369{
5370 int temp;
5371 int rs,cc;
5372 rs=get_reg(branch_regs[i].regmap,dops[i].rs1);
5373 assert(rs>=0);
5374 if (ds_writes_rjump_rs(i)) {
5375 // Delay slot abuse, make a copy of the branch address register
5376 temp=get_reg(branch_regs[i].regmap,RTEMP);
5377 assert(temp>=0);
5378 assert(regs[i].regmap[temp]==RTEMP);
5379 emit_mov(rs,temp);
5380 rs=temp;
5381 }
5382 address_generation(i+1,i_regs,regs[i].regmap_entry);
5383 #ifdef REG_PREFETCH
5384 if(dops[i].rt1==31)
5385 {
5386 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5387 signed char *i_regmap=i_regs->regmap;
5388 int return_address=start+i*4+8;
5389 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5390 }
5391 }
5392 #endif
5393 #ifdef USE_MINI_HT
5394 if(dops[i].rs1==31) {
5395 int rh=get_reg(regs[i].regmap,RHASH);
5396 if(rh>=0) do_preload_rhash(rh);
5397 }
5398 #endif
5399 if (dops[i].rt1 != 0)
5400 rjump_assemble_write_ra(i);
5401 ds_assemble(i+1,i_regs);
5402 uint64_t bc_unneeded=branch_regs[i].u;
5403 bc_unneeded|=1|(1LL<<dops[i].rt1);
5404 bc_unneeded&=~(1LL<<dops[i].rs1);
5405 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5406 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,CCREG);
5407 cc=get_reg(branch_regs[i].regmap,CCREG);
5408 assert(cc==HOST_CCREG);
5409 (void)cc;
5410 #ifdef USE_MINI_HT
5411 int rh=get_reg(branch_regs[i].regmap,RHASH);
5412 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5413 if(dops[i].rs1==31) {
5414 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5415 do_preload_rhtbl(ht);
5416 do_rhash(rs,rh);
5417 }
5418 #endif
5419 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5420 #ifdef DESTRUCTIVE_WRITEBACK
5421 if((branch_regs[i].dirty>>rs)&1) {
5422 if(dops[i].rs1!=dops[i+1].rt1&&dops[i].rs1!=dops[i+1].rt2) {
5423 emit_loadreg(dops[i].rs1,rs);
5424 }
5425 }
5426 #endif
5427 #ifdef REG_PREFETCH
5428 if(dops[i].rt1==31&&temp>=0) emit_prefetchreg(temp);
5429 #endif
5430 #ifdef USE_MINI_HT
5431 if(dops[i].rs1==31) {
5432 do_miniht_load(ht,rh);
5433 }
5434 #endif
5435 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5436 //if(adj) emit_addimm(cc,2*(cinfo[i].ccadj+2-adj),cc); // ??? - Shouldn't happen
5437 //assert(adj==0);
5438 emit_addimm_and_set_flags(cinfo[i].ccadj + CLOCK_ADJUST(2), HOST_CCREG);
5439 add_stub(CC_STUB,out,NULL,0,i,-1,TAKEN,rs);
5440 if (dops[i+1].itype == RFE)
5441 // special case for RFE
5442 emit_jmp(0);
5443 else
5444 emit_jns(0);
5445 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5446 #ifdef USE_MINI_HT
5447 if(dops[i].rs1==31) {
5448 do_miniht_jump(rs,rh,ht);
5449 }
5450 else
5451 #endif
5452 {
5453 do_jump_vaddr(rs);
5454 }
5455 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5456 if(dops[i].rt1!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5457 #endif
5458}
5459
5460static void cjump_assemble(int i, const struct regstat *i_regs)
5461{
5462 const signed char *i_regmap = i_regs->regmap;
5463 int cc;
5464 int match;
5465 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,cinfo[i].ba);
5466 assem_debug("match=%d\n",match);
5467 int s1l,s2l;
5468 int unconditional=0,nop=0;
5469 int invert=0;
5470 int internal=internal_branch(cinfo[i].ba);
5471 if(i==(cinfo[i].ba-start)>>2) assem_debug("idle loop\n");
5472 if(!match) invert=1;
5473 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5474 if(i>(cinfo[i].ba-start)>>2) invert=1;
5475 #endif
5476 #ifdef __aarch64__
5477 invert=1; // because of near cond. branches
5478 #endif
5479
5480 if(dops[i].ooo) {
5481 s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5482 s2l=get_reg(branch_regs[i].regmap,dops[i].rs2);
5483 }
5484 else {
5485 s1l=get_reg(i_regmap,dops[i].rs1);
5486 s2l=get_reg(i_regmap,dops[i].rs2);
5487 }
5488 if(dops[i].rs1==0&&dops[i].rs2==0)
5489 {
5490 if(dops[i].opcode&1) nop=1;
5491 else unconditional=1;
5492 //assert(dops[i].opcode!=5);
5493 //assert(dops[i].opcode!=7);
5494 //assert(dops[i].opcode!=0x15);
5495 //assert(dops[i].opcode!=0x17);
5496 }
5497 else if(dops[i].rs1==0)
5498 {
5499 s1l=s2l;
5500 s2l=-1;
5501 }
5502 else if(dops[i].rs2==0)
5503 {
5504 s2l=-1;
5505 }
5506
5507 if(dops[i].ooo) {
5508 // Out of order execution (delay slot first)
5509 //printf("OOOE\n");
5510 address_generation(i+1,i_regs,regs[i].regmap_entry);
5511 ds_assemble(i+1,i_regs);
5512 int adj;
5513 uint64_t bc_unneeded=branch_regs[i].u;
5514 bc_unneeded&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
5515 bc_unneeded|=1;
5516 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5517 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,dops[i].rs2);
5518 load_reg(regs[i].regmap,branch_regs[i].regmap,CCREG);
5519 cc=get_reg(branch_regs[i].regmap,CCREG);
5520 assert(cc==HOST_CCREG);
5521 if(unconditional)
5522 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,cinfo[i].ba);
5523 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?cinfo[i].ba:-1,unconditional);
5524 //assem_debug("cycle count (adj)\n");
5525 if(unconditional) {
5526 do_cc(i,branch_regs[i].regmap,&adj,cinfo[i].ba,TAKEN,0);
5527 if(i!=(cinfo[i].ba-start)>>2 || source[i+1]!=0) {
5528 if(adj) emit_addimm(cc, cinfo[i].ccadj + CLOCK_ADJUST(2) - adj, cc);
5529 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,cinfo[i].ba);
5530 if(internal)
5531 assem_debug("branch: internal\n");
5532 else
5533 assem_debug("branch: external\n");
5534 if (internal && dops[(cinfo[i].ba-start)>>2].is_ds) {
5535 ds_assemble_entry(i);
5536 }
5537 else {
5538 add_to_linker(out,cinfo[i].ba,internal);
5539 emit_jmp(0);
5540 }
5541 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5542 if(((u_int)out)&7) emit_addnop(0);
5543 #endif
5544 }
5545 }
5546 else if(nop) {
5547 emit_addimm_and_set_flags(cinfo[i].ccadj + CLOCK_ADJUST(2), cc);
5548 void *jaddr=out;
5549 emit_jns(0);
5550 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5551 }
5552 else {
5553 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5554 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5555 if(adj&&!invert) emit_addimm(cc, cinfo[i].ccadj + CLOCK_ADJUST(2) - adj, cc);
5556
5557 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5558 assert(s1l>=0);
5559 if(dops[i].opcode==4) // BEQ
5560 {
5561 if(s2l>=0) emit_cmp(s1l,s2l);
5562 else emit_test(s1l,s1l);
5563 if(invert){
5564 nottaken=out;
5565 emit_jne(DJT_1);
5566 }else{
5567 add_to_linker(out,cinfo[i].ba,internal);
5568 emit_jeq(0);
5569 }
5570 }
5571 if(dops[i].opcode==5) // BNE
5572 {
5573 if(s2l>=0) emit_cmp(s1l,s2l);
5574 else emit_test(s1l,s1l);
5575 if(invert){
5576 nottaken=out;
5577 emit_jeq(DJT_1);
5578 }else{
5579 add_to_linker(out,cinfo[i].ba,internal);
5580 emit_jne(0);
5581 }
5582 }
5583 if(dops[i].opcode==6) // BLEZ
5584 {
5585 emit_cmpimm(s1l,1);
5586 if(invert){
5587 nottaken=out;
5588 emit_jge(DJT_1);
5589 }else{
5590 add_to_linker(out,cinfo[i].ba,internal);
5591 emit_jl(0);
5592 }
5593 }
5594 if(dops[i].opcode==7) // BGTZ
5595 {
5596 emit_cmpimm(s1l,1);
5597 if(invert){
5598 nottaken=out;
5599 emit_jl(DJT_1);
5600 }else{
5601 add_to_linker(out,cinfo[i].ba,internal);
5602 emit_jge(0);
5603 }
5604 }
5605 if(invert) {
5606 if(taken) set_jump_target(taken, out);
5607 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5608 if (match && (!internal || !dops[(cinfo[i].ba-start)>>2].is_ds)) {
5609 if(adj) {
5610 emit_addimm(cc,-adj,cc);
5611 add_to_linker(out,cinfo[i].ba,internal);
5612 }else{
5613 emit_addnop(13);
5614 add_to_linker(out,cinfo[i].ba,internal*2);
5615 }
5616 emit_jmp(0);
5617 }else
5618 #endif
5619 {
5620 if(adj) emit_addimm(cc,-adj,cc);
5621 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,cinfo[i].ba);
5622 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,cinfo[i].ba);
5623 if(internal)
5624 assem_debug("branch: internal\n");
5625 else
5626 assem_debug("branch: external\n");
5627 if (internal && dops[(cinfo[i].ba - start) >> 2].is_ds) {
5628 ds_assemble_entry(i);
5629 }
5630 else {
5631 add_to_linker(out,cinfo[i].ba,internal);
5632 emit_jmp(0);
5633 }
5634 }
5635 set_jump_target(nottaken, out);
5636 }
5637
5638 if(nottaken1) set_jump_target(nottaken1, out);
5639 if(adj) {
5640 if(!invert) emit_addimm(cc,adj,cc);
5641 }
5642 } // (!unconditional)
5643 } // if(ooo)
5644 else
5645 {
5646 // In-order execution (branch first)
5647 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5648 if(!unconditional&&!nop) {
5649 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5650 assert(s1l>=0);
5651 if((dops[i].opcode&0x2f)==4) // BEQ
5652 {
5653 if(s2l>=0) emit_cmp(s1l,s2l);
5654 else emit_test(s1l,s1l);
5655 nottaken=out;
5656 emit_jne(DJT_2);
5657 }
5658 if((dops[i].opcode&0x2f)==5) // BNE
5659 {
5660 if(s2l>=0) emit_cmp(s1l,s2l);
5661 else emit_test(s1l,s1l);
5662 nottaken=out;
5663 emit_jeq(DJT_2);
5664 }
5665 if((dops[i].opcode&0x2f)==6) // BLEZ
5666 {
5667 emit_cmpimm(s1l,1);
5668 nottaken=out;
5669 emit_jge(DJT_2);
5670 }
5671 if((dops[i].opcode&0x2f)==7) // BGTZ
5672 {
5673 emit_cmpimm(s1l,1);
5674 nottaken=out;
5675 emit_jl(DJT_2);
5676 }
5677 } // if(!unconditional)
5678 int adj;
5679 uint64_t ds_unneeded=branch_regs[i].u;
5680 ds_unneeded&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
5681 ds_unneeded|=1;
5682 // branch taken
5683 if(!nop) {
5684 if(taken) set_jump_target(taken, out);
5685 assem_debug("1:\n");
5686 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5687 // load regs
5688 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5689 address_generation(i+1,&branch_regs[i],0);
5690 if (ram_offset)
5691 load_reg(regs[i].regmap,branch_regs[i].regmap,ROREG);
5692 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5693 ds_assemble(i+1,&branch_regs[i]);
5694 cc=get_reg(branch_regs[i].regmap,CCREG);
5695 if(cc==-1) {
5696 emit_loadreg(CCREG,cc=HOST_CCREG);
5697 // CHECK: Is the following instruction (fall thru) allocated ok?
5698 }
5699 assert(cc==HOST_CCREG);
5700 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,cinfo[i].ba);
5701 do_cc(i,i_regmap,&adj,cinfo[i].ba,TAKEN,0);
5702 assem_debug("cycle count (adj)\n");
5703 if(adj) emit_addimm(cc, cinfo[i].ccadj + CLOCK_ADJUST(2) - adj, cc);
5704 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,cinfo[i].ba);
5705 if(internal)
5706 assem_debug("branch: internal\n");
5707 else
5708 assem_debug("branch: external\n");
5709 if (internal && dops[(cinfo[i].ba - start) >> 2].is_ds) {
5710 ds_assemble_entry(i);
5711 }
5712 else {
5713 add_to_linker(out,cinfo[i].ba,internal);
5714 emit_jmp(0);
5715 }
5716 }
5717 // branch not taken
5718 if(!unconditional) {
5719 if(nottaken1) set_jump_target(nottaken1, out);
5720 set_jump_target(nottaken, out);
5721 assem_debug("2:\n");
5722 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5723 // load regs
5724 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5725 address_generation(i+1,&branch_regs[i],0);
5726 if (ram_offset)
5727 load_reg(regs[i].regmap,branch_regs[i].regmap,ROREG);
5728 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5729 ds_assemble(i+1,&branch_regs[i]);
5730 cc=get_reg(branch_regs[i].regmap,CCREG);
5731 if (cc == -1) {
5732 // Cycle count isn't in a register, temporarily load it then write it out
5733 emit_loadreg(CCREG,HOST_CCREG);
5734 emit_addimm_and_set_flags(cinfo[i].ccadj + CLOCK_ADJUST(2), HOST_CCREG);
5735 void *jaddr=out;
5736 emit_jns(0);
5737 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5738 emit_storereg(CCREG,HOST_CCREG);
5739 }
5740 else{
5741 cc=get_reg(i_regmap,CCREG);
5742 assert(cc==HOST_CCREG);
5743 emit_addimm_and_set_flags(cinfo[i].ccadj + CLOCK_ADJUST(2), cc);
5744 void *jaddr=out;
5745 emit_jns(0);
5746 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5747 }
5748 }
5749 }
5750}
5751
5752static void sjump_assemble(int i, const struct regstat *i_regs)
5753{
5754 const signed char *i_regmap = i_regs->regmap;
5755 int cc;
5756 int match;
5757 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,cinfo[i].ba);
5758 assem_debug("smatch=%d ooo=%d\n", match, dops[i].ooo);
5759 int s1l;
5760 int unconditional=0,nevertaken=0;
5761 int invert=0;
5762 int internal=internal_branch(cinfo[i].ba);
5763 if(i==(cinfo[i].ba-start)>>2) assem_debug("idle loop\n");
5764 if(!match) invert=1;
5765 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5766 if(i>(cinfo[i].ba-start)>>2) invert=1;
5767 #endif
5768 #ifdef __aarch64__
5769 invert=1; // because of near cond. branches
5770 #endif
5771
5772 //if(dops[i].opcode2>=0x10) return; // FIXME (BxxZAL)
5773 //assert(dops[i].opcode2<0x10||dops[i].rs1==0); // FIXME (BxxZAL)
5774
5775 if(dops[i].ooo) {
5776 s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5777 }
5778 else {
5779 s1l=get_reg(i_regmap,dops[i].rs1);
5780 }
5781 if(dops[i].rs1==0)
5782 {
5783 if(dops[i].opcode2&1) unconditional=1;
5784 else nevertaken=1;
5785 // These are never taken (r0 is never less than zero)
5786 //assert(dops[i].opcode2!=0);
5787 //assert(dops[i].opcode2!=2);
5788 //assert(dops[i].opcode2!=0x10);
5789 //assert(dops[i].opcode2!=0x12);
5790 }
5791
5792 if(dops[i].ooo) {
5793 // Out of order execution (delay slot first)
5794 //printf("OOOE\n");
5795 address_generation(i+1,i_regs,regs[i].regmap_entry);
5796 ds_assemble(i+1,i_regs);
5797 int adj;
5798 uint64_t bc_unneeded=branch_regs[i].u;
5799 bc_unneeded&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
5800 bc_unneeded|=1;
5801 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5802 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,dops[i].rs1);
5803 load_reg(regs[i].regmap,branch_regs[i].regmap,CCREG);
5804 if(dops[i].rt1==31) {
5805 int rt,return_address;
5806 rt=get_reg(branch_regs[i].regmap,31);
5807 //assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5808 if(rt>=0) {
5809 // Save the PC even if the branch is not taken
5810 return_address=start+i*4+8;
5811 emit_movimm(return_address,rt); // PC into link register
5812 #ifdef IMM_PREFETCH
5813 if(!nevertaken) emit_prefetch(hash_table_get(return_address));
5814 #endif
5815 }
5816 }
5817 cc=get_reg(branch_regs[i].regmap,CCREG);
5818 assert(cc==HOST_CCREG);
5819 if(unconditional)
5820 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,cinfo[i].ba);
5821 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?cinfo[i].ba:-1,unconditional);
5822 assem_debug("cycle count (adj)\n");
5823 if(unconditional) {
5824 do_cc(i,branch_regs[i].regmap,&adj,cinfo[i].ba,TAKEN,0);
5825 if(i!=(cinfo[i].ba-start)>>2 || source[i+1]!=0) {
5826 if(adj) emit_addimm(cc, cinfo[i].ccadj + CLOCK_ADJUST(2) - adj, cc);
5827 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,cinfo[i].ba);
5828 if(internal)
5829 assem_debug("branch: internal\n");
5830 else
5831 assem_debug("branch: external\n");
5832 if (internal && dops[(cinfo[i].ba - start) >> 2].is_ds) {
5833 ds_assemble_entry(i);
5834 }
5835 else {
5836 add_to_linker(out,cinfo[i].ba,internal);
5837 emit_jmp(0);
5838 }
5839 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5840 if(((u_int)out)&7) emit_addnop(0);
5841 #endif
5842 }
5843 }
5844 else if(nevertaken) {
5845 emit_addimm_and_set_flags(cinfo[i].ccadj + CLOCK_ADJUST(2), cc);
5846 void *jaddr=out;
5847 emit_jns(0);
5848 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5849 }
5850 else {
5851 void *nottaken = NULL;
5852 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5853 if(adj&&!invert) emit_addimm(cc, cinfo[i].ccadj + CLOCK_ADJUST(2) - adj, cc);
5854 {
5855 assert(s1l>=0);
5856 if ((dops[i].opcode2 & 1) == 0) // BLTZ/BLTZAL
5857 {
5858 emit_test(s1l,s1l);
5859 if(invert){
5860 nottaken=out;
5861 emit_jns(DJT_1);
5862 }else{
5863 add_to_linker(out,cinfo[i].ba,internal);
5864 emit_js(0);
5865 }
5866 }
5867 else // BGEZ/BGEZAL
5868 {
5869 emit_test(s1l,s1l);
5870 if(invert){
5871 nottaken=out;
5872 emit_js(DJT_1);
5873 }else{
5874 add_to_linker(out,cinfo[i].ba,internal);
5875 emit_jns(0);
5876 }
5877 }
5878 }
5879
5880 if(invert) {
5881 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5882 if (match && (!internal || !dops[(cinfo[i].ba - start) >> 2].is_ds)) {
5883 if(adj) {
5884 emit_addimm(cc,-adj,cc);
5885 add_to_linker(out,cinfo[i].ba,internal);
5886 }else{
5887 emit_addnop(13);
5888 add_to_linker(out,cinfo[i].ba,internal*2);
5889 }
5890 emit_jmp(0);
5891 }else
5892 #endif
5893 {
5894 if(adj) emit_addimm(cc,-adj,cc);
5895 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,cinfo[i].ba);
5896 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,cinfo[i].ba);
5897 if(internal)
5898 assem_debug("branch: internal\n");
5899 else
5900 assem_debug("branch: external\n");
5901 if (internal && dops[(cinfo[i].ba - start) >> 2].is_ds) {
5902 ds_assemble_entry(i);
5903 }
5904 else {
5905 add_to_linker(out,cinfo[i].ba,internal);
5906 emit_jmp(0);
5907 }
5908 }
5909 set_jump_target(nottaken, out);
5910 }
5911
5912 if(adj) {
5913 if(!invert) emit_addimm(cc,adj,cc);
5914 }
5915 } // (!unconditional)
5916 } // if(ooo)
5917 else
5918 {
5919 // In-order execution (branch first)
5920 //printf("IOE\n");
5921 void *nottaken = NULL;
5922 if (!unconditional && !nevertaken) {
5923 assert(s1l >= 0);
5924 emit_test(s1l, s1l);
5925 }
5926 if (dops[i].rt1 == 31) {
5927 int rt, return_address;
5928 rt = get_reg(branch_regs[i].regmap,31);
5929 if(rt >= 0) {
5930 // Save the PC even if the branch is not taken
5931 return_address = start + i*4+8;
5932 emit_movimm(return_address, rt); // PC into link register
5933 #ifdef IMM_PREFETCH
5934 emit_prefetch(hash_table_get(return_address));
5935 #endif
5936 }
5937 }
5938 if (!unconditional && !nevertaken) {
5939 nottaken = out;
5940 if (!(dops[i].opcode2 & 1)) // BLTZ/BLTZAL
5941 emit_jns(DJT_1);
5942 else // BGEZ/BGEZAL
5943 emit_js(DJT_1);
5944 }
5945 int adj;
5946 uint64_t ds_unneeded=branch_regs[i].u;
5947 ds_unneeded&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
5948 ds_unneeded|=1;
5949 // branch taken
5950 if(!nevertaken) {
5951 //assem_debug("1:\n");
5952 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5953 // load regs
5954 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5955 address_generation(i+1,&branch_regs[i],0);
5956 if (ram_offset)
5957 load_reg(regs[i].regmap,branch_regs[i].regmap,ROREG);
5958 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5959 ds_assemble(i+1,&branch_regs[i]);
5960 cc=get_reg(branch_regs[i].regmap,CCREG);
5961 if(cc==-1) {
5962 emit_loadreg(CCREG,cc=HOST_CCREG);
5963 // CHECK: Is the following instruction (fall thru) allocated ok?
5964 }
5965 assert(cc==HOST_CCREG);
5966 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,cinfo[i].ba);
5967 do_cc(i,i_regmap,&adj,cinfo[i].ba,TAKEN,0);
5968 assem_debug("cycle count (adj)\n");
5969 if(adj) emit_addimm(cc, cinfo[i].ccadj + CLOCK_ADJUST(2) - adj, cc);
5970 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,cinfo[i].ba);
5971 if(internal)
5972 assem_debug("branch: internal\n");
5973 else
5974 assem_debug("branch: external\n");
5975 if (internal && dops[(cinfo[i].ba - start) >> 2].is_ds) {
5976 ds_assemble_entry(i);
5977 }
5978 else {
5979 add_to_linker(out,cinfo[i].ba,internal);
5980 emit_jmp(0);
5981 }
5982 }
5983 // branch not taken
5984 if(!unconditional) {
5985 if (!nevertaken) {
5986 assert(nottaken);
5987 set_jump_target(nottaken, out);
5988 }
5989 assem_debug("1:\n");
5990 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5991 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5992 address_generation(i+1,&branch_regs[i],0);
5993 if (ram_offset)
5994 load_reg(regs[i].regmap,branch_regs[i].regmap,ROREG);
5995 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5996 ds_assemble(i+1,&branch_regs[i]);
5997 cc=get_reg(branch_regs[i].regmap,CCREG);
5998 if (cc == -1) {
5999 // Cycle count isn't in a register, temporarily load it then write it out
6000 emit_loadreg(CCREG,HOST_CCREG);
6001 emit_addimm_and_set_flags(cinfo[i].ccadj + CLOCK_ADJUST(2), HOST_CCREG);
6002 void *jaddr=out;
6003 emit_jns(0);
6004 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
6005 emit_storereg(CCREG,HOST_CCREG);
6006 }
6007 else{
6008 cc=get_reg(i_regmap,CCREG);
6009 assert(cc==HOST_CCREG);
6010 emit_addimm_and_set_flags(cinfo[i].ccadj + CLOCK_ADJUST(2), cc);
6011 void *jaddr=out;
6012 emit_jns(0);
6013 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
6014 }
6015 }
6016 }
6017}
6018
6019static void check_regmap(signed char *regmap)
6020{
6021#ifndef NDEBUG
6022 int i,j;
6023 for (i = 0; i < HOST_REGS; i++) {
6024 if (regmap[i] < 0)
6025 continue;
6026 for (j = i + 1; j < HOST_REGS; j++)
6027 assert(regmap[i] != regmap[j]);
6028 }
6029#endif
6030}
6031
6032#ifdef DISASM
6033#include <inttypes.h>
6034static char insn[MAXBLOCK][10];
6035
6036#define set_mnemonic(i_, n_) \
6037 strcpy(insn[i_], n_)
6038
6039void print_regmap(const char *name, const signed char *regmap)
6040{
6041 char buf[5];
6042 int i, l;
6043 fputs(name, stdout);
6044 for (i = 0; i < HOST_REGS; i++) {
6045 l = 0;
6046 if (regmap[i] >= 0)
6047 l = snprintf(buf, sizeof(buf), "$%d", regmap[i]);
6048 for (; l < 3; l++)
6049 buf[l] = ' ';
6050 buf[l] = 0;
6051 printf(" r%d=%s", i, buf);
6052 }
6053 fputs("\n", stdout);
6054}
6055
6056 /* disassembly */
6057void disassemble_inst(int i)
6058{
6059 if (dops[i].bt) printf("*"); else printf(" ");
6060 switch(dops[i].itype) {
6061 case UJUMP:
6062 printf (" %x: %s %8x\n",start+i*4,insn[i],cinfo[i].ba);break;
6063 case CJUMP:
6064 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2,i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):cinfo[i].ba);break;
6065 case SJUMP:
6066 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
6067 case RJUMP:
6068 if (dops[i].opcode2 == 9 && dops[i].rt1 != 31)
6069 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1);
6070 else
6071 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rs1);
6072 break;
6073 case IMM16:
6074 if(dops[i].opcode==0xf) //LUI
6075 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],dops[i].rt1,cinfo[i].imm&0xffff);
6076 else
6077 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,cinfo[i].imm);
6078 break;
6079 case LOAD:
6080 case LOADLR:
6081 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,cinfo[i].imm);
6082 break;
6083 case STORE:
6084 case STORELR:
6085 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],dops[i].rs2,dops[i].rs1,cinfo[i].imm);
6086 break;
6087 case ALU:
6088 case SHIFT:
6089 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,dops[i].rs2);
6090 break;
6091 case MULTDIV:
6092 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2);
6093 break;
6094 case SHIFTIMM:
6095 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,cinfo[i].imm);
6096 break;
6097 case MOV:
6098 if((dops[i].opcode2&0x1d)==0x10)
6099 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rt1);
6100 else if((dops[i].opcode2&0x1d)==0x11)
6101 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rs1);
6102 else
6103 printf (" %x: %s\n",start+i*4,insn[i]);
6104 break;
6105 case COP0:
6106 if(dops[i].opcode2==0)
6107 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC0
6108 else if(dops[i].opcode2==4)
6109 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC0
6110 else printf (" %x: %s\n",start+i*4,insn[i]);
6111 break;
6112 case COP2:
6113 if(dops[i].opcode2<3)
6114 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC2
6115 else if(dops[i].opcode2>3)
6116 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC2
6117 else printf (" %x: %s\n",start+i*4,insn[i]);
6118 break;
6119 case C2LS:
6120 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,dops[i].rs1,cinfo[i].imm);
6121 break;
6122 case INTCALL:
6123 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
6124 break;
6125 default:
6126 //printf (" %s %8x\n",insn[i],source[i]);
6127 printf (" %x: %s\n",start+i*4,insn[i]);
6128 }
6129 #ifndef REGMAP_PRINT
6130 return;
6131 #endif
6132 printf("D: %x WD: %x U: %"PRIx64" hC: %x hWC: %x hLC: %x\n",
6133 regs[i].dirty, regs[i].wasdirty, unneeded_reg[i],
6134 regs[i].isconst, regs[i].wasconst, regs[i].loadedconst);
6135 print_regmap("pre: ", regmap_pre[i]);
6136 print_regmap("entry: ", regs[i].regmap_entry);
6137 print_regmap("map: ", regs[i].regmap);
6138 if (dops[i].is_jump) {
6139 print_regmap("bentry:", branch_regs[i].regmap_entry);
6140 print_regmap("bmap: ", branch_regs[i].regmap);
6141 }
6142}
6143#else
6144#define set_mnemonic(i_, n_)
6145static void disassemble_inst(int i) {}
6146#endif // DISASM
6147
6148#define DRC_TEST_VAL 0x74657374
6149
6150static noinline void new_dynarec_test(void)
6151{
6152 int (*testfunc)(void);
6153 void *beginning;
6154 int ret[2];
6155 size_t i;
6156
6157 // check structure linkage
6158 if ((u_char *)rcnts - (u_char *)&psxRegs != sizeof(psxRegs))
6159 {
6160 SysPrintf("linkage_arm* miscompilation/breakage detected.\n");
6161 }
6162
6163 SysPrintf("(%p) testing if we can run recompiled code @%p...\n",
6164 new_dynarec_test, out);
6165 ((volatile u_int *)NDRC_WRITE_OFFSET(out))[0]++; // make the cache dirty
6166
6167 for (i = 0; i < ARRAY_SIZE(ret); i++) {
6168 out = ndrc->translation_cache;
6169 beginning = start_block();
6170 emit_movimm(DRC_TEST_VAL + i, 0); // test
6171 emit_ret();
6172 literal_pool(0);
6173 end_block(beginning);
6174 testfunc = beginning;
6175 ret[i] = testfunc();
6176 }
6177
6178 if (ret[0] == DRC_TEST_VAL && ret[1] == DRC_TEST_VAL + 1)
6179 SysPrintf("test passed.\n");
6180 else
6181 SysPrintf("test failed, will likely crash soon (r=%08x %08x)\n", ret[0], ret[1]);
6182 out = ndrc->translation_cache;
6183}
6184
6185// clear the state completely, instead of just marking
6186// things invalid like invalidate_all_pages() does
6187void new_dynarec_clear_full(void)
6188{
6189 int n;
6190 out = ndrc->translation_cache;
6191 memset(invalid_code,1,sizeof(invalid_code));
6192 memset(hash_table,0xff,sizeof(hash_table));
6193 memset(mini_ht,-1,sizeof(mini_ht));
6194 memset(shadow,0,sizeof(shadow));
6195 copy=shadow;
6196 expirep = EXPIRITY_OFFSET;
6197 pending_exception=0;
6198 literalcount=0;
6199 stop_after_jal=0;
6200 inv_code_start=inv_code_end=~0;
6201 hack_addr=0;
6202 f1_hack=0;
6203 for (n = 0; n < ARRAY_SIZE(blocks); n++)
6204 blocks_clear(&blocks[n]);
6205 for (n = 0; n < ARRAY_SIZE(jumps); n++) {
6206 free(jumps[n]);
6207 jumps[n] = NULL;
6208 }
6209 stat_clear(stat_blocks);
6210 stat_clear(stat_links);
6211
6212 cycle_multiplier_old = Config.cycle_multiplier;
6213 new_dynarec_hacks_old = new_dynarec_hacks;
6214}
6215
6216void new_dynarec_init(void)
6217{
6218 SysPrintf("Init new dynarec, ndrc size %x\n", (int)sizeof(*ndrc));
6219
6220#ifdef _3DS
6221 check_rosalina();
6222#endif
6223#ifdef BASE_ADDR_DYNAMIC
6224 #ifdef VITA
6225 sceBlock = getVMBlock(); //sceKernelAllocMemBlockForVM("code", sizeof(*ndrc));
6226 if (sceBlock <= 0)
6227 SysPrintf("sceKernelAllocMemBlockForVM failed: %x\n", sceBlock);
6228 int ret = sceKernelGetMemBlockBase(sceBlock, (void **)&ndrc);
6229 if (ret < 0)
6230 SysPrintf("sceKernelGetMemBlockBase failed: %x\n", ret);
6231 sceKernelOpenVMDomain();
6232 sceClibPrintf("translation_cache = 0x%08lx\n ", (long)ndrc->translation_cache);
6233 #elif defined(_MSC_VER)
6234 ndrc = VirtualAlloc(NULL, sizeof(*ndrc), MEM_COMMIT | MEM_RESERVE,
6235 PAGE_EXECUTE_READWRITE);
6236 #elif defined(HAVE_LIBNX)
6237 Result rc = jitCreate(&g_jit, sizeof(*ndrc));
6238 if (R_FAILED(rc))
6239 SysPrintf("jitCreate failed: %08x\n", rc);
6240 SysPrintf("jitCreate: RX: %p RW: %p type: %d\n", g_jit.rx_addr, g_jit.rw_addr, g_jit.type);
6241 jitTransitionToWritable(&g_jit);
6242 ndrc = g_jit.rx_addr;
6243 ndrc_write_ofs = (char *)g_jit.rw_addr - (char *)ndrc;
6244 memset(NDRC_WRITE_OFFSET(&ndrc->tramp), 0, sizeof(ndrc->tramp));
6245 #else
6246 uintptr_t desired_addr = 0;
6247 int prot = PROT_READ | PROT_WRITE | PROT_EXEC;
6248 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
6249 int fd = -1;
6250 #ifdef __ELF__
6251 extern char _end;
6252 desired_addr = ((uintptr_t)&_end + 0xffffff) & ~0xffffffl;
6253 #endif
6254 #ifdef TC_WRITE_OFFSET
6255 // mostly for testing
6256 fd = open("/dev/shm/pcsxr", O_CREAT | O_RDWR, 0600);
6257 ftruncate(fd, sizeof(*ndrc));
6258 void *mw = mmap(NULL, sizeof(*ndrc), PROT_READ | PROT_WRITE,
6259 (flags = MAP_SHARED), fd, 0);
6260 assert(mw != MAP_FAILED);
6261 prot = PROT_READ | PROT_EXEC;
6262 #endif
6263 ndrc = mmap((void *)desired_addr, sizeof(*ndrc), prot, flags, fd, 0);
6264 if (ndrc == MAP_FAILED) {
6265 SysPrintf("mmap() failed: %s\n", strerror(errno));
6266 abort();
6267 }
6268 #ifdef TC_WRITE_OFFSET
6269 ndrc_write_ofs = (char *)mw - (char *)ndrc;
6270 #endif
6271 #endif
6272#else
6273 #ifndef NO_WRITE_EXEC
6274 // not all systems allow execute in data segment by default
6275 // size must be 4K aligned for 3DS?
6276 if (mprotect(ndrc, sizeof(*ndrc),
6277 PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
6278 SysPrintf("mprotect() failed: %s\n", strerror(errno));
6279 #endif
6280#endif
6281 out = ndrc->translation_cache;
6282 new_dynarec_clear_full();
6283#ifdef HOST_IMM8
6284 // Copy this into local area so we don't have to put it in every literal pool
6285 invc_ptr=invalid_code;
6286#endif
6287 arch_init();
6288 new_dynarec_test();
6289 ram_offset = (uintptr_t)psxM - 0x80000000;
6290 if (ram_offset!=0)
6291 SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
6292 SysPrintf("Mapped (RAM/scrp/ROM/LUTs/TC):\n");
6293 SysPrintf("%p/%p/%p/%p/%p\n", psxM, psxH, psxR, mem_rtab, out);
6294}
6295
6296void new_dynarec_cleanup(void)
6297{
6298 int n;
6299#ifdef BASE_ADDR_DYNAMIC
6300 #ifdef VITA
6301 // sceBlock is managed by retroarch's bootstrap code
6302 //sceKernelFreeMemBlock(sceBlock);
6303 //sceBlock = -1;
6304 #elif defined(HAVE_LIBNX)
6305 jitClose(&g_jit);
6306 ndrc = NULL;
6307 #else
6308 if (munmap(ndrc, sizeof(*ndrc)) < 0)
6309 SysPrintf("munmap() failed\n");
6310 ndrc = NULL;
6311 #endif
6312#endif
6313 for (n = 0; n < ARRAY_SIZE(blocks); n++)
6314 blocks_clear(&blocks[n]);
6315 for (n = 0; n < ARRAY_SIZE(jumps); n++) {
6316 free(jumps[n]);
6317 jumps[n] = NULL;
6318 }
6319 stat_clear(stat_blocks);
6320 stat_clear(stat_links);
6321 new_dynarec_print_stats();
6322}
6323
6324static u_int *get_source_start(u_int addr, u_int *limit)
6325{
6326 if (addr < 0x00800000
6327 || (0x80000000 <= addr && addr < 0x80800000)
6328 || (0xa0000000 <= addr && addr < 0xa0800000))
6329 {
6330 // used for BIOS calls mostly?
6331 *limit = (addr & 0xa0600000) + 0x00200000;
6332 return (u_int *)(psxM + (addr & 0x1fffff));
6333 }
6334 else if (!Config.HLE && (
6335 /* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
6336 (0xbfc00000 <= addr && addr < 0xbfc80000)))
6337 {
6338 // BIOS. The multiplier should be much higher as it's uncached 8bit mem,
6339 // but timings in PCSX are too tied to the interpreter's 2-per-insn assumption
6340 if (!HACK_ENABLED(NDHACK_OVERRIDE_CYCLE_M))
6341 cycle_multiplier_active = 200;
6342
6343 *limit = (addr & 0xfff00000) | 0x80000;
6344 return (u_int *)((u_char *)psxR + (addr&0x7ffff));
6345 }
6346 return NULL;
6347}
6348
6349static u_int scan_for_ret(u_int addr)
6350{
6351 u_int limit = 0;
6352 u_int *mem;
6353
6354 mem = get_source_start(addr, &limit);
6355 if (mem == NULL)
6356 return addr;
6357
6358 if (limit > addr + 0x1000)
6359 limit = addr + 0x1000;
6360 for (; addr < limit; addr += 4, mem++) {
6361 if (*mem == 0x03e00008) // jr $ra
6362 return addr + 8;
6363 }
6364 return addr;
6365}
6366
6367struct savestate_block {
6368 uint32_t addr;
6369 uint32_t regflags;
6370};
6371
6372static int addr_cmp(const void *p1_, const void *p2_)
6373{
6374 const struct savestate_block *p1 = p1_, *p2 = p2_;
6375 return p1->addr - p2->addr;
6376}
6377
6378int new_dynarec_save_blocks(void *save, int size)
6379{
6380 struct savestate_block *sblocks = save;
6381 int maxcount = size / sizeof(sblocks[0]);
6382 struct savestate_block tmp_blocks[1024];
6383 struct block_info *block;
6384 int p, s, d, o, bcnt;
6385 u_int addr;
6386
6387 o = 0;
6388 for (p = 0; p < ARRAY_SIZE(blocks); p++) {
6389 bcnt = 0;
6390 for (block = blocks[p]; block != NULL; block = block->next) {
6391 if (block->is_dirty)
6392 continue;
6393 tmp_blocks[bcnt].addr = block->start;
6394 tmp_blocks[bcnt].regflags = block->reg_sv_flags;
6395 bcnt++;
6396 }
6397 if (bcnt < 1)
6398 continue;
6399 qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
6400
6401 addr = tmp_blocks[0].addr;
6402 for (s = d = 0; s < bcnt; s++) {
6403 if (tmp_blocks[s].addr < addr)
6404 continue;
6405 if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
6406 tmp_blocks[d++] = tmp_blocks[s];
6407 addr = scan_for_ret(tmp_blocks[s].addr);
6408 }
6409
6410 if (o + d > maxcount)
6411 d = maxcount - o;
6412 memcpy(&sblocks[o], tmp_blocks, d * sizeof(sblocks[0]));
6413 o += d;
6414 }
6415
6416 return o * sizeof(sblocks[0]);
6417}
6418
6419void new_dynarec_load_blocks(const void *save, int size)
6420{
6421 const struct savestate_block *sblocks = save;
6422 int count = size / sizeof(sblocks[0]);
6423 struct block_info *block;
6424 u_int regs_save[32];
6425 u_int page;
6426 uint32_t f;
6427 int i, b;
6428
6429 // restore clean blocks, if any
6430 for (page = 0, b = i = 0; page < ARRAY_SIZE(blocks); page++) {
6431 for (block = blocks[page]; block != NULL; block = block->next, b++) {
6432 if (!block->is_dirty)
6433 continue;
6434 assert(block->source && block->copy);
6435 if (memcmp(block->source, block->copy, block->len))
6436 continue;
6437
6438 // see try_restore_block
6439 block->is_dirty = 0;
6440 mark_invalid_code(block->start, block->len, 0);
6441 i++;
6442 }
6443 }
6444 inv_debug("load_blocks: %d/%d clean blocks\n", i, b);
6445
6446 // change GPRs for speculation to at least partially work..
6447 memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
6448 for (i = 1; i < 32; i++)
6449 psxRegs.GPR.r[i] = 0x80000000;
6450
6451 for (b = 0; b < count; b++) {
6452 for (f = sblocks[b].regflags, i = 0; f; f >>= 1, i++) {
6453 if (f & 1)
6454 psxRegs.GPR.r[i] = 0x1f800000;
6455 }
6456
6457 ndrc_get_addr_ht(sblocks[b].addr);
6458
6459 for (f = sblocks[b].regflags, i = 0; f; f >>= 1, i++) {
6460 if (f & 1)
6461 psxRegs.GPR.r[i] = 0x80000000;
6462 }
6463 }
6464
6465 memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
6466}
6467
6468void new_dynarec_print_stats(void)
6469{
6470#ifdef STAT_PRINT
6471 printf("cc %3d,%3d,%3d lu%6d,%3d,%3d c%3d inv%3d,%3d tc_offs %zu b %u,%u\n",
6472 stat_bc_pre, stat_bc_direct, stat_bc_restore,
6473 stat_ht_lookups, stat_jump_in_lookups, stat_restore_tries,
6474 stat_restore_compares, stat_inv_addr_calls, stat_inv_hits,
6475 out - ndrc->translation_cache, stat_blocks, stat_links);
6476 stat_bc_direct = stat_bc_pre = stat_bc_restore =
6477 stat_ht_lookups = stat_jump_in_lookups = stat_restore_tries =
6478 stat_restore_compares = stat_inv_addr_calls = stat_inv_hits = 0;
6479#endif
6480}
6481
6482static int apply_hacks(void)
6483{
6484 int i;
6485 if (HACK_ENABLED(NDHACK_NO_COMPAT_HACKS))
6486 return 0;
6487 /* special hack(s) */
6488 for (i = 0; i < slen - 4; i++)
6489 {
6490 // lui a4, 0xf200; jal <rcnt_read>; addu a0, 2; slti v0, 28224
6491 if (source[i] == 0x3c04f200 && dops[i+1].itype == UJUMP
6492 && source[i+2] == 0x34840002 && dops[i+3].opcode == 0x0a
6493 && cinfo[i+3].imm == 0x6e40 && dops[i+3].rs1 == 2)
6494 {
6495 SysPrintf("PE2 hack @%08x\n", start + (i+3)*4);
6496 dops[i + 3].itype = NOP;
6497 }
6498 }
6499 i = slen;
6500 if (i > 10 && source[i-1] == 0 && source[i-2] == 0x03e00008
6501 && source[i-4] == 0x8fbf0018 && source[i-6] == 0x00c0f809
6502 && dops[i-7].itype == STORE)
6503 {
6504 i = i-8;
6505 if (dops[i].itype == IMM16)
6506 i--;
6507 // swl r2, 15(r6); swr r2, 12(r6); sw r6, *; jalr r6
6508 if (dops[i].itype == STORELR && dops[i].rs1 == 6
6509 && dops[i-1].itype == STORELR && dops[i-1].rs1 == 6)
6510 {
6511 SysPrintf("F1 hack from %08x, old dst %08x\n", start, hack_addr);
6512 f1_hack = 1;
6513 return 1;
6514 }
6515 }
6516 return 0;
6517}
6518
6519static int is_ld_use_hazard(int ld_rt, const struct decoded_insn *op)
6520{
6521 return ld_rt != 0 && (ld_rt == op->rs1 || ld_rt == op->rs2)
6522 && op->itype != LOADLR && op->itype != CJUMP && op->itype != SJUMP;
6523}
6524
6525static void force_intcall(int i)
6526{
6527 memset(&dops[i], 0, sizeof(dops[i]));
6528 dops[i].itype = INTCALL;
6529 dops[i].rs1 = CCREG;
6530 dops[i].is_exception = 1;
6531 cinfo[i].ba = -1;
6532}
6533
6534static void disassemble_one(int i, u_int src)
6535{
6536 unsigned int type, op, op2, op3;
6537 enum ls_width_type ls_type = LS_32;
6538 memset(&dops[i], 0, sizeof(dops[i]));
6539 memset(&cinfo[i], 0, sizeof(cinfo[i]));
6540 cinfo[i].ba = -1;
6541 cinfo[i].addr = -1;
6542 dops[i].opcode = op = src >> 26;
6543 op2 = 0;
6544 type = INTCALL;
6545 set_mnemonic(i, "???");
6546 switch(op)
6547 {
6548 case 0x00: set_mnemonic(i, "special");
6549 op2 = src & 0x3f;
6550 switch(op2)
6551 {
6552 case 0x00: set_mnemonic(i, "SLL"); type=SHIFTIMM; break;
6553 case 0x02: set_mnemonic(i, "SRL"); type=SHIFTIMM; break;
6554 case 0x03: set_mnemonic(i, "SRA"); type=SHIFTIMM; break;
6555 case 0x04: set_mnemonic(i, "SLLV"); type=SHIFT; break;
6556 case 0x06: set_mnemonic(i, "SRLV"); type=SHIFT; break;
6557 case 0x07: set_mnemonic(i, "SRAV"); type=SHIFT; break;
6558 case 0x08: set_mnemonic(i, "JR"); type=RJUMP; break;
6559 case 0x09: set_mnemonic(i, "JALR"); type=RJUMP; break;
6560 case 0x0C: set_mnemonic(i, "SYSCALL"); type=SYSCALL; break;
6561 case 0x0D: set_mnemonic(i, "BREAK"); type=SYSCALL; break;
6562 case 0x10: set_mnemonic(i, "MFHI"); type=MOV; break;
6563 case 0x11: set_mnemonic(i, "MTHI"); type=MOV; break;
6564 case 0x12: set_mnemonic(i, "MFLO"); type=MOV; break;
6565 case 0x13: set_mnemonic(i, "MTLO"); type=MOV; break;
6566 case 0x18: set_mnemonic(i, "MULT"); type=MULTDIV; break;
6567 case 0x19: set_mnemonic(i, "MULTU"); type=MULTDIV; break;
6568 case 0x1A: set_mnemonic(i, "DIV"); type=MULTDIV; break;
6569 case 0x1B: set_mnemonic(i, "DIVU"); type=MULTDIV; break;
6570 case 0x20: set_mnemonic(i, "ADD"); type=ALU; break;
6571 case 0x21: set_mnemonic(i, "ADDU"); type=ALU; break;
6572 case 0x22: set_mnemonic(i, "SUB"); type=ALU; break;
6573 case 0x23: set_mnemonic(i, "SUBU"); type=ALU; break;
6574 case 0x24: set_mnemonic(i, "AND"); type=ALU; break;
6575 case 0x25: set_mnemonic(i, "OR"); type=ALU; break;
6576 case 0x26: set_mnemonic(i, "XOR"); type=ALU; break;
6577 case 0x27: set_mnemonic(i, "NOR"); type=ALU; break;
6578 case 0x2A: set_mnemonic(i, "SLT"); type=ALU; break;
6579 case 0x2B: set_mnemonic(i, "SLTU"); type=ALU; break;
6580 }
6581 break;
6582 case 0x01: set_mnemonic(i, "regimm");
6583 type = SJUMP;
6584 op2 = (src >> 16) & 0x1f;
6585 switch(op2)
6586 {
6587 case 0x10: set_mnemonic(i, "BLTZAL"); break;
6588 case 0x11: set_mnemonic(i, "BGEZAL"); break;
6589 default:
6590 if (op2 & 1)
6591 set_mnemonic(i, "BGEZ");
6592 else
6593 set_mnemonic(i, "BLTZ");
6594 }
6595 break;
6596 case 0x02: set_mnemonic(i, "J"); type=UJUMP; break;
6597 case 0x03: set_mnemonic(i, "JAL"); type=UJUMP; break;
6598 case 0x04: set_mnemonic(i, "BEQ"); type=CJUMP; break;
6599 case 0x05: set_mnemonic(i, "BNE"); type=CJUMP; break;
6600 case 0x06: set_mnemonic(i, "BLEZ"); type=CJUMP; break;
6601 case 0x07: set_mnemonic(i, "BGTZ"); type=CJUMP; break;
6602 case 0x08: set_mnemonic(i, "ADDI"); type=IMM16; break;
6603 case 0x09: set_mnemonic(i, "ADDIU"); type=IMM16; break;
6604 case 0x0A: set_mnemonic(i, "SLTI"); type=IMM16; break;
6605 case 0x0B: set_mnemonic(i, "SLTIU"); type=IMM16; break;
6606 case 0x0C: set_mnemonic(i, "ANDI"); type=IMM16; break;
6607 case 0x0D: set_mnemonic(i, "ORI"); type=IMM16; break;
6608 case 0x0E: set_mnemonic(i, "XORI"); type=IMM16; break;
6609 case 0x0F: set_mnemonic(i, "LUI"); type=IMM16; break;
6610 case 0x10: set_mnemonic(i, "COP0");
6611 op2 = (src >> 21) & 0x1f;
6612 if (op2 & 0x10) {
6613 op3 = src & 0x1f;
6614 switch (op3)
6615 {
6616 case 0x01: case 0x02: case 0x06: case 0x08: type = INTCALL; break;
6617 case 0x10: set_mnemonic(i, "RFE"); type=RFE; break;
6618 default: type = OTHER; break;
6619 }
6620 break;
6621 }
6622 switch(op2)
6623 {
6624 u32 rd;
6625 case 0x00:
6626 set_mnemonic(i, "MFC0");
6627 rd = (src >> 11) & 0x1F;
6628 if (!(0x00000417u & (1u << rd)))
6629 type = COP0;
6630 break;
6631 case 0x04: set_mnemonic(i, "MTC0"); type=COP0; break;
6632 case 0x02:
6633 case 0x06: type = INTCALL; break;
6634 default: type = OTHER; break;
6635 }
6636 break;
6637 case 0x11: set_mnemonic(i, "COP1");
6638 op2 = (src >> 21) & 0x1f;
6639 break;
6640 case 0x12: set_mnemonic(i, "COP2");
6641 op2 = (src >> 21) & 0x1f;
6642 if (op2 & 0x10) {
6643 type = OTHER;
6644 if (gte_handlers[src & 0x3f] != NULL) {
6645#ifdef DISASM
6646 if (gte_regnames[src & 0x3f] != NULL)
6647 strcpy(insn[i], gte_regnames[src & 0x3f]);
6648 else
6649 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", src & 0x3f);
6650#endif
6651 type = C2OP;
6652 }
6653 }
6654 else switch(op2)
6655 {
6656 case 0x00: set_mnemonic(i, "MFC2"); type=COP2; break;
6657 case 0x02: set_mnemonic(i, "CFC2"); type=COP2; break;
6658 case 0x04: set_mnemonic(i, "MTC2"); type=COP2; break;
6659 case 0x06: set_mnemonic(i, "CTC2"); type=COP2; break;
6660 }
6661 break;
6662 case 0x13: set_mnemonic(i, "COP3");
6663 op2 = (src >> 21) & 0x1f;
6664 break;
6665 case 0x20: set_mnemonic(i, "LB"); type=LOAD; ls_type = LS_8; break;
6666 case 0x21: set_mnemonic(i, "LH"); type=LOAD; ls_type = LS_16; break;
6667 case 0x22: set_mnemonic(i, "LWL"); type=LOADLR; ls_type = LS_LR; break;
6668 case 0x23: set_mnemonic(i, "LW"); type=LOAD; ls_type = LS_32; break;
6669 case 0x24: set_mnemonic(i, "LBU"); type=LOAD; ls_type = LS_8; break;
6670 case 0x25: set_mnemonic(i, "LHU"); type=LOAD; ls_type = LS_16; break;
6671 case 0x26: set_mnemonic(i, "LWR"); type=LOADLR; ls_type = LS_LR; break;
6672 case 0x28: set_mnemonic(i, "SB"); type=STORE; ls_type = LS_8; break;
6673 case 0x29: set_mnemonic(i, "SH"); type=STORE; ls_type = LS_16; break;
6674 case 0x2A: set_mnemonic(i, "SWL"); type=STORELR; ls_type = LS_LR; break;
6675 case 0x2B: set_mnemonic(i, "SW"); type=STORE; ls_type = LS_32; break;
6676 case 0x2E: set_mnemonic(i, "SWR"); type=STORELR; ls_type = LS_LR; break;
6677 case 0x32: set_mnemonic(i, "LWC2"); type=C2LS; ls_type = LS_32; break;
6678 case 0x3A: set_mnemonic(i, "SWC2"); type=C2LS; ls_type = LS_32; break;
6679 case 0x3B:
6680 if (Config.HLE && (src & 0x03ffffff) < ARRAY_SIZE(psxHLEt)) {
6681 set_mnemonic(i, "HLECALL");
6682 type = HLECALL;
6683 }
6684 break;
6685 default:
6686 break;
6687 }
6688 if (type == INTCALL)
6689 SysPrintf("NI %08x @%08x (%08x)\n", src, start + i*4, start);
6690 dops[i].itype = type;
6691 dops[i].opcode2 = op2;
6692 dops[i].ls_type = ls_type;
6693 /* Get registers/immediates */
6694 dops[i].use_lt1=0;
6695 gte_rs[i]=gte_rt[i]=0;
6696 dops[i].rs1 = 0;
6697 dops[i].rs2 = 0;
6698 dops[i].rt1 = 0;
6699 dops[i].rt2 = 0;
6700 switch(type) {
6701 case LOAD:
6702 dops[i].rs1 = (src >> 21) & 0x1f;
6703 dops[i].rt1 = (src >> 16) & 0x1f;
6704 cinfo[i].imm = (short)src;
6705 break;
6706 case STORE:
6707 case STORELR:
6708 dops[i].rs1 = (src >> 21) & 0x1f;
6709 dops[i].rs2 = (src >> 16) & 0x1f;
6710 cinfo[i].imm = (short)src;
6711 break;
6712 case LOADLR:
6713 // LWL/LWR only load part of the register,
6714 // therefore the target register must be treated as a source too
6715 dops[i].rs1 = (src >> 21) & 0x1f;
6716 dops[i].rs2 = (src >> 16) & 0x1f;
6717 dops[i].rt1 = (src >> 16) & 0x1f;
6718 cinfo[i].imm = (short)src;
6719 break;
6720 case IMM16:
6721 if (op==0x0f) dops[i].rs1=0; // LUI instruction has no source register
6722 else dops[i].rs1 = (src >> 21) & 0x1f;
6723 dops[i].rs2 = 0;
6724 dops[i].rt1 = (src >> 16) & 0x1f;
6725 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
6726 cinfo[i].imm = (unsigned short)src;
6727 }else{
6728 cinfo[i].imm = (short)src;
6729 }
6730 break;
6731 case UJUMP:
6732 // The JAL instruction writes to r31.
6733 if (op&1) {
6734 dops[i].rt1=31;
6735 }
6736 dops[i].rs2=CCREG;
6737 break;
6738 case RJUMP:
6739 dops[i].rs1 = (src >> 21) & 0x1f;
6740 // The JALR instruction writes to rd.
6741 if (op2&1) {
6742 dops[i].rt1 = (src >> 11) & 0x1f;
6743 }
6744 dops[i].rs2=CCREG;
6745 break;
6746 case CJUMP:
6747 dops[i].rs1 = (src >> 21) & 0x1f;
6748 dops[i].rs2 = (src >> 16) & 0x1f;
6749 if(op&2) { // BGTZ/BLEZ
6750 dops[i].rs2=0;
6751 }
6752 break;
6753 case SJUMP:
6754 dops[i].rs1 = (src >> 21) & 0x1f;
6755 dops[i].rs2 = CCREG;
6756 if (op2 == 0x10 || op2 == 0x11) { // BxxAL
6757 dops[i].rt1 = 31;
6758 // NOTE: If the branch is not taken, r31 is still overwritten
6759 }
6760 break;
6761 case ALU:
6762 dops[i].rs1=(src>>21)&0x1f; // source
6763 dops[i].rs2=(src>>16)&0x1f; // subtract amount
6764 dops[i].rt1=(src>>11)&0x1f; // destination
6765 break;
6766 case MULTDIV:
6767 dops[i].rs1=(src>>21)&0x1f; // source
6768 dops[i].rs2=(src>>16)&0x1f; // divisor
6769 dops[i].rt1=HIREG;
6770 dops[i].rt2=LOREG;
6771 break;
6772 case MOV:
6773 if(op2==0x10) dops[i].rs1=HIREG; // MFHI
6774 if(op2==0x11) dops[i].rt1=HIREG; // MTHI
6775 if(op2==0x12) dops[i].rs1=LOREG; // MFLO
6776 if(op2==0x13) dops[i].rt1=LOREG; // MTLO
6777 if((op2&0x1d)==0x10) dops[i].rt1=(src>>11)&0x1f; // MFxx
6778 if((op2&0x1d)==0x11) dops[i].rs1=(src>>21)&0x1f; // MTxx
6779 break;
6780 case SHIFT:
6781 dops[i].rs1=(src>>16)&0x1f; // target of shift
6782 dops[i].rs2=(src>>21)&0x1f; // shift amount
6783 dops[i].rt1=(src>>11)&0x1f; // destination
6784 break;
6785 case SHIFTIMM:
6786 dops[i].rs1=(src>>16)&0x1f;
6787 dops[i].rs2=0;
6788 dops[i].rt1=(src>>11)&0x1f;
6789 cinfo[i].imm=(src>>6)&0x1f;
6790 break;
6791 case COP0:
6792 if(op2==0) dops[i].rt1=(src>>16)&0x1F; // MFC0
6793 if(op2==4) dops[i].rs1=(src>>16)&0x1F; // MTC0
6794 if(op2==4&&((src>>11)&0x1e)==12) dops[i].rs2=CCREG;
6795 break;
6796 case COP2:
6797 if(op2<3) dops[i].rt1=(src>>16)&0x1F; // MFC2/CFC2
6798 if(op2>3) dops[i].rs1=(src>>16)&0x1F; // MTC2/CTC2
6799 int gr=(src>>11)&0x1F;
6800 switch(op2)
6801 {
6802 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
6803 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
6804 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
6805 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
6806 }
6807 break;
6808 case C2LS:
6809 dops[i].rs1=(src>>21)&0x1F;
6810 cinfo[i].imm=(short)src;
6811 if(op==0x32) gte_rt[i]=1ll<<((src>>16)&0x1F); // LWC2
6812 else gte_rs[i]=1ll<<((src>>16)&0x1F); // SWC2
6813 break;
6814 case C2OP:
6815 gte_rs[i]=gte_reg_reads[src&0x3f];
6816 gte_rt[i]=gte_reg_writes[src&0x3f];
6817 gte_rt[i]|=1ll<<63; // every op changes flags
6818 if((src&0x3f)==GTE_MVMVA) {
6819 int v = (src >> 15) & 3;
6820 gte_rs[i]&=~0xe3fll;
6821 if(v==3) gte_rs[i]|=0xe00ll;
6822 else gte_rs[i]|=3ll<<(v*2);
6823 }
6824 break;
6825 case SYSCALL:
6826 case HLECALL:
6827 case INTCALL:
6828 dops[i].rs1=CCREG;
6829 break;
6830 default:
6831 break;
6832 }
6833}
6834
6835static noinline void pass1_disassemble(u_int pagelimit)
6836{
6837 int i, j, done = 0, ni_count = 0;
6838 int ds_next = 0;
6839
6840 for (i = 0; !done; i++)
6841 {
6842 int force_j_to_interpreter = 0;
6843 unsigned int type, op, op2;
6844
6845 disassemble_one(i, source[i]);
6846 dops[i].is_ds = ds_next; ds_next = 0;
6847 type = dops[i].itype;
6848 op = dops[i].opcode;
6849 op2 = dops[i].opcode2;
6850
6851 /* Calculate branch target addresses */
6852 if(type==UJUMP)
6853 cinfo[i].ba=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
6854 else if(type==CJUMP&&dops[i].rs1==dops[i].rs2&&(op&1))
6855 cinfo[i].ba=start+i*4+8; // Ignore never taken branch
6856 else if(type==SJUMP&&dops[i].rs1==0&&!(op2&1))
6857 cinfo[i].ba=start+i*4+8; // Ignore never taken branch
6858 else if(type==CJUMP||type==SJUMP)
6859 cinfo[i].ba=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
6860
6861 /* simplify always (not)taken branches */
6862 if (type == CJUMP && dops[i].rs1 == dops[i].rs2) {
6863 dops[i].rs1 = dops[i].rs2 = 0;
6864 if (!(op & 1)) {
6865 dops[i].itype = type = UJUMP;
6866 dops[i].rs2 = CCREG;
6867 }
6868 }
6869 else if (type == SJUMP && dops[i].rs1 == 0 && (op2 & 1))
6870 dops[i].itype = type = UJUMP;
6871
6872 dops[i].is_jump = type == RJUMP || type == UJUMP || type == CJUMP || type == SJUMP;
6873 dops[i].is_ujump = type == RJUMP || type == UJUMP;
6874 dops[i].is_load = type == LOAD || type == LOADLR || op == 0x32; // LWC2
6875 dops[i].is_delay_load = (dops[i].is_load || (source[i] & 0xf3d00000) == 0x40000000); // MFC/CFC
6876 dops[i].is_store = type == STORE || type == STORELR || op == 0x3a; // SWC2
6877 dops[i].is_exception = type == SYSCALL || type == HLECALL || type == INTCALL;
6878 dops[i].may_except = dops[i].is_exception || (type == ALU && (op2 == 0x20 || op2 == 0x22)) || op == 8;
6879 ds_next = dops[i].is_jump;
6880
6881 if (((op & 0x37) == 0x21 || op == 0x25) // LH/SH/LHU
6882 && ((cinfo[i].imm & 1) || Config.PreciseExceptions))
6883 dops[i].may_except = 1;
6884 if (((op & 0x37) == 0x23 || (op & 0x37) == 0x32) // LW/SW/LWC2/SWC2
6885 && ((cinfo[i].imm & 3) || Config.PreciseExceptions))
6886 dops[i].may_except = 1;
6887
6888 /* rare messy cases to just pass over to the interpreter */
6889 if (i > 0 && dops[i-1].is_jump) {
6890 j = i - 1;
6891 // branch in delay slot?
6892 if (dops[i].is_jump) {
6893 // don't handle first branch and call interpreter if it's hit
6894 SysPrintf("branch in DS @%08x (%08x)\n", start + i*4, start);
6895 force_j_to_interpreter = 1;
6896 }
6897 // load delay detection through a branch
6898 else if (dops[i].is_delay_load && dops[i].rt1 != 0) {
6899 const struct decoded_insn *dop = NULL;
6900 int t = -1;
6901 if (cinfo[i-1].ba != -1) {
6902 t = (cinfo[i-1].ba - start) / 4;
6903 if (t < 0 || t > i) {
6904 u_int limit = 0;
6905 u_int *mem = get_source_start(cinfo[i-1].ba, &limit);
6906 if (mem != NULL) {
6907 disassemble_one(MAXBLOCK - 1, mem[0]);
6908 dop = &dops[MAXBLOCK - 1];
6909 }
6910 }
6911 else
6912 dop = &dops[t];
6913 }
6914 if ((dop && is_ld_use_hazard(dops[i].rt1, dop))
6915 || (!dop && Config.PreciseExceptions)) {
6916 // jump target wants DS result - potential load delay effect
6917 SysPrintf("load delay in DS @%08x (%08x)\n", start + i*4, start);
6918 force_j_to_interpreter = 1;
6919 if (0 <= t && t < i)
6920 dops[t + 1].bt = 1; // expected return from interpreter
6921 }
6922 else if(i>=2&&dops[i-2].rt1==2&&dops[i].rt1==2&&dops[i].rs1!=2&&dops[i].rs2!=2&&dops[i-1].rs1!=2&&dops[i-1].rs2!=2&&
6923 !(i>=3&&dops[i-3].is_jump)) {
6924 // v0 overwrite like this is a sign of trouble, bail out
6925 SysPrintf("v0 overwrite @%08x (%08x)\n", start + i*4, start);
6926 force_j_to_interpreter = 1;
6927 }
6928 }
6929 }
6930 else if (i > 0 && dops[i-1].is_delay_load
6931 && is_ld_use_hazard(dops[i-1].rt1, &dops[i])
6932 && (i < 2 || !dops[i-2].is_ujump)) {
6933 SysPrintf("load delay @%08x (%08x)\n", start + i*4, start);
6934 for (j = i - 1; j > 0 && dops[j-1].is_delay_load; j--)
6935 if (dops[j-1].rt1 != dops[i-1].rt1)
6936 break;
6937 force_j_to_interpreter = 1;
6938 }
6939 if (force_j_to_interpreter) {
6940 force_intcall(j);
6941 done = 2;
6942 i = j; // don't compile the problematic branch/load/etc
6943 }
6944 if (dops[i].is_exception && i > 0 && dops[i-1].is_jump) {
6945 SysPrintf("exception in DS @%08x (%08x)\n", start + i*4, start);
6946 i--;
6947 force_intcall(i);
6948 done = 2;
6949 }
6950 if (i >= 2 && (source[i-2] & 0xffe0f800) == 0x40806000) // MTC0 $12
6951 dops[i].bt = 1;
6952 if (i >= 1 && (source[i-1] & 0xffe0f800) == 0x40806800) // MTC0 $13
6953 dops[i].bt = 1;
6954
6955 /* Is this the end of the block? */
6956 if (i > 0 && dops[i-1].is_ujump) {
6957 if (dops[i-1].rt1 == 0) { // not jal
6958 int found_bbranch = 0, t = (cinfo[i-1].ba - start) / 4;
6959 if ((u_int)(t - i) < 64 && start + (t+64)*4 < pagelimit) {
6960 // scan for a branch back to i+1
6961 for (j = t; j < t + 64; j++) {
6962 int tmpop = source[j] >> 26;
6963 if (tmpop == 1 || ((tmpop & ~3) == 4)) {
6964 int t2 = j + 1 + (int)(signed short)source[j];
6965 if (t2 == i + 1) {
6966 //printf("blk expand %08x<-%08x\n", start + (i+1)*4, start + j*4);
6967 found_bbranch = 1;
6968 break;
6969 }
6970 }
6971 }
6972 }
6973 if (!found_bbranch)
6974 done = 2;
6975 }
6976 else {
6977 if(stop_after_jal) done=1;
6978 // Stop on BREAK
6979 if((source[i+1]&0xfc00003f)==0x0d) done=1;
6980 }
6981 // Don't recompile stuff that's already compiled
6982 if(check_addr(start+i*4+4)) done=1;
6983 // Don't get too close to the limit
6984 if (i > MAXBLOCK - 64)
6985 done = 1;
6986 }
6987 if (dops[i].itype == HLECALL)
6988 stop = 1;
6989 else if (dops[i].itype == INTCALL)
6990 stop = 2;
6991 else if (dops[i].is_exception)
6992 done = stop_after_jal ? 1 : 2;
6993 if (done == 2) {
6994 // Does the block continue due to a branch?
6995 for(j=i-1;j>=0;j--)
6996 {
6997 if(cinfo[j].ba==start+i*4) done=j=0; // Branch into delay slot
6998 if(cinfo[j].ba==start+i*4+4) done=j=0;
6999 if(cinfo[j].ba==start+i*4+8) done=j=0;
7000 }
7001 }
7002 //assert(i<MAXBLOCK-1);
7003 if(start+i*4==pagelimit-4) done=1;
7004 assert(start+i*4<pagelimit);
7005 if (i == MAXBLOCK - 2)
7006 done = 1;
7007 // Stop if we're compiling junk
7008 if (dops[i].itype == INTCALL && (++ni_count > 8 || dops[i].opcode == 0x11)) {
7009 done=stop_after_jal=1;
7010 SysPrintf("Disabled speculative precompilation\n");
7011 }
7012 }
7013 while (i > 0 && dops[i-1].is_jump)
7014 i--;
7015 assert(i > 0);
7016 assert(!dops[i-1].is_jump);
7017 slen = i;
7018}
7019
7020// Basic liveness analysis for MIPS registers
7021static noinline void pass2_unneeded_regs(int istart,int iend,int r)
7022{
7023 int i;
7024 uint64_t u,gte_u,b,gte_b;
7025 uint64_t temp_u,temp_gte_u=0;
7026 uint64_t gte_u_unknown=0;
7027 if (HACK_ENABLED(NDHACK_GTE_UNNEEDED))
7028 gte_u_unknown=~0ll;
7029 if(iend==slen-1) {
7030 u=1;
7031 gte_u=gte_u_unknown;
7032 }else{
7033 //u=unneeded_reg[iend+1];
7034 u=1;
7035 gte_u=gte_unneeded[iend+1];
7036 }
7037
7038 for (i=iend;i>=istart;i--)
7039 {
7040 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
7041 if(dops[i].is_jump)
7042 {
7043 // If subroutine call, flag return address as a possible branch target
7044 if(dops[i].rt1==31 && i<slen-2) dops[i+2].bt=1;
7045
7046 if(cinfo[i].ba<start || cinfo[i].ba>=(start+slen*4))
7047 {
7048 // Branch out of this block, flush all regs
7049 u=1;
7050 gte_u=gte_u_unknown;
7051 branch_unneeded_reg[i]=u;
7052 // Merge in delay slot
7053 u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
7054 u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
7055 u|=1;
7056 gte_u|=gte_rt[i+1];
7057 gte_u&=~gte_rs[i+1];
7058 }
7059 else
7060 {
7061 // Internal branch, flag target
7062 dops[(cinfo[i].ba-start)>>2].bt=1;
7063 if(cinfo[i].ba<=start+i*4) {
7064 // Backward branch
7065 if(dops[i].is_ujump)
7066 {
7067 // Unconditional branch
7068 temp_u=1;
7069 temp_gte_u=0;
7070 } else {
7071 // Conditional branch (not taken case)
7072 temp_u=unneeded_reg[i+2];
7073 temp_gte_u&=gte_unneeded[i+2];
7074 }
7075 // Merge in delay slot
7076 temp_u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
7077 temp_u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
7078 temp_u|=1;
7079 temp_gte_u|=gte_rt[i+1];
7080 temp_gte_u&=~gte_rs[i+1];
7081 temp_u|=(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2);
7082 temp_u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7083 temp_u|=1;
7084 temp_gte_u|=gte_rt[i];
7085 temp_gte_u&=~gte_rs[i];
7086 unneeded_reg[i]=temp_u;
7087 gte_unneeded[i]=temp_gte_u;
7088 // Only go three levels deep. This recursion can take an
7089 // excessive amount of time if there are a lot of nested loops.
7090 if(r<2) {
7091 pass2_unneeded_regs((cinfo[i].ba-start)>>2,i-1,r+1);
7092 }else{
7093 unneeded_reg[(cinfo[i].ba-start)>>2]=1;
7094 gte_unneeded[(cinfo[i].ba-start)>>2]=gte_u_unknown;
7095 }
7096 } /*else*/ if(1) {
7097 if (dops[i].is_ujump)
7098 {
7099 // Unconditional branch
7100 u=unneeded_reg[(cinfo[i].ba-start)>>2];
7101 gte_u=gte_unneeded[(cinfo[i].ba-start)>>2];
7102 branch_unneeded_reg[i]=u;
7103 // Merge in delay slot
7104 u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
7105 u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
7106 u|=1;
7107 gte_u|=gte_rt[i+1];
7108 gte_u&=~gte_rs[i+1];
7109 } else {
7110 // Conditional branch
7111 b=unneeded_reg[(cinfo[i].ba-start)>>2];
7112 gte_b=gte_unneeded[(cinfo[i].ba-start)>>2];
7113 branch_unneeded_reg[i]=b;
7114 // Branch delay slot
7115 b|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
7116 b&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
7117 b|=1;
7118 gte_b|=gte_rt[i+1];
7119 gte_b&=~gte_rs[i+1];
7120 u&=b;
7121 gte_u&=gte_b;
7122 if(i<slen-1) {
7123 branch_unneeded_reg[i]&=unneeded_reg[i+2];
7124 } else {
7125 branch_unneeded_reg[i]=1;
7126 }
7127 }
7128 }
7129 }
7130 }
7131 //u=1; // DEBUG
7132 // Written registers are unneeded
7133 u|=1LL<<dops[i].rt1;
7134 u|=1LL<<dops[i].rt2;
7135 gte_u|=gte_rt[i];
7136 // Accessed registers are needed
7137 u&=~(1LL<<dops[i].rs1);
7138 u&=~(1LL<<dops[i].rs2);
7139 gte_u&=~gte_rs[i];
7140 if(gte_rs[i]&&dops[i].rt1&&(unneeded_reg[i+1]&(1ll<<dops[i].rt1)))
7141 gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
7142 if (dops[i].may_except || dops[i].itype == RFE)
7143 {
7144 // SYSCALL instruction, etc or conditional exception
7145 u=1;
7146 }
7147 // Source-target dependencies
7148 // R0 is always unneeded
7149 u|=1;
7150 // Save it
7151 unneeded_reg[i]=u;
7152 gte_unneeded[i]=gte_u;
7153 /*
7154 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
7155 printf("U:");
7156 int r;
7157 for(r=1;r<=CCREG;r++) {
7158 if((unneeded_reg[i]>>r)&1) {
7159 if(r==HIREG) printf(" HI");
7160 else if(r==LOREG) printf(" LO");
7161 else printf(" r%d",r);
7162 }
7163 }
7164 printf("\n");
7165 */
7166 }
7167}
7168
7169static noinline void pass2a_unneeded_other(void)
7170{
7171 int i, j;
7172 for (i = 0; i < slen; i++)
7173 {
7174 // remove redundant alignment checks
7175 if (dops[i].may_except && (dops[i].is_load || dops[i].is_store)
7176 && dops[i].rt1 != dops[i].rs1 && !dops[i].is_ds)
7177 {
7178 int base = dops[i].rs1, lsb = cinfo[i].imm, ls_type = dops[i].ls_type;
7179 int mask = ls_type == LS_32 ? 3 : 1;
7180 lsb &= mask;
7181 for (j = i + 1; j < slen; j++) {
7182 if (dops[j].bt || dops[j].is_jump)
7183 break;
7184 if ((dops[j].is_load || dops[j].is_store) && dops[j].rs1 == base
7185 && dops[j].ls_type == ls_type && (cinfo[j].imm & mask) == lsb)
7186 dops[j].may_except = 0;
7187 if (dops[j].rt1 == base)
7188 break;
7189 }
7190 }
7191 }
7192}
7193
7194static noinline void pass3_register_alloc(u_int addr)
7195{
7196 struct regstat current; // Current register allocations/status
7197 clear_all_regs(current.regmap_entry);
7198 clear_all_regs(current.regmap);
7199 current.wasdirty = current.dirty = 0;
7200 current.u = unneeded_reg[0];
7201 alloc_reg(&current, 0, CCREG);
7202 dirty_reg(&current, CCREG);
7203 current.wasconst = 0;
7204 current.isconst = 0;
7205 current.loadedconst = 0;
7206 current.noevict = 0;
7207 //current.waswritten = 0;
7208 int ds=0;
7209 int cc=0;
7210 int hr;
7211 int i, j;
7212
7213 if (addr & 1) {
7214 // First instruction is delay slot
7215 cc=-1;
7216 dops[1].bt=1;
7217 ds=1;
7218 unneeded_reg[0]=1;
7219 }
7220
7221 for(i=0;i<slen;i++)
7222 {
7223 if(dops[i].bt)
7224 {
7225 for(hr=0;hr<HOST_REGS;hr++)
7226 {
7227 // Is this really necessary?
7228 if(current.regmap[hr]==0) current.regmap[hr]=-1;
7229 }
7230 current.isconst=0;
7231 //current.waswritten=0;
7232 }
7233
7234 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
7235 regs[i].wasconst=current.isconst;
7236 regs[i].wasdirty=current.dirty;
7237 regs[i].dirty=0;
7238 regs[i].u=0;
7239 regs[i].isconst=0;
7240 regs[i].loadedconst=0;
7241 if (!dops[i].is_jump) {
7242 if(i+1<slen) {
7243 current.u=unneeded_reg[i+1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7244 current.u|=1;
7245 } else {
7246 current.u=1;
7247 }
7248 } else {
7249 if(i+1<slen) {
7250 current.u=branch_unneeded_reg[i]&~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
7251 current.u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7252 current.u|=1;
7253 } else {
7254 SysPrintf("oops, branch at end of block with no delay slot @%08x\n", start + i*4);
7255 abort();
7256 }
7257 }
7258 assert(dops[i].is_ds == ds);
7259 if(ds) {
7260 ds=0; // Skip delay slot, already allocated as part of branch
7261 // ...but we need to alloc it in case something jumps here
7262 if(i+1<slen) {
7263 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
7264 }else{
7265 current.u=branch_unneeded_reg[i-1];
7266 }
7267 current.u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7268 current.u|=1;
7269 struct regstat temp;
7270 memcpy(&temp,&current,sizeof(current));
7271 temp.wasdirty=temp.dirty;
7272 // TODO: Take into account unconditional branches, as below
7273 delayslot_alloc(&temp,i);
7274 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
7275 regs[i].wasdirty=temp.wasdirty;
7276 regs[i].dirty=temp.dirty;
7277 regs[i].isconst=0;
7278 regs[i].wasconst=0;
7279 current.isconst=0;
7280 // Create entry (branch target) regmap
7281 for(hr=0;hr<HOST_REGS;hr++)
7282 {
7283 int r=temp.regmap[hr];
7284 if(r>=0) {
7285 if(r!=regmap_pre[i][hr]) {
7286 regs[i].regmap_entry[hr]=-1;
7287 }
7288 else
7289 {
7290 assert(r < 64);
7291 if((current.u>>r)&1) {
7292 regs[i].regmap_entry[hr]=-1;
7293 regs[i].regmap[hr]=-1;
7294 //Don't clear regs in the delay slot as the branch might need them
7295 //current.regmap[hr]=-1;
7296 }else
7297 regs[i].regmap_entry[hr]=r;
7298 }
7299 } else {
7300 // First instruction expects CCREG to be allocated
7301 if(i==0&&hr==HOST_CCREG)
7302 regs[i].regmap_entry[hr]=CCREG;
7303 else
7304 regs[i].regmap_entry[hr]=-1;
7305 }
7306 }
7307 }
7308 else { // Not delay slot
7309 current.noevict = 0;
7310 switch(dops[i].itype) {
7311 case UJUMP:
7312 //current.isconst=0; // DEBUG
7313 //current.wasconst=0; // DEBUG
7314 //regs[i].wasconst=0; // DEBUG
7315 clear_const(&current,dops[i].rt1);
7316 alloc_cc(&current,i);
7317 dirty_reg(&current,CCREG);
7318 if (dops[i].rt1==31) {
7319 alloc_reg(&current,i,31);
7320 dirty_reg(&current,31);
7321 //assert(dops[i+1].rs1!=31&&dops[i+1].rs2!=31);
7322 //assert(dops[i+1].rt1!=dops[i].rt1);
7323 #ifdef REG_PREFETCH
7324 alloc_reg(&current,i,PTEMP);
7325 #endif
7326 }
7327 dops[i].ooo=1;
7328 delayslot_alloc(&current,i+1);
7329 //current.isconst=0; // DEBUG
7330 ds=1;
7331 break;
7332 case RJUMP:
7333 //current.isconst=0;
7334 //current.wasconst=0;
7335 //regs[i].wasconst=0;
7336 clear_const(&current,dops[i].rs1);
7337 clear_const(&current,dops[i].rt1);
7338 alloc_cc(&current,i);
7339 dirty_reg(&current,CCREG);
7340 if (!ds_writes_rjump_rs(i)) {
7341 alloc_reg(&current,i,dops[i].rs1);
7342 if (dops[i].rt1!=0) {
7343 alloc_reg(&current,i,dops[i].rt1);
7344 dirty_reg(&current,dops[i].rt1);
7345 #ifdef REG_PREFETCH
7346 alloc_reg(&current,i,PTEMP);
7347 #endif
7348 }
7349 #ifdef USE_MINI_HT
7350 if(dops[i].rs1==31) { // JALR
7351 alloc_reg(&current,i,RHASH);
7352 alloc_reg(&current,i,RHTBL);
7353 }
7354 #endif
7355 delayslot_alloc(&current,i+1);
7356 } else {
7357 // The delay slot overwrites our source register,
7358 // allocate a temporary register to hold the old value.
7359 current.isconst=0;
7360 current.wasconst=0;
7361 regs[i].wasconst=0;
7362 delayslot_alloc(&current,i+1);
7363 current.isconst=0;
7364 alloc_reg(&current,i,RTEMP);
7365 }
7366 //current.isconst=0; // DEBUG
7367 dops[i].ooo=1;
7368 ds=1;
7369 break;
7370 case CJUMP:
7371 //current.isconst=0;
7372 //current.wasconst=0;
7373 //regs[i].wasconst=0;
7374 clear_const(&current,dops[i].rs1);
7375 clear_const(&current,dops[i].rs2);
7376 if((dops[i].opcode&0x3E)==4) // BEQ/BNE
7377 {
7378 alloc_cc(&current,i);
7379 dirty_reg(&current,CCREG);
7380 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7381 if(dops[i].rs2) alloc_reg(&current,i,dops[i].rs2);
7382 if((dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2))||
7383 (dops[i].rs2&&(dops[i].rs2==dops[i+1].rt1||dops[i].rs2==dops[i+1].rt2))) {
7384 // The delay slot overwrites one of our conditions.
7385 // Allocate the branch condition registers instead.
7386 current.isconst=0;
7387 current.wasconst=0;
7388 regs[i].wasconst=0;
7389 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7390 if(dops[i].rs2) alloc_reg(&current,i,dops[i].rs2);
7391 }
7392 else
7393 {
7394 dops[i].ooo=1;
7395 delayslot_alloc(&current,i+1);
7396 }
7397 }
7398 else
7399 if((dops[i].opcode&0x3E)==6) // BLEZ/BGTZ
7400 {
7401 alloc_cc(&current,i);
7402 dirty_reg(&current,CCREG);
7403 alloc_reg(&current,i,dops[i].rs1);
7404 if(dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2)) {
7405 // The delay slot overwrites one of our conditions.
7406 // Allocate the branch condition registers instead.
7407 current.isconst=0;
7408 current.wasconst=0;
7409 regs[i].wasconst=0;
7410 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7411 }
7412 else
7413 {
7414 dops[i].ooo=1;
7415 delayslot_alloc(&current,i+1);
7416 }
7417 }
7418 else
7419 // Don't alloc the delay slot yet because we might not execute it
7420 if((dops[i].opcode&0x3E)==0x14) // BEQL/BNEL
7421 {
7422 current.isconst=0;
7423 current.wasconst=0;
7424 regs[i].wasconst=0;
7425 alloc_cc(&current,i);
7426 dirty_reg(&current,CCREG);
7427 alloc_reg(&current,i,dops[i].rs1);
7428 alloc_reg(&current,i,dops[i].rs2);
7429 }
7430 else
7431 if((dops[i].opcode&0x3E)==0x16) // BLEZL/BGTZL
7432 {
7433 current.isconst=0;
7434 current.wasconst=0;
7435 regs[i].wasconst=0;
7436 alloc_cc(&current,i);
7437 dirty_reg(&current,CCREG);
7438 alloc_reg(&current,i,dops[i].rs1);
7439 }
7440 ds=1;
7441 //current.isconst=0;
7442 break;
7443 case SJUMP:
7444 clear_const(&current,dops[i].rs1);
7445 clear_const(&current,dops[i].rt1);
7446 {
7447 alloc_cc(&current,i);
7448 dirty_reg(&current,CCREG);
7449 alloc_reg(&current,i,dops[i].rs1);
7450 if (dops[i].rt1 == 31) { // BLTZAL/BGEZAL
7451 alloc_reg(&current,i,31);
7452 dirty_reg(&current,31);
7453 }
7454 if ((dops[i].rs1 &&
7455 (dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2)) // The delay slot overwrites the branch condition.
7456 ||(dops[i].rt1 == 31 && dops[i].rs1 == 31) // overwrites it's own condition
7457 ||(dops[i].rt1==31&&(dops[i+1].rs1==31||dops[i+1].rs2==31||dops[i+1].rt1==31||dops[i+1].rt2==31))) { // DS touches $ra
7458 // Allocate the branch condition registers instead.
7459 current.isconst=0;
7460 current.wasconst=0;
7461 regs[i].wasconst=0;
7462 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7463 }
7464 else
7465 {
7466 dops[i].ooo=1;
7467 delayslot_alloc(&current,i+1);
7468 }
7469 }
7470 ds=1;
7471 //current.isconst=0;
7472 break;
7473 case IMM16:
7474 imm16_alloc(&current,i);
7475 break;
7476 case LOAD:
7477 case LOADLR:
7478 load_alloc(&current,i);
7479 break;
7480 case STORE:
7481 case STORELR:
7482 store_alloc(&current,i);
7483 break;
7484 case ALU:
7485 alu_alloc(&current,i);
7486 break;
7487 case SHIFT:
7488 shift_alloc(&current,i);
7489 break;
7490 case MULTDIV:
7491 multdiv_alloc(&current,i);
7492 break;
7493 case SHIFTIMM:
7494 shiftimm_alloc(&current,i);
7495 break;
7496 case MOV:
7497 mov_alloc(&current,i);
7498 break;
7499 case COP0:
7500 cop0_alloc(&current,i);
7501 break;
7502 case RFE:
7503 rfe_alloc(&current,i);
7504 break;
7505 case COP2:
7506 cop2_alloc(&current,i);
7507 break;
7508 case C2LS:
7509 c2ls_alloc(&current,i);
7510 break;
7511 case C2OP:
7512 c2op_alloc(&current,i);
7513 break;
7514 case SYSCALL:
7515 case HLECALL:
7516 case INTCALL:
7517 syscall_alloc(&current,i);
7518 break;
7519 }
7520
7521 // Create entry (branch target) regmap
7522 for(hr=0;hr<HOST_REGS;hr++)
7523 {
7524 int r,or;
7525 r=current.regmap[hr];
7526 if(r>=0) {
7527 if(r!=regmap_pre[i][hr]) {
7528 // TODO: delay slot (?)
7529 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
7530 if(or<0||r>=TEMPREG){
7531 regs[i].regmap_entry[hr]=-1;
7532 }
7533 else
7534 {
7535 // Just move it to a different register
7536 regs[i].regmap_entry[hr]=r;
7537 // If it was dirty before, it's still dirty
7538 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r);
7539 }
7540 }
7541 else
7542 {
7543 // Unneeded
7544 if(r==0){
7545 regs[i].regmap_entry[hr]=0;
7546 }
7547 else
7548 {
7549 assert(r<64);
7550 if((current.u>>r)&1) {
7551 regs[i].regmap_entry[hr]=-1;
7552 //regs[i].regmap[hr]=-1;
7553 current.regmap[hr]=-1;
7554 }else
7555 regs[i].regmap_entry[hr]=r;
7556 }
7557 }
7558 } else {
7559 // Branches expect CCREG to be allocated at the target
7560 if(regmap_pre[i][hr]==CCREG)
7561 regs[i].regmap_entry[hr]=CCREG;
7562 else
7563 regs[i].regmap_entry[hr]=-1;
7564 }
7565 }
7566 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
7567 }
7568
7569#if 0 // see do_store_smc_check()
7570 if(i>0&&(dops[i-1].itype==STORE||dops[i-1].itype==STORELR||(dops[i-1].itype==C2LS&&dops[i-1].opcode==0x3a))&&(u_int)cinfo[i-1].imm<0x800)
7571 current.waswritten|=1<<dops[i-1].rs1;
7572 current.waswritten&=~(1<<dops[i].rt1);
7573 current.waswritten&=~(1<<dops[i].rt2);
7574 if((dops[i].itype==STORE||dops[i].itype==STORELR||(dops[i].itype==C2LS&&dops[i].opcode==0x3a))&&(u_int)cinfo[i].imm>=0x800)
7575 current.waswritten&=~(1<<dops[i].rs1);
7576#endif
7577
7578 /* Branch post-alloc */
7579 if(i>0)
7580 {
7581 current.wasdirty=current.dirty;
7582 switch(dops[i-1].itype) {
7583 case UJUMP:
7584 memcpy(&branch_regs[i-1],&current,sizeof(current));
7585 branch_regs[i-1].isconst=0;
7586 branch_regs[i-1].wasconst=0;
7587 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
7588 alloc_cc(&branch_regs[i-1],i-1);
7589 dirty_reg(&branch_regs[i-1],CCREG);
7590 if(dops[i-1].rt1==31) { // JAL
7591 alloc_reg(&branch_regs[i-1],i-1,31);
7592 dirty_reg(&branch_regs[i-1],31);
7593 }
7594 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7595 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7596 break;
7597 case RJUMP:
7598 memcpy(&branch_regs[i-1],&current,sizeof(current));
7599 branch_regs[i-1].isconst=0;
7600 branch_regs[i-1].wasconst=0;
7601 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
7602 alloc_cc(&branch_regs[i-1],i-1);
7603 dirty_reg(&branch_regs[i-1],CCREG);
7604 alloc_reg(&branch_regs[i-1],i-1,dops[i-1].rs1);
7605 if(dops[i-1].rt1!=0) { // JALR
7606 alloc_reg(&branch_regs[i-1],i-1,dops[i-1].rt1);
7607 dirty_reg(&branch_regs[i-1],dops[i-1].rt1);
7608 }
7609 #ifdef USE_MINI_HT
7610 if(dops[i-1].rs1==31) { // JALR
7611 alloc_reg(&branch_regs[i-1],i-1,RHASH);
7612 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
7613 }
7614 #endif
7615 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
7616 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7617 break;
7618 case CJUMP:
7619 if((dops[i-1].opcode&0x3E)==4) // BEQ/BNE
7620 {
7621 alloc_cc(&current,i-1);
7622 dirty_reg(&current,CCREG);
7623 if((dops[i-1].rs1&&(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2))||
7624 (dops[i-1].rs2&&(dops[i-1].rs2==dops[i].rt1||dops[i-1].rs2==dops[i].rt2))) {
7625 // The delay slot overwrote one of our conditions
7626 // Delay slot goes after the test (in order)
7627 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7628 current.u|=1;
7629 delayslot_alloc(&current,i);
7630 current.isconst=0;
7631 }
7632 else
7633 {
7634 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
7635 // Alloc the branch condition registers
7636 if(dops[i-1].rs1) alloc_reg(&current,i-1,dops[i-1].rs1);
7637 if(dops[i-1].rs2) alloc_reg(&current,i-1,dops[i-1].rs2);
7638 }
7639 memcpy(&branch_regs[i-1],&current,sizeof(current));
7640 branch_regs[i-1].isconst=0;
7641 branch_regs[i-1].wasconst=0;
7642 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7643 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7644 }
7645 else
7646 if((dops[i-1].opcode&0x3E)==6) // BLEZ/BGTZ
7647 {
7648 alloc_cc(&current,i-1);
7649 dirty_reg(&current,CCREG);
7650 if(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2) {
7651 // The delay slot overwrote the branch condition
7652 // Delay slot goes after the test (in order)
7653 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7654 current.u|=1;
7655 delayslot_alloc(&current,i);
7656 current.isconst=0;
7657 }
7658 else
7659 {
7660 current.u=branch_unneeded_reg[i-1]&~(1LL<<dops[i-1].rs1);
7661 // Alloc the branch condition register
7662 alloc_reg(&current,i-1,dops[i-1].rs1);
7663 }
7664 memcpy(&branch_regs[i-1],&current,sizeof(current));
7665 branch_regs[i-1].isconst=0;
7666 branch_regs[i-1].wasconst=0;
7667 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7668 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7669 }
7670 break;
7671 case SJUMP:
7672 {
7673 alloc_cc(&current,i-1);
7674 dirty_reg(&current,CCREG);
7675 if(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2) {
7676 // The delay slot overwrote the branch condition
7677 // Delay slot goes after the test (in order)
7678 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7679 current.u|=1;
7680 delayslot_alloc(&current,i);
7681 current.isconst=0;
7682 }
7683 else
7684 {
7685 current.u=branch_unneeded_reg[i-1]&~(1LL<<dops[i-1].rs1);
7686 // Alloc the branch condition register
7687 alloc_reg(&current,i-1,dops[i-1].rs1);
7688 }
7689 memcpy(&branch_regs[i-1],&current,sizeof(current));
7690 branch_regs[i-1].isconst=0;
7691 branch_regs[i-1].wasconst=0;
7692 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
7693 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
7694 }
7695 break;
7696 }
7697
7698 if (dops[i-1].is_ujump)
7699 {
7700 if(dops[i-1].rt1==31) // JAL/JALR
7701 {
7702 // Subroutine call will return here, don't alloc any registers
7703 current.dirty=0;
7704 clear_all_regs(current.regmap);
7705 alloc_reg(&current,i,CCREG);
7706 dirty_reg(&current,CCREG);
7707 }
7708 else if(i+1<slen)
7709 {
7710 // Internal branch will jump here, match registers to caller
7711 current.dirty=0;
7712 clear_all_regs(current.regmap);
7713 alloc_reg(&current,i,CCREG);
7714 dirty_reg(&current,CCREG);
7715 for(j=i-1;j>=0;j--)
7716 {
7717 if(cinfo[j].ba==start+i*4+4) {
7718 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
7719 current.dirty=branch_regs[j].dirty;
7720 break;
7721 }
7722 }
7723 while(j>=0) {
7724 if(cinfo[j].ba==start+i*4+4) {
7725 for(hr=0;hr<HOST_REGS;hr++) {
7726 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
7727 current.regmap[hr]=-1;
7728 }
7729 current.dirty&=branch_regs[j].dirty;
7730 }
7731 }
7732 j--;
7733 }
7734 }
7735 }
7736 }
7737
7738 // Count cycles in between branches
7739 cinfo[i].ccadj = CLOCK_ADJUST(cc);
7740 if (i > 0 && (dops[i-1].is_jump || dops[i].is_exception))
7741 {
7742 cc=0;
7743 }
7744#if !defined(DRC_DBG)
7745 else if(dops[i].itype==C2OP&&gte_cycletab[source[i]&0x3f]>2)
7746 {
7747 // this should really be removed since the real stalls have been implemented,
7748 // but doing so causes sizeable perf regression against the older version
7749 u_int gtec = gte_cycletab[source[i] & 0x3f];
7750 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? gtec/2 : 2;
7751 }
7752 else if(i>1&&dops[i].itype==STORE&&dops[i-1].itype==STORE&&dops[i-2].itype==STORE&&!dops[i].bt)
7753 {
7754 cc+=4;
7755 }
7756 else if(dops[i].itype==C2LS)
7757 {
7758 // same as with C2OP
7759 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? 4 : 2;
7760 }
7761#endif
7762 else
7763 {
7764 cc++;
7765 }
7766
7767 if(!dops[i].is_ds) {
7768 regs[i].dirty=current.dirty;
7769 regs[i].isconst=current.isconst;
7770 memcpy(constmap[i],current_constmap,sizeof(constmap[i]));
7771 }
7772 for(hr=0;hr<HOST_REGS;hr++) {
7773 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
7774 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
7775 regs[i].wasconst&=~(1<<hr);
7776 }
7777 }
7778 }
7779 //regs[i].waswritten=current.waswritten;
7780 }
7781}
7782
7783static noinline void pass4_cull_unused_regs(void)
7784{
7785 u_int last_needed_regs[4] = {0,0,0,0};
7786 u_int nr=0;
7787 int i;
7788
7789 for (i=slen-1;i>=0;i--)
7790 {
7791 int hr;
7792 __builtin_prefetch(regs[i-2].regmap);
7793 if(dops[i].is_jump)
7794 {
7795 if(cinfo[i].ba<start || cinfo[i].ba>=(start+slen*4))
7796 {
7797 // Branch out of this block, don't need anything
7798 nr=0;
7799 }
7800 else
7801 {
7802 // Internal branch
7803 // Need whatever matches the target
7804 nr=0;
7805 int t=(cinfo[i].ba-start)>>2;
7806 for(hr=0;hr<HOST_REGS;hr++)
7807 {
7808 if(regs[i].regmap_entry[hr]>=0) {
7809 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
7810 }
7811 }
7812 }
7813 // Conditional branch may need registers for following instructions
7814 if (!dops[i].is_ujump)
7815 {
7816 if(i<slen-2) {
7817 nr |= last_needed_regs[(i+2) & 3];
7818 for(hr=0;hr<HOST_REGS;hr++)
7819 {
7820 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
7821 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
7822 }
7823 }
7824 }
7825 // Don't need stuff which is overwritten
7826 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
7827 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
7828 // Merge in delay slot
7829 if (dops[i+1].rt1) nr &= ~get_regm(regs[i].regmap, dops[i+1].rt1);
7830 if (dops[i+1].rt2) nr &= ~get_regm(regs[i].regmap, dops[i+1].rt2);
7831 nr |= get_regm(regmap_pre[i], dops[i+1].rs1);
7832 nr |= get_regm(regmap_pre[i], dops[i+1].rs2);
7833 nr |= get_regm(regs[i].regmap_entry, dops[i+1].rs1);
7834 nr |= get_regm(regs[i].regmap_entry, dops[i+1].rs2);
7835 if (ram_offset && (dops[i+1].is_load || dops[i+1].is_store)) {
7836 nr |= get_regm(regmap_pre[i], ROREG);
7837 nr |= get_regm(regs[i].regmap_entry, ROREG);
7838 }
7839 if (dops[i+1].is_store) {
7840 nr |= get_regm(regmap_pre[i], INVCP);
7841 nr |= get_regm(regs[i].regmap_entry, INVCP);
7842 }
7843 }
7844 else if (dops[i].is_exception)
7845 {
7846 // SYSCALL instruction, etc
7847 nr=0;
7848 }
7849 else // Non-branch
7850 {
7851 if(i<slen-1) {
7852 for(hr=0;hr<HOST_REGS;hr++) {
7853 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
7854 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
7855 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
7856 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
7857 }
7858 }
7859 }
7860 // Overwritten registers are not needed
7861 if (dops[i].rt1) nr &= ~get_regm(regs[i].regmap, dops[i].rt1);
7862 if (dops[i].rt2) nr &= ~get_regm(regs[i].regmap, dops[i].rt2);
7863 nr &= ~get_regm(regs[i].regmap, FTEMP);
7864 // Source registers are needed
7865 nr |= get_regm(regmap_pre[i], dops[i].rs1);
7866 nr |= get_regm(regmap_pre[i], dops[i].rs2);
7867 nr |= get_regm(regs[i].regmap_entry, dops[i].rs1);
7868 nr |= get_regm(regs[i].regmap_entry, dops[i].rs2);
7869 if (ram_offset && (dops[i].is_load || dops[i].is_store)) {
7870 nr |= get_regm(regmap_pre[i], ROREG);
7871 nr |= get_regm(regs[i].regmap_entry, ROREG);
7872 }
7873 if (dops[i].is_store) {
7874 nr |= get_regm(regmap_pre[i], INVCP);
7875 nr |= get_regm(regs[i].regmap_entry, INVCP);
7876 }
7877
7878 if (i > 0 && !dops[i].bt && regs[i].wasdirty)
7879 for(hr=0;hr<HOST_REGS;hr++)
7880 {
7881 // Don't store a register immediately after writing it,
7882 // may prevent dual-issue.
7883 // But do so if this is a branch target, otherwise we
7884 // might have to load the register before the branch.
7885 if((regs[i].wasdirty>>hr)&1) {
7886 if((regmap_pre[i][hr]>0&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1))) {
7887 if(dops[i-1].rt1==regmap_pre[i][hr]) nr|=1<<hr;
7888 if(dops[i-1].rt2==regmap_pre[i][hr]) nr|=1<<hr;
7889 }
7890 if((regs[i].regmap_entry[hr]>0&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1))) {
7891 if(dops[i-1].rt1==regs[i].regmap_entry[hr]) nr|=1<<hr;
7892 if(dops[i-1].rt2==regs[i].regmap_entry[hr]) nr|=1<<hr;
7893 }
7894 }
7895 }
7896 // Cycle count is needed at branches. Assume it is needed at the target too.
7897 if (i == 0 || dops[i].bt || dops[i].may_except || dops[i].itype == CJUMP) {
7898 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
7899 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
7900 }
7901 // Save it
7902 last_needed_regs[i & 3] = nr;
7903
7904 // Deallocate unneeded registers
7905 for(hr=0;hr<HOST_REGS;hr++)
7906 {
7907 if(!((nr>>hr)&1)) {
7908 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
7909 if(dops[i].is_jump)
7910 {
7911 int map1 = 0, map2 = 0, temp = 0; // or -1 ??
7912 if (dops[i+1].is_load || dops[i+1].is_store)
7913 map1 = ROREG;
7914 if (dops[i+1].is_store)
7915 map2 = INVCP;
7916 if(dops[i+1].itype==LOADLR || dops[i+1].itype==STORELR || dops[i+1].itype==C2LS)
7917 temp = FTEMP;
7918 if(regs[i].regmap[hr]!=dops[i].rs1 && regs[i].regmap[hr]!=dops[i].rs2 &&
7919 regs[i].regmap[hr]!=dops[i].rt1 && regs[i].regmap[hr]!=dops[i].rt2 &&
7920 regs[i].regmap[hr]!=dops[i+1].rt1 && regs[i].regmap[hr]!=dops[i+1].rt2 &&
7921 regs[i].regmap[hr]!=dops[i+1].rs1 && regs[i].regmap[hr]!=dops[i+1].rs2 &&
7922 regs[i].regmap[hr]!=temp && regs[i].regmap[hr]!=PTEMP &&
7923 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
7924 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
7925 regs[i].regmap[hr]!=map1 && regs[i].regmap[hr]!=map2)
7926 {
7927 regs[i].regmap[hr]=-1;
7928 regs[i].isconst&=~(1<<hr);
7929 regs[i].dirty&=~(1<<hr);
7930 regs[i+1].wasdirty&=~(1<<hr);
7931 if(branch_regs[i].regmap[hr]!=dops[i].rs1 && branch_regs[i].regmap[hr]!=dops[i].rs2 &&
7932 branch_regs[i].regmap[hr]!=dops[i].rt1 && branch_regs[i].regmap[hr]!=dops[i].rt2 &&
7933 branch_regs[i].regmap[hr]!=dops[i+1].rt1 && branch_regs[i].regmap[hr]!=dops[i+1].rt2 &&
7934 branch_regs[i].regmap[hr]!=dops[i+1].rs1 && branch_regs[i].regmap[hr]!=dops[i+1].rs2 &&
7935 branch_regs[i].regmap[hr]!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
7936 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
7937 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
7938 branch_regs[i].regmap[hr]!=map1 && branch_regs[i].regmap[hr]!=map2)
7939 {
7940 branch_regs[i].regmap[hr]=-1;
7941 branch_regs[i].regmap_entry[hr]=-1;
7942 if (!dops[i].is_ujump)
7943 {
7944 if (i < slen-2) {
7945 regmap_pre[i+2][hr]=-1;
7946 regs[i+2].wasconst&=~(1<<hr);
7947 }
7948 }
7949 }
7950 }
7951 }
7952 else
7953 {
7954 // Non-branch
7955 if(i>0)
7956 {
7957 int map1 = -1, map2 = -1, temp=-1;
7958 if (dops[i].is_load || dops[i].is_store)
7959 map1 = ROREG;
7960 if (dops[i].is_store)
7961 map2 = INVCP;
7962 if (dops[i].itype==LOADLR || dops[i].itype==STORELR || dops[i].itype==C2LS)
7963 temp = FTEMP;
7964 if(regs[i].regmap[hr]!=dops[i].rt1 && regs[i].regmap[hr]!=dops[i].rt2 &&
7965 regs[i].regmap[hr]!=dops[i].rs1 && regs[i].regmap[hr]!=dops[i].rs2 &&
7966 regs[i].regmap[hr]!=temp && regs[i].regmap[hr]!=map1 && regs[i].regmap[hr]!=map2 &&
7967 //(dops[i].itype!=SPAN||regs[i].regmap[hr]!=CCREG)
7968 regs[i].regmap[hr] != CCREG)
7969 {
7970 if(i<slen-1&&!dops[i].is_ds) {
7971 assert(regs[i].regmap[hr]<64);
7972 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]>0)
7973 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
7974 {
7975 SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
7976 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
7977 }
7978 regmap_pre[i+1][hr]=-1;
7979 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
7980 regs[i+1].wasconst&=~(1<<hr);
7981 }
7982 regs[i].regmap[hr]=-1;
7983 regs[i].isconst&=~(1<<hr);
7984 regs[i].dirty&=~(1<<hr);
7985 regs[i+1].wasdirty&=~(1<<hr);
7986 }
7987 }
7988 }
7989 } // if needed
7990 } // for hr
7991 }
7992}
7993
7994// If a register is allocated during a loop, try to allocate it for the
7995// entire loop, if possible. This avoids loading/storing registers
7996// inside of the loop.
7997static noinline void pass5a_preallocate1(void)
7998{
7999 int i, j, hr;
8000 signed char f_regmap[HOST_REGS];
8001 clear_all_regs(f_regmap);
8002 for(i=0;i<slen-1;i++)
8003 {
8004 if(dops[i].itype==UJUMP||dops[i].itype==CJUMP||dops[i].itype==SJUMP)
8005 {
8006 if(cinfo[i].ba>=start && cinfo[i].ba<(start+i*4))
8007 if(dops[i+1].itype==NOP||dops[i+1].itype==MOV||dops[i+1].itype==ALU
8008 ||dops[i+1].itype==SHIFTIMM||dops[i+1].itype==IMM16||dops[i+1].itype==LOAD
8009 ||dops[i+1].itype==STORE||dops[i+1].itype==STORELR
8010 ||dops[i+1].itype==SHIFT
8011 ||dops[i+1].itype==COP2||dops[i+1].itype==C2LS||dops[i+1].itype==C2OP)
8012 {
8013 int t=(cinfo[i].ba-start)>>2;
8014 if(t > 0 && !dops[t-1].is_jump) // loop_preload can't handle jumps into delay slots
8015 if(t<2||(dops[t-2].itype!=UJUMP&&dops[t-2].itype!=RJUMP)||dops[t-2].rt1!=31) // call/ret assumes no registers allocated
8016 for(hr=0;hr<HOST_REGS;hr++)
8017 {
8018 if(regs[i].regmap[hr]>=0) {
8019 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8020 // dealloc old register
8021 int n;
8022 for(n=0;n<HOST_REGS;n++)
8023 {
8024 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8025 }
8026 // and alloc new one
8027 f_regmap[hr]=regs[i].regmap[hr];
8028 }
8029 }
8030 if(branch_regs[i].regmap[hr]>=0) {
8031 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
8032 // dealloc old register
8033 int n;
8034 for(n=0;n<HOST_REGS;n++)
8035 {
8036 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
8037 }
8038 // and alloc new one
8039 f_regmap[hr]=branch_regs[i].regmap[hr];
8040 }
8041 }
8042 if(dops[i].ooo) {
8043 if(count_free_regs(regs[i].regmap)<=cinfo[i+1].min_free_regs)
8044 f_regmap[hr]=branch_regs[i].regmap[hr];
8045 }else{
8046 if(count_free_regs(branch_regs[i].regmap)<=cinfo[i+1].min_free_regs)
8047 f_regmap[hr]=branch_regs[i].regmap[hr];
8048 }
8049 // Avoid dirty->clean transition
8050 #ifdef DESTRUCTIVE_WRITEBACK
8051 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
8052 #endif
8053 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
8054 // case above, however it's always a good idea. We can't hoist the
8055 // load if the register was already allocated, so there's no point
8056 // wasting time analyzing most of these cases. It only "succeeds"
8057 // when the mapping was different and the load can be replaced with
8058 // a mov, which is of negligible benefit. So such cases are
8059 // skipped below.
8060 if(f_regmap[hr]>0) {
8061 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
8062 int r=f_regmap[hr];
8063 for(j=t;j<=i;j++)
8064 {
8065 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,cinfo[i].ba,start+j*4,hr,r);
8066 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
8067 assert(r < 64);
8068 if(regs[j].regmap[hr]==f_regmap[hr]&&f_regmap[hr]<TEMPREG) {
8069 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,cinfo[i].ba,start+j*4,hr,r);
8070 int k;
8071 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
8072 if(get_reg(regs[i].regmap,f_regmap[hr])>=0) break;
8073 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
8074 k=i;
8075 while(k>1&&regs[k-1].regmap[hr]==-1) {
8076 if(count_free_regs(regs[k-1].regmap)<=cinfo[k-1].min_free_regs) {
8077 //printf("no free regs for store %x\n",start+(k-1)*4);
8078 break;
8079 }
8080 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
8081 //printf("no-match due to different register\n");
8082 break;
8083 }
8084 if (dops[k-2].is_jump) {
8085 //printf("no-match due to branch\n");
8086 break;
8087 }
8088 // call/ret fast path assumes no registers allocated
8089 if(k>2&&(dops[k-3].itype==UJUMP||dops[k-3].itype==RJUMP)&&dops[k-3].rt1==31) {
8090 break;
8091 }
8092 k--;
8093 }
8094 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
8095 //printf("Extend r%d, %x ->\n",hr,start+k*4);
8096 while(k<i) {
8097 regs[k].regmap_entry[hr]=f_regmap[hr];
8098 regs[k].regmap[hr]=f_regmap[hr];
8099 regmap_pre[k+1][hr]=f_regmap[hr];
8100 regs[k].wasdirty&=~(1<<hr);
8101 regs[k].dirty&=~(1<<hr);
8102 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
8103 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
8104 regs[k].wasconst&=~(1<<hr);
8105 regs[k].isconst&=~(1<<hr);
8106 k++;
8107 }
8108 }
8109 else {
8110 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
8111 break;
8112 }
8113 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
8114 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
8115 //printf("OK fill %x (r%d)\n",start+i*4,hr);
8116 regs[i].regmap_entry[hr]=f_regmap[hr];
8117 regs[i].regmap[hr]=f_regmap[hr];
8118 regs[i].wasdirty&=~(1<<hr);
8119 regs[i].dirty&=~(1<<hr);
8120 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
8121 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
8122 regs[i].wasconst&=~(1<<hr);
8123 regs[i].isconst&=~(1<<hr);
8124 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
8125 branch_regs[i].wasdirty&=~(1<<hr);
8126 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
8127 branch_regs[i].regmap[hr]=f_regmap[hr];
8128 branch_regs[i].dirty&=~(1<<hr);
8129 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
8130 branch_regs[i].wasconst&=~(1<<hr);
8131 branch_regs[i].isconst&=~(1<<hr);
8132 if (!dops[i].is_ujump) {
8133 regmap_pre[i+2][hr]=f_regmap[hr];
8134 regs[i+2].wasdirty&=~(1<<hr);
8135 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
8136 }
8137 }
8138 }
8139 for(k=t;k<j;k++) {
8140 // Alloc register clean at beginning of loop,
8141 // but may dirty it in pass 6
8142 regs[k].regmap_entry[hr]=f_regmap[hr];
8143 regs[k].regmap[hr]=f_regmap[hr];
8144 regs[k].dirty&=~(1<<hr);
8145 regs[k].wasconst&=~(1<<hr);
8146 regs[k].isconst&=~(1<<hr);
8147 if (dops[k].is_jump) {
8148 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
8149 branch_regs[k].regmap[hr]=f_regmap[hr];
8150 branch_regs[k].dirty&=~(1<<hr);
8151 branch_regs[k].wasconst&=~(1<<hr);
8152 branch_regs[k].isconst&=~(1<<hr);
8153 if (!dops[k].is_ujump) {
8154 regmap_pre[k+2][hr]=f_regmap[hr];
8155 regs[k+2].wasdirty&=~(1<<hr);
8156 }
8157 }
8158 else
8159 {
8160 regmap_pre[k+1][hr]=f_regmap[hr];
8161 regs[k+1].wasdirty&=~(1<<hr);
8162 }
8163 }
8164 if(regs[j].regmap[hr]==f_regmap[hr])
8165 regs[j].regmap_entry[hr]=f_regmap[hr];
8166 break;
8167 }
8168 if(j==i) break;
8169 if(regs[j].regmap[hr]>=0)
8170 break;
8171 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
8172 //printf("no-match due to different register\n");
8173 break;
8174 }
8175 if (dops[j].is_ujump)
8176 {
8177 // Stop on unconditional branch
8178 break;
8179 }
8180 if(dops[j].itype==CJUMP||dops[j].itype==SJUMP)
8181 {
8182 if(dops[j].ooo) {
8183 if(count_free_regs(regs[j].regmap)<=cinfo[j+1].min_free_regs)
8184 break;
8185 }else{
8186 if(count_free_regs(branch_regs[j].regmap)<=cinfo[j+1].min_free_regs)
8187 break;
8188 }
8189 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
8190 //printf("no-match due to different register (branch)\n");
8191 break;
8192 }
8193 }
8194 if(count_free_regs(regs[j].regmap)<=cinfo[j].min_free_regs) {
8195 //printf("No free regs for store %x\n",start+j*4);
8196 break;
8197 }
8198 assert(f_regmap[hr]<64);
8199 }
8200 }
8201 }
8202 }
8203 }
8204 }else{
8205 // Non branch or undetermined branch target
8206 for(hr=0;hr<HOST_REGS;hr++)
8207 {
8208 if(hr!=EXCLUDE_REG) {
8209 if(regs[i].regmap[hr]>=0) {
8210 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8211 // dealloc old register
8212 int n;
8213 for(n=0;n<HOST_REGS;n++)
8214 {
8215 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8216 }
8217 // and alloc new one
8218 f_regmap[hr]=regs[i].regmap[hr];
8219 }
8220 }
8221 }
8222 }
8223 // Try to restore cycle count at branch targets
8224 if(dops[i].bt) {
8225 for(j=i;j<slen-1;j++) {
8226 if(regs[j].regmap[HOST_CCREG]!=-1) break;
8227 if(count_free_regs(regs[j].regmap)<=cinfo[j].min_free_regs) {
8228 //printf("no free regs for store %x\n",start+j*4);
8229 break;
8230 }
8231 }
8232 if(regs[j].regmap[HOST_CCREG]==CCREG) {
8233 int k=i;
8234 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
8235 while(k<j) {
8236 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8237 regs[k].regmap[HOST_CCREG]=CCREG;
8238 regmap_pre[k+1][HOST_CCREG]=CCREG;
8239 regs[k+1].wasdirty|=1<<HOST_CCREG;
8240 regs[k].dirty|=1<<HOST_CCREG;
8241 regs[k].wasconst&=~(1<<HOST_CCREG);
8242 regs[k].isconst&=~(1<<HOST_CCREG);
8243 k++;
8244 }
8245 regs[j].regmap_entry[HOST_CCREG]=CCREG;
8246 }
8247 // Work backwards from the branch target
8248 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
8249 {
8250 //printf("Extend backwards\n");
8251 int k;
8252 k=i;
8253 while(regs[k-1].regmap[HOST_CCREG]==-1) {
8254 if(count_free_regs(regs[k-1].regmap)<=cinfo[k-1].min_free_regs) {
8255 //printf("no free regs for store %x\n",start+(k-1)*4);
8256 break;
8257 }
8258 k--;
8259 }
8260 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
8261 //printf("Extend CC, %x ->\n",start+k*4);
8262 while(k<=i) {
8263 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8264 regs[k].regmap[HOST_CCREG]=CCREG;
8265 regmap_pre[k+1][HOST_CCREG]=CCREG;
8266 regs[k+1].wasdirty|=1<<HOST_CCREG;
8267 regs[k].dirty|=1<<HOST_CCREG;
8268 regs[k].wasconst&=~(1<<HOST_CCREG);
8269 regs[k].isconst&=~(1<<HOST_CCREG);
8270 k++;
8271 }
8272 }
8273 else {
8274 //printf("Fail Extend CC, %x ->\n",start+k*4);
8275 }
8276 }
8277 }
8278 if(dops[i].itype!=STORE&&dops[i].itype!=STORELR&&dops[i].itype!=SHIFT&&
8279 dops[i].itype!=NOP&&dops[i].itype!=MOV&&dops[i].itype!=ALU&&dops[i].itype!=SHIFTIMM&&
8280 dops[i].itype!=IMM16&&dops[i].itype!=LOAD)
8281 {
8282 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
8283 }
8284 }
8285 }
8286}
8287
8288// This allocates registers (if possible) one instruction prior
8289// to use, which can avoid a load-use penalty on certain CPUs.
8290static noinline void pass5b_preallocate2(void)
8291{
8292 int i, hr;
8293 for(i=0;i<slen-1;i++)
8294 {
8295 if (!i || !dops[i-1].is_jump)
8296 {
8297 if(!dops[i+1].bt)
8298 {
8299 int j, can_steal = 1;
8300 for (j = i; j < i + 2; j++) {
8301 int free_regs = 0;
8302 if (cinfo[j].min_free_regs == 0)
8303 continue;
8304 for (hr = 0; hr < HOST_REGS; hr++)
8305 if (hr != EXCLUDE_REG && regs[j].regmap[hr] < 0)
8306 free_regs++;
8307 if (free_regs <= cinfo[j].min_free_regs) {
8308 can_steal = 0;
8309 break;
8310 }
8311 }
8312 if (!can_steal)
8313 continue;
8314 if(dops[i].itype==ALU||dops[i].itype==MOV||dops[i].itype==LOAD||dops[i].itype==SHIFTIMM||dops[i].itype==IMM16
8315 ||(dops[i].itype==COP2&&dops[i].opcode2<3))
8316 {
8317 if(dops[i+1].rs1) {
8318 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rs1))>=0)
8319 {
8320 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8321 {
8322 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8323 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8324 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8325 regs[i].isconst&=~(1<<hr);
8326 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8327 constmap[i][hr]=constmap[i+1][hr];
8328 regs[i+1].wasdirty&=~(1<<hr);
8329 regs[i].dirty&=~(1<<hr);
8330 }
8331 }
8332 }
8333 if(dops[i+1].rs2) {
8334 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rs2))>=0)
8335 {
8336 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8337 {
8338 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8339 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8340 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8341 regs[i].isconst&=~(1<<hr);
8342 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8343 constmap[i][hr]=constmap[i+1][hr];
8344 regs[i+1].wasdirty&=~(1<<hr);
8345 regs[i].dirty&=~(1<<hr);
8346 }
8347 }
8348 }
8349 // Preload target address for load instruction (non-constant)
8350 if(dops[i+1].itype==LOAD&&dops[i+1].rs1&&get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8351 if((hr=get_reg_w(regs[i+1].regmap, dops[i+1].rt1))>=0)
8352 {
8353 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8354 {
8355 regs[i].regmap[hr]=dops[i+1].rs1;
8356 regmap_pre[i+1][hr]=dops[i+1].rs1;
8357 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8358 regs[i].isconst&=~(1<<hr);
8359 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8360 constmap[i][hr]=constmap[i+1][hr];
8361 regs[i+1].wasdirty&=~(1<<hr);
8362 regs[i].dirty&=~(1<<hr);
8363 }
8364 }
8365 }
8366 // Load source into target register
8367 if(dops[i+1].use_lt1&&get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8368 if((hr=get_reg_w(regs[i+1].regmap, dops[i+1].rt1))>=0)
8369 {
8370 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8371 {
8372 regs[i].regmap[hr]=dops[i+1].rs1;
8373 regmap_pre[i+1][hr]=dops[i+1].rs1;
8374 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8375 regs[i].isconst&=~(1<<hr);
8376 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8377 constmap[i][hr]=constmap[i+1][hr];
8378 regs[i+1].wasdirty&=~(1<<hr);
8379 regs[i].dirty&=~(1<<hr);
8380 }
8381 }
8382 }
8383 // Address for store instruction (non-constant)
8384 if (dops[i+1].is_store) { // SB/SH/SW/SWC2
8385 if(get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8386 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
8387 if(hr<0) hr=get_reg_temp(regs[i+1].regmap);
8388 else {
8389 regs[i+1].regmap[hr]=AGEN1+((i+1)&1);
8390 regs[i+1].isconst&=~(1<<hr);
8391 regs[i+1].dirty&=~(1<<hr);
8392 regs[i+2].wasdirty&=~(1<<hr);
8393 }
8394 assert(hr>=0);
8395 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8396 {
8397 regs[i].regmap[hr]=dops[i+1].rs1;
8398 regmap_pre[i+1][hr]=dops[i+1].rs1;
8399 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8400 regs[i].isconst&=~(1<<hr);
8401 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8402 constmap[i][hr]=constmap[i+1][hr];
8403 regs[i+1].wasdirty&=~(1<<hr);
8404 regs[i].dirty&=~(1<<hr);
8405 }
8406 }
8407 }
8408 if (dops[i+1].itype == LOADLR || dops[i+1].opcode == 0x32) { // LWC2
8409 if(get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8410 int nr;
8411 hr=get_reg(regs[i+1].regmap,FTEMP);
8412 assert(hr>=0);
8413 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8414 {
8415 regs[i].regmap[hr]=dops[i+1].rs1;
8416 regmap_pre[i+1][hr]=dops[i+1].rs1;
8417 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8418 regs[i].isconst&=~(1<<hr);
8419 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8420 constmap[i][hr]=constmap[i+1][hr];
8421 regs[i+1].wasdirty&=~(1<<hr);
8422 regs[i].dirty&=~(1<<hr);
8423 }
8424 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
8425 {
8426 // move it to another register
8427 regs[i+1].regmap[hr]=-1;
8428 regmap_pre[i+2][hr]=-1;
8429 regs[i+1].regmap[nr]=FTEMP;
8430 regmap_pre[i+2][nr]=FTEMP;
8431 regs[i].regmap[nr]=dops[i+1].rs1;
8432 regmap_pre[i+1][nr]=dops[i+1].rs1;
8433 regs[i+1].regmap_entry[nr]=dops[i+1].rs1;
8434 regs[i].isconst&=~(1<<nr);
8435 regs[i+1].isconst&=~(1<<nr);
8436 regs[i].dirty&=~(1<<nr);
8437 regs[i+1].wasdirty&=~(1<<nr);
8438 regs[i+1].dirty&=~(1<<nr);
8439 regs[i+2].wasdirty&=~(1<<nr);
8440 }
8441 }
8442 }
8443 if(dops[i+1].itype==LOAD||dops[i+1].itype==LOADLR||dops[i+1].itype==STORE||dops[i+1].itype==STORELR/*||dops[i+1].itype==C2LS*/) {
8444 hr = -1;
8445 if(dops[i+1].itype==LOAD)
8446 hr=get_reg_w(regs[i+1].regmap, dops[i+1].rt1);
8447 if (dops[i+1].itype == LOADLR || dops[i+1].opcode == 0x32) // LWC2
8448 hr=get_reg(regs[i+1].regmap,FTEMP);
8449 if (dops[i+1].is_store) {
8450 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
8451 if(hr<0) hr=get_reg_temp(regs[i+1].regmap);
8452 }
8453 if(hr>=0&&regs[i].regmap[hr]<0) {
8454 int rs=get_reg(regs[i+1].regmap,dops[i+1].rs1);
8455 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
8456 regs[i].regmap[hr]=AGEN1+((i+1)&1);
8457 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
8458 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
8459 regs[i].isconst&=~(1<<hr);
8460 regs[i+1].wasdirty&=~(1<<hr);
8461 regs[i].dirty&=~(1<<hr);
8462 }
8463 }
8464 }
8465 }
8466 }
8467 }
8468 }
8469}
8470
8471// Write back dirty registers as soon as we will no longer modify them,
8472// so that we don't end up with lots of writes at the branches.
8473static noinline void pass6_clean_registers(int istart, int iend, int wr)
8474{
8475 static u_int wont_dirty[MAXBLOCK];
8476 static u_int will_dirty[MAXBLOCK];
8477 int i;
8478 int r;
8479 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
8480 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
8481 if(iend==slen-1) {
8482 will_dirty_i=will_dirty_next=0;
8483 wont_dirty_i=wont_dirty_next=0;
8484 }else{
8485 will_dirty_i=will_dirty_next=will_dirty[iend+1];
8486 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
8487 }
8488 for (i=iend;i>=istart;i--)
8489 {
8490 signed char rregmap_i[RRMAP_SIZE];
8491 u_int hr_candirty = 0;
8492 assert(HOST_REGS < 32);
8493 make_rregs(regs[i].regmap, rregmap_i, &hr_candirty);
8494 __builtin_prefetch(regs[i-1].regmap);
8495 if(dops[i].is_jump)
8496 {
8497 signed char branch_rregmap_i[RRMAP_SIZE];
8498 u_int branch_hr_candirty = 0;
8499 make_rregs(branch_regs[i].regmap, branch_rregmap_i, &branch_hr_candirty);
8500 if(cinfo[i].ba<start || cinfo[i].ba>=(start+slen*4))
8501 {
8502 // Branch out of this block, flush all regs
8503 will_dirty_i = 0;
8504 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8505 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8506 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8507 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8508 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8509 will_dirty_i &= branch_hr_candirty;
8510 if (dops[i].is_ujump)
8511 {
8512 // Unconditional branch
8513 wont_dirty_i = 0;
8514 // Merge in delay slot (will dirty)
8515 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8516 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8517 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8518 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8519 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8520 will_dirty_i &= hr_candirty;
8521 }
8522 else
8523 {
8524 // Conditional branch
8525 wont_dirty_i = wont_dirty_next;
8526 // Merge in delay slot (will dirty)
8527 // (the original code had no explanation why these 2 are commented out)
8528 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8529 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8530 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8531 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8532 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8533 will_dirty_i &= hr_candirty;
8534 }
8535 // Merge in delay slot (wont dirty)
8536 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8537 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8538 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8539 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8540 wont_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8541 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8542 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8543 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8544 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8545 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8546 wont_dirty_i &= ~(1u << 31);
8547 if(wr) {
8548 #ifndef DESTRUCTIVE_WRITEBACK
8549 branch_regs[i].dirty&=wont_dirty_i;
8550 #endif
8551 branch_regs[i].dirty|=will_dirty_i;
8552 }
8553 }
8554 else
8555 {
8556 // Internal branch
8557 if(cinfo[i].ba<=start+i*4) {
8558 // Backward branch
8559 if (dops[i].is_ujump)
8560 {
8561 // Unconditional branch
8562 temp_will_dirty=0;
8563 temp_wont_dirty=0;
8564 // Merge in delay slot (will dirty)
8565 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8566 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8567 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8568 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8569 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8570 temp_will_dirty &= branch_hr_candirty;
8571 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8572 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8573 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8574 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8575 temp_will_dirty |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8576 temp_will_dirty &= hr_candirty;
8577 } else {
8578 // Conditional branch (not taken case)
8579 temp_will_dirty=will_dirty_next;
8580 temp_wont_dirty=wont_dirty_next;
8581 // Merge in delay slot (will dirty)
8582 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8583 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8584 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8585 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8586 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8587 temp_will_dirty &= branch_hr_candirty;
8588 //temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8589 //temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8590 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8591 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8592 temp_will_dirty |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8593 temp_will_dirty &= hr_candirty;
8594 }
8595 // Merge in delay slot (wont dirty)
8596 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8597 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8598 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8599 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8600 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8601 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8602 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8603 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8604 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8605 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8606 temp_wont_dirty &= ~(1u << 31);
8607 // Deal with changed mappings
8608 if(i<iend) {
8609 for(r=0;r<HOST_REGS;r++) {
8610 if(r!=EXCLUDE_REG) {
8611 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
8612 temp_will_dirty&=~(1<<r);
8613 temp_wont_dirty&=~(1<<r);
8614 if(regmap_pre[i][r]>0 && regmap_pre[i][r]<34) {
8615 temp_will_dirty|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
8616 temp_wont_dirty|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
8617 } else {
8618 temp_will_dirty|=1<<r;
8619 temp_wont_dirty|=1<<r;
8620 }
8621 }
8622 }
8623 }
8624 }
8625 if(wr) {
8626 will_dirty[i]=temp_will_dirty;
8627 wont_dirty[i]=temp_wont_dirty;
8628 pass6_clean_registers((cinfo[i].ba-start)>>2,i-1,0);
8629 }else{
8630 // Limit recursion. It can take an excessive amount
8631 // of time if there are a lot of nested loops.
8632 will_dirty[(cinfo[i].ba-start)>>2]=0;
8633 wont_dirty[(cinfo[i].ba-start)>>2]=-1;
8634 }
8635 }
8636 /*else*/ if(1)
8637 {
8638 if (dops[i].is_ujump)
8639 {
8640 // Unconditional branch
8641 will_dirty_i=0;
8642 wont_dirty_i=0;
8643 //if(cinfo[i].ba>start+i*4) { // Disable recursion (for debugging)
8644 for(r=0;r<HOST_REGS;r++) {
8645 if(r!=EXCLUDE_REG) {
8646 if(branch_regs[i].regmap[r]==regs[(cinfo[i].ba-start)>>2].regmap_entry[r]) {
8647 will_dirty_i|=will_dirty[(cinfo[i].ba-start)>>2]&(1<<r);
8648 wont_dirty_i|=wont_dirty[(cinfo[i].ba-start)>>2]&(1<<r);
8649 }
8650 if(branch_regs[i].regmap[r]>=0) {
8651 will_dirty_i|=((unneeded_reg[(cinfo[i].ba-start)>>2]>>branch_regs[i].regmap[r])&1)<<r;
8652 wont_dirty_i|=((unneeded_reg[(cinfo[i].ba-start)>>2]>>branch_regs[i].regmap[r])&1)<<r;
8653 }
8654 }
8655 }
8656 //}
8657 // Merge in delay slot
8658 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8659 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8660 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8661 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8662 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8663 will_dirty_i &= branch_hr_candirty;
8664 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8665 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8666 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8667 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8668 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8669 will_dirty_i &= hr_candirty;
8670 } else {
8671 // Conditional branch
8672 will_dirty_i=will_dirty_next;
8673 wont_dirty_i=wont_dirty_next;
8674 //if(cinfo[i].ba>start+i*4) // Disable recursion (for debugging)
8675 for(r=0;r<HOST_REGS;r++) {
8676 if(r!=EXCLUDE_REG) {
8677 signed char target_reg=branch_regs[i].regmap[r];
8678 if(target_reg==regs[(cinfo[i].ba-start)>>2].regmap_entry[r]) {
8679 will_dirty_i&=will_dirty[(cinfo[i].ba-start)>>2]&(1<<r);
8680 wont_dirty_i|=wont_dirty[(cinfo[i].ba-start)>>2]&(1<<r);
8681 }
8682 else if(target_reg>=0) {
8683 will_dirty_i&=((unneeded_reg[(cinfo[i].ba-start)>>2]>>target_reg)&1)<<r;
8684 wont_dirty_i|=((unneeded_reg[(cinfo[i].ba-start)>>2]>>target_reg)&1)<<r;
8685 }
8686 }
8687 }
8688 // Merge in delay slot
8689 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8690 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8691 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8692 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8693 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8694 will_dirty_i &= branch_hr_candirty;
8695 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8696 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8697 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8698 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8699 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8700 will_dirty_i &= hr_candirty;
8701 }
8702 // Merge in delay slot (won't dirty)
8703 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8704 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8705 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
8706 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
8707 wont_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8708 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
8709 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
8710 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
8711 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
8712 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
8713 wont_dirty_i &= ~(1u << 31);
8714 if(wr) {
8715 #ifndef DESTRUCTIVE_WRITEBACK
8716 branch_regs[i].dirty&=wont_dirty_i;
8717 #endif
8718 branch_regs[i].dirty|=will_dirty_i;
8719 }
8720 }
8721 }
8722 }
8723 else if (dops[i].is_exception)
8724 {
8725 // SYSCALL instruction, etc
8726 will_dirty_i=0;
8727 wont_dirty_i=0;
8728 }
8729 will_dirty_next=will_dirty_i;
8730 wont_dirty_next=wont_dirty_i;
8731 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8732 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8733 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8734 will_dirty_i &= hr_candirty;
8735 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
8736 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
8737 wont_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
8738 wont_dirty_i &= ~(1u << 31);
8739 if (i > istart && !dops[i].is_jump) {
8740 // Don't store a register immediately after writing it,
8741 // may prevent dual-issue.
8742 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i-1].rt1) & 31);
8743 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i-1].rt2) & 31);
8744 }
8745 // Save it
8746 will_dirty[i]=will_dirty_i;
8747 wont_dirty[i]=wont_dirty_i;
8748 // Mark registers that won't be dirtied as not dirty
8749 if(wr) {
8750 regs[i].dirty|=will_dirty_i;
8751 #ifndef DESTRUCTIVE_WRITEBACK
8752 regs[i].dirty&=wont_dirty_i;
8753 if(dops[i].is_jump)
8754 {
8755 if (i < iend-1 && !dops[i].is_ujump) {
8756 for(r=0;r<HOST_REGS;r++) {
8757 if(r!=EXCLUDE_REG) {
8758 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
8759 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
8760 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
8761 }
8762 }
8763 }
8764 }
8765 else
8766 {
8767 if(i<iend) {
8768 for(r=0;r<HOST_REGS;r++) {
8769 if(r!=EXCLUDE_REG) {
8770 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
8771 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
8772 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
8773 }
8774 }
8775 }
8776 }
8777 #endif
8778 }
8779 // Deal with changed mappings
8780 temp_will_dirty=will_dirty_i;
8781 temp_wont_dirty=wont_dirty_i;
8782 for(r=0;r<HOST_REGS;r++) {
8783 if(r!=EXCLUDE_REG) {
8784 int nr;
8785 if(regs[i].regmap[r]==regmap_pre[i][r]) {
8786 if(wr) {
8787 #ifndef DESTRUCTIVE_WRITEBACK
8788 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
8789 #endif
8790 regs[i].wasdirty|=will_dirty_i&(1<<r);
8791 }
8792 }
8793 else if(regmap_pre[i][r]>=0&&(nr=get_rreg(rregmap_i,regmap_pre[i][r]))>=0) {
8794 // Register moved to a different register
8795 will_dirty_i&=~(1<<r);
8796 wont_dirty_i&=~(1<<r);
8797 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
8798 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
8799 if(wr) {
8800 #ifndef DESTRUCTIVE_WRITEBACK
8801 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
8802 #endif
8803 regs[i].wasdirty|=will_dirty_i&(1<<r);
8804 }
8805 }
8806 else {
8807 will_dirty_i&=~(1<<r);
8808 wont_dirty_i&=~(1<<r);
8809 if(regmap_pre[i][r]>0 && regmap_pre[i][r]<34) {
8810 will_dirty_i|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
8811 wont_dirty_i|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
8812 } else {
8813 wont_dirty_i|=1<<r;
8814 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);assert(!((will_dirty>>r)&1));*/
8815 }
8816 }
8817 }
8818 }
8819 }
8820}
8821
8822static noinline void pass10_expire_blocks(void)
8823{
8824 u_int step = MAX_OUTPUT_BLOCK_SIZE / PAGE_COUNT / 2;
8825 // not sizeof(ndrc->translation_cache) due to vita hack
8826 u_int step_mask = ((1u << TARGET_SIZE_2) - 1u) & ~(step - 1u);
8827 u_int end = (out - ndrc->translation_cache + EXPIRITY_OFFSET) & step_mask;
8828 u_int base_shift = __builtin_ctz(MAX_OUTPUT_BLOCK_SIZE);
8829 int hit;
8830
8831 for (; expirep != end; expirep = ((expirep + step) & step_mask))
8832 {
8833 u_int base_offs = expirep & ~(MAX_OUTPUT_BLOCK_SIZE - 1);
8834 u_int block_i = expirep / step & (PAGE_COUNT - 1);
8835 u_int phase = (expirep >> (base_shift - 1)) & 1u;
8836 if (!(expirep & (MAX_OUTPUT_BLOCK_SIZE / 2 - 1))) {
8837 inv_debug("EXP: base_offs %x/%lx phase %u\n", base_offs,
8838 (long)(out - ndrc->translation_cache), phase);
8839 }
8840
8841 if (!phase) {
8842 hit = blocks_remove_matching_addrs(&blocks[block_i], base_offs, base_shift);
8843 if (hit) {
8844 do_clear_cache();
8845 #ifdef USE_MINI_HT
8846 memset(mini_ht, -1, sizeof(mini_ht));
8847 #endif
8848 }
8849 }
8850 else
8851 unlink_jumps_tc_range(jumps[block_i], base_offs, base_shift);
8852 }
8853}
8854
8855static struct block_info *new_block_info(u_int start, u_int len,
8856 const void *source, const void *copy, u_char *beginning, u_short jump_in_count)
8857{
8858 struct block_info **b_pptr;
8859 struct block_info *block;
8860 u_int page = get_page(start);
8861
8862 block = malloc(sizeof(*block) + jump_in_count * sizeof(block->jump_in[0]));
8863 assert(block);
8864 assert(jump_in_count > 0);
8865 block->source = source;
8866 block->copy = copy;
8867 block->start = start;
8868 block->len = len;
8869 block->reg_sv_flags = 0;
8870 block->tc_offs = beginning - ndrc->translation_cache;
8871 //block->tc_len = out - beginning;
8872 block->is_dirty = 0;
8873 block->inv_near_misses = 0;
8874 block->jump_in_cnt = jump_in_count;
8875
8876 // insert sorted by start mirror-unmasked vaddr
8877 for (b_pptr = &blocks[page]; ; b_pptr = &((*b_pptr)->next)) {
8878 if (*b_pptr == NULL || (*b_pptr)->start >= start) {
8879 block->next = *b_pptr;
8880 *b_pptr = block;
8881 break;
8882 }
8883 }
8884 stat_inc(stat_blocks);
8885 return block;
8886}
8887
8888static int new_recompile_block(u_int addr)
8889{
8890 u_int pagelimit = 0;
8891 u_int state_rflags = 0;
8892 int i;
8893
8894 assem_debug("NOTCOMPILED: addr = %x -> %p\n", addr, out);
8895
8896 if (addr & 3) {
8897 if (addr != hack_addr) {
8898 SysPrintf("game crash @%08x, ra=%08x\n", addr, psxRegs.GPR.n.ra);
8899 hack_addr = addr;
8900 }
8901 return -1;
8902 }
8903
8904 // this is just for speculation
8905 for (i = 1; i < 32; i++) {
8906 if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
8907 state_rflags |= 1 << i;
8908 }
8909
8910 start = addr;
8911 new_dynarec_did_compile=1;
8912 if (Config.HLE && start == 0x80001000) // hlecall
8913 {
8914 // XXX: is this enough? Maybe check hleSoftCall?
8915 void *beginning = start_block();
8916
8917 emit_movimm(start,0);
8918 emit_writeword(0,&pcaddr);
8919 emit_far_jump(new_dyna_leave);
8920 literal_pool(0);
8921 end_block(beginning);
8922 struct block_info *block = new_block_info(start, 4, NULL, NULL, beginning, 1);
8923 block->jump_in[0].vaddr = start;
8924 block->jump_in[0].addr = beginning;
8925 return 0;
8926 }
8927 else if (f1_hack && hack_addr == 0) {
8928 void *beginning = start_block();
8929 emit_movimm(start, 0);
8930 emit_writeword(0, &hack_addr);
8931 emit_readword(&psxRegs.GPR.n.sp, 0);
8932 emit_readptr(&mem_rtab, 1);
8933 emit_shrimm(0, 12, 2);
8934 emit_readptr_dualindexedx_ptrlen(1, 2, 1);
8935 emit_addimm(0, 0x18, 0);
8936 emit_adds_ptr(1, 1, 1);
8937 emit_ldr_dualindexed(1, 0, 0);
8938 emit_writeword(0, &psxRegs.GPR.r[26]); // lw k0, 0x18(sp)
8939 emit_far_call(ndrc_get_addr_ht);
8940 emit_jmpreg(0); // jr k0
8941 literal_pool(0);
8942 end_block(beginning);
8943
8944 struct block_info *block = new_block_info(start, 4, NULL, NULL, beginning, 1);
8945 block->jump_in[0].vaddr = start;
8946 block->jump_in[0].addr = beginning;
8947 SysPrintf("F1 hack to %08x\n", start);
8948 return 0;
8949 }
8950
8951 cycle_multiplier_active = Config.cycle_multiplier_override && Config.cycle_multiplier == CYCLE_MULT_DEFAULT
8952 ? Config.cycle_multiplier_override : Config.cycle_multiplier;
8953
8954 source = get_source_start(start, &pagelimit);
8955 if (source == NULL) {
8956 if (addr != hack_addr) {
8957 SysPrintf("Compile at bogus memory address: %08x\n", addr);
8958 hack_addr = addr;
8959 }
8960 //abort();
8961 return -1;
8962 }
8963
8964 /* Pass 1: disassemble */
8965 /* Pass 2: register dependencies, branch targets */
8966 /* Pass 3: register allocation */
8967 /* Pass 4: branch dependencies */
8968 /* Pass 5: pre-alloc */
8969 /* Pass 6: optimize clean/dirty state */
8970 /* Pass 7: flag 32-bit registers */
8971 /* Pass 8: assembly */
8972 /* Pass 9: linker */
8973 /* Pass 10: garbage collection / free memory */
8974
8975 /* Pass 1 disassembly */
8976
8977 pass1_disassemble(pagelimit);
8978
8979 int clear_hack_addr = apply_hacks();
8980
8981 /* Pass 2 - Register dependencies and branch targets */
8982
8983 pass2_unneeded_regs(0,slen-1,0);
8984
8985 pass2a_unneeded_other();
8986
8987 /* Pass 3 - Register allocation */
8988
8989 pass3_register_alloc(addr);
8990
8991 /* Pass 4 - Cull unused host registers */
8992
8993 pass4_cull_unused_regs();
8994
8995 /* Pass 5 - Pre-allocate registers */
8996
8997 pass5a_preallocate1();
8998 pass5b_preallocate2();
8999
9000 /* Pass 6 - Optimize clean/dirty state */
9001 pass6_clean_registers(0, slen-1, 1);
9002
9003 /* Pass 7 */
9004 for (i=slen-1;i>=0;i--)
9005 {
9006 if(dops[i].itype==CJUMP||dops[i].itype==SJUMP)
9007 {
9008 // Conditional branch
9009 if((source[i]>>16)!=0x1000&&i<slen-2) {
9010 // Mark this address as a branch target since it may be called
9011 // upon return from interrupt
9012 dops[i+2].bt=1;
9013 }
9014 }
9015 }
9016
9017 /* Pass 8 - Assembly */
9018 linkcount=0;stubcount=0;
9019 is_delayslot=0;
9020 u_int dirty_pre=0;
9021 void *beginning=start_block();
9022 void *instr_addr0_override = NULL;
9023 int ds = 0;
9024
9025 if (start == 0x80030000) {
9026 // nasty hack for the fastbios thing
9027 // override block entry to this code
9028 instr_addr0_override = out;
9029 emit_movimm(start,0);
9030 // abuse io address var as a flag that we
9031 // have already returned here once
9032 emit_readword(&address,1);
9033 emit_writeword(0,&pcaddr);
9034 emit_writeword(0,&address);
9035 emit_cmp(0,1);
9036 #ifdef __aarch64__
9037 emit_jeq(out + 4*2);
9038 emit_far_jump(new_dyna_leave);
9039 #else
9040 emit_jne(new_dyna_leave);
9041 #endif
9042 }
9043 for(i=0;i<slen;i++)
9044 {
9045 __builtin_prefetch(regs[i+1].regmap);
9046 check_regmap(regmap_pre[i]);
9047 check_regmap(regs[i].regmap_entry);
9048 check_regmap(regs[i].regmap);
9049 //if(ds) printf("ds: ");
9050 disassemble_inst(i);
9051 if(ds) {
9052 ds=0; // Skip delay slot
9053 if(dops[i].bt) assem_debug("OOPS - branch into delay slot\n");
9054 instr_addr[i] = NULL;
9055 } else {
9056 speculate_register_values(i);
9057 #ifndef DESTRUCTIVE_WRITEBACK
9058 if (i < 2 || !dops[i-2].is_ujump)
9059 {
9060 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,unneeded_reg[i]);
9061 }
9062 if((dops[i].itype==CJUMP||dops[i].itype==SJUMP)) {
9063 dirty_pre=branch_regs[i].dirty;
9064 }else{
9065 dirty_pre=regs[i].dirty;
9066 }
9067 #endif
9068 // write back
9069 if (i < 2 || !dops[i-2].is_ujump)
9070 {
9071 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,unneeded_reg[i]);
9072 loop_preload(regmap_pre[i],regs[i].regmap_entry);
9073 }
9074 // branch target entry point
9075 instr_addr[i] = out;
9076 assem_debug("<->\n");
9077 drc_dbg_emit_do_cmp(i, cinfo[i].ccadj);
9078 if (clear_hack_addr) {
9079 emit_movimm(0, 0);
9080 emit_writeword(0, &hack_addr);
9081 clear_hack_addr = 0;
9082 }
9083
9084 // load regs
9085 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
9086 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty);
9087 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i].rs1,dops[i].rs2);
9088 address_generation(i,&regs[i],regs[i].regmap_entry);
9089 load_consts(regmap_pre[i],regs[i].regmap,i);
9090 if(dops[i].is_jump)
9091 {
9092 // Load the delay slot registers if necessary
9093 if(dops[i+1].rs1!=dops[i].rs1&&dops[i+1].rs1!=dops[i].rs2&&(dops[i+1].rs1!=dops[i].rt1||dops[i].rt1==0))
9094 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs1,dops[i+1].rs1);
9095 if(dops[i+1].rs2!=dops[i+1].rs1&&dops[i+1].rs2!=dops[i].rs1&&dops[i+1].rs2!=dops[i].rs2&&(dops[i+1].rs2!=dops[i].rt1||dops[i].rt1==0))
9096 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs2,dops[i+1].rs2);
9097 if (ram_offset && (dops[i+1].is_load || dops[i+1].is_store))
9098 load_reg(regs[i].regmap_entry,regs[i].regmap,ROREG);
9099 if (dops[i+1].is_store)
9100 load_reg(regs[i].regmap_entry,regs[i].regmap,INVCP);
9101 }
9102 else if(i+1<slen)
9103 {
9104 // Preload registers for following instruction
9105 if(dops[i+1].rs1!=dops[i].rs1&&dops[i+1].rs1!=dops[i].rs2)
9106 if(dops[i+1].rs1!=dops[i].rt1&&dops[i+1].rs1!=dops[i].rt2)
9107 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs1,dops[i+1].rs1);
9108 if(dops[i+1].rs2!=dops[i+1].rs1&&dops[i+1].rs2!=dops[i].rs1&&dops[i+1].rs2!=dops[i].rs2)
9109 if(dops[i+1].rs2!=dops[i].rt1&&dops[i+1].rs2!=dops[i].rt2)
9110 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs2,dops[i+1].rs2);
9111 }
9112 // TODO: if(is_ooo(i)) address_generation(i+1);
9113 if (!dops[i].is_jump || dops[i].itype == CJUMP)
9114 load_reg(regs[i].regmap_entry,regs[i].regmap,CCREG);
9115 if (ram_offset && (dops[i].is_load || dops[i].is_store))
9116 load_reg(regs[i].regmap_entry,regs[i].regmap,ROREG);
9117 if (dops[i].is_store)
9118 load_reg(regs[i].regmap_entry,regs[i].regmap,INVCP);
9119
9120 ds = assemble(i, &regs[i], cinfo[i].ccadj);
9121
9122 if (dops[i].is_ujump)
9123 literal_pool(1024);
9124 else
9125 literal_pool_jumpover(256);
9126 }
9127 }
9128
9129 assert(slen > 0);
9130 if (slen > 0 && dops[slen-1].itype == INTCALL) {
9131 // no ending needed for this block since INTCALL never returns
9132 }
9133 // If the block did not end with an unconditional branch,
9134 // add a jump to the next instruction.
9135 else if (i > 1) {
9136 if (!dops[i-2].is_ujump) {
9137 assert(!dops[i-1].is_jump);
9138 assert(i==slen);
9139 if(dops[i-2].itype!=CJUMP&&dops[i-2].itype!=SJUMP) {
9140 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9141 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9142 emit_loadreg(CCREG,HOST_CCREG);
9143 emit_addimm(HOST_CCREG, cinfo[i-1].ccadj + CLOCK_ADJUST(1), HOST_CCREG);
9144 }
9145 else
9146 {
9147 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].dirty,start+i*4);
9148 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
9149 }
9150 add_to_linker(out,start+i*4,0);
9151 emit_jmp(0);
9152 }
9153 }
9154 else
9155 {
9156 assert(i>0);
9157 assert(!dops[i-1].is_jump);
9158 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9159 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9160 emit_loadreg(CCREG,HOST_CCREG);
9161 emit_addimm(HOST_CCREG, cinfo[i-1].ccadj + CLOCK_ADJUST(1), HOST_CCREG);
9162 add_to_linker(out,start+i*4,0);
9163 emit_jmp(0);
9164 }
9165
9166 // Stubs
9167 for(i = 0; i < stubcount; i++)
9168 {
9169 switch(stubs[i].type)
9170 {
9171 case LOADB_STUB:
9172 case LOADH_STUB:
9173 case LOADW_STUB:
9174 case LOADBU_STUB:
9175 case LOADHU_STUB:
9176 do_readstub(i);break;
9177 case STOREB_STUB:
9178 case STOREH_STUB:
9179 case STOREW_STUB:
9180 do_writestub(i);break;
9181 case CC_STUB:
9182 do_ccstub(i);break;
9183 case INVCODE_STUB:
9184 do_invstub(i);break;
9185 case STORELR_STUB:
9186 do_unalignedwritestub(i);break;
9187 case OVERFLOW_STUB:
9188 do_overflowstub(i); break;
9189 case ALIGNMENT_STUB:
9190 do_alignmentstub(i); break;
9191 default:
9192 assert(0);
9193 }
9194 }
9195
9196 if (instr_addr0_override)
9197 instr_addr[0] = instr_addr0_override;
9198
9199#if 0
9200 /* check for improper expiration */
9201 for (i = 0; i < ARRAY_SIZE(jumps); i++) {
9202 int j;
9203 if (!jumps[i])
9204 continue;
9205 for (j = 0; j < jumps[i]->count; j++)
9206 assert(jumps[i]->e[j].stub < beginning || (u_char *)jumps[i]->e[j].stub > out);
9207 }
9208#endif
9209
9210 /* Pass 9 - Linker */
9211 for(i=0;i<linkcount;i++)
9212 {
9213 assem_debug("%p -> %8x\n",link_addr[i].addr,link_addr[i].target);
9214 literal_pool(64);
9215 if (!link_addr[i].internal)
9216 {
9217 void *stub = out;
9218 void *addr = check_addr(link_addr[i].target);
9219 emit_extjump(link_addr[i].addr, link_addr[i].target);
9220 if (addr) {
9221 set_jump_target(link_addr[i].addr, addr);
9222 ndrc_add_jump_out(link_addr[i].target,stub);
9223 }
9224 else
9225 set_jump_target(link_addr[i].addr, stub);
9226 }
9227 else
9228 {
9229 // Internal branch
9230 int target=(link_addr[i].target-start)>>2;
9231 assert(target>=0&&target<slen);
9232 assert(instr_addr[target]);
9233 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9234 //set_jump_target_fillslot(link_addr[i].addr,instr_addr[target],link_addr[i].ext>>1);
9235 //#else
9236 set_jump_target(link_addr[i].addr, instr_addr[target]);
9237 //#endif
9238 }
9239 }
9240
9241 u_int source_len = slen*4;
9242 if (dops[slen-1].itype == INTCALL && source_len > 4)
9243 // no need to treat the last instruction as compiled
9244 // as interpreter fully handles it
9245 source_len -= 4;
9246
9247 if ((u_char *)copy + source_len > (u_char *)shadow + sizeof(shadow))
9248 copy = shadow;
9249
9250 // External Branch Targets (jump_in)
9251 int jump_in_count = 1;
9252 assert(instr_addr[0]);
9253 for (i = 1; i < slen; i++)
9254 {
9255 if (dops[i].bt && instr_addr[i])
9256 jump_in_count++;
9257 }
9258
9259 struct block_info *block =
9260 new_block_info(start, slen * 4, source, copy, beginning, jump_in_count);
9261 block->reg_sv_flags = state_rflags;
9262
9263 int jump_in_i = 0;
9264 for (i = 0; i < slen; i++)
9265 {
9266 if ((i == 0 || dops[i].bt) && instr_addr[i])
9267 {
9268 assem_debug("%p (%d) <- %8x\n", instr_addr[i], i, start + i*4);
9269 u_int vaddr = start + i*4;
9270
9271 literal_pool(256);
9272 void *entry = out;
9273 load_regs_entry(i);
9274 if (entry == out)
9275 entry = instr_addr[i];
9276 else
9277 emit_jmp(instr_addr[i]);
9278
9279 block->jump_in[jump_in_i].vaddr = vaddr;
9280 block->jump_in[jump_in_i].addr = entry;
9281 jump_in_i++;
9282 }
9283 }
9284 assert(jump_in_i == jump_in_count);
9285 hash_table_add(block->jump_in[0].vaddr, block->jump_in[0].addr);
9286 // Write out the literal pool if necessary
9287 literal_pool(0);
9288 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9289 // Align code
9290 if(((u_int)out)&7) emit_addnop(13);
9291 #endif
9292 assert(out - (u_char *)beginning < MAX_OUTPUT_BLOCK_SIZE);
9293 //printf("shadow buffer: %p-%p\n",copy,(u_char *)copy+slen*4);
9294 memcpy(copy, source, source_len);
9295 copy += source_len;
9296
9297 end_block(beginning);
9298
9299 // If we're within 256K of the end of the buffer,
9300 // start over from the beginning. (Is 256K enough?)
9301 if (out > ndrc->translation_cache + sizeof(ndrc->translation_cache) - MAX_OUTPUT_BLOCK_SIZE)
9302 out = ndrc->translation_cache;
9303
9304 // Trap writes to any of the pages we compiled
9305 mark_invalid_code(start, slen*4, 0);
9306
9307 /* Pass 10 - Free memory by expiring oldest blocks */
9308
9309 pass10_expire_blocks();
9310
9311#ifdef ASSEM_PRINT
9312 fflush(stdout);
9313#endif
9314 stat_inc(stat_bc_direct);
9315 return 0;
9316}
9317
9318// vim:shiftwidth=2:expandtab