drc: try to make some passes not as slow
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2011 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24#include <errno.h>
25#include <sys/mman.h>
26#ifdef __MACH__
27#include <libkern/OSCacheControl.h>
28#endif
29#ifdef _3DS
30#include <3ds_utils.h>
31#endif
32
33#include "new_dynarec_config.h"
34#include "../psxhle.h"
35#include "../psxinterpreter.h"
36#include "../gte.h"
37#include "emu_if.h" // emulator interface
38#include "arm_features.h"
39
40#define noinline __attribute__((noinline,noclone))
41#ifndef ARRAY_SIZE
42#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
43#endif
44#ifndef min
45#define min(a, b) ((b) < (a) ? (b) : (a))
46#endif
47#ifndef max
48#define max(a, b) ((b) > (a) ? (b) : (a))
49#endif
50
51//#define DISASM
52//#define ASSEM_PRINT
53//#define REG_ALLOC_PRINT
54
55#ifdef ASSEM_PRINT
56#define assem_debug printf
57#else
58#define assem_debug(...)
59#endif
60//#define inv_debug printf
61#define inv_debug(...)
62
63#ifdef __i386__
64#include "assem_x86.h"
65#endif
66#ifdef __x86_64__
67#include "assem_x64.h"
68#endif
69#ifdef __arm__
70#include "assem_arm.h"
71#endif
72#ifdef __aarch64__
73#include "assem_arm64.h"
74#endif
75
76#define RAM_SIZE 0x200000
77#define MAXBLOCK 4096
78#define MAX_OUTPUT_BLOCK_SIZE 262144
79
80#ifdef VITA
81// apparently Vita has a 16MB limit, so either we cut tc in half,
82// or use this hack (it's a hack because tc size was designed to be power-of-2)
83#define TC_REDUCE_BYTES 4096
84#else
85#define TC_REDUCE_BYTES 0
86#endif
87
88struct ndrc_mem
89{
90 u_char translation_cache[(1 << TARGET_SIZE_2) - TC_REDUCE_BYTES];
91 struct
92 {
93 struct tramp_insns ops[2048 / sizeof(struct tramp_insns)];
94 const void *f[2048 / sizeof(void *)];
95 } tramp;
96};
97
98#ifdef BASE_ADDR_DYNAMIC
99static struct ndrc_mem *ndrc;
100#else
101static struct ndrc_mem ndrc_ __attribute__((aligned(4096)));
102static struct ndrc_mem *ndrc = &ndrc_;
103#endif
104
105// stubs
106enum stub_type {
107 CC_STUB = 1,
108 FP_STUB = 2,
109 LOADB_STUB = 3,
110 LOADH_STUB = 4,
111 LOADW_STUB = 5,
112 LOADD_STUB = 6,
113 LOADBU_STUB = 7,
114 LOADHU_STUB = 8,
115 STOREB_STUB = 9,
116 STOREH_STUB = 10,
117 STOREW_STUB = 11,
118 STORED_STUB = 12,
119 STORELR_STUB = 13,
120 INVCODE_STUB = 14,
121};
122
123// regmap_pre[i] - regs before [i] insn starts; dirty things here that
124// don't match .regmap will be written back
125// [i].regmap_entry - regs that must be set up if someone jumps here
126// [i].regmap - regs [i] insn will read/(over)write
127// branch_regs[i].* - same as above but for branches, takes delay slot into account
128struct regstat
129{
130 signed char regmap_entry[HOST_REGS];
131 signed char regmap[HOST_REGS];
132 uint64_t wasdirty;
133 uint64_t dirty;
134 uint64_t u;
135 u_int wasconst; // before; for example 'lw r2, (r2)' wasconst is true
136 u_int isconst; // ... but isconst is false when r2 is known
137 u_int loadedconst; // host regs that have constants loaded
138 u_int waswritten; // MIPS regs that were used as store base before
139};
140
141// note: asm depends on this layout
142struct ll_entry
143{
144 u_int vaddr;
145 u_int reg_sv_flags;
146 void *addr;
147 struct ll_entry *next;
148};
149
150struct ht_entry
151{
152 u_int vaddr[2];
153 void *tcaddr[2];
154};
155
156struct code_stub
157{
158 enum stub_type type;
159 void *addr;
160 void *retaddr;
161 u_int a;
162 uintptr_t b;
163 uintptr_t c;
164 u_int d;
165 u_int e;
166};
167
168struct link_entry
169{
170 void *addr;
171 u_int target;
172 u_int ext;
173};
174
175static struct decoded_insn
176{
177 u_char itype;
178 u_char opcode;
179 u_char opcode2;
180 u_char rs1;
181 u_char rs2;
182 u_char rt1;
183 u_char rt2;
184 u_char use_lt1:1;
185 u_char bt:1;
186 u_char ooo:1;
187 u_char is_ds:1;
188 u_char is_jump:1;
189 u_char is_ujump:1;
190 u_char is_load:1;
191 u_char is_store:1;
192} dops[MAXBLOCK];
193
194 // used by asm:
195 u_char *out;
196 struct ht_entry hash_table[65536] __attribute__((aligned(16)));
197 struct ll_entry *jump_in[4096] __attribute__((aligned(16)));
198 struct ll_entry *jump_dirty[4096];
199
200 static struct ll_entry *jump_out[4096];
201 static u_int start;
202 static u_int *source;
203 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
204 static uint64_t gte_rt[MAXBLOCK];
205 static uint64_t gte_unneeded[MAXBLOCK];
206 static u_int smrv[32]; // speculated MIPS register values
207 static u_int smrv_strong; // mask or regs that are likely to have correct values
208 static u_int smrv_weak; // same, but somewhat less likely
209 static u_int smrv_strong_next; // same, but after current insn executes
210 static u_int smrv_weak_next;
211 static int imm[MAXBLOCK];
212 static u_int ba[MAXBLOCK];
213 static uint64_t unneeded_reg[MAXBLOCK];
214 static uint64_t branch_unneeded_reg[MAXBLOCK];
215 // see 'struct regstat' for a description
216 static signed char regmap_pre[MAXBLOCK][HOST_REGS];
217 // contains 'real' consts at [i] insn, but may differ from what's actually
218 // loaded in host reg as 'final' value is always loaded, see get_final_value()
219 static uint32_t current_constmap[HOST_REGS];
220 static uint32_t constmap[MAXBLOCK][HOST_REGS];
221 static struct regstat regs[MAXBLOCK];
222 static struct regstat branch_regs[MAXBLOCK];
223 static signed char minimum_free_regs[MAXBLOCK];
224 static u_int needed_reg[MAXBLOCK];
225 static u_int wont_dirty[MAXBLOCK];
226 static u_int will_dirty[MAXBLOCK];
227 static int ccadj[MAXBLOCK];
228 static int slen;
229 static void *instr_addr[MAXBLOCK];
230 static struct link_entry link_addr[MAXBLOCK];
231 static int linkcount;
232 static struct code_stub stubs[MAXBLOCK*3];
233 static int stubcount;
234 static u_int literals[1024][2];
235 static int literalcount;
236 static int is_delayslot;
237 static char shadow[1048576] __attribute__((aligned(16)));
238 static void *copy;
239 static int expirep;
240 static u_int stop_after_jal;
241 static u_int f1_hack;
242
243 int new_dynarec_hacks;
244 int new_dynarec_hacks_pergame;
245 int new_dynarec_hacks_old;
246 int new_dynarec_did_compile;
247
248 #define HACK_ENABLED(x) ((new_dynarec_hacks | new_dynarec_hacks_pergame) & (x))
249
250 extern int cycle_count; // ... until end of the timeslice, counts -N -> 0
251 extern int last_count; // last absolute target, often = next_interupt
252 extern int pcaddr;
253 extern int pending_exception;
254 extern int branch_target;
255 extern uintptr_t ram_offset;
256 extern uintptr_t mini_ht[32][2];
257 extern u_char restore_candidate[512];
258
259 /* registers that may be allocated */
260 /* 1-31 gpr */
261#define LOREG 32 // lo
262#define HIREG 33 // hi
263//#define FSREG 34 // FPU status (FCSR)
264#define CSREG 35 // Coprocessor status
265#define CCREG 36 // Cycle count
266#define INVCP 37 // Pointer to invalid_code
267//#define MMREG 38 // Pointer to memory_map
268#define ROREG 39 // ram offset (if rdram!=0x80000000)
269#define TEMPREG 40
270#define FTEMP 40 // FPU temporary register
271#define PTEMP 41 // Prefetch temporary register
272//#define TLREG 42 // TLB mapping offset
273#define RHASH 43 // Return address hash
274#define RHTBL 44 // Return address hash table address
275#define RTEMP 45 // JR/JALR address register
276#define MAXREG 45
277#define AGEN1 46 // Address generation temporary register
278//#define AGEN2 47 // Address generation temporary register
279//#define MGEN1 48 // Maptable address generation temporary register
280//#define MGEN2 49 // Maptable address generation temporary register
281#define BTREG 50 // Branch target temporary register
282
283 /* instruction types */
284#define NOP 0 // No operation
285#define LOAD 1 // Load
286#define STORE 2 // Store
287#define LOADLR 3 // Unaligned load
288#define STORELR 4 // Unaligned store
289#define MOV 5 // Move
290#define ALU 6 // Arithmetic/logic
291#define MULTDIV 7 // Multiply/divide
292#define SHIFT 8 // Shift by register
293#define SHIFTIMM 9// Shift by immediate
294#define IMM16 10 // 16-bit immediate
295#define RJUMP 11 // Unconditional jump to register
296#define UJUMP 12 // Unconditional jump
297#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
298#define SJUMP 14 // Conditional branch (regimm format)
299#define COP0 15 // Coprocessor 0
300#define COP1 16 // Coprocessor 1
301#define C1LS 17 // Coprocessor 1 load/store
302//#define FJUMP 18 // Conditional branch (floating point)
303//#define FLOAT 19 // Floating point unit
304//#define FCONV 20 // Convert integer to float
305//#define FCOMP 21 // Floating point compare (sets FSREG)
306#define SYSCALL 22// SYSCALL,BREAK
307#define OTHER 23 // Other
308#define SPAN 24 // Branch/delay slot spans 2 pages
309#define NI 25 // Not implemented
310#define HLECALL 26// PCSX fake opcodes for HLE
311#define COP2 27 // Coprocessor 2 move
312#define C2LS 28 // Coprocessor 2 load/store
313#define C2OP 29 // Coprocessor 2 operation
314#define INTCALL 30// Call interpreter to handle rare corner cases
315
316 /* branch codes */
317#define TAKEN 1
318#define NOTTAKEN 2
319#define NULLDS 3
320
321#define DJT_1 (void *)1l // no function, just a label in assem_debug log
322#define DJT_2 (void *)2l
323
324// asm linkage
325int new_recompile_block(u_int addr);
326void *get_addr_ht(u_int vaddr);
327void invalidate_block(u_int block);
328void invalidate_addr(u_int addr);
329void remove_hash(int vaddr);
330void dyna_linker();
331void dyna_linker_ds();
332void verify_code();
333void verify_code_ds();
334void cc_interrupt();
335void fp_exception();
336void fp_exception_ds();
337void jump_syscall (u_int u0, u_int u1, u_int pc);
338void jump_syscall_ds(u_int u0, u_int u1, u_int pc);
339void jump_break (u_int u0, u_int u1, u_int pc);
340void jump_break_ds(u_int u0, u_int u1, u_int pc);
341void jump_to_new_pc();
342void call_gteStall();
343void new_dyna_leave();
344
345// Needed by assembler
346static void wb_register(signed char r, const signed char regmap[], uint64_t dirty);
347static void wb_dirtys(const signed char i_regmap[], uint64_t i_dirty);
348static void wb_needed_dirtys(const signed char i_regmap[], uint64_t i_dirty, int addr);
349static void load_all_regs(const signed char i_regmap[]);
350static void load_needed_regs(const signed char i_regmap[], const signed char next_regmap[]);
351static void load_regs_entry(int t);
352static void load_all_consts(const signed char regmap[], u_int dirty, int i);
353static u_int get_host_reglist(const signed char *regmap);
354
355static int verify_dirty(const u_int *ptr);
356static int get_final_value(int hr, int i, int *value);
357static void add_stub(enum stub_type type, void *addr, void *retaddr,
358 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e);
359static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
360 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist);
361static void add_to_linker(void *addr, u_int target, int ext);
362static void *emit_fastpath_cmp_jump(int i, const struct regstat *i_regs,
363 int addr, int *offset_reg, int *addr_reg_override);
364static void *get_direct_memhandler(void *table, u_int addr,
365 enum stub_type type, uintptr_t *addr_host);
366static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist);
367static void pass_args(int a0, int a1);
368static void emit_far_jump(const void *f);
369static void emit_far_call(const void *f);
370
371#ifdef VITA
372#include <psp2/kernel/sysmem.h>
373static int sceBlock;
374// note: this interacts with RetroArch's Vita bootstrap code: bootstrap/vita/sbrk.c
375extern int getVMBlock();
376int _newlib_vm_size_user = sizeof(*ndrc);
377#endif
378
379static void mprotect_w_x(void *start, void *end, int is_x)
380{
381#ifdef NO_WRITE_EXEC
382 #if defined(VITA)
383 // *Open* enables write on all memory that was
384 // allocated by sceKernelAllocMemBlockForVM()?
385 if (is_x)
386 sceKernelCloseVMDomain();
387 else
388 sceKernelOpenVMDomain();
389 #else
390 u_long mstart = (u_long)start & ~4095ul;
391 u_long mend = (u_long)end;
392 if (mprotect((void *)mstart, mend - mstart,
393 PROT_READ | (is_x ? PROT_EXEC : PROT_WRITE)) != 0)
394 SysPrintf("mprotect(%c) failed: %s\n", is_x ? 'x' : 'w', strerror(errno));
395 #endif
396#endif
397}
398
399static void start_tcache_write(void *start, void *end)
400{
401 mprotect_w_x(start, end, 0);
402}
403
404static void end_tcache_write(void *start, void *end)
405{
406#if defined(__arm__) || defined(__aarch64__)
407 size_t len = (char *)end - (char *)start;
408 #if defined(__BLACKBERRY_QNX__)
409 msync(start, len, MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
410 #elif defined(__MACH__)
411 sys_cache_control(kCacheFunctionPrepareForExecution, start, len);
412 #elif defined(VITA)
413 sceKernelSyncVMDomain(sceBlock, start, len);
414 #elif defined(_3DS)
415 ctr_flush_invalidate_cache();
416 #elif defined(__aarch64__)
417 // as of 2021, __clear_cache() is still broken on arm64
418 // so here is a custom one :(
419 clear_cache_arm64(start, end);
420 #else
421 __clear_cache(start, end);
422 #endif
423 (void)len;
424#endif
425
426 mprotect_w_x(start, end, 1);
427}
428
429static void *start_block(void)
430{
431 u_char *end = out + MAX_OUTPUT_BLOCK_SIZE;
432 if (end > ndrc->translation_cache + sizeof(ndrc->translation_cache))
433 end = ndrc->translation_cache + sizeof(ndrc->translation_cache);
434 start_tcache_write(out, end);
435 return out;
436}
437
438static void end_block(void *start)
439{
440 end_tcache_write(start, out);
441}
442
443// also takes care of w^x mappings when patching code
444static u_int needs_clear_cache[1<<(TARGET_SIZE_2-17)];
445
446static void mark_clear_cache(void *target)
447{
448 uintptr_t offset = (u_char *)target - ndrc->translation_cache;
449 u_int mask = 1u << ((offset >> 12) & 31);
450 if (!(needs_clear_cache[offset >> 17] & mask)) {
451 char *start = (char *)((uintptr_t)target & ~4095l);
452 start_tcache_write(start, start + 4095);
453 needs_clear_cache[offset >> 17] |= mask;
454 }
455}
456
457// Clearing the cache is rather slow on ARM Linux, so mark the areas
458// that need to be cleared, and then only clear these areas once.
459static void do_clear_cache(void)
460{
461 int i, j;
462 for (i = 0; i < (1<<(TARGET_SIZE_2-17)); i++)
463 {
464 u_int bitmap = needs_clear_cache[i];
465 if (!bitmap)
466 continue;
467 for (j = 0; j < 32; j++)
468 {
469 u_char *start, *end;
470 if (!(bitmap & (1<<j)))
471 continue;
472
473 start = ndrc->translation_cache + i*131072 + j*4096;
474 end = start + 4095;
475 for (j++; j < 32; j++) {
476 if (!(bitmap & (1<<j)))
477 break;
478 end += 4096;
479 }
480 end_tcache_write(start, end);
481 }
482 needs_clear_cache[i] = 0;
483 }
484}
485
486//#define DEBUG_CYCLE_COUNT 1
487
488#define NO_CYCLE_PENALTY_THR 12
489
490int cycle_multiplier = CYCLE_MULT_DEFAULT; // 100 for 1.0
491int cycle_multiplier_override;
492int cycle_multiplier_old;
493static int cycle_multiplier_active;
494
495static int CLOCK_ADJUST(int x)
496{
497 int m = cycle_multiplier_active;
498 int s = (x >> 31) | 1;
499 return (x * m + s * 50) / 100;
500}
501
502static int ds_writes_rjump_rs(int i)
503{
504 return dops[i].rs1 != 0 && (dops[i].rs1 == dops[i+1].rt1 || dops[i].rs1 == dops[i+1].rt2);
505}
506
507static u_int get_page(u_int vaddr)
508{
509 u_int page=vaddr&~0xe0000000;
510 if (page < 0x1000000)
511 page &= ~0x0e00000; // RAM mirrors
512 page>>=12;
513 if(page>2048) page=2048+(page&2047);
514 return page;
515}
516
517// no virtual mem in PCSX
518static u_int get_vpage(u_int vaddr)
519{
520 return get_page(vaddr);
521}
522
523static struct ht_entry *hash_table_get(u_int vaddr)
524{
525 return &hash_table[((vaddr>>16)^vaddr)&0xFFFF];
526}
527
528static void hash_table_add(struct ht_entry *ht_bin, u_int vaddr, void *tcaddr)
529{
530 ht_bin->vaddr[1] = ht_bin->vaddr[0];
531 ht_bin->tcaddr[1] = ht_bin->tcaddr[0];
532 ht_bin->vaddr[0] = vaddr;
533 ht_bin->tcaddr[0] = tcaddr;
534}
535
536// some messy ari64's code, seems to rely on unsigned 32bit overflow
537static int doesnt_expire_soon(void *tcaddr)
538{
539 u_int diff = (u_int)((u_char *)tcaddr - out) << (32-TARGET_SIZE_2);
540 return diff > (u_int)(0x60000000 + (MAX_OUTPUT_BLOCK_SIZE << (32-TARGET_SIZE_2)));
541}
542
543// Get address from virtual address
544// This is called from the recompiled JR/JALR instructions
545void noinline *get_addr(u_int vaddr)
546{
547 u_int page=get_page(vaddr);
548 u_int vpage=get_vpage(vaddr);
549 struct ll_entry *head;
550 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
551 head=jump_in[page];
552 while(head!=NULL) {
553 if(head->vaddr==vaddr) {
554 //printf("TRACE: count=%d next=%d (get_addr match %x: %p)\n",Count,next_interupt,vaddr,head->addr);
555 hash_table_add(hash_table_get(vaddr), vaddr, head->addr);
556 return head->addr;
557 }
558 head=head->next;
559 }
560 head=jump_dirty[vpage];
561 while(head!=NULL) {
562 if(head->vaddr==vaddr) {
563 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %p)\n",Count,next_interupt,vaddr,head->addr);
564 // Don't restore blocks which are about to expire from the cache
565 if (doesnt_expire_soon(head->addr))
566 if (verify_dirty(head->addr)) {
567 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
568 invalid_code[vaddr>>12]=0;
569 inv_code_start=inv_code_end=~0;
570 if(vpage<2048) {
571 restore_candidate[vpage>>3]|=1<<(vpage&7);
572 }
573 else restore_candidate[page>>3]|=1<<(page&7);
574 struct ht_entry *ht_bin = hash_table_get(vaddr);
575 if (ht_bin->vaddr[0] == vaddr)
576 ht_bin->tcaddr[0] = head->addr; // Replace existing entry
577 else
578 hash_table_add(ht_bin, vaddr, head->addr);
579
580 return head->addr;
581 }
582 }
583 head=head->next;
584 }
585 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
586 int r=new_recompile_block(vaddr);
587 if(r==0) return get_addr(vaddr);
588 // generate an address error
589 Status|=2;
590 Cause=(vaddr<<31)|(4<<2);
591 EPC=(vaddr&1)?vaddr-5:vaddr;
592 BadVAddr=(vaddr&~1);
593 return get_addr_ht(0x80000080);
594}
595// Look up address in hash table first
596void *get_addr_ht(u_int vaddr)
597{
598 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
599 const struct ht_entry *ht_bin = hash_table_get(vaddr);
600 if (ht_bin->vaddr[0] == vaddr) return ht_bin->tcaddr[0];
601 if (ht_bin->vaddr[1] == vaddr) return ht_bin->tcaddr[1];
602 return get_addr(vaddr);
603}
604
605static void clear_all_regs(signed char regmap[])
606{
607 memset(regmap, -1, sizeof(regmap[0]) * HOST_REGS);
608}
609
610#if defined(__arm__) && defined(HAVE_ARMV6) && HOST_REGS == 13 && EXCLUDE_REG == 11
611
612extern signed char get_reg(const signed char regmap[], signed char r);
613
614#else
615
616static signed char get_reg(const signed char regmap[], signed char r)
617{
618 int hr;
619 for (hr = 0; hr < HOST_REGS; hr++) {
620 if (hr == EXCLUDE_REG)
621 continue;
622 if (regmap[hr] == r)
623 return hr;
624 }
625 return -1;
626}
627
628#endif
629
630static signed char get_reg_temp(const signed char regmap[])
631{
632 int hr;
633 for (hr = 0; hr < HOST_REGS; hr++) {
634 if (hr == EXCLUDE_REG)
635 continue;
636 if (regmap[hr] == (signed char)-1)
637 return hr;
638 }
639 return -1;
640}
641
642// Find a register that is available for two consecutive cycles
643static signed char get_reg2(signed char regmap1[], const signed char regmap2[], int r)
644{
645 int hr;
646 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
647 return -1;
648}
649
650// reverse reg map: mips -> host
651#define RRMAP_SIZE 64
652static void make_rregs(const signed char regmap[], signed char rrmap[RRMAP_SIZE],
653 u_int *regs_can_change)
654{
655 u_int r, hr, hr_can_change = 0;
656 memset(rrmap, -1, RRMAP_SIZE);
657 for (hr = 0; hr < HOST_REGS; )
658 {
659 r = regmap[hr];
660 rrmap[r & (RRMAP_SIZE - 1)] = hr;
661 // only add mips $1-$31+$lo, others shifted out
662 hr_can_change |= (uint64_t)1 << (hr + ((r - 1) & 32));
663 hr++;
664 if (hr == EXCLUDE_REG)
665 hr++;
666 }
667 hr_can_change |= 1u << (rrmap[33] & 31);
668 hr_can_change |= 1u << (rrmap[CCREG] & 31);
669 hr_can_change &= ~(1u << 31);
670 *regs_can_change = hr_can_change;
671}
672
673// same as get_reg, but takes rrmap
674static signed char get_rreg(signed char rrmap[RRMAP_SIZE], signed char r)
675{
676 assert(0 <= r && r < RRMAP_SIZE);
677 return rrmap[r];
678}
679
680static int count_free_regs(const signed char regmap[])
681{
682 int count=0;
683 int hr;
684 for(hr=0;hr<HOST_REGS;hr++)
685 {
686 if(hr!=EXCLUDE_REG) {
687 if(regmap[hr]<0) count++;
688 }
689 }
690 return count;
691}
692
693static void dirty_reg(struct regstat *cur, signed char reg)
694{
695 int hr;
696 if (!reg) return;
697 hr = get_reg(cur->regmap, reg);
698 if (hr >= 0)
699 cur->dirty |= 1<<hr;
700}
701
702static void set_const(struct regstat *cur, signed char reg, uint32_t value)
703{
704 int hr;
705 if (!reg) return;
706 hr = get_reg(cur->regmap, reg);
707 if (hr >= 0) {
708 cur->isconst |= 1<<hr;
709 current_constmap[hr] = value;
710 }
711}
712
713static void clear_const(struct regstat *cur, signed char reg)
714{
715 int hr;
716 if (!reg) return;
717 hr = get_reg(cur->regmap, reg);
718 if (hr >= 0)
719 cur->isconst &= ~(1<<hr);
720}
721
722static int is_const(const struct regstat *cur, signed char reg)
723{
724 int hr;
725 if (reg < 0) return 0;
726 if (!reg) return 1;
727 hr = get_reg(cur->regmap, reg);
728 if (hr >= 0)
729 return (cur->isconst>>hr)&1;
730 return 0;
731}
732
733static uint32_t get_const(const struct regstat *cur, signed char reg)
734{
735 int hr;
736 if (!reg) return 0;
737 hr = get_reg(cur->regmap, reg);
738 if (hr >= 0)
739 return current_constmap[hr];
740
741 SysPrintf("Unknown constant in r%d\n", reg);
742 abort();
743}
744
745// Least soon needed registers
746// Look at the next ten instructions and see which registers
747// will be used. Try not to reallocate these.
748void lsn(u_char hsn[], int i, int *preferred_reg)
749{
750 int j;
751 int b=-1;
752 for(j=0;j<9;j++)
753 {
754 if(i+j>=slen) {
755 j=slen-i-1;
756 break;
757 }
758 if (dops[i+j].is_ujump)
759 {
760 // Don't go past an unconditonal jump
761 j++;
762 break;
763 }
764 }
765 for(;j>=0;j--)
766 {
767 if(dops[i+j].rs1) hsn[dops[i+j].rs1]=j;
768 if(dops[i+j].rs2) hsn[dops[i+j].rs2]=j;
769 if(dops[i+j].rt1) hsn[dops[i+j].rt1]=j;
770 if(dops[i+j].rt2) hsn[dops[i+j].rt2]=j;
771 if(dops[i+j].itype==STORE || dops[i+j].itype==STORELR) {
772 // Stores can allocate zero
773 hsn[dops[i+j].rs1]=j;
774 hsn[dops[i+j].rs2]=j;
775 }
776 if (ram_offset && (dops[i+j].is_load || dops[i+j].is_store))
777 hsn[ROREG] = j;
778 // On some architectures stores need invc_ptr
779 #if defined(HOST_IMM8)
780 if (dops[i+j].is_store)
781 hsn[INVCP] = j;
782 #endif
783 if(i+j>=0&&(dops[i+j].itype==UJUMP||dops[i+j].itype==CJUMP||dops[i+j].itype==SJUMP))
784 {
785 hsn[CCREG]=j;
786 b=j;
787 }
788 }
789 if(b>=0)
790 {
791 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
792 {
793 // Follow first branch
794 int t=(ba[i+b]-start)>>2;
795 j=7-b;if(t+j>=slen) j=slen-t-1;
796 for(;j>=0;j--)
797 {
798 if(dops[t+j].rs1) if(hsn[dops[t+j].rs1]>j+b+2) hsn[dops[t+j].rs1]=j+b+2;
799 if(dops[t+j].rs2) if(hsn[dops[t+j].rs2]>j+b+2) hsn[dops[t+j].rs2]=j+b+2;
800 //if(dops[t+j].rt1) if(hsn[dops[t+j].rt1]>j+b+2) hsn[dops[t+j].rt1]=j+b+2;
801 //if(dops[t+j].rt2) if(hsn[dops[t+j].rt2]>j+b+2) hsn[dops[t+j].rt2]=j+b+2;
802 }
803 }
804 // TODO: preferred register based on backward branch
805 }
806 // Delay slot should preferably not overwrite branch conditions or cycle count
807 if (i > 0 && dops[i-1].is_jump) {
808 if(dops[i-1].rs1) if(hsn[dops[i-1].rs1]>1) hsn[dops[i-1].rs1]=1;
809 if(dops[i-1].rs2) if(hsn[dops[i-1].rs2]>1) hsn[dops[i-1].rs2]=1;
810 hsn[CCREG]=1;
811 // ...or hash tables
812 hsn[RHASH]=1;
813 hsn[RHTBL]=1;
814 }
815 // Coprocessor load/store needs FTEMP, even if not declared
816 if(dops[i].itype==C2LS) {
817 hsn[FTEMP]=0;
818 }
819 // Load L/R also uses FTEMP as a temporary register
820 if(dops[i].itype==LOADLR) {
821 hsn[FTEMP]=0;
822 }
823 // Also SWL/SWR/SDL/SDR
824 if(dops[i].opcode==0x2a||dops[i].opcode==0x2e||dops[i].opcode==0x2c||dops[i].opcode==0x2d) {
825 hsn[FTEMP]=0;
826 }
827 // Don't remove the miniht registers
828 if(dops[i].itype==UJUMP||dops[i].itype==RJUMP)
829 {
830 hsn[RHASH]=0;
831 hsn[RHTBL]=0;
832 }
833}
834
835// We only want to allocate registers if we're going to use them again soon
836int needed_again(int r, int i)
837{
838 int j;
839 int b=-1;
840 int rn=10;
841
842 if (i > 0 && dops[i-1].is_ujump)
843 {
844 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
845 return 0; // Don't need any registers if exiting the block
846 }
847 for(j=0;j<9;j++)
848 {
849 if(i+j>=slen) {
850 j=slen-i-1;
851 break;
852 }
853 if (dops[i+j].is_ujump)
854 {
855 // Don't go past an unconditonal jump
856 j++;
857 break;
858 }
859 if(dops[i+j].itype==SYSCALL||dops[i+j].itype==HLECALL||dops[i+j].itype==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
860 {
861 break;
862 }
863 }
864 for(;j>=1;j--)
865 {
866 if(dops[i+j].rs1==r) rn=j;
867 if(dops[i+j].rs2==r) rn=j;
868 if((unneeded_reg[i+j]>>r)&1) rn=10;
869 if(i+j>=0&&(dops[i+j].itype==UJUMP||dops[i+j].itype==CJUMP||dops[i+j].itype==SJUMP))
870 {
871 b=j;
872 }
873 }
874 if(rn<10) return 1;
875 (void)b;
876 return 0;
877}
878
879// Try to match register allocations at the end of a loop with those
880// at the beginning
881int loop_reg(int i, int r, int hr)
882{
883 int j,k;
884 for(j=0;j<9;j++)
885 {
886 if(i+j>=slen) {
887 j=slen-i-1;
888 break;
889 }
890 if (dops[i+j].is_ujump)
891 {
892 // Don't go past an unconditonal jump
893 j++;
894 break;
895 }
896 }
897 k=0;
898 if(i>0){
899 if(dops[i-1].itype==UJUMP||dops[i-1].itype==CJUMP||dops[i-1].itype==SJUMP)
900 k--;
901 }
902 for(;k<j;k++)
903 {
904 assert(r < 64);
905 if((unneeded_reg[i+k]>>r)&1) return hr;
906 if(i+k>=0&&(dops[i+k].itype==UJUMP||dops[i+k].itype==CJUMP||dops[i+k].itype==SJUMP))
907 {
908 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
909 {
910 int t=(ba[i+k]-start)>>2;
911 int reg=get_reg(regs[t].regmap_entry,r);
912 if(reg>=0) return reg;
913 //reg=get_reg(regs[t+1].regmap_entry,r);
914 //if(reg>=0) return reg;
915 }
916 }
917 }
918 return hr;
919}
920
921
922// Allocate every register, preserving source/target regs
923void alloc_all(struct regstat *cur,int i)
924{
925 int hr;
926
927 for(hr=0;hr<HOST_REGS;hr++) {
928 if(hr!=EXCLUDE_REG) {
929 if((cur->regmap[hr]!=dops[i].rs1)&&(cur->regmap[hr]!=dops[i].rs2)&&
930 (cur->regmap[hr]!=dops[i].rt1)&&(cur->regmap[hr]!=dops[i].rt2))
931 {
932 cur->regmap[hr]=-1;
933 cur->dirty&=~(1<<hr);
934 }
935 // Don't need zeros
936 if(cur->regmap[hr]==0)
937 {
938 cur->regmap[hr]=-1;
939 cur->dirty&=~(1<<hr);
940 }
941 }
942 }
943}
944
945#ifndef NDEBUG
946static int host_tempreg_in_use;
947
948static void host_tempreg_acquire(void)
949{
950 assert(!host_tempreg_in_use);
951 host_tempreg_in_use = 1;
952}
953
954static void host_tempreg_release(void)
955{
956 host_tempreg_in_use = 0;
957}
958#else
959static void host_tempreg_acquire(void) {}
960static void host_tempreg_release(void) {}
961#endif
962
963#ifdef ASSEM_PRINT
964extern void gen_interupt();
965extern void do_insn_cmp();
966#define FUNCNAME(f) { f, " " #f }
967static const struct {
968 void *addr;
969 const char *name;
970} function_names[] = {
971 FUNCNAME(cc_interrupt),
972 FUNCNAME(gen_interupt),
973 FUNCNAME(get_addr_ht),
974 FUNCNAME(get_addr),
975 FUNCNAME(jump_handler_read8),
976 FUNCNAME(jump_handler_read16),
977 FUNCNAME(jump_handler_read32),
978 FUNCNAME(jump_handler_write8),
979 FUNCNAME(jump_handler_write16),
980 FUNCNAME(jump_handler_write32),
981 FUNCNAME(invalidate_addr),
982 FUNCNAME(jump_to_new_pc),
983 FUNCNAME(jump_break),
984 FUNCNAME(jump_break_ds),
985 FUNCNAME(jump_syscall),
986 FUNCNAME(jump_syscall_ds),
987 FUNCNAME(call_gteStall),
988 FUNCNAME(new_dyna_leave),
989 FUNCNAME(pcsx_mtc0),
990 FUNCNAME(pcsx_mtc0_ds),
991#ifdef DRC_DBG
992 FUNCNAME(do_insn_cmp),
993#endif
994#ifdef __arm__
995 FUNCNAME(verify_code),
996#endif
997};
998
999static const char *func_name(const void *a)
1000{
1001 int i;
1002 for (i = 0; i < sizeof(function_names)/sizeof(function_names[0]); i++)
1003 if (function_names[i].addr == a)
1004 return function_names[i].name;
1005 return "";
1006}
1007#else
1008#define func_name(x) ""
1009#endif
1010
1011#ifdef __i386__
1012#include "assem_x86.c"
1013#endif
1014#ifdef __x86_64__
1015#include "assem_x64.c"
1016#endif
1017#ifdef __arm__
1018#include "assem_arm.c"
1019#endif
1020#ifdef __aarch64__
1021#include "assem_arm64.c"
1022#endif
1023
1024static void *get_trampoline(const void *f)
1025{
1026 size_t i;
1027
1028 for (i = 0; i < ARRAY_SIZE(ndrc->tramp.f); i++) {
1029 if (ndrc->tramp.f[i] == f || ndrc->tramp.f[i] == NULL)
1030 break;
1031 }
1032 if (i == ARRAY_SIZE(ndrc->tramp.f)) {
1033 SysPrintf("trampoline table is full, last func %p\n", f);
1034 abort();
1035 }
1036 if (ndrc->tramp.f[i] == NULL) {
1037 start_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
1038 ndrc->tramp.f[i] = f;
1039 end_tcache_write(&ndrc->tramp.f[i], &ndrc->tramp.f[i + 1]);
1040 }
1041 return &ndrc->tramp.ops[i];
1042}
1043
1044static void emit_far_jump(const void *f)
1045{
1046 if (can_jump_or_call(f)) {
1047 emit_jmp(f);
1048 return;
1049 }
1050
1051 f = get_trampoline(f);
1052 emit_jmp(f);
1053}
1054
1055static void emit_far_call(const void *f)
1056{
1057 if (can_jump_or_call(f)) {
1058 emit_call(f);
1059 return;
1060 }
1061
1062 f = get_trampoline(f);
1063 emit_call(f);
1064}
1065
1066// Add virtual address mapping to linked list
1067void ll_add(struct ll_entry **head,int vaddr,void *addr)
1068{
1069 struct ll_entry *new_entry;
1070 new_entry=malloc(sizeof(struct ll_entry));
1071 assert(new_entry!=NULL);
1072 new_entry->vaddr=vaddr;
1073 new_entry->reg_sv_flags=0;
1074 new_entry->addr=addr;
1075 new_entry->next=*head;
1076 *head=new_entry;
1077}
1078
1079void ll_add_flags(struct ll_entry **head,int vaddr,u_int reg_sv_flags,void *addr)
1080{
1081 ll_add(head,vaddr,addr);
1082 (*head)->reg_sv_flags=reg_sv_flags;
1083}
1084
1085// Check if an address is already compiled
1086// but don't return addresses which are about to expire from the cache
1087void *check_addr(u_int vaddr)
1088{
1089 struct ht_entry *ht_bin = hash_table_get(vaddr);
1090 size_t i;
1091 for (i = 0; i < ARRAY_SIZE(ht_bin->vaddr); i++) {
1092 if (ht_bin->vaddr[i] == vaddr)
1093 if (doesnt_expire_soon((u_char *)ht_bin->tcaddr[i] - MAX_OUTPUT_BLOCK_SIZE))
1094 if (isclean(ht_bin->tcaddr[i]))
1095 return ht_bin->tcaddr[i];
1096 }
1097 u_int page=get_page(vaddr);
1098 struct ll_entry *head;
1099 head=jump_in[page];
1100 while (head != NULL) {
1101 if (head->vaddr == vaddr) {
1102 if (doesnt_expire_soon(head->addr)) {
1103 // Update existing entry with current address
1104 if (ht_bin->vaddr[0] == vaddr) {
1105 ht_bin->tcaddr[0] = head->addr;
1106 return head->addr;
1107 }
1108 if (ht_bin->vaddr[1] == vaddr) {
1109 ht_bin->tcaddr[1] = head->addr;
1110 return head->addr;
1111 }
1112 // Insert into hash table with low priority.
1113 // Don't evict existing entries, as they are probably
1114 // addresses that are being accessed frequently.
1115 if (ht_bin->vaddr[0] == -1) {
1116 ht_bin->vaddr[0] = vaddr;
1117 ht_bin->tcaddr[0] = head->addr;
1118 }
1119 else if (ht_bin->vaddr[1] == -1) {
1120 ht_bin->vaddr[1] = vaddr;
1121 ht_bin->tcaddr[1] = head->addr;
1122 }
1123 return head->addr;
1124 }
1125 }
1126 head=head->next;
1127 }
1128 return 0;
1129}
1130
1131void remove_hash(int vaddr)
1132{
1133 //printf("remove hash: %x\n",vaddr);
1134 struct ht_entry *ht_bin = hash_table_get(vaddr);
1135 if (ht_bin->vaddr[1] == vaddr) {
1136 ht_bin->vaddr[1] = -1;
1137 ht_bin->tcaddr[1] = NULL;
1138 }
1139 if (ht_bin->vaddr[0] == vaddr) {
1140 ht_bin->vaddr[0] = ht_bin->vaddr[1];
1141 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
1142 ht_bin->vaddr[1] = -1;
1143 ht_bin->tcaddr[1] = NULL;
1144 }
1145}
1146
1147static void ll_remove_matching_addrs(struct ll_entry **head,
1148 uintptr_t base_offs_s, int shift)
1149{
1150 struct ll_entry *next;
1151 while(*head) {
1152 uintptr_t o1 = (u_char *)(*head)->addr - ndrc->translation_cache;
1153 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
1154 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s)
1155 {
1156 inv_debug("EXP: Remove pointer to %p (%x)\n",(*head)->addr,(*head)->vaddr);
1157 remove_hash((*head)->vaddr);
1158 next=(*head)->next;
1159 free(*head);
1160 *head=next;
1161 }
1162 else
1163 {
1164 head=&((*head)->next);
1165 }
1166 }
1167}
1168
1169// Remove all entries from linked list
1170void ll_clear(struct ll_entry **head)
1171{
1172 struct ll_entry *cur;
1173 struct ll_entry *next;
1174 if((cur=*head)) {
1175 *head=0;
1176 while(cur) {
1177 next=cur->next;
1178 free(cur);
1179 cur=next;
1180 }
1181 }
1182}
1183
1184// Dereference the pointers and remove if it matches
1185static void ll_kill_pointers(struct ll_entry *head,
1186 uintptr_t base_offs_s, int shift)
1187{
1188 while(head) {
1189 u_char *ptr = get_pointer(head->addr);
1190 uintptr_t o1 = ptr - ndrc->translation_cache;
1191 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
1192 inv_debug("EXP: Lookup pointer to %p at %p (%x)\n",ptr,head->addr,head->vaddr);
1193 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s)
1194 {
1195 inv_debug("EXP: Kill pointer at %p (%x)\n",head->addr,head->vaddr);
1196 void *host_addr=find_extjump_insn(head->addr);
1197 mark_clear_cache(host_addr);
1198 set_jump_target(host_addr, head->addr);
1199 }
1200 head=head->next;
1201 }
1202}
1203
1204// This is called when we write to a compiled block (see do_invstub)
1205static void invalidate_page(u_int page)
1206{
1207 struct ll_entry *head;
1208 struct ll_entry *next;
1209 head=jump_in[page];
1210 jump_in[page]=0;
1211 while(head!=NULL) {
1212 inv_debug("INVALIDATE: %x\n",head->vaddr);
1213 remove_hash(head->vaddr);
1214 next=head->next;
1215 free(head);
1216 head=next;
1217 }
1218 head=jump_out[page];
1219 jump_out[page]=0;
1220 while(head!=NULL) {
1221 inv_debug("INVALIDATE: kill pointer to %x (%p)\n",head->vaddr,head->addr);
1222 void *host_addr=find_extjump_insn(head->addr);
1223 mark_clear_cache(host_addr);
1224 set_jump_target(host_addr, head->addr); // point back to dyna_linker
1225 next=head->next;
1226 free(head);
1227 head=next;
1228 }
1229}
1230
1231static void invalidate_block_range(u_int block, u_int first, u_int last)
1232{
1233 u_int page=get_page(block<<12);
1234 //printf("first=%d last=%d\n",first,last);
1235 invalidate_page(page);
1236 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1237 assert(last<page+5);
1238 // Invalidate the adjacent pages if a block crosses a 4K boundary
1239 while(first<page) {
1240 invalidate_page(first);
1241 first++;
1242 }
1243 for(first=page+1;first<last;first++) {
1244 invalidate_page(first);
1245 }
1246 do_clear_cache();
1247
1248 // Don't trap writes
1249 invalid_code[block]=1;
1250
1251 #ifdef USE_MINI_HT
1252 memset(mini_ht,-1,sizeof(mini_ht));
1253 #endif
1254}
1255
1256void invalidate_block(u_int block)
1257{
1258 u_int page=get_page(block<<12);
1259 u_int vpage=get_vpage(block<<12);
1260 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1261 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1262 u_int first,last;
1263 first=last=page;
1264 struct ll_entry *head;
1265 head=jump_dirty[vpage];
1266 //printf("page=%d vpage=%d\n",page,vpage);
1267 while(head!=NULL) {
1268 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1269 u_char *start, *end;
1270 get_bounds(head->addr, &start, &end);
1271 //printf("start: %p end: %p\n", start, end);
1272 if (page < 2048 && start >= rdram && end < rdram+RAM_SIZE) {
1273 if (((start-rdram)>>12) <= page && ((end-1-rdram)>>12) >= page) {
1274 if ((((start-rdram)>>12)&2047) < first) first = ((start-rdram)>>12)&2047;
1275 if ((((end-1-rdram)>>12)&2047) > last) last = ((end-1-rdram)>>12)&2047;
1276 }
1277 }
1278 }
1279 head=head->next;
1280 }
1281 invalidate_block_range(block,first,last);
1282}
1283
1284void invalidate_addr(u_int addr)
1285{
1286 //static int rhits;
1287 // this check is done by the caller
1288 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1289 u_int page=get_vpage(addr);
1290 if(page<2048) { // RAM
1291 struct ll_entry *head;
1292 u_int addr_min=~0, addr_max=0;
1293 u_int mask=RAM_SIZE-1;
1294 u_int addr_main=0x80000000|(addr&mask);
1295 int pg1;
1296 inv_code_start=addr_main&~0xfff;
1297 inv_code_end=addr_main|0xfff;
1298 pg1=page;
1299 if (pg1>0) {
1300 // must check previous page too because of spans..
1301 pg1--;
1302 inv_code_start-=0x1000;
1303 }
1304 for(;pg1<=page;pg1++) {
1305 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1306 u_char *start_h, *end_h;
1307 u_int start, end;
1308 get_bounds(head->addr, &start_h, &end_h);
1309 start = (uintptr_t)start_h - ram_offset;
1310 end = (uintptr_t)end_h - ram_offset;
1311 if(start<=addr_main&&addr_main<end) {
1312 if(start<addr_min) addr_min=start;
1313 if(end>addr_max) addr_max=end;
1314 }
1315 else if(addr_main<start) {
1316 if(start<inv_code_end)
1317 inv_code_end=start-1;
1318 }
1319 else {
1320 if(end>inv_code_start)
1321 inv_code_start=end;
1322 }
1323 }
1324 }
1325 if (addr_min!=~0) {
1326 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1327 inv_code_start=inv_code_end=~0;
1328 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1329 return;
1330 }
1331 else {
1332 inv_code_start=(addr&~mask)|(inv_code_start&mask);
1333 inv_code_end=(addr&~mask)|(inv_code_end&mask);
1334 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
1335 return;
1336 }
1337 }
1338 invalidate_block(addr>>12);
1339}
1340
1341// This is called when loading a save state.
1342// Anything could have changed, so invalidate everything.
1343void invalidate_all_pages(void)
1344{
1345 u_int page;
1346 for(page=0;page<4096;page++)
1347 invalidate_page(page);
1348 for(page=0;page<1048576;page++)
1349 if(!invalid_code[page]) {
1350 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1351 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1352 }
1353 #ifdef USE_MINI_HT
1354 memset(mini_ht,-1,sizeof(mini_ht));
1355 #endif
1356 do_clear_cache();
1357}
1358
1359static void do_invstub(int n)
1360{
1361 literal_pool(20);
1362 u_int reglist=stubs[n].a;
1363 set_jump_target(stubs[n].addr, out);
1364 save_regs(reglist);
1365 if(stubs[n].b!=0) emit_mov(stubs[n].b,0);
1366 emit_far_call(invalidate_addr);
1367 restore_regs(reglist);
1368 emit_jmp(stubs[n].retaddr); // return address
1369}
1370
1371// Add an entry to jump_out after making a link
1372// src should point to code by emit_extjump2()
1373void add_jump_out(u_int vaddr,void *src)
1374{
1375 u_int page=get_page(vaddr);
1376 inv_debug("add_jump_out: %p -> %x (%d)\n",src,vaddr,page);
1377 check_extjump2(src);
1378 ll_add(jump_out+page,vaddr,src);
1379 //inv_debug("add_jump_out: to %p\n",get_pointer(src));
1380}
1381
1382// If a code block was found to be unmodified (bit was set in
1383// restore_candidate) and it remains unmodified (bit is clear
1384// in invalid_code) then move the entries for that 4K page from
1385// the dirty list to the clean list.
1386void clean_blocks(u_int page)
1387{
1388 struct ll_entry *head;
1389 inv_debug("INV: clean_blocks page=%d\n",page);
1390 head=jump_dirty[page];
1391 while(head!=NULL) {
1392 if(!invalid_code[head->vaddr>>12]) {
1393 // Don't restore blocks which are about to expire from the cache
1394 if (doesnt_expire_soon(head->addr)) {
1395 if(verify_dirty(head->addr)) {
1396 u_char *start, *end;
1397 //printf("Possibly Restore %x (%p)\n",head->vaddr, head->addr);
1398 u_int i;
1399 u_int inv=0;
1400 get_bounds(head->addr, &start, &end);
1401 if (start - rdram < RAM_SIZE) {
1402 for (i = (start-rdram+0x80000000)>>12; i <= (end-1-rdram+0x80000000)>>12; i++) {
1403 inv|=invalid_code[i];
1404 }
1405 }
1406 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1407 inv=1;
1408 }
1409 if(!inv) {
1410 void *clean_addr = get_clean_addr(head->addr);
1411 if (doesnt_expire_soon(clean_addr)) {
1412 u_int ppage=page;
1413 inv_debug("INV: Restored %x (%p/%p)\n",head->vaddr, head->addr, clean_addr);
1414 //printf("page=%x, addr=%x\n",page,head->vaddr);
1415 //assert(head->vaddr>>12==(page|0x80000));
1416 ll_add_flags(jump_in+ppage,head->vaddr,head->reg_sv_flags,clean_addr);
1417 struct ht_entry *ht_bin = hash_table_get(head->vaddr);
1418 if (ht_bin->vaddr[0] == head->vaddr)
1419 ht_bin->tcaddr[0] = clean_addr; // Replace existing entry
1420 if (ht_bin->vaddr[1] == head->vaddr)
1421 ht_bin->tcaddr[1] = clean_addr; // Replace existing entry
1422 }
1423 }
1424 }
1425 }
1426 }
1427 head=head->next;
1428 }
1429}
1430
1431/* Register allocation */
1432
1433// Note: registers are allocated clean (unmodified state)
1434// if you intend to modify the register, you must call dirty_reg().
1435static void alloc_reg(struct regstat *cur,int i,signed char reg)
1436{
1437 int r,hr;
1438 int preferred_reg = PREFERRED_REG_FIRST
1439 + reg % (PREFERRED_REG_LAST - PREFERRED_REG_FIRST + 1);
1440 if (reg == CCREG) preferred_reg = HOST_CCREG;
1441 if (reg == PTEMP || reg == FTEMP) preferred_reg = 12;
1442 assert(PREFERRED_REG_FIRST != EXCLUDE_REG && EXCLUDE_REG != HOST_REGS);
1443
1444 // Don't allocate unused registers
1445 if((cur->u>>reg)&1) return;
1446
1447 // see if it's already allocated
1448 for(hr=0;hr<HOST_REGS;hr++)
1449 {
1450 if(cur->regmap[hr]==reg) return;
1451 }
1452
1453 // Keep the same mapping if the register was already allocated in a loop
1454 preferred_reg = loop_reg(i,reg,preferred_reg);
1455
1456 // Try to allocate the preferred register
1457 if(cur->regmap[preferred_reg]==-1) {
1458 cur->regmap[preferred_reg]=reg;
1459 cur->dirty&=~(1<<preferred_reg);
1460 cur->isconst&=~(1<<preferred_reg);
1461 return;
1462 }
1463 r=cur->regmap[preferred_reg];
1464 assert(r < 64);
1465 if((cur->u>>r)&1) {
1466 cur->regmap[preferred_reg]=reg;
1467 cur->dirty&=~(1<<preferred_reg);
1468 cur->isconst&=~(1<<preferred_reg);
1469 return;
1470 }
1471
1472 // Clear any unneeded registers
1473 // We try to keep the mapping consistent, if possible, because it
1474 // makes branches easier (especially loops). So we try to allocate
1475 // first (see above) before removing old mappings. If this is not
1476 // possible then go ahead and clear out the registers that are no
1477 // longer needed.
1478 for(hr=0;hr<HOST_REGS;hr++)
1479 {
1480 r=cur->regmap[hr];
1481 if(r>=0) {
1482 assert(r < 64);
1483 if((cur->u>>r)&1) {cur->regmap[hr]=-1;break;}
1484 }
1485 }
1486
1487 // Try to allocate any available register, but prefer
1488 // registers that have not been used recently.
1489 if (i > 0) {
1490 for (hr = PREFERRED_REG_FIRST; ; ) {
1491 if (cur->regmap[hr] < 0) {
1492 int oldreg = regs[i-1].regmap[hr];
1493 if (oldreg < 0 || (oldreg != dops[i-1].rs1 && oldreg != dops[i-1].rs2
1494 && oldreg != dops[i-1].rt1 && oldreg != dops[i-1].rt2))
1495 {
1496 cur->regmap[hr]=reg;
1497 cur->dirty&=~(1<<hr);
1498 cur->isconst&=~(1<<hr);
1499 return;
1500 }
1501 }
1502 hr++;
1503 if (hr == EXCLUDE_REG)
1504 hr++;
1505 if (hr == HOST_REGS)
1506 hr = 0;
1507 if (hr == PREFERRED_REG_FIRST)
1508 break;
1509 }
1510 }
1511
1512 // Try to allocate any available register
1513 for (hr = PREFERRED_REG_FIRST; ; ) {
1514 if (cur->regmap[hr] < 0) {
1515 cur->regmap[hr]=reg;
1516 cur->dirty&=~(1<<hr);
1517 cur->isconst&=~(1<<hr);
1518 return;
1519 }
1520 hr++;
1521 if (hr == EXCLUDE_REG)
1522 hr++;
1523 if (hr == HOST_REGS)
1524 hr = 0;
1525 if (hr == PREFERRED_REG_FIRST)
1526 break;
1527 }
1528
1529 // Ok, now we have to evict someone
1530 // Pick a register we hopefully won't need soon
1531 u_char hsn[MAXREG+1];
1532 memset(hsn,10,sizeof(hsn));
1533 int j;
1534 lsn(hsn,i,&preferred_reg);
1535 //printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",cur->regmap[0],cur->regmap[1],cur->regmap[2],cur->regmap[3],cur->regmap[5],cur->regmap[6],cur->regmap[7]);
1536 //printf("hsn(%x): %d %d %d %d %d %d %d\n",start+i*4,hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1537 if(i>0) {
1538 // Don't evict the cycle count at entry points, otherwise the entry
1539 // stub will have to write it.
1540 if(dops[i].bt&&hsn[CCREG]>2) hsn[CCREG]=2;
1541 if (i>1 && hsn[CCREG] > 2 && dops[i-2].is_jump) hsn[CCREG]=2;
1542 for(j=10;j>=3;j--)
1543 {
1544 // Alloc preferred register if available
1545 if(hsn[r=cur->regmap[preferred_reg]&63]==j) {
1546 for(hr=0;hr<HOST_REGS;hr++) {
1547 // Evict both parts of a 64-bit register
1548 if(cur->regmap[hr]==r) {
1549 cur->regmap[hr]=-1;
1550 cur->dirty&=~(1<<hr);
1551 cur->isconst&=~(1<<hr);
1552 }
1553 }
1554 cur->regmap[preferred_reg]=reg;
1555 return;
1556 }
1557 for(r=1;r<=MAXREG;r++)
1558 {
1559 if(hsn[r]==j&&r!=dops[i-1].rs1&&r!=dops[i-1].rs2&&r!=dops[i-1].rt1&&r!=dops[i-1].rt2) {
1560 for(hr=0;hr<HOST_REGS;hr++) {
1561 if(hr!=HOST_CCREG||j<hsn[CCREG]) {
1562 if(cur->regmap[hr]==r) {
1563 cur->regmap[hr]=reg;
1564 cur->dirty&=~(1<<hr);
1565 cur->isconst&=~(1<<hr);
1566 return;
1567 }
1568 }
1569 }
1570 }
1571 }
1572 }
1573 }
1574 for(j=10;j>=0;j--)
1575 {
1576 for(r=1;r<=MAXREG;r++)
1577 {
1578 if(hsn[r]==j) {
1579 for(hr=0;hr<HOST_REGS;hr++) {
1580 if(cur->regmap[hr]==r) {
1581 cur->regmap[hr]=reg;
1582 cur->dirty&=~(1<<hr);
1583 cur->isconst&=~(1<<hr);
1584 return;
1585 }
1586 }
1587 }
1588 }
1589 }
1590 SysPrintf("This shouldn't happen (alloc_reg)");abort();
1591}
1592
1593// Allocate a temporary register. This is done without regard to
1594// dirty status or whether the register we request is on the unneeded list
1595// Note: This will only allocate one register, even if called multiple times
1596static void alloc_reg_temp(struct regstat *cur,int i,signed char reg)
1597{
1598 int r,hr;
1599 int preferred_reg = -1;
1600
1601 // see if it's already allocated
1602 for(hr=0;hr<HOST_REGS;hr++)
1603 {
1604 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==reg) return;
1605 }
1606
1607 // Try to allocate any available register
1608 for(hr=HOST_REGS-1;hr>=0;hr--) {
1609 if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) {
1610 cur->regmap[hr]=reg;
1611 cur->dirty&=~(1<<hr);
1612 cur->isconst&=~(1<<hr);
1613 return;
1614 }
1615 }
1616
1617 // Find an unneeded register
1618 for(hr=HOST_REGS-1;hr>=0;hr--)
1619 {
1620 r=cur->regmap[hr];
1621 if(r>=0) {
1622 assert(r < 64);
1623 if((cur->u>>r)&1) {
1624 if(i==0||((unneeded_reg[i-1]>>r)&1)) {
1625 cur->regmap[hr]=reg;
1626 cur->dirty&=~(1<<hr);
1627 cur->isconst&=~(1<<hr);
1628 return;
1629 }
1630 }
1631 }
1632 }
1633
1634 // Ok, now we have to evict someone
1635 // Pick a register we hopefully won't need soon
1636 // TODO: we might want to follow unconditional jumps here
1637 // TODO: get rid of dupe code and make this into a function
1638 u_char hsn[MAXREG+1];
1639 memset(hsn,10,sizeof(hsn));
1640 int j;
1641 lsn(hsn,i,&preferred_reg);
1642 //printf("hsn: %d %d %d %d %d %d %d\n",hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]);
1643 if(i>0) {
1644 // Don't evict the cycle count at entry points, otherwise the entry
1645 // stub will have to write it.
1646 if(dops[i].bt&&hsn[CCREG]>2) hsn[CCREG]=2;
1647 if (i>1 && hsn[CCREG] > 2 && dops[i-2].is_jump) hsn[CCREG]=2;
1648 for(j=10;j>=3;j--)
1649 {
1650 for(r=1;r<=MAXREG;r++)
1651 {
1652 if(hsn[r]==j&&r!=dops[i-1].rs1&&r!=dops[i-1].rs2&&r!=dops[i-1].rt1&&r!=dops[i-1].rt2) {
1653 for(hr=0;hr<HOST_REGS;hr++) {
1654 if(hr!=HOST_CCREG||hsn[CCREG]>2) {
1655 if(cur->regmap[hr]==r) {
1656 cur->regmap[hr]=reg;
1657 cur->dirty&=~(1<<hr);
1658 cur->isconst&=~(1<<hr);
1659 return;
1660 }
1661 }
1662 }
1663 }
1664 }
1665 }
1666 }
1667 for(j=10;j>=0;j--)
1668 {
1669 for(r=1;r<=MAXREG;r++)
1670 {
1671 if(hsn[r]==j) {
1672 for(hr=0;hr<HOST_REGS;hr++) {
1673 if(cur->regmap[hr]==r) {
1674 cur->regmap[hr]=reg;
1675 cur->dirty&=~(1<<hr);
1676 cur->isconst&=~(1<<hr);
1677 return;
1678 }
1679 }
1680 }
1681 }
1682 }
1683 SysPrintf("This shouldn't happen");abort();
1684}
1685
1686static void mov_alloc(struct regstat *current,int i)
1687{
1688 if (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG) {
1689 alloc_cc(current,i); // for stalls
1690 dirty_reg(current,CCREG);
1691 }
1692
1693 // Note: Don't need to actually alloc the source registers
1694 //alloc_reg(current,i,dops[i].rs1);
1695 alloc_reg(current,i,dops[i].rt1);
1696
1697 clear_const(current,dops[i].rs1);
1698 clear_const(current,dops[i].rt1);
1699 dirty_reg(current,dops[i].rt1);
1700}
1701
1702static void shiftimm_alloc(struct regstat *current,int i)
1703{
1704 if(dops[i].opcode2<=0x3) // SLL/SRL/SRA
1705 {
1706 if(dops[i].rt1) {
1707 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1708 else dops[i].use_lt1=!!dops[i].rs1;
1709 alloc_reg(current,i,dops[i].rt1);
1710 dirty_reg(current,dops[i].rt1);
1711 if(is_const(current,dops[i].rs1)) {
1712 int v=get_const(current,dops[i].rs1);
1713 if(dops[i].opcode2==0x00) set_const(current,dops[i].rt1,v<<imm[i]);
1714 if(dops[i].opcode2==0x02) set_const(current,dops[i].rt1,(u_int)v>>imm[i]);
1715 if(dops[i].opcode2==0x03) set_const(current,dops[i].rt1,v>>imm[i]);
1716 }
1717 else clear_const(current,dops[i].rt1);
1718 }
1719 }
1720 else
1721 {
1722 clear_const(current,dops[i].rs1);
1723 clear_const(current,dops[i].rt1);
1724 }
1725
1726 if(dops[i].opcode2>=0x38&&dops[i].opcode2<=0x3b) // DSLL/DSRL/DSRA
1727 {
1728 assert(0);
1729 }
1730 if(dops[i].opcode2==0x3c) // DSLL32
1731 {
1732 assert(0);
1733 }
1734 if(dops[i].opcode2==0x3e) // DSRL32
1735 {
1736 assert(0);
1737 }
1738 if(dops[i].opcode2==0x3f) // DSRA32
1739 {
1740 assert(0);
1741 }
1742}
1743
1744static void shift_alloc(struct regstat *current,int i)
1745{
1746 if(dops[i].rt1) {
1747 if(dops[i].opcode2<=0x07) // SLLV/SRLV/SRAV
1748 {
1749 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
1750 if(dops[i].rs2) alloc_reg(current,i,dops[i].rs2);
1751 alloc_reg(current,i,dops[i].rt1);
1752 if(dops[i].rt1==dops[i].rs2) {
1753 alloc_reg_temp(current,i,-1);
1754 minimum_free_regs[i]=1;
1755 }
1756 } else { // DSLLV/DSRLV/DSRAV
1757 assert(0);
1758 }
1759 clear_const(current,dops[i].rs1);
1760 clear_const(current,dops[i].rs2);
1761 clear_const(current,dops[i].rt1);
1762 dirty_reg(current,dops[i].rt1);
1763 }
1764}
1765
1766static void alu_alloc(struct regstat *current,int i)
1767{
1768 if(dops[i].opcode2>=0x20&&dops[i].opcode2<=0x23) { // ADD/ADDU/SUB/SUBU
1769 if(dops[i].rt1) {
1770 if(dops[i].rs1&&dops[i].rs2) {
1771 alloc_reg(current,i,dops[i].rs1);
1772 alloc_reg(current,i,dops[i].rs2);
1773 }
1774 else {
1775 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1776 if(dops[i].rs2&&needed_again(dops[i].rs2,i)) alloc_reg(current,i,dops[i].rs2);
1777 }
1778 alloc_reg(current,i,dops[i].rt1);
1779 }
1780 }
1781 if(dops[i].opcode2==0x2a||dops[i].opcode2==0x2b) { // SLT/SLTU
1782 if(dops[i].rt1) {
1783 alloc_reg(current,i,dops[i].rs1);
1784 alloc_reg(current,i,dops[i].rs2);
1785 alloc_reg(current,i,dops[i].rt1);
1786 }
1787 }
1788 if(dops[i].opcode2>=0x24&&dops[i].opcode2<=0x27) { // AND/OR/XOR/NOR
1789 if(dops[i].rt1) {
1790 if(dops[i].rs1&&dops[i].rs2) {
1791 alloc_reg(current,i,dops[i].rs1);
1792 alloc_reg(current,i,dops[i].rs2);
1793 }
1794 else
1795 {
1796 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1797 if(dops[i].rs2&&needed_again(dops[i].rs2,i)) alloc_reg(current,i,dops[i].rs2);
1798 }
1799 alloc_reg(current,i,dops[i].rt1);
1800 }
1801 }
1802 if(dops[i].opcode2>=0x2c&&dops[i].opcode2<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1803 assert(0);
1804 }
1805 clear_const(current,dops[i].rs1);
1806 clear_const(current,dops[i].rs2);
1807 clear_const(current,dops[i].rt1);
1808 dirty_reg(current,dops[i].rt1);
1809}
1810
1811static void imm16_alloc(struct regstat *current,int i)
1812{
1813 if(dops[i].rs1&&needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1814 else dops[i].use_lt1=!!dops[i].rs1;
1815 if(dops[i].rt1) alloc_reg(current,i,dops[i].rt1);
1816 if(dops[i].opcode==0x18||dops[i].opcode==0x19) { // DADDI/DADDIU
1817 assert(0);
1818 }
1819 else if(dops[i].opcode==0x0a||dops[i].opcode==0x0b) { // SLTI/SLTIU
1820 clear_const(current,dops[i].rs1);
1821 clear_const(current,dops[i].rt1);
1822 }
1823 else if(dops[i].opcode>=0x0c&&dops[i].opcode<=0x0e) { // ANDI/ORI/XORI
1824 if(is_const(current,dops[i].rs1)) {
1825 int v=get_const(current,dops[i].rs1);
1826 if(dops[i].opcode==0x0c) set_const(current,dops[i].rt1,v&imm[i]);
1827 if(dops[i].opcode==0x0d) set_const(current,dops[i].rt1,v|imm[i]);
1828 if(dops[i].opcode==0x0e) set_const(current,dops[i].rt1,v^imm[i]);
1829 }
1830 else clear_const(current,dops[i].rt1);
1831 }
1832 else if(dops[i].opcode==0x08||dops[i].opcode==0x09) { // ADDI/ADDIU
1833 if(is_const(current,dops[i].rs1)) {
1834 int v=get_const(current,dops[i].rs1);
1835 set_const(current,dops[i].rt1,v+imm[i]);
1836 }
1837 else clear_const(current,dops[i].rt1);
1838 }
1839 else {
1840 set_const(current,dops[i].rt1,imm[i]<<16); // LUI
1841 }
1842 dirty_reg(current,dops[i].rt1);
1843}
1844
1845static void load_alloc(struct regstat *current,int i)
1846{
1847 clear_const(current,dops[i].rt1);
1848 //if(dops[i].rs1!=dops[i].rt1&&needed_again(dops[i].rs1,i)) clear_const(current,dops[i].rs1); // Does this help or hurt?
1849 if(!dops[i].rs1) current->u&=~1LL; // Allow allocating r0 if it's the source register
1850 if (needed_again(dops[i].rs1, i))
1851 alloc_reg(current, i, dops[i].rs1);
1852 if (ram_offset)
1853 alloc_reg(current, i, ROREG);
1854 if(dops[i].rt1&&!((current->u>>dops[i].rt1)&1)) {
1855 alloc_reg(current,i,dops[i].rt1);
1856 assert(get_reg(current->regmap,dops[i].rt1)>=0);
1857 if(dops[i].opcode==0x27||dops[i].opcode==0x37) // LWU/LD
1858 {
1859 assert(0);
1860 }
1861 else if(dops[i].opcode==0x1A||dops[i].opcode==0x1B) // LDL/LDR
1862 {
1863 assert(0);
1864 }
1865 dirty_reg(current,dops[i].rt1);
1866 // LWL/LWR need a temporary register for the old value
1867 if(dops[i].opcode==0x22||dops[i].opcode==0x26)
1868 {
1869 alloc_reg(current,i,FTEMP);
1870 alloc_reg_temp(current,i,-1);
1871 minimum_free_regs[i]=1;
1872 }
1873 }
1874 else
1875 {
1876 // Load to r0 or unneeded register (dummy load)
1877 // but we still need a register to calculate the address
1878 if(dops[i].opcode==0x22||dops[i].opcode==0x26)
1879 {
1880 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1881 }
1882 alloc_reg_temp(current,i,-1);
1883 minimum_free_regs[i]=1;
1884 if(dops[i].opcode==0x1A||dops[i].opcode==0x1B) // LDL/LDR
1885 {
1886 assert(0);
1887 }
1888 }
1889}
1890
1891void store_alloc(struct regstat *current,int i)
1892{
1893 clear_const(current,dops[i].rs2);
1894 if(!(dops[i].rs2)) current->u&=~1LL; // Allow allocating r0 if necessary
1895 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1896 alloc_reg(current,i,dops[i].rs2);
1897 if(dops[i].opcode==0x2c||dops[i].opcode==0x2d||dops[i].opcode==0x3f) { // 64-bit SDL/SDR/SD
1898 assert(0);
1899 }
1900 if (ram_offset)
1901 alloc_reg(current, i, ROREG);
1902 #if defined(HOST_IMM8)
1903 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1904 alloc_reg(current, i, INVCP);
1905 #endif
1906 if(dops[i].opcode==0x2a||dops[i].opcode==0x2e||dops[i].opcode==0x2c||dops[i].opcode==0x2d) { // SWL/SWL/SDL/SDR
1907 alloc_reg(current,i,FTEMP);
1908 }
1909 // We need a temporary register for address generation
1910 alloc_reg_temp(current,i,-1);
1911 minimum_free_regs[i]=1;
1912}
1913
1914void c1ls_alloc(struct regstat *current,int i)
1915{
1916 clear_const(current,dops[i].rt1);
1917 alloc_reg(current,i,CSREG); // Status
1918}
1919
1920void c2ls_alloc(struct regstat *current,int i)
1921{
1922 clear_const(current,dops[i].rt1);
1923 if(needed_again(dops[i].rs1,i)) alloc_reg(current,i,dops[i].rs1);
1924 alloc_reg(current,i,FTEMP);
1925 if (ram_offset)
1926 alloc_reg(current, i, ROREG);
1927 #if defined(HOST_IMM8)
1928 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1929 if (dops[i].opcode == 0x3a) // SWC2
1930 alloc_reg(current,i,INVCP);
1931 #endif
1932 // We need a temporary register for address generation
1933 alloc_reg_temp(current,i,-1);
1934 minimum_free_regs[i]=1;
1935}
1936
1937#ifndef multdiv_alloc
1938void multdiv_alloc(struct regstat *current,int i)
1939{
1940 // case 0x18: MULT
1941 // case 0x19: MULTU
1942 // case 0x1A: DIV
1943 // case 0x1B: DIVU
1944 // case 0x1C: DMULT
1945 // case 0x1D: DMULTU
1946 // case 0x1E: DDIV
1947 // case 0x1F: DDIVU
1948 clear_const(current,dops[i].rs1);
1949 clear_const(current,dops[i].rs2);
1950 alloc_cc(current,i); // for stalls
1951 if(dops[i].rs1&&dops[i].rs2)
1952 {
1953 if((dops[i].opcode2&4)==0) // 32-bit
1954 {
1955 current->u&=~(1LL<<HIREG);
1956 current->u&=~(1LL<<LOREG);
1957 alloc_reg(current,i,HIREG);
1958 alloc_reg(current,i,LOREG);
1959 alloc_reg(current,i,dops[i].rs1);
1960 alloc_reg(current,i,dops[i].rs2);
1961 dirty_reg(current,HIREG);
1962 dirty_reg(current,LOREG);
1963 }
1964 else // 64-bit
1965 {
1966 assert(0);
1967 }
1968 }
1969 else
1970 {
1971 // Multiply by zero is zero.
1972 // MIPS does not have a divide by zero exception.
1973 // The result is undefined, we return zero.
1974 alloc_reg(current,i,HIREG);
1975 alloc_reg(current,i,LOREG);
1976 dirty_reg(current,HIREG);
1977 dirty_reg(current,LOREG);
1978 }
1979}
1980#endif
1981
1982void cop0_alloc(struct regstat *current,int i)
1983{
1984 if(dops[i].opcode2==0) // MFC0
1985 {
1986 if(dops[i].rt1) {
1987 clear_const(current,dops[i].rt1);
1988 alloc_all(current,i);
1989 alloc_reg(current,i,dops[i].rt1);
1990 dirty_reg(current,dops[i].rt1);
1991 }
1992 }
1993 else if(dops[i].opcode2==4) // MTC0
1994 {
1995 if(dops[i].rs1){
1996 clear_const(current,dops[i].rs1);
1997 alloc_reg(current,i,dops[i].rs1);
1998 alloc_all(current,i);
1999 }
2000 else {
2001 alloc_all(current,i); // FIXME: Keep r0
2002 current->u&=~1LL;
2003 alloc_reg(current,i,0);
2004 }
2005 }
2006 else
2007 {
2008 // TLBR/TLBWI/TLBWR/TLBP/ERET
2009 assert(dops[i].opcode2==0x10);
2010 alloc_all(current,i);
2011 }
2012 minimum_free_regs[i]=HOST_REGS;
2013}
2014
2015static void cop2_alloc(struct regstat *current,int i)
2016{
2017 if (dops[i].opcode2 < 3) // MFC2/CFC2
2018 {
2019 alloc_cc(current,i); // for stalls
2020 dirty_reg(current,CCREG);
2021 if(dops[i].rt1){
2022 clear_const(current,dops[i].rt1);
2023 alloc_reg(current,i,dops[i].rt1);
2024 dirty_reg(current,dops[i].rt1);
2025 }
2026 }
2027 else if (dops[i].opcode2 > 3) // MTC2/CTC2
2028 {
2029 if(dops[i].rs1){
2030 clear_const(current,dops[i].rs1);
2031 alloc_reg(current,i,dops[i].rs1);
2032 }
2033 else {
2034 current->u&=~1LL;
2035 alloc_reg(current,i,0);
2036 }
2037 }
2038 alloc_reg_temp(current,i,-1);
2039 minimum_free_regs[i]=1;
2040}
2041
2042void c2op_alloc(struct regstat *current,int i)
2043{
2044 alloc_cc(current,i); // for stalls
2045 dirty_reg(current,CCREG);
2046 alloc_reg_temp(current,i,-1);
2047}
2048
2049void syscall_alloc(struct regstat *current,int i)
2050{
2051 alloc_cc(current,i);
2052 dirty_reg(current,CCREG);
2053 alloc_all(current,i);
2054 minimum_free_regs[i]=HOST_REGS;
2055 current->isconst=0;
2056}
2057
2058void delayslot_alloc(struct regstat *current,int i)
2059{
2060 switch(dops[i].itype) {
2061 case UJUMP:
2062 case CJUMP:
2063 case SJUMP:
2064 case RJUMP:
2065 case SYSCALL:
2066 case HLECALL:
2067 case SPAN:
2068 assem_debug("jump in the delay slot. this shouldn't happen.\n");//abort();
2069 SysPrintf("Disabled speculative precompilation\n");
2070 stop_after_jal=1;
2071 break;
2072 case IMM16:
2073 imm16_alloc(current,i);
2074 break;
2075 case LOAD:
2076 case LOADLR:
2077 load_alloc(current,i);
2078 break;
2079 case STORE:
2080 case STORELR:
2081 store_alloc(current,i);
2082 break;
2083 case ALU:
2084 alu_alloc(current,i);
2085 break;
2086 case SHIFT:
2087 shift_alloc(current,i);
2088 break;
2089 case MULTDIV:
2090 multdiv_alloc(current,i);
2091 break;
2092 case SHIFTIMM:
2093 shiftimm_alloc(current,i);
2094 break;
2095 case MOV:
2096 mov_alloc(current,i);
2097 break;
2098 case COP0:
2099 cop0_alloc(current,i);
2100 break;
2101 case COP1:
2102 break;
2103 case COP2:
2104 cop2_alloc(current,i);
2105 break;
2106 case C1LS:
2107 c1ls_alloc(current,i);
2108 break;
2109 case C2LS:
2110 c2ls_alloc(current,i);
2111 break;
2112 case C2OP:
2113 c2op_alloc(current,i);
2114 break;
2115 }
2116}
2117
2118// Special case where a branch and delay slot span two pages in virtual memory
2119static void pagespan_alloc(struct regstat *current,int i)
2120{
2121 current->isconst=0;
2122 current->wasconst=0;
2123 regs[i].wasconst=0;
2124 minimum_free_regs[i]=HOST_REGS;
2125 alloc_all(current,i);
2126 alloc_cc(current,i);
2127 dirty_reg(current,CCREG);
2128 if(dops[i].opcode==3) // JAL
2129 {
2130 alloc_reg(current,i,31);
2131 dirty_reg(current,31);
2132 }
2133 if(dops[i].opcode==0&&(dops[i].opcode2&0x3E)==8) // JR/JALR
2134 {
2135 alloc_reg(current,i,dops[i].rs1);
2136 if (dops[i].rt1!=0) {
2137 alloc_reg(current,i,dops[i].rt1);
2138 dirty_reg(current,dops[i].rt1);
2139 }
2140 }
2141 if((dops[i].opcode&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2142 {
2143 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
2144 if(dops[i].rs2) alloc_reg(current,i,dops[i].rs2);
2145 }
2146 else
2147 if((dops[i].opcode&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2148 {
2149 if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
2150 }
2151 //else ...
2152}
2153
2154static void add_stub(enum stub_type type, void *addr, void *retaddr,
2155 u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e)
2156{
2157 assert(stubcount < ARRAY_SIZE(stubs));
2158 stubs[stubcount].type = type;
2159 stubs[stubcount].addr = addr;
2160 stubs[stubcount].retaddr = retaddr;
2161 stubs[stubcount].a = a;
2162 stubs[stubcount].b = b;
2163 stubs[stubcount].c = c;
2164 stubs[stubcount].d = d;
2165 stubs[stubcount].e = e;
2166 stubcount++;
2167}
2168
2169static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
2170 int i, int addr_reg, const struct regstat *i_regs, int ccadj, u_int reglist)
2171{
2172 add_stub(type, addr, retaddr, i, addr_reg, (uintptr_t)i_regs, ccadj, reglist);
2173}
2174
2175// Write out a single register
2176static void wb_register(signed char r, const signed char regmap[], uint64_t dirty)
2177{
2178 int hr;
2179 for(hr=0;hr<HOST_REGS;hr++) {
2180 if(hr!=EXCLUDE_REG) {
2181 if(regmap[hr]==r) {
2182 if((dirty>>hr)&1) {
2183 assert(regmap[hr]<64);
2184 emit_storereg(r,hr);
2185 }
2186 }
2187 }
2188 }
2189}
2190
2191static void wb_valid(signed char pre[],signed char entry[],u_int dirty_pre,u_int dirty,uint64_t u)
2192{
2193 //if(dirty_pre==dirty) return;
2194 int hr,reg;
2195 for(hr=0;hr<HOST_REGS;hr++) {
2196 if(hr!=EXCLUDE_REG) {
2197 reg=pre[hr];
2198 if(((~u)>>reg)&1) {
2199 if(reg>0) {
2200 if(((dirty_pre&~dirty)>>hr)&1) {
2201 if(reg>0&&reg<34) {
2202 emit_storereg(reg,hr);
2203 }
2204 else if(reg>=64) {
2205 assert(0);
2206 }
2207 }
2208 }
2209 }
2210 }
2211 }
2212}
2213
2214// trashes r2
2215static void pass_args(int a0, int a1)
2216{
2217 if(a0==1&&a1==0) {
2218 // must swap
2219 emit_mov(a0,2); emit_mov(a1,1); emit_mov(2,0);
2220 }
2221 else if(a0!=0&&a1==0) {
2222 emit_mov(a1,1);
2223 if (a0>=0) emit_mov(a0,0);
2224 }
2225 else {
2226 if(a0>=0&&a0!=0) emit_mov(a0,0);
2227 if(a1>=0&&a1!=1) emit_mov(a1,1);
2228 }
2229}
2230
2231static void alu_assemble(int i, const struct regstat *i_regs)
2232{
2233 if(dops[i].opcode2>=0x20&&dops[i].opcode2<=0x23) { // ADD/ADDU/SUB/SUBU
2234 if(dops[i].rt1) {
2235 signed char s1,s2,t;
2236 t=get_reg(i_regs->regmap,dops[i].rt1);
2237 if(t>=0) {
2238 s1=get_reg(i_regs->regmap,dops[i].rs1);
2239 s2=get_reg(i_regs->regmap,dops[i].rs2);
2240 if(dops[i].rs1&&dops[i].rs2) {
2241 assert(s1>=0);
2242 assert(s2>=0);
2243 if(dops[i].opcode2&2) emit_sub(s1,s2,t);
2244 else emit_add(s1,s2,t);
2245 }
2246 else if(dops[i].rs1) {
2247 if(s1>=0) emit_mov(s1,t);
2248 else emit_loadreg(dops[i].rs1,t);
2249 }
2250 else if(dops[i].rs2) {
2251 if(s2>=0) {
2252 if(dops[i].opcode2&2) emit_neg(s2,t);
2253 else emit_mov(s2,t);
2254 }
2255 else {
2256 emit_loadreg(dops[i].rs2,t);
2257 if(dops[i].opcode2&2) emit_neg(t,t);
2258 }
2259 }
2260 else emit_zeroreg(t);
2261 }
2262 }
2263 }
2264 if(dops[i].opcode2>=0x2c&&dops[i].opcode2<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2265 assert(0);
2266 }
2267 if(dops[i].opcode2==0x2a||dops[i].opcode2==0x2b) { // SLT/SLTU
2268 if(dops[i].rt1) {
2269 signed char s1l,s2l,t;
2270 {
2271 t=get_reg(i_regs->regmap,dops[i].rt1);
2272 //assert(t>=0);
2273 if(t>=0) {
2274 s1l=get_reg(i_regs->regmap,dops[i].rs1);
2275 s2l=get_reg(i_regs->regmap,dops[i].rs2);
2276 if(dops[i].rs2==0) // rx<r0
2277 {
2278 if(dops[i].opcode2==0x2a&&dops[i].rs1!=0) { // SLT
2279 assert(s1l>=0);
2280 emit_shrimm(s1l,31,t);
2281 }
2282 else // SLTU (unsigned can not be less than zero, 0<0)
2283 emit_zeroreg(t);
2284 }
2285 else if(dops[i].rs1==0) // r0<rx
2286 {
2287 assert(s2l>=0);
2288 if(dops[i].opcode2==0x2a) // SLT
2289 emit_set_gz32(s2l,t);
2290 else // SLTU (set if not zero)
2291 emit_set_nz32(s2l,t);
2292 }
2293 else{
2294 assert(s1l>=0);assert(s2l>=0);
2295 if(dops[i].opcode2==0x2a) // SLT
2296 emit_set_if_less32(s1l,s2l,t);
2297 else // SLTU
2298 emit_set_if_carry32(s1l,s2l,t);
2299 }
2300 }
2301 }
2302 }
2303 }
2304 if(dops[i].opcode2>=0x24&&dops[i].opcode2<=0x27) { // AND/OR/XOR/NOR
2305 if(dops[i].rt1) {
2306 signed char s1l,s2l,tl;
2307 tl=get_reg(i_regs->regmap,dops[i].rt1);
2308 {
2309 if(tl>=0) {
2310 s1l=get_reg(i_regs->regmap,dops[i].rs1);
2311 s2l=get_reg(i_regs->regmap,dops[i].rs2);
2312 if(dops[i].rs1&&dops[i].rs2) {
2313 assert(s1l>=0);
2314 assert(s2l>=0);
2315 if(dops[i].opcode2==0x24) { // AND
2316 emit_and(s1l,s2l,tl);
2317 } else
2318 if(dops[i].opcode2==0x25) { // OR
2319 emit_or(s1l,s2l,tl);
2320 } else
2321 if(dops[i].opcode2==0x26) { // XOR
2322 emit_xor(s1l,s2l,tl);
2323 } else
2324 if(dops[i].opcode2==0x27) { // NOR
2325 emit_or(s1l,s2l,tl);
2326 emit_not(tl,tl);
2327 }
2328 }
2329 else
2330 {
2331 if(dops[i].opcode2==0x24) { // AND
2332 emit_zeroreg(tl);
2333 } else
2334 if(dops[i].opcode2==0x25||dops[i].opcode2==0x26) { // OR/XOR
2335 if(dops[i].rs1){
2336 if(s1l>=0) emit_mov(s1l,tl);
2337 else emit_loadreg(dops[i].rs1,tl); // CHECK: regmap_entry?
2338 }
2339 else
2340 if(dops[i].rs2){
2341 if(s2l>=0) emit_mov(s2l,tl);
2342 else emit_loadreg(dops[i].rs2,tl); // CHECK: regmap_entry?
2343 }
2344 else emit_zeroreg(tl);
2345 } else
2346 if(dops[i].opcode2==0x27) { // NOR
2347 if(dops[i].rs1){
2348 if(s1l>=0) emit_not(s1l,tl);
2349 else {
2350 emit_loadreg(dops[i].rs1,tl);
2351 emit_not(tl,tl);
2352 }
2353 }
2354 else
2355 if(dops[i].rs2){
2356 if(s2l>=0) emit_not(s2l,tl);
2357 else {
2358 emit_loadreg(dops[i].rs2,tl);
2359 emit_not(tl,tl);
2360 }
2361 }
2362 else emit_movimm(-1,tl);
2363 }
2364 }
2365 }
2366 }
2367 }
2368 }
2369}
2370
2371static void imm16_assemble(int i, const struct regstat *i_regs)
2372{
2373 if (dops[i].opcode==0x0f) { // LUI
2374 if(dops[i].rt1) {
2375 signed char t;
2376 t=get_reg(i_regs->regmap,dops[i].rt1);
2377 //assert(t>=0);
2378 if(t>=0) {
2379 if(!((i_regs->isconst>>t)&1))
2380 emit_movimm(imm[i]<<16,t);
2381 }
2382 }
2383 }
2384 if(dops[i].opcode==0x08||dops[i].opcode==0x09) { // ADDI/ADDIU
2385 if(dops[i].rt1) {
2386 signed char s,t;
2387 t=get_reg(i_regs->regmap,dops[i].rt1);
2388 s=get_reg(i_regs->regmap,dops[i].rs1);
2389 if(dops[i].rs1) {
2390 //assert(t>=0);
2391 //assert(s>=0);
2392 if(t>=0) {
2393 if(!((i_regs->isconst>>t)&1)) {
2394 if(s<0) {
2395 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2396 emit_addimm(t,imm[i],t);
2397 }else{
2398 if(!((i_regs->wasconst>>s)&1))
2399 emit_addimm(s,imm[i],t);
2400 else
2401 emit_movimm(constmap[i][s]+imm[i],t);
2402 }
2403 }
2404 }
2405 } else {
2406 if(t>=0) {
2407 if(!((i_regs->isconst>>t)&1))
2408 emit_movimm(imm[i],t);
2409 }
2410 }
2411 }
2412 }
2413 if(dops[i].opcode==0x18||dops[i].opcode==0x19) { // DADDI/DADDIU
2414 if(dops[i].rt1) {
2415 signed char sl,tl;
2416 tl=get_reg(i_regs->regmap,dops[i].rt1);
2417 sl=get_reg(i_regs->regmap,dops[i].rs1);
2418 if(tl>=0) {
2419 if(dops[i].rs1) {
2420 assert(sl>=0);
2421 emit_addimm(sl,imm[i],tl);
2422 } else {
2423 emit_movimm(imm[i],tl);
2424 }
2425 }
2426 }
2427 }
2428 else if(dops[i].opcode==0x0a||dops[i].opcode==0x0b) { // SLTI/SLTIU
2429 if(dops[i].rt1) {
2430 //assert(dops[i].rs1!=0); // r0 might be valid, but it's probably a bug
2431 signed char sl,t;
2432 t=get_reg(i_regs->regmap,dops[i].rt1);
2433 sl=get_reg(i_regs->regmap,dops[i].rs1);
2434 //assert(t>=0);
2435 if(t>=0) {
2436 if(dops[i].rs1>0) {
2437 if(dops[i].opcode==0x0a) { // SLTI
2438 if(sl<0) {
2439 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2440 emit_slti32(t,imm[i],t);
2441 }else{
2442 emit_slti32(sl,imm[i],t);
2443 }
2444 }
2445 else { // SLTIU
2446 if(sl<0) {
2447 if(i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2448 emit_sltiu32(t,imm[i],t);
2449 }else{
2450 emit_sltiu32(sl,imm[i],t);
2451 }
2452 }
2453 }else{
2454 // SLTI(U) with r0 is just stupid,
2455 // nonetheless examples can be found
2456 if(dops[i].opcode==0x0a) // SLTI
2457 if(0<imm[i]) emit_movimm(1,t);
2458 else emit_zeroreg(t);
2459 else // SLTIU
2460 {
2461 if(imm[i]) emit_movimm(1,t);
2462 else emit_zeroreg(t);
2463 }
2464 }
2465 }
2466 }
2467 }
2468 else if(dops[i].opcode>=0x0c&&dops[i].opcode<=0x0e) { // ANDI/ORI/XORI
2469 if(dops[i].rt1) {
2470 signed char sl,tl;
2471 tl=get_reg(i_regs->regmap,dops[i].rt1);
2472 sl=get_reg(i_regs->regmap,dops[i].rs1);
2473 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2474 if(dops[i].opcode==0x0c) //ANDI
2475 {
2476 if(dops[i].rs1) {
2477 if(sl<0) {
2478 if(i_regs->regmap_entry[tl]!=dops[i].rs1) emit_loadreg(dops[i].rs1,tl);
2479 emit_andimm(tl,imm[i],tl);
2480 }else{
2481 if(!((i_regs->wasconst>>sl)&1))
2482 emit_andimm(sl,imm[i],tl);
2483 else
2484 emit_movimm(constmap[i][sl]&imm[i],tl);
2485 }
2486 }
2487 else
2488 emit_zeroreg(tl);
2489 }
2490 else
2491 {
2492 if(dops[i].rs1) {
2493 if(sl<0) {
2494 if(i_regs->regmap_entry[tl]!=dops[i].rs1) emit_loadreg(dops[i].rs1,tl);
2495 }
2496 if(dops[i].opcode==0x0d) { // ORI
2497 if(sl<0) {
2498 emit_orimm(tl,imm[i],tl);
2499 }else{
2500 if(!((i_regs->wasconst>>sl)&1))
2501 emit_orimm(sl,imm[i],tl);
2502 else
2503 emit_movimm(constmap[i][sl]|imm[i],tl);
2504 }
2505 }
2506 if(dops[i].opcode==0x0e) { // XORI
2507 if(sl<0) {
2508 emit_xorimm(tl,imm[i],tl);
2509 }else{
2510 if(!((i_regs->wasconst>>sl)&1))
2511 emit_xorimm(sl,imm[i],tl);
2512 else
2513 emit_movimm(constmap[i][sl]^imm[i],tl);
2514 }
2515 }
2516 }
2517 else {
2518 emit_movimm(imm[i],tl);
2519 }
2520 }
2521 }
2522 }
2523 }
2524}
2525
2526static void shiftimm_assemble(int i, const struct regstat *i_regs)
2527{
2528 if(dops[i].opcode2<=0x3) // SLL/SRL/SRA
2529 {
2530 if(dops[i].rt1) {
2531 signed char s,t;
2532 t=get_reg(i_regs->regmap,dops[i].rt1);
2533 s=get_reg(i_regs->regmap,dops[i].rs1);
2534 //assert(t>=0);
2535 if(t>=0&&!((i_regs->isconst>>t)&1)){
2536 if(dops[i].rs1==0)
2537 {
2538 emit_zeroreg(t);
2539 }
2540 else
2541 {
2542 if(s<0&&i_regs->regmap_entry[t]!=dops[i].rs1) emit_loadreg(dops[i].rs1,t);
2543 if(imm[i]) {
2544 if(dops[i].opcode2==0) // SLL
2545 {
2546 emit_shlimm(s<0?t:s,imm[i],t);
2547 }
2548 if(dops[i].opcode2==2) // SRL
2549 {
2550 emit_shrimm(s<0?t:s,imm[i],t);
2551 }
2552 if(dops[i].opcode2==3) // SRA
2553 {
2554 emit_sarimm(s<0?t:s,imm[i],t);
2555 }
2556 }else{
2557 // Shift by zero
2558 if(s>=0 && s!=t) emit_mov(s,t);
2559 }
2560 }
2561 }
2562 //emit_storereg(dops[i].rt1,t); //DEBUG
2563 }
2564 }
2565 if(dops[i].opcode2>=0x38&&dops[i].opcode2<=0x3b) // DSLL/DSRL/DSRA
2566 {
2567 assert(0);
2568 }
2569 if(dops[i].opcode2==0x3c) // DSLL32
2570 {
2571 assert(0);
2572 }
2573 if(dops[i].opcode2==0x3e) // DSRL32
2574 {
2575 assert(0);
2576 }
2577 if(dops[i].opcode2==0x3f) // DSRA32
2578 {
2579 assert(0);
2580 }
2581}
2582
2583#ifndef shift_assemble
2584static void shift_assemble(int i, const struct regstat *i_regs)
2585{
2586 signed char s,t,shift;
2587 if (dops[i].rt1 == 0)
2588 return;
2589 assert(dops[i].opcode2<=0x07); // SLLV/SRLV/SRAV
2590 t = get_reg(i_regs->regmap, dops[i].rt1);
2591 s = get_reg(i_regs->regmap, dops[i].rs1);
2592 shift = get_reg(i_regs->regmap, dops[i].rs2);
2593 if (t < 0)
2594 return;
2595
2596 if(dops[i].rs1==0)
2597 emit_zeroreg(t);
2598 else if(dops[i].rs2==0) {
2599 assert(s>=0);
2600 if(s!=t) emit_mov(s,t);
2601 }
2602 else {
2603 host_tempreg_acquire();
2604 emit_andimm(shift,31,HOST_TEMPREG);
2605 switch(dops[i].opcode2) {
2606 case 4: // SLLV
2607 emit_shl(s,HOST_TEMPREG,t);
2608 break;
2609 case 6: // SRLV
2610 emit_shr(s,HOST_TEMPREG,t);
2611 break;
2612 case 7: // SRAV
2613 emit_sar(s,HOST_TEMPREG,t);
2614 break;
2615 default:
2616 assert(0);
2617 }
2618 host_tempreg_release();
2619 }
2620}
2621
2622#endif
2623
2624enum {
2625 MTYPE_8000 = 0,
2626 MTYPE_8020,
2627 MTYPE_0000,
2628 MTYPE_A000,
2629 MTYPE_1F80,
2630};
2631
2632static int get_ptr_mem_type(u_int a)
2633{
2634 if(a < 0x00200000) {
2635 if(a<0x1000&&((start>>20)==0xbfc||(start>>24)==0xa0))
2636 // return wrong, must use memhandler for BIOS self-test to pass
2637 // 007 does similar stuff from a00 mirror, weird stuff
2638 return MTYPE_8000;
2639 return MTYPE_0000;
2640 }
2641 if(0x1f800000 <= a && a < 0x1f801000)
2642 return MTYPE_1F80;
2643 if(0x80200000 <= a && a < 0x80800000)
2644 return MTYPE_8020;
2645 if(0xa0000000 <= a && a < 0xa0200000)
2646 return MTYPE_A000;
2647 return MTYPE_8000;
2648}
2649
2650static int get_ro_reg(const struct regstat *i_regs, int host_tempreg_free)
2651{
2652 int r = get_reg(i_regs->regmap, ROREG);
2653 if (r < 0 && host_tempreg_free) {
2654 host_tempreg_acquire();
2655 emit_loadreg(ROREG, r = HOST_TEMPREG);
2656 }
2657 if (r < 0)
2658 abort();
2659 return r;
2660}
2661
2662static void *emit_fastpath_cmp_jump(int i, const struct regstat *i_regs,
2663 int addr, int *offset_reg, int *addr_reg_override)
2664{
2665 void *jaddr = NULL;
2666 int type = 0;
2667 int mr = dops[i].rs1;
2668 *offset_reg = -1;
2669 if(((smrv_strong|smrv_weak)>>mr)&1) {
2670 type=get_ptr_mem_type(smrv[mr]);
2671 //printf("set %08x @%08x r%d %d\n", smrv[mr], start+i*4, mr, type);
2672 }
2673 else {
2674 // use the mirror we are running on
2675 type=get_ptr_mem_type(start);
2676 //printf("set nospec @%08x r%d %d\n", start+i*4, mr, type);
2677 }
2678
2679 if(type==MTYPE_8020) { // RAM 80200000+ mirror
2680 host_tempreg_acquire();
2681 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2682 addr=*addr_reg_override=HOST_TEMPREG;
2683 type=0;
2684 }
2685 else if(type==MTYPE_0000) { // RAM 0 mirror
2686 host_tempreg_acquire();
2687 emit_orimm(addr,0x80000000,HOST_TEMPREG);
2688 addr=*addr_reg_override=HOST_TEMPREG;
2689 type=0;
2690 }
2691 else if(type==MTYPE_A000) { // RAM A mirror
2692 host_tempreg_acquire();
2693 emit_andimm(addr,~0x20000000,HOST_TEMPREG);
2694 addr=*addr_reg_override=HOST_TEMPREG;
2695 type=0;
2696 }
2697 else if(type==MTYPE_1F80) { // scratchpad
2698 if (psxH == (void *)0x1f800000) {
2699 host_tempreg_acquire();
2700 emit_xorimm(addr,0x1f800000,HOST_TEMPREG);
2701 emit_cmpimm(HOST_TEMPREG,0x1000);
2702 host_tempreg_release();
2703 jaddr=out;
2704 emit_jc(0);
2705 }
2706 else {
2707 // do the usual RAM check, jump will go to the right handler
2708 type=0;
2709 }
2710 }
2711
2712 if (type == 0) // need ram check
2713 {
2714 emit_cmpimm(addr,RAM_SIZE);
2715 jaddr = out;
2716 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2717 // Hint to branch predictor that the branch is unlikely to be taken
2718 if (dops[i].rs1 >= 28)
2719 emit_jno_unlikely(0);
2720 else
2721 #endif
2722 emit_jno(0);
2723 if (ram_offset != 0)
2724 *offset_reg = get_ro_reg(i_regs, 0);
2725 }
2726
2727 return jaddr;
2728}
2729
2730// return memhandler, or get directly accessable address and return 0
2731static void *get_direct_memhandler(void *table, u_int addr,
2732 enum stub_type type, uintptr_t *addr_host)
2733{
2734 uintptr_t msb = 1ull << (sizeof(uintptr_t)*8 - 1);
2735 uintptr_t l1, l2 = 0;
2736 l1 = ((uintptr_t *)table)[addr>>12];
2737 if (!(l1 & msb)) {
2738 uintptr_t v = l1 << 1;
2739 *addr_host = v + addr;
2740 return NULL;
2741 }
2742 else {
2743 l1 <<= 1;
2744 if (type == LOADB_STUB || type == LOADBU_STUB || type == STOREB_STUB)
2745 l2 = ((uintptr_t *)l1)[0x1000/4 + 0x1000/2 + (addr&0xfff)];
2746 else if (type == LOADH_STUB || type == LOADHU_STUB || type == STOREH_STUB)
2747 l2 = ((uintptr_t *)l1)[0x1000/4 + (addr&0xfff)/2];
2748 else
2749 l2 = ((uintptr_t *)l1)[(addr&0xfff)/4];
2750 if (!(l2 & msb)) {
2751 uintptr_t v = l2 << 1;
2752 *addr_host = v + (addr&0xfff);
2753 return NULL;
2754 }
2755 return (void *)(l2 << 1);
2756 }
2757}
2758
2759static u_int get_host_reglist(const signed char *regmap)
2760{
2761 u_int reglist = 0, hr;
2762 for (hr = 0; hr < HOST_REGS; hr++) {
2763 if (hr != EXCLUDE_REG && regmap[hr] >= 0)
2764 reglist |= 1 << hr;
2765 }
2766 return reglist;
2767}
2768
2769static u_int reglist_exclude(u_int reglist, int r1, int r2)
2770{
2771 if (r1 >= 0)
2772 reglist &= ~(1u << r1);
2773 if (r2 >= 0)
2774 reglist &= ~(1u << r2);
2775 return reglist;
2776}
2777
2778// find a temp caller-saved register not in reglist (so assumed to be free)
2779static int reglist_find_free(u_int reglist)
2780{
2781 u_int free_regs = ~reglist & CALLER_SAVE_REGS;
2782 if (free_regs == 0)
2783 return -1;
2784 return __builtin_ctz(free_regs);
2785}
2786
2787static void do_load_word(int a, int rt, int offset_reg)
2788{
2789 if (offset_reg >= 0)
2790 emit_ldr_dualindexed(offset_reg, a, rt);
2791 else
2792 emit_readword_indexed(0, a, rt);
2793}
2794
2795static void do_store_word(int a, int ofs, int rt, int offset_reg, int preseve_a)
2796{
2797 if (offset_reg < 0) {
2798 emit_writeword_indexed(rt, ofs, a);
2799 return;
2800 }
2801 if (ofs != 0)
2802 emit_addimm(a, ofs, a);
2803 emit_str_dualindexed(offset_reg, a, rt);
2804 if (ofs != 0 && preseve_a)
2805 emit_addimm(a, -ofs, a);
2806}
2807
2808static void do_store_hword(int a, int ofs, int rt, int offset_reg, int preseve_a)
2809{
2810 if (offset_reg < 0) {
2811 emit_writehword_indexed(rt, ofs, a);
2812 return;
2813 }
2814 if (ofs != 0)
2815 emit_addimm(a, ofs, a);
2816 emit_strh_dualindexed(offset_reg, a, rt);
2817 if (ofs != 0 && preseve_a)
2818 emit_addimm(a, -ofs, a);
2819}
2820
2821static void do_store_byte(int a, int rt, int offset_reg)
2822{
2823 if (offset_reg >= 0)
2824 emit_strb_dualindexed(offset_reg, a, rt);
2825 else
2826 emit_writebyte_indexed(rt, 0, a);
2827}
2828
2829static void load_assemble(int i, const struct regstat *i_regs, int ccadj_)
2830{
2831 int s,tl,addr;
2832 int offset;
2833 void *jaddr=0;
2834 int memtarget=0,c=0;
2835 int offset_reg = -1;
2836 int fastio_reg_override = -1;
2837 u_int reglist=get_host_reglist(i_regs->regmap);
2838 tl=get_reg(i_regs->regmap,dops[i].rt1);
2839 s=get_reg(i_regs->regmap,dops[i].rs1);
2840 offset=imm[i];
2841 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2842 if(s>=0) {
2843 c=(i_regs->wasconst>>s)&1;
2844 if (c) {
2845 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2846 }
2847 }
2848 //printf("load_assemble: c=%d\n",c);
2849 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2850 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2851 if((tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80))
2852 ||dops[i].rt1==0) {
2853 // could be FIFO, must perform the read
2854 // ||dummy read
2855 assem_debug("(forced read)\n");
2856 tl=get_reg_temp(i_regs->regmap);
2857 assert(tl>=0);
2858 }
2859 if(offset||s<0||c) addr=tl;
2860 else addr=s;
2861 //if(tl<0) tl=get_reg_temp(i_regs->regmap);
2862 if(tl>=0) {
2863 //printf("load_assemble: c=%d\n",c);
2864 //if(c) printf("load_assemble: const=%lx\n",(long)constmap[i][s]+offset);
2865 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2866 reglist&=~(1<<tl);
2867 if(!c) {
2868 #ifdef R29_HACK
2869 // Strmnnrmn's speed hack
2870 if(dops[i].rs1!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2871 #endif
2872 {
2873 jaddr = emit_fastpath_cmp_jump(i, i_regs, addr,
2874 &offset_reg, &fastio_reg_override);
2875 }
2876 }
2877 else if (ram_offset && memtarget) {
2878 offset_reg = get_ro_reg(i_regs, 0);
2879 }
2880 int dummy=(dops[i].rt1==0)||(tl!=get_reg(i_regs->regmap,dops[i].rt1)); // ignore loads to r0 and unneeded reg
2881 switch (dops[i].opcode) {
2882 case 0x20: // LB
2883 if(!c||memtarget) {
2884 if(!dummy) {
2885 int a = tl;
2886 if (!c) a = addr;
2887 if (fastio_reg_override >= 0)
2888 a = fastio_reg_override;
2889
2890 if (offset_reg >= 0)
2891 emit_ldrsb_dualindexed(offset_reg, a, tl);
2892 else
2893 emit_movsbl_indexed(0, a, tl);
2894 }
2895 if(jaddr)
2896 add_stub_r(LOADB_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2897 }
2898 else
2899 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2900 break;
2901 case 0x21: // LH
2902 if(!c||memtarget) {
2903 if(!dummy) {
2904 int a = tl;
2905 if (!c) a = addr;
2906 if (fastio_reg_override >= 0)
2907 a = fastio_reg_override;
2908 if (offset_reg >= 0)
2909 emit_ldrsh_dualindexed(offset_reg, a, tl);
2910 else
2911 emit_movswl_indexed(0, a, tl);
2912 }
2913 if(jaddr)
2914 add_stub_r(LOADH_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2915 }
2916 else
2917 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2918 break;
2919 case 0x23: // LW
2920 if(!c||memtarget) {
2921 if(!dummy) {
2922 int a = addr;
2923 if (fastio_reg_override >= 0)
2924 a = fastio_reg_override;
2925 do_load_word(a, tl, offset_reg);
2926 }
2927 if(jaddr)
2928 add_stub_r(LOADW_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2929 }
2930 else
2931 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2932 break;
2933 case 0x24: // LBU
2934 if(!c||memtarget) {
2935 if(!dummy) {
2936 int a = tl;
2937 if (!c) a = addr;
2938 if (fastio_reg_override >= 0)
2939 a = fastio_reg_override;
2940
2941 if (offset_reg >= 0)
2942 emit_ldrb_dualindexed(offset_reg, a, tl);
2943 else
2944 emit_movzbl_indexed(0, a, tl);
2945 }
2946 if(jaddr)
2947 add_stub_r(LOADBU_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2948 }
2949 else
2950 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2951 break;
2952 case 0x25: // LHU
2953 if(!c||memtarget) {
2954 if(!dummy) {
2955 int a = tl;
2956 if(!c) a = addr;
2957 if (fastio_reg_override >= 0)
2958 a = fastio_reg_override;
2959 if (offset_reg >= 0)
2960 emit_ldrh_dualindexed(offset_reg, a, tl);
2961 else
2962 emit_movzwl_indexed(0, a, tl);
2963 }
2964 if(jaddr)
2965 add_stub_r(LOADHU_STUB,jaddr,out,i,addr,i_regs,ccadj_,reglist);
2966 }
2967 else
2968 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,dops[i].rt1,ccadj_,reglist);
2969 break;
2970 case 0x27: // LWU
2971 case 0x37: // LD
2972 default:
2973 assert(0);
2974 }
2975 }
2976 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
2977 host_tempreg_release();
2978}
2979
2980#ifndef loadlr_assemble
2981static void loadlr_assemble(int i, const struct regstat *i_regs, int ccadj_)
2982{
2983 int s,tl,temp,temp2,addr;
2984 int offset;
2985 void *jaddr=0;
2986 int memtarget=0,c=0;
2987 int offset_reg = -1;
2988 int fastio_reg_override = -1;
2989 u_int reglist=get_host_reglist(i_regs->regmap);
2990 tl=get_reg(i_regs->regmap,dops[i].rt1);
2991 s=get_reg(i_regs->regmap,dops[i].rs1);
2992 temp=get_reg_temp(i_regs->regmap);
2993 temp2=get_reg(i_regs->regmap,FTEMP);
2994 addr=get_reg(i_regs->regmap,AGEN1+(i&1));
2995 assert(addr<0);
2996 offset=imm[i];
2997 reglist|=1<<temp;
2998 if(offset||s<0||c) addr=temp2;
2999 else addr=s;
3000 if(s>=0) {
3001 c=(i_regs->wasconst>>s)&1;
3002 if(c) {
3003 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3004 }
3005 }
3006 if(!c) {
3007 emit_shlimm(addr,3,temp);
3008 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
3009 emit_andimm(addr,0xFFFFFFFC,temp2); // LWL/LWR
3010 }else{
3011 emit_andimm(addr,0xFFFFFFF8,temp2); // LDL/LDR
3012 }
3013 jaddr = emit_fastpath_cmp_jump(i, i_regs, temp2,
3014 &offset_reg, &fastio_reg_override);
3015 }
3016 else {
3017 if (ram_offset && memtarget) {
3018 offset_reg = get_ro_reg(i_regs, 0);
3019 }
3020 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
3021 emit_movimm(((constmap[i][s]+offset)<<3)&24,temp); // LWL/LWR
3022 }else{
3023 emit_movimm(((constmap[i][s]+offset)<<3)&56,temp); // LDL/LDR
3024 }
3025 }
3026 if (dops[i].opcode==0x22||dops[i].opcode==0x26) { // LWL/LWR
3027 if(!c||memtarget) {
3028 int a = temp2;
3029 if (fastio_reg_override >= 0)
3030 a = fastio_reg_override;
3031 do_load_word(a, temp2, offset_reg);
3032 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3033 host_tempreg_release();
3034 if(jaddr) add_stub_r(LOADW_STUB,jaddr,out,i,temp2,i_regs,ccadj_,reglist);
3035 }
3036 else
3037 inline_readstub(LOADW_STUB,i,(constmap[i][s]+offset)&0xFFFFFFFC,i_regs->regmap,FTEMP,ccadj_,reglist);
3038 if(dops[i].rt1) {
3039 assert(tl>=0);
3040 emit_andimm(temp,24,temp);
3041 if (dops[i].opcode==0x22) // LWL
3042 emit_xorimm(temp,24,temp);
3043 host_tempreg_acquire();
3044 emit_movimm(-1,HOST_TEMPREG);
3045 if (dops[i].opcode==0x26) {
3046 emit_shr(temp2,temp,temp2);
3047 emit_bic_lsr(tl,HOST_TEMPREG,temp,tl);
3048 }else{
3049 emit_shl(temp2,temp,temp2);
3050 emit_bic_lsl(tl,HOST_TEMPREG,temp,tl);
3051 }
3052 host_tempreg_release();
3053 emit_or(temp2,tl,tl);
3054 }
3055 //emit_storereg(dops[i].rt1,tl); // DEBUG
3056 }
3057 if (dops[i].opcode==0x1A||dops[i].opcode==0x1B) { // LDL/LDR
3058 assert(0);
3059 }
3060}
3061#endif
3062
3063static void store_assemble(int i, const struct regstat *i_regs, int ccadj_)
3064{
3065 int s,tl;
3066 int addr,temp;
3067 int offset;
3068 void *jaddr=0;
3069 enum stub_type type=0;
3070 int memtarget=0,c=0;
3071 int agr=AGEN1+(i&1);
3072 int offset_reg = -1;
3073 int fastio_reg_override = -1;
3074 u_int reglist=get_host_reglist(i_regs->regmap);
3075 tl=get_reg(i_regs->regmap,dops[i].rs2);
3076 s=get_reg(i_regs->regmap,dops[i].rs1);
3077 temp=get_reg(i_regs->regmap,agr);
3078 if(temp<0) temp=get_reg_temp(i_regs->regmap);
3079 offset=imm[i];
3080 if(s>=0) {
3081 c=(i_regs->wasconst>>s)&1;
3082 if(c) {
3083 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3084 }
3085 }
3086 assert(tl>=0);
3087 assert(temp>=0);
3088 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3089 if(offset||s<0||c) addr=temp;
3090 else addr=s;
3091 if (!c) {
3092 jaddr = emit_fastpath_cmp_jump(i, i_regs, addr,
3093 &offset_reg, &fastio_reg_override);
3094 }
3095 else if (ram_offset && memtarget) {
3096 offset_reg = get_ro_reg(i_regs, 0);
3097 }
3098
3099 switch (dops[i].opcode) {
3100 case 0x28: // SB
3101 if(!c||memtarget) {
3102 int a = temp;
3103 if (!c) a = addr;
3104 if (fastio_reg_override >= 0)
3105 a = fastio_reg_override;
3106 do_store_byte(a, tl, offset_reg);
3107 }
3108 type = STOREB_STUB;
3109 break;
3110 case 0x29: // SH
3111 if(!c||memtarget) {
3112 int a = temp;
3113 if (!c) a = addr;
3114 if (fastio_reg_override >= 0)
3115 a = fastio_reg_override;
3116 do_store_hword(a, 0, tl, offset_reg, 1);
3117 }
3118 type = STOREH_STUB;
3119 break;
3120 case 0x2B: // SW
3121 if(!c||memtarget) {
3122 int a = addr;
3123 if (fastio_reg_override >= 0)
3124 a = fastio_reg_override;
3125 do_store_word(a, 0, tl, offset_reg, 1);
3126 }
3127 type = STOREW_STUB;
3128 break;
3129 case 0x3F: // SD
3130 default:
3131 assert(0);
3132 }
3133 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3134 host_tempreg_release();
3135 if(jaddr) {
3136 // PCSX store handlers don't check invcode again
3137 reglist|=1<<addr;
3138 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3139 jaddr=0;
3140 }
3141 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3142 if(!c||memtarget) {
3143 #ifdef DESTRUCTIVE_SHIFT
3144 // The x86 shift operation is 'destructive'; it overwrites the
3145 // source register, so we need to make a copy first and use that.
3146 addr=temp;
3147 #endif
3148 #if defined(HOST_IMM8)
3149 int ir=get_reg(i_regs->regmap,INVCP);
3150 assert(ir>=0);
3151 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3152 #else
3153 emit_cmpmem_indexedsr12_imm(invalid_code,addr,1);
3154 #endif
3155 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3156 emit_callne(invalidate_addr_reg[addr]);
3157 #else
3158 void *jaddr2 = out;
3159 emit_jne(0);
3160 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3161 #endif
3162 }
3163 }
3164 u_int addr_val=constmap[i][s]+offset;
3165 if(jaddr) {
3166 add_stub_r(type,jaddr,out,i,addr,i_regs,ccadj_,reglist);
3167 } else if(c&&!memtarget) {
3168 inline_writestub(type,i,addr_val,i_regs->regmap,dops[i].rs2,ccadj_,reglist);
3169 }
3170 // basic current block modification detection..
3171 // not looking back as that should be in mips cache already
3172 // (see Spyro2 title->attract mode)
3173 if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
3174 SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
3175 assert(i_regs->regmap==regs[i].regmap); // not delay slot
3176 if(i_regs->regmap==regs[i].regmap) {
3177 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3178 wb_dirtys(regs[i].regmap_entry,regs[i].wasdirty);
3179 emit_movimm(start+i*4+4,0);
3180 emit_writeword(0,&pcaddr);
3181 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3182 emit_far_call(get_addr_ht);
3183 emit_jmpreg(0);
3184 }
3185 }
3186}
3187
3188static void storelr_assemble(int i, const struct regstat *i_regs, int ccadj_)
3189{
3190 int s,tl;
3191 int temp;
3192 int offset;
3193 void *jaddr=0;
3194 void *case1, *case23, *case3;
3195 void *done0, *done1, *done2;
3196 int memtarget=0,c=0;
3197 int agr=AGEN1+(i&1);
3198 int offset_reg = -1;
3199 u_int reglist=get_host_reglist(i_regs->regmap);
3200 tl=get_reg(i_regs->regmap,dops[i].rs2);
3201 s=get_reg(i_regs->regmap,dops[i].rs1);
3202 temp=get_reg(i_regs->regmap,agr);
3203 if(temp<0) temp=get_reg_temp(i_regs->regmap);
3204 offset=imm[i];
3205 if(s>=0) {
3206 c=(i_regs->isconst>>s)&1;
3207 if(c) {
3208 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3209 }
3210 }
3211 assert(tl>=0);
3212 assert(temp>=0);
3213 if(!c) {
3214 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3215 if(!offset&&s!=temp) emit_mov(s,temp);
3216 jaddr=out;
3217 emit_jno(0);
3218 }
3219 else
3220 {
3221 if(!memtarget||!dops[i].rs1) {
3222 jaddr=out;
3223 emit_jmp(0);
3224 }
3225 }
3226 if (ram_offset)
3227 offset_reg = get_ro_reg(i_regs, 0);
3228
3229 if (dops[i].opcode==0x2C||dops[i].opcode==0x2D) { // SDL/SDR
3230 assert(0);
3231 }
3232
3233 emit_testimm(temp,2);
3234 case23=out;
3235 emit_jne(0);
3236 emit_testimm(temp,1);
3237 case1=out;
3238 emit_jne(0);
3239 // 0
3240 if (dops[i].opcode == 0x2A) { // SWL
3241 // Write msb into least significant byte
3242 if (dops[i].rs2) emit_rorimm(tl, 24, tl);
3243 do_store_byte(temp, tl, offset_reg);
3244 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3245 }
3246 else if (dops[i].opcode == 0x2E) { // SWR
3247 // Write entire word
3248 do_store_word(temp, 0, tl, offset_reg, 1);
3249 }
3250 done0 = out;
3251 emit_jmp(0);
3252 // 1
3253 set_jump_target(case1, out);
3254 if (dops[i].opcode == 0x2A) { // SWL
3255 // Write two msb into two least significant bytes
3256 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3257 do_store_hword(temp, -1, tl, offset_reg, 0);
3258 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3259 }
3260 else if (dops[i].opcode == 0x2E) { // SWR
3261 // Write 3 lsb into three most significant bytes
3262 do_store_byte(temp, tl, offset_reg);
3263 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3264 do_store_hword(temp, 1, tl, offset_reg, 0);
3265 if (dops[i].rs2) emit_rorimm(tl, 24, tl);
3266 }
3267 done1=out;
3268 emit_jmp(0);
3269 // 2,3
3270 set_jump_target(case23, out);
3271 emit_testimm(temp,1);
3272 case3 = out;
3273 emit_jne(0);
3274 // 2
3275 if (dops[i].opcode==0x2A) { // SWL
3276 // Write 3 msb into three least significant bytes
3277 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3278 do_store_hword(temp, -2, tl, offset_reg, 1);
3279 if (dops[i].rs2) emit_rorimm(tl, 16, tl);
3280 do_store_byte(temp, tl, offset_reg);
3281 if (dops[i].rs2) emit_rorimm(tl, 8, tl);
3282 }
3283 else if (dops[i].opcode == 0x2E) { // SWR
3284 // Write two lsb into two most significant bytes
3285 do_store_hword(temp, 0, tl, offset_reg, 1);
3286 }
3287 done2 = out;
3288 emit_jmp(0);
3289 // 3
3290 set_jump_target(case3, out);
3291 if (dops[i].opcode == 0x2A) { // SWL
3292 do_store_word(temp, -3, tl, offset_reg, 0);
3293 }
3294 else if (dops[i].opcode == 0x2E) { // SWR
3295 do_store_byte(temp, tl, offset_reg);
3296 }
3297 set_jump_target(done0, out);
3298 set_jump_target(done1, out);
3299 set_jump_target(done2, out);
3300 if (offset_reg == HOST_TEMPREG)
3301 host_tempreg_release();
3302 if(!c||!memtarget)
3303 add_stub_r(STORELR_STUB,jaddr,out,i,temp,i_regs,ccadj_,reglist);
3304 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3305 #if defined(HOST_IMM8)
3306 int ir=get_reg(i_regs->regmap,INVCP);
3307 assert(ir>=0);
3308 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3309 #else
3310 emit_cmpmem_indexedsr12_imm(invalid_code,temp,1);
3311 #endif
3312 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3313 emit_callne(invalidate_addr_reg[temp]);
3314 #else
3315 void *jaddr2 = out;
3316 emit_jne(0);
3317 add_stub(INVCODE_STUB,jaddr2,out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3318 #endif
3319 }
3320}
3321
3322static void cop0_assemble(int i, const struct regstat *i_regs, int ccadj_)
3323{
3324 if(dops[i].opcode2==0) // MFC0
3325 {
3326 signed char t=get_reg(i_regs->regmap,dops[i].rt1);
3327 u_int copr=(source[i]>>11)&0x1f;
3328 //assert(t>=0); // Why does this happen? OOT is weird
3329 if(t>=0&&dops[i].rt1!=0) {
3330 emit_readword(&reg_cop0[copr],t);
3331 }
3332 }
3333 else if(dops[i].opcode2==4) // MTC0
3334 {
3335 signed char s=get_reg(i_regs->regmap,dops[i].rs1);
3336 char copr=(source[i]>>11)&0x1f;
3337 assert(s>=0);
3338 wb_register(dops[i].rs1,i_regs->regmap,i_regs->dirty);
3339 if(copr==9||copr==11||copr==12||copr==13) {
3340 emit_readword(&last_count,HOST_TEMPREG);
3341 emit_loadreg(CCREG,HOST_CCREG); // TODO: do proper reg alloc
3342 emit_add(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3343 emit_addimm(HOST_CCREG,ccadj_,HOST_CCREG);
3344 emit_writeword(HOST_CCREG,&Count);
3345 }
3346 // What a mess. The status register (12) can enable interrupts,
3347 // so needs a special case to handle a pending interrupt.
3348 // The interrupt must be taken immediately, because a subsequent
3349 // instruction might disable interrupts again.
3350 if(copr==12||copr==13) {
3351 if (is_delayslot) {
3352 // burn cycles to cause cc_interrupt, which will
3353 // reschedule next_interupt. Relies on CCREG from above.
3354 assem_debug("MTC0 DS %d\n", copr);
3355 emit_writeword(HOST_CCREG,&last_count);
3356 emit_movimm(0,HOST_CCREG);
3357 emit_storereg(CCREG,HOST_CCREG);
3358 emit_loadreg(dops[i].rs1,1);
3359 emit_movimm(copr,0);
3360 emit_far_call(pcsx_mtc0_ds);
3361 emit_loadreg(dops[i].rs1,s);
3362 return;
3363 }
3364 emit_movimm(start+i*4+4,HOST_TEMPREG);
3365 emit_writeword(HOST_TEMPREG,&pcaddr);
3366 emit_movimm(0,HOST_TEMPREG);
3367 emit_writeword(HOST_TEMPREG,&pending_exception);
3368 }
3369 if(s==HOST_CCREG)
3370 emit_loadreg(dops[i].rs1,1);
3371 else if(s!=1)
3372 emit_mov(s,1);
3373 emit_movimm(copr,0);
3374 emit_far_call(pcsx_mtc0);
3375 if(copr==9||copr==11||copr==12||copr==13) {
3376 emit_readword(&Count,HOST_CCREG);
3377 emit_readword(&next_interupt,HOST_TEMPREG);
3378 emit_addimm(HOST_CCREG,-ccadj_,HOST_CCREG);
3379 emit_sub(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
3380 emit_writeword(HOST_TEMPREG,&last_count);
3381 emit_storereg(CCREG,HOST_CCREG);
3382 }
3383 if(copr==12||copr==13) {
3384 assert(!is_delayslot);
3385 emit_readword(&pending_exception,14);
3386 emit_test(14,14);
3387 void *jaddr = out;
3388 emit_jeq(0);
3389 emit_readword(&pcaddr, 0);
3390 emit_addimm(HOST_CCREG,2,HOST_CCREG);
3391 emit_far_call(get_addr_ht);
3392 emit_jmpreg(0);
3393 set_jump_target(jaddr, out);
3394 }
3395 emit_loadreg(dops[i].rs1,s);
3396 }
3397 else
3398 {
3399 assert(dops[i].opcode2==0x10);
3400 //if((source[i]&0x3f)==0x10) // RFE
3401 {
3402 emit_readword(&Status,0);
3403 emit_andimm(0,0x3c,1);
3404 emit_andimm(0,~0xf,0);
3405 emit_orrshr_imm(1,2,0);
3406 emit_writeword(0,&Status);
3407 }
3408 }
3409}
3410
3411static void cop1_unusable(int i, const struct regstat *i_regs)
3412{
3413 // XXX: should just just do the exception instead
3414 //if(!cop1_usable)
3415 {
3416 void *jaddr=out;
3417 emit_jmp(0);
3418 add_stub_r(FP_STUB,jaddr,out,i,0,i_regs,is_delayslot,0);
3419 }
3420}
3421
3422static void cop1_assemble(int i, const struct regstat *i_regs)
3423{
3424 cop1_unusable(i, i_regs);
3425}
3426
3427static void c1ls_assemble(int i, const struct regstat *i_regs)
3428{
3429 cop1_unusable(i, i_regs);
3430}
3431
3432// FP_STUB
3433static void do_cop1stub(int n)
3434{
3435 literal_pool(256);
3436 assem_debug("do_cop1stub %x\n",start+stubs[n].a*4);
3437 set_jump_target(stubs[n].addr, out);
3438 int i=stubs[n].a;
3439// int rs=stubs[n].b;
3440 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3441 int ds=stubs[n].d;
3442 if(!ds) {
3443 load_all_consts(regs[i].regmap_entry,regs[i].wasdirty,i);
3444 //if(i_regs!=&regs[i]) printf("oops: regs[i]=%x i_regs=%x",(int)&regs[i],(int)i_regs);
3445 }
3446 //else {printf("fp exception in delay slot\n");}
3447 wb_dirtys(i_regs->regmap_entry,i_regs->wasdirty);
3448 if(regs[i].regmap_entry[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
3449 emit_movimm(start+(i-ds)*4,EAX); // Get PC
3450 emit_addimm(HOST_CCREG,ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3451 emit_far_jump(ds?fp_exception_ds:fp_exception);
3452}
3453
3454static int cop2_is_stalling_op(int i, int *cycles)
3455{
3456 if (dops[i].opcode == 0x3a) { // SWC2
3457 *cycles = 0;
3458 return 1;
3459 }
3460 if (dops[i].itype == COP2 && (dops[i].opcode2 == 0 || dops[i].opcode2 == 2)) { // MFC2/CFC2
3461 *cycles = 0;
3462 return 1;
3463 }
3464 if (dops[i].itype == C2OP) {
3465 *cycles = gte_cycletab[source[i] & 0x3f];
3466 return 1;
3467 }
3468 // ... what about MTC2/CTC2/LWC2?
3469 return 0;
3470}
3471
3472#if 0
3473static void log_gte_stall(int stall, u_int cycle)
3474{
3475 if ((u_int)stall <= 44)
3476 printf("x stall %2d %u\n", stall, cycle + last_count);
3477}
3478
3479static void emit_log_gte_stall(int i, int stall, u_int reglist)
3480{
3481 save_regs(reglist);
3482 if (stall > 0)
3483 emit_movimm(stall, 0);
3484 else
3485 emit_mov(HOST_TEMPREG, 0);
3486 emit_addimm(HOST_CCREG, ccadj[i], 1);
3487 emit_far_call(log_gte_stall);
3488 restore_regs(reglist);
3489}
3490#endif
3491
3492static void cop2_do_stall_check(u_int op, int i, const struct regstat *i_regs, u_int reglist)
3493{
3494 int j = i, other_gte_op_cycles = -1, stall = -MAXBLOCK, cycles_passed;
3495 int rtmp = reglist_find_free(reglist);
3496
3497 if (HACK_ENABLED(NDHACK_NO_STALLS))
3498 return;
3499 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3500 // happens occasionally... cc evicted? Don't bother then
3501 //printf("no cc %08x\n", start + i*4);
3502 return;
3503 }
3504 if (!dops[i].bt) {
3505 for (j = i - 1; j >= 0; j--) {
3506 //if (dops[j].is_ds) break;
3507 if (cop2_is_stalling_op(j, &other_gte_op_cycles) || dops[j].bt)
3508 break;
3509 if (j > 0 && ccadj[j - 1] > ccadj[j])
3510 break;
3511 }
3512 j = max(j, 0);
3513 }
3514 cycles_passed = ccadj[i] - ccadj[j];
3515 if (other_gte_op_cycles >= 0)
3516 stall = other_gte_op_cycles - cycles_passed;
3517 else if (cycles_passed >= 44)
3518 stall = 0; // can't stall
3519 if (stall == -MAXBLOCK && rtmp >= 0) {
3520 // unknown stall, do the expensive runtime check
3521 assem_debug("; cop2_do_stall_check\n");
3522#if 0 // too slow
3523 save_regs(reglist);
3524 emit_movimm(gte_cycletab[op], 0);
3525 emit_addimm(HOST_CCREG, ccadj[i], 1);
3526 emit_far_call(call_gteStall);
3527 restore_regs(reglist);
3528#else
3529 host_tempreg_acquire();
3530 emit_readword(&psxRegs.gteBusyCycle, rtmp);
3531 emit_addimm(rtmp, -ccadj[i], rtmp);
3532 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3533 emit_cmpimm(HOST_TEMPREG, 44);
3534 emit_cmovb_reg(rtmp, HOST_CCREG);
3535 //emit_log_gte_stall(i, 0, reglist);
3536 host_tempreg_release();
3537#endif
3538 }
3539 else if (stall > 0) {
3540 //emit_log_gte_stall(i, stall, reglist);
3541 emit_addimm(HOST_CCREG, stall, HOST_CCREG);
3542 }
3543
3544 // save gteBusyCycle, if needed
3545 if (gte_cycletab[op] == 0)
3546 return;
3547 other_gte_op_cycles = -1;
3548 for (j = i + 1; j < slen; j++) {
3549 if (cop2_is_stalling_op(j, &other_gte_op_cycles))
3550 break;
3551 if (dops[j].is_jump) {
3552 // check ds
3553 if (j + 1 < slen && cop2_is_stalling_op(j + 1, &other_gte_op_cycles))
3554 j++;
3555 break;
3556 }
3557 }
3558 if (other_gte_op_cycles >= 0)
3559 // will handle stall when assembling that op
3560 return;
3561 cycles_passed = ccadj[min(j, slen -1)] - ccadj[i];
3562 if (cycles_passed >= 44)
3563 return;
3564 assem_debug("; save gteBusyCycle\n");
3565 host_tempreg_acquire();
3566#if 0
3567 emit_readword(&last_count, HOST_TEMPREG);
3568 emit_add(HOST_TEMPREG, HOST_CCREG, HOST_TEMPREG);
3569 emit_addimm(HOST_TEMPREG, ccadj[i], HOST_TEMPREG);
3570 emit_addimm(HOST_TEMPREG, gte_cycletab[op]), HOST_TEMPREG);
3571 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3572#else
3573 emit_addimm(HOST_CCREG, ccadj[i] + gte_cycletab[op], HOST_TEMPREG);
3574 emit_writeword(HOST_TEMPREG, &psxRegs.gteBusyCycle);
3575#endif
3576 host_tempreg_release();
3577}
3578
3579static int is_mflohi(int i)
3580{
3581 return (dops[i].itype == MOV && (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG));
3582}
3583
3584static int check_multdiv(int i, int *cycles)
3585{
3586 if (dops[i].itype != MULTDIV)
3587 return 0;
3588 if (dops[i].opcode2 == 0x18 || dops[i].opcode2 == 0x19) // MULT(U)
3589 *cycles = 11; // approx from 7 11 14
3590 else
3591 *cycles = 37;
3592 return 1;
3593}
3594
3595static void multdiv_prepare_stall(int i, const struct regstat *i_regs, int ccadj_)
3596{
3597 int j, found = 0, c = 0;
3598 if (HACK_ENABLED(NDHACK_NO_STALLS))
3599 return;
3600 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG) {
3601 // happens occasionally... cc evicted? Don't bother then
3602 return;
3603 }
3604 for (j = i + 1; j < slen; j++) {
3605 if (dops[j].bt)
3606 break;
3607 if ((found = is_mflohi(j)))
3608 break;
3609 if (dops[j].is_jump) {
3610 // check ds
3611 if (j + 1 < slen && (found = is_mflohi(j + 1)))
3612 j++;
3613 break;
3614 }
3615 }
3616 if (found)
3617 // handle all in multdiv_do_stall()
3618 return;
3619 check_multdiv(i, &c);
3620 assert(c > 0);
3621 assem_debug("; muldiv prepare stall %d\n", c);
3622 host_tempreg_acquire();
3623 emit_addimm(HOST_CCREG, ccadj_ + c, HOST_TEMPREG);
3624 emit_writeword(HOST_TEMPREG, &psxRegs.muldivBusyCycle);
3625 host_tempreg_release();
3626}
3627
3628static void multdiv_do_stall(int i, const struct regstat *i_regs)
3629{
3630 int j, known_cycles = 0;
3631 u_int reglist = get_host_reglist(i_regs->regmap);
3632 int rtmp = get_reg_temp(i_regs->regmap);
3633 if (rtmp < 0)
3634 rtmp = reglist_find_free(reglist);
3635 if (HACK_ENABLED(NDHACK_NO_STALLS))
3636 return;
3637 if (get_reg(i_regs->regmap, CCREG) != HOST_CCREG || rtmp < 0) {
3638 // happens occasionally... cc evicted? Don't bother then
3639 //printf("no cc/rtmp %08x\n", start + i*4);
3640 return;
3641 }
3642 if (!dops[i].bt) {
3643 for (j = i - 1; j >= 0; j--) {
3644 if (dops[j].is_ds) break;
3645 if (check_multdiv(j, &known_cycles))
3646 break;
3647 if (is_mflohi(j))
3648 // already handled by this op
3649 return;
3650 if (dops[j].bt || (j > 0 && ccadj[j - 1] > ccadj[j]))
3651 break;
3652 }
3653 j = max(j, 0);
3654 }
3655 if (known_cycles > 0) {
3656 known_cycles -= ccadj[i] - ccadj[j];
3657 assem_debug("; muldiv stall resolved %d\n", known_cycles);
3658 if (known_cycles > 0)
3659 emit_addimm(HOST_CCREG, known_cycles, HOST_CCREG);
3660 return;
3661 }
3662 assem_debug("; muldiv stall unresolved\n");
3663 host_tempreg_acquire();
3664 emit_readword(&psxRegs.muldivBusyCycle, rtmp);
3665 emit_addimm(rtmp, -ccadj[i], rtmp);
3666 emit_sub(rtmp, HOST_CCREG, HOST_TEMPREG);
3667 emit_cmpimm(HOST_TEMPREG, 37);
3668 emit_cmovb_reg(rtmp, HOST_CCREG);
3669 //emit_log_gte_stall(i, 0, reglist);
3670 host_tempreg_release();
3671}
3672
3673static void cop2_get_dreg(u_int copr,signed char tl,signed char temp)
3674{
3675 switch (copr) {
3676 case 1:
3677 case 3:
3678 case 5:
3679 case 8:
3680 case 9:
3681 case 10:
3682 case 11:
3683 emit_readword(&reg_cop2d[copr],tl);
3684 emit_signextend16(tl,tl);
3685 emit_writeword(tl,&reg_cop2d[copr]); // hmh
3686 break;
3687 case 7:
3688 case 16:
3689 case 17:
3690 case 18:
3691 case 19:
3692 emit_readword(&reg_cop2d[copr],tl);
3693 emit_andimm(tl,0xffff,tl);
3694 emit_writeword(tl,&reg_cop2d[copr]);
3695 break;
3696 case 15:
3697 emit_readword(&reg_cop2d[14],tl); // SXY2
3698 emit_writeword(tl,&reg_cop2d[copr]);
3699 break;
3700 case 28:
3701 case 29:
3702 c2op_mfc2_29_assemble(tl,temp);
3703 break;
3704 default:
3705 emit_readword(&reg_cop2d[copr],tl);
3706 break;
3707 }
3708}
3709
3710static void cop2_put_dreg(u_int copr,signed char sl,signed char temp)
3711{
3712 switch (copr) {
3713 case 15:
3714 emit_readword(&reg_cop2d[13],temp); // SXY1
3715 emit_writeword(sl,&reg_cop2d[copr]);
3716 emit_writeword(temp,&reg_cop2d[12]); // SXY0
3717 emit_readword(&reg_cop2d[14],temp); // SXY2
3718 emit_writeword(sl,&reg_cop2d[14]);
3719 emit_writeword(temp,&reg_cop2d[13]); // SXY1
3720 break;
3721 case 28:
3722 emit_andimm(sl,0x001f,temp);
3723 emit_shlimm(temp,7,temp);
3724 emit_writeword(temp,&reg_cop2d[9]);
3725 emit_andimm(sl,0x03e0,temp);
3726 emit_shlimm(temp,2,temp);
3727 emit_writeword(temp,&reg_cop2d[10]);
3728 emit_andimm(sl,0x7c00,temp);
3729 emit_shrimm(temp,3,temp);
3730 emit_writeword(temp,&reg_cop2d[11]);
3731 emit_writeword(sl,&reg_cop2d[28]);
3732 break;
3733 case 30:
3734 emit_xorsar_imm(sl,sl,31,temp);
3735#if defined(HAVE_ARMV5) || defined(__aarch64__)
3736 emit_clz(temp,temp);
3737#else
3738 emit_movs(temp,HOST_TEMPREG);
3739 emit_movimm(0,temp);
3740 emit_jeq((int)out+4*4);
3741 emit_addpl_imm(temp,1,temp);
3742 emit_lslpls_imm(HOST_TEMPREG,1,HOST_TEMPREG);
3743 emit_jns((int)out-2*4);
3744#endif
3745 emit_writeword(sl,&reg_cop2d[30]);
3746 emit_writeword(temp,&reg_cop2d[31]);
3747 break;
3748 case 31:
3749 break;
3750 default:
3751 emit_writeword(sl,&reg_cop2d[copr]);
3752 break;
3753 }
3754}
3755
3756static void c2ls_assemble(int i, const struct regstat *i_regs, int ccadj_)
3757{
3758 int s,tl;
3759 int ar;
3760 int offset;
3761 int memtarget=0,c=0;
3762 void *jaddr2=NULL;
3763 enum stub_type type;
3764 int agr=AGEN1+(i&1);
3765 int offset_reg = -1;
3766 int fastio_reg_override = -1;
3767 u_int reglist=get_host_reglist(i_regs->regmap);
3768 u_int copr=(source[i]>>16)&0x1f;
3769 s=get_reg(i_regs->regmap,dops[i].rs1);
3770 tl=get_reg(i_regs->regmap,FTEMP);
3771 offset=imm[i];
3772 assert(dops[i].rs1>0);
3773 assert(tl>=0);
3774
3775 if(i_regs->regmap[HOST_CCREG]==CCREG)
3776 reglist&=~(1<<HOST_CCREG);
3777
3778 // get the address
3779 if (dops[i].opcode==0x3a) { // SWC2
3780 ar=get_reg(i_regs->regmap,agr);
3781 if(ar<0) ar=get_reg_temp(i_regs->regmap);
3782 reglist|=1<<ar;
3783 } else { // LWC2
3784 ar=tl;
3785 }
3786 if(s>=0) c=(i_regs->wasconst>>s)&1;
3787 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3788 if (!offset&&!c&&s>=0) ar=s;
3789 assert(ar>=0);
3790
3791 cop2_do_stall_check(0, i, i_regs, reglist);
3792
3793 if (dops[i].opcode==0x3a) { // SWC2
3794 cop2_get_dreg(copr,tl,-1);
3795 type=STOREW_STUB;
3796 }
3797 else
3798 type=LOADW_STUB;
3799
3800 if(c&&!memtarget) {
3801 jaddr2=out;
3802 emit_jmp(0); // inline_readstub/inline_writestub?
3803 }
3804 else {
3805 if(!c) {
3806 jaddr2 = emit_fastpath_cmp_jump(i, i_regs, ar,
3807 &offset_reg, &fastio_reg_override);
3808 }
3809 else if (ram_offset && memtarget) {
3810 offset_reg = get_ro_reg(i_regs, 0);
3811 }
3812 switch (dops[i].opcode) {
3813 case 0x32: { // LWC2
3814 int a = ar;
3815 if (fastio_reg_override >= 0)
3816 a = fastio_reg_override;
3817 do_load_word(a, tl, offset_reg);
3818 break;
3819 }
3820 case 0x3a: { // SWC2
3821 #ifdef DESTRUCTIVE_SHIFT
3822 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3823 #endif
3824 int a = ar;
3825 if (fastio_reg_override >= 0)
3826 a = fastio_reg_override;
3827 do_store_word(a, 0, tl, offset_reg, 1);
3828 break;
3829 }
3830 default:
3831 assert(0);
3832 }
3833 }
3834 if (fastio_reg_override == HOST_TEMPREG || offset_reg == HOST_TEMPREG)
3835 host_tempreg_release();
3836 if(jaddr2)
3837 add_stub_r(type,jaddr2,out,i,ar,i_regs,ccadj_,reglist);
3838 if(dops[i].opcode==0x3a) // SWC2
3839 if(!(i_regs->waswritten&(1<<dops[i].rs1)) && !HACK_ENABLED(NDHACK_NO_SMC_CHECK)) {
3840#if defined(HOST_IMM8)
3841 int ir=get_reg(i_regs->regmap,INVCP);
3842 assert(ir>=0);
3843 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3844#else
3845 emit_cmpmem_indexedsr12_imm(invalid_code,ar,1);
3846#endif
3847 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3848 emit_callne(invalidate_addr_reg[ar]);
3849 #else
3850 void *jaddr3 = out;
3851 emit_jne(0);
3852 add_stub(INVCODE_STUB,jaddr3,out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3853 #endif
3854 }
3855 if (dops[i].opcode==0x32) { // LWC2
3856 host_tempreg_acquire();
3857 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3858 host_tempreg_release();
3859 }
3860}
3861
3862static void cop2_assemble(int i, const struct regstat *i_regs)
3863{
3864 u_int copr = (source[i]>>11) & 0x1f;
3865 signed char temp = get_reg_temp(i_regs->regmap);
3866
3867 if (!HACK_ENABLED(NDHACK_NO_STALLS)) {
3868 u_int reglist = reglist_exclude(get_host_reglist(i_regs->regmap), temp, -1);
3869 if (dops[i].opcode2 == 0 || dops[i].opcode2 == 2) { // MFC2/CFC2
3870 signed char tl = get_reg(i_regs->regmap, dops[i].rt1);
3871 reglist = reglist_exclude(reglist, tl, -1);
3872 }
3873 cop2_do_stall_check(0, i, i_regs, reglist);
3874 }
3875 if (dops[i].opcode2==0) { // MFC2
3876 signed char tl=get_reg(i_regs->regmap,dops[i].rt1);
3877 if(tl>=0&&dops[i].rt1!=0)
3878 cop2_get_dreg(copr,tl,temp);
3879 }
3880 else if (dops[i].opcode2==4) { // MTC2
3881 signed char sl=get_reg(i_regs->regmap,dops[i].rs1);
3882 cop2_put_dreg(copr,sl,temp);
3883 }
3884 else if (dops[i].opcode2==2) // CFC2
3885 {
3886 signed char tl=get_reg(i_regs->regmap,dops[i].rt1);
3887 if(tl>=0&&dops[i].rt1!=0)
3888 emit_readword(&reg_cop2c[copr],tl);
3889 }
3890 else if (dops[i].opcode2==6) // CTC2
3891 {
3892 signed char sl=get_reg(i_regs->regmap,dops[i].rs1);
3893 switch(copr) {
3894 case 4:
3895 case 12:
3896 case 20:
3897 case 26:
3898 case 27:
3899 case 29:
3900 case 30:
3901 emit_signextend16(sl,temp);
3902 break;
3903 case 31:
3904 c2op_ctc2_31_assemble(sl,temp);
3905 break;
3906 default:
3907 temp=sl;
3908 break;
3909 }
3910 emit_writeword(temp,&reg_cop2c[copr]);
3911 assert(sl>=0);
3912 }
3913}
3914
3915static void do_unalignedwritestub(int n)
3916{
3917 assem_debug("do_unalignedwritestub %x\n",start+stubs[n].a*4);
3918 literal_pool(256);
3919 set_jump_target(stubs[n].addr, out);
3920
3921 int i=stubs[n].a;
3922 struct regstat *i_regs=(struct regstat *)stubs[n].c;
3923 int addr=stubs[n].b;
3924 u_int reglist=stubs[n].e;
3925 signed char *i_regmap=i_regs->regmap;
3926 int temp2=get_reg(i_regmap,FTEMP);
3927 int rt;
3928 rt=get_reg(i_regmap,dops[i].rs2);
3929 assert(rt>=0);
3930 assert(addr>=0);
3931 assert(dops[i].opcode==0x2a||dops[i].opcode==0x2e); // SWL/SWR only implemented
3932 reglist|=(1<<addr);
3933 reglist&=~(1<<temp2);
3934
3935 // don't bother with it and call write handler
3936 save_regs(reglist);
3937 pass_args(addr,rt);
3938 int cc=get_reg(i_regmap,CCREG);
3939 if(cc<0)
3940 emit_loadreg(CCREG,2);
3941 emit_addimm(cc<0?2:cc,(int)stubs[n].d+1,2);
3942 emit_far_call((dops[i].opcode==0x2a?jump_handle_swl:jump_handle_swr));
3943 emit_addimm(0,-((int)stubs[n].d+1),cc<0?2:cc);
3944 if(cc<0)
3945 emit_storereg(CCREG,2);
3946 restore_regs(reglist);
3947 emit_jmp(stubs[n].retaddr); // return address
3948}
3949
3950#ifndef multdiv_assemble
3951void multdiv_assemble(int i,struct regstat *i_regs)
3952{
3953 printf("Need multdiv_assemble for this architecture.\n");
3954 abort();
3955}
3956#endif
3957
3958static void mov_assemble(int i, const struct regstat *i_regs)
3959{
3960 //if(dops[i].opcode2==0x10||dops[i].opcode2==0x12) { // MFHI/MFLO
3961 //if(dops[i].opcode2==0x11||dops[i].opcode2==0x13) { // MTHI/MTLO
3962 if(dops[i].rt1) {
3963 signed char sl,tl;
3964 tl=get_reg(i_regs->regmap,dops[i].rt1);
3965 //assert(tl>=0);
3966 if(tl>=0) {
3967 sl=get_reg(i_regs->regmap,dops[i].rs1);
3968 if(sl>=0) emit_mov(sl,tl);
3969 else emit_loadreg(dops[i].rs1,tl);
3970 }
3971 }
3972 if (dops[i].rs1 == HIREG || dops[i].rs1 == LOREG) // MFHI/MFLO
3973 multdiv_do_stall(i, i_regs);
3974}
3975
3976// call interpreter, exception handler, things that change pc/regs/cycles ...
3977static void call_c_cpu_handler(int i, const struct regstat *i_regs, int ccadj_, u_int pc, void *func)
3978{
3979 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3980 assert(ccreg==HOST_CCREG);
3981 assert(!is_delayslot);
3982 (void)ccreg;
3983
3984 emit_movimm(pc,3); // Get PC
3985 emit_readword(&last_count,2);
3986 emit_writeword(3,&psxRegs.pc);
3987 emit_addimm(HOST_CCREG,ccadj_,HOST_CCREG);
3988 emit_add(2,HOST_CCREG,2);
3989 emit_writeword(2,&psxRegs.cycle);
3990 emit_far_call(func);
3991 emit_far_jump(jump_to_new_pc);
3992}
3993
3994static void syscall_assemble(int i, const struct regstat *i_regs, int ccadj_)
3995{
3996 // 'break' tends to be littered around to catch things like
3997 // division by 0 and is almost never executed, so don't emit much code here
3998 void *func = (dops[i].opcode2 == 0x0C)
3999 ? (is_delayslot ? jump_syscall_ds : jump_syscall)
4000 : (is_delayslot ? jump_break_ds : jump_break);
4001 assert(get_reg(i_regs->regmap, CCREG) == HOST_CCREG);
4002 emit_movimm(start + i*4, 2); // pc
4003 emit_addimm(HOST_CCREG, ccadj_ + CLOCK_ADJUST(1), HOST_CCREG);
4004 emit_far_jump(func);
4005}
4006
4007static void hlecall_assemble(int i, const struct regstat *i_regs, int ccadj_)
4008{
4009 void *hlefunc = psxNULL;
4010 uint32_t hleCode = source[i] & 0x03ffffff;
4011 if (hleCode < ARRAY_SIZE(psxHLEt))
4012 hlefunc = psxHLEt[hleCode];
4013
4014 call_c_cpu_handler(i, i_regs, ccadj_, start + i*4+4, hlefunc);
4015}
4016
4017static void intcall_assemble(int i, const struct regstat *i_regs, int ccadj_)
4018{
4019 call_c_cpu_handler(i, i_regs, ccadj_, start + i*4, execI);
4020}
4021
4022static void speculate_mov(int rs,int rt)
4023{
4024 if(rt!=0) {
4025 smrv_strong_next|=1<<rt;
4026 smrv[rt]=smrv[rs];
4027 }
4028}
4029
4030static void speculate_mov_weak(int rs,int rt)
4031{
4032 if(rt!=0) {
4033 smrv_weak_next|=1<<rt;
4034 smrv[rt]=smrv[rs];
4035 }
4036}
4037
4038static void speculate_register_values(int i)
4039{
4040 if(i==0) {
4041 memcpy(smrv,psxRegs.GPR.r,sizeof(smrv));
4042 // gp,sp are likely to stay the same throughout the block
4043 smrv_strong_next=(1<<28)|(1<<29)|(1<<30);
4044 smrv_weak_next=~smrv_strong_next;
4045 //printf(" llr %08x\n", smrv[4]);
4046 }
4047 smrv_strong=smrv_strong_next;
4048 smrv_weak=smrv_weak_next;
4049 switch(dops[i].itype) {
4050 case ALU:
4051 if ((smrv_strong>>dops[i].rs1)&1) speculate_mov(dops[i].rs1,dops[i].rt1);
4052 else if((smrv_strong>>dops[i].rs2)&1) speculate_mov(dops[i].rs2,dops[i].rt1);
4053 else if((smrv_weak>>dops[i].rs1)&1) speculate_mov_weak(dops[i].rs1,dops[i].rt1);
4054 else if((smrv_weak>>dops[i].rs2)&1) speculate_mov_weak(dops[i].rs2,dops[i].rt1);
4055 else {
4056 smrv_strong_next&=~(1<<dops[i].rt1);
4057 smrv_weak_next&=~(1<<dops[i].rt1);
4058 }
4059 break;
4060 case SHIFTIMM:
4061 smrv_strong_next&=~(1<<dops[i].rt1);
4062 smrv_weak_next&=~(1<<dops[i].rt1);
4063 // fallthrough
4064 case IMM16:
4065 if(dops[i].rt1&&is_const(&regs[i],dops[i].rt1)) {
4066 int value,hr=get_reg(regs[i].regmap,dops[i].rt1);
4067 if(hr>=0) {
4068 if(get_final_value(hr,i,&value))
4069 smrv[dops[i].rt1]=value;
4070 else smrv[dops[i].rt1]=constmap[i][hr];
4071 smrv_strong_next|=1<<dops[i].rt1;
4072 }
4073 }
4074 else {
4075 if ((smrv_strong>>dops[i].rs1)&1) speculate_mov(dops[i].rs1,dops[i].rt1);
4076 else if((smrv_weak>>dops[i].rs1)&1) speculate_mov_weak(dops[i].rs1,dops[i].rt1);
4077 }
4078 break;
4079 case LOAD:
4080 if(start<0x2000&&(dops[i].rt1==26||(smrv[dops[i].rt1]>>24)==0xa0)) {
4081 // special case for BIOS
4082 smrv[dops[i].rt1]=0xa0000000;
4083 smrv_strong_next|=1<<dops[i].rt1;
4084 break;
4085 }
4086 // fallthrough
4087 case SHIFT:
4088 case LOADLR:
4089 case MOV:
4090 smrv_strong_next&=~(1<<dops[i].rt1);
4091 smrv_weak_next&=~(1<<dops[i].rt1);
4092 break;
4093 case COP0:
4094 case COP2:
4095 if(dops[i].opcode2==0||dops[i].opcode2==2) { // MFC/CFC
4096 smrv_strong_next&=~(1<<dops[i].rt1);
4097 smrv_weak_next&=~(1<<dops[i].rt1);
4098 }
4099 break;
4100 case C2LS:
4101 if (dops[i].opcode==0x32) { // LWC2
4102 smrv_strong_next&=~(1<<dops[i].rt1);
4103 smrv_weak_next&=~(1<<dops[i].rt1);
4104 }
4105 break;
4106 }
4107#if 0
4108 int r=4;
4109 printf("x %08x %08x %d %d c %08x %08x\n",smrv[r],start+i*4,
4110 ((smrv_strong>>r)&1),(smrv_weak>>r)&1,regs[i].isconst,regs[i].wasconst);
4111#endif
4112}
4113
4114static void ujump_assemble(int i, const struct regstat *i_regs);
4115static void rjump_assemble(int i, const struct regstat *i_regs);
4116static void cjump_assemble(int i, const struct regstat *i_regs);
4117static void sjump_assemble(int i, const struct regstat *i_regs);
4118static void pagespan_assemble(int i, const struct regstat *i_regs);
4119
4120static int assemble(int i, const struct regstat *i_regs, int ccadj_)
4121{
4122 int ds = 0;
4123 switch (dops[i].itype) {
4124 case ALU:
4125 alu_assemble(i, i_regs);
4126 break;
4127 case IMM16:
4128 imm16_assemble(i, i_regs);
4129 break;
4130 case SHIFT:
4131 shift_assemble(i, i_regs);
4132 break;
4133 case SHIFTIMM:
4134 shiftimm_assemble(i, i_regs);
4135 break;
4136 case LOAD:
4137 load_assemble(i, i_regs, ccadj_);
4138 break;
4139 case LOADLR:
4140 loadlr_assemble(i, i_regs, ccadj_);
4141 break;
4142 case STORE:
4143 store_assemble(i, i_regs, ccadj_);
4144 break;
4145 case STORELR:
4146 storelr_assemble(i, i_regs, ccadj_);
4147 break;
4148 case COP0:
4149 cop0_assemble(i, i_regs, ccadj_);
4150 break;
4151 case COP1:
4152 cop1_assemble(i, i_regs);
4153 break;
4154 case C1LS:
4155 c1ls_assemble(i, i_regs);
4156 break;
4157 case COP2:
4158 cop2_assemble(i, i_regs);
4159 break;
4160 case C2LS:
4161 c2ls_assemble(i, i_regs, ccadj_);
4162 break;
4163 case C2OP:
4164 c2op_assemble(i, i_regs);
4165 break;
4166 case MULTDIV:
4167 multdiv_assemble(i, i_regs);
4168 multdiv_prepare_stall(i, i_regs, ccadj_);
4169 break;
4170 case MOV:
4171 mov_assemble(i, i_regs);
4172 break;
4173 case SYSCALL:
4174 syscall_assemble(i, i_regs, ccadj_);
4175 break;
4176 case HLECALL:
4177 hlecall_assemble(i, i_regs, ccadj_);
4178 break;
4179 case INTCALL:
4180 intcall_assemble(i, i_regs, ccadj_);
4181 break;
4182 case UJUMP:
4183 ujump_assemble(i, i_regs);
4184 ds = 1;
4185 break;
4186 case RJUMP:
4187 rjump_assemble(i, i_regs);
4188 ds = 1;
4189 break;
4190 case CJUMP:
4191 cjump_assemble(i, i_regs);
4192 ds = 1;
4193 break;
4194 case SJUMP:
4195 sjump_assemble(i, i_regs);
4196 ds = 1;
4197 break;
4198 case SPAN:
4199 pagespan_assemble(i, i_regs);
4200 break;
4201 case NOP:
4202 case OTHER:
4203 case NI:
4204 // not handled, just skip
4205 break;
4206 default:
4207 assert(0);
4208 }
4209 return ds;
4210}
4211
4212static void ds_assemble(int i, const struct regstat *i_regs)
4213{
4214 speculate_register_values(i);
4215 is_delayslot = 1;
4216 switch (dops[i].itype) {
4217 case SYSCALL:
4218 case HLECALL:
4219 case INTCALL:
4220 case SPAN:
4221 case UJUMP:
4222 case RJUMP:
4223 case CJUMP:
4224 case SJUMP:
4225 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4226 break;
4227 default:
4228 assemble(i, i_regs, ccadj[i]);
4229 }
4230 is_delayslot = 0;
4231}
4232
4233// Is the branch target a valid internal jump?
4234static int internal_branch(int addr)
4235{
4236 if(addr&1) return 0; // Indirect (register) jump
4237 if(addr>=start && addr<start+slen*4-4)
4238 {
4239 return 1;
4240 }
4241 return 0;
4242}
4243
4244static void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t u)
4245{
4246 int hr;
4247 for(hr=0;hr<HOST_REGS;hr++) {
4248 if(hr!=EXCLUDE_REG) {
4249 if(pre[hr]!=entry[hr]) {
4250 if(pre[hr]>=0) {
4251 if((dirty>>hr)&1) {
4252 if(get_reg(entry,pre[hr])<0) {
4253 assert(pre[hr]<64);
4254 if(!((u>>pre[hr])&1))
4255 emit_storereg(pre[hr],hr);
4256 }
4257 }
4258 }
4259 }
4260 }
4261 }
4262 // Move from one register to another (no writeback)
4263 for(hr=0;hr<HOST_REGS;hr++) {
4264 if(hr!=EXCLUDE_REG) {
4265 if(pre[hr]!=entry[hr]) {
4266 if(pre[hr]>=0&&pre[hr]<TEMPREG) {
4267 int nr;
4268 if((nr=get_reg(entry,pre[hr]))>=0) {
4269 emit_mov(hr,nr);
4270 }
4271 }
4272 }
4273 }
4274 }
4275}
4276
4277// Load the specified registers
4278// This only loads the registers given as arguments because
4279// we don't want to load things that will be overwritten
4280static void load_regs(signed char entry[],signed char regmap[],int rs1,int rs2)
4281{
4282 int hr;
4283 // Load 32-bit regs
4284 for(hr=0;hr<HOST_REGS;hr++) {
4285 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4286 if(entry[hr]!=regmap[hr]) {
4287 if(regmap[hr]==rs1||regmap[hr]==rs2)
4288 {
4289 if(regmap[hr]==0) {
4290 emit_zeroreg(hr);
4291 }
4292 else
4293 {
4294 emit_loadreg(regmap[hr],hr);
4295 }
4296 }
4297 }
4298 }
4299 }
4300}
4301
4302// Load registers prior to the start of a loop
4303// so that they are not loaded within the loop
4304static void loop_preload(signed char pre[],signed char entry[])
4305{
4306 int hr;
4307 for(hr=0;hr<HOST_REGS;hr++) {
4308 if(hr!=EXCLUDE_REG) {
4309 if(pre[hr]!=entry[hr]) {
4310 if(entry[hr]>=0) {
4311 if(get_reg(pre,entry[hr])<0) {
4312 assem_debug("loop preload:\n");
4313 //printf("loop preload: %d\n",hr);
4314 if(entry[hr]==0) {
4315 emit_zeroreg(hr);
4316 }
4317 else if(entry[hr]<TEMPREG)
4318 {
4319 emit_loadreg(entry[hr],hr);
4320 }
4321 else if(entry[hr]-64<TEMPREG)
4322 {
4323 emit_loadreg(entry[hr],hr);
4324 }
4325 }
4326 }
4327 }
4328 }
4329 }
4330}
4331
4332// Generate address for load/store instruction
4333// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4334void address_generation(int i, const struct regstat *i_regs, signed char entry[])
4335{
4336 if (dops[i].is_load || dops[i].is_store) {
4337 int ra=-1;
4338 int agr=AGEN1+(i&1);
4339 if(dops[i].itype==LOAD) {
4340 ra=get_reg(i_regs->regmap,dops[i].rt1);
4341 if(ra<0) ra=get_reg_temp(i_regs->regmap);
4342 assert(ra>=0);
4343 }
4344 if(dops[i].itype==LOADLR) {
4345 ra=get_reg(i_regs->regmap,FTEMP);
4346 }
4347 if(dops[i].itype==STORE||dops[i].itype==STORELR) {
4348 ra=get_reg(i_regs->regmap,agr);
4349 if(ra<0) ra=get_reg_temp(i_regs->regmap);
4350 }
4351 if(dops[i].itype==C2LS) {
4352 if ((dops[i].opcode&0x3b)==0x31||(dops[i].opcode&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4353 ra=get_reg(i_regs->regmap,FTEMP);
4354 else { // SWC1/SDC1/SWC2/SDC2
4355 ra=get_reg(i_regs->regmap,agr);
4356 if(ra<0) ra=get_reg_temp(i_regs->regmap);
4357 }
4358 }
4359 int rs=get_reg(i_regs->regmap,dops[i].rs1);
4360 if(ra>=0) {
4361 int offset=imm[i];
4362 int c=(i_regs->wasconst>>rs)&1;
4363 if(dops[i].rs1==0) {
4364 // Using r0 as a base address
4365 if(!entry||entry[ra]!=agr) {
4366 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
4367 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4368 }else if (dops[i].opcode==0x1a||dops[i].opcode==0x1b) {
4369 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4370 }else{
4371 emit_movimm(offset,ra);
4372 }
4373 } // else did it in the previous cycle
4374 }
4375 else if(rs<0) {
4376 if(!entry||entry[ra]!=dops[i].rs1)
4377 emit_loadreg(dops[i].rs1,ra);
4378 //if(!entry||entry[ra]!=dops[i].rs1)
4379 // printf("poor load scheduling!\n");
4380 }
4381 else if(c) {
4382 if(dops[i].rs1!=dops[i].rt1||dops[i].itype!=LOAD) {
4383 if(!entry||entry[ra]!=agr) {
4384 if (dops[i].opcode==0x22||dops[i].opcode==0x26) {
4385 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4386 }else if (dops[i].opcode==0x1a||dops[i].opcode==0x1b) {
4387 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4388 }else{
4389 emit_movimm(constmap[i][rs]+offset,ra);
4390 regs[i].loadedconst|=1<<ra;
4391 }
4392 } // else did it in the previous cycle
4393 } // else load_consts already did it
4394 }
4395 if(offset&&!c&&dops[i].rs1) {
4396 if(rs>=0) {
4397 emit_addimm(rs,offset,ra);
4398 }else{
4399 emit_addimm(ra,offset,ra);
4400 }
4401 }
4402 }
4403 }
4404 // Preload constants for next instruction
4405 if (dops[i+1].is_load || dops[i+1].is_store) {
4406 int agr,ra;
4407 // Actual address
4408 agr=AGEN1+((i+1)&1);
4409 ra=get_reg(i_regs->regmap,agr);
4410 if(ra>=0) {
4411 int rs=get_reg(regs[i+1].regmap,dops[i+1].rs1);
4412 int offset=imm[i+1];
4413 int c=(regs[i+1].wasconst>>rs)&1;
4414 if(c&&(dops[i+1].rs1!=dops[i+1].rt1||dops[i+1].itype!=LOAD)) {
4415 if (dops[i+1].opcode==0x22||dops[i+1].opcode==0x26) {
4416 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4417 }else if (dops[i+1].opcode==0x1a||dops[i+1].opcode==0x1b) {
4418 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4419 }else{
4420 emit_movimm(constmap[i+1][rs]+offset,ra);
4421 regs[i+1].loadedconst|=1<<ra;
4422 }
4423 }
4424 else if(dops[i+1].rs1==0) {
4425 // Using r0 as a base address
4426 if (dops[i+1].opcode==0x22||dops[i+1].opcode==0x26) {
4427 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4428 }else if (dops[i+1].opcode==0x1a||dops[i+1].opcode==0x1b) {
4429 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4430 }else{
4431 emit_movimm(offset,ra);
4432 }
4433 }
4434 }
4435 }
4436}
4437
4438static int get_final_value(int hr, int i, int *value)
4439{
4440 int reg=regs[i].regmap[hr];
4441 while(i<slen-1) {
4442 if(regs[i+1].regmap[hr]!=reg) break;
4443 if(!((regs[i+1].isconst>>hr)&1)) break;
4444 if(dops[i+1].bt) break;
4445 i++;
4446 }
4447 if(i<slen-1) {
4448 if (dops[i].is_jump) {
4449 *value=constmap[i][hr];
4450 return 1;
4451 }
4452 if(!dops[i+1].bt) {
4453 if (dops[i+1].is_jump) {
4454 // Load in delay slot, out-of-order execution
4455 if(dops[i+2].itype==LOAD&&dops[i+2].rs1==reg&&dops[i+2].rt1==reg&&((regs[i+1].wasconst>>hr)&1))
4456 {
4457 // Precompute load address
4458 *value=constmap[i][hr]+imm[i+2];
4459 return 1;
4460 }
4461 }
4462 if(dops[i+1].itype==LOAD&&dops[i+1].rs1==reg&&dops[i+1].rt1==reg)
4463 {
4464 // Precompute load address
4465 *value=constmap[i][hr]+imm[i+1];
4466 //printf("c=%x imm=%lx\n",(long)constmap[i][hr],imm[i+1]);
4467 return 1;
4468 }
4469 }
4470 }
4471 *value=constmap[i][hr];
4472 //printf("c=%lx\n",(long)constmap[i][hr]);
4473 if(i==slen-1) return 1;
4474 assert(reg < 64);
4475 return !((unneeded_reg[i+1]>>reg)&1);
4476}
4477
4478// Load registers with known constants
4479static void load_consts(signed char pre[],signed char regmap[],int i)
4480{
4481 int hr,hr2;
4482 // propagate loaded constant flags
4483 if(i==0||dops[i].bt)
4484 regs[i].loadedconst=0;
4485 else {
4486 for(hr=0;hr<HOST_REGS;hr++) {
4487 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4488 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4489 {
4490 regs[i].loadedconst|=1<<hr;
4491 }
4492 }
4493 }
4494 // Load 32-bit regs
4495 for(hr=0;hr<HOST_REGS;hr++) {
4496 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4497 //if(entry[hr]!=regmap[hr]) {
4498 if(!((regs[i].loadedconst>>hr)&1)) {
4499 assert(regmap[hr]<64);
4500 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4501 int value,similar=0;
4502 if(get_final_value(hr,i,&value)) {
4503 // see if some other register has similar value
4504 for(hr2=0;hr2<HOST_REGS;hr2++) {
4505 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4506 if(is_similar_value(value,constmap[i][hr2])) {
4507 similar=1;
4508 break;
4509 }
4510 }
4511 }
4512 if(similar) {
4513 int value2;
4514 if(get_final_value(hr2,i,&value2)) // is this needed?
4515 emit_movimm_from(value2,hr2,value,hr);
4516 else
4517 emit_movimm(value,hr);
4518 }
4519 else if(value==0) {
4520 emit_zeroreg(hr);
4521 }
4522 else {
4523 emit_movimm(value,hr);
4524 }
4525 }
4526 regs[i].loadedconst|=1<<hr;
4527 }
4528 }
4529 }
4530 }
4531}
4532
4533static void load_all_consts(const signed char regmap[], u_int dirty, int i)
4534{
4535 int hr;
4536 // Load 32-bit regs
4537 for(hr=0;hr<HOST_REGS;hr++) {
4538 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4539 assert(regmap[hr] < 64);
4540 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>0) {
4541 int value=constmap[i][hr];
4542 if(value==0) {
4543 emit_zeroreg(hr);
4544 }
4545 else {
4546 emit_movimm(value,hr);
4547 }
4548 }
4549 }
4550 }
4551}
4552
4553// Write out all dirty registers (except cycle count)
4554static void wb_dirtys(const signed char i_regmap[], uint64_t i_dirty)
4555{
4556 int hr;
4557 for(hr=0;hr<HOST_REGS;hr++) {
4558 if(hr!=EXCLUDE_REG) {
4559 if(i_regmap[hr]>0) {
4560 if(i_regmap[hr]!=CCREG) {
4561 if((i_dirty>>hr)&1) {
4562 assert(i_regmap[hr]<64);
4563 emit_storereg(i_regmap[hr],hr);
4564 }
4565 }
4566 }
4567 }
4568 }
4569}
4570
4571// Write out dirty registers that we need to reload (pair with load_needed_regs)
4572// This writes the registers not written by store_regs_bt
4573static void wb_needed_dirtys(const signed char i_regmap[], uint64_t i_dirty, int addr)
4574{
4575 int hr;
4576 int t=(addr-start)>>2;
4577 for(hr=0;hr<HOST_REGS;hr++) {
4578 if(hr!=EXCLUDE_REG) {
4579 if(i_regmap[hr]>0) {
4580 if(i_regmap[hr]!=CCREG) {
4581 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1)) {
4582 if((i_dirty>>hr)&1) {
4583 assert(i_regmap[hr]<64);
4584 emit_storereg(i_regmap[hr],hr);
4585 }
4586 }
4587 }
4588 }
4589 }
4590 }
4591}
4592
4593// Load all registers (except cycle count)
4594static void load_all_regs(const signed char i_regmap[])
4595{
4596 int hr;
4597 for(hr=0;hr<HOST_REGS;hr++) {
4598 if(hr!=EXCLUDE_REG) {
4599 if(i_regmap[hr]==0) {
4600 emit_zeroreg(hr);
4601 }
4602 else
4603 if(i_regmap[hr]>0 && i_regmap[hr]<TEMPREG && i_regmap[hr]!=CCREG)
4604 {
4605 emit_loadreg(i_regmap[hr],hr);
4606 }
4607 }
4608 }
4609}
4610
4611// Load all current registers also needed by next instruction
4612static void load_needed_regs(const signed char i_regmap[], const signed char next_regmap[])
4613{
4614 int hr;
4615 for(hr=0;hr<HOST_REGS;hr++) {
4616 if(hr!=EXCLUDE_REG) {
4617 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4618 if(i_regmap[hr]==0) {
4619 emit_zeroreg(hr);
4620 }
4621 else
4622 if(i_regmap[hr]>0 && i_regmap[hr]<TEMPREG && i_regmap[hr]!=CCREG)
4623 {
4624 emit_loadreg(i_regmap[hr],hr);
4625 }
4626 }
4627 }
4628 }
4629}
4630
4631// Load all regs, storing cycle count if necessary
4632static void load_regs_entry(int t)
4633{
4634 int hr;
4635 if(dops[t].is_ds) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4636 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t],HOST_CCREG);
4637 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4638 emit_storereg(CCREG,HOST_CCREG);
4639 }
4640 // Load 32-bit regs
4641 for(hr=0;hr<HOST_REGS;hr++) {
4642 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4643 if(regs[t].regmap_entry[hr]==0) {
4644 emit_zeroreg(hr);
4645 }
4646 else if(regs[t].regmap_entry[hr]!=CCREG)
4647 {
4648 emit_loadreg(regs[t].regmap_entry[hr],hr);
4649 }
4650 }
4651 }
4652}
4653
4654// Store dirty registers prior to branch
4655void store_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4656{
4657 if(internal_branch(addr))
4658 {
4659 int t=(addr-start)>>2;
4660 int hr;
4661 for(hr=0;hr<HOST_REGS;hr++) {
4662 if(hr!=EXCLUDE_REG) {
4663 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4664 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1)) {
4665 if((i_dirty>>hr)&1) {
4666 assert(i_regmap[hr]<64);
4667 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4668 emit_storereg(i_regmap[hr],hr);
4669 }
4670 }
4671 }
4672 }
4673 }
4674 }
4675 else
4676 {
4677 // Branch out of this block, write out all dirty regs
4678 wb_dirtys(i_regmap,i_dirty);
4679 }
4680}
4681
4682// Load all needed registers for branch target
4683static void load_regs_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4684{
4685 //if(addr>=start && addr<(start+slen*4))
4686 if(internal_branch(addr))
4687 {
4688 int t=(addr-start)>>2;
4689 int hr;
4690 // Store the cycle count before loading something else
4691 if(i_regmap[HOST_CCREG]!=CCREG) {
4692 assert(i_regmap[HOST_CCREG]==-1);
4693 }
4694 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4695 emit_storereg(CCREG,HOST_CCREG);
4696 }
4697 // Load 32-bit regs
4698 for(hr=0;hr<HOST_REGS;hr++) {
4699 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4700 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4701 if(regs[t].regmap_entry[hr]==0) {
4702 emit_zeroreg(hr);
4703 }
4704 else if(regs[t].regmap_entry[hr]!=CCREG)
4705 {
4706 emit_loadreg(regs[t].regmap_entry[hr],hr);
4707 }
4708 }
4709 }
4710 }
4711 }
4712}
4713
4714static int match_bt(signed char i_regmap[],uint64_t i_dirty,int addr)
4715{
4716 if(addr>=start && addr<start+slen*4-4)
4717 {
4718 int t=(addr-start)>>2;
4719 int hr;
4720 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4721 for(hr=0;hr<HOST_REGS;hr++)
4722 {
4723 if(hr!=EXCLUDE_REG)
4724 {
4725 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4726 {
4727 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4728 {
4729 return 0;
4730 }
4731 else
4732 if((i_dirty>>hr)&1)
4733 {
4734 if(i_regmap[hr]<TEMPREG)
4735 {
4736 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4737 return 0;
4738 }
4739 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4740 {
4741 assert(0);
4742 }
4743 }
4744 }
4745 else // Same register but is it 32-bit or dirty?
4746 if(i_regmap[hr]>=0)
4747 {
4748 if(!((regs[t].dirty>>hr)&1))
4749 {
4750 if((i_dirty>>hr)&1)
4751 {
4752 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4753 {
4754 //printf("%x: dirty no match\n",addr);
4755 return 0;
4756 }
4757 }
4758 }
4759 }
4760 }
4761 }
4762 // Delay slots are not valid branch targets
4763 //if(t>0&&(dops[t-1].is_jump) return 0;
4764 // Delay slots require additional processing, so do not match
4765 if(dops[t].is_ds) return 0;
4766 }
4767 else
4768 {
4769 int hr;
4770 for(hr=0;hr<HOST_REGS;hr++)
4771 {
4772 if(hr!=EXCLUDE_REG)
4773 {
4774 if(i_regmap[hr]>=0)
4775 {
4776 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4777 {
4778 if((i_dirty>>hr)&1)
4779 {
4780 return 0;
4781 }
4782 }
4783 }
4784 }
4785 }
4786 }
4787 return 1;
4788}
4789
4790#ifdef DRC_DBG
4791static void drc_dbg_emit_do_cmp(int i, int ccadj_)
4792{
4793 extern void do_insn_cmp();
4794 //extern int cycle;
4795 u_int hr, reglist = get_host_reglist(regs[i].regmap);
4796
4797 assem_debug("//do_insn_cmp %08x\n", start+i*4);
4798 save_regs(reglist);
4799 // write out changed consts to match the interpreter
4800 if (i > 0 && !dops[i].bt) {
4801 for (hr = 0; hr < HOST_REGS; hr++) {
4802 int reg = regs[i].regmap_entry[hr]; // regs[i-1].regmap[hr];
4803 if (hr == EXCLUDE_REG || reg < 0)
4804 continue;
4805 if (!((regs[i-1].isconst >> hr) & 1))
4806 continue;
4807 if (i > 1 && reg == regs[i-2].regmap[hr] && constmap[i-1][hr] == constmap[i-2][hr])
4808 continue;
4809 emit_movimm(constmap[i-1][hr],0);
4810 emit_storereg(reg, 0);
4811 }
4812 }
4813 emit_movimm(start+i*4,0);
4814 emit_writeword(0,&pcaddr);
4815 int cc = get_reg(regs[i].regmap_entry, CCREG);
4816 if (cc < 0)
4817 emit_loadreg(CCREG, cc = 0);
4818 emit_addimm(cc, ccadj_, 0);
4819 emit_writeword(0, &psxRegs.cycle);
4820 emit_far_call(do_insn_cmp);
4821 //emit_readword(&cycle,0);
4822 //emit_addimm(0,2,0);
4823 //emit_writeword(0,&cycle);
4824 (void)get_reg2;
4825 restore_regs(reglist);
4826 assem_debug("\\\\do_insn_cmp\n");
4827}
4828#else
4829#define drc_dbg_emit_do_cmp(x,y)
4830#endif
4831
4832// Used when a branch jumps into the delay slot of another branch
4833static void ds_assemble_entry(int i)
4834{
4835 int t = (ba[i] - start) >> 2;
4836 int ccadj_ = -CLOCK_ADJUST(1);
4837 if (!instr_addr[t])
4838 instr_addr[t] = out;
4839 assem_debug("Assemble delay slot at %x\n",ba[i]);
4840 assem_debug("<->\n");
4841 drc_dbg_emit_do_cmp(t, ccadj_);
4842 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4843 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty);
4844 load_regs(regs[t].regmap_entry,regs[t].regmap,dops[t].rs1,dops[t].rs2);
4845 address_generation(t,&regs[t],regs[t].regmap_entry);
4846 if (ram_offset && (dops[t].is_load || dops[t].is_store))
4847 load_regs(regs[t].regmap_entry,regs[t].regmap,ROREG,ROREG);
4848 if (dops[t].is_store)
4849 load_regs(regs[t].regmap_entry,regs[t].regmap,INVCP,INVCP);
4850 is_delayslot=0;
4851 switch (dops[t].itype) {
4852 case SYSCALL:
4853 case HLECALL:
4854 case INTCALL:
4855 case SPAN:
4856 case UJUMP:
4857 case RJUMP:
4858 case CJUMP:
4859 case SJUMP:
4860 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4861 break;
4862 default:
4863 assemble(t, &regs[t], ccadj_);
4864 }
4865 store_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4866 load_regs_bt(regs[t].regmap,regs[t].dirty,ba[i]+4);
4867 if(internal_branch(ba[i]+4))
4868 assem_debug("branch: internal\n");
4869 else
4870 assem_debug("branch: external\n");
4871 assert(internal_branch(ba[i]+4));
4872 add_to_linker(out,ba[i]+4,internal_branch(ba[i]+4));
4873 emit_jmp(0);
4874}
4875
4876static void emit_extjump(void *addr, u_int target)
4877{
4878 emit_extjump2(addr, target, dyna_linker);
4879}
4880
4881static void emit_extjump_ds(void *addr, u_int target)
4882{
4883 emit_extjump2(addr, target, dyna_linker_ds);
4884}
4885
4886// Load 2 immediates optimizing for small code size
4887static void emit_mov2imm_compact(int imm1,u_int rt1,int imm2,u_int rt2)
4888{
4889 emit_movimm(imm1,rt1);
4890 emit_movimm_from(imm1,rt1,imm2,rt2);
4891}
4892
4893static void do_cc(int i, const signed char i_regmap[], int *adj,
4894 int addr, int taken, int invert)
4895{
4896 int count, count_plus2;
4897 void *jaddr;
4898 void *idle=NULL;
4899 int t=0;
4900 if(dops[i].itype==RJUMP)
4901 {
4902 *adj=0;
4903 }
4904 //if(ba[i]>=start && ba[i]<(start+slen*4))
4905 if(internal_branch(ba[i]))
4906 {
4907 t=(ba[i]-start)>>2;
4908 if(dops[t].is_ds) *adj=-CLOCK_ADJUST(1); // Branch into delay slot adds an extra cycle
4909 else *adj=ccadj[t];
4910 }
4911 else
4912 {
4913 *adj=0;
4914 }
4915 count = ccadj[i];
4916 count_plus2 = count + CLOCK_ADJUST(2);
4917 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4918 // Idle loop
4919 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4920 idle=out;
4921 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4922 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4923 jaddr=out;
4924 emit_jmp(0);
4925 }
4926 else if(*adj==0||invert) {
4927 int cycles = count_plus2;
4928 // faster loop HACK
4929#if 0
4930 if (t&&*adj) {
4931 int rel=t-i;
4932 if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
4933 cycles=*adj+count+2-*adj;
4934 }
4935#endif
4936 emit_addimm_and_set_flags(cycles, HOST_CCREG);
4937 jaddr = out;
4938 emit_jns(0);
4939 }
4940 else
4941 {
4942 emit_cmpimm(HOST_CCREG, -count_plus2);
4943 jaddr = out;
4944 emit_jns(0);
4945 }
4946 add_stub(CC_STUB,jaddr,idle?idle:out,(*adj==0||invert||idle)?0:count_plus2,i,addr,taken,0);
4947}
4948
4949static void do_ccstub(int n)
4950{
4951 literal_pool(256);
4952 assem_debug("do_ccstub %x\n",start+(u_int)stubs[n].b*4);
4953 set_jump_target(stubs[n].addr, out);
4954 int i=stubs[n].b;
4955 if(stubs[n].d==NULLDS) {
4956 // Delay slot instruction is nullified ("likely" branch)
4957 wb_dirtys(regs[i].regmap,regs[i].dirty);
4958 }
4959 else if(stubs[n].d!=TAKEN) {
4960 wb_dirtys(branch_regs[i].regmap,branch_regs[i].dirty);
4961 }
4962 else {
4963 if(internal_branch(ba[i]))
4964 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
4965 }
4966 if(stubs[n].c!=-1)
4967 {
4968 // Save PC as return address
4969 emit_movimm(stubs[n].c,EAX);
4970 emit_writeword(EAX,&pcaddr);
4971 }
4972 else
4973 {
4974 // Return address depends on which way the branch goes
4975 if(dops[i].itype==CJUMP||dops[i].itype==SJUMP)
4976 {
4977 int s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
4978 int s2l=get_reg(branch_regs[i].regmap,dops[i].rs2);
4979 if(dops[i].rs1==0)
4980 {
4981 s1l=s2l;
4982 s2l=-1;
4983 }
4984 else if(dops[i].rs2==0)
4985 {
4986 s2l=-1;
4987 }
4988 assert(s1l>=0);
4989 #ifdef DESTRUCTIVE_WRITEBACK
4990 if(dops[i].rs1) {
4991 if((branch_regs[i].dirty>>s1l)&&1)
4992 emit_loadreg(dops[i].rs1,s1l);
4993 }
4994 else {
4995 if((branch_regs[i].dirty>>s1l)&1)
4996 emit_loadreg(dops[i].rs2,s1l);
4997 }
4998 if(s2l>=0)
4999 if((branch_regs[i].dirty>>s2l)&1)
5000 emit_loadreg(dops[i].rs2,s2l);
5001 #endif
5002 int hr=0;
5003 int addr=-1,alt=-1,ntaddr=-1;
5004 while(hr<HOST_REGS)
5005 {
5006 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5007 branch_regs[i].regmap[hr]!=dops[i].rs1 &&
5008 branch_regs[i].regmap[hr]!=dops[i].rs2 )
5009 {
5010 addr=hr++;break;
5011 }
5012 hr++;
5013 }
5014 while(hr<HOST_REGS)
5015 {
5016 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5017 branch_regs[i].regmap[hr]!=dops[i].rs1 &&
5018 branch_regs[i].regmap[hr]!=dops[i].rs2 )
5019 {
5020 alt=hr++;break;
5021 }
5022 hr++;
5023 }
5024 if((dops[i].opcode&0x2E)==6) // BLEZ/BGTZ needs another register
5025 {
5026 while(hr<HOST_REGS)
5027 {
5028 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5029 branch_regs[i].regmap[hr]!=dops[i].rs1 &&
5030 branch_regs[i].regmap[hr]!=dops[i].rs2 )
5031 {
5032 ntaddr=hr;break;
5033 }
5034 hr++;
5035 }
5036 assert(hr<HOST_REGS);
5037 }
5038 if((dops[i].opcode&0x2f)==4) // BEQ
5039 {
5040 #ifdef HAVE_CMOV_IMM
5041 if(s2l>=0) emit_cmp(s1l,s2l);
5042 else emit_test(s1l,s1l);
5043 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5044 #else
5045 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5046 if(s2l>=0) emit_cmp(s1l,s2l);
5047 else emit_test(s1l,s1l);
5048 emit_cmovne_reg(alt,addr);
5049 #endif
5050 }
5051 if((dops[i].opcode&0x2f)==5) // BNE
5052 {
5053 #ifdef HAVE_CMOV_IMM
5054 if(s2l>=0) emit_cmp(s1l,s2l);
5055 else emit_test(s1l,s1l);
5056 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5057 #else
5058 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5059 if(s2l>=0) emit_cmp(s1l,s2l);
5060 else emit_test(s1l,s1l);
5061 emit_cmovne_reg(alt,addr);
5062 #endif
5063 }
5064 if((dops[i].opcode&0x2f)==6) // BLEZ
5065 {
5066 //emit_movimm(ba[i],alt);
5067 //emit_movimm(start+i*4+8,addr);
5068 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5069 emit_cmpimm(s1l,1);
5070 emit_cmovl_reg(alt,addr);
5071 }
5072 if((dops[i].opcode&0x2f)==7) // BGTZ
5073 {
5074 //emit_movimm(ba[i],addr);
5075 //emit_movimm(start+i*4+8,ntaddr);
5076 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5077 emit_cmpimm(s1l,1);
5078 emit_cmovl_reg(ntaddr,addr);
5079 }
5080 if((dops[i].opcode==1)&&(dops[i].opcode2&0x2D)==0) // BLTZ
5081 {
5082 //emit_movimm(ba[i],alt);
5083 //emit_movimm(start+i*4+8,addr);
5084 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5085 emit_test(s1l,s1l);
5086 emit_cmovs_reg(alt,addr);
5087 }
5088 if((dops[i].opcode==1)&&(dops[i].opcode2&0x2D)==1) // BGEZ
5089 {
5090 //emit_movimm(ba[i],addr);
5091 //emit_movimm(start+i*4+8,alt);
5092 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5093 emit_test(s1l,s1l);
5094 emit_cmovs_reg(alt,addr);
5095 }
5096 if(dops[i].opcode==0x11 && dops[i].opcode2==0x08 ) {
5097 if(source[i]&0x10000) // BC1T
5098 {
5099 //emit_movimm(ba[i],alt);
5100 //emit_movimm(start+i*4+8,addr);
5101 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5102 emit_testimm(s1l,0x800000);
5103 emit_cmovne_reg(alt,addr);
5104 }
5105 else // BC1F
5106 {
5107 //emit_movimm(ba[i],addr);
5108 //emit_movimm(start+i*4+8,alt);
5109 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5110 emit_testimm(s1l,0x800000);
5111 emit_cmovne_reg(alt,addr);
5112 }
5113 }
5114 emit_writeword(addr,&pcaddr);
5115 }
5116 else
5117 if(dops[i].itype==RJUMP)
5118 {
5119 int r=get_reg(branch_regs[i].regmap,dops[i].rs1);
5120 if (ds_writes_rjump_rs(i)) {
5121 r=get_reg(branch_regs[i].regmap,RTEMP);
5122 }
5123 emit_writeword(r,&pcaddr);
5124 }
5125 else {SysPrintf("Unknown branch type in do_ccstub\n");abort();}
5126 }
5127 // Update cycle count
5128 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5129 if(stubs[n].a) emit_addimm(HOST_CCREG,(int)stubs[n].a,HOST_CCREG);
5130 emit_far_call(cc_interrupt);
5131 if(stubs[n].a) emit_addimm(HOST_CCREG,-(int)stubs[n].a,HOST_CCREG);
5132 if(stubs[n].d==TAKEN) {
5133 if(internal_branch(ba[i]))
5134 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5135 else if(dops[i].itype==RJUMP) {
5136 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5137 emit_readword(&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5138 else
5139 emit_loadreg(dops[i].rs1,get_reg(branch_regs[i].regmap,dops[i].rs1));
5140 }
5141 }else if(stubs[n].d==NOTTAKEN) {
5142 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5143 else load_all_regs(branch_regs[i].regmap);
5144 }else if(stubs[n].d==NULLDS) {
5145 // Delay slot instruction is nullified ("likely" branch)
5146 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5147 else load_all_regs(regs[i].regmap);
5148 }else{
5149 load_all_regs(branch_regs[i].regmap);
5150 }
5151 if (stubs[n].retaddr)
5152 emit_jmp(stubs[n].retaddr);
5153 else
5154 do_jump_vaddr(stubs[n].e);
5155}
5156
5157static void add_to_linker(void *addr, u_int target, int ext)
5158{
5159 assert(linkcount < ARRAY_SIZE(link_addr));
5160 link_addr[linkcount].addr = addr;
5161 link_addr[linkcount].target = target;
5162 link_addr[linkcount].ext = ext;
5163 linkcount++;
5164}
5165
5166static void ujump_assemble_write_ra(int i)
5167{
5168 int rt;
5169 unsigned int return_address;
5170 rt=get_reg(branch_regs[i].regmap,31);
5171 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5172 //assert(rt>=0);
5173 return_address=start+i*4+8;
5174 if(rt>=0) {
5175 #ifdef USE_MINI_HT
5176 if(internal_branch(return_address)&&dops[i+1].rt1!=31) {
5177 int temp=-1; // note: must be ds-safe
5178 #ifdef HOST_TEMPREG
5179 temp=HOST_TEMPREG;
5180 #endif
5181 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5182 else emit_movimm(return_address,rt);
5183 }
5184 else
5185 #endif
5186 {
5187 #ifdef REG_PREFETCH
5188 if(temp>=0)
5189 {
5190 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5191 }
5192 #endif
5193 emit_movimm(return_address,rt); // PC into link register
5194 #ifdef IMM_PREFETCH
5195 emit_prefetch(hash_table_get(return_address));
5196 #endif
5197 }
5198 }
5199}
5200
5201static void ujump_assemble(int i, const struct regstat *i_regs)
5202{
5203 int ra_done=0;
5204 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5205 address_generation(i+1,i_regs,regs[i].regmap_entry);
5206 #ifdef REG_PREFETCH
5207 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5208 if(dops[i].rt1==31&&temp>=0)
5209 {
5210 signed char *i_regmap=i_regs->regmap;
5211 int return_address=start+i*4+8;
5212 if(get_reg(branch_regs[i].regmap,31)>0)
5213 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5214 }
5215 #endif
5216 if(dops[i].rt1==31&&(dops[i].rt1==dops[i+1].rs1||dops[i].rt1==dops[i+1].rs2)) {
5217 ujump_assemble_write_ra(i); // writeback ra for DS
5218 ra_done=1;
5219 }
5220 ds_assemble(i+1,i_regs);
5221 uint64_t bc_unneeded=branch_regs[i].u;
5222 bc_unneeded|=1|(1LL<<dops[i].rt1);
5223 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5224 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5225 if(!ra_done&&dops[i].rt1==31)
5226 ujump_assemble_write_ra(i);
5227 int cc,adj;
5228 cc=get_reg(branch_regs[i].regmap,CCREG);
5229 assert(cc==HOST_CCREG);
5230 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5231 #ifdef REG_PREFETCH
5232 if(dops[i].rt1==31&&temp>=0) emit_prefetchreg(temp);
5233 #endif
5234 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5235 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5236 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5237 if(internal_branch(ba[i]))
5238 assem_debug("branch: internal\n");
5239 else
5240 assem_debug("branch: external\n");
5241 if (internal_branch(ba[i]) && dops[(ba[i]-start)>>2].is_ds) {
5242 ds_assemble_entry(i);
5243 }
5244 else {
5245 add_to_linker(out,ba[i],internal_branch(ba[i]));
5246 emit_jmp(0);
5247 }
5248}
5249
5250static void rjump_assemble_write_ra(int i)
5251{
5252 int rt,return_address;
5253 assert(dops[i+1].rt1!=dops[i].rt1);
5254 assert(dops[i+1].rt2!=dops[i].rt1);
5255 rt=get_reg(branch_regs[i].regmap,dops[i].rt1);
5256 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5257 assert(rt>=0);
5258 return_address=start+i*4+8;
5259 #ifdef REG_PREFETCH
5260 if(temp>=0)
5261 {
5262 if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5263 }
5264 #endif
5265 emit_movimm(return_address,rt); // PC into link register
5266 #ifdef IMM_PREFETCH
5267 emit_prefetch(hash_table_get(return_address));
5268 #endif
5269}
5270
5271static void rjump_assemble(int i, const struct regstat *i_regs)
5272{
5273 int temp;
5274 int rs,cc;
5275 int ra_done=0;
5276 rs=get_reg(branch_regs[i].regmap,dops[i].rs1);
5277 assert(rs>=0);
5278 if (ds_writes_rjump_rs(i)) {
5279 // Delay slot abuse, make a copy of the branch address register
5280 temp=get_reg(branch_regs[i].regmap,RTEMP);
5281 assert(temp>=0);
5282 assert(regs[i].regmap[temp]==RTEMP);
5283 emit_mov(rs,temp);
5284 rs=temp;
5285 }
5286 address_generation(i+1,i_regs,regs[i].regmap_entry);
5287 #ifdef REG_PREFETCH
5288 if(dops[i].rt1==31)
5289 {
5290 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5291 signed char *i_regmap=i_regs->regmap;
5292 int return_address=start+i*4+8;
5293 if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
5294 }
5295 }
5296 #endif
5297 #ifdef USE_MINI_HT
5298 if(dops[i].rs1==31) {
5299 int rh=get_reg(regs[i].regmap,RHASH);
5300 if(rh>=0) do_preload_rhash(rh);
5301 }
5302 #endif
5303 if(dops[i].rt1!=0&&(dops[i].rt1==dops[i+1].rs1||dops[i].rt1==dops[i+1].rs2)) {
5304 rjump_assemble_write_ra(i);
5305 ra_done=1;
5306 }
5307 ds_assemble(i+1,i_regs);
5308 uint64_t bc_unneeded=branch_regs[i].u;
5309 bc_unneeded|=1|(1LL<<dops[i].rt1);
5310 bc_unneeded&=~(1LL<<dops[i].rs1);
5311 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5312 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,CCREG);
5313 if(!ra_done&&dops[i].rt1!=0)
5314 rjump_assemble_write_ra(i);
5315 cc=get_reg(branch_regs[i].regmap,CCREG);
5316 assert(cc==HOST_CCREG);
5317 (void)cc;
5318 #ifdef USE_MINI_HT
5319 int rh=get_reg(branch_regs[i].regmap,RHASH);
5320 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5321 if(dops[i].rs1==31) {
5322 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5323 do_preload_rhtbl(ht);
5324 do_rhash(rs,rh);
5325 }
5326 #endif
5327 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5328 #ifdef DESTRUCTIVE_WRITEBACK
5329 if((branch_regs[i].dirty>>rs)&1) {
5330 if(dops[i].rs1!=dops[i+1].rt1&&dops[i].rs1!=dops[i+1].rt2) {
5331 emit_loadreg(dops[i].rs1,rs);
5332 }
5333 }
5334 #endif
5335 #ifdef REG_PREFETCH
5336 if(dops[i].rt1==31&&temp>=0) emit_prefetchreg(temp);
5337 #endif
5338 #ifdef USE_MINI_HT
5339 if(dops[i].rs1==31) {
5340 do_miniht_load(ht,rh);
5341 }
5342 #endif
5343 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5344 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5345 //assert(adj==0);
5346 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), HOST_CCREG);
5347 add_stub(CC_STUB,out,NULL,0,i,-1,TAKEN,rs);
5348 if(dops[i+1].itype==COP0&&(source[i+1]&0x3f)==0x10)
5349 // special case for RFE
5350 emit_jmp(0);
5351 else
5352 emit_jns(0);
5353 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,-1);
5354 #ifdef USE_MINI_HT
5355 if(dops[i].rs1==31) {
5356 do_miniht_jump(rs,rh,ht);
5357 }
5358 else
5359 #endif
5360 {
5361 do_jump_vaddr(rs);
5362 }
5363 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5364 if(dops[i].rt1!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5365 #endif
5366}
5367
5368static void cjump_assemble(int i, const struct regstat *i_regs)
5369{
5370 const signed char *i_regmap = i_regs->regmap;
5371 int cc;
5372 int match;
5373 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5374 assem_debug("match=%d\n",match);
5375 int s1l,s2l;
5376 int unconditional=0,nop=0;
5377 int invert=0;
5378 int internal=internal_branch(ba[i]);
5379 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5380 if(!match) invert=1;
5381 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5382 if(i>(ba[i]-start)>>2) invert=1;
5383 #endif
5384 #ifdef __aarch64__
5385 invert=1; // because of near cond. branches
5386 #endif
5387
5388 if(dops[i].ooo) {
5389 s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5390 s2l=get_reg(branch_regs[i].regmap,dops[i].rs2);
5391 }
5392 else {
5393 s1l=get_reg(i_regmap,dops[i].rs1);
5394 s2l=get_reg(i_regmap,dops[i].rs2);
5395 }
5396 if(dops[i].rs1==0&&dops[i].rs2==0)
5397 {
5398 if(dops[i].opcode&1) nop=1;
5399 else unconditional=1;
5400 //assert(dops[i].opcode!=5);
5401 //assert(dops[i].opcode!=7);
5402 //assert(dops[i].opcode!=0x15);
5403 //assert(dops[i].opcode!=0x17);
5404 }
5405 else if(dops[i].rs1==0)
5406 {
5407 s1l=s2l;
5408 s2l=-1;
5409 }
5410 else if(dops[i].rs2==0)
5411 {
5412 s2l=-1;
5413 }
5414
5415 if(dops[i].ooo) {
5416 // Out of order execution (delay slot first)
5417 //printf("OOOE\n");
5418 address_generation(i+1,i_regs,regs[i].regmap_entry);
5419 ds_assemble(i+1,i_regs);
5420 int adj;
5421 uint64_t bc_unneeded=branch_regs[i].u;
5422 bc_unneeded&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
5423 bc_unneeded|=1;
5424 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5425 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,dops[i].rs2);
5426 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5427 cc=get_reg(branch_regs[i].regmap,CCREG);
5428 assert(cc==HOST_CCREG);
5429 if(unconditional)
5430 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5431 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5432 //assem_debug("cycle count (adj)\n");
5433 if(unconditional) {
5434 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5435 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5436 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5437 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5438 if(internal)
5439 assem_debug("branch: internal\n");
5440 else
5441 assem_debug("branch: external\n");
5442 if (internal && dops[(ba[i]-start)>>2].is_ds) {
5443 ds_assemble_entry(i);
5444 }
5445 else {
5446 add_to_linker(out,ba[i],internal);
5447 emit_jmp(0);
5448 }
5449 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5450 if(((u_int)out)&7) emit_addnop(0);
5451 #endif
5452 }
5453 }
5454 else if(nop) {
5455 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5456 void *jaddr=out;
5457 emit_jns(0);
5458 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5459 }
5460 else {
5461 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5462 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5463 if(adj&&!invert) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5464
5465 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5466 assert(s1l>=0);
5467 if(dops[i].opcode==4) // BEQ
5468 {
5469 if(s2l>=0) emit_cmp(s1l,s2l);
5470 else emit_test(s1l,s1l);
5471 if(invert){
5472 nottaken=out;
5473 emit_jne(DJT_1);
5474 }else{
5475 add_to_linker(out,ba[i],internal);
5476 emit_jeq(0);
5477 }
5478 }
5479 if(dops[i].opcode==5) // BNE
5480 {
5481 if(s2l>=0) emit_cmp(s1l,s2l);
5482 else emit_test(s1l,s1l);
5483 if(invert){
5484 nottaken=out;
5485 emit_jeq(DJT_1);
5486 }else{
5487 add_to_linker(out,ba[i],internal);
5488 emit_jne(0);
5489 }
5490 }
5491 if(dops[i].opcode==6) // BLEZ
5492 {
5493 emit_cmpimm(s1l,1);
5494 if(invert){
5495 nottaken=out;
5496 emit_jge(DJT_1);
5497 }else{
5498 add_to_linker(out,ba[i],internal);
5499 emit_jl(0);
5500 }
5501 }
5502 if(dops[i].opcode==7) // BGTZ
5503 {
5504 emit_cmpimm(s1l,1);
5505 if(invert){
5506 nottaken=out;
5507 emit_jl(DJT_1);
5508 }else{
5509 add_to_linker(out,ba[i],internal);
5510 emit_jge(0);
5511 }
5512 }
5513 if(invert) {
5514 if(taken) set_jump_target(taken, out);
5515 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5516 if (match && (!internal || !dops[(ba[i]-start)>>2].is_ds)) {
5517 if(adj) {
5518 emit_addimm(cc,-adj,cc);
5519 add_to_linker(out,ba[i],internal);
5520 }else{
5521 emit_addnop(13);
5522 add_to_linker(out,ba[i],internal*2);
5523 }
5524 emit_jmp(0);
5525 }else
5526 #endif
5527 {
5528 if(adj) emit_addimm(cc,-adj,cc);
5529 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5530 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5531 if(internal)
5532 assem_debug("branch: internal\n");
5533 else
5534 assem_debug("branch: external\n");
5535 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5536 ds_assemble_entry(i);
5537 }
5538 else {
5539 add_to_linker(out,ba[i],internal);
5540 emit_jmp(0);
5541 }
5542 }
5543 set_jump_target(nottaken, out);
5544 }
5545
5546 if(nottaken1) set_jump_target(nottaken1, out);
5547 if(adj) {
5548 if(!invert) emit_addimm(cc,adj,cc);
5549 }
5550 } // (!unconditional)
5551 } // if(ooo)
5552 else
5553 {
5554 // In-order execution (branch first)
5555 void *taken = NULL, *nottaken = NULL, *nottaken1 = NULL;
5556 if(!unconditional&&!nop) {
5557 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5558 assert(s1l>=0);
5559 if((dops[i].opcode&0x2f)==4) // BEQ
5560 {
5561 if(s2l>=0) emit_cmp(s1l,s2l);
5562 else emit_test(s1l,s1l);
5563 nottaken=out;
5564 emit_jne(DJT_2);
5565 }
5566 if((dops[i].opcode&0x2f)==5) // BNE
5567 {
5568 if(s2l>=0) emit_cmp(s1l,s2l);
5569 else emit_test(s1l,s1l);
5570 nottaken=out;
5571 emit_jeq(DJT_2);
5572 }
5573 if((dops[i].opcode&0x2f)==6) // BLEZ
5574 {
5575 emit_cmpimm(s1l,1);
5576 nottaken=out;
5577 emit_jge(DJT_2);
5578 }
5579 if((dops[i].opcode&0x2f)==7) // BGTZ
5580 {
5581 emit_cmpimm(s1l,1);
5582 nottaken=out;
5583 emit_jl(DJT_2);
5584 }
5585 } // if(!unconditional)
5586 int adj;
5587 uint64_t ds_unneeded=branch_regs[i].u;
5588 ds_unneeded&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
5589 ds_unneeded|=1;
5590 // branch taken
5591 if(!nop) {
5592 if(taken) set_jump_target(taken, out);
5593 assem_debug("1:\n");
5594 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5595 // load regs
5596 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5597 address_generation(i+1,&branch_regs[i],0);
5598 if (ram_offset)
5599 load_regs(regs[i].regmap,branch_regs[i].regmap,ROREG,ROREG);
5600 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5601 ds_assemble(i+1,&branch_regs[i]);
5602 cc=get_reg(branch_regs[i].regmap,CCREG);
5603 if(cc==-1) {
5604 emit_loadreg(CCREG,cc=HOST_CCREG);
5605 // CHECK: Is the following instruction (fall thru) allocated ok?
5606 }
5607 assert(cc==HOST_CCREG);
5608 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5609 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5610 assem_debug("cycle count (adj)\n");
5611 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5612 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5613 if(internal)
5614 assem_debug("branch: internal\n");
5615 else
5616 assem_debug("branch: external\n");
5617 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5618 ds_assemble_entry(i);
5619 }
5620 else {
5621 add_to_linker(out,ba[i],internal);
5622 emit_jmp(0);
5623 }
5624 }
5625 // branch not taken
5626 if(!unconditional) {
5627 if(nottaken1) set_jump_target(nottaken1, out);
5628 set_jump_target(nottaken, out);
5629 assem_debug("2:\n");
5630 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5631 // load regs
5632 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5633 address_generation(i+1,&branch_regs[i],0);
5634 if (ram_offset)
5635 load_regs(regs[i].regmap,branch_regs[i].regmap,ROREG,ROREG);
5636 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5637 ds_assemble(i+1,&branch_regs[i]);
5638 cc=get_reg(branch_regs[i].regmap,CCREG);
5639 if (cc == -1) {
5640 // Cycle count isn't in a register, temporarily load it then write it out
5641 emit_loadreg(CCREG,HOST_CCREG);
5642 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), HOST_CCREG);
5643 void *jaddr=out;
5644 emit_jns(0);
5645 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5646 emit_storereg(CCREG,HOST_CCREG);
5647 }
5648 else{
5649 cc=get_reg(i_regmap,CCREG);
5650 assert(cc==HOST_CCREG);
5651 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5652 void *jaddr=out;
5653 emit_jns(0);
5654 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5655 }
5656 }
5657 }
5658}
5659
5660static void sjump_assemble(int i, const struct regstat *i_regs)
5661{
5662 const signed char *i_regmap = i_regs->regmap;
5663 int cc;
5664 int match;
5665 match=match_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5666 assem_debug("smatch=%d ooo=%d\n", match, dops[i].ooo);
5667 int s1l;
5668 int unconditional=0,nevertaken=0;
5669 int invert=0;
5670 int internal=internal_branch(ba[i]);
5671 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5672 if(!match) invert=1;
5673 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5674 if(i>(ba[i]-start)>>2) invert=1;
5675 #endif
5676 #ifdef __aarch64__
5677 invert=1; // because of near cond. branches
5678 #endif
5679
5680 //if(dops[i].opcode2>=0x10) return; // FIXME (BxxZAL)
5681 //assert(dops[i].opcode2<0x10||dops[i].rs1==0); // FIXME (BxxZAL)
5682
5683 if(dops[i].ooo) {
5684 s1l=get_reg(branch_regs[i].regmap,dops[i].rs1);
5685 }
5686 else {
5687 s1l=get_reg(i_regmap,dops[i].rs1);
5688 }
5689 if(dops[i].rs1==0)
5690 {
5691 if(dops[i].opcode2&1) unconditional=1;
5692 else nevertaken=1;
5693 // These are never taken (r0 is never less than zero)
5694 //assert(dops[i].opcode2!=0);
5695 //assert(dops[i].opcode2!=2);
5696 //assert(dops[i].opcode2!=0x10);
5697 //assert(dops[i].opcode2!=0x12);
5698 }
5699
5700 if(dops[i].ooo) {
5701 // Out of order execution (delay slot first)
5702 //printf("OOOE\n");
5703 address_generation(i+1,i_regs,regs[i].regmap_entry);
5704 ds_assemble(i+1,i_regs);
5705 int adj;
5706 uint64_t bc_unneeded=branch_regs[i].u;
5707 bc_unneeded&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
5708 bc_unneeded|=1;
5709 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
5710 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,dops[i].rs1);
5711 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,CCREG);
5712 if(dops[i].rt1==31) {
5713 int rt,return_address;
5714 rt=get_reg(branch_regs[i].regmap,31);
5715 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5716 if(rt>=0) {
5717 // Save the PC even if the branch is not taken
5718 return_address=start+i*4+8;
5719 emit_movimm(return_address,rt); // PC into link register
5720 #ifdef IMM_PREFETCH
5721 if(!nevertaken) emit_prefetch(hash_table_get(return_address));
5722 #endif
5723 }
5724 }
5725 cc=get_reg(branch_regs[i].regmap,CCREG);
5726 assert(cc==HOST_CCREG);
5727 if(unconditional)
5728 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5729 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5730 assem_debug("cycle count (adj)\n");
5731 if(unconditional) {
5732 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5733 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5734 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5735 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5736 if(internal)
5737 assem_debug("branch: internal\n");
5738 else
5739 assem_debug("branch: external\n");
5740 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5741 ds_assemble_entry(i);
5742 }
5743 else {
5744 add_to_linker(out,ba[i],internal);
5745 emit_jmp(0);
5746 }
5747 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5748 if(((u_int)out)&7) emit_addnop(0);
5749 #endif
5750 }
5751 }
5752 else if(nevertaken) {
5753 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5754 void *jaddr=out;
5755 emit_jns(0);
5756 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5757 }
5758 else {
5759 void *nottaken = NULL;
5760 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5761 if(adj&&!invert) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5762 {
5763 assert(s1l>=0);
5764 if((dops[i].opcode2&0xf)==0) // BLTZ/BLTZAL
5765 {
5766 emit_test(s1l,s1l);
5767 if(invert){
5768 nottaken=out;
5769 emit_jns(DJT_1);
5770 }else{
5771 add_to_linker(out,ba[i],internal);
5772 emit_js(0);
5773 }
5774 }
5775 if((dops[i].opcode2&0xf)==1) // BGEZ/BLTZAL
5776 {
5777 emit_test(s1l,s1l);
5778 if(invert){
5779 nottaken=out;
5780 emit_js(DJT_1);
5781 }else{
5782 add_to_linker(out,ba[i],internal);
5783 emit_jns(0);
5784 }
5785 }
5786 }
5787
5788 if(invert) {
5789 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5790 if (match && (!internal || !dops[(ba[i] - start) >> 2].is_ds)) {
5791 if(adj) {
5792 emit_addimm(cc,-adj,cc);
5793 add_to_linker(out,ba[i],internal);
5794 }else{
5795 emit_addnop(13);
5796 add_to_linker(out,ba[i],internal*2);
5797 }
5798 emit_jmp(0);
5799 }else
5800 #endif
5801 {
5802 if(adj) emit_addimm(cc,-adj,cc);
5803 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5804 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5805 if(internal)
5806 assem_debug("branch: internal\n");
5807 else
5808 assem_debug("branch: external\n");
5809 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5810 ds_assemble_entry(i);
5811 }
5812 else {
5813 add_to_linker(out,ba[i],internal);
5814 emit_jmp(0);
5815 }
5816 }
5817 set_jump_target(nottaken, out);
5818 }
5819
5820 if(adj) {
5821 if(!invert) emit_addimm(cc,adj,cc);
5822 }
5823 } // (!unconditional)
5824 } // if(ooo)
5825 else
5826 {
5827 // In-order execution (branch first)
5828 //printf("IOE\n");
5829 void *nottaken = NULL;
5830 if(dops[i].rt1==31) {
5831 int rt,return_address;
5832 rt=get_reg(branch_regs[i].regmap,31);
5833 if(rt>=0) {
5834 // Save the PC even if the branch is not taken
5835 return_address=start+i*4+8;
5836 emit_movimm(return_address,rt); // PC into link register
5837 #ifdef IMM_PREFETCH
5838 emit_prefetch(hash_table_get(return_address));
5839 #endif
5840 }
5841 }
5842 if(!unconditional) {
5843 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5844 assert(s1l>=0);
5845 if((dops[i].opcode2&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5846 {
5847 emit_test(s1l,s1l);
5848 nottaken=out;
5849 emit_jns(DJT_1);
5850 }
5851 if((dops[i].opcode2&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5852 {
5853 emit_test(s1l,s1l);
5854 nottaken=out;
5855 emit_js(DJT_1);
5856 }
5857 } // if(!unconditional)
5858 int adj;
5859 uint64_t ds_unneeded=branch_regs[i].u;
5860 ds_unneeded&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
5861 ds_unneeded|=1;
5862 // branch taken
5863 if(!nevertaken) {
5864 //assem_debug("1:\n");
5865 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5866 // load regs
5867 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5868 address_generation(i+1,&branch_regs[i],0);
5869 if (ram_offset)
5870 load_regs(regs[i].regmap,branch_regs[i].regmap,ROREG,ROREG);
5871 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5872 ds_assemble(i+1,&branch_regs[i]);
5873 cc=get_reg(branch_regs[i].regmap,CCREG);
5874 if(cc==-1) {
5875 emit_loadreg(CCREG,cc=HOST_CCREG);
5876 // CHECK: Is the following instruction (fall thru) allocated ok?
5877 }
5878 assert(cc==HOST_CCREG);
5879 store_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5880 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5881 assem_debug("cycle count (adj)\n");
5882 if(adj) emit_addimm(cc, ccadj[i] + CLOCK_ADJUST(2) - adj, cc);
5883 load_regs_bt(branch_regs[i].regmap,branch_regs[i].dirty,ba[i]);
5884 if(internal)
5885 assem_debug("branch: internal\n");
5886 else
5887 assem_debug("branch: external\n");
5888 if (internal && dops[(ba[i] - start) >> 2].is_ds) {
5889 ds_assemble_entry(i);
5890 }
5891 else {
5892 add_to_linker(out,ba[i],internal);
5893 emit_jmp(0);
5894 }
5895 }
5896 // branch not taken
5897 if(!unconditional) {
5898 set_jump_target(nottaken, out);
5899 assem_debug("1:\n");
5900 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
5901 load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
5902 address_generation(i+1,&branch_regs[i],0);
5903 if (ram_offset)
5904 load_regs(regs[i].regmap,branch_regs[i].regmap,ROREG,ROREG);
5905 load_regs(regs[i].regmap,branch_regs[i].regmap,CCREG,INVCP);
5906 ds_assemble(i+1,&branch_regs[i]);
5907 cc=get_reg(branch_regs[i].regmap,CCREG);
5908 if (cc == -1) {
5909 // Cycle count isn't in a register, temporarily load it then write it out
5910 emit_loadreg(CCREG,HOST_CCREG);
5911 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), HOST_CCREG);
5912 void *jaddr=out;
5913 emit_jns(0);
5914 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5915 emit_storereg(CCREG,HOST_CCREG);
5916 }
5917 else{
5918 cc=get_reg(i_regmap,CCREG);
5919 assert(cc==HOST_CCREG);
5920 emit_addimm_and_set_flags(ccadj[i] + CLOCK_ADJUST(2), cc);
5921 void *jaddr=out;
5922 emit_jns(0);
5923 add_stub(CC_STUB,jaddr,out,0,i,start+i*4+8,NOTTAKEN,0);
5924 }
5925 }
5926 }
5927}
5928
5929static void pagespan_assemble(int i, const struct regstat *i_regs)
5930{
5931 int s1l=get_reg(i_regs->regmap,dops[i].rs1);
5932 int s2l=get_reg(i_regs->regmap,dops[i].rs2);
5933 void *taken = NULL;
5934 void *nottaken = NULL;
5935 int unconditional=0;
5936 if(dops[i].rs1==0)
5937 {
5938 s1l=s2l;
5939 s2l=-1;
5940 }
5941 else if(dops[i].rs2==0)
5942 {
5943 s2l=-1;
5944 }
5945 int hr=0;
5946 int addr=-1,alt=-1,ntaddr=-1;
5947 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
5948 else {
5949 while(hr<HOST_REGS)
5950 {
5951 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5952 i_regs->regmap[hr]!=dops[i].rs1 &&
5953 i_regs->regmap[hr]!=dops[i].rs2 )
5954 {
5955 addr=hr++;break;
5956 }
5957 hr++;
5958 }
5959 }
5960 while(hr<HOST_REGS)
5961 {
5962 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5963 i_regs->regmap[hr]!=dops[i].rs1 &&
5964 i_regs->regmap[hr]!=dops[i].rs2 )
5965 {
5966 alt=hr++;break;
5967 }
5968 hr++;
5969 }
5970 if((dops[i].opcode&0x2E)==6) // BLEZ/BGTZ needs another register
5971 {
5972 while(hr<HOST_REGS)
5973 {
5974 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5975 i_regs->regmap[hr]!=dops[i].rs1 &&
5976 i_regs->regmap[hr]!=dops[i].rs2 )
5977 {
5978 ntaddr=hr;break;
5979 }
5980 hr++;
5981 }
5982 }
5983 assert(hr<HOST_REGS);
5984 if((dops[i].opcode&0x2e)==4||dops[i].opcode==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
5985 load_regs(regs[i].regmap_entry,regs[i].regmap,CCREG,CCREG);
5986 }
5987 emit_addimm(HOST_CCREG, ccadj[i] + CLOCK_ADJUST(2), HOST_CCREG);
5988 if(dops[i].opcode==2) // J
5989 {
5990 unconditional=1;
5991 }
5992 if(dops[i].opcode==3) // JAL
5993 {
5994 // TODO: mini_ht
5995 int rt=get_reg(i_regs->regmap,31);
5996 emit_movimm(start+i*4+8,rt);
5997 unconditional=1;
5998 }
5999 if(dops[i].opcode==0&&(dops[i].opcode2&0x3E)==8) // JR/JALR
6000 {
6001 emit_mov(s1l,addr);
6002 if(dops[i].opcode2==9) // JALR
6003 {
6004 int rt=get_reg(i_regs->regmap,dops[i].rt1);
6005 emit_movimm(start+i*4+8,rt);
6006 }
6007 }
6008 if((dops[i].opcode&0x3f)==4) // BEQ
6009 {
6010 if(dops[i].rs1==dops[i].rs2)
6011 {
6012 unconditional=1;
6013 }
6014 else
6015 #ifdef HAVE_CMOV_IMM
6016 if(1) {
6017 if(s2l>=0) emit_cmp(s1l,s2l);
6018 else emit_test(s1l,s1l);
6019 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6020 }
6021 else
6022 #endif
6023 {
6024 assert(s1l>=0);
6025 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6026 if(s2l>=0) emit_cmp(s1l,s2l);
6027 else emit_test(s1l,s1l);
6028 emit_cmovne_reg(alt,addr);
6029 }
6030 }
6031 if((dops[i].opcode&0x3f)==5) // BNE
6032 {
6033 #ifdef HAVE_CMOV_IMM
6034 if(s2l>=0) emit_cmp(s1l,s2l);
6035 else emit_test(s1l,s1l);
6036 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6037 #else
6038 assert(s1l>=0);
6039 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6040 if(s2l>=0) emit_cmp(s1l,s2l);
6041 else emit_test(s1l,s1l);
6042 emit_cmovne_reg(alt,addr);
6043 #endif
6044 }
6045 if((dops[i].opcode&0x3f)==0x14) // BEQL
6046 {
6047 if(s2l>=0) emit_cmp(s1l,s2l);
6048 else emit_test(s1l,s1l);
6049 if(nottaken) set_jump_target(nottaken, out);
6050 nottaken=out;
6051 emit_jne(0);
6052 }
6053 if((dops[i].opcode&0x3f)==0x15) // BNEL
6054 {
6055 if(s2l>=0) emit_cmp(s1l,s2l);
6056 else emit_test(s1l,s1l);
6057 nottaken=out;
6058 emit_jeq(0);
6059 if(taken) set_jump_target(taken, out);
6060 }
6061 if((dops[i].opcode&0x3f)==6) // BLEZ
6062 {
6063 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6064 emit_cmpimm(s1l,1);
6065 emit_cmovl_reg(alt,addr);
6066 }
6067 if((dops[i].opcode&0x3f)==7) // BGTZ
6068 {
6069 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6070 emit_cmpimm(s1l,1);
6071 emit_cmovl_reg(ntaddr,addr);
6072 }
6073 if((dops[i].opcode&0x3f)==0x16) // BLEZL
6074 {
6075 assert((dops[i].opcode&0x3f)!=0x16);
6076 }
6077 if((dops[i].opcode&0x3f)==0x17) // BGTZL
6078 {
6079 assert((dops[i].opcode&0x3f)!=0x17);
6080 }
6081 assert(dops[i].opcode!=1); // BLTZ/BGEZ
6082
6083 //FIXME: Check CSREG
6084 if(dops[i].opcode==0x11 && dops[i].opcode2==0x08 ) {
6085 if((source[i]&0x30000)==0) // BC1F
6086 {
6087 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6088 emit_testimm(s1l,0x800000);
6089 emit_cmovne_reg(alt,addr);
6090 }
6091 if((source[i]&0x30000)==0x10000) // BC1T
6092 {
6093 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6094 emit_testimm(s1l,0x800000);
6095 emit_cmovne_reg(alt,addr);
6096 }
6097 if((source[i]&0x30000)==0x20000) // BC1FL
6098 {
6099 emit_testimm(s1l,0x800000);
6100 nottaken=out;
6101 emit_jne(0);
6102 }
6103 if((source[i]&0x30000)==0x30000) // BC1TL
6104 {
6105 emit_testimm(s1l,0x800000);
6106 nottaken=out;
6107 emit_jeq(0);
6108 }
6109 }
6110
6111 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6112 wb_dirtys(regs[i].regmap,regs[i].dirty);
6113 if(unconditional)
6114 {
6115 emit_movimm(ba[i],HOST_BTREG);
6116 }
6117 else if(addr!=HOST_BTREG)
6118 {
6119 emit_mov(addr,HOST_BTREG);
6120 }
6121 void *branch_addr=out;
6122 emit_jmp(0);
6123 int target_addr=start+i*4+5;
6124 void *stub=out;
6125 void *compiled_target_addr=check_addr(target_addr);
6126 emit_extjump_ds(branch_addr, target_addr);
6127 if(compiled_target_addr) {
6128 set_jump_target(branch_addr, compiled_target_addr);
6129 add_jump_out(target_addr,stub);
6130 }
6131 else set_jump_target(branch_addr, stub);
6132}
6133
6134// Assemble the delay slot for the above
6135static void pagespan_ds()
6136{
6137 assem_debug("initial delay slot:\n");
6138 u_int vaddr=start+1;
6139 u_int page=get_page(vaddr);
6140 u_int vpage=get_vpage(vaddr);
6141 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6142 do_dirty_stub_ds(slen*4);
6143 ll_add(jump_in+page,vaddr,(void *)out);
6144 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6145 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6146 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty);
6147 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6148 emit_writeword(HOST_BTREG,&branch_target);
6149 load_regs(regs[0].regmap_entry,regs[0].regmap,dops[0].rs1,dops[0].rs2);
6150 address_generation(0,&regs[0],regs[0].regmap_entry);
6151 if (ram_offset && (dops[0].is_load || dops[0].is_store))
6152 load_regs(regs[0].regmap_entry,regs[0].regmap,ROREG,ROREG);
6153 if (dops[0].is_store)
6154 load_regs(regs[0].regmap_entry,regs[0].regmap,INVCP,INVCP);
6155 is_delayslot=0;
6156 switch (dops[0].itype) {
6157 case SYSCALL:
6158 case HLECALL:
6159 case INTCALL:
6160 case SPAN:
6161 case UJUMP:
6162 case RJUMP:
6163 case CJUMP:
6164 case SJUMP:
6165 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
6166 break;
6167 default:
6168 assemble(0, &regs[0], 0);
6169 }
6170 int btaddr=get_reg(regs[0].regmap,BTREG);
6171 if(btaddr<0) {
6172 btaddr=get_reg_temp(regs[0].regmap);
6173 emit_readword(&branch_target,btaddr);
6174 }
6175 assert(btaddr!=HOST_CCREG);
6176 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6177#ifdef HOST_IMM8
6178 host_tempreg_acquire();
6179 emit_movimm(start+4,HOST_TEMPREG);
6180 emit_cmp(btaddr,HOST_TEMPREG);
6181 host_tempreg_release();
6182#else
6183 emit_cmpimm(btaddr,start+4);
6184#endif
6185 void *branch = out;
6186 emit_jeq(0);
6187 store_regs_bt(regs[0].regmap,regs[0].dirty,-1);
6188 do_jump_vaddr(btaddr);
6189 set_jump_target(branch, out);
6190 store_regs_bt(regs[0].regmap,regs[0].dirty,start+4);
6191 load_regs_bt(regs[0].regmap,regs[0].dirty,start+4);
6192}
6193
6194static void check_regmap(signed char *regmap)
6195{
6196#ifndef NDEBUG
6197 int i,j;
6198 for (i = 0; i < HOST_REGS; i++) {
6199 if (regmap[i] < 0)
6200 continue;
6201 for (j = i + 1; j < HOST_REGS; j++)
6202 assert(regmap[i] != regmap[j]);
6203 }
6204#endif
6205}
6206
6207// Basic liveness analysis for MIPS registers
6208static void unneeded_registers(int istart,int iend,int r)
6209{
6210 int i;
6211 uint64_t u,gte_u,b,gte_b;
6212 uint64_t temp_u,temp_gte_u=0;
6213 uint64_t gte_u_unknown=0;
6214 if (HACK_ENABLED(NDHACK_GTE_UNNEEDED))
6215 gte_u_unknown=~0ll;
6216 if(iend==slen-1) {
6217 u=1;
6218 gte_u=gte_u_unknown;
6219 }else{
6220 //u=unneeded_reg[iend+1];
6221 u=1;
6222 gte_u=gte_unneeded[iend+1];
6223 }
6224
6225 for (i=iend;i>=istart;i--)
6226 {
6227 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6228 if(dops[i].is_jump)
6229 {
6230 // If subroutine call, flag return address as a possible branch target
6231 if(dops[i].rt1==31 && i<slen-2) dops[i+2].bt=1;
6232
6233 if(ba[i]<start || ba[i]>=(start+slen*4))
6234 {
6235 // Branch out of this block, flush all regs
6236 u=1;
6237 gte_u=gte_u_unknown;
6238 branch_unneeded_reg[i]=u;
6239 // Merge in delay slot
6240 u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6241 u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6242 u|=1;
6243 gte_u|=gte_rt[i+1];
6244 gte_u&=~gte_rs[i+1];
6245 }
6246 else
6247 {
6248 // Internal branch, flag target
6249 dops[(ba[i]-start)>>2].bt=1;
6250 if(ba[i]<=start+i*4) {
6251 // Backward branch
6252 if(dops[i].is_ujump)
6253 {
6254 // Unconditional branch
6255 temp_u=1;
6256 temp_gte_u=0;
6257 } else {
6258 // Conditional branch (not taken case)
6259 temp_u=unneeded_reg[i+2];
6260 temp_gte_u&=gte_unneeded[i+2];
6261 }
6262 // Merge in delay slot
6263 temp_u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6264 temp_u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6265 temp_u|=1;
6266 temp_gte_u|=gte_rt[i+1];
6267 temp_gte_u&=~gte_rs[i+1];
6268 temp_u|=(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2);
6269 temp_u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
6270 temp_u|=1;
6271 temp_gte_u|=gte_rt[i];
6272 temp_gte_u&=~gte_rs[i];
6273 unneeded_reg[i]=temp_u;
6274 gte_unneeded[i]=temp_gte_u;
6275 // Only go three levels deep. This recursion can take an
6276 // excessive amount of time if there are a lot of nested loops.
6277 if(r<2) {
6278 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6279 }else{
6280 unneeded_reg[(ba[i]-start)>>2]=1;
6281 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
6282 }
6283 } /*else*/ if(1) {
6284 if (dops[i].is_ujump)
6285 {
6286 // Unconditional branch
6287 u=unneeded_reg[(ba[i]-start)>>2];
6288 gte_u=gte_unneeded[(ba[i]-start)>>2];
6289 branch_unneeded_reg[i]=u;
6290 // Merge in delay slot
6291 u|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6292 u&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6293 u|=1;
6294 gte_u|=gte_rt[i+1];
6295 gte_u&=~gte_rs[i+1];
6296 } else {
6297 // Conditional branch
6298 b=unneeded_reg[(ba[i]-start)>>2];
6299 gte_b=gte_unneeded[(ba[i]-start)>>2];
6300 branch_unneeded_reg[i]=b;
6301 // Branch delay slot
6302 b|=(1LL<<dops[i+1].rt1)|(1LL<<dops[i+1].rt2);
6303 b&=~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
6304 b|=1;
6305 gte_b|=gte_rt[i+1];
6306 gte_b&=~gte_rs[i+1];
6307 u&=b;
6308 gte_u&=gte_b;
6309 if(i<slen-1) {
6310 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6311 } else {
6312 branch_unneeded_reg[i]=1;
6313 }
6314 }
6315 }
6316 }
6317 }
6318 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
6319 {
6320 // SYSCALL instruction (software interrupt)
6321 u=1;
6322 }
6323 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
6324 {
6325 // ERET instruction (return from interrupt)
6326 u=1;
6327 }
6328 //u=1; // DEBUG
6329 // Written registers are unneeded
6330 u|=1LL<<dops[i].rt1;
6331 u|=1LL<<dops[i].rt2;
6332 gte_u|=gte_rt[i];
6333 // Accessed registers are needed
6334 u&=~(1LL<<dops[i].rs1);
6335 u&=~(1LL<<dops[i].rs2);
6336 gte_u&=~gte_rs[i];
6337 if(gte_rs[i]&&dops[i].rt1&&(unneeded_reg[i+1]&(1ll<<dops[i].rt1)))
6338 gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
6339 // Source-target dependencies
6340 // R0 is always unneeded
6341 u|=1;
6342 // Save it
6343 unneeded_reg[i]=u;
6344 gte_unneeded[i]=gte_u;
6345 /*
6346 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6347 printf("U:");
6348 int r;
6349 for(r=1;r<=CCREG;r++) {
6350 if((unneeded_reg[i]>>r)&1) {
6351 if(r==HIREG) printf(" HI");
6352 else if(r==LOREG) printf(" LO");
6353 else printf(" r%d",r);
6354 }
6355 }
6356 printf("\n");
6357 */
6358 }
6359}
6360
6361// Write back dirty registers as soon as we will no longer modify them,
6362// so that we don't end up with lots of writes at the branches.
6363static void clean_registers(int istart, int iend, int wr)
6364{
6365 int i;
6366 int r;
6367 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
6368 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
6369 if(iend==slen-1) {
6370 will_dirty_i=will_dirty_next=0;
6371 wont_dirty_i=wont_dirty_next=0;
6372 }else{
6373 will_dirty_i=will_dirty_next=will_dirty[iend+1];
6374 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
6375 }
6376 for (i=iend;i>=istart;i--)
6377 {
6378 signed char rregmap_i[RRMAP_SIZE];
6379 u_int hr_candirty = 0;
6380 assert(HOST_REGS < 32);
6381 make_rregs(regs[i].regmap, rregmap_i, &hr_candirty);
6382 __builtin_prefetch(regs[i-1].regmap);
6383 if(dops[i].is_jump)
6384 {
6385 signed char branch_rregmap_i[RRMAP_SIZE];
6386 u_int branch_hr_candirty = 0;
6387 make_rregs(branch_regs[i].regmap, branch_rregmap_i, &branch_hr_candirty);
6388 if(ba[i]<start || ba[i]>=(start+slen*4))
6389 {
6390 // Branch out of this block, flush all regs
6391 will_dirty_i = 0;
6392 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
6393 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
6394 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
6395 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
6396 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
6397 will_dirty_i &= branch_hr_candirty;
6398 if (dops[i].is_ujump)
6399 {
6400 // Unconditional branch
6401 wont_dirty_i = 0;
6402 // Merge in delay slot (will dirty)
6403 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
6404 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
6405 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
6406 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
6407 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
6408 will_dirty_i &= hr_candirty;
6409 }
6410 else
6411 {
6412 // Conditional branch
6413 wont_dirty_i = wont_dirty_next;
6414 // Merge in delay slot (will dirty)
6415 // (the original code had no explanation why these 2 are commented out)
6416 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
6417 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
6418 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
6419 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
6420 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
6421 will_dirty_i &= hr_candirty;
6422 }
6423 // Merge in delay slot (wont dirty)
6424 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
6425 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
6426 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
6427 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
6428 wont_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
6429 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
6430 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
6431 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
6432 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
6433 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
6434 wont_dirty_i &= ~(1u << 31);
6435 if(wr) {
6436 #ifndef DESTRUCTIVE_WRITEBACK
6437 branch_regs[i].dirty&=wont_dirty_i;
6438 #endif
6439 branch_regs[i].dirty|=will_dirty_i;
6440 }
6441 }
6442 else
6443 {
6444 // Internal branch
6445 if(ba[i]<=start+i*4) {
6446 // Backward branch
6447 if (dops[i].is_ujump)
6448 {
6449 // Unconditional branch
6450 temp_will_dirty=0;
6451 temp_wont_dirty=0;
6452 // Merge in delay slot (will dirty)
6453 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
6454 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
6455 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
6456 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
6457 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
6458 temp_will_dirty &= branch_hr_candirty;
6459 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
6460 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
6461 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
6462 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
6463 temp_will_dirty |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
6464 temp_will_dirty &= hr_candirty;
6465 } else {
6466 // Conditional branch (not taken case)
6467 temp_will_dirty=will_dirty_next;
6468 temp_wont_dirty=wont_dirty_next;
6469 // Merge in delay slot (will dirty)
6470 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
6471 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
6472 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
6473 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
6474 temp_will_dirty |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
6475 temp_will_dirty &= branch_hr_candirty;
6476 //temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
6477 //temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
6478 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
6479 temp_will_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
6480 temp_will_dirty |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
6481 temp_will_dirty &= hr_candirty;
6482 }
6483 // Merge in delay slot (wont dirty)
6484 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
6485 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
6486 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
6487 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
6488 temp_wont_dirty |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
6489 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
6490 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
6491 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
6492 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
6493 temp_wont_dirty |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
6494 temp_wont_dirty &= ~(1u << 31);
6495 // Deal with changed mappings
6496 if(i<iend) {
6497 for(r=0;r<HOST_REGS;r++) {
6498 if(r!=EXCLUDE_REG) {
6499 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
6500 temp_will_dirty&=~(1<<r);
6501 temp_wont_dirty&=~(1<<r);
6502 if(regmap_pre[i][r]>0 && regmap_pre[i][r]<34) {
6503 temp_will_dirty|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
6504 temp_wont_dirty|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
6505 } else {
6506 temp_will_dirty|=1<<r;
6507 temp_wont_dirty|=1<<r;
6508 }
6509 }
6510 }
6511 }
6512 }
6513 if(wr) {
6514 will_dirty[i]=temp_will_dirty;
6515 wont_dirty[i]=temp_wont_dirty;
6516 clean_registers((ba[i]-start)>>2,i-1,0);
6517 }else{
6518 // Limit recursion. It can take an excessive amount
6519 // of time if there are a lot of nested loops.
6520 will_dirty[(ba[i]-start)>>2]=0;
6521 wont_dirty[(ba[i]-start)>>2]=-1;
6522 }
6523 }
6524 /*else*/ if(1)
6525 {
6526 if (dops[i].is_ujump)
6527 {
6528 // Unconditional branch
6529 will_dirty_i=0;
6530 wont_dirty_i=0;
6531 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6532 for(r=0;r<HOST_REGS;r++) {
6533 if(r!=EXCLUDE_REG) {
6534 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6535 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
6536 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6537 }
6538 if(branch_regs[i].regmap[r]>=0) {
6539 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>branch_regs[i].regmap[r])&1)<<r;
6540 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>branch_regs[i].regmap[r])&1)<<r;
6541 }
6542 }
6543 }
6544 //}
6545 // Merge in delay slot
6546 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
6547 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
6548 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
6549 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
6550 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
6551 will_dirty_i &= branch_hr_candirty;
6552 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
6553 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
6554 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
6555 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
6556 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
6557 will_dirty_i &= hr_candirty;
6558 } else {
6559 // Conditional branch
6560 will_dirty_i=will_dirty_next;
6561 wont_dirty_i=wont_dirty_next;
6562 //if(ba[i]>start+i*4) // Disable recursion (for debugging)
6563 for(r=0;r<HOST_REGS;r++) {
6564 if(r!=EXCLUDE_REG) {
6565 signed char target_reg=branch_regs[i].regmap[r];
6566 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6567 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6568 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6569 }
6570 else if(target_reg>=0) {
6571 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>target_reg)&1)<<r;
6572 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>target_reg)&1)<<r;
6573 }
6574 }
6575 }
6576 // Merge in delay slot
6577 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
6578 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
6579 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
6580 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
6581 will_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
6582 will_dirty_i &= branch_hr_candirty;
6583 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
6584 //will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
6585 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
6586 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
6587 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
6588 will_dirty_i &= hr_candirty;
6589 }
6590 // Merge in delay slot (won't dirty)
6591 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
6592 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
6593 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt1) & 31);
6594 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i+1].rt2) & 31);
6595 wont_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
6596 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt1) & 31);
6597 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i].rt2) & 31);
6598 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt1) & 31);
6599 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, dops[i+1].rt2) & 31);
6600 wont_dirty_i |= 1u << (get_rreg(branch_rregmap_i, CCREG) & 31);
6601 wont_dirty_i &= ~(1u << 31);
6602 if(wr) {
6603 #ifndef DESTRUCTIVE_WRITEBACK
6604 branch_regs[i].dirty&=wont_dirty_i;
6605 #endif
6606 branch_regs[i].dirty|=will_dirty_i;
6607 }
6608 }
6609 }
6610 }
6611 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
6612 {
6613 // SYSCALL instruction (software interrupt)
6614 will_dirty_i=0;
6615 wont_dirty_i=0;
6616 }
6617 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
6618 {
6619 // ERET instruction (return from interrupt)
6620 will_dirty_i=0;
6621 wont_dirty_i=0;
6622 }
6623 will_dirty_next=will_dirty_i;
6624 wont_dirty_next=wont_dirty_i;
6625 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
6626 will_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
6627 will_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
6628 will_dirty_i &= hr_candirty;
6629 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt1) & 31);
6630 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i].rt2) & 31);
6631 wont_dirty_i |= 1u << (get_rreg(rregmap_i, CCREG) & 31);
6632 wont_dirty_i &= ~(1u << 31);
6633 if (i > istart && !dops[i].is_jump) {
6634 // Don't store a register immediately after writing it,
6635 // may prevent dual-issue.
6636 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i-1].rt1) & 31);
6637 wont_dirty_i |= 1u << (get_rreg(rregmap_i, dops[i-1].rt2) & 31);
6638 }
6639 // Save it
6640 will_dirty[i]=will_dirty_i;
6641 wont_dirty[i]=wont_dirty_i;
6642 // Mark registers that won't be dirtied as not dirty
6643 if(wr) {
6644 regs[i].dirty|=will_dirty_i;
6645 #ifndef DESTRUCTIVE_WRITEBACK
6646 regs[i].dirty&=wont_dirty_i;
6647 if(dops[i].is_jump)
6648 {
6649 if (i < iend-1 && !dops[i].is_ujump) {
6650 for(r=0;r<HOST_REGS;r++) {
6651 if(r!=EXCLUDE_REG) {
6652 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
6653 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
6654 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6655 }
6656 }
6657 }
6658 }
6659 else
6660 {
6661 if(i<iend) {
6662 for(r=0;r<HOST_REGS;r++) {
6663 if(r!=EXCLUDE_REG) {
6664 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
6665 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
6666 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6667 }
6668 }
6669 }
6670 }
6671 #endif
6672 }
6673 // Deal with changed mappings
6674 temp_will_dirty=will_dirty_i;
6675 temp_wont_dirty=wont_dirty_i;
6676 for(r=0;r<HOST_REGS;r++) {
6677 if(r!=EXCLUDE_REG) {
6678 int nr;
6679 if(regs[i].regmap[r]==regmap_pre[i][r]) {
6680 if(wr) {
6681 #ifndef DESTRUCTIVE_WRITEBACK
6682 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6683 #endif
6684 regs[i].wasdirty|=will_dirty_i&(1<<r);
6685 }
6686 }
6687 else if(regmap_pre[i][r]>=0&&(nr=get_rreg(rregmap_i,regmap_pre[i][r]))>=0) {
6688 // Register moved to a different register
6689 will_dirty_i&=~(1<<r);
6690 wont_dirty_i&=~(1<<r);
6691 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
6692 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
6693 if(wr) {
6694 #ifndef DESTRUCTIVE_WRITEBACK
6695 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6696 #endif
6697 regs[i].wasdirty|=will_dirty_i&(1<<r);
6698 }
6699 }
6700 else {
6701 will_dirty_i&=~(1<<r);
6702 wont_dirty_i&=~(1<<r);
6703 if(regmap_pre[i][r]>0 && regmap_pre[i][r]<34) {
6704 will_dirty_i|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
6705 wont_dirty_i|=((unneeded_reg[i]>>regmap_pre[i][r])&1)<<r;
6706 } else {
6707 wont_dirty_i|=1<<r;
6708 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);assert(!((will_dirty>>r)&1));*/
6709 }
6710 }
6711 }
6712 }
6713 }
6714}
6715
6716#ifdef DISASM
6717#include <inttypes.h>
6718static char insn[MAXBLOCK][10];
6719
6720#define set_mnemonic(i_, n_) \
6721 strcpy(insn[i_], n_)
6722
6723void print_regmap(const char *name, const signed char *regmap)
6724{
6725 char buf[5];
6726 int i, l;
6727 fputs(name, stdout);
6728 for (i = 0; i < HOST_REGS; i++) {
6729 l = 0;
6730 if (regmap[i] >= 0)
6731 l = snprintf(buf, sizeof(buf), "$%d", regmap[i]);
6732 for (; l < 3; l++)
6733 buf[l] = ' ';
6734 buf[l] = 0;
6735 printf(" r%d=%s", i, buf);
6736 }
6737 fputs("\n", stdout);
6738}
6739
6740 /* disassembly */
6741void disassemble_inst(int i)
6742{
6743 if (dops[i].bt) printf("*"); else printf(" ");
6744 switch(dops[i].itype) {
6745 case UJUMP:
6746 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6747 case CJUMP:
6748 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2,i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
6749 case SJUMP:
6750 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
6751 case RJUMP:
6752 if (dops[i].opcode==0x9&&dops[i].rt1!=31)
6753 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1);
6754 else
6755 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rs1);
6756 break;
6757 case SPAN:
6758 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2,ba[i]);break;
6759 case IMM16:
6760 if(dops[i].opcode==0xf) //LUI
6761 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],dops[i].rt1,imm[i]&0xffff);
6762 else
6763 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
6764 break;
6765 case LOAD:
6766 case LOADLR:
6767 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
6768 break;
6769 case STORE:
6770 case STORELR:
6771 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],dops[i].rs2,dops[i].rs1,imm[i]);
6772 break;
6773 case ALU:
6774 case SHIFT:
6775 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,dops[i].rs2);
6776 break;
6777 case MULTDIV:
6778 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],dops[i].rs1,dops[i].rs2);
6779 break;
6780 case SHIFTIMM:
6781 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],dops[i].rt1,dops[i].rs1,imm[i]);
6782 break;
6783 case MOV:
6784 if((dops[i].opcode2&0x1d)==0x10)
6785 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rt1);
6786 else if((dops[i].opcode2&0x1d)==0x11)
6787 printf (" %x: %s r%d\n",start+i*4,insn[i],dops[i].rs1);
6788 else
6789 printf (" %x: %s\n",start+i*4,insn[i]);
6790 break;
6791 case COP0:
6792 if(dops[i].opcode2==0)
6793 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC0
6794 else if(dops[i].opcode2==4)
6795 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC0
6796 else printf (" %x: %s\n",start+i*4,insn[i]);
6797 break;
6798 case COP1:
6799 if(dops[i].opcode2<3)
6800 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC1
6801 else if(dops[i].opcode2>3)
6802 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC1
6803 else printf (" %x: %s\n",start+i*4,insn[i]);
6804 break;
6805 case COP2:
6806 if(dops[i].opcode2<3)
6807 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],dops[i].rt1,(source[i]>>11)&0x1f); // MFC2
6808 else if(dops[i].opcode2>3)
6809 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],dops[i].rs1,(source[i]>>11)&0x1f); // MTC2
6810 else printf (" %x: %s\n",start+i*4,insn[i]);
6811 break;
6812 case C1LS:
6813 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,dops[i].rs1,imm[i]);
6814 break;
6815 case C2LS:
6816 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,dops[i].rs1,imm[i]);
6817 break;
6818 case INTCALL:
6819 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
6820 break;
6821 default:
6822 //printf (" %s %8x\n",insn[i],source[i]);
6823 printf (" %x: %s\n",start+i*4,insn[i]);
6824 }
6825 return;
6826 printf("D: %"PRIu64" WD: %"PRIu64" U: %"PRIu64"\n",
6827 regs[i].dirty, regs[i].wasdirty, unneeded_reg[i]);
6828 print_regmap("pre: ", regmap_pre[i]);
6829 print_regmap("entry: ", regs[i].regmap_entry);
6830 print_regmap("map: ", regs[i].regmap);
6831 if (dops[i].is_jump) {
6832 print_regmap("bentry:", branch_regs[i].regmap_entry);
6833 print_regmap("bmap: ", branch_regs[i].regmap);
6834 }
6835}
6836#else
6837#define set_mnemonic(i_, n_)
6838static void disassemble_inst(int i) {}
6839#endif // DISASM
6840
6841#define DRC_TEST_VAL 0x74657374
6842
6843static void new_dynarec_test(void)
6844{
6845 int (*testfunc)(void);
6846 void *beginning;
6847 int ret[2];
6848 size_t i;
6849
6850 // check structure linkage
6851 if ((u_char *)rcnts - (u_char *)&psxRegs != sizeof(psxRegs))
6852 {
6853 SysPrintf("linkage_arm* miscompilation/breakage detected.\n");
6854 }
6855
6856 SysPrintf("testing if we can run recompiled code @%p...\n", out);
6857 ((volatile u_int *)out)[0]++; // make cache dirty
6858
6859 for (i = 0; i < ARRAY_SIZE(ret); i++) {
6860 out = ndrc->translation_cache;
6861 beginning = start_block();
6862 emit_movimm(DRC_TEST_VAL + i, 0); // test
6863 emit_ret();
6864 literal_pool(0);
6865 end_block(beginning);
6866 testfunc = beginning;
6867 ret[i] = testfunc();
6868 }
6869
6870 if (ret[0] == DRC_TEST_VAL && ret[1] == DRC_TEST_VAL + 1)
6871 SysPrintf("test passed.\n");
6872 else
6873 SysPrintf("test failed, will likely crash soon (r=%08x %08x)\n", ret[0], ret[1]);
6874 out = ndrc->translation_cache;
6875}
6876
6877// clear the state completely, instead of just marking
6878// things invalid like invalidate_all_pages() does
6879void new_dynarec_clear_full(void)
6880{
6881 int n;
6882 out = ndrc->translation_cache;
6883 memset(invalid_code,1,sizeof(invalid_code));
6884 memset(hash_table,0xff,sizeof(hash_table));
6885 memset(mini_ht,-1,sizeof(mini_ht));
6886 memset(restore_candidate,0,sizeof(restore_candidate));
6887 memset(shadow,0,sizeof(shadow));
6888 copy=shadow;
6889 expirep=16384; // Expiry pointer, +2 blocks
6890 pending_exception=0;
6891 literalcount=0;
6892 stop_after_jal=0;
6893 inv_code_start=inv_code_end=~0;
6894 hack_addr=0;
6895 f1_hack=0;
6896 // TLB
6897 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6898 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6899 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6900
6901 cycle_multiplier_old = cycle_multiplier;
6902 new_dynarec_hacks_old = new_dynarec_hacks;
6903}
6904
6905void new_dynarec_init(void)
6906{
6907 SysPrintf("Init new dynarec, ndrc size %x\n", (int)sizeof(*ndrc));
6908
6909#ifdef _3DS
6910 check_rosalina();
6911#endif
6912#ifdef BASE_ADDR_DYNAMIC
6913 #ifdef VITA
6914 sceBlock = getVMBlock(); //sceKernelAllocMemBlockForVM("code", sizeof(*ndrc));
6915 if (sceBlock <= 0)
6916 SysPrintf("sceKernelAllocMemBlockForVM failed: %x\n", sceBlock);
6917 int ret = sceKernelGetMemBlockBase(sceBlock, (void **)&ndrc);
6918 if (ret < 0)
6919 SysPrintf("sceKernelGetMemBlockBase failed: %x\n", ret);
6920 sceKernelOpenVMDomain();
6921 sceClibPrintf("translation_cache = 0x%08lx\n ", (long)ndrc->translation_cache);
6922 #elif defined(_MSC_VER)
6923 ndrc = VirtualAlloc(NULL, sizeof(*ndrc), MEM_COMMIT | MEM_RESERVE,
6924 PAGE_EXECUTE_READWRITE);
6925 #else
6926 uintptr_t desired_addr = 0;
6927 #ifdef __ELF__
6928 extern char _end;
6929 desired_addr = ((uintptr_t)&_end + 0xffffff) & ~0xffffffl;
6930 #endif
6931 ndrc = mmap((void *)desired_addr, sizeof(*ndrc),
6932 PROT_READ | PROT_WRITE | PROT_EXEC,
6933 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
6934 if (ndrc == MAP_FAILED) {
6935 SysPrintf("mmap() failed: %s\n", strerror(errno));
6936 abort();
6937 }
6938 #endif
6939#else
6940 #ifndef NO_WRITE_EXEC
6941 // not all systems allow execute in data segment by default
6942 // size must be 4K aligned for 3DS?
6943 if (mprotect(ndrc, sizeof(*ndrc),
6944 PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
6945 SysPrintf("mprotect() failed: %s\n", strerror(errno));
6946 #endif
6947#endif
6948 out = ndrc->translation_cache;
6949 cycle_multiplier=200;
6950 new_dynarec_clear_full();
6951#ifdef HOST_IMM8
6952 // Copy this into local area so we don't have to put it in every literal pool
6953 invc_ptr=invalid_code;
6954#endif
6955 arch_init();
6956 new_dynarec_test();
6957 ram_offset=(uintptr_t)rdram-0x80000000;
6958 if (ram_offset!=0)
6959 SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
6960}
6961
6962void new_dynarec_cleanup(void)
6963{
6964 int n;
6965#ifdef BASE_ADDR_DYNAMIC
6966 #ifdef VITA
6967 // sceBlock is managed by retroarch's bootstrap code
6968 //sceKernelFreeMemBlock(sceBlock);
6969 //sceBlock = -1;
6970 #else
6971 if (munmap(ndrc, sizeof(*ndrc)) < 0)
6972 SysPrintf("munmap() failed\n");
6973 #endif
6974#endif
6975 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6976 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6977 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6978 #ifdef ROM_COPY
6979 if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
6980 #endif
6981}
6982
6983static u_int *get_source_start(u_int addr, u_int *limit)
6984{
6985 if (addr < 0x00200000 ||
6986 (0xa0000000 <= addr && addr < 0xa0200000))
6987 {
6988 // used for BIOS calls mostly?
6989 *limit = (addr&0xa0000000)|0x00200000;
6990 return (u_int *)(rdram + (addr&0x1fffff));
6991 }
6992 else if (!Config.HLE && (
6993 /* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
6994 (0xbfc00000 <= addr && addr < 0xbfc80000)))
6995 {
6996 // BIOS. The multiplier should be much higher as it's uncached 8bit mem,
6997 // but timings in PCSX are too tied to the interpreter's BIAS
6998 if (!HACK_ENABLED(NDHACK_OVERRIDE_CYCLE_M))
6999 cycle_multiplier_active = 200;
7000
7001 *limit = (addr & 0xfff00000) | 0x80000;
7002 return (u_int *)((u_char *)psxR + (addr&0x7ffff));
7003 }
7004 else if (addr >= 0x80000000 && addr < 0x80000000+RAM_SIZE) {
7005 *limit = (addr & 0x80600000) + 0x00200000;
7006 return (u_int *)(rdram + (addr&0x1fffff));
7007 }
7008 return NULL;
7009}
7010
7011static u_int scan_for_ret(u_int addr)
7012{
7013 u_int limit = 0;
7014 u_int *mem;
7015
7016 mem = get_source_start(addr, &limit);
7017 if (mem == NULL)
7018 return addr;
7019
7020 if (limit > addr + 0x1000)
7021 limit = addr + 0x1000;
7022 for (; addr < limit; addr += 4, mem++) {
7023 if (*mem == 0x03e00008) // jr $ra
7024 return addr + 8;
7025 }
7026 return addr;
7027}
7028
7029struct savestate_block {
7030 uint32_t addr;
7031 uint32_t regflags;
7032};
7033
7034static int addr_cmp(const void *p1_, const void *p2_)
7035{
7036 const struct savestate_block *p1 = p1_, *p2 = p2_;
7037 return p1->addr - p2->addr;
7038}
7039
7040int new_dynarec_save_blocks(void *save, int size)
7041{
7042 struct savestate_block *blocks = save;
7043 int maxcount = size / sizeof(blocks[0]);
7044 struct savestate_block tmp_blocks[1024];
7045 struct ll_entry *head;
7046 int p, s, d, o, bcnt;
7047 u_int addr;
7048
7049 o = 0;
7050 for (p = 0; p < ARRAY_SIZE(jump_in); p++) {
7051 bcnt = 0;
7052 for (head = jump_in[p]; head != NULL; head = head->next) {
7053 tmp_blocks[bcnt].addr = head->vaddr;
7054 tmp_blocks[bcnt].regflags = head->reg_sv_flags;
7055 bcnt++;
7056 }
7057 if (bcnt < 1)
7058 continue;
7059 qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
7060
7061 addr = tmp_blocks[0].addr;
7062 for (s = d = 0; s < bcnt; s++) {
7063 if (tmp_blocks[s].addr < addr)
7064 continue;
7065 if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
7066 tmp_blocks[d++] = tmp_blocks[s];
7067 addr = scan_for_ret(tmp_blocks[s].addr);
7068 }
7069
7070 if (o + d > maxcount)
7071 d = maxcount - o;
7072 memcpy(&blocks[o], tmp_blocks, d * sizeof(blocks[0]));
7073 o += d;
7074 }
7075
7076 return o * sizeof(blocks[0]);
7077}
7078
7079void new_dynarec_load_blocks(const void *save, int size)
7080{
7081 const struct savestate_block *blocks = save;
7082 int count = size / sizeof(blocks[0]);
7083 u_int regs_save[32];
7084 uint32_t f;
7085 int i, b;
7086
7087 get_addr(psxRegs.pc);
7088
7089 // change GPRs for speculation to at least partially work..
7090 memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
7091 for (i = 1; i < 32; i++)
7092 psxRegs.GPR.r[i] = 0x80000000;
7093
7094 for (b = 0; b < count; b++) {
7095 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
7096 if (f & 1)
7097 psxRegs.GPR.r[i] = 0x1f800000;
7098 }
7099
7100 get_addr(blocks[b].addr);
7101
7102 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
7103 if (f & 1)
7104 psxRegs.GPR.r[i] = 0x80000000;
7105 }
7106 }
7107
7108 memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
7109}
7110
7111static int apply_hacks(void)
7112{
7113 int i;
7114 if (HACK_ENABLED(NDHACK_NO_COMPAT_HACKS))
7115 return 0;
7116 /* special hack(s) */
7117 for (i = 0; i < slen - 4; i++)
7118 {
7119 // lui a4, 0xf200; jal <rcnt_read>; addu a0, 2; slti v0, 28224
7120 if (source[i] == 0x3c04f200 && dops[i+1].itype == UJUMP
7121 && source[i+2] == 0x34840002 && dops[i+3].opcode == 0x0a
7122 && imm[i+3] == 0x6e40 && dops[i+3].rs1 == 2)
7123 {
7124 SysPrintf("PE2 hack @%08x\n", start + (i+3)*4);
7125 dops[i + 3].itype = NOP;
7126 }
7127 }
7128 i = slen;
7129 if (i > 10 && source[i-1] == 0 && source[i-2] == 0x03e00008
7130 && source[i-4] == 0x8fbf0018 && source[i-6] == 0x00c0f809
7131 && dops[i-7].itype == STORE)
7132 {
7133 i = i-8;
7134 if (dops[i].itype == IMM16)
7135 i--;
7136 // swl r2, 15(r6); swr r2, 12(r6); sw r6, *; jalr r6
7137 if (dops[i].itype == STORELR && dops[i].rs1 == 6
7138 && dops[i-1].itype == STORELR && dops[i-1].rs1 == 6)
7139 {
7140 SysPrintf("F1 hack from %08x, old dst %08x\n", start, hack_addr);
7141 f1_hack = 1;
7142 return 1;
7143 }
7144 }
7145 return 0;
7146}
7147
7148int new_recompile_block(u_int addr)
7149{
7150 u_int pagelimit = 0;
7151 u_int state_rflags = 0;
7152 int i;
7153
7154 assem_debug("NOTCOMPILED: addr = %x -> %p\n", addr, out);
7155 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7156 //if(debug)
7157 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7158
7159 // this is just for speculation
7160 for (i = 1; i < 32; i++) {
7161 if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
7162 state_rflags |= 1 << i;
7163 }
7164
7165 start = (u_int)addr&~3;
7166 //assert(((u_int)addr&1)==0); // start-in-delay-slot flag
7167 new_dynarec_did_compile=1;
7168 if (Config.HLE && start == 0x80001000) // hlecall
7169 {
7170 // XXX: is this enough? Maybe check hleSoftCall?
7171 void *beginning=start_block();
7172 u_int page=get_page(start);
7173
7174 invalid_code[start>>12]=0;
7175 emit_movimm(start,0);
7176 emit_writeword(0,&pcaddr);
7177 emit_far_jump(new_dyna_leave);
7178 literal_pool(0);
7179 end_block(beginning);
7180 ll_add_flags(jump_in+page,start,state_rflags,(void *)beginning);
7181 return 0;
7182 }
7183 else if (f1_hack && hack_addr == 0) {
7184 void *beginning = start_block();
7185 u_int page = get_page(start);
7186 emit_movimm(start, 0);
7187 emit_writeword(0, &hack_addr);
7188 emit_readword(&psxRegs.GPR.n.sp, 0);
7189 emit_readptr(&mem_rtab, 1);
7190 emit_shrimm(0, 12, 2);
7191 emit_readptr_dualindexedx_ptrlen(1, 2, 1);
7192 emit_addimm(0, 0x18, 0);
7193 emit_adds_ptr(1, 1, 1);
7194 emit_ldr_dualindexed(1, 0, 0);
7195 emit_writeword(0, &psxRegs.GPR.r[26]); // lw k0, 0x18(sp)
7196 emit_far_call(get_addr_ht);
7197 emit_jmpreg(0); // jr k0
7198 literal_pool(0);
7199 end_block(beginning);
7200
7201 ll_add_flags(jump_in + page, start, state_rflags, beginning);
7202 SysPrintf("F1 hack to %08x\n", start);
7203 return 0;
7204 }
7205
7206 cycle_multiplier_active = cycle_multiplier_override && cycle_multiplier == CYCLE_MULT_DEFAULT
7207 ? cycle_multiplier_override : cycle_multiplier;
7208
7209 source = get_source_start(start, &pagelimit);
7210 if (source == NULL) {
7211 if (addr != hack_addr) {
7212 SysPrintf("Compile at bogus memory address: %08x\n", addr);
7213 hack_addr = addr;
7214 }
7215 //abort();
7216 return -1;
7217 }
7218
7219 /* Pass 1: disassemble */
7220 /* Pass 2: register dependencies, branch targets */
7221 /* Pass 3: register allocation */
7222 /* Pass 4: branch dependencies */
7223 /* Pass 5: pre-alloc */
7224 /* Pass 6: optimize clean/dirty state */
7225 /* Pass 7: flag 32-bit registers */
7226 /* Pass 8: assembly */
7227 /* Pass 9: linker */
7228 /* Pass 10: garbage collection / free memory */
7229
7230 int j;
7231 int done = 0, ni_count = 0;
7232 unsigned int type,op,op2;
7233
7234 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7235
7236 /* Pass 1 disassembly */
7237
7238 for (i = 0; !done; i++)
7239 {
7240 memset(&dops[i], 0, sizeof(dops[i]));
7241 op2=0;
7242 minimum_free_regs[i]=0;
7243 dops[i].opcode=op=source[i]>>26;
7244 switch(op)
7245 {
7246 case 0x00: set_mnemonic(i, "special"); type=NI;
7247 op2=source[i]&0x3f;
7248 switch(op2)
7249 {
7250 case 0x00: set_mnemonic(i, "SLL"); type=SHIFTIMM; break;
7251 case 0x02: set_mnemonic(i, "SRL"); type=SHIFTIMM; break;
7252 case 0x03: set_mnemonic(i, "SRA"); type=SHIFTIMM; break;
7253 case 0x04: set_mnemonic(i, "SLLV"); type=SHIFT; break;
7254 case 0x06: set_mnemonic(i, "SRLV"); type=SHIFT; break;
7255 case 0x07: set_mnemonic(i, "SRAV"); type=SHIFT; break;
7256 case 0x08: set_mnemonic(i, "JR"); type=RJUMP; break;
7257 case 0x09: set_mnemonic(i, "JALR"); type=RJUMP; break;
7258 case 0x0C: set_mnemonic(i, "SYSCALL"); type=SYSCALL; break;
7259 case 0x0D: set_mnemonic(i, "BREAK"); type=SYSCALL; break;
7260 case 0x0F: set_mnemonic(i, "SYNC"); type=OTHER; break;
7261 case 0x10: set_mnemonic(i, "MFHI"); type=MOV; break;
7262 case 0x11: set_mnemonic(i, "MTHI"); type=MOV; break;
7263 case 0x12: set_mnemonic(i, "MFLO"); type=MOV; break;
7264 case 0x13: set_mnemonic(i, "MTLO"); type=MOV; break;
7265 case 0x18: set_mnemonic(i, "MULT"); type=MULTDIV; break;
7266 case 0x19: set_mnemonic(i, "MULTU"); type=MULTDIV; break;
7267 case 0x1A: set_mnemonic(i, "DIV"); type=MULTDIV; break;
7268 case 0x1B: set_mnemonic(i, "DIVU"); type=MULTDIV; break;
7269 case 0x20: set_mnemonic(i, "ADD"); type=ALU; break;
7270 case 0x21: set_mnemonic(i, "ADDU"); type=ALU; break;
7271 case 0x22: set_mnemonic(i, "SUB"); type=ALU; break;
7272 case 0x23: set_mnemonic(i, "SUBU"); type=ALU; break;
7273 case 0x24: set_mnemonic(i, "AND"); type=ALU; break;
7274 case 0x25: set_mnemonic(i, "OR"); type=ALU; break;
7275 case 0x26: set_mnemonic(i, "XOR"); type=ALU; break;
7276 case 0x27: set_mnemonic(i, "NOR"); type=ALU; break;
7277 case 0x2A: set_mnemonic(i, "SLT"); type=ALU; break;
7278 case 0x2B: set_mnemonic(i, "SLTU"); type=ALU; break;
7279 case 0x30: set_mnemonic(i, "TGE"); type=NI; break;
7280 case 0x31: set_mnemonic(i, "TGEU"); type=NI; break;
7281 case 0x32: set_mnemonic(i, "TLT"); type=NI; break;
7282 case 0x33: set_mnemonic(i, "TLTU"); type=NI; break;
7283 case 0x34: set_mnemonic(i, "TEQ"); type=NI; break;
7284 case 0x36: set_mnemonic(i, "TNE"); type=NI; break;
7285#if 0
7286 case 0x14: set_mnemonic(i, "DSLLV"); type=SHIFT; break;
7287 case 0x16: set_mnemonic(i, "DSRLV"); type=SHIFT; break;
7288 case 0x17: set_mnemonic(i, "DSRAV"); type=SHIFT; break;
7289 case 0x1C: set_mnemonic(i, "DMULT"); type=MULTDIV; break;
7290 case 0x1D: set_mnemonic(i, "DMULTU"); type=MULTDIV; break;
7291 case 0x1E: set_mnemonic(i, "DDIV"); type=MULTDIV; break;
7292 case 0x1F: set_mnemonic(i, "DDIVU"); type=MULTDIV; break;
7293 case 0x2C: set_mnemonic(i, "DADD"); type=ALU; break;
7294 case 0x2D: set_mnemonic(i, "DADDU"); type=ALU; break;
7295 case 0x2E: set_mnemonic(i, "DSUB"); type=ALU; break;
7296 case 0x2F: set_mnemonic(i, "DSUBU"); type=ALU; break;
7297 case 0x38: set_mnemonic(i, "DSLL"); type=SHIFTIMM; break;
7298 case 0x3A: set_mnemonic(i, "DSRL"); type=SHIFTIMM; break;
7299 case 0x3B: set_mnemonic(i, "DSRA"); type=SHIFTIMM; break;
7300 case 0x3C: set_mnemonic(i, "DSLL32"); type=SHIFTIMM; break;
7301 case 0x3E: set_mnemonic(i, "DSRL32"); type=SHIFTIMM; break;
7302 case 0x3F: set_mnemonic(i, "DSRA32"); type=SHIFTIMM; break;
7303#endif
7304 }
7305 break;
7306 case 0x01: set_mnemonic(i, "regimm"); type=NI;
7307 op2=(source[i]>>16)&0x1f;
7308 switch(op2)
7309 {
7310 case 0x00: set_mnemonic(i, "BLTZ"); type=SJUMP; break;
7311 case 0x01: set_mnemonic(i, "BGEZ"); type=SJUMP; break;
7312 //case 0x02: set_mnemonic(i, "BLTZL"); type=SJUMP; break;
7313 //case 0x03: set_mnemonic(i, "BGEZL"); type=SJUMP; break;
7314 //case 0x08: set_mnemonic(i, "TGEI"); type=NI; break;
7315 //case 0x09: set_mnemonic(i, "TGEIU"); type=NI; break;
7316 //case 0x0A: set_mnemonic(i, "TLTI"); type=NI; break;
7317 //case 0x0B: set_mnemonic(i, "TLTIU"); type=NI; break;
7318 //case 0x0C: set_mnemonic(i, "TEQI"); type=NI; break;
7319 //case 0x0E: set_mnemonic(i, "TNEI"); type=NI; break;
7320 case 0x10: set_mnemonic(i, "BLTZAL"); type=SJUMP; break;
7321 case 0x11: set_mnemonic(i, "BGEZAL"); type=SJUMP; break;
7322 //case 0x12: set_mnemonic(i, "BLTZALL"); type=SJUMP; break;
7323 //case 0x13: set_mnemonic(i, "BGEZALL"); type=SJUMP; break;
7324 }
7325 break;
7326 case 0x02: set_mnemonic(i, "J"); type=UJUMP; break;
7327 case 0x03: set_mnemonic(i, "JAL"); type=UJUMP; break;
7328 case 0x04: set_mnemonic(i, "BEQ"); type=CJUMP; break;
7329 case 0x05: set_mnemonic(i, "BNE"); type=CJUMP; break;
7330 case 0x06: set_mnemonic(i, "BLEZ"); type=CJUMP; break;
7331 case 0x07: set_mnemonic(i, "BGTZ"); type=CJUMP; break;
7332 case 0x08: set_mnemonic(i, "ADDI"); type=IMM16; break;
7333 case 0x09: set_mnemonic(i, "ADDIU"); type=IMM16; break;
7334 case 0x0A: set_mnemonic(i, "SLTI"); type=IMM16; break;
7335 case 0x0B: set_mnemonic(i, "SLTIU"); type=IMM16; break;
7336 case 0x0C: set_mnemonic(i, "ANDI"); type=IMM16; break;
7337 case 0x0D: set_mnemonic(i, "ORI"); type=IMM16; break;
7338 case 0x0E: set_mnemonic(i, "XORI"); type=IMM16; break;
7339 case 0x0F: set_mnemonic(i, "LUI"); type=IMM16; break;
7340 case 0x10: set_mnemonic(i, "cop0"); type=NI;
7341 op2=(source[i]>>21)&0x1f;
7342 switch(op2)
7343 {
7344 case 0x00: set_mnemonic(i, "MFC0"); type=COP0; break;
7345 case 0x02: set_mnemonic(i, "CFC0"); type=COP0; break;
7346 case 0x04: set_mnemonic(i, "MTC0"); type=COP0; break;
7347 case 0x06: set_mnemonic(i, "CTC0"); type=COP0; break;
7348 case 0x10: set_mnemonic(i, "RFE"); type=COP0; break;
7349 }
7350 break;
7351 case 0x11: set_mnemonic(i, "cop1"); type=COP1;
7352 op2=(source[i]>>21)&0x1f;
7353 break;
7354#if 0
7355 case 0x14: set_mnemonic(i, "BEQL"); type=CJUMP; break;
7356 case 0x15: set_mnemonic(i, "BNEL"); type=CJUMP; break;
7357 case 0x16: set_mnemonic(i, "BLEZL"); type=CJUMP; break;
7358 case 0x17: set_mnemonic(i, "BGTZL"); type=CJUMP; break;
7359 case 0x18: set_mnemonic(i, "DADDI"); type=IMM16; break;
7360 case 0x19: set_mnemonic(i, "DADDIU"); type=IMM16; break;
7361 case 0x1A: set_mnemonic(i, "LDL"); type=LOADLR; break;
7362 case 0x1B: set_mnemonic(i, "LDR"); type=LOADLR; break;
7363#endif
7364 case 0x20: set_mnemonic(i, "LB"); type=LOAD; break;
7365 case 0x21: set_mnemonic(i, "LH"); type=LOAD; break;
7366 case 0x22: set_mnemonic(i, "LWL"); type=LOADLR; break;
7367 case 0x23: set_mnemonic(i, "LW"); type=LOAD; break;
7368 case 0x24: set_mnemonic(i, "LBU"); type=LOAD; break;
7369 case 0x25: set_mnemonic(i, "LHU"); type=LOAD; break;
7370 case 0x26: set_mnemonic(i, "LWR"); type=LOADLR; break;
7371#if 0
7372 case 0x27: set_mnemonic(i, "LWU"); type=LOAD; break;
7373#endif
7374 case 0x28: set_mnemonic(i, "SB"); type=STORE; break;
7375 case 0x29: set_mnemonic(i, "SH"); type=STORE; break;
7376 case 0x2A: set_mnemonic(i, "SWL"); type=STORELR; break;
7377 case 0x2B: set_mnemonic(i, "SW"); type=STORE; break;
7378#if 0
7379 case 0x2C: set_mnemonic(i, "SDL"); type=STORELR; break;
7380 case 0x2D: set_mnemonic(i, "SDR"); type=STORELR; break;
7381#endif
7382 case 0x2E: set_mnemonic(i, "SWR"); type=STORELR; break;
7383 case 0x2F: set_mnemonic(i, "CACHE"); type=NOP; break;
7384 case 0x30: set_mnemonic(i, "LL"); type=NI; break;
7385 case 0x31: set_mnemonic(i, "LWC1"); type=C1LS; break;
7386#if 0
7387 case 0x34: set_mnemonic(i, "LLD"); type=NI; break;
7388 case 0x35: set_mnemonic(i, "LDC1"); type=C1LS; break;
7389 case 0x37: set_mnemonic(i, "LD"); type=LOAD; break;
7390#endif
7391 case 0x38: set_mnemonic(i, "SC"); type=NI; break;
7392 case 0x39: set_mnemonic(i, "SWC1"); type=C1LS; break;
7393#if 0
7394 case 0x3C: set_mnemonic(i, "SCD"); type=NI; break;
7395 case 0x3D: set_mnemonic(i, "SDC1"); type=C1LS; break;
7396 case 0x3F: set_mnemonic(i, "SD"); type=STORE; break;
7397#endif
7398 case 0x12: set_mnemonic(i, "COP2"); type=NI;
7399 op2=(source[i]>>21)&0x1f;
7400 //if (op2 & 0x10)
7401 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
7402 if (gte_handlers[source[i]&0x3f]!=NULL) {
7403#ifdef DISASM
7404 if (gte_regnames[source[i]&0x3f]!=NULL)
7405 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
7406 else
7407 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
7408#endif
7409 type=C2OP;
7410 }
7411 }
7412 else switch(op2)
7413 {
7414 case 0x00: set_mnemonic(i, "MFC2"); type=COP2; break;
7415 case 0x02: set_mnemonic(i, "CFC2"); type=COP2; break;
7416 case 0x04: set_mnemonic(i, "MTC2"); type=COP2; break;
7417 case 0x06: set_mnemonic(i, "CTC2"); type=COP2; break;
7418 }
7419 break;
7420 case 0x32: set_mnemonic(i, "LWC2"); type=C2LS; break;
7421 case 0x3A: set_mnemonic(i, "SWC2"); type=C2LS; break;
7422 case 0x3B: set_mnemonic(i, "HLECALL"); type=HLECALL; break;
7423 default: set_mnemonic(i, "???"); type=NI;
7424 SysPrintf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
7425 break;
7426 }
7427 dops[i].itype=type;
7428 dops[i].opcode2=op2;
7429 /* Get registers/immediates */
7430 dops[i].use_lt1=0;
7431 gte_rs[i]=gte_rt[i]=0;
7432 switch(type) {
7433 case LOAD:
7434 dops[i].rs1=(source[i]>>21)&0x1f;
7435 dops[i].rs2=0;
7436 dops[i].rt1=(source[i]>>16)&0x1f;
7437 dops[i].rt2=0;
7438 imm[i]=(short)source[i];
7439 break;
7440 case STORE:
7441 case STORELR:
7442 dops[i].rs1=(source[i]>>21)&0x1f;
7443 dops[i].rs2=(source[i]>>16)&0x1f;
7444 dops[i].rt1=0;
7445 dops[i].rt2=0;
7446 imm[i]=(short)source[i];
7447 break;
7448 case LOADLR:
7449 // LWL/LWR only load part of the register,
7450 // therefore the target register must be treated as a source too
7451 dops[i].rs1=(source[i]>>21)&0x1f;
7452 dops[i].rs2=(source[i]>>16)&0x1f;
7453 dops[i].rt1=(source[i]>>16)&0x1f;
7454 dops[i].rt2=0;
7455 imm[i]=(short)source[i];
7456 break;
7457 case IMM16:
7458 if (op==0x0f) dops[i].rs1=0; // LUI instruction has no source register
7459 else dops[i].rs1=(source[i]>>21)&0x1f;
7460 dops[i].rs2=0;
7461 dops[i].rt1=(source[i]>>16)&0x1f;
7462 dops[i].rt2=0;
7463 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
7464 imm[i]=(unsigned short)source[i];
7465 }else{
7466 imm[i]=(short)source[i];
7467 }
7468 break;
7469 case UJUMP:
7470 dops[i].rs1=0;
7471 dops[i].rs2=0;
7472 dops[i].rt1=0;
7473 dops[i].rt2=0;
7474 // The JAL instruction writes to r31.
7475 if (op&1) {
7476 dops[i].rt1=31;
7477 }
7478 dops[i].rs2=CCREG;
7479 break;
7480 case RJUMP:
7481 dops[i].rs1=(source[i]>>21)&0x1f;
7482 dops[i].rs2=0;
7483 dops[i].rt1=0;
7484 dops[i].rt2=0;
7485 // The JALR instruction writes to rd.
7486 if (op2&1) {
7487 dops[i].rt1=(source[i]>>11)&0x1f;
7488 }
7489 dops[i].rs2=CCREG;
7490 break;
7491 case CJUMP:
7492 dops[i].rs1=(source[i]>>21)&0x1f;
7493 dops[i].rs2=(source[i]>>16)&0x1f;
7494 dops[i].rt1=0;
7495 dops[i].rt2=0;
7496 if(op&2) { // BGTZ/BLEZ
7497 dops[i].rs2=0;
7498 }
7499 break;
7500 case SJUMP:
7501 dops[i].rs1=(source[i]>>21)&0x1f;
7502 dops[i].rs2=CCREG;
7503 dops[i].rt1=0;
7504 dops[i].rt2=0;
7505 if(op2&0x10) { // BxxAL
7506 dops[i].rt1=31;
7507 // NOTE: If the branch is not taken, r31 is still overwritten
7508 }
7509 break;
7510 case ALU:
7511 dops[i].rs1=(source[i]>>21)&0x1f; // source
7512 dops[i].rs2=(source[i]>>16)&0x1f; // subtract amount
7513 dops[i].rt1=(source[i]>>11)&0x1f; // destination
7514 dops[i].rt2=0;
7515 break;
7516 case MULTDIV:
7517 dops[i].rs1=(source[i]>>21)&0x1f; // source
7518 dops[i].rs2=(source[i]>>16)&0x1f; // divisor
7519 dops[i].rt1=HIREG;
7520 dops[i].rt2=LOREG;
7521 break;
7522 case MOV:
7523 dops[i].rs1=0;
7524 dops[i].rs2=0;
7525 dops[i].rt1=0;
7526 dops[i].rt2=0;
7527 if(op2==0x10) dops[i].rs1=HIREG; // MFHI
7528 if(op2==0x11) dops[i].rt1=HIREG; // MTHI
7529 if(op2==0x12) dops[i].rs1=LOREG; // MFLO
7530 if(op2==0x13) dops[i].rt1=LOREG; // MTLO
7531 if((op2&0x1d)==0x10) dops[i].rt1=(source[i]>>11)&0x1f; // MFxx
7532 if((op2&0x1d)==0x11) dops[i].rs1=(source[i]>>21)&0x1f; // MTxx
7533 break;
7534 case SHIFT:
7535 dops[i].rs1=(source[i]>>16)&0x1f; // target of shift
7536 dops[i].rs2=(source[i]>>21)&0x1f; // shift amount
7537 dops[i].rt1=(source[i]>>11)&0x1f; // destination
7538 dops[i].rt2=0;
7539 break;
7540 case SHIFTIMM:
7541 dops[i].rs1=(source[i]>>16)&0x1f;
7542 dops[i].rs2=0;
7543 dops[i].rt1=(source[i]>>11)&0x1f;
7544 dops[i].rt2=0;
7545 imm[i]=(source[i]>>6)&0x1f;
7546 // DSxx32 instructions
7547 if(op2>=0x3c) imm[i]|=0x20;
7548 break;
7549 case COP0:
7550 dops[i].rs1=0;
7551 dops[i].rs2=0;
7552 dops[i].rt1=0;
7553 dops[i].rt2=0;
7554 if(op2==0||op2==2) dops[i].rt1=(source[i]>>16)&0x1F; // MFC0/CFC0
7555 if(op2==4||op2==6) dops[i].rs1=(source[i]>>16)&0x1F; // MTC0/CTC0
7556 if(op2==4&&((source[i]>>11)&0x1f)==12) dops[i].rt2=CSREG; // Status
7557 if(op2==16) if((source[i]&0x3f)==0x18) dops[i].rs2=CCREG; // ERET
7558 break;
7559 case COP1:
7560 dops[i].rs1=0;
7561 dops[i].rs2=0;
7562 dops[i].rt1=0;
7563 dops[i].rt2=0;
7564 if(op2<3) dops[i].rt1=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
7565 if(op2>3) dops[i].rs1=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
7566 dops[i].rs2=CSREG;
7567 break;
7568 case COP2:
7569 dops[i].rs1=0;
7570 dops[i].rs2=0;
7571 dops[i].rt1=0;
7572 dops[i].rt2=0;
7573 if(op2<3) dops[i].rt1=(source[i]>>16)&0x1F; // MFC2/CFC2
7574 if(op2>3) dops[i].rs1=(source[i]>>16)&0x1F; // MTC2/CTC2
7575 dops[i].rs2=CSREG;
7576 int gr=(source[i]>>11)&0x1F;
7577 switch(op2)
7578 {
7579 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
7580 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
7581 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
7582 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
7583 }
7584 break;
7585 case C1LS:
7586 dops[i].rs1=(source[i]>>21)&0x1F;
7587 dops[i].rs2=CSREG;
7588 dops[i].rt1=0;
7589 dops[i].rt2=0;
7590 imm[i]=(short)source[i];
7591 break;
7592 case C2LS:
7593 dops[i].rs1=(source[i]>>21)&0x1F;
7594 dops[i].rs2=0;
7595 dops[i].rt1=0;
7596 dops[i].rt2=0;
7597 imm[i]=(short)source[i];
7598 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
7599 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
7600 break;
7601 case C2OP:
7602 dops[i].rs1=0;
7603 dops[i].rs2=0;
7604 dops[i].rt1=0;
7605 dops[i].rt2=0;
7606 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
7607 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
7608 gte_rt[i]|=1ll<<63; // every op changes flags
7609 if((source[i]&0x3f)==GTE_MVMVA) {
7610 int v = (source[i] >> 15) & 3;
7611 gte_rs[i]&=~0xe3fll;
7612 if(v==3) gte_rs[i]|=0xe00ll;
7613 else gte_rs[i]|=3ll<<(v*2);
7614 }
7615 break;
7616 case SYSCALL:
7617 case HLECALL:
7618 case INTCALL:
7619 dops[i].rs1=CCREG;
7620 dops[i].rs2=0;
7621 dops[i].rt1=0;
7622 dops[i].rt2=0;
7623 break;
7624 default:
7625 dops[i].rs1=0;
7626 dops[i].rs2=0;
7627 dops[i].rt1=0;
7628 dops[i].rt2=0;
7629 }
7630 /* Calculate branch target addresses */
7631 if(type==UJUMP)
7632 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
7633 else if(type==CJUMP&&dops[i].rs1==dops[i].rs2&&(op&1))
7634 ba[i]=start+i*4+8; // Ignore never taken branch
7635 else if(type==SJUMP&&dops[i].rs1==0&&!(op2&1))
7636 ba[i]=start+i*4+8; // Ignore never taken branch
7637 else if(type==CJUMP||type==SJUMP)
7638 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
7639 else ba[i]=-1;
7640
7641 /* simplify always (not)taken branches */
7642 if (type == CJUMP && dops[i].rs1 == dops[i].rs2) {
7643 dops[i].rs1 = dops[i].rs2 = 0;
7644 if (!(op & 1)) {
7645 dops[i].itype = type = UJUMP;
7646 dops[i].rs2 = CCREG;
7647 }
7648 }
7649 else if (type == SJUMP && dops[i].rs1 == 0 && (op2 & 1))
7650 dops[i].itype = type = UJUMP;
7651
7652 dops[i].is_jump = (dops[i].itype == RJUMP || dops[i].itype == UJUMP || dops[i].itype == CJUMP || dops[i].itype == SJUMP);
7653 dops[i].is_ujump = (dops[i].itype == RJUMP || dops[i].itype == UJUMP); // || (source[i] >> 16) == 0x1000 // beq r0,r0
7654 dops[i].is_load = (dops[i].itype == LOAD || dops[i].itype == LOADLR || op == 0x32); // LWC2
7655 dops[i].is_store = (dops[i].itype == STORE || dops[i].itype == STORELR || op == 0x3a); // SWC2
7656
7657 /* messy cases to just pass over to the interpreter */
7658 if (i > 0 && dops[i-1].is_jump) {
7659 int do_in_intrp=0;
7660 // branch in delay slot?
7661 if (dops[i].is_jump) {
7662 // don't handle first branch and call interpreter if it's hit
7663 SysPrintf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
7664 do_in_intrp=1;
7665 }
7666 // basic load delay detection
7667 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&dops[i].rt1!=0) {
7668 int t=(ba[i-1]-start)/4;
7669 if(0 <= t && t < i &&(dops[i].rt1==dops[t].rs1||dops[i].rt1==dops[t].rs2)&&dops[t].itype!=CJUMP&&dops[t].itype!=SJUMP) {
7670 // jump target wants DS result - potential load delay effect
7671 SysPrintf("load delay @%08x (%08x)\n", addr + i*4, addr);
7672 do_in_intrp=1;
7673 dops[t+1].bt=1; // expected return from interpreter
7674 }
7675 else if(i>=2&&dops[i-2].rt1==2&&dops[i].rt1==2&&dops[i].rs1!=2&&dops[i].rs2!=2&&dops[i-1].rs1!=2&&dops[i-1].rs2!=2&&
7676 !(i>=3&&dops[i-3].is_jump)) {
7677 // v0 overwrite like this is a sign of trouble, bail out
7678 SysPrintf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
7679 do_in_intrp=1;
7680 }
7681 }
7682 if (do_in_intrp) {
7683 memset(&dops[i-1], 0, sizeof(dops[i-1]));
7684 dops[i-1].itype = INTCALL;
7685 dops[i-1].rs1 = CCREG;
7686 ba[i-1] = -1;
7687 done = 2;
7688 i--; // don't compile the DS
7689 }
7690 }
7691
7692 /* Is this the end of the block? */
7693 if (i > 0 && dops[i-1].is_ujump) {
7694 if(dops[i-1].rt1==0) { // Continue past subroutine call (JAL)
7695 done=2;
7696 }
7697 else {
7698 if(stop_after_jal) done=1;
7699 // Stop on BREAK
7700 if((source[i+1]&0xfc00003f)==0x0d) done=1;
7701 }
7702 // Don't recompile stuff that's already compiled
7703 if(check_addr(start+i*4+4)) done=1;
7704 // Don't get too close to the limit
7705 if(i>MAXBLOCK/2) done=1;
7706 }
7707 if (dops[i].itype == SYSCALL || dops[i].itype == HLECALL || dops[i].itype == INTCALL)
7708 done = stop_after_jal ? 1 : 2;
7709 if (done == 2) {
7710 // Does the block continue due to a branch?
7711 for(j=i-1;j>=0;j--)
7712 {
7713 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
7714 if(ba[j]==start+i*4+4) done=j=0;
7715 if(ba[j]==start+i*4+8) done=j=0;
7716 }
7717 }
7718 //assert(i<MAXBLOCK-1);
7719 if(start+i*4==pagelimit-4) done=1;
7720 assert(start+i*4<pagelimit);
7721 if (i==MAXBLOCK-1) done=1;
7722 // Stop if we're compiling junk
7723 if(dops[i].itype == NI && (++ni_count > 8 || dops[i].opcode == 0x11)) {
7724 done=stop_after_jal=1;
7725 SysPrintf("Disabled speculative precompilation\n");
7726 }
7727 }
7728 slen=i;
7729 if (dops[i-1].is_jump) {
7730 if(start+i*4==pagelimit) {
7731 dops[i-1].itype=SPAN;
7732 }
7733 }
7734 assert(slen>0);
7735
7736 int clear_hack_addr = apply_hacks();
7737
7738 /* Pass 2 - Register dependencies and branch targets */
7739
7740 unneeded_registers(0,slen-1,0);
7741
7742 /* Pass 3 - Register allocation */
7743
7744 struct regstat current; // Current register allocations/status
7745 clear_all_regs(current.regmap_entry);
7746 clear_all_regs(current.regmap);
7747 current.wasdirty = current.dirty = 0;
7748 current.u = unneeded_reg[0];
7749 alloc_reg(&current, 0, CCREG);
7750 dirty_reg(&current, CCREG);
7751 current.wasconst = 0;
7752 current.isconst = 0;
7753 current.loadedconst = 0;
7754 current.waswritten = 0;
7755 int ds=0;
7756 int cc=0;
7757 int hr=-1;
7758
7759 if((u_int)addr&1) {
7760 // First instruction is delay slot
7761 cc=-1;
7762 dops[1].bt=1;
7763 ds=1;
7764 unneeded_reg[0]=1;
7765 current.regmap[HOST_BTREG]=BTREG;
7766 }
7767
7768 for(i=0;i<slen;i++)
7769 {
7770 if(dops[i].bt)
7771 {
7772 int hr;
7773 for(hr=0;hr<HOST_REGS;hr++)
7774 {
7775 // Is this really necessary?
7776 if(current.regmap[hr]==0) current.regmap[hr]=-1;
7777 }
7778 current.isconst=0;
7779 current.waswritten=0;
7780 }
7781
7782 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
7783 regs[i].wasconst=current.isconst;
7784 regs[i].wasdirty=current.dirty;
7785 regs[i].dirty=0;
7786 regs[i].u=0;
7787 regs[i].isconst=0;
7788 regs[i].loadedconst=0;
7789 if (!dops[i].is_jump) {
7790 if(i+1<slen) {
7791 current.u=unneeded_reg[i+1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7792 current.u|=1;
7793 } else {
7794 current.u=1;
7795 }
7796 } else {
7797 if(i+1<slen) {
7798 current.u=branch_unneeded_reg[i]&~((1LL<<dops[i+1].rs1)|(1LL<<dops[i+1].rs2));
7799 current.u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7800 current.u|=1;
7801 } else {
7802 SysPrintf("oops, branch at end of block with no delay slot @%08x\n", start + i*4);
7803 abort();
7804 }
7805 }
7806 dops[i].is_ds=ds;
7807 if(ds) {
7808 ds=0; // Skip delay slot, already allocated as part of branch
7809 // ...but we need to alloc it in case something jumps here
7810 if(i+1<slen) {
7811 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
7812 }else{
7813 current.u=branch_unneeded_reg[i-1];
7814 }
7815 current.u&=~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
7816 current.u|=1;
7817 struct regstat temp;
7818 memcpy(&temp,&current,sizeof(current));
7819 temp.wasdirty=temp.dirty;
7820 // TODO: Take into account unconditional branches, as below
7821 delayslot_alloc(&temp,i);
7822 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
7823 regs[i].wasdirty=temp.wasdirty;
7824 regs[i].dirty=temp.dirty;
7825 regs[i].isconst=0;
7826 regs[i].wasconst=0;
7827 current.isconst=0;
7828 // Create entry (branch target) regmap
7829 for(hr=0;hr<HOST_REGS;hr++)
7830 {
7831 int r=temp.regmap[hr];
7832 if(r>=0) {
7833 if(r!=regmap_pre[i][hr]) {
7834 regs[i].regmap_entry[hr]=-1;
7835 }
7836 else
7837 {
7838 assert(r < 64);
7839 if((current.u>>r)&1) {
7840 regs[i].regmap_entry[hr]=-1;
7841 regs[i].regmap[hr]=-1;
7842 //Don't clear regs in the delay slot as the branch might need them
7843 //current.regmap[hr]=-1;
7844 }else
7845 regs[i].regmap_entry[hr]=r;
7846 }
7847 } else {
7848 // First instruction expects CCREG to be allocated
7849 if(i==0&&hr==HOST_CCREG)
7850 regs[i].regmap_entry[hr]=CCREG;
7851 else
7852 regs[i].regmap_entry[hr]=-1;
7853 }
7854 }
7855 }
7856 else { // Not delay slot
7857 switch(dops[i].itype) {
7858 case UJUMP:
7859 //current.isconst=0; // DEBUG
7860 //current.wasconst=0; // DEBUG
7861 //regs[i].wasconst=0; // DEBUG
7862 clear_const(&current,dops[i].rt1);
7863 alloc_cc(&current,i);
7864 dirty_reg(&current,CCREG);
7865 if (dops[i].rt1==31) {
7866 alloc_reg(&current,i,31);
7867 dirty_reg(&current,31);
7868 //assert(dops[i+1].rs1!=31&&dops[i+1].rs2!=31);
7869 //assert(dops[i+1].rt1!=dops[i].rt1);
7870 #ifdef REG_PREFETCH
7871 alloc_reg(&current,i,PTEMP);
7872 #endif
7873 }
7874 dops[i].ooo=1;
7875 delayslot_alloc(&current,i+1);
7876 //current.isconst=0; // DEBUG
7877 ds=1;
7878 //printf("i=%d, isconst=%x\n",i,current.isconst);
7879 break;
7880 case RJUMP:
7881 //current.isconst=0;
7882 //current.wasconst=0;
7883 //regs[i].wasconst=0;
7884 clear_const(&current,dops[i].rs1);
7885 clear_const(&current,dops[i].rt1);
7886 alloc_cc(&current,i);
7887 dirty_reg(&current,CCREG);
7888 if (!ds_writes_rjump_rs(i)) {
7889 alloc_reg(&current,i,dops[i].rs1);
7890 if (dops[i].rt1!=0) {
7891 alloc_reg(&current,i,dops[i].rt1);
7892 dirty_reg(&current,dops[i].rt1);
7893 assert(dops[i+1].rs1!=dops[i].rt1&&dops[i+1].rs2!=dops[i].rt1);
7894 assert(dops[i+1].rt1!=dops[i].rt1);
7895 #ifdef REG_PREFETCH
7896 alloc_reg(&current,i,PTEMP);
7897 #endif
7898 }
7899 #ifdef USE_MINI_HT
7900 if(dops[i].rs1==31) { // JALR
7901 alloc_reg(&current,i,RHASH);
7902 alloc_reg(&current,i,RHTBL);
7903 }
7904 #endif
7905 delayslot_alloc(&current,i+1);
7906 } else {
7907 // The delay slot overwrites our source register,
7908 // allocate a temporary register to hold the old value.
7909 current.isconst=0;
7910 current.wasconst=0;
7911 regs[i].wasconst=0;
7912 delayslot_alloc(&current,i+1);
7913 current.isconst=0;
7914 alloc_reg(&current,i,RTEMP);
7915 }
7916 //current.isconst=0; // DEBUG
7917 dops[i].ooo=1;
7918 ds=1;
7919 break;
7920 case CJUMP:
7921 //current.isconst=0;
7922 //current.wasconst=0;
7923 //regs[i].wasconst=0;
7924 clear_const(&current,dops[i].rs1);
7925 clear_const(&current,dops[i].rs2);
7926 if((dops[i].opcode&0x3E)==4) // BEQ/BNE
7927 {
7928 alloc_cc(&current,i);
7929 dirty_reg(&current,CCREG);
7930 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7931 if(dops[i].rs2) alloc_reg(&current,i,dops[i].rs2);
7932 if((dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2))||
7933 (dops[i].rs2&&(dops[i].rs2==dops[i+1].rt1||dops[i].rs2==dops[i+1].rt2))) {
7934 // The delay slot overwrites one of our conditions.
7935 // Allocate the branch condition registers instead.
7936 current.isconst=0;
7937 current.wasconst=0;
7938 regs[i].wasconst=0;
7939 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7940 if(dops[i].rs2) alloc_reg(&current,i,dops[i].rs2);
7941 }
7942 else
7943 {
7944 dops[i].ooo=1;
7945 delayslot_alloc(&current,i+1);
7946 }
7947 }
7948 else
7949 if((dops[i].opcode&0x3E)==6) // BLEZ/BGTZ
7950 {
7951 alloc_cc(&current,i);
7952 dirty_reg(&current,CCREG);
7953 alloc_reg(&current,i,dops[i].rs1);
7954 if(dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2)) {
7955 // The delay slot overwrites one of our conditions.
7956 // Allocate the branch condition registers instead.
7957 current.isconst=0;
7958 current.wasconst=0;
7959 regs[i].wasconst=0;
7960 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
7961 }
7962 else
7963 {
7964 dops[i].ooo=1;
7965 delayslot_alloc(&current,i+1);
7966 }
7967 }
7968 else
7969 // Don't alloc the delay slot yet because we might not execute it
7970 if((dops[i].opcode&0x3E)==0x14) // BEQL/BNEL
7971 {
7972 current.isconst=0;
7973 current.wasconst=0;
7974 regs[i].wasconst=0;
7975 alloc_cc(&current,i);
7976 dirty_reg(&current,CCREG);
7977 alloc_reg(&current,i,dops[i].rs1);
7978 alloc_reg(&current,i,dops[i].rs2);
7979 }
7980 else
7981 if((dops[i].opcode&0x3E)==0x16) // BLEZL/BGTZL
7982 {
7983 current.isconst=0;
7984 current.wasconst=0;
7985 regs[i].wasconst=0;
7986 alloc_cc(&current,i);
7987 dirty_reg(&current,CCREG);
7988 alloc_reg(&current,i,dops[i].rs1);
7989 }
7990 ds=1;
7991 //current.isconst=0;
7992 break;
7993 case SJUMP:
7994 //current.isconst=0;
7995 //current.wasconst=0;
7996 //regs[i].wasconst=0;
7997 clear_const(&current,dops[i].rs1);
7998 clear_const(&current,dops[i].rt1);
7999 //if((dops[i].opcode2&0x1E)==0x0) // BLTZ/BGEZ
8000 if((dops[i].opcode2&0x0E)==0x0) // BLTZ/BGEZ
8001 {
8002 alloc_cc(&current,i);
8003 dirty_reg(&current,CCREG);
8004 alloc_reg(&current,i,dops[i].rs1);
8005 if (dops[i].rt1==31) { // BLTZAL/BGEZAL
8006 alloc_reg(&current,i,31);
8007 dirty_reg(&current,31);
8008 //#ifdef REG_PREFETCH
8009 //alloc_reg(&current,i,PTEMP);
8010 //#endif
8011 }
8012 if((dops[i].rs1&&(dops[i].rs1==dops[i+1].rt1||dops[i].rs1==dops[i+1].rt2)) // The delay slot overwrites the branch condition.
8013 ||(dops[i].rt1==31&&(dops[i+1].rs1==31||dops[i+1].rs2==31||dops[i+1].rt1==31||dops[i+1].rt2==31))) { // DS touches $ra
8014 // Allocate the branch condition registers instead.
8015 current.isconst=0;
8016 current.wasconst=0;
8017 regs[i].wasconst=0;
8018 if(dops[i].rs1) alloc_reg(&current,i,dops[i].rs1);
8019 }
8020 else
8021 {
8022 dops[i].ooo=1;
8023 delayslot_alloc(&current,i+1);
8024 }
8025 }
8026 else
8027 // Don't alloc the delay slot yet because we might not execute it
8028 if((dops[i].opcode2&0x1E)==0x2) // BLTZL/BGEZL
8029 {
8030 current.isconst=0;
8031 current.wasconst=0;
8032 regs[i].wasconst=0;
8033 alloc_cc(&current,i);
8034 dirty_reg(&current,CCREG);
8035 alloc_reg(&current,i,dops[i].rs1);
8036 }
8037 ds=1;
8038 //current.isconst=0;
8039 break;
8040 case IMM16:
8041 imm16_alloc(&current,i);
8042 break;
8043 case LOAD:
8044 case LOADLR:
8045 load_alloc(&current,i);
8046 break;
8047 case STORE:
8048 case STORELR:
8049 store_alloc(&current,i);
8050 break;
8051 case ALU:
8052 alu_alloc(&current,i);
8053 break;
8054 case SHIFT:
8055 shift_alloc(&current,i);
8056 break;
8057 case MULTDIV:
8058 multdiv_alloc(&current,i);
8059 break;
8060 case SHIFTIMM:
8061 shiftimm_alloc(&current,i);
8062 break;
8063 case MOV:
8064 mov_alloc(&current,i);
8065 break;
8066 case COP0:
8067 cop0_alloc(&current,i);
8068 break;
8069 case COP1:
8070 break;
8071 case COP2:
8072 cop2_alloc(&current,i);
8073 break;
8074 case C1LS:
8075 c1ls_alloc(&current,i);
8076 break;
8077 case C2LS:
8078 c2ls_alloc(&current,i);
8079 break;
8080 case C2OP:
8081 c2op_alloc(&current,i);
8082 break;
8083 case SYSCALL:
8084 case HLECALL:
8085 case INTCALL:
8086 syscall_alloc(&current,i);
8087 break;
8088 case SPAN:
8089 pagespan_alloc(&current,i);
8090 break;
8091 }
8092
8093 // Create entry (branch target) regmap
8094 for(hr=0;hr<HOST_REGS;hr++)
8095 {
8096 int r,or;
8097 r=current.regmap[hr];
8098 if(r>=0) {
8099 if(r!=regmap_pre[i][hr]) {
8100 // TODO: delay slot (?)
8101 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
8102 if(or<0||r>=TEMPREG){
8103 regs[i].regmap_entry[hr]=-1;
8104 }
8105 else
8106 {
8107 // Just move it to a different register
8108 regs[i].regmap_entry[hr]=r;
8109 // If it was dirty before, it's still dirty
8110 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r);
8111 }
8112 }
8113 else
8114 {
8115 // Unneeded
8116 if(r==0){
8117 regs[i].regmap_entry[hr]=0;
8118 }
8119 else
8120 {
8121 assert(r<64);
8122 if((current.u>>r)&1) {
8123 regs[i].regmap_entry[hr]=-1;
8124 //regs[i].regmap[hr]=-1;
8125 current.regmap[hr]=-1;
8126 }else
8127 regs[i].regmap_entry[hr]=r;
8128 }
8129 }
8130 } else {
8131 // Branches expect CCREG to be allocated at the target
8132 if(regmap_pre[i][hr]==CCREG)
8133 regs[i].regmap_entry[hr]=CCREG;
8134 else
8135 regs[i].regmap_entry[hr]=-1;
8136 }
8137 }
8138 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
8139 }
8140
8141 if(i>0&&(dops[i-1].itype==STORE||dops[i-1].itype==STORELR||(dops[i-1].itype==C2LS&&dops[i-1].opcode==0x3a))&&(u_int)imm[i-1]<0x800)
8142 current.waswritten|=1<<dops[i-1].rs1;
8143 current.waswritten&=~(1<<dops[i].rt1);
8144 current.waswritten&=~(1<<dops[i].rt2);
8145 if((dops[i].itype==STORE||dops[i].itype==STORELR||(dops[i].itype==C2LS&&dops[i].opcode==0x3a))&&(u_int)imm[i]>=0x800)
8146 current.waswritten&=~(1<<dops[i].rs1);
8147
8148 /* Branch post-alloc */
8149 if(i>0)
8150 {
8151 current.wasdirty=current.dirty;
8152 switch(dops[i-1].itype) {
8153 case UJUMP:
8154 memcpy(&branch_regs[i-1],&current,sizeof(current));
8155 branch_regs[i-1].isconst=0;
8156 branch_regs[i-1].wasconst=0;
8157 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
8158 alloc_cc(&branch_regs[i-1],i-1);
8159 dirty_reg(&branch_regs[i-1],CCREG);
8160 if(dops[i-1].rt1==31) { // JAL
8161 alloc_reg(&branch_regs[i-1],i-1,31);
8162 dirty_reg(&branch_regs[i-1],31);
8163 }
8164 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8165 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8166 break;
8167 case RJUMP:
8168 memcpy(&branch_regs[i-1],&current,sizeof(current));
8169 branch_regs[i-1].isconst=0;
8170 branch_regs[i-1].wasconst=0;
8171 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
8172 alloc_cc(&branch_regs[i-1],i-1);
8173 dirty_reg(&branch_regs[i-1],CCREG);
8174 alloc_reg(&branch_regs[i-1],i-1,dops[i-1].rs1);
8175 if(dops[i-1].rt1!=0) { // JALR
8176 alloc_reg(&branch_regs[i-1],i-1,dops[i-1].rt1);
8177 dirty_reg(&branch_regs[i-1],dops[i-1].rt1);
8178 }
8179 #ifdef USE_MINI_HT
8180 if(dops[i-1].rs1==31) { // JALR
8181 alloc_reg(&branch_regs[i-1],i-1,RHASH);
8182 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
8183 }
8184 #endif
8185 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8186 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8187 break;
8188 case CJUMP:
8189 if((dops[i-1].opcode&0x3E)==4) // BEQ/BNE
8190 {
8191 alloc_cc(&current,i-1);
8192 dirty_reg(&current,CCREG);
8193 if((dops[i-1].rs1&&(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2))||
8194 (dops[i-1].rs2&&(dops[i-1].rs2==dops[i].rt1||dops[i-1].rs2==dops[i].rt2))) {
8195 // The delay slot overwrote one of our conditions
8196 // Delay slot goes after the test (in order)
8197 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
8198 current.u|=1;
8199 delayslot_alloc(&current,i);
8200 current.isconst=0;
8201 }
8202 else
8203 {
8204 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i-1].rs1)|(1LL<<dops[i-1].rs2));
8205 // Alloc the branch condition registers
8206 if(dops[i-1].rs1) alloc_reg(&current,i-1,dops[i-1].rs1);
8207 if(dops[i-1].rs2) alloc_reg(&current,i-1,dops[i-1].rs2);
8208 }
8209 memcpy(&branch_regs[i-1],&current,sizeof(current));
8210 branch_regs[i-1].isconst=0;
8211 branch_regs[i-1].wasconst=0;
8212 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8213 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8214 }
8215 else
8216 if((dops[i-1].opcode&0x3E)==6) // BLEZ/BGTZ
8217 {
8218 alloc_cc(&current,i-1);
8219 dirty_reg(&current,CCREG);
8220 if(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2) {
8221 // The delay slot overwrote the branch condition
8222 // Delay slot goes after the test (in order)
8223 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
8224 current.u|=1;
8225 delayslot_alloc(&current,i);
8226 current.isconst=0;
8227 }
8228 else
8229 {
8230 current.u=branch_unneeded_reg[i-1]&~(1LL<<dops[i-1].rs1);
8231 // Alloc the branch condition register
8232 alloc_reg(&current,i-1,dops[i-1].rs1);
8233 }
8234 memcpy(&branch_regs[i-1],&current,sizeof(current));
8235 branch_regs[i-1].isconst=0;
8236 branch_regs[i-1].wasconst=0;
8237 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8238 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8239 }
8240 else
8241 // Alloc the delay slot in case the branch is taken
8242 if((dops[i-1].opcode&0x3E)==0x14) // BEQL/BNEL
8243 {
8244 memcpy(&branch_regs[i-1],&current,sizeof(current));
8245 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
8246 alloc_cc(&branch_regs[i-1],i);
8247 dirty_reg(&branch_regs[i-1],CCREG);
8248 delayslot_alloc(&branch_regs[i-1],i);
8249 branch_regs[i-1].isconst=0;
8250 alloc_reg(&current,i,CCREG); // Not taken path
8251 dirty_reg(&current,CCREG);
8252 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8253 }
8254 else
8255 if((dops[i-1].opcode&0x3E)==0x16) // BLEZL/BGTZL
8256 {
8257 memcpy(&branch_regs[i-1],&current,sizeof(current));
8258 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
8259 alloc_cc(&branch_regs[i-1],i);
8260 dirty_reg(&branch_regs[i-1],CCREG);
8261 delayslot_alloc(&branch_regs[i-1],i);
8262 branch_regs[i-1].isconst=0;
8263 alloc_reg(&current,i,CCREG); // Not taken path
8264 dirty_reg(&current,CCREG);
8265 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8266 }
8267 break;
8268 case SJUMP:
8269 //if((dops[i-1].opcode2&0x1E)==0) // BLTZ/BGEZ
8270 if((dops[i-1].opcode2&0x0E)==0) // BLTZ/BGEZ
8271 {
8272 alloc_cc(&current,i-1);
8273 dirty_reg(&current,CCREG);
8274 if(dops[i-1].rs1==dops[i].rt1||dops[i-1].rs1==dops[i].rt2) {
8275 // The delay slot overwrote the branch condition
8276 // Delay slot goes after the test (in order)
8277 current.u=branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2));
8278 current.u|=1;
8279 delayslot_alloc(&current,i);
8280 current.isconst=0;
8281 }
8282 else
8283 {
8284 current.u=branch_unneeded_reg[i-1]&~(1LL<<dops[i-1].rs1);
8285 // Alloc the branch condition register
8286 alloc_reg(&current,i-1,dops[i-1].rs1);
8287 }
8288 memcpy(&branch_regs[i-1],&current,sizeof(current));
8289 branch_regs[i-1].isconst=0;
8290 branch_regs[i-1].wasconst=0;
8291 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8292 memcpy(constmap[i],constmap[i-1],sizeof(constmap[i]));
8293 }
8294 else
8295 // Alloc the delay slot in case the branch is taken
8296 if((dops[i-1].opcode2&0x1E)==2) // BLTZL/BGEZL
8297 {
8298 memcpy(&branch_regs[i-1],&current,sizeof(current));
8299 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<dops[i].rs1)|(1LL<<dops[i].rs2)|(1LL<<dops[i].rt1)|(1LL<<dops[i].rt2)))|1;
8300 alloc_cc(&branch_regs[i-1],i);
8301 dirty_reg(&branch_regs[i-1],CCREG);
8302 delayslot_alloc(&branch_regs[i-1],i);
8303 branch_regs[i-1].isconst=0;
8304 alloc_reg(&current,i,CCREG); // Not taken path
8305 dirty_reg(&current,CCREG);
8306 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8307 }
8308 // FIXME: BLTZAL/BGEZAL
8309 if(dops[i-1].opcode2&0x10) { // BxxZAL
8310 alloc_reg(&branch_regs[i-1],i-1,31);
8311 dirty_reg(&branch_regs[i-1],31);
8312 }
8313 break;
8314 }
8315
8316 if (dops[i-1].is_ujump)
8317 {
8318 if(dops[i-1].rt1==31) // JAL/JALR
8319 {
8320 // Subroutine call will return here, don't alloc any registers
8321 current.dirty=0;
8322 clear_all_regs(current.regmap);
8323 alloc_reg(&current,i,CCREG);
8324 dirty_reg(&current,CCREG);
8325 }
8326 else if(i+1<slen)
8327 {
8328 // Internal branch will jump here, match registers to caller
8329 current.dirty=0;
8330 clear_all_regs(current.regmap);
8331 alloc_reg(&current,i,CCREG);
8332 dirty_reg(&current,CCREG);
8333 for(j=i-1;j>=0;j--)
8334 {
8335 if(ba[j]==start+i*4+4) {
8336 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
8337 current.dirty=branch_regs[j].dirty;
8338 break;
8339 }
8340 }
8341 while(j>=0) {
8342 if(ba[j]==start+i*4+4) {
8343 for(hr=0;hr<HOST_REGS;hr++) {
8344 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
8345 current.regmap[hr]=-1;
8346 }
8347 current.dirty&=branch_regs[j].dirty;
8348 }
8349 }
8350 j--;
8351 }
8352 }
8353 }
8354 }
8355
8356 // Count cycles in between branches
8357 ccadj[i] = CLOCK_ADJUST(cc);
8358 if (i > 0 && (dops[i-1].is_jump || dops[i].itype == SYSCALL || dops[i].itype == HLECALL))
8359 {
8360 cc=0;
8361 }
8362#if !defined(DRC_DBG)
8363 else if(dops[i].itype==C2OP&&gte_cycletab[source[i]&0x3f]>2)
8364 {
8365 // this should really be removed since the real stalls have been implemented,
8366 // but doing so causes sizeable perf regression against the older version
8367 u_int gtec = gte_cycletab[source[i] & 0x3f];
8368 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? gtec/2 : 2;
8369 }
8370 else if(i>1&&dops[i].itype==STORE&&dops[i-1].itype==STORE&&dops[i-2].itype==STORE&&!dops[i].bt)
8371 {
8372 cc+=4;
8373 }
8374 else if(dops[i].itype==C2LS)
8375 {
8376 // same as with C2OP
8377 cc += HACK_ENABLED(NDHACK_NO_STALLS) ? 4 : 2;
8378 }
8379#endif
8380 else
8381 {
8382 cc++;
8383 }
8384
8385 if(!dops[i].is_ds) {
8386 regs[i].dirty=current.dirty;
8387 regs[i].isconst=current.isconst;
8388 memcpy(constmap[i],current_constmap,sizeof(constmap[i]));
8389 }
8390 for(hr=0;hr<HOST_REGS;hr++) {
8391 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
8392 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
8393 regs[i].wasconst&=~(1<<hr);
8394 }
8395 }
8396 }
8397 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
8398 regs[i].waswritten=current.waswritten;
8399 }
8400
8401 /* Pass 4 - Cull unused host registers */
8402
8403 uint64_t nr=0;
8404
8405 for (i=slen-1;i>=0;i--)
8406 {
8407 int hr;
8408 if(dops[i].is_jump)
8409 {
8410 if(ba[i]<start || ba[i]>=(start+slen*4))
8411 {
8412 // Branch out of this block, don't need anything
8413 nr=0;
8414 }
8415 else
8416 {
8417 // Internal branch
8418 // Need whatever matches the target
8419 nr=0;
8420 int t=(ba[i]-start)>>2;
8421 for(hr=0;hr<HOST_REGS;hr++)
8422 {
8423 if(regs[i].regmap_entry[hr]>=0) {
8424 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
8425 }
8426 }
8427 }
8428 // Conditional branch may need registers for following instructions
8429 if (!dops[i].is_ujump)
8430 {
8431 if(i<slen-2) {
8432 nr|=needed_reg[i+2];
8433 for(hr=0;hr<HOST_REGS;hr++)
8434 {
8435 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
8436 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
8437 }
8438 }
8439 }
8440 // Don't need stuff which is overwritten
8441 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8442 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8443 // Merge in delay slot
8444 for(hr=0;hr<HOST_REGS;hr++)
8445 {
8446 if(dops[i+1].rt1&&dops[i+1].rt1==regs[i].regmap[hr]) nr&=~(1<<hr);
8447 if(dops[i+1].rt2&&dops[i+1].rt2==regs[i].regmap[hr]) nr&=~(1<<hr);
8448 if(dops[i+1].rs1==regmap_pre[i][hr]) nr|=1<<hr;
8449 if(dops[i+1].rs2==regmap_pre[i][hr]) nr|=1<<hr;
8450 if(dops[i+1].rs1==regs[i].regmap_entry[hr]) nr|=1<<hr;
8451 if(dops[i+1].rs2==regs[i].regmap_entry[hr]) nr|=1<<hr;
8452 if(ram_offset && (dops[i+1].is_load || dops[i+1].is_store)) {
8453 if(regmap_pre[i][hr]==ROREG) nr|=1<<hr;
8454 if(regs[i].regmap_entry[hr]==ROREG) nr|=1<<hr;
8455 }
8456 if(dops[i+1].is_store) {
8457 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8458 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8459 }
8460 }
8461 }
8462 else if(dops[i].itype==SYSCALL||dops[i].itype==HLECALL||dops[i].itype==INTCALL)
8463 {
8464 // SYSCALL instruction (software interrupt)
8465 nr=0;
8466 }
8467 else if(dops[i].itype==COP0 && (source[i]&0x3f)==0x18)
8468 {
8469 // ERET instruction (return from interrupt)
8470 nr=0;
8471 }
8472 else // Non-branch
8473 {
8474 if(i<slen-1) {
8475 for(hr=0;hr<HOST_REGS;hr++) {
8476 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
8477 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
8478 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8479 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8480 }
8481 }
8482 }
8483 for(hr=0;hr<HOST_REGS;hr++)
8484 {
8485 // Overwritten registers are not needed
8486 if(dops[i].rt1&&dops[i].rt1==regs[i].regmap[hr]) nr&=~(1<<hr);
8487 if(dops[i].rt2&&dops[i].rt2==regs[i].regmap[hr]) nr&=~(1<<hr);
8488 if(FTEMP==regs[i].regmap[hr]) nr&=~(1<<hr);
8489 // Source registers are needed
8490 if(dops[i].rs1==regmap_pre[i][hr]) nr|=1<<hr;
8491 if(dops[i].rs2==regmap_pre[i][hr]) nr|=1<<hr;
8492 if(dops[i].rs1==regs[i].regmap_entry[hr]) nr|=1<<hr;
8493 if(dops[i].rs2==regs[i].regmap_entry[hr]) nr|=1<<hr;
8494 if(ram_offset && (dops[i].is_load || dops[i].is_store)) {
8495 if(regmap_pre[i][hr]==ROREG) nr|=1<<hr;
8496 if(regs[i].regmap_entry[hr]==ROREG) nr|=1<<hr;
8497 }
8498 if(dops[i].is_store) {
8499 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8500 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8501 }
8502 // Don't store a register immediately after writing it,
8503 // may prevent dual-issue.
8504 // But do so if this is a branch target, otherwise we
8505 // might have to load the register before the branch.
8506 if(i>0&&!dops[i].bt&&((regs[i].wasdirty>>hr)&1)) {
8507 if((regmap_pre[i][hr]>0&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1))) {
8508 if(dops[i-1].rt1==regmap_pre[i][hr]) nr|=1<<hr;
8509 if(dops[i-1].rt2==regmap_pre[i][hr]) nr|=1<<hr;
8510 }
8511 if((regs[i].regmap_entry[hr]>0&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1))) {
8512 if(dops[i-1].rt1==regs[i].regmap_entry[hr]) nr|=1<<hr;
8513 if(dops[i-1].rt2==regs[i].regmap_entry[hr]) nr|=1<<hr;
8514 }
8515 }
8516 }
8517 // Cycle count is needed at branches. Assume it is needed at the target too.
8518 if(i==0||dops[i].bt||dops[i].itype==CJUMP||dops[i].itype==SPAN) {
8519 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8520 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8521 }
8522 // Save it
8523 needed_reg[i]=nr;
8524
8525 // Deallocate unneeded registers
8526 for(hr=0;hr<HOST_REGS;hr++)
8527 {
8528 if(!((nr>>hr)&1)) {
8529 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
8530 if(dops[i].is_jump)
8531 {
8532 int map1 = 0, map2 = 0, temp = 0; // or -1 ??
8533 if (dops[i+1].is_load || dops[i+1].is_store)
8534 map1 = ROREG;
8535 if (dops[i+1].is_store)
8536 map2 = INVCP;
8537 if(dops[i+1].itype==LOADLR || dops[i+1].itype==STORELR || dops[i+1].itype==C2LS)
8538 temp = FTEMP;
8539 if(regs[i].regmap[hr]!=dops[i].rs1 && regs[i].regmap[hr]!=dops[i].rs2 &&
8540 regs[i].regmap[hr]!=dops[i].rt1 && regs[i].regmap[hr]!=dops[i].rt2 &&
8541 regs[i].regmap[hr]!=dops[i+1].rt1 && regs[i].regmap[hr]!=dops[i+1].rt2 &&
8542 regs[i].regmap[hr]!=dops[i+1].rs1 && regs[i].regmap[hr]!=dops[i+1].rs2 &&
8543 regs[i].regmap[hr]!=temp && regs[i].regmap[hr]!=PTEMP &&
8544 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
8545 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
8546 regs[i].regmap[hr]!=map1 && regs[i].regmap[hr]!=map2)
8547 {
8548 regs[i].regmap[hr]=-1;
8549 regs[i].isconst&=~(1<<hr);
8550 regs[i].dirty&=~(1<<hr);
8551 regs[i+1].wasdirty&=~(1<<hr);
8552 if(branch_regs[i].regmap[hr]!=dops[i].rs1 && branch_regs[i].regmap[hr]!=dops[i].rs2 &&
8553 branch_regs[i].regmap[hr]!=dops[i].rt1 && branch_regs[i].regmap[hr]!=dops[i].rt2 &&
8554 branch_regs[i].regmap[hr]!=dops[i+1].rt1 && branch_regs[i].regmap[hr]!=dops[i+1].rt2 &&
8555 branch_regs[i].regmap[hr]!=dops[i+1].rs1 && branch_regs[i].regmap[hr]!=dops[i+1].rs2 &&
8556 branch_regs[i].regmap[hr]!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
8557 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
8558 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
8559 branch_regs[i].regmap[hr]!=map1 && branch_regs[i].regmap[hr]!=map2)
8560 {
8561 branch_regs[i].regmap[hr]=-1;
8562 branch_regs[i].regmap_entry[hr]=-1;
8563 if (!dops[i].is_ujump)
8564 {
8565 if (i < slen-2) {
8566 regmap_pre[i+2][hr]=-1;
8567 regs[i+2].wasconst&=~(1<<hr);
8568 }
8569 }
8570 }
8571 }
8572 }
8573 else
8574 {
8575 // Non-branch
8576 if(i>0)
8577 {
8578 int map1 = -1, map2 = -1, temp=-1;
8579 if (dops[i].is_load || dops[i].is_store)
8580 map1 = ROREG;
8581 if (dops[i].is_store)
8582 map2 = INVCP;
8583 if (dops[i].itype==LOADLR || dops[i].itype==STORELR || dops[i].itype==C2LS)
8584 temp = FTEMP;
8585 if(regs[i].regmap[hr]!=dops[i].rt1 && regs[i].regmap[hr]!=dops[i].rt2 &&
8586 regs[i].regmap[hr]!=dops[i].rs1 && regs[i].regmap[hr]!=dops[i].rs2 &&
8587 regs[i].regmap[hr]!=temp && regs[i].regmap[hr]!=map1 && regs[i].regmap[hr]!=map2 &&
8588 //(dops[i].itype!=SPAN||regs[i].regmap[hr]!=CCREG)
8589 regs[i].regmap[hr] != CCREG)
8590 {
8591 if(i<slen-1&&!dops[i].is_ds) {
8592 assert(regs[i].regmap[hr]<64);
8593 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]>0)
8594 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
8595 {
8596 SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
8597 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
8598 }
8599 regmap_pre[i+1][hr]=-1;
8600 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
8601 regs[i+1].wasconst&=~(1<<hr);
8602 }
8603 regs[i].regmap[hr]=-1;
8604 regs[i].isconst&=~(1<<hr);
8605 regs[i].dirty&=~(1<<hr);
8606 regs[i+1].wasdirty&=~(1<<hr);
8607 }
8608 }
8609 }
8610 } // if needed
8611 } // for hr
8612 }
8613
8614 /* Pass 5 - Pre-allocate registers */
8615
8616 // If a register is allocated during a loop, try to allocate it for the
8617 // entire loop, if possible. This avoids loading/storing registers
8618 // inside of the loop.
8619
8620 signed char f_regmap[HOST_REGS];
8621 clear_all_regs(f_regmap);
8622 for(i=0;i<slen-1;i++)
8623 {
8624 if(dops[i].itype==UJUMP||dops[i].itype==CJUMP||dops[i].itype==SJUMP)
8625 {
8626 if(ba[i]>=start && ba[i]<(start+i*4))
8627 if(dops[i+1].itype==NOP||dops[i+1].itype==MOV||dops[i+1].itype==ALU
8628 ||dops[i+1].itype==SHIFTIMM||dops[i+1].itype==IMM16||dops[i+1].itype==LOAD
8629 ||dops[i+1].itype==STORE||dops[i+1].itype==STORELR||dops[i+1].itype==C1LS
8630 ||dops[i+1].itype==SHIFT||dops[i+1].itype==COP1
8631 ||dops[i+1].itype==COP2||dops[i+1].itype==C2LS||dops[i+1].itype==C2OP)
8632 {
8633 int t=(ba[i]-start)>>2;
8634 if(t > 0 && !dops[t-1].is_jump) // loop_preload can't handle jumps into delay slots
8635 if(t<2||(dops[t-2].itype!=UJUMP&&dops[t-2].itype!=RJUMP)||dops[t-2].rt1!=31) // call/ret assumes no registers allocated
8636 for(hr=0;hr<HOST_REGS;hr++)
8637 {
8638 if(regs[i].regmap[hr]>=0) {
8639 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8640 // dealloc old register
8641 int n;
8642 for(n=0;n<HOST_REGS;n++)
8643 {
8644 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8645 }
8646 // and alloc new one
8647 f_regmap[hr]=regs[i].regmap[hr];
8648 }
8649 }
8650 if(branch_regs[i].regmap[hr]>=0) {
8651 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
8652 // dealloc old register
8653 int n;
8654 for(n=0;n<HOST_REGS;n++)
8655 {
8656 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
8657 }
8658 // and alloc new one
8659 f_regmap[hr]=branch_regs[i].regmap[hr];
8660 }
8661 }
8662 if(dops[i].ooo) {
8663 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
8664 f_regmap[hr]=branch_regs[i].regmap[hr];
8665 }else{
8666 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
8667 f_regmap[hr]=branch_regs[i].regmap[hr];
8668 }
8669 // Avoid dirty->clean transition
8670 #ifdef DESTRUCTIVE_WRITEBACK
8671 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
8672 #endif
8673 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
8674 // case above, however it's always a good idea. We can't hoist the
8675 // load if the register was already allocated, so there's no point
8676 // wasting time analyzing most of these cases. It only "succeeds"
8677 // when the mapping was different and the load can be replaced with
8678 // a mov, which is of negligible benefit. So such cases are
8679 // skipped below.
8680 if(f_regmap[hr]>0) {
8681 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
8682 int r=f_regmap[hr];
8683 for(j=t;j<=i;j++)
8684 {
8685 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8686 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
8687 assert(r < 64);
8688 if(regs[j].regmap[hr]==f_regmap[hr]&&f_regmap[hr]<TEMPREG) {
8689 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
8690 int k;
8691 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
8692 if(get_reg(regs[i].regmap,f_regmap[hr])>=0) break;
8693 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
8694 k=i;
8695 while(k>1&&regs[k-1].regmap[hr]==-1) {
8696 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8697 //printf("no free regs for store %x\n",start+(k-1)*4);
8698 break;
8699 }
8700 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
8701 //printf("no-match due to different register\n");
8702 break;
8703 }
8704 if (dops[k-2].is_jump) {
8705 //printf("no-match due to branch\n");
8706 break;
8707 }
8708 // call/ret fast path assumes no registers allocated
8709 if(k>2&&(dops[k-3].itype==UJUMP||dops[k-3].itype==RJUMP)&&dops[k-3].rt1==31) {
8710 break;
8711 }
8712 k--;
8713 }
8714 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
8715 //printf("Extend r%d, %x ->\n",hr,start+k*4);
8716 while(k<i) {
8717 regs[k].regmap_entry[hr]=f_regmap[hr];
8718 regs[k].regmap[hr]=f_regmap[hr];
8719 regmap_pre[k+1][hr]=f_regmap[hr];
8720 regs[k].wasdirty&=~(1<<hr);
8721 regs[k].dirty&=~(1<<hr);
8722 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
8723 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
8724 regs[k].wasconst&=~(1<<hr);
8725 regs[k].isconst&=~(1<<hr);
8726 k++;
8727 }
8728 }
8729 else {
8730 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
8731 break;
8732 }
8733 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
8734 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
8735 //printf("OK fill %x (r%d)\n",start+i*4,hr);
8736 regs[i].regmap_entry[hr]=f_regmap[hr];
8737 regs[i].regmap[hr]=f_regmap[hr];
8738 regs[i].wasdirty&=~(1<<hr);
8739 regs[i].dirty&=~(1<<hr);
8740 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
8741 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
8742 regs[i].wasconst&=~(1<<hr);
8743 regs[i].isconst&=~(1<<hr);
8744 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
8745 branch_regs[i].wasdirty&=~(1<<hr);
8746 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
8747 branch_regs[i].regmap[hr]=f_regmap[hr];
8748 branch_regs[i].dirty&=~(1<<hr);
8749 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
8750 branch_regs[i].wasconst&=~(1<<hr);
8751 branch_regs[i].isconst&=~(1<<hr);
8752 if (!dops[i].is_ujump) {
8753 regmap_pre[i+2][hr]=f_regmap[hr];
8754 regs[i+2].wasdirty&=~(1<<hr);
8755 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
8756 }
8757 }
8758 }
8759 for(k=t;k<j;k++) {
8760 // Alloc register clean at beginning of loop,
8761 // but may dirty it in pass 6
8762 regs[k].regmap_entry[hr]=f_regmap[hr];
8763 regs[k].regmap[hr]=f_regmap[hr];
8764 regs[k].dirty&=~(1<<hr);
8765 regs[k].wasconst&=~(1<<hr);
8766 regs[k].isconst&=~(1<<hr);
8767 if (dops[k].is_jump) {
8768 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
8769 branch_regs[k].regmap[hr]=f_regmap[hr];
8770 branch_regs[k].dirty&=~(1<<hr);
8771 branch_regs[k].wasconst&=~(1<<hr);
8772 branch_regs[k].isconst&=~(1<<hr);
8773 if (!dops[k].is_ujump) {
8774 regmap_pre[k+2][hr]=f_regmap[hr];
8775 regs[k+2].wasdirty&=~(1<<hr);
8776 }
8777 }
8778 else
8779 {
8780 regmap_pre[k+1][hr]=f_regmap[hr];
8781 regs[k+1].wasdirty&=~(1<<hr);
8782 }
8783 }
8784 if(regs[j].regmap[hr]==f_regmap[hr])
8785 regs[j].regmap_entry[hr]=f_regmap[hr];
8786 break;
8787 }
8788 if(j==i) break;
8789 if(regs[j].regmap[hr]>=0)
8790 break;
8791 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
8792 //printf("no-match due to different register\n");
8793 break;
8794 }
8795 if (dops[j].is_ujump)
8796 {
8797 // Stop on unconditional branch
8798 break;
8799 }
8800 if(dops[j].itype==CJUMP||dops[j].itype==SJUMP)
8801 {
8802 if(dops[j].ooo) {
8803 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
8804 break;
8805 }else{
8806 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
8807 break;
8808 }
8809 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
8810 //printf("no-match due to different register (branch)\n");
8811 break;
8812 }
8813 }
8814 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8815 //printf("No free regs for store %x\n",start+j*4);
8816 break;
8817 }
8818 assert(f_regmap[hr]<64);
8819 }
8820 }
8821 }
8822 }
8823 }
8824 }else{
8825 // Non branch or undetermined branch target
8826 for(hr=0;hr<HOST_REGS;hr++)
8827 {
8828 if(hr!=EXCLUDE_REG) {
8829 if(regs[i].regmap[hr]>=0) {
8830 if(f_regmap[hr]!=regs[i].regmap[hr]) {
8831 // dealloc old register
8832 int n;
8833 for(n=0;n<HOST_REGS;n++)
8834 {
8835 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
8836 }
8837 // and alloc new one
8838 f_regmap[hr]=regs[i].regmap[hr];
8839 }
8840 }
8841 }
8842 }
8843 // Try to restore cycle count at branch targets
8844 if(dops[i].bt) {
8845 for(j=i;j<slen-1;j++) {
8846 if(regs[j].regmap[HOST_CCREG]!=-1) break;
8847 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
8848 //printf("no free regs for store %x\n",start+j*4);
8849 break;
8850 }
8851 }
8852 if(regs[j].regmap[HOST_CCREG]==CCREG) {
8853 int k=i;
8854 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
8855 while(k<j) {
8856 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8857 regs[k].regmap[HOST_CCREG]=CCREG;
8858 regmap_pre[k+1][HOST_CCREG]=CCREG;
8859 regs[k+1].wasdirty|=1<<HOST_CCREG;
8860 regs[k].dirty|=1<<HOST_CCREG;
8861 regs[k].wasconst&=~(1<<HOST_CCREG);
8862 regs[k].isconst&=~(1<<HOST_CCREG);
8863 k++;
8864 }
8865 regs[j].regmap_entry[HOST_CCREG]=CCREG;
8866 }
8867 // Work backwards from the branch target
8868 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
8869 {
8870 //printf("Extend backwards\n");
8871 int k;
8872 k=i;
8873 while(regs[k-1].regmap[HOST_CCREG]==-1) {
8874 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
8875 //printf("no free regs for store %x\n",start+(k-1)*4);
8876 break;
8877 }
8878 k--;
8879 }
8880 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
8881 //printf("Extend CC, %x ->\n",start+k*4);
8882 while(k<=i) {
8883 regs[k].regmap_entry[HOST_CCREG]=CCREG;
8884 regs[k].regmap[HOST_CCREG]=CCREG;
8885 regmap_pre[k+1][HOST_CCREG]=CCREG;
8886 regs[k+1].wasdirty|=1<<HOST_CCREG;
8887 regs[k].dirty|=1<<HOST_CCREG;
8888 regs[k].wasconst&=~(1<<HOST_CCREG);
8889 regs[k].isconst&=~(1<<HOST_CCREG);
8890 k++;
8891 }
8892 }
8893 else {
8894 //printf("Fail Extend CC, %x ->\n",start+k*4);
8895 }
8896 }
8897 }
8898 if(dops[i].itype!=STORE&&dops[i].itype!=STORELR&&dops[i].itype!=C1LS&&dops[i].itype!=SHIFT&&
8899 dops[i].itype!=NOP&&dops[i].itype!=MOV&&dops[i].itype!=ALU&&dops[i].itype!=SHIFTIMM&&
8900 dops[i].itype!=IMM16&&dops[i].itype!=LOAD&&dops[i].itype!=COP1)
8901 {
8902 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
8903 }
8904 }
8905 }
8906
8907 // This allocates registers (if possible) one instruction prior
8908 // to use, which can avoid a load-use penalty on certain CPUs.
8909 for(i=0;i<slen-1;i++)
8910 {
8911 if (!i || !dops[i-1].is_jump)
8912 {
8913 if(!dops[i+1].bt)
8914 {
8915 if(dops[i].itype==ALU||dops[i].itype==MOV||dops[i].itype==LOAD||dops[i].itype==SHIFTIMM||dops[i].itype==IMM16
8916 ||((dops[i].itype==COP1||dops[i].itype==COP2)&&dops[i].opcode2<3))
8917 {
8918 if(dops[i+1].rs1) {
8919 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rs1))>=0)
8920 {
8921 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8922 {
8923 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8924 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8925 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8926 regs[i].isconst&=~(1<<hr);
8927 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8928 constmap[i][hr]=constmap[i+1][hr];
8929 regs[i+1].wasdirty&=~(1<<hr);
8930 regs[i].dirty&=~(1<<hr);
8931 }
8932 }
8933 }
8934 if(dops[i+1].rs2) {
8935 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rs2))>=0)
8936 {
8937 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8938 {
8939 regs[i].regmap[hr]=regs[i+1].regmap[hr];
8940 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
8941 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
8942 regs[i].isconst&=~(1<<hr);
8943 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8944 constmap[i][hr]=constmap[i+1][hr];
8945 regs[i+1].wasdirty&=~(1<<hr);
8946 regs[i].dirty&=~(1<<hr);
8947 }
8948 }
8949 }
8950 // Preload target address for load instruction (non-constant)
8951 if(dops[i+1].itype==LOAD&&dops[i+1].rs1&&get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8952 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rt1))>=0)
8953 {
8954 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8955 {
8956 regs[i].regmap[hr]=dops[i+1].rs1;
8957 regmap_pre[i+1][hr]=dops[i+1].rs1;
8958 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8959 regs[i].isconst&=~(1<<hr);
8960 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8961 constmap[i][hr]=constmap[i+1][hr];
8962 regs[i+1].wasdirty&=~(1<<hr);
8963 regs[i].dirty&=~(1<<hr);
8964 }
8965 }
8966 }
8967 // Load source into target register
8968 if(dops[i+1].use_lt1&&get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8969 if((hr=get_reg(regs[i+1].regmap,dops[i+1].rt1))>=0)
8970 {
8971 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8972 {
8973 regs[i].regmap[hr]=dops[i+1].rs1;
8974 regmap_pre[i+1][hr]=dops[i+1].rs1;
8975 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
8976 regs[i].isconst&=~(1<<hr);
8977 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
8978 constmap[i][hr]=constmap[i+1][hr];
8979 regs[i+1].wasdirty&=~(1<<hr);
8980 regs[i].dirty&=~(1<<hr);
8981 }
8982 }
8983 }
8984 // Address for store instruction (non-constant)
8985 if(dops[i+1].itype==STORE||dops[i+1].itype==STORELR
8986 ||(dops[i+1].opcode&0x3b)==0x39||(dops[i+1].opcode&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
8987 if(get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
8988 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
8989 if(hr<0) hr=get_reg_temp(regs[i+1].regmap);
8990 else {
8991 regs[i+1].regmap[hr]=AGEN1+((i+1)&1);
8992 regs[i+1].isconst&=~(1<<hr);
8993 }
8994 assert(hr>=0);
8995 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
8996 {
8997 regs[i].regmap[hr]=dops[i+1].rs1;
8998 regmap_pre[i+1][hr]=dops[i+1].rs1;
8999 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
9000 regs[i].isconst&=~(1<<hr);
9001 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9002 constmap[i][hr]=constmap[i+1][hr];
9003 regs[i+1].wasdirty&=~(1<<hr);
9004 regs[i].dirty&=~(1<<hr);
9005 }
9006 }
9007 }
9008 if(dops[i+1].itype==LOADLR||(dops[i+1].opcode&0x3b)==0x31||(dops[i+1].opcode&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
9009 if(get_reg(regs[i+1].regmap,dops[i+1].rs1)<0) {
9010 int nr;
9011 hr=get_reg(regs[i+1].regmap,FTEMP);
9012 assert(hr>=0);
9013 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9014 {
9015 regs[i].regmap[hr]=dops[i+1].rs1;
9016 regmap_pre[i+1][hr]=dops[i+1].rs1;
9017 regs[i+1].regmap_entry[hr]=dops[i+1].rs1;
9018 regs[i].isconst&=~(1<<hr);
9019 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9020 constmap[i][hr]=constmap[i+1][hr];
9021 regs[i+1].wasdirty&=~(1<<hr);
9022 regs[i].dirty&=~(1<<hr);
9023 }
9024 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
9025 {
9026 // move it to another register
9027 regs[i+1].regmap[hr]=-1;
9028 regmap_pre[i+2][hr]=-1;
9029 regs[i+1].regmap[nr]=FTEMP;
9030 regmap_pre[i+2][nr]=FTEMP;
9031 regs[i].regmap[nr]=dops[i+1].rs1;
9032 regmap_pre[i+1][nr]=dops[i+1].rs1;
9033 regs[i+1].regmap_entry[nr]=dops[i+1].rs1;
9034 regs[i].isconst&=~(1<<nr);
9035 regs[i+1].isconst&=~(1<<nr);
9036 regs[i].dirty&=~(1<<nr);
9037 regs[i+1].wasdirty&=~(1<<nr);
9038 regs[i+1].dirty&=~(1<<nr);
9039 regs[i+2].wasdirty&=~(1<<nr);
9040 }
9041 }
9042 }
9043 if(dops[i+1].itype==LOAD||dops[i+1].itype==LOADLR||dops[i+1].itype==STORE||dops[i+1].itype==STORELR/*||dops[i+1].itype==C1LS||||dops[i+1].itype==C2LS*/) {
9044 if(dops[i+1].itype==LOAD)
9045 hr=get_reg(regs[i+1].regmap,dops[i+1].rt1);
9046 if(dops[i+1].itype==LOADLR||(dops[i+1].opcode&0x3b)==0x31||(dops[i+1].opcode&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
9047 hr=get_reg(regs[i+1].regmap,FTEMP);
9048 if(dops[i+1].itype==STORE||dops[i+1].itype==STORELR||(dops[i+1].opcode&0x3b)==0x39||(dops[i+1].opcode&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
9049 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
9050 if(hr<0) hr=get_reg_temp(regs[i+1].regmap);
9051 }
9052 if(hr>=0&&regs[i].regmap[hr]<0) {
9053 int rs=get_reg(regs[i+1].regmap,dops[i+1].rs1);
9054 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
9055 regs[i].regmap[hr]=AGEN1+((i+1)&1);
9056 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
9057 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
9058 regs[i].isconst&=~(1<<hr);
9059 regs[i+1].wasdirty&=~(1<<hr);
9060 regs[i].dirty&=~(1<<hr);
9061 }
9062 }
9063 }
9064 }
9065 }
9066 }
9067 }
9068
9069 /* Pass 6 - Optimize clean/dirty state */
9070 clean_registers(0,slen-1,1);
9071
9072 /* Pass 7 - Identify 32-bit registers */
9073 for (i=slen-1;i>=0;i--)
9074 {
9075 if(dops[i].itype==CJUMP||dops[i].itype==SJUMP)
9076 {
9077 // Conditional branch
9078 if((source[i]>>16)!=0x1000&&i<slen-2) {
9079 // Mark this address as a branch target since it may be called
9080 // upon return from interrupt
9081 dops[i+2].bt=1;
9082 }
9083 }
9084 }
9085
9086 if(dops[slen-1].itype==SPAN) {
9087 dops[slen-1].bt=1; // Mark as a branch target so instruction can restart after exception
9088 }
9089
9090#ifdef REG_ALLOC_PRINT
9091 /* Debug/disassembly */
9092 for(i=0;i<slen;i++)
9093 {
9094 printf("U:");
9095 int r;
9096 for(r=1;r<=CCREG;r++) {
9097 if((unneeded_reg[i]>>r)&1) {
9098 if(r==HIREG) printf(" HI");
9099 else if(r==LOREG) printf(" LO");
9100 else printf(" r%d",r);
9101 }
9102 }
9103 printf("\n");
9104 #if defined(__i386__) || defined(__x86_64__)
9105 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
9106 #endif
9107 #ifdef __arm__
9108 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
9109 #endif
9110 #if defined(__i386__) || defined(__x86_64__)
9111 printf("needs: ");
9112 if(needed_reg[i]&1) printf("eax ");
9113 if((needed_reg[i]>>1)&1) printf("ecx ");
9114 if((needed_reg[i]>>2)&1) printf("edx ");
9115 if((needed_reg[i]>>3)&1) printf("ebx ");
9116 if((needed_reg[i]>>5)&1) printf("ebp ");
9117 if((needed_reg[i]>>6)&1) printf("esi ");
9118 if((needed_reg[i]>>7)&1) printf("edi ");
9119 printf("\n");
9120 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
9121 printf("dirty: ");
9122 if(regs[i].wasdirty&1) printf("eax ");
9123 if((regs[i].wasdirty>>1)&1) printf("ecx ");
9124 if((regs[i].wasdirty>>2)&1) printf("edx ");
9125 if((regs[i].wasdirty>>3)&1) printf("ebx ");
9126 if((regs[i].wasdirty>>5)&1) printf("ebp ");
9127 if((regs[i].wasdirty>>6)&1) printf("esi ");
9128 if((regs[i].wasdirty>>7)&1) printf("edi ");
9129 #endif
9130 #ifdef __arm__
9131 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
9132 printf("dirty: ");
9133 if(regs[i].wasdirty&1) printf("r0 ");
9134 if((regs[i].wasdirty>>1)&1) printf("r1 ");
9135 if((regs[i].wasdirty>>2)&1) printf("r2 ");
9136 if((regs[i].wasdirty>>3)&1) printf("r3 ");
9137 if((regs[i].wasdirty>>4)&1) printf("r4 ");
9138 if((regs[i].wasdirty>>5)&1) printf("r5 ");
9139 if((regs[i].wasdirty>>6)&1) printf("r6 ");
9140 if((regs[i].wasdirty>>7)&1) printf("r7 ");
9141 if((regs[i].wasdirty>>8)&1) printf("r8 ");
9142 if((regs[i].wasdirty>>9)&1) printf("r9 ");
9143 if((regs[i].wasdirty>>10)&1) printf("r10 ");
9144 if((regs[i].wasdirty>>12)&1) printf("r12 ");
9145 #endif
9146 printf("\n");
9147 disassemble_inst(i);
9148 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
9149 #if defined(__i386__) || defined(__x86_64__)
9150 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
9151 if(regs[i].dirty&1) printf("eax ");
9152 if((regs[i].dirty>>1)&1) printf("ecx ");
9153 if((regs[i].dirty>>2)&1) printf("edx ");
9154 if((regs[i].dirty>>3)&1) printf("ebx ");
9155 if((regs[i].dirty>>5)&1) printf("ebp ");
9156 if((regs[i].dirty>>6)&1) printf("esi ");
9157 if((regs[i].dirty>>7)&1) printf("edi ");
9158 #endif
9159 #ifdef __arm__
9160 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
9161 if(regs[i].dirty&1) printf("r0 ");
9162 if((regs[i].dirty>>1)&1) printf("r1 ");
9163 if((regs[i].dirty>>2)&1) printf("r2 ");
9164 if((regs[i].dirty>>3)&1) printf("r3 ");
9165 if((regs[i].dirty>>4)&1) printf("r4 ");
9166 if((regs[i].dirty>>5)&1) printf("r5 ");
9167 if((regs[i].dirty>>6)&1) printf("r6 ");
9168 if((regs[i].dirty>>7)&1) printf("r7 ");
9169 if((regs[i].dirty>>8)&1) printf("r8 ");
9170 if((regs[i].dirty>>9)&1) printf("r9 ");
9171 if((regs[i].dirty>>10)&1) printf("r10 ");
9172 if((regs[i].dirty>>12)&1) printf("r12 ");
9173 #endif
9174 printf("\n");
9175 if(regs[i].isconst) {
9176 printf("constants: ");
9177 #if defined(__i386__) || defined(__x86_64__)
9178 if(regs[i].isconst&1) printf("eax=%x ",(u_int)constmap[i][0]);
9179 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(u_int)constmap[i][1]);
9180 if((regs[i].isconst>>2)&1) printf("edx=%x ",(u_int)constmap[i][2]);
9181 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(u_int)constmap[i][3]);
9182 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(u_int)constmap[i][5]);
9183 if((regs[i].isconst>>6)&1) printf("esi=%x ",(u_int)constmap[i][6]);
9184 if((regs[i].isconst>>7)&1) printf("edi=%x ",(u_int)constmap[i][7]);
9185 #endif
9186 #if defined(__arm__) || defined(__aarch64__)
9187 int r;
9188 for (r = 0; r < ARRAY_SIZE(constmap[i]); r++)
9189 if ((regs[i].isconst >> r) & 1)
9190 printf(" r%d=%x", r, (u_int)constmap[i][r]);
9191 #endif
9192 printf("\n");
9193 }
9194 if(dops[i].is_jump) {
9195 #if defined(__i386__) || defined(__x86_64__)
9196 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
9197 if(branch_regs[i].dirty&1) printf("eax ");
9198 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
9199 if((branch_regs[i].dirty>>2)&1) printf("edx ");
9200 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
9201 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
9202 if((branch_regs[i].dirty>>6)&1) printf("esi ");
9203 if((branch_regs[i].dirty>>7)&1) printf("edi ");
9204 #endif
9205 #ifdef __arm__
9206 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
9207 if(branch_regs[i].dirty&1) printf("r0 ");
9208 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
9209 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
9210 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
9211 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
9212 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
9213 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
9214 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
9215 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
9216 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
9217 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
9218 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
9219 #endif
9220 }
9221 }
9222#endif // REG_ALLOC_PRINT
9223
9224 /* Pass 8 - Assembly */
9225 linkcount=0;stubcount=0;
9226 ds=0;is_delayslot=0;
9227 u_int dirty_pre=0;
9228 void *beginning=start_block();
9229 if((u_int)addr&1) {
9230 ds=1;
9231 pagespan_ds();
9232 }
9233 void *instr_addr0_override = NULL;
9234
9235 if (start == 0x80030000) {
9236 // nasty hack for the fastbios thing
9237 // override block entry to this code
9238 instr_addr0_override = out;
9239 emit_movimm(start,0);
9240 // abuse io address var as a flag that we
9241 // have already returned here once
9242 emit_readword(&address,1);
9243 emit_writeword(0,&pcaddr);
9244 emit_writeword(0,&address);
9245 emit_cmp(0,1);
9246 #ifdef __aarch64__
9247 emit_jeq(out + 4*2);
9248 emit_far_jump(new_dyna_leave);
9249 #else
9250 emit_jne(new_dyna_leave);
9251 #endif
9252 }
9253 for(i=0;i<slen;i++)
9254 {
9255 __builtin_prefetch(regs[i+1].regmap);
9256 check_regmap(regmap_pre[i]);
9257 check_regmap(regs[i].regmap_entry);
9258 check_regmap(regs[i].regmap);
9259 //if(ds) printf("ds: ");
9260 disassemble_inst(i);
9261 if(ds) {
9262 ds=0; // Skip delay slot
9263 if(dops[i].bt) assem_debug("OOPS - branch into delay slot\n");
9264 instr_addr[i] = NULL;
9265 } else {
9266 speculate_register_values(i);
9267 #ifndef DESTRUCTIVE_WRITEBACK
9268 if (i < 2 || !dops[i-2].is_ujump)
9269 {
9270 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,unneeded_reg[i]);
9271 }
9272 if((dops[i].itype==CJUMP||dops[i].itype==SJUMP)) {
9273 dirty_pre=branch_regs[i].dirty;
9274 }else{
9275 dirty_pre=regs[i].dirty;
9276 }
9277 #endif
9278 // write back
9279 if (i < 2 || !dops[i-2].is_ujump)
9280 {
9281 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,unneeded_reg[i]);
9282 loop_preload(regmap_pre[i],regs[i].regmap_entry);
9283 }
9284 // branch target entry point
9285 instr_addr[i] = out;
9286 assem_debug("<->\n");
9287 drc_dbg_emit_do_cmp(i, ccadj[i]);
9288 if (clear_hack_addr) {
9289 emit_movimm(0, 0);
9290 emit_writeword(0, &hack_addr);
9291 clear_hack_addr = 0;
9292 }
9293
9294 // load regs
9295 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
9296 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty);
9297 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i].rs1,dops[i].rs2);
9298 address_generation(i,&regs[i],regs[i].regmap_entry);
9299 load_consts(regmap_pre[i],regs[i].regmap,i);
9300 if(dops[i].is_jump)
9301 {
9302 // Load the delay slot registers if necessary
9303 if(dops[i+1].rs1!=dops[i].rs1&&dops[i+1].rs1!=dops[i].rs2&&(dops[i+1].rs1!=dops[i].rt1||dops[i].rt1==0))
9304 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs1,dops[i+1].rs1);
9305 if(dops[i+1].rs2!=dops[i+1].rs1&&dops[i+1].rs2!=dops[i].rs1&&dops[i+1].rs2!=dops[i].rs2&&(dops[i+1].rs2!=dops[i].rt1||dops[i].rt1==0))
9306 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs2,dops[i+1].rs2);
9307 if (ram_offset && (dops[i+1].is_load || dops[i+1].is_store))
9308 load_regs(regs[i].regmap_entry,regs[i].regmap,ROREG,ROREG);
9309 if (dops[i+1].is_store)
9310 load_regs(regs[i].regmap_entry,regs[i].regmap,INVCP,INVCP);
9311 }
9312 else if(i+1<slen)
9313 {
9314 // Preload registers for following instruction
9315 if(dops[i+1].rs1!=dops[i].rs1&&dops[i+1].rs1!=dops[i].rs2)
9316 if(dops[i+1].rs1!=dops[i].rt1&&dops[i+1].rs1!=dops[i].rt2)
9317 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs1,dops[i+1].rs1);
9318 if(dops[i+1].rs2!=dops[i+1].rs1&&dops[i+1].rs2!=dops[i].rs1&&dops[i+1].rs2!=dops[i].rs2)
9319 if(dops[i+1].rs2!=dops[i].rt1&&dops[i+1].rs2!=dops[i].rt2)
9320 load_regs(regs[i].regmap_entry,regs[i].regmap,dops[i+1].rs2,dops[i+1].rs2);
9321 }
9322 // TODO: if(is_ooo(i)) address_generation(i+1);
9323 if (!dops[i].is_jump || dops[i].itype == CJUMP)
9324 load_regs(regs[i].regmap_entry,regs[i].regmap,CCREG,CCREG);
9325 if (ram_offset && (dops[i].is_load || dops[i].is_store))
9326 load_regs(regs[i].regmap_entry,regs[i].regmap,ROREG,ROREG);
9327 if (dops[i].is_store)
9328 load_regs(regs[i].regmap_entry,regs[i].regmap,INVCP,INVCP);
9329
9330 ds = assemble(i, &regs[i], ccadj[i]);
9331
9332 if (dops[i].is_ujump)
9333 literal_pool(1024);
9334 else
9335 literal_pool_jumpover(256);
9336 }
9337 }
9338
9339 assert(slen > 0);
9340 if (slen > 0 && dops[slen-1].itype == INTCALL) {
9341 // no ending needed for this block since INTCALL never returns
9342 }
9343 // If the block did not end with an unconditional branch,
9344 // add a jump to the next instruction.
9345 else if (i > 1) {
9346 if (!dops[i-2].is_ujump && dops[i-1].itype != SPAN) {
9347 assert(!dops[i-1].is_jump);
9348 assert(i==slen);
9349 if(dops[i-2].itype!=CJUMP&&dops[i-2].itype!=SJUMP) {
9350 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9351 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9352 emit_loadreg(CCREG,HOST_CCREG);
9353 emit_addimm(HOST_CCREG, ccadj[i-1] + CLOCK_ADJUST(1), HOST_CCREG);
9354 }
9355 else
9356 {
9357 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].dirty,start+i*4);
9358 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
9359 }
9360 add_to_linker(out,start+i*4,0);
9361 emit_jmp(0);
9362 }
9363 }
9364 else
9365 {
9366 assert(i>0);
9367 assert(!dops[i-1].is_jump);
9368 store_regs_bt(regs[i-1].regmap,regs[i-1].dirty,start+i*4);
9369 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
9370 emit_loadreg(CCREG,HOST_CCREG);
9371 emit_addimm(HOST_CCREG, ccadj[i-1] + CLOCK_ADJUST(1), HOST_CCREG);
9372 add_to_linker(out,start+i*4,0);
9373 emit_jmp(0);
9374 }
9375
9376 // TODO: delay slot stubs?
9377 // Stubs
9378 for(i=0;i<stubcount;i++)
9379 {
9380 switch(stubs[i].type)
9381 {
9382 case LOADB_STUB:
9383 case LOADH_STUB:
9384 case LOADW_STUB:
9385 case LOADD_STUB:
9386 case LOADBU_STUB:
9387 case LOADHU_STUB:
9388 do_readstub(i);break;
9389 case STOREB_STUB:
9390 case STOREH_STUB:
9391 case STOREW_STUB:
9392 case STORED_STUB:
9393 do_writestub(i);break;
9394 case CC_STUB:
9395 do_ccstub(i);break;
9396 case INVCODE_STUB:
9397 do_invstub(i);break;
9398 case FP_STUB:
9399 do_cop1stub(i);break;
9400 case STORELR_STUB:
9401 do_unalignedwritestub(i);break;
9402 }
9403 }
9404
9405 if (instr_addr0_override)
9406 instr_addr[0] = instr_addr0_override;
9407
9408 /* Pass 9 - Linker */
9409 for(i=0;i<linkcount;i++)
9410 {
9411 assem_debug("%p -> %8x\n",link_addr[i].addr,link_addr[i].target);
9412 literal_pool(64);
9413 if (!link_addr[i].ext)
9414 {
9415 void *stub = out;
9416 void *addr = check_addr(link_addr[i].target);
9417 emit_extjump(link_addr[i].addr, link_addr[i].target);
9418 if (addr) {
9419 set_jump_target(link_addr[i].addr, addr);
9420 add_jump_out(link_addr[i].target,stub);
9421 }
9422 else
9423 set_jump_target(link_addr[i].addr, stub);
9424 }
9425 else
9426 {
9427 // Internal branch
9428 int target=(link_addr[i].target-start)>>2;
9429 assert(target>=0&&target<slen);
9430 assert(instr_addr[target]);
9431 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9432 //set_jump_target_fillslot(link_addr[i].addr,instr_addr[target],link_addr[i].ext>>1);
9433 //#else
9434 set_jump_target(link_addr[i].addr, instr_addr[target]);
9435 //#endif
9436 }
9437 }
9438
9439 u_int source_len = slen*4;
9440 if (dops[slen-1].itype == INTCALL && source_len > 4)
9441 // no need to treat the last instruction as compiled
9442 // as interpreter fully handles it
9443 source_len -= 4;
9444
9445 if ((u_char *)copy + source_len > (u_char *)shadow + sizeof(shadow))
9446 copy = shadow;
9447
9448 // External Branch Targets (jump_in)
9449 for(i=0;i<slen;i++)
9450 {
9451 if(dops[i].bt||i==0)
9452 {
9453 if(instr_addr[i]) // TODO - delay slots (=null)
9454 {
9455 u_int vaddr=start+i*4;
9456 u_int page=get_page(vaddr);
9457 u_int vpage=get_vpage(vaddr);
9458 literal_pool(256);
9459 {
9460 assem_debug("%p (%d) <- %8x\n",instr_addr[i],i,start+i*4);
9461 assem_debug("jump_in: %x\n",start+i*4);
9462 ll_add(jump_dirty+vpage,vaddr,out);
9463 void *entry_point = do_dirty_stub(i, source_len);
9464 ll_add_flags(jump_in+page,vaddr,state_rflags,entry_point);
9465 // If there was an existing entry in the hash table,
9466 // replace it with the new address.
9467 // Don't add new entries. We'll insert the
9468 // ones that actually get used in check_addr().
9469 struct ht_entry *ht_bin = hash_table_get(vaddr);
9470 if (ht_bin->vaddr[0] == vaddr)
9471 ht_bin->tcaddr[0] = entry_point;
9472 if (ht_bin->vaddr[1] == vaddr)
9473 ht_bin->tcaddr[1] = entry_point;
9474 }
9475 }
9476 }
9477 }
9478 // Write out the literal pool if necessary
9479 literal_pool(0);
9480 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
9481 // Align code
9482 if(((u_int)out)&7) emit_addnop(13);
9483 #endif
9484 assert(out - (u_char *)beginning < MAX_OUTPUT_BLOCK_SIZE);
9485 //printf("shadow buffer: %p-%p\n",copy,(u_char *)copy+slen*4);
9486 memcpy(copy, source, source_len);
9487 copy += source_len;
9488
9489 end_block(beginning);
9490
9491 // If we're within 256K of the end of the buffer,
9492 // start over from the beginning. (Is 256K enough?)
9493 if (out > ndrc->translation_cache + sizeof(ndrc->translation_cache) - MAX_OUTPUT_BLOCK_SIZE)
9494 out = ndrc->translation_cache;
9495
9496 // Trap writes to any of the pages we compiled
9497 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
9498 invalid_code[i]=0;
9499 }
9500 inv_code_start=inv_code_end=~0;
9501
9502 // for PCSX we need to mark all mirrors too
9503 if(get_page(start)<(RAM_SIZE>>12))
9504 for(i=start>>12;i<=(start+slen*4)>>12;i++)
9505 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
9506 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
9507 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
9508
9509 /* Pass 10 - Free memory by expiring oldest blocks */
9510
9511 int end=(((out-ndrc->translation_cache)>>(TARGET_SIZE_2-16))+16384)&65535;
9512 while(expirep!=end)
9513 {
9514 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
9515 uintptr_t base_offs = ((uintptr_t)(expirep >> 13) << shift); // Base offset of this block
9516 uintptr_t base_offs_s = base_offs >> shift;
9517 inv_debug("EXP: Phase %d\n",expirep);
9518 switch((expirep>>11)&3)
9519 {
9520 case 0:
9521 // Clear jump_in and jump_dirty
9522 ll_remove_matching_addrs(jump_in+(expirep&2047),base_offs_s,shift);
9523 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base_offs_s,shift);
9524 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base_offs_s,shift);
9525 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base_offs_s,shift);
9526 break;
9527 case 1:
9528 // Clear pointers
9529 ll_kill_pointers(jump_out[expirep&2047],base_offs_s,shift);
9530 ll_kill_pointers(jump_out[(expirep&2047)+2048],base_offs_s,shift);
9531 break;
9532 case 2:
9533 // Clear hash table
9534 for(i=0;i<32;i++) {
9535 struct ht_entry *ht_bin = &hash_table[((expirep&2047)<<5)+i];
9536 uintptr_t o1 = (u_char *)ht_bin->tcaddr[1] - ndrc->translation_cache;
9537 uintptr_t o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
9538 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s) {
9539 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[1],ht_bin->tcaddr[1]);
9540 ht_bin->vaddr[1] = -1;
9541 ht_bin->tcaddr[1] = NULL;
9542 }
9543 o1 = (u_char *)ht_bin->tcaddr[0] - ndrc->translation_cache;
9544 o2 = o1 - MAX_OUTPUT_BLOCK_SIZE;
9545 if ((o1 >> shift) == base_offs_s || (o2 >> shift) == base_offs_s) {
9546 inv_debug("EXP: Remove hash %x -> %p\n",ht_bin->vaddr[0],ht_bin->tcaddr[0]);
9547 ht_bin->vaddr[0] = ht_bin->vaddr[1];
9548 ht_bin->tcaddr[0] = ht_bin->tcaddr[1];
9549 ht_bin->vaddr[1] = -1;
9550 ht_bin->tcaddr[1] = NULL;
9551 }
9552 }
9553 break;
9554 case 3:
9555 // Clear jump_out
9556 if((expirep&2047)==0)
9557 do_clear_cache();
9558 ll_remove_matching_addrs(jump_out+(expirep&2047),base_offs_s,shift);
9559 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base_offs_s,shift);
9560 break;
9561 }
9562 expirep=(expirep+1)&65535;
9563 }
9564#ifdef ASSEM_PRINT
9565 fflush(stdout);
9566#endif
9567 return 0;
9568}
9569
9570// vim:shiftwidth=2:expandtab