supporting caanoo, line doublers, refactoring
[picodrive.git] / pico / carthw / svp / compiler.c
... / ...
CommitLineData
1// SSP1601 to ARM recompiler
2
3// (c) Copyright 2008, Grazvydas "notaz" Ignotas
4// Free for non-commercial use.
5
6#include "../../pico_int.h"
7#include "../../../cpu/drc/cmn.h"
8#include "compiler.h"
9
10// FIXME: asm has these hardcoded
11#define SSP_BLOCKTAB_ENTS (0x5090/2)
12#define SSP_BLOCKTAB_IRAM_ONE (0x800/2) // table entries
13#define SSP_BLOCKTAB_IRAM_ENTS (15*SSP_BLOCKTAB_IRAM_ONE)
14
15static u32 **ssp_block_table; // [0x5090/2];
16static u32 **ssp_block_table_iram; // [15][0x800/2];
17
18static u32 *tcache_ptr = NULL;
19
20static int nblocks = 0;
21static int n_in_ops = 0;
22
23extern ssp1601_t *ssp;
24
25#define rPC ssp->gr[SSP_PC].h
26#define rPMC ssp->gr[SSP_PMC]
27
28#define SSP_FLAG_Z (1<<0xd)
29#define SSP_FLAG_N (1<<0xf)
30
31#ifndef ARM
32//#define DUMP_BLOCK 0x0c9a
33void ssp_drc_next(void){}
34void ssp_drc_next_patch(void){}
35void ssp_drc_end(void){}
36#endif
37
38#define COUNT_OP
39#include "../../../cpu/drc/emit_arm.c"
40
41// -----------------------------------------------------
42
43static int get_inc(int mode)
44{
45 int inc = (mode >> 11) & 7;
46 if (inc != 0) {
47 if (inc != 7) inc--;
48 inc = 1 << inc; // 0 1 2 4 8 16 32 128
49 if (mode & 0x8000) inc = -inc; // decrement mode
50 }
51 return inc;
52}
53
54u32 ssp_pm_read(int reg)
55{
56 u32 d = 0, mode;
57
58 if (ssp->emu_status & SSP_PMC_SET)
59 {
60 ssp->pmac_read[reg] = rPMC.v;
61 ssp->emu_status &= ~SSP_PMC_SET;
62 return 0;
63 }
64
65 // just in case
66 ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
67
68 mode = ssp->pmac_read[reg]>>16;
69 if ((mode & 0xfff0) == 0x0800) // ROM
70 {
71 d = ((unsigned short *)Pico.rom)[ssp->pmac_read[reg]&0xfffff];
72 ssp->pmac_read[reg] += 1;
73 }
74 else if ((mode & 0x47ff) == 0x0018) // DRAM
75 {
76 unsigned short *dram = (unsigned short *)svp->dram;
77 int inc = get_inc(mode);
78 d = dram[ssp->pmac_read[reg]&0xffff];
79 ssp->pmac_read[reg] += inc;
80 }
81
82 // PMC value corresponds to last PMR accessed
83 rPMC.v = ssp->pmac_read[reg];
84
85 return d;
86}
87
88#define overwrite_write(dst, d) \
89{ \
90 if (d & 0xf000) { dst &= ~0xf000; dst |= d & 0xf000; } \
91 if (d & 0x0f00) { dst &= ~0x0f00; dst |= d & 0x0f00; } \
92 if (d & 0x00f0) { dst &= ~0x00f0; dst |= d & 0x00f0; } \
93 if (d & 0x000f) { dst &= ~0x000f; dst |= d & 0x000f; } \
94}
95
96void ssp_pm_write(u32 d, int reg)
97{
98 unsigned short *dram;
99 int mode, addr;
100
101 if (ssp->emu_status & SSP_PMC_SET)
102 {
103 ssp->pmac_write[reg] = rPMC.v;
104 ssp->emu_status &= ~SSP_PMC_SET;
105 return;
106 }
107
108 // just in case
109 ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
110
111 dram = (unsigned short *)svp->dram;
112 mode = ssp->pmac_write[reg]>>16;
113 addr = ssp->pmac_write[reg]&0xffff;
114 if ((mode & 0x43ff) == 0x0018) // DRAM
115 {
116 int inc = get_inc(mode);
117 if (mode & 0x0400) {
118 overwrite_write(dram[addr], d);
119 } else dram[addr] = d;
120 ssp->pmac_write[reg] += inc;
121 }
122 else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
123 {
124 if (mode & 0x0400) {
125 overwrite_write(dram[addr], d);
126 } else dram[addr] = d;
127 ssp->pmac_write[reg] += (addr&1) ? 0x1f : 1;
128 }
129 else if ((mode & 0x47ff) == 0x001c) // IRAM
130 {
131 int inc = get_inc(mode);
132 ((unsigned short *)svp->iram_rom)[addr&0x3ff] = d;
133 ssp->pmac_write[reg] += inc;
134 ssp->drc.iram_dirty = 1;
135 }
136
137 rPMC.v = ssp->pmac_write[reg];
138}
139
140
141// -----------------------------------------------------
142
143// 14 IRAM blocks
144static unsigned char iram_context_map[] =
145{
146 0, 0, 0, 0, 1, 0, 0, 0, // 04
147 0, 0, 0, 0, 0, 0, 2, 0, // 0e
148 0, 0, 0, 0, 0, 3, 0, 4, // 15 17
149 5, 0, 0, 6, 0, 7, 0, 0, // 18 1b 1d
150 8, 9, 0, 0, 0,10, 0, 0, // 20 21 25
151 0, 0, 0, 0, 0, 0, 0, 0,
152 0, 0,11, 0, 0,12, 0, 0, // 32 35
153 13,14, 0, 0, 0, 0, 0, 0 // 38 39
154};
155
156int ssp_get_iram_context(void)
157{
158 unsigned char *ir = (unsigned char *)svp->iram_rom;
159 int val1, val = ir[0x083^1] + ir[0x4FA^1] + ir[0x5F7^1] + ir[0x47B^1];
160 val1 = iram_context_map[(val>>1)&0x3f];
161
162 if (val1 == 0) {
163 elprintf(EL_ANOMALY, "svp: iram ctx val: %02x PC=%04x\n", (val>>1)&0x3f, rPC);
164 //debug_dump2file(name, svp->iram_rom, 0x800);
165 //exit(1);
166 }
167 return val1;
168}
169
170// -----------------------------------------------------
171
172/* regs with known values */
173static struct
174{
175 ssp_reg_t gr[8];
176 unsigned char r[8];
177 unsigned int pmac_read[5];
178 unsigned int pmac_write[5];
179 ssp_reg_t pmc;
180 unsigned int emu_status;
181} known_regs;
182
183#define KRREG_X (1 << SSP_X)
184#define KRREG_Y (1 << SSP_Y)
185#define KRREG_A (1 << SSP_A) /* AH only */
186#define KRREG_ST (1 << SSP_ST)
187#define KRREG_STACK (1 << SSP_STACK)
188#define KRREG_PC (1 << SSP_PC)
189#define KRREG_P (1 << SSP_P)
190#define KRREG_PR0 (1 << 8)
191#define KRREG_PR4 (1 << 12)
192#define KRREG_AL (1 << 16)
193#define KRREG_PMCM (1 << 18) /* only mode word of PMC */
194#define KRREG_PMC (1 << 19)
195#define KRREG_PM0R (1 << 20)
196#define KRREG_PM1R (1 << 21)
197#define KRREG_PM2R (1 << 22)
198#define KRREG_PM3R (1 << 23)
199#define KRREG_PM4R (1 << 24)
200#define KRREG_PM0W (1 << 25)
201#define KRREG_PM1W (1 << 26)
202#define KRREG_PM2W (1 << 27)
203#define KRREG_PM3W (1 << 28)
204#define KRREG_PM4W (1 << 29)
205
206/* bitfield of known register values */
207static u32 known_regb = 0;
208
209/* known vals, which need to be flushed
210 * (only ST, P, r0-r7, PMCx, PMxR, PMxW)
211 * ST means flags are being held in ARM PSR
212 * P means that it needs to be recalculated
213 */
214static u32 dirty_regb = 0;
215
216/* known values of host regs.
217 * -1 - unknown
218 * 000000-00ffff - 16bit value
219 * 100000-10ffff - base reg (r7) + 16bit val
220 * 0r0000 - means reg (low) eq gr[r].h, r != AL
221 */
222static int hostreg_r[4];
223
224static void hostreg_clear(void)
225{
226 int i;
227 for (i = 0; i < 4; i++)
228 hostreg_r[i] = -1;
229}
230
231static void hostreg_sspreg_changed(int sspreg)
232{
233 int i;
234 for (i = 0; i < 4; i++)
235 if (hostreg_r[i] == (sspreg<<16)) hostreg_r[i] = -1;
236}
237
238
239#define PROGRAM(x) ((unsigned short *)svp->iram_rom)[x]
240#define PROGRAM_P(x) ((unsigned short *)svp->iram_rom + (x))
241
242void tr_unhandled(void)
243{
244 //FILE *f = fopen("tcache.bin", "wb");
245 //fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
246 //fclose(f);
247 elprintf(EL_ANOMALY, "unhandled @ %04x\n", known_regs.gr[SSP_PC].h<<1);
248 //exit(1);
249}
250
251/* update P, if needed. Trashes r0 */
252static void tr_flush_dirty_P(void)
253{
254 // TODO: const regs
255 if (!(dirty_regb & KRREG_P)) return;
256 EOP_MOV_REG_ASR(10, 4, 16); // mov r10, r4, asr #16
257 EOP_MOV_REG_LSL( 0, 4, 16); // mov r0, r4, lsl #16
258 EOP_MOV_REG_ASR( 0, 0, 15); // mov r0, r0, asr #15
259 EOP_MUL(10, 0, 10); // mul r10, r0, r10
260 dirty_regb &= ~KRREG_P;
261 hostreg_r[0] = -1;
262}
263
264/* write dirty pr to host reg. Nothing is trashed */
265static void tr_flush_dirty_pr(int r)
266{
267 int ror = 0, reg;
268
269 if (!(dirty_regb & (1 << (r+8)))) return;
270
271 switch (r&3) {
272 case 0: ror = 0; break;
273 case 1: ror = 24/2; break;
274 case 2: ror = 16/2; break;
275 }
276 reg = (r < 4) ? 8 : 9;
277 EOP_BIC_IMM(reg,reg,ror,0xff);
278 if (known_regs.r[r] != 0)
279 EOP_ORR_IMM(reg,reg,ror,known_regs.r[r]);
280 dirty_regb &= ~(1 << (r+8));
281}
282
283/* write all dirty pr0-pr7 to host regs. Nothing is trashed */
284static void tr_flush_dirty_prs(void)
285{
286 int i, ror = 0, reg;
287 int dirty = dirty_regb >> 8;
288 if ((dirty&7) == 7) {
289 emith_move_r_imm(8, known_regs.r[0]|(known_regs.r[1]<<8)|(known_regs.r[2]<<16));
290 dirty &= ~7;
291 }
292 if ((dirty&0x70) == 0x70) {
293 emith_move_r_imm(9, known_regs.r[4]|(known_regs.r[5]<<8)|(known_regs.r[6]<<16));
294 dirty &= ~0x70;
295 }
296 /* r0-r7 */
297 for (i = 0; dirty && i < 8; i++, dirty >>= 1)
298 {
299 if (!(dirty&1)) continue;
300 switch (i&3) {
301 case 0: ror = 0; break;
302 case 1: ror = 24/2; break;
303 case 2: ror = 16/2; break;
304 }
305 reg = (i < 4) ? 8 : 9;
306 EOP_BIC_IMM(reg,reg,ror,0xff);
307 if (known_regs.r[i] != 0)
308 EOP_ORR_IMM(reg,reg,ror,known_regs.r[i]);
309 }
310 dirty_regb &= ~0xff00;
311}
312
313/* write dirty pr and "forget" it. Nothing is trashed. */
314static void tr_release_pr(int r)
315{
316 tr_flush_dirty_pr(r);
317 known_regb &= ~(1 << (r+8));
318}
319
320/* fush ARM PSR to r6. Trashes r1 */
321static void tr_flush_dirty_ST(void)
322{
323 if (!(dirty_regb & KRREG_ST)) return;
324 EOP_BIC_IMM(6,6,0,0x0f);
325 EOP_MRS(1);
326 EOP_ORR_REG_LSR(6,6,1,28);
327 dirty_regb &= ~KRREG_ST;
328 hostreg_r[1] = -1;
329}
330
331/* inverse of above. Trashes r1 */
332static void tr_make_dirty_ST(void)
333{
334 if (dirty_regb & KRREG_ST) return;
335 if (known_regb & KRREG_ST) {
336 int flags = 0;
337 if (known_regs.gr[SSP_ST].h & SSP_FLAG_N) flags |= 8;
338 if (known_regs.gr[SSP_ST].h & SSP_FLAG_Z) flags |= 4;
339 EOP_MSR_IMM(4/2, flags);
340 } else {
341 EOP_MOV_REG_LSL(1, 6, 28);
342 EOP_MSR_REG(1);
343 hostreg_r[1] = -1;
344 }
345 dirty_regb |= KRREG_ST;
346}
347
348/* load 16bit val into host reg r0-r3. Nothing is trashed */
349static void tr_mov16(int r, int val)
350{
351 if (hostreg_r[r] != val) {
352 emith_move_r_imm(r, val);
353 hostreg_r[r] = val;
354 }
355}
356
357static void tr_mov16_cond(int cond, int r, int val)
358{
359 emith_op_imm(cond, 0, A_OP_MOV, r, val);
360 hostreg_r[r] = -1;
361}
362
363/* trashes r1 */
364static void tr_flush_dirty_pmcrs(void)
365{
366 u32 i, val = (u32)-1;
367 if (!(dirty_regb & 0x3ff80000)) return;
368
369 if (dirty_regb & KRREG_PMC) {
370 val = known_regs.pmc.v;
371 emith_move_r_imm(1, val);
372 EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
373
374 if (known_regs.emu_status & (SSP_PMC_SET|SSP_PMC_HAVE_ADDR)) {
375 elprintf(EL_ANOMALY, "!! SSP_PMC_SET|SSP_PMC_HAVE_ADDR set on flush\n");
376 tr_unhandled();
377 }
378 }
379 for (i = 0; i < 5; i++)
380 {
381 if (dirty_regb & (1 << (20+i))) {
382 if (val != known_regs.pmac_read[i]) {
383 val = known_regs.pmac_read[i];
384 emith_move_r_imm(1, val);
385 }
386 EOP_STR_IMM(1,7,0x454+i*4); // pmac_read
387 }
388 if (dirty_regb & (1 << (25+i))) {
389 if (val != known_regs.pmac_write[i]) {
390 val = known_regs.pmac_write[i];
391 emith_move_r_imm(1, val);
392 }
393 EOP_STR_IMM(1,7,0x46c+i*4); // pmac_write
394 }
395 }
396 dirty_regb &= ~0x3ff80000;
397 hostreg_r[1] = -1;
398}
399
400/* read bank word to r0 (upper bits zero). Thrashes r1. */
401static void tr_bank_read(int addr) /* word addr 0-0x1ff */
402{
403 int breg = 7;
404 if (addr > 0x7f) {
405 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
406 EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1); // add r1, r7, ((op&0x180)<<1)
407 hostreg_r[1] = 0x100000|((addr&0x180)<<1);
408 }
409 breg = 1;
410 }
411 EOP_LDRH_IMM(0,breg,(addr&0x7f)<<1); // ldrh r0, [r1, (op&0x7f)<<1]
412 hostreg_r[0] = -1;
413}
414
415/* write r0 to bank. Trashes r1. */
416static void tr_bank_write(int addr)
417{
418 int breg = 7;
419 if (addr > 0x7f) {
420 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
421 EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1); // add r1, r7, ((op&0x180)<<1)
422 hostreg_r[1] = 0x100000|((addr&0x180)<<1);
423 }
424 breg = 1;
425 }
426 EOP_STRH_IMM(0,breg,(addr&0x7f)<<1); // strh r0, [r1, (op&0x7f)<<1]
427}
428
429/* handle RAM bank pointer modifiers. if need_modulo, trash r1-r3, else nothing */
430static void tr_ptrr_mod(int r, int mod, int need_modulo, int count)
431{
432 int modulo_shift = -1; /* unknown */
433
434 if (mod == 0) return;
435
436 if (!need_modulo || mod == 1) // +!
437 modulo_shift = 8;
438 else if (need_modulo && (known_regb & KRREG_ST)) {
439 modulo_shift = known_regs.gr[SSP_ST].h & 7;
440 if (modulo_shift == 0) modulo_shift = 8;
441 }
442
443 if (modulo_shift == -1)
444 {
445 int reg = (r < 4) ? 8 : 9;
446 tr_release_pr(r);
447 if (dirty_regb & KRREG_ST) {
448 // avoid flushing ARM flags
449 EOP_AND_IMM(1, 6, 0, 0x70);
450 EOP_SUB_IMM(1, 1, 0, 0x10);
451 EOP_AND_IMM(1, 1, 0, 0x70);
452 EOP_ADD_IMM(1, 1, 0, 0x10);
453 } else {
454 EOP_C_DOP_IMM(A_COND_AL,A_OP_AND,1,6,1,0,0x70); // ands r1, r6, #0x70
455 EOP_C_DOP_IMM(A_COND_EQ,A_OP_MOV,0,0,1,0,0x80); // moveq r1, #0x80
456 }
457 EOP_MOV_REG_LSR(1, 1, 4); // mov r1, r1, lsr #4
458 EOP_RSB_IMM(2, 1, 0, 8); // rsb r1, r1, #8
459 EOP_MOV_IMM(3, 8/2, count); // mov r3, #0x01000000
460 if (r&3)
461 EOP_ADD_IMM(1, 1, 0, (r&3)*8); // add r1, r1, #(r&3)*8
462 EOP_MOV_REG2_ROR(reg,reg,1); // mov reg, reg, ror r1
463 if (mod == 2)
464 EOP_SUB_REG2_LSL(reg,reg,3,2); // sub reg, reg, #0x01000000 << r2
465 else EOP_ADD_REG2_LSL(reg,reg,3,2);
466 EOP_RSB_IMM(1, 1, 0, 32); // rsb r1, r1, #32
467 EOP_MOV_REG2_ROR(reg,reg,1); // mov reg, reg, ror r1
468 hostreg_r[1] = hostreg_r[2] = hostreg_r[3] = -1;
469 }
470 else if (known_regb & (1 << (r + 8)))
471 {
472 int modulo = (1 << modulo_shift) - 1;
473 if (mod == 2)
474 known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] - count) & modulo);
475 else known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] + count) & modulo);
476 }
477 else
478 {
479 int reg = (r < 4) ? 8 : 9;
480 int ror = ((r&3) + 1)*8 - (8 - modulo_shift);
481 EOP_MOV_REG_ROR(reg,reg,ror);
482 // {add|sub} reg, reg, #1<<shift
483 EOP_C_DOP_IMM(A_COND_AL,(mod==2)?A_OP_SUB:A_OP_ADD,0,reg,reg, 8/2, count << (8 - modulo_shift));
484 EOP_MOV_REG_ROR(reg,reg,32-ror);
485 }
486}
487
488/* handle writes r0 to (rX). Trashes r1.
489 * fortunately we can ignore modulo increment modes for writes. */
490static void tr_rX_write(int op)
491{
492 if ((op&3) == 3)
493 {
494 int mod = (op>>2) & 3; // direct addressing
495 tr_bank_write((op & 0x100) + mod);
496 }
497 else
498 {
499 int r = (op&3) | ((op>>6)&4);
500 if (known_regb & (1 << (r + 8))) {
501 tr_bank_write((op&0x100) | known_regs.r[r]);
502 } else {
503 int reg = (r < 4) ? 8 : 9;
504 int ror = ((4 - (r&3))*8) & 0x1f;
505 EOP_AND_IMM(1,reg,ror/2,0xff); // and r1, r{7,8}, <mask>
506 if (r >= 4)
507 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1); // orr r1, r1, 1<<shift
508 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1); // add r1, r7, r1, lsr #lsr
509 else EOP_ADD_REG_LSL(1,7,1,1);
510 EOP_STRH_SIMPLE(0,1); // strh r0, [r1]
511 hostreg_r[1] = -1;
512 }
513 tr_ptrr_mod(r, (op>>2) & 3, 0, 1);
514 }
515}
516
517/* read (rX) to r0. Trashes r1-r3. */
518static void tr_rX_read(int r, int mod)
519{
520 if ((r&3) == 3)
521 {
522 tr_bank_read(((r << 6) & 0x100) + mod); // direct addressing
523 }
524 else
525 {
526 if (known_regb & (1 << (r + 8))) {
527 tr_bank_read(((r << 6) & 0x100) | known_regs.r[r]);
528 } else {
529 int reg = (r < 4) ? 8 : 9;
530 int ror = ((4 - (r&3))*8) & 0x1f;
531 EOP_AND_IMM(1,reg,ror/2,0xff); // and r1, r{7,8}, <mask>
532 if (r >= 4)
533 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1); // orr r1, r1, 1<<shift
534 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1); // add r1, r7, r1, lsr #lsr
535 else EOP_ADD_REG_LSL(1,7,1,1);
536 EOP_LDRH_SIMPLE(0,1); // ldrh r0, [r1]
537 hostreg_r[0] = hostreg_r[1] = -1;
538 }
539 tr_ptrr_mod(r, mod, 1, 1);
540 }
541}
542
543/* read ((rX)) to r0. Trashes r1,r2. */
544static void tr_rX_read2(int op)
545{
546 int r = (op&3) | ((op>>6)&4); // src
547
548 if ((r&3) == 3) {
549 tr_bank_read((op&0x100) | ((op>>2)&3));
550 } else if (known_regb & (1 << (r+8))) {
551 tr_bank_read((op&0x100) | known_regs.r[r]);
552 } else {
553 int reg = (r < 4) ? 8 : 9;
554 int ror = ((4 - (r&3))*8) & 0x1f;
555 EOP_AND_IMM(1,reg,ror/2,0xff); // and r1, r{7,8}, <mask>
556 if (r >= 4)
557 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1); // orr r1, r1, 1<<shift
558 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1); // add r1, r7, r1, lsr #lsr
559 else EOP_ADD_REG_LSL(1,7,1,1);
560 EOP_LDRH_SIMPLE(0,1); // ldrh r0, [r1]
561 }
562 EOP_LDR_IMM(2,7,0x48c); // ptr_iram_rom
563 EOP_ADD_REG_LSL(2,2,0,1); // add r2, r2, r0, lsl #1
564 EOP_ADD_IMM(0,0,0,1); // add r0, r0, #1
565 if ((r&3) == 3) {
566 tr_bank_write((op&0x100) | ((op>>2)&3));
567 } else if (known_regb & (1 << (r+8))) {
568 tr_bank_write((op&0x100) | known_regs.r[r]);
569 } else {
570 EOP_STRH_SIMPLE(0,1); // strh r0, [r1]
571 hostreg_r[1] = -1;
572 }
573 EOP_LDRH_SIMPLE(0,2); // ldrh r0, [r2]
574 hostreg_r[0] = hostreg_r[2] = -1;
575}
576
577// check if AL is going to be used later in block
578static int tr_predict_al_need(void)
579{
580 int tmpv, tmpv2, op, pc = known_regs.gr[SSP_PC].h;
581
582 while (1)
583 {
584 op = PROGRAM(pc);
585 switch (op >> 9)
586 {
587 // ld d, s
588 case 0x00:
589 tmpv2 = (op >> 4) & 0xf; // dst
590 tmpv = op & 0xf; // src
591 if ((tmpv2 == SSP_A && tmpv == SSP_P) || tmpv2 == SSP_AL) // ld A, P; ld AL, *
592 return 0;
593 break;
594
595 // ld (ri), s
596 case 0x02:
597 // ld ri, s
598 case 0x0a:
599 // OP a, s
600 case 0x10: case 0x30: case 0x40: case 0x60: case 0x70:
601 tmpv = op & 0xf; // src
602 if (tmpv == SSP_AL) // OP *, AL
603 return 1;
604 break;
605
606 case 0x04:
607 case 0x06:
608 case 0x14:
609 case 0x34:
610 case 0x44:
611 case 0x64:
612 case 0x74: pc++; break;
613
614 // call cond, addr
615 case 0x24:
616 // bra cond, addr
617 case 0x26:
618 // mod cond, op
619 case 0x48:
620 // mpys?
621 case 0x1b:
622 // mpya (rj), (ri), b
623 case 0x4b: return 1;
624
625 // mld (rj), (ri), b
626 case 0x5b: return 0; // cleared anyway
627
628 // and A, *
629 case 0x50:
630 tmpv = op & 0xf; // src
631 if (tmpv == SSP_AL) return 1;
632 case 0x51: case 0x53: case 0x54: case 0x55: case 0x59: case 0x5c:
633 return 0;
634 }
635 pc++;
636 }
637}
638
639
640/* get ARM cond which would mean that SSP cond is satisfied. No trash. */
641static int tr_cond_check(int op)
642{
643 int f = (op & 0x100) >> 8;
644 switch (op&0xf0) {
645 case 0x00: return A_COND_AL; /* always true */
646 case 0x50: /* Z matches f(?) bit */
647 if (dirty_regb & KRREG_ST) return f ? A_COND_EQ : A_COND_NE;
648 EOP_TST_IMM(6, 0, 4);
649 return f ? A_COND_NE : A_COND_EQ;
650 case 0x70: /* N matches f(?) bit */
651 if (dirty_regb & KRREG_ST) return f ? A_COND_MI : A_COND_PL;
652 EOP_TST_IMM(6, 0, 8);
653 return f ? A_COND_NE : A_COND_EQ;
654 default:
655 elprintf(EL_ANOMALY, "unimplemented cond?\n");
656 tr_unhandled();
657 return 0;
658 }
659}
660
661static int tr_neg_cond(int cond)
662{
663 switch (cond) {
664 case A_COND_AL: elprintf(EL_ANOMALY, "neg for AL?\n"); exit(1);
665 case A_COND_EQ: return A_COND_NE;
666 case A_COND_NE: return A_COND_EQ;
667 case A_COND_MI: return A_COND_PL;
668 case A_COND_PL: return A_COND_MI;
669 default: elprintf(EL_ANOMALY, "bad cond for neg\n"); exit(1);
670 }
671 return 0;
672}
673
674static int tr_aop_ssp2arm(int op)
675{
676 switch (op) {
677 case 1: return A_OP_SUB;
678 case 3: return A_OP_CMP;
679 case 4: return A_OP_ADD;
680 case 5: return A_OP_AND;
681 case 6: return A_OP_ORR;
682 case 7: return A_OP_EOR;
683 }
684
685 tr_unhandled();
686 return 0;
687}
688
689// -----------------------------------------------------
690
691//@ r4: XXYY
692//@ r5: A
693//@ r6: STACK and emu flags
694//@ r7: SSP context
695//@ r10: P
696
697// read general reg to r0. Trashes r1
698static void tr_GR0_to_r0(int op)
699{
700 tr_mov16(0, 0xffff);
701}
702
703static void tr_X_to_r0(int op)
704{
705 if (hostreg_r[0] != (SSP_X<<16)) {
706 EOP_MOV_REG_LSR(0, 4, 16); // mov r0, r4, lsr #16
707 hostreg_r[0] = SSP_X<<16;
708 }
709}
710
711static void tr_Y_to_r0(int op)
712{
713 if (hostreg_r[0] != (SSP_Y<<16)) {
714 EOP_MOV_REG_SIMPLE(0, 4); // mov r0, r4
715 hostreg_r[0] = SSP_Y<<16;
716 }
717}
718
719static void tr_A_to_r0(int op)
720{
721 if (hostreg_r[0] != (SSP_A<<16)) {
722 EOP_MOV_REG_LSR(0, 5, 16); // mov r0, r5, lsr #16 @ AH
723 hostreg_r[0] = SSP_A<<16;
724 }
725}
726
727static void tr_ST_to_r0(int op)
728{
729 // VR doesn't need much accuracy here..
730 EOP_MOV_REG_LSR(0, 6, 4); // mov r0, r6, lsr #4
731 EOP_AND_IMM(0, 0, 0, 0x67); // and r0, r0, #0x67
732 hostreg_r[0] = -1;
733}
734
735static void tr_STACK_to_r0(int op)
736{
737 // 448
738 EOP_SUB_IMM(6, 6, 8/2, 0x20); // sub r6, r6, #1<<29
739 EOP_ADD_IMM(1, 7, 24/2, 0x04); // add r1, r7, 0x400
740 EOP_ADD_IMM(1, 1, 0, 0x48); // add r1, r1, 0x048
741 EOP_ADD_REG_LSR(1, 1, 6, 28); // add r1, r1, r6, lsr #28
742 EOP_LDRH_SIMPLE(0, 1); // ldrh r0, [r1]
743 hostreg_r[0] = hostreg_r[1] = -1;
744}
745
746static void tr_PC_to_r0(int op)
747{
748 tr_mov16(0, known_regs.gr[SSP_PC].h);
749}
750
751static void tr_P_to_r0(int op)
752{
753 tr_flush_dirty_P();
754 EOP_MOV_REG_LSR(0, 10, 16); // mov r0, r10, lsr #16
755 hostreg_r[0] = -1;
756}
757
758static void tr_AL_to_r0(int op)
759{
760 if (op == 0x000f) {
761 if (known_regb & KRREG_PMC) {
762 known_regs.emu_status &= ~(SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
763 } else {
764 EOP_LDR_IMM(0,7,0x484); // ldr r1, [r7, #0x484] // emu_status
765 EOP_BIC_IMM(0,0,0,SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
766 EOP_STR_IMM(0,7,0x484);
767 }
768 }
769
770 if (hostreg_r[0] != (SSP_AL<<16)) {
771 EOP_MOV_REG_SIMPLE(0, 5); // mov r0, r5
772 hostreg_r[0] = SSP_AL<<16;
773 }
774}
775
776static void tr_PMX_to_r0(int reg)
777{
778 if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
779 {
780 known_regs.pmac_read[reg] = known_regs.pmc.v;
781 known_regs.emu_status &= ~SSP_PMC_SET;
782 known_regb |= 1 << (20+reg);
783 dirty_regb |= 1 << (20+reg);
784 return;
785 }
786
787 if ((known_regb & KRREG_PMC) && (known_regb & (1 << (20+reg))))
788 {
789 u32 pmcv = known_regs.pmac_read[reg];
790 int mode = pmcv>>16;
791 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
792
793 if ((mode & 0xfff0) == 0x0800)
794 {
795 EOP_LDR_IMM(1,7,0x488); // rom_ptr
796 emith_move_r_imm(0, (pmcv&0xfffff)<<1);
797 EOP_LDRH_REG(0,1,0); // ldrh r0, [r1, r0]
798 known_regs.pmac_read[reg] += 1;
799 }
800 else if ((mode & 0x47ff) == 0x0018) // DRAM
801 {
802 int inc = get_inc(mode);
803 EOP_LDR_IMM(1,7,0x490); // dram_ptr
804 emith_move_r_imm(0, (pmcv&0xffff)<<1);
805 EOP_LDRH_REG(0,1,0); // ldrh r0, [r1, r0]
806 if (reg == 4 && (pmcv == 0x187f03 || pmcv == 0x187f04)) // wait loop detection
807 {
808 int flag = (pmcv == 0x187f03) ? SSP_WAIT_30FE06 : SSP_WAIT_30FE08;
809 tr_flush_dirty_ST();
810 EOP_LDR_IMM(1,7,0x484); // ldr r1, [r7, #0x484] // emu_status
811 EOP_TST_REG_SIMPLE(0,0);
812 EOP_C_DOP_IMM(A_COND_EQ,A_OP_SUB,0,11,11,22/2,1); // subeq r11, r11, #1024
813 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1,24/2,flag>>8); // orreq r1, r1, #SSP_WAIT_30FE08
814 EOP_STR_IMM(1,7,0x484); // str r1, [r7, #0x484] // emu_status
815 }
816 known_regs.pmac_read[reg] += inc;
817 }
818 else
819 {
820 tr_unhandled();
821 }
822 known_regs.pmc.v = known_regs.pmac_read[reg];
823 //known_regb |= KRREG_PMC;
824 dirty_regb |= KRREG_PMC;
825 dirty_regb |= 1 << (20+reg);
826 hostreg_r[0] = hostreg_r[1] = -1;
827 return;
828 }
829
830 known_regb &= ~KRREG_PMC;
831 dirty_regb &= ~KRREG_PMC;
832 known_regb &= ~(1 << (20+reg));
833 dirty_regb &= ~(1 << (20+reg));
834
835 // call the C code to handle this
836 tr_flush_dirty_ST();
837 //tr_flush_dirty_pmcrs();
838 tr_mov16(0, reg);
839 emith_call(ssp_pm_read);
840 hostreg_clear();
841}
842
843static void tr_PM0_to_r0(int op)
844{
845 tr_PMX_to_r0(0);
846}
847
848static void tr_PM1_to_r0(int op)
849{
850 tr_PMX_to_r0(1);
851}
852
853static void tr_PM2_to_r0(int op)
854{
855 tr_PMX_to_r0(2);
856}
857
858static void tr_XST_to_r0(int op)
859{
860 EOP_ADD_IMM(0, 7, 24/2, 4); // add r0, r7, #0x400
861 EOP_LDRH_IMM(0, 0, SSP_XST*4+2);
862}
863
864static void tr_PM4_to_r0(int op)
865{
866 tr_PMX_to_r0(4);
867}
868
869static void tr_PMC_to_r0(int op)
870{
871 if (known_regb & KRREG_PMC)
872 {
873 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
874 known_regs.emu_status |= SSP_PMC_SET;
875 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
876 // do nothing - this is handled elsewhere
877 } else {
878 tr_mov16(0, known_regs.pmc.l);
879 known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
880 }
881 }
882 else
883 {
884 EOP_LDR_IMM(1,7,0x484); // ldr r1, [r7, #0x484] // emu_status
885 tr_flush_dirty_ST();
886 if (op != 0x000e)
887 EOP_LDR_IMM(0, 7, 0x400+SSP_PMC*4);
888 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
889 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
890 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
891 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET); // orrne r1, r1, #..
892 EOP_STR_IMM(1,7,0x484);
893 hostreg_r[0] = hostreg_r[1] = -1;
894 }
895}
896
897
898typedef void (tr_read_func)(int op);
899
900static tr_read_func *tr_read_funcs[16] =
901{
902 tr_GR0_to_r0,
903 tr_X_to_r0,
904 tr_Y_to_r0,
905 tr_A_to_r0,
906 tr_ST_to_r0,
907 tr_STACK_to_r0,
908 tr_PC_to_r0,
909 tr_P_to_r0,
910 tr_PM0_to_r0,
911 tr_PM1_to_r0,
912 tr_PM2_to_r0,
913 tr_XST_to_r0,
914 tr_PM4_to_r0,
915 (tr_read_func *)tr_unhandled,
916 tr_PMC_to_r0,
917 tr_AL_to_r0
918};
919
920
921// write r0 to general reg handlers. Trashes r1
922#define TR_WRITE_R0_TO_REG(reg) \
923{ \
924 hostreg_sspreg_changed(reg); \
925 hostreg_r[0] = (reg)<<16; \
926 if (const_val != -1) { \
927 known_regs.gr[reg].h = const_val; \
928 known_regb |= 1 << (reg); \
929 } else { \
930 known_regb &= ~(1 << (reg)); \
931 } \
932}
933
934static void tr_r0_to_GR0(int const_val)
935{
936 // do nothing
937}
938
939static void tr_r0_to_X(int const_val)
940{
941 EOP_MOV_REG_LSL(4, 4, 16); // mov r4, r4, lsl #16
942 EOP_MOV_REG_LSR(4, 4, 16); // mov r4, r4, lsr #16
943 EOP_ORR_REG_LSL(4, 4, 0, 16); // orr r4, r4, r0, lsl #16
944 dirty_regb |= KRREG_P; // touching X or Y makes P dirty.
945 TR_WRITE_R0_TO_REG(SSP_X);
946}
947
948static void tr_r0_to_Y(int const_val)
949{
950 EOP_MOV_REG_LSR(4, 4, 16); // mov r4, r4, lsr #16
951 EOP_ORR_REG_LSL(4, 4, 0, 16); // orr r4, r4, r0, lsl #16
952 EOP_MOV_REG_ROR(4, 4, 16); // mov r4, r4, ror #16
953 dirty_regb |= KRREG_P;
954 TR_WRITE_R0_TO_REG(SSP_Y);
955}
956
957static void tr_r0_to_A(int const_val)
958{
959 if (tr_predict_al_need()) {
960 EOP_MOV_REG_LSL(5, 5, 16); // mov r5, r5, lsl #16
961 EOP_MOV_REG_LSR(5, 5, 16); // mov r5, r5, lsr #16 @ AL
962 EOP_ORR_REG_LSL(5, 5, 0, 16); // orr r5, r5, r0, lsl #16
963 }
964 else
965 EOP_MOV_REG_LSL(5, 0, 16);
966 TR_WRITE_R0_TO_REG(SSP_A);
967}
968
969static void tr_r0_to_ST(int const_val)
970{
971 // VR doesn't need much accuracy here..
972 EOP_AND_IMM(1, 0, 0, 0x67); // and r1, r0, #0x67
973 EOP_AND_IMM(6, 6, 8/2, 0xe0); // and r6, r6, #7<<29 @ preserve STACK
974 EOP_ORR_REG_LSL(6, 6, 1, 4); // orr r6, r6, r1, lsl #4
975 TR_WRITE_R0_TO_REG(SSP_ST);
976 hostreg_r[1] = -1;
977 dirty_regb &= ~KRREG_ST;
978}
979
980static void tr_r0_to_STACK(int const_val)
981{
982 // 448
983 EOP_ADD_IMM(1, 7, 24/2, 0x04); // add r1, r7, 0x400
984 EOP_ADD_IMM(1, 1, 0, 0x48); // add r1, r1, 0x048
985 EOP_ADD_REG_LSR(1, 1, 6, 28); // add r1, r1, r6, lsr #28
986 EOP_STRH_SIMPLE(0, 1); // strh r0, [r1]
987 EOP_ADD_IMM(6, 6, 8/2, 0x20); // add r6, r6, #1<<29
988 hostreg_r[1] = -1;
989}
990
991static void tr_r0_to_PC(int const_val)
992{
993/*
994 * do nothing - dispatcher will take care of this
995 EOP_MOV_REG_LSL(1, 0, 16); // mov r1, r0, lsl #16
996 EOP_STR_IMM(1,7,0x400+6*4); // str r1, [r7, #(0x400+6*8)]
997 hostreg_r[1] = -1;
998*/
999}
1000
1001static void tr_r0_to_AL(int const_val)
1002{
1003 EOP_MOV_REG_LSR(5, 5, 16); // mov r5, r5, lsr #16
1004 EOP_ORR_REG_LSL(5, 5, 0, 16); // orr r5, r5, r0, lsl #16
1005 EOP_MOV_REG_ROR(5, 5, 16); // mov r5, r5, ror #16
1006 hostreg_sspreg_changed(SSP_AL);
1007 if (const_val != -1) {
1008 known_regs.gr[SSP_A].l = const_val;
1009 known_regb |= 1 << SSP_AL;
1010 } else
1011 known_regb &= ~(1 << SSP_AL);
1012}
1013
1014static void tr_r0_to_PMX(int reg)
1015{
1016 if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
1017 {
1018 known_regs.pmac_write[reg] = known_regs.pmc.v;
1019 known_regs.emu_status &= ~SSP_PMC_SET;
1020 known_regb |= 1 << (25+reg);
1021 dirty_regb |= 1 << (25+reg);
1022 return;
1023 }
1024
1025 if ((known_regb & KRREG_PMC) && (known_regb & (1 << (25+reg))))
1026 {
1027 int mode, addr;
1028
1029 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1030
1031 mode = known_regs.pmac_write[reg]>>16;
1032 addr = known_regs.pmac_write[reg]&0xffff;
1033 if ((mode & 0x43ff) == 0x0018) // DRAM
1034 {
1035 int inc = get_inc(mode);
1036 if (mode & 0x0400) tr_unhandled();
1037 EOP_LDR_IMM(1,7,0x490); // dram_ptr
1038 emith_move_r_imm(2, addr << 1);
1039 EOP_STRH_REG(0,1,2); // strh r0, [r1, r2]
1040 known_regs.pmac_write[reg] += inc;
1041 }
1042 else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
1043 {
1044 if (mode & 0x0400) tr_unhandled();
1045 EOP_LDR_IMM(1,7,0x490); // dram_ptr
1046 emith_move_r_imm(2, addr << 1);
1047 EOP_STRH_REG(0,1,2); // strh r0, [r1, r2]
1048 known_regs.pmac_write[reg] += (addr&1) ? 31 : 1;
1049 }
1050 else if ((mode & 0x47ff) == 0x001c) // IRAM
1051 {
1052 int inc = get_inc(mode);
1053 EOP_LDR_IMM(1,7,0x48c); // iram_ptr
1054 emith_move_r_imm(2, (addr&0x3ff) << 1);
1055 EOP_STRH_REG(0,1,2); // strh r0, [r1, r2]
1056 EOP_MOV_IMM(1,0,1);
1057 EOP_STR_IMM(1,7,0x494); // iram_dirty
1058 known_regs.pmac_write[reg] += inc;
1059 }
1060 else
1061 tr_unhandled();
1062
1063 known_regs.pmc.v = known_regs.pmac_write[reg];
1064 //known_regb |= KRREG_PMC;
1065 dirty_regb |= KRREG_PMC;
1066 dirty_regb |= 1 << (25+reg);
1067 hostreg_r[1] = hostreg_r[2] = -1;
1068 return;
1069 }
1070
1071 known_regb &= ~KRREG_PMC;
1072 dirty_regb &= ~KRREG_PMC;
1073 known_regb &= ~(1 << (25+reg));
1074 dirty_regb &= ~(1 << (25+reg));
1075
1076 // call the C code to handle this
1077 tr_flush_dirty_ST();
1078 //tr_flush_dirty_pmcrs();
1079 tr_mov16(1, reg);
1080 emith_call(ssp_pm_write);
1081 hostreg_clear();
1082}
1083
1084static void tr_r0_to_PM0(int const_val)
1085{
1086 tr_r0_to_PMX(0);
1087}
1088
1089static void tr_r0_to_PM1(int const_val)
1090{
1091 tr_r0_to_PMX(1);
1092}
1093
1094static void tr_r0_to_PM2(int const_val)
1095{
1096 tr_r0_to_PMX(2);
1097}
1098
1099static void tr_r0_to_PM4(int const_val)
1100{
1101 tr_r0_to_PMX(4);
1102}
1103
1104static void tr_r0_to_PMC(int const_val)
1105{
1106 if ((known_regb & KRREG_PMC) && const_val != -1)
1107 {
1108 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
1109 known_regs.emu_status |= SSP_PMC_SET;
1110 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1111 known_regs.pmc.h = const_val;
1112 } else {
1113 known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
1114 known_regs.pmc.l = const_val;
1115 }
1116 }
1117 else
1118 {
1119 tr_flush_dirty_ST();
1120 if (known_regb & KRREG_PMC) {
1121 emith_move_r_imm(1, known_regs.pmc.v);
1122 EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
1123 known_regb &= ~KRREG_PMC;
1124 dirty_regb &= ~KRREG_PMC;
1125 }
1126 EOP_LDR_IMM(1,7,0x484); // ldr r1, [r7, #0x484] // emu_status
1127 EOP_ADD_IMM(2,7,24/2,4); // add r2, r7, #0x400
1128 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
1129 EOP_C_AM3_IMM(A_COND_EQ,1,0,2,0,0,1,SSP_PMC*4); // strxx r0, [r2, #SSP_PMC]
1130 EOP_C_AM3_IMM(A_COND_NE,1,0,2,0,0,1,SSP_PMC*4+2);
1131 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
1132 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
1133 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET); // orrne r1, r1, #..
1134 EOP_STR_IMM(1,7,0x484);
1135 hostreg_r[1] = hostreg_r[2] = -1;
1136 }
1137}
1138
1139typedef void (tr_write_func)(int const_val);
1140
1141static tr_write_func *tr_write_funcs[16] =
1142{
1143 tr_r0_to_GR0,
1144 tr_r0_to_X,
1145 tr_r0_to_Y,
1146 tr_r0_to_A,
1147 tr_r0_to_ST,
1148 tr_r0_to_STACK,
1149 tr_r0_to_PC,
1150 (tr_write_func *)tr_unhandled,
1151 tr_r0_to_PM0,
1152 tr_r0_to_PM1,
1153 tr_r0_to_PM2,
1154 (tr_write_func *)tr_unhandled,
1155 tr_r0_to_PM4,
1156 (tr_write_func *)tr_unhandled,
1157 tr_r0_to_PMC,
1158 tr_r0_to_AL
1159};
1160
1161static void tr_mac_load_XY(int op)
1162{
1163 tr_rX_read(op&3, (op>>2)&3); // X
1164 EOP_MOV_REG_LSL(4, 0, 16);
1165 tr_rX_read(((op>>4)&3)|4, (op>>6)&3); // Y
1166 EOP_ORR_REG_SIMPLE(4, 0);
1167 dirty_regb |= KRREG_P;
1168 hostreg_sspreg_changed(SSP_X);
1169 hostreg_sspreg_changed(SSP_Y);
1170 known_regb &= ~KRREG_X;
1171 known_regb &= ~KRREG_Y;
1172}
1173
1174// -----------------------------------------------------
1175
1176static int tr_detect_set_pm(unsigned int op, int *pc, int imm)
1177{
1178 u32 pmcv, tmpv;
1179 if (!((op&0xfef0) == 0x08e0 && (PROGRAM(*pc)&0xfef0) == 0x08e0)) return 0;
1180
1181 // programming PMC:
1182 // ldi PMC, imm1
1183 // ldi PMC, imm2
1184 (*pc)++;
1185 pmcv = imm | (PROGRAM((*pc)++) << 16);
1186 known_regs.pmc.v = pmcv;
1187 known_regb |= KRREG_PMC;
1188 dirty_regb |= KRREG_PMC;
1189 known_regs.emu_status |= SSP_PMC_SET;
1190 n_in_ops++;
1191
1192 // check for possible reg programming
1193 tmpv = PROGRAM(*pc);
1194 if ((tmpv & 0xfff8) == 0x08 || (tmpv & 0xff8f) == 0x80)
1195 {
1196 int is_write = (tmpv & 0xff8f) == 0x80;
1197 int reg = is_write ? ((tmpv>>4)&0x7) : (tmpv&0x7);
1198 if (reg > 4) tr_unhandled();
1199 if ((tmpv & 0x0f) != 0 && (tmpv & 0xf0) != 0) tr_unhandled();
1200 if (is_write)
1201 known_regs.pmac_write[reg] = pmcv;
1202 else
1203 known_regs.pmac_read[reg] = pmcv;
1204 known_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1205 dirty_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1206 known_regs.emu_status &= ~SSP_PMC_SET;
1207 (*pc)++;
1208 n_in_ops++;
1209 return 5;
1210 }
1211
1212 tr_unhandled();
1213 return 4;
1214}
1215
1216static const short pm0_block_seq[] = { 0x0880, 0, 0x0880, 0, 0x0840, 0x60 };
1217
1218static int tr_detect_pm0_block(unsigned int op, int *pc, int imm)
1219{
1220 // ldi ST, 0
1221 // ldi PM0, 0
1222 // ldi PM0, 0
1223 // ldi ST, 60h
1224 unsigned short *pp;
1225 if (op != 0x0840 || imm != 0) return 0;
1226 pp = PROGRAM_P(*pc);
1227 if (memcmp(pp, pm0_block_seq, sizeof(pm0_block_seq)) != 0) return 0;
1228
1229 EOP_AND_IMM(6, 6, 8/2, 0xe0); // and r6, r6, #7<<29 @ preserve STACK
1230 EOP_ORR_IMM(6, 6, 24/2, 6); // orr r6, r6, 0x600
1231 hostreg_sspreg_changed(SSP_ST);
1232 known_regs.gr[SSP_ST].h = 0x60;
1233 known_regb |= 1 << SSP_ST;
1234 dirty_regb &= ~KRREG_ST;
1235 (*pc) += 3*2;
1236 n_in_ops += 3;
1237 return 4*2;
1238}
1239
1240static int tr_detect_rotate(unsigned int op, int *pc, int imm)
1241{
1242 // @ 3DA2 and 426A
1243 // ld PMC, (r3|00)
1244 // ld (r3|00), PMC
1245 // ld -, AL
1246 if (op != 0x02e3 || PROGRAM(*pc) != 0x04e3 || PROGRAM(*pc + 1) != 0x000f) return 0;
1247
1248 tr_bank_read(0);
1249 EOP_MOV_REG_LSL(0, 0, 4);
1250 EOP_ORR_REG_LSR(0, 0, 0, 16);
1251 tr_bank_write(0);
1252 (*pc) += 2;
1253 n_in_ops += 2;
1254 return 3;
1255}
1256
1257// -----------------------------------------------------
1258
1259static int translate_op(unsigned int op, int *pc, int imm, int *end_cond, int *jump_pc)
1260{
1261 u32 tmpv, tmpv2, tmpv3;
1262 int ret = 0;
1263 known_regs.gr[SSP_PC].h = *pc;
1264
1265 switch (op >> 9)
1266 {
1267 // ld d, s
1268 case 0x00:
1269 if (op == 0) { ret++; break; } // nop
1270 tmpv = op & 0xf; // src
1271 tmpv2 = (op >> 4) & 0xf; // dst
1272 if (tmpv2 == SSP_A && tmpv == SSP_P) { // ld A, P
1273 tr_flush_dirty_P();
1274 EOP_MOV_REG_SIMPLE(5, 10);
1275 hostreg_sspreg_changed(SSP_A);
1276 known_regb &= ~(KRREG_A|KRREG_AL);
1277 ret++; break;
1278 }
1279 tr_read_funcs[tmpv](op);
1280 tr_write_funcs[tmpv2]((known_regb & (1 << tmpv)) ? known_regs.gr[tmpv].h : -1);
1281 if (tmpv2 == SSP_PC) {
1282 ret |= 0x10000;
1283 *end_cond = -A_COND_AL;
1284 }
1285 ret++; break;
1286
1287 // ld d, (ri)
1288 case 0x01: {
1289 int r = (op&3) | ((op>>6)&4);
1290 int mod = (op>>2)&3;
1291 tmpv = (op >> 4) & 0xf; // dst
1292 ret = tr_detect_rotate(op, pc, imm);
1293 if (ret > 0) break;
1294 if (tmpv != 0)
1295 tr_rX_read(r, mod);
1296 else {
1297 int cnt = 1;
1298 while (PROGRAM(*pc) == op) {
1299 (*pc)++; cnt++; ret++;
1300 n_in_ops++;
1301 }
1302 tr_ptrr_mod(r, mod, 1, cnt); // skip
1303 }
1304 tr_write_funcs[tmpv](-1);
1305 if (tmpv == SSP_PC) {
1306 ret |= 0x10000;
1307 *end_cond = -A_COND_AL;
1308 }
1309 ret++; break;
1310 }
1311
1312 // ld (ri), s
1313 case 0x02:
1314 tmpv = (op >> 4) & 0xf; // src
1315 tr_read_funcs[tmpv](op);
1316 tr_rX_write(op);
1317 ret++; break;
1318
1319 // ld a, adr
1320 case 0x03:
1321 tr_bank_read(op&0x1ff);
1322 tr_r0_to_A(-1);
1323 ret++; break;
1324
1325 // ldi d, imm
1326 case 0x04:
1327 tmpv = (op & 0xf0) >> 4; // dst
1328 ret = tr_detect_pm0_block(op, pc, imm);
1329 if (ret > 0) break;
1330 ret = tr_detect_set_pm(op, pc, imm);
1331 if (ret > 0) break;
1332 tr_mov16(0, imm);
1333 tr_write_funcs[tmpv](imm);
1334 if (tmpv == SSP_PC) {
1335 ret |= 0x10000;
1336 *jump_pc = imm;
1337 }
1338 ret += 2; break;
1339
1340 // ld d, ((ri))
1341 case 0x05:
1342 tmpv2 = (op >> 4) & 0xf; // dst
1343 tr_rX_read2(op);
1344 tr_write_funcs[tmpv2](-1);
1345 if (tmpv2 == SSP_PC) {
1346 ret |= 0x10000;
1347 *end_cond = -A_COND_AL;
1348 }
1349 ret += 3; break;
1350
1351 // ldi (ri), imm
1352 case 0x06:
1353 tr_mov16(0, imm);
1354 tr_rX_write(op);
1355 ret += 2; break;
1356
1357 // ld adr, a
1358 case 0x07:
1359 tr_A_to_r0(op);
1360 tr_bank_write(op&0x1ff);
1361 ret++; break;
1362
1363 // ld d, ri
1364 case 0x09: {
1365 int r;
1366 r = (op&3) | ((op>>6)&4); // src
1367 tmpv2 = (op >> 4) & 0xf; // dst
1368 if ((r&3) == 3) tr_unhandled();
1369
1370 if (known_regb & (1 << (r+8))) {
1371 tr_mov16(0, known_regs.r[r]);
1372 tr_write_funcs[tmpv2](known_regs.r[r]);
1373 } else {
1374 int reg = (r < 4) ? 8 : 9;
1375 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8); // mov r0, r{7,8}, lsr #lsr
1376 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff); // and r0, r{7,8}, <mask>
1377 hostreg_r[0] = -1;
1378 tr_write_funcs[tmpv2](-1);
1379 }
1380 ret++; break;
1381 }
1382
1383 // ld ri, s
1384 case 0x0a: {
1385 int r;
1386 r = (op&3) | ((op>>6)&4); // dst
1387 tmpv = (op >> 4) & 0xf; // src
1388 if ((r&3) == 3) tr_unhandled();
1389
1390 if (known_regb & (1 << tmpv)) {
1391 known_regs.r[r] = known_regs.gr[tmpv].h;
1392 known_regb |= 1 << (r + 8);
1393 dirty_regb |= 1 << (r + 8);
1394 } else {
1395 int reg = (r < 4) ? 8 : 9;
1396 int ror = ((4 - (r&3))*8) & 0x1f;
1397 tr_read_funcs[tmpv](op);
1398 EOP_BIC_IMM(reg, reg, ror/2, 0xff); // bic r{7,8}, r{7,8}, <mask>
1399 EOP_AND_IMM(0, 0, 0, 0xff); // and r0, r0, 0xff
1400 EOP_ORR_REG_LSL(reg, reg, 0, (r&3)*8); // orr r{7,8}, r{7,8}, r0, lsl #lsl
1401 hostreg_r[0] = -1;
1402 known_regb &= ~(1 << (r+8));
1403 dirty_regb &= ~(1 << (r+8));
1404 }
1405 ret++; break;
1406 }
1407
1408 // ldi ri, simm
1409 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1410 tmpv = (op>>8)&7;
1411 known_regs.r[tmpv] = op;
1412 known_regb |= 1 << (tmpv + 8);
1413 dirty_regb |= 1 << (tmpv + 8);
1414 ret++; break;
1415
1416 // call cond, addr
1417 case 0x24: {
1418 u32 *jump_op = NULL;
1419 tmpv = tr_cond_check(op);
1420 if (tmpv != A_COND_AL) {
1421 jump_op = tcache_ptr;
1422 EOP_MOV_IMM(0, 0, 0); // placeholder for branch
1423 }
1424 tr_mov16(0, *pc);
1425 tr_r0_to_STACK(*pc);
1426 if (tmpv != A_COND_AL) {
1427 u32 *real_ptr = tcache_ptr;
1428 tcache_ptr = jump_op;
1429 EOP_C_B(tr_neg_cond(tmpv),0,real_ptr - jump_op - 2);
1430 tcache_ptr = real_ptr;
1431 }
1432 tr_mov16_cond(tmpv, 0, imm);
1433 if (tmpv != A_COND_AL)
1434 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1435 tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1436 ret |= 0x10000;
1437 *end_cond = tmpv;
1438 *jump_pc = imm;
1439 ret += 2; break;
1440 }
1441
1442 // ld d, (a)
1443 case 0x25:
1444 tmpv2 = (op >> 4) & 0xf; // dst
1445 tr_A_to_r0(op);
1446 EOP_LDR_IMM(1,7,0x48c); // ptr_iram_rom
1447 EOP_ADD_REG_LSL(0,1,0,1); // add r0, r1, r0, lsl #1
1448 EOP_LDRH_SIMPLE(0,0); // ldrh r0, [r0]
1449 hostreg_r[0] = hostreg_r[1] = -1;
1450 tr_write_funcs[tmpv2](-1);
1451 if (tmpv2 == SSP_PC) {
1452 ret |= 0x10000;
1453 *end_cond = -A_COND_AL;
1454 }
1455 ret += 3; break;
1456
1457 // bra cond, addr
1458 case 0x26:
1459 tmpv = tr_cond_check(op);
1460 tr_mov16_cond(tmpv, 0, imm);
1461 if (tmpv != A_COND_AL)
1462 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1463 tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1464 ret |= 0x10000;
1465 *end_cond = tmpv;
1466 *jump_pc = imm;
1467 ret += 2; break;
1468
1469 // mod cond, op
1470 case 0x48: {
1471 // check for repeats of this op
1472 tmpv = 1; // count
1473 while (PROGRAM(*pc) == op && (op & 7) != 6) {
1474 (*pc)++; tmpv++;
1475 n_in_ops++;
1476 }
1477 if ((op&0xf0) != 0) // !always
1478 tr_make_dirty_ST();
1479
1480 tmpv2 = tr_cond_check(op);
1481 switch (op & 7) {
1482 case 2: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_ASR,5); break; // shr (arithmetic)
1483 case 3: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_LSL,5); break; // shl
1484 case 6: EOP_C_DOP_IMM(tmpv2,A_OP_RSB,1,5,5,0,0); break; // neg
1485 case 7: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_EOR,0,5,1,31,A_AM1_ASR,5); // eor r1, r5, r5, asr #31
1486 EOP_C_DOP_REG_XIMM(tmpv2,A_OP_ADD,1,1,5,31,A_AM1_LSR,5); // adds r5, r1, r5, lsr #31
1487 hostreg_r[1] = -1; break; // abs
1488 default: tr_unhandled();
1489 }
1490
1491 hostreg_sspreg_changed(SSP_A);
1492 dirty_regb |= KRREG_ST;
1493 known_regb &= ~KRREG_ST;
1494 known_regb &= ~(KRREG_A|KRREG_AL);
1495 ret += tmpv; break;
1496 }
1497
1498 // mpys?
1499 case 0x1b:
1500 tr_flush_dirty_P();
1501 tr_mac_load_XY(op);
1502 tr_make_dirty_ST();
1503 EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_SUB,1,5,5,0,A_AM1_LSL,10); // subs r5, r5, r10
1504 hostreg_sspreg_changed(SSP_A);
1505 known_regb &= ~(KRREG_A|KRREG_AL);
1506 dirty_regb |= KRREG_ST;
1507 ret++; break;
1508
1509 // mpya (rj), (ri), b
1510 case 0x4b:
1511 tr_flush_dirty_P();
1512 tr_mac_load_XY(op);
1513 tr_make_dirty_ST();
1514 EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_ADD,1,5,5,0,A_AM1_LSL,10); // adds r5, r5, r10
1515 hostreg_sspreg_changed(SSP_A);
1516 known_regb &= ~(KRREG_A|KRREG_AL);
1517 dirty_regb |= KRREG_ST;
1518 ret++; break;
1519
1520 // mld (rj), (ri), b
1521 case 0x5b:
1522 EOP_C_DOP_IMM(A_COND_AL,A_OP_MOV,1,0,5,0,0); // movs r5, #0
1523 hostreg_sspreg_changed(SSP_A);
1524 known_regs.gr[SSP_A].v = 0;
1525 known_regb |= (KRREG_A|KRREG_AL);
1526 dirty_regb |= KRREG_ST;
1527 tr_mac_load_XY(op);
1528 ret++; break;
1529
1530 // OP a, s
1531 case 0x10:
1532 case 0x30:
1533 case 0x40:
1534 case 0x50:
1535 case 0x60:
1536 case 0x70:
1537 tmpv = op & 0xf; // src
1538 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1539 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1540 if (tmpv == SSP_P) {
1541 tr_flush_dirty_P();
1542 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL,10); // OPs r5, r5, r10
1543 } else if (tmpv == SSP_A) {
1544 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL, 5); // OPs r5, r5, r5
1545 } else {
1546 tr_read_funcs[tmpv](op);
1547 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL, 0); // OPs r5, r5, r0, lsl #16
1548 }
1549 hostreg_sspreg_changed(SSP_A);
1550 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1551 dirty_regb |= KRREG_ST;
1552 ret++; break;
1553
1554 // OP a, (ri)
1555 case 0x11:
1556 case 0x31:
1557 case 0x41:
1558 case 0x51:
1559 case 0x61:
1560 case 0x71:
1561 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1562 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1563 tr_rX_read((op&3)|((op>>6)&4), (op>>2)&3);
1564 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1565 hostreg_sspreg_changed(SSP_A);
1566 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1567 dirty_regb |= KRREG_ST;
1568 ret++; break;
1569
1570 // OP a, adr
1571 case 0x13:
1572 case 0x33:
1573 case 0x43:
1574 case 0x53:
1575 case 0x63:
1576 case 0x73:
1577 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1578 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1579 tr_bank_read(op&0x1ff);
1580 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1581 hostreg_sspreg_changed(SSP_A);
1582 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1583 dirty_regb |= KRREG_ST;
1584 ret++; break;
1585
1586 // OP a, imm
1587 case 0x14:
1588 case 0x34:
1589 case 0x44:
1590 case 0x54:
1591 case 0x64:
1592 case 0x74:
1593 tmpv = (op & 0xf0) >> 4;
1594 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1595 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1596 tr_mov16(0, imm);
1597 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1598 hostreg_sspreg_changed(SSP_A);
1599 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1600 dirty_regb |= KRREG_ST;
1601 ret += 2; break;
1602
1603 // OP a, ((ri))
1604 case 0x15:
1605 case 0x35:
1606 case 0x45:
1607 case 0x55:
1608 case 0x65:
1609 case 0x75:
1610 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1611 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1612 tr_rX_read2(op);
1613 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1614 hostreg_sspreg_changed(SSP_A);
1615 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1616 dirty_regb |= KRREG_ST;
1617 ret += 3; break;
1618
1619 // OP a, ri
1620 case 0x19:
1621 case 0x39:
1622 case 0x49:
1623 case 0x59:
1624 case 0x69:
1625 case 0x79: {
1626 int r;
1627 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1628 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1629 r = (op&3) | ((op>>6)&4); // src
1630 if ((r&3) == 3) tr_unhandled();
1631
1632 if (known_regb & (1 << (r+8))) {
1633 EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,known_regs.r[r]); // OPs r5, r5, #val<<16
1634 } else {
1635 int reg = (r < 4) ? 8 : 9;
1636 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8); // mov r0, r{7,8}, lsr #lsr
1637 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff); // and r0, r{7,8}, <mask>
1638 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1639 hostreg_r[0] = -1;
1640 }
1641 hostreg_sspreg_changed(SSP_A);
1642 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1643 dirty_regb |= KRREG_ST;
1644 ret++; break;
1645 }
1646
1647 // OP simm
1648 case 0x1c:
1649 case 0x3c:
1650 case 0x4c:
1651 case 0x5c:
1652 case 0x6c:
1653 case 0x7c:
1654 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1655 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1656 EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,op & 0xff); // OPs r5, r5, #val<<16
1657 hostreg_sspreg_changed(SSP_A);
1658 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1659 dirty_regb |= KRREG_ST;
1660 ret++; break;
1661 }
1662
1663 n_in_ops++;
1664
1665 return ret;
1666}
1667
1668static void emit_block_prologue(void)
1669{
1670 // check if there are enough cycles..
1671 // note: r0 must contain PC of current block
1672 EOP_CMP_IMM(11,0,0); // cmp r11, #0
1673 emith_jump_cond(A_COND_LE, ssp_drc_end);
1674}
1675
1676/* cond:
1677 * >0: direct (un)conditional jump
1678 * <0: indirect jump
1679 */
1680static void emit_block_epilogue(int cycles, int cond, int pc, int end_pc)
1681{
1682 if (cycles > 0xff) { elprintf(EL_ANOMALY, "large cycle count: %i\n", cycles); cycles = 0xff; }
1683 EOP_SUB_IMM(11,11,0,cycles); // sub r11, r11, #cycles
1684
1685 if (cond < 0 || (end_pc >= 0x400 && pc < 0x400)) {
1686 // indirect jump, or rom -> iram jump, must use dispatcher
1687 emith_jump(ssp_drc_next);
1688 }
1689 else if (cond == A_COND_AL) {
1690 u32 *target = (pc < 0x400) ?
1691 ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + pc] :
1692 ssp_block_table[pc];
1693 if (target != NULL)
1694 emith_jump(target);
1695 else {
1696 int ops = emith_jump(ssp_drc_next);
1697 // cause the next block to be emitted over jump instruction
1698 tcache_ptr -= ops;
1699 }
1700 }
1701 else {
1702 u32 *target1 = (pc < 0x400) ?
1703 ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + pc] :
1704 ssp_block_table[pc];
1705 u32 *target2 = (end_pc < 0x400) ?
1706 ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + end_pc] :
1707 ssp_block_table[end_pc];
1708 if (target1 != NULL)
1709 emith_jump_cond(cond, target1);
1710 if (target2 != NULL)
1711 emith_jump_cond(tr_neg_cond(cond), target2); // neg_cond, to be able to swap jumps if needed
1712#ifndef __EPOC32__
1713 // emit patchable branches
1714 if (target1 == NULL)
1715 emith_call_cond(cond, ssp_drc_next_patch);
1716 if (target2 == NULL)
1717 emith_call_cond(tr_neg_cond(cond), ssp_drc_next_patch);
1718#else
1719 // won't patch indirect jumps
1720 if (target1 == NULL || target2 == NULL)
1721 emith_jump(ssp_drc_next);
1722#endif
1723 }
1724}
1725
1726void *ssp_translate_block(int pc)
1727{
1728 unsigned int op, op1, imm, ccount = 0;
1729 unsigned int *block_start;
1730 int ret, end_cond = A_COND_AL, jump_pc = -1;
1731
1732 //printf("translate %04x -> %04x\n", pc<<1, (tcache_ptr-tcache)<<2);
1733
1734 block_start = tcache_ptr;
1735 known_regb = 0;
1736 dirty_regb = KRREG_P;
1737 known_regs.emu_status = 0;
1738 hostreg_clear();
1739
1740 emit_block_prologue();
1741
1742 for (; ccount < 100;)
1743 {
1744 op = PROGRAM(pc++);
1745 op1 = op >> 9;
1746 imm = (u32)-1;
1747
1748 if ((op1 & 0xf) == 4 || (op1 & 0xf) == 6)
1749 imm = PROGRAM(pc++); // immediate
1750
1751 ret = translate_op(op, &pc, imm, &end_cond, &jump_pc);
1752 if (ret <= 0)
1753 {
1754 elprintf(EL_ANOMALY, "NULL func! op=%08x (%02x)\n", op, op1);
1755 //exit(1);
1756 }
1757
1758 ccount += ret & 0xffff;
1759 if (ret & 0x10000) break;
1760 }
1761
1762 if (ccount >= 100) {
1763 end_cond = A_COND_AL;
1764 jump_pc = pc;
1765 emith_move_r_imm(0, pc);
1766 }
1767
1768 tr_flush_dirty_prs();
1769 tr_flush_dirty_ST();
1770 tr_flush_dirty_pmcrs();
1771 emit_block_epilogue(ccount, end_cond, jump_pc, pc);
1772
1773 if (tcache_ptr - (u32 *)tcache > DRC_TCACHE_SIZE/4) {
1774 elprintf(EL_ANOMALY|EL_STATUS|EL_SVP, "tcache overflow!\n");
1775 fflush(stdout);
1776 exit(1);
1777 }
1778
1779 // stats
1780 nblocks++;
1781 //printf("%i blocks, %i bytes, k=%.3f\n", nblocks, (tcache_ptr - tcache)*4,
1782 // (double)(tcache_ptr - tcache) / (double)n_in_ops);
1783
1784#ifdef DUMP_BLOCK
1785 {
1786 FILE *f = fopen("tcache.bin", "wb");
1787 fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
1788 fclose(f);
1789 }
1790 printf("dumped tcache.bin\n");
1791 exit(0);
1792#endif
1793
1794#ifdef ARM
1795 cache_flush_d_inval_i(tcache, tcache_ptr);
1796#endif
1797
1798 return block_start;
1799}
1800
1801
1802
1803// -----------------------------------------------------
1804
1805static void ssp1601_state_load(void)
1806{
1807 ssp->drc.iram_dirty = 1;
1808 ssp->drc.iram_context = 0;
1809}
1810
1811void ssp1601_dyn_exit(void)
1812{
1813 free(ssp_block_table);
1814 free(ssp_block_table_iram);
1815 ssp_block_table = ssp_block_table_iram = NULL;
1816
1817 drc_cmn_cleanup();
1818}
1819
1820int ssp1601_dyn_startup(void)
1821{
1822 drc_cmn_init();
1823
1824 ssp_block_table = calloc(sizeof(ssp_block_table[0]), SSP_BLOCKTAB_ENTS);
1825 if (ssp_block_table == NULL)
1826 return -1;
1827 ssp_block_table_iram = calloc(sizeof(ssp_block_table_iram[0]), SSP_BLOCKTAB_IRAM_ENTS);
1828 if (ssp_block_table_iram == NULL) {
1829 free(ssp_block_table);
1830 return -1;
1831 }
1832
1833 memset(tcache, 0, DRC_TCACHE_SIZE);
1834 tcache_ptr = (void *)tcache;
1835
1836 PicoLoadStateHook = ssp1601_state_load;
1837
1838 n_in_ops = 0;
1839#ifdef ARM
1840 // hle'd blocks
1841 ssp_block_table[0x800/2] = (void *) ssp_hle_800;
1842 ssp_block_table[0x902/2] = (void *) ssp_hle_902;
1843 ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x030/2] = (void *) ssp_hle_07_030;
1844 ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x036/2] = (void *) ssp_hle_07_036;
1845 ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x6d6/2] = (void *) ssp_hle_07_6d6;
1846 ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x12c/2] = (void *) ssp_hle_11_12c;
1847 ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x384/2] = (void *) ssp_hle_11_384;
1848 ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x38a/2] = (void *) ssp_hle_11_38a;
1849#endif
1850
1851 return 0;
1852}
1853
1854
1855void ssp1601_dyn_reset(ssp1601_t *ssp)
1856{
1857 ssp1601_reset(ssp);
1858 ssp->drc.iram_dirty = 1;
1859 ssp->drc.iram_context = 0;
1860 // must do this here because ssp is not available @ startup()
1861 ssp->drc.ptr_rom = (u32) Pico.rom;
1862 ssp->drc.ptr_iram_rom = (u32) svp->iram_rom;
1863 ssp->drc.ptr_dram = (u32) svp->dram;
1864 ssp->drc.ptr_btable = (u32) ssp_block_table;
1865 ssp->drc.ptr_btable_iram = (u32) ssp_block_table_iram;
1866
1867 // prevent new versions of IRAM from appearing
1868 memset(svp->iram_rom, 0, 0x800);
1869}
1870
1871
1872void ssp1601_dyn_run(int cycles)
1873{
1874 if (ssp->emu_status & SSP_WAIT_MASK) return;
1875
1876#ifdef DUMP_BLOCK
1877 ssp_translate_block(DUMP_BLOCK >> 1);
1878#endif
1879#ifdef ARM
1880 ssp_drc_entry(cycles);
1881#endif
1882}
1883