32x: split sh2 code, compiler stub
[picodrive.git] / pico / carthw / svp / compiler.c
... / ...
CommitLineData
1// SSP1601 to ARM recompiler
2
3// (c) Copyright 2008, Grazvydas "notaz" Ignotas
4// Free for non-commercial use.
5
6#include "../../pico_int.h"
7#include "../../../cpu/drc/cmn.h"
8#include "compiler.h"
9
10#define u32 unsigned int
11
12static u32 *tcache_ptr = NULL;
13
14static int nblocks = 0;
15static int n_in_ops = 0;
16
17extern ssp1601_t *ssp;
18
19#define rPC ssp->gr[SSP_PC].h
20#define rPMC ssp->gr[SSP_PMC]
21
22#define SSP_FLAG_Z (1<<0xd)
23#define SSP_FLAG_N (1<<0xf)
24
25#ifndef ARM
26#define DUMP_BLOCK 0x0c9a
27void ssp_drc_next(void){}
28void ssp_drc_next_patch(void){}
29void ssp_drc_end(void){}
30#endif
31
32#include "gen_arm.c"
33
34// -----------------------------------------------------
35
36static int get_inc(int mode)
37{
38 int inc = (mode >> 11) & 7;
39 if (inc != 0) {
40 if (inc != 7) inc--;
41 inc = 1 << inc; // 0 1 2 4 8 16 32 128
42 if (mode & 0x8000) inc = -inc; // decrement mode
43 }
44 return inc;
45}
46
47u32 ssp_pm_read(int reg)
48{
49 u32 d = 0, mode;
50
51 if (ssp->emu_status & SSP_PMC_SET)
52 {
53 ssp->pmac_read[reg] = rPMC.v;
54 ssp->emu_status &= ~SSP_PMC_SET;
55 return 0;
56 }
57
58 // just in case
59 ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
60
61 mode = ssp->pmac_read[reg]>>16;
62 if ((mode & 0xfff0) == 0x0800) // ROM
63 {
64 d = ((unsigned short *)Pico.rom)[ssp->pmac_read[reg]&0xfffff];
65 ssp->pmac_read[reg] += 1;
66 }
67 else if ((mode & 0x47ff) == 0x0018) // DRAM
68 {
69 unsigned short *dram = (unsigned short *)svp->dram;
70 int inc = get_inc(mode);
71 d = dram[ssp->pmac_read[reg]&0xffff];
72 ssp->pmac_read[reg] += inc;
73 }
74
75 // PMC value corresponds to last PMR accessed
76 rPMC.v = ssp->pmac_read[reg];
77
78 return d;
79}
80
81#define overwrite_write(dst, d) \
82{ \
83 if (d & 0xf000) { dst &= ~0xf000; dst |= d & 0xf000; } \
84 if (d & 0x0f00) { dst &= ~0x0f00; dst |= d & 0x0f00; } \
85 if (d & 0x00f0) { dst &= ~0x00f0; dst |= d & 0x00f0; } \
86 if (d & 0x000f) { dst &= ~0x000f; dst |= d & 0x000f; } \
87}
88
89void ssp_pm_write(u32 d, int reg)
90{
91 unsigned short *dram;
92 int mode, addr;
93
94 if (ssp->emu_status & SSP_PMC_SET)
95 {
96 ssp->pmac_write[reg] = rPMC.v;
97 ssp->emu_status &= ~SSP_PMC_SET;
98 return;
99 }
100
101 // just in case
102 ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
103
104 dram = (unsigned short *)svp->dram;
105 mode = ssp->pmac_write[reg]>>16;
106 addr = ssp->pmac_write[reg]&0xffff;
107 if ((mode & 0x43ff) == 0x0018) // DRAM
108 {
109 int inc = get_inc(mode);
110 if (mode & 0x0400) {
111 overwrite_write(dram[addr], d);
112 } else dram[addr] = d;
113 ssp->pmac_write[reg] += inc;
114 }
115 else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
116 {
117 if (mode & 0x0400) {
118 overwrite_write(dram[addr], d);
119 } else dram[addr] = d;
120 ssp->pmac_write[reg] += (addr&1) ? 0x1f : 1;
121 }
122 else if ((mode & 0x47ff) == 0x001c) // IRAM
123 {
124 int inc = get_inc(mode);
125 ((unsigned short *)svp->iram_rom)[addr&0x3ff] = d;
126 ssp->pmac_write[reg] += inc;
127 ssp->drc.iram_dirty = 1;
128 }
129
130 rPMC.v = ssp->pmac_write[reg];
131}
132
133
134// -----------------------------------------------------
135
136// 14 IRAM blocks
137static unsigned char iram_context_map[] =
138{
139 0, 0, 0, 0, 1, 0, 0, 0, // 04
140 0, 0, 0, 0, 0, 0, 2, 0, // 0e
141 0, 0, 0, 0, 0, 3, 0, 4, // 15 17
142 5, 0, 0, 6, 0, 7, 0, 0, // 18 1b 1d
143 8, 9, 0, 0, 0,10, 0, 0, // 20 21 25
144 0, 0, 0, 0, 0, 0, 0, 0,
145 0, 0,11, 0, 0,12, 0, 0, // 32 35
146 13,14, 0, 0, 0, 0, 0, 0 // 38 39
147};
148
149int ssp_get_iram_context(void)
150{
151 unsigned char *ir = (unsigned char *)svp->iram_rom;
152 int val1, val = ir[0x083^1] + ir[0x4FA^1] + ir[0x5F7^1] + ir[0x47B^1];
153 val1 = iram_context_map[(val>>1)&0x3f];
154
155 if (val1 == 0) {
156 elprintf(EL_ANOMALY, "svp: iram ctx val: %02x PC=%04x\n", (val>>1)&0x3f, rPC);
157 //debug_dump2file(name, svp->iram_rom, 0x800);
158 //exit(1);
159 }
160 return val1;
161}
162
163// -----------------------------------------------------
164
165/* regs with known values */
166static struct
167{
168 ssp_reg_t gr[8];
169 unsigned char r[8];
170 unsigned int pmac_read[5];
171 unsigned int pmac_write[5];
172 ssp_reg_t pmc;
173 unsigned int emu_status;
174} known_regs;
175
176#define KRREG_X (1 << SSP_X)
177#define KRREG_Y (1 << SSP_Y)
178#define KRREG_A (1 << SSP_A) /* AH only */
179#define KRREG_ST (1 << SSP_ST)
180#define KRREG_STACK (1 << SSP_STACK)
181#define KRREG_PC (1 << SSP_PC)
182#define KRREG_P (1 << SSP_P)
183#define KRREG_PR0 (1 << 8)
184#define KRREG_PR4 (1 << 12)
185#define KRREG_AL (1 << 16)
186#define KRREG_PMCM (1 << 18) /* only mode word of PMC */
187#define KRREG_PMC (1 << 19)
188#define KRREG_PM0R (1 << 20)
189#define KRREG_PM1R (1 << 21)
190#define KRREG_PM2R (1 << 22)
191#define KRREG_PM3R (1 << 23)
192#define KRREG_PM4R (1 << 24)
193#define KRREG_PM0W (1 << 25)
194#define KRREG_PM1W (1 << 26)
195#define KRREG_PM2W (1 << 27)
196#define KRREG_PM3W (1 << 28)
197#define KRREG_PM4W (1 << 29)
198
199/* bitfield of known register values */
200static u32 known_regb = 0;
201
202/* known vals, which need to be flushed
203 * (only ST, P, r0-r7, PMCx, PMxR, PMxW)
204 * ST means flags are being held in ARM PSR
205 * P means that it needs to be recalculated
206 */
207static u32 dirty_regb = 0;
208
209/* known values of host regs.
210 * -1 - unknown
211 * 000000-00ffff - 16bit value
212 * 100000-10ffff - base reg (r7) + 16bit val
213 * 0r0000 - means reg (low) eq gr[r].h, r != AL
214 */
215static int hostreg_r[4];
216
217static void hostreg_clear(void)
218{
219 int i;
220 for (i = 0; i < 4; i++)
221 hostreg_r[i] = -1;
222}
223
224static void hostreg_sspreg_changed(int sspreg)
225{
226 int i;
227 for (i = 0; i < 4; i++)
228 if (hostreg_r[i] == (sspreg<<16)) hostreg_r[i] = -1;
229}
230
231
232#define PROGRAM(x) ((unsigned short *)svp->iram_rom)[x]
233#define PROGRAM_P(x) ((unsigned short *)svp->iram_rom + (x))
234
235void tr_unhandled(void)
236{
237 //FILE *f = fopen("tcache.bin", "wb");
238 //fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
239 //fclose(f);
240 elprintf(EL_ANOMALY, "unhandled @ %04x\n", known_regs.gr[SSP_PC].h<<1);
241 //exit(1);
242}
243
244/* update P, if needed. Trashes r0 */
245static void tr_flush_dirty_P(void)
246{
247 // TODO: const regs
248 if (!(dirty_regb & KRREG_P)) return;
249 EOP_MOV_REG_ASR(10, 4, 16); // mov r10, r4, asr #16
250 EOP_MOV_REG_LSL( 0, 4, 16); // mov r0, r4, lsl #16
251 EOP_MOV_REG_ASR( 0, 0, 15); // mov r0, r0, asr #15
252 EOP_MUL(10, 0, 10); // mul r10, r0, r10
253 dirty_regb &= ~KRREG_P;
254 hostreg_r[0] = -1;
255}
256
257/* write dirty pr to host reg. Nothing is trashed */
258static void tr_flush_dirty_pr(int r)
259{
260 int ror = 0, reg;
261
262 if (!(dirty_regb & (1 << (r+8)))) return;
263
264 switch (r&3) {
265 case 0: ror = 0; break;
266 case 1: ror = 24/2; break;
267 case 2: ror = 16/2; break;
268 }
269 reg = (r < 4) ? 8 : 9;
270 EOP_BIC_IMM(reg,reg,ror,0xff);
271 if (known_regs.r[r] != 0)
272 EOP_ORR_IMM(reg,reg,ror,known_regs.r[r]);
273 dirty_regb &= ~(1 << (r+8));
274}
275
276/* write all dirty pr0-pr7 to host regs. Nothing is trashed */
277static void tr_flush_dirty_prs(void)
278{
279 int i, ror = 0, reg;
280 int dirty = dirty_regb >> 8;
281 if ((dirty&7) == 7) {
282 emit_mov_const(A_COND_AL, 8, known_regs.r[0]|(known_regs.r[1]<<8)|(known_regs.r[2]<<16));
283 dirty &= ~7;
284 }
285 if ((dirty&0x70) == 0x70) {
286 emit_mov_const(A_COND_AL, 9, known_regs.r[4]|(known_regs.r[5]<<8)|(known_regs.r[6]<<16));
287 dirty &= ~0x70;
288 }
289 /* r0-r7 */
290 for (i = 0; dirty && i < 8; i++, dirty >>= 1)
291 {
292 if (!(dirty&1)) continue;
293 switch (i&3) {
294 case 0: ror = 0; break;
295 case 1: ror = 24/2; break;
296 case 2: ror = 16/2; break;
297 }
298 reg = (i < 4) ? 8 : 9;
299 EOP_BIC_IMM(reg,reg,ror,0xff);
300 if (known_regs.r[i] != 0)
301 EOP_ORR_IMM(reg,reg,ror,known_regs.r[i]);
302 }
303 dirty_regb &= ~0xff00;
304}
305
306/* write dirty pr and "forget" it. Nothing is trashed. */
307static void tr_release_pr(int r)
308{
309 tr_flush_dirty_pr(r);
310 known_regb &= ~(1 << (r+8));
311}
312
313/* fush ARM PSR to r6. Trashes r1 */
314static void tr_flush_dirty_ST(void)
315{
316 if (!(dirty_regb & KRREG_ST)) return;
317 EOP_BIC_IMM(6,6,0,0x0f);
318 EOP_MRS(1);
319 EOP_ORR_REG_LSR(6,6,1,28);
320 dirty_regb &= ~KRREG_ST;
321 hostreg_r[1] = -1;
322}
323
324/* inverse of above. Trashes r1 */
325static void tr_make_dirty_ST(void)
326{
327 if (dirty_regb & KRREG_ST) return;
328 if (known_regb & KRREG_ST) {
329 int flags = 0;
330 if (known_regs.gr[SSP_ST].h & SSP_FLAG_N) flags |= 8;
331 if (known_regs.gr[SSP_ST].h & SSP_FLAG_Z) flags |= 4;
332 EOP_MSR_IMM(4/2, flags);
333 } else {
334 EOP_MOV_REG_LSL(1, 6, 28);
335 EOP_MSR_REG(1);
336 hostreg_r[1] = -1;
337 }
338 dirty_regb |= KRREG_ST;
339}
340
341/* load 16bit val into host reg r0-r3. Nothing is trashed */
342static void tr_mov16(int r, int val)
343{
344 if (hostreg_r[r] != val) {
345 emit_mov_const(A_COND_AL, r, val);
346 hostreg_r[r] = val;
347 }
348}
349
350static void tr_mov16_cond(int cond, int r, int val)
351{
352 emit_mov_const(cond, r, val);
353 hostreg_r[r] = -1;
354}
355
356/* trashes r1 */
357static void tr_flush_dirty_pmcrs(void)
358{
359 u32 i, val = (u32)-1;
360 if (!(dirty_regb & 0x3ff80000)) return;
361
362 if (dirty_regb & KRREG_PMC) {
363 val = known_regs.pmc.v;
364 emit_mov_const(A_COND_AL, 1, val);
365 EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
366
367 if (known_regs.emu_status & (SSP_PMC_SET|SSP_PMC_HAVE_ADDR)) {
368 elprintf(EL_ANOMALY, "!! SSP_PMC_SET|SSP_PMC_HAVE_ADDR set on flush\n");
369 tr_unhandled();
370 }
371 }
372 for (i = 0; i < 5; i++)
373 {
374 if (dirty_regb & (1 << (20+i))) {
375 if (val != known_regs.pmac_read[i]) {
376 val = known_regs.pmac_read[i];
377 emit_mov_const(A_COND_AL, 1, val);
378 }
379 EOP_STR_IMM(1,7,0x454+i*4); // pmac_read
380 }
381 if (dirty_regb & (1 << (25+i))) {
382 if (val != known_regs.pmac_write[i]) {
383 val = known_regs.pmac_write[i];
384 emit_mov_const(A_COND_AL, 1, val);
385 }
386 EOP_STR_IMM(1,7,0x46c+i*4); // pmac_write
387 }
388 }
389 dirty_regb &= ~0x3ff80000;
390 hostreg_r[1] = -1;
391}
392
393/* read bank word to r0 (upper bits zero). Thrashes r1. */
394static void tr_bank_read(int addr) /* word addr 0-0x1ff */
395{
396 int breg = 7;
397 if (addr > 0x7f) {
398 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
399 EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1); // add r1, r7, ((op&0x180)<<1)
400 hostreg_r[1] = 0x100000|((addr&0x180)<<1);
401 }
402 breg = 1;
403 }
404 EOP_LDRH_IMM(0,breg,(addr&0x7f)<<1); // ldrh r0, [r1, (op&0x7f)<<1]
405 hostreg_r[0] = -1;
406}
407
408/* write r0 to bank. Trashes r1. */
409static void tr_bank_write(int addr)
410{
411 int breg = 7;
412 if (addr > 0x7f) {
413 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
414 EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1); // add r1, r7, ((op&0x180)<<1)
415 hostreg_r[1] = 0x100000|((addr&0x180)<<1);
416 }
417 breg = 1;
418 }
419 EOP_STRH_IMM(0,breg,(addr&0x7f)<<1); // strh r0, [r1, (op&0x7f)<<1]
420}
421
422/* handle RAM bank pointer modifiers. if need_modulo, trash r1-r3, else nothing */
423static void tr_ptrr_mod(int r, int mod, int need_modulo, int count)
424{
425 int modulo_shift = -1; /* unknown */
426
427 if (mod == 0) return;
428
429 if (!need_modulo || mod == 1) // +!
430 modulo_shift = 8;
431 else if (need_modulo && (known_regb & KRREG_ST)) {
432 modulo_shift = known_regs.gr[SSP_ST].h & 7;
433 if (modulo_shift == 0) modulo_shift = 8;
434 }
435
436 if (modulo_shift == -1)
437 {
438 int reg = (r < 4) ? 8 : 9;
439 tr_release_pr(r);
440 if (dirty_regb & KRREG_ST) {
441 // avoid flushing ARM flags
442 EOP_AND_IMM(1, 6, 0, 0x70);
443 EOP_SUB_IMM(1, 1, 0, 0x10);
444 EOP_AND_IMM(1, 1, 0, 0x70);
445 EOP_ADD_IMM(1, 1, 0, 0x10);
446 } else {
447 EOP_C_DOP_IMM(A_COND_AL,A_OP_AND,1,6,1,0,0x70); // ands r1, r6, #0x70
448 EOP_C_DOP_IMM(A_COND_EQ,A_OP_MOV,0,0,1,0,0x80); // moveq r1, #0x80
449 }
450 EOP_MOV_REG_LSR(1, 1, 4); // mov r1, r1, lsr #4
451 EOP_RSB_IMM(2, 1, 0, 8); // rsb r1, r1, #8
452 EOP_MOV_IMM(3, 8/2, count); // mov r3, #0x01000000
453 if (r&3)
454 EOP_ADD_IMM(1, 1, 0, (r&3)*8); // add r1, r1, #(r&3)*8
455 EOP_MOV_REG2_ROR(reg,reg,1); // mov reg, reg, ror r1
456 if (mod == 2)
457 EOP_SUB_REG2_LSL(reg,reg,3,2); // sub reg, reg, #0x01000000 << r2
458 else EOP_ADD_REG2_LSL(reg,reg,3,2);
459 EOP_RSB_IMM(1, 1, 0, 32); // rsb r1, r1, #32
460 EOP_MOV_REG2_ROR(reg,reg,1); // mov reg, reg, ror r1
461 hostreg_r[1] = hostreg_r[2] = hostreg_r[3] = -1;
462 }
463 else if (known_regb & (1 << (r + 8)))
464 {
465 int modulo = (1 << modulo_shift) - 1;
466 if (mod == 2)
467 known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] - count) & modulo);
468 else known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] + count) & modulo);
469 }
470 else
471 {
472 int reg = (r < 4) ? 8 : 9;
473 int ror = ((r&3) + 1)*8 - (8 - modulo_shift);
474 EOP_MOV_REG_ROR(reg,reg,ror);
475 // {add|sub} reg, reg, #1<<shift
476 EOP_C_DOP_IMM(A_COND_AL,(mod==2)?A_OP_SUB:A_OP_ADD,0,reg,reg, 8/2, count << (8 - modulo_shift));
477 EOP_MOV_REG_ROR(reg,reg,32-ror);
478 }
479}
480
481/* handle writes r0 to (rX). Trashes r1.
482 * fortunately we can ignore modulo increment modes for writes. */
483static void tr_rX_write(int op)
484{
485 if ((op&3) == 3)
486 {
487 int mod = (op>>2) & 3; // direct addressing
488 tr_bank_write((op & 0x100) + mod);
489 }
490 else
491 {
492 int r = (op&3) | ((op>>6)&4);
493 if (known_regb & (1 << (r + 8))) {
494 tr_bank_write((op&0x100) | known_regs.r[r]);
495 } else {
496 int reg = (r < 4) ? 8 : 9;
497 int ror = ((4 - (r&3))*8) & 0x1f;
498 EOP_AND_IMM(1,reg,ror/2,0xff); // and r1, r{7,8}, <mask>
499 if (r >= 4)
500 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1); // orr r1, r1, 1<<shift
501 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1); // add r1, r7, r1, lsr #lsr
502 else EOP_ADD_REG_LSL(1,7,1,1);
503 EOP_STRH_SIMPLE(0,1); // strh r0, [r1]
504 hostreg_r[1] = -1;
505 }
506 tr_ptrr_mod(r, (op>>2) & 3, 0, 1);
507 }
508}
509
510/* read (rX) to r0. Trashes r1-r3. */
511static void tr_rX_read(int r, int mod)
512{
513 if ((r&3) == 3)
514 {
515 tr_bank_read(((r << 6) & 0x100) + mod); // direct addressing
516 }
517 else
518 {
519 if (known_regb & (1 << (r + 8))) {
520 tr_bank_read(((r << 6) & 0x100) | known_regs.r[r]);
521 } else {
522 int reg = (r < 4) ? 8 : 9;
523 int ror = ((4 - (r&3))*8) & 0x1f;
524 EOP_AND_IMM(1,reg,ror/2,0xff); // and r1, r{7,8}, <mask>
525 if (r >= 4)
526 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1); // orr r1, r1, 1<<shift
527 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1); // add r1, r7, r1, lsr #lsr
528 else EOP_ADD_REG_LSL(1,7,1,1);
529 EOP_LDRH_SIMPLE(0,1); // ldrh r0, [r1]
530 hostreg_r[0] = hostreg_r[1] = -1;
531 }
532 tr_ptrr_mod(r, mod, 1, 1);
533 }
534}
535
536/* read ((rX)) to r0. Trashes r1,r2. */
537static void tr_rX_read2(int op)
538{
539 int r = (op&3) | ((op>>6)&4); // src
540
541 if ((r&3) == 3) {
542 tr_bank_read((op&0x100) | ((op>>2)&3));
543 } else if (known_regb & (1 << (r+8))) {
544 tr_bank_read((op&0x100) | known_regs.r[r]);
545 } else {
546 int reg = (r < 4) ? 8 : 9;
547 int ror = ((4 - (r&3))*8) & 0x1f;
548 EOP_AND_IMM(1,reg,ror/2,0xff); // and r1, r{7,8}, <mask>
549 if (r >= 4)
550 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1); // orr r1, r1, 1<<shift
551 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1); // add r1, r7, r1, lsr #lsr
552 else EOP_ADD_REG_LSL(1,7,1,1);
553 EOP_LDRH_SIMPLE(0,1); // ldrh r0, [r1]
554 }
555 EOP_LDR_IMM(2,7,0x48c); // ptr_iram_rom
556 EOP_ADD_REG_LSL(2,2,0,1); // add r2, r2, r0, lsl #1
557 EOP_ADD_IMM(0,0,0,1); // add r0, r0, #1
558 if ((r&3) == 3) {
559 tr_bank_write((op&0x100) | ((op>>2)&3));
560 } else if (known_regb & (1 << (r+8))) {
561 tr_bank_write((op&0x100) | known_regs.r[r]);
562 } else {
563 EOP_STRH_SIMPLE(0,1); // strh r0, [r1]
564 hostreg_r[1] = -1;
565 }
566 EOP_LDRH_SIMPLE(0,2); // ldrh r0, [r2]
567 hostreg_r[0] = hostreg_r[2] = -1;
568}
569
570// check if AL is going to be used later in block
571static int tr_predict_al_need(void)
572{
573 int tmpv, tmpv2, op, pc = known_regs.gr[SSP_PC].h;
574
575 while (1)
576 {
577 op = PROGRAM(pc);
578 switch (op >> 9)
579 {
580 // ld d, s
581 case 0x00:
582 tmpv2 = (op >> 4) & 0xf; // dst
583 tmpv = op & 0xf; // src
584 if ((tmpv2 == SSP_A && tmpv == SSP_P) || tmpv2 == SSP_AL) // ld A, P; ld AL, *
585 return 0;
586 break;
587
588 // ld (ri), s
589 case 0x02:
590 // ld ri, s
591 case 0x0a:
592 // OP a, s
593 case 0x10: case 0x30: case 0x40: case 0x60: case 0x70:
594 tmpv = op & 0xf; // src
595 if (tmpv == SSP_AL) // OP *, AL
596 return 1;
597 break;
598
599 case 0x04:
600 case 0x06:
601 case 0x14:
602 case 0x34:
603 case 0x44:
604 case 0x64:
605 case 0x74: pc++; break;
606
607 // call cond, addr
608 case 0x24:
609 // bra cond, addr
610 case 0x26:
611 // mod cond, op
612 case 0x48:
613 // mpys?
614 case 0x1b:
615 // mpya (rj), (ri), b
616 case 0x4b: return 1;
617
618 // mld (rj), (ri), b
619 case 0x5b: return 0; // cleared anyway
620
621 // and A, *
622 case 0x50:
623 tmpv = op & 0xf; // src
624 if (tmpv == SSP_AL) return 1;
625 case 0x51: case 0x53: case 0x54: case 0x55: case 0x59: case 0x5c:
626 return 0;
627 }
628 pc++;
629 }
630}
631
632
633/* get ARM cond which would mean that SSP cond is satisfied. No trash. */
634static int tr_cond_check(int op)
635{
636 int f = (op & 0x100) >> 8;
637 switch (op&0xf0) {
638 case 0x00: return A_COND_AL; /* always true */
639 case 0x50: /* Z matches f(?) bit */
640 if (dirty_regb & KRREG_ST) return f ? A_COND_EQ : A_COND_NE;
641 EOP_TST_IMM(6, 0, 4);
642 return f ? A_COND_NE : A_COND_EQ;
643 case 0x70: /* N matches f(?) bit */
644 if (dirty_regb & KRREG_ST) return f ? A_COND_MI : A_COND_PL;
645 EOP_TST_IMM(6, 0, 8);
646 return f ? A_COND_NE : A_COND_EQ;
647 default:
648 elprintf(EL_ANOMALY, "unimplemented cond?\n");
649 tr_unhandled();
650 return 0;
651 }
652}
653
654static int tr_neg_cond(int cond)
655{
656 switch (cond) {
657 case A_COND_AL: elprintf(EL_ANOMALY, "neg for AL?\n"); exit(1);
658 case A_COND_EQ: return A_COND_NE;
659 case A_COND_NE: return A_COND_EQ;
660 case A_COND_MI: return A_COND_PL;
661 case A_COND_PL: return A_COND_MI;
662 default: elprintf(EL_ANOMALY, "bad cond for neg\n"); exit(1);
663 }
664 return 0;
665}
666
667static int tr_aop_ssp2arm(int op)
668{
669 switch (op) {
670 case 1: return A_OP_SUB;
671 case 3: return A_OP_CMP;
672 case 4: return A_OP_ADD;
673 case 5: return A_OP_AND;
674 case 6: return A_OP_ORR;
675 case 7: return A_OP_EOR;
676 }
677
678 tr_unhandled();
679 return 0;
680}
681
682// -----------------------------------------------------
683
684//@ r4: XXYY
685//@ r5: A
686//@ r6: STACK and emu flags
687//@ r7: SSP context
688//@ r10: P
689
690// read general reg to r0. Trashes r1
691static void tr_GR0_to_r0(int op)
692{
693 tr_mov16(0, 0xffff);
694}
695
696static void tr_X_to_r0(int op)
697{
698 if (hostreg_r[0] != (SSP_X<<16)) {
699 EOP_MOV_REG_LSR(0, 4, 16); // mov r0, r4, lsr #16
700 hostreg_r[0] = SSP_X<<16;
701 }
702}
703
704static void tr_Y_to_r0(int op)
705{
706 if (hostreg_r[0] != (SSP_Y<<16)) {
707 EOP_MOV_REG_SIMPLE(0, 4); // mov r0, r4
708 hostreg_r[0] = SSP_Y<<16;
709 }
710}
711
712static void tr_A_to_r0(int op)
713{
714 if (hostreg_r[0] != (SSP_A<<16)) {
715 EOP_MOV_REG_LSR(0, 5, 16); // mov r0, r5, lsr #16 @ AH
716 hostreg_r[0] = SSP_A<<16;
717 }
718}
719
720static void tr_ST_to_r0(int op)
721{
722 // VR doesn't need much accuracy here..
723 EOP_MOV_REG_LSR(0, 6, 4); // mov r0, r6, lsr #4
724 EOP_AND_IMM(0, 0, 0, 0x67); // and r0, r0, #0x67
725 hostreg_r[0] = -1;
726}
727
728static void tr_STACK_to_r0(int op)
729{
730 // 448
731 EOP_SUB_IMM(6, 6, 8/2, 0x20); // sub r6, r6, #1<<29
732 EOP_ADD_IMM(1, 7, 24/2, 0x04); // add r1, r7, 0x400
733 EOP_ADD_IMM(1, 1, 0, 0x48); // add r1, r1, 0x048
734 EOP_ADD_REG_LSR(1, 1, 6, 28); // add r1, r1, r6, lsr #28
735 EOP_LDRH_SIMPLE(0, 1); // ldrh r0, [r1]
736 hostreg_r[0] = hostreg_r[1] = -1;
737}
738
739static void tr_PC_to_r0(int op)
740{
741 tr_mov16(0, known_regs.gr[SSP_PC].h);
742}
743
744static void tr_P_to_r0(int op)
745{
746 tr_flush_dirty_P();
747 EOP_MOV_REG_LSR(0, 10, 16); // mov r0, r10, lsr #16
748 hostreg_r[0] = -1;
749}
750
751static void tr_AL_to_r0(int op)
752{
753 if (op == 0x000f) {
754 if (known_regb & KRREG_PMC) {
755 known_regs.emu_status &= ~(SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
756 } else {
757 EOP_LDR_IMM(0,7,0x484); // ldr r1, [r7, #0x484] // emu_status
758 EOP_BIC_IMM(0,0,0,SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
759 EOP_STR_IMM(0,7,0x484);
760 }
761 }
762
763 if (hostreg_r[0] != (SSP_AL<<16)) {
764 EOP_MOV_REG_SIMPLE(0, 5); // mov r0, r5
765 hostreg_r[0] = SSP_AL<<16;
766 }
767}
768
769static void tr_PMX_to_r0(int reg)
770{
771 if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
772 {
773 known_regs.pmac_read[reg] = known_regs.pmc.v;
774 known_regs.emu_status &= ~SSP_PMC_SET;
775 known_regb |= 1 << (20+reg);
776 dirty_regb |= 1 << (20+reg);
777 return;
778 }
779
780 if ((known_regb & KRREG_PMC) && (known_regb & (1 << (20+reg))))
781 {
782 u32 pmcv = known_regs.pmac_read[reg];
783 int mode = pmcv>>16;
784 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
785
786 if ((mode & 0xfff0) == 0x0800)
787 {
788 EOP_LDR_IMM(1,7,0x488); // rom_ptr
789 emit_mov_const(A_COND_AL, 0, (pmcv&0xfffff)<<1);
790 EOP_LDRH_REG(0,1,0); // ldrh r0, [r1, r0]
791 known_regs.pmac_read[reg] += 1;
792 }
793 else if ((mode & 0x47ff) == 0x0018) // DRAM
794 {
795 int inc = get_inc(mode);
796 EOP_LDR_IMM(1,7,0x490); // dram_ptr
797 emit_mov_const(A_COND_AL, 0, (pmcv&0xffff)<<1);
798 EOP_LDRH_REG(0,1,0); // ldrh r0, [r1, r0]
799 if (reg == 4 && (pmcv == 0x187f03 || pmcv == 0x187f04)) // wait loop detection
800 {
801 int flag = (pmcv == 0x187f03) ? SSP_WAIT_30FE06 : SSP_WAIT_30FE08;
802 tr_flush_dirty_ST();
803 EOP_LDR_IMM(1,7,0x484); // ldr r1, [r7, #0x484] // emu_status
804 EOP_TST_REG_SIMPLE(0,0);
805 EOP_C_DOP_IMM(A_COND_EQ,A_OP_SUB,0,11,11,22/2,1); // subeq r11, r11, #1024
806 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1,24/2,flag>>8); // orreq r1, r1, #SSP_WAIT_30FE08
807 EOP_STR_IMM(1,7,0x484); // str r1, [r7, #0x484] // emu_status
808 }
809 known_regs.pmac_read[reg] += inc;
810 }
811 else
812 {
813 tr_unhandled();
814 }
815 known_regs.pmc.v = known_regs.pmac_read[reg];
816 //known_regb |= KRREG_PMC;
817 dirty_regb |= KRREG_PMC;
818 dirty_regb |= 1 << (20+reg);
819 hostreg_r[0] = hostreg_r[1] = -1;
820 return;
821 }
822
823 known_regb &= ~KRREG_PMC;
824 dirty_regb &= ~KRREG_PMC;
825 known_regb &= ~(1 << (20+reg));
826 dirty_regb &= ~(1 << (20+reg));
827
828 // call the C code to handle this
829 tr_flush_dirty_ST();
830 //tr_flush_dirty_pmcrs();
831 tr_mov16(0, reg);
832 emit_call(A_COND_AL, ssp_pm_read);
833 hostreg_clear();
834}
835
836static void tr_PM0_to_r0(int op)
837{
838 tr_PMX_to_r0(0);
839}
840
841static void tr_PM1_to_r0(int op)
842{
843 tr_PMX_to_r0(1);
844}
845
846static void tr_PM2_to_r0(int op)
847{
848 tr_PMX_to_r0(2);
849}
850
851static void tr_XST_to_r0(int op)
852{
853 EOP_ADD_IMM(0, 7, 24/2, 4); // add r0, r7, #0x400
854 EOP_LDRH_IMM(0, 0, SSP_XST*4+2);
855}
856
857static void tr_PM4_to_r0(int op)
858{
859 tr_PMX_to_r0(4);
860}
861
862static void tr_PMC_to_r0(int op)
863{
864 if (known_regb & KRREG_PMC)
865 {
866 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
867 known_regs.emu_status |= SSP_PMC_SET;
868 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
869 // do nothing - this is handled elsewhere
870 } else {
871 tr_mov16(0, known_regs.pmc.l);
872 known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
873 }
874 }
875 else
876 {
877 EOP_LDR_IMM(1,7,0x484); // ldr r1, [r7, #0x484] // emu_status
878 tr_flush_dirty_ST();
879 if (op != 0x000e)
880 EOP_LDR_IMM(0, 7, 0x400+SSP_PMC*4);
881 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
882 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
883 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
884 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET); // orrne r1, r1, #..
885 EOP_STR_IMM(1,7,0x484);
886 hostreg_r[0] = hostreg_r[1] = -1;
887 }
888}
889
890
891typedef void (tr_read_func)(int op);
892
893static tr_read_func *tr_read_funcs[16] =
894{
895 tr_GR0_to_r0,
896 tr_X_to_r0,
897 tr_Y_to_r0,
898 tr_A_to_r0,
899 tr_ST_to_r0,
900 tr_STACK_to_r0,
901 tr_PC_to_r0,
902 tr_P_to_r0,
903 tr_PM0_to_r0,
904 tr_PM1_to_r0,
905 tr_PM2_to_r0,
906 tr_XST_to_r0,
907 tr_PM4_to_r0,
908 (tr_read_func *)tr_unhandled,
909 tr_PMC_to_r0,
910 tr_AL_to_r0
911};
912
913
914// write r0 to general reg handlers. Trashes r1
915#define TR_WRITE_R0_TO_REG(reg) \
916{ \
917 hostreg_sspreg_changed(reg); \
918 hostreg_r[0] = (reg)<<16; \
919 if (const_val != -1) { \
920 known_regs.gr[reg].h = const_val; \
921 known_regb |= 1 << (reg); \
922 } else { \
923 known_regb &= ~(1 << (reg)); \
924 } \
925}
926
927static void tr_r0_to_GR0(int const_val)
928{
929 // do nothing
930}
931
932static void tr_r0_to_X(int const_val)
933{
934 EOP_MOV_REG_LSL(4, 4, 16); // mov r4, r4, lsl #16
935 EOP_MOV_REG_LSR(4, 4, 16); // mov r4, r4, lsr #16
936 EOP_ORR_REG_LSL(4, 4, 0, 16); // orr r4, r4, r0, lsl #16
937 dirty_regb |= KRREG_P; // touching X or Y makes P dirty.
938 TR_WRITE_R0_TO_REG(SSP_X);
939}
940
941static void tr_r0_to_Y(int const_val)
942{
943 EOP_MOV_REG_LSR(4, 4, 16); // mov r4, r4, lsr #16
944 EOP_ORR_REG_LSL(4, 4, 0, 16); // orr r4, r4, r0, lsl #16
945 EOP_MOV_REG_ROR(4, 4, 16); // mov r4, r4, ror #16
946 dirty_regb |= KRREG_P;
947 TR_WRITE_R0_TO_REG(SSP_Y);
948}
949
950static void tr_r0_to_A(int const_val)
951{
952 if (tr_predict_al_need()) {
953 EOP_MOV_REG_LSL(5, 5, 16); // mov r5, r5, lsl #16
954 EOP_MOV_REG_LSR(5, 5, 16); // mov r5, r5, lsr #16 @ AL
955 EOP_ORR_REG_LSL(5, 5, 0, 16); // orr r5, r5, r0, lsl #16
956 }
957 else
958 EOP_MOV_REG_LSL(5, 0, 16);
959 TR_WRITE_R0_TO_REG(SSP_A);
960}
961
962static void tr_r0_to_ST(int const_val)
963{
964 // VR doesn't need much accuracy here..
965 EOP_AND_IMM(1, 0, 0, 0x67); // and r1, r0, #0x67
966 EOP_AND_IMM(6, 6, 8/2, 0xe0); // and r6, r6, #7<<29 @ preserve STACK
967 EOP_ORR_REG_LSL(6, 6, 1, 4); // orr r6, r6, r1, lsl #4
968 TR_WRITE_R0_TO_REG(SSP_ST);
969 hostreg_r[1] = -1;
970 dirty_regb &= ~KRREG_ST;
971}
972
973static void tr_r0_to_STACK(int const_val)
974{
975 // 448
976 EOP_ADD_IMM(1, 7, 24/2, 0x04); // add r1, r7, 0x400
977 EOP_ADD_IMM(1, 1, 0, 0x48); // add r1, r1, 0x048
978 EOP_ADD_REG_LSR(1, 1, 6, 28); // add r1, r1, r6, lsr #28
979 EOP_STRH_SIMPLE(0, 1); // strh r0, [r1]
980 EOP_ADD_IMM(6, 6, 8/2, 0x20); // add r6, r6, #1<<29
981 hostreg_r[1] = -1;
982}
983
984static void tr_r0_to_PC(int const_val)
985{
986/*
987 * do nothing - dispatcher will take care of this
988 EOP_MOV_REG_LSL(1, 0, 16); // mov r1, r0, lsl #16
989 EOP_STR_IMM(1,7,0x400+6*4); // str r1, [r7, #(0x400+6*8)]
990 hostreg_r[1] = -1;
991*/
992}
993
994static void tr_r0_to_AL(int const_val)
995{
996 EOP_MOV_REG_LSR(5, 5, 16); // mov r5, r5, lsr #16
997 EOP_ORR_REG_LSL(5, 5, 0, 16); // orr r5, r5, r0, lsl #16
998 EOP_MOV_REG_ROR(5, 5, 16); // mov r5, r5, ror #16
999 hostreg_sspreg_changed(SSP_AL);
1000 if (const_val != -1) {
1001 known_regs.gr[SSP_A].l = const_val;
1002 known_regb |= 1 << SSP_AL;
1003 } else
1004 known_regb &= ~(1 << SSP_AL);
1005}
1006
1007static void tr_r0_to_PMX(int reg)
1008{
1009 if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
1010 {
1011 known_regs.pmac_write[reg] = known_regs.pmc.v;
1012 known_regs.emu_status &= ~SSP_PMC_SET;
1013 known_regb |= 1 << (25+reg);
1014 dirty_regb |= 1 << (25+reg);
1015 return;
1016 }
1017
1018 if ((known_regb & KRREG_PMC) && (known_regb & (1 << (25+reg))))
1019 {
1020 int mode, addr;
1021
1022 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1023
1024 mode = known_regs.pmac_write[reg]>>16;
1025 addr = known_regs.pmac_write[reg]&0xffff;
1026 if ((mode & 0x43ff) == 0x0018) // DRAM
1027 {
1028 int inc = get_inc(mode);
1029 if (mode & 0x0400) tr_unhandled();
1030 EOP_LDR_IMM(1,7,0x490); // dram_ptr
1031 emit_mov_const(A_COND_AL, 2, addr<<1);
1032 EOP_STRH_REG(0,1,2); // strh r0, [r1, r2]
1033 known_regs.pmac_write[reg] += inc;
1034 }
1035 else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
1036 {
1037 if (mode & 0x0400) tr_unhandled();
1038 EOP_LDR_IMM(1,7,0x490); // dram_ptr
1039 emit_mov_const(A_COND_AL, 2, addr<<1);
1040 EOP_STRH_REG(0,1,2); // strh r0, [r1, r2]
1041 known_regs.pmac_write[reg] += (addr&1) ? 31 : 1;
1042 }
1043 else if ((mode & 0x47ff) == 0x001c) // IRAM
1044 {
1045 int inc = get_inc(mode);
1046 EOP_LDR_IMM(1,7,0x48c); // iram_ptr
1047 emit_mov_const(A_COND_AL, 2, (addr&0x3ff)<<1);
1048 EOP_STRH_REG(0,1,2); // strh r0, [r1, r2]
1049 EOP_MOV_IMM(1,0,1);
1050 EOP_STR_IMM(1,7,0x494); // iram_dirty
1051 known_regs.pmac_write[reg] += inc;
1052 }
1053 else
1054 tr_unhandled();
1055
1056 known_regs.pmc.v = known_regs.pmac_write[reg];
1057 //known_regb |= KRREG_PMC;
1058 dirty_regb |= KRREG_PMC;
1059 dirty_regb |= 1 << (25+reg);
1060 hostreg_r[1] = hostreg_r[2] = -1;
1061 return;
1062 }
1063
1064 known_regb &= ~KRREG_PMC;
1065 dirty_regb &= ~KRREG_PMC;
1066 known_regb &= ~(1 << (25+reg));
1067 dirty_regb &= ~(1 << (25+reg));
1068
1069 // call the C code to handle this
1070 tr_flush_dirty_ST();
1071 //tr_flush_dirty_pmcrs();
1072 tr_mov16(1, reg);
1073 emit_call(A_COND_AL, ssp_pm_write);
1074 hostreg_clear();
1075}
1076
1077static void tr_r0_to_PM0(int const_val)
1078{
1079 tr_r0_to_PMX(0);
1080}
1081
1082static void tr_r0_to_PM1(int const_val)
1083{
1084 tr_r0_to_PMX(1);
1085}
1086
1087static void tr_r0_to_PM2(int const_val)
1088{
1089 tr_r0_to_PMX(2);
1090}
1091
1092static void tr_r0_to_PM4(int const_val)
1093{
1094 tr_r0_to_PMX(4);
1095}
1096
1097static void tr_r0_to_PMC(int const_val)
1098{
1099 if ((known_regb & KRREG_PMC) && const_val != -1)
1100 {
1101 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
1102 known_regs.emu_status |= SSP_PMC_SET;
1103 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1104 known_regs.pmc.h = const_val;
1105 } else {
1106 known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
1107 known_regs.pmc.l = const_val;
1108 }
1109 }
1110 else
1111 {
1112 tr_flush_dirty_ST();
1113 if (known_regb & KRREG_PMC) {
1114 emit_mov_const(A_COND_AL, 1, known_regs.pmc.v);
1115 EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
1116 known_regb &= ~KRREG_PMC;
1117 dirty_regb &= ~KRREG_PMC;
1118 }
1119 EOP_LDR_IMM(1,7,0x484); // ldr r1, [r7, #0x484] // emu_status
1120 EOP_ADD_IMM(2,7,24/2,4); // add r2, r7, #0x400
1121 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
1122 EOP_C_AM3_IMM(A_COND_EQ,1,0,2,0,0,1,SSP_PMC*4); // strxx r0, [r2, #SSP_PMC]
1123 EOP_C_AM3_IMM(A_COND_NE,1,0,2,0,0,1,SSP_PMC*4+2);
1124 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
1125 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
1126 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET); // orrne r1, r1, #..
1127 EOP_STR_IMM(1,7,0x484);
1128 hostreg_r[1] = hostreg_r[2] = -1;
1129 }
1130}
1131
1132typedef void (tr_write_func)(int const_val);
1133
1134static tr_write_func *tr_write_funcs[16] =
1135{
1136 tr_r0_to_GR0,
1137 tr_r0_to_X,
1138 tr_r0_to_Y,
1139 tr_r0_to_A,
1140 tr_r0_to_ST,
1141 tr_r0_to_STACK,
1142 tr_r0_to_PC,
1143 (tr_write_func *)tr_unhandled,
1144 tr_r0_to_PM0,
1145 tr_r0_to_PM1,
1146 tr_r0_to_PM2,
1147 (tr_write_func *)tr_unhandled,
1148 tr_r0_to_PM4,
1149 (tr_write_func *)tr_unhandled,
1150 tr_r0_to_PMC,
1151 tr_r0_to_AL
1152};
1153
1154static void tr_mac_load_XY(int op)
1155{
1156 tr_rX_read(op&3, (op>>2)&3); // X
1157 EOP_MOV_REG_LSL(4, 0, 16);
1158 tr_rX_read(((op>>4)&3)|4, (op>>6)&3); // Y
1159 EOP_ORR_REG_SIMPLE(4, 0);
1160 dirty_regb |= KRREG_P;
1161 hostreg_sspreg_changed(SSP_X);
1162 hostreg_sspreg_changed(SSP_Y);
1163 known_regb &= ~KRREG_X;
1164 known_regb &= ~KRREG_Y;
1165}
1166
1167// -----------------------------------------------------
1168
1169static int tr_detect_set_pm(unsigned int op, int *pc, int imm)
1170{
1171 u32 pmcv, tmpv;
1172 if (!((op&0xfef0) == 0x08e0 && (PROGRAM(*pc)&0xfef0) == 0x08e0)) return 0;
1173
1174 // programming PMC:
1175 // ldi PMC, imm1
1176 // ldi PMC, imm2
1177 (*pc)++;
1178 pmcv = imm | (PROGRAM((*pc)++) << 16);
1179 known_regs.pmc.v = pmcv;
1180 known_regb |= KRREG_PMC;
1181 dirty_regb |= KRREG_PMC;
1182 known_regs.emu_status |= SSP_PMC_SET;
1183 n_in_ops++;
1184
1185 // check for possible reg programming
1186 tmpv = PROGRAM(*pc);
1187 if ((tmpv & 0xfff8) == 0x08 || (tmpv & 0xff8f) == 0x80)
1188 {
1189 int is_write = (tmpv & 0xff8f) == 0x80;
1190 int reg = is_write ? ((tmpv>>4)&0x7) : (tmpv&0x7);
1191 if (reg > 4) tr_unhandled();
1192 if ((tmpv & 0x0f) != 0 && (tmpv & 0xf0) != 0) tr_unhandled();
1193 known_regs.pmac_read[is_write ? reg + 5 : reg] = pmcv;
1194 known_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1195 dirty_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1196 known_regs.emu_status &= ~SSP_PMC_SET;
1197 (*pc)++;
1198 n_in_ops++;
1199 return 5;
1200 }
1201
1202 tr_unhandled();
1203 return 4;
1204}
1205
1206static const short pm0_block_seq[] = { 0x0880, 0, 0x0880, 0, 0x0840, 0x60 };
1207
1208static int tr_detect_pm0_block(unsigned int op, int *pc, int imm)
1209{
1210 // ldi ST, 0
1211 // ldi PM0, 0
1212 // ldi PM0, 0
1213 // ldi ST, 60h
1214 unsigned short *pp;
1215 if (op != 0x0840 || imm != 0) return 0;
1216 pp = PROGRAM_P(*pc);
1217 if (memcmp(pp, pm0_block_seq, sizeof(pm0_block_seq)) != 0) return 0;
1218
1219 EOP_AND_IMM(6, 6, 8/2, 0xe0); // and r6, r6, #7<<29 @ preserve STACK
1220 EOP_ORR_IMM(6, 6, 24/2, 6); // orr r6, r6, 0x600
1221 hostreg_sspreg_changed(SSP_ST);
1222 known_regs.gr[SSP_ST].h = 0x60;
1223 known_regb |= 1 << SSP_ST;
1224 dirty_regb &= ~KRREG_ST;
1225 (*pc) += 3*2;
1226 n_in_ops += 3;
1227 return 4*2;
1228}
1229
1230static int tr_detect_rotate(unsigned int op, int *pc, int imm)
1231{
1232 // @ 3DA2 and 426A
1233 // ld PMC, (r3|00)
1234 // ld (r3|00), PMC
1235 // ld -, AL
1236 if (op != 0x02e3 || PROGRAM(*pc) != 0x04e3 || PROGRAM(*pc + 1) != 0x000f) return 0;
1237
1238 tr_bank_read(0);
1239 EOP_MOV_REG_LSL(0, 0, 4);
1240 EOP_ORR_REG_LSR(0, 0, 0, 16);
1241 tr_bank_write(0);
1242 (*pc) += 2;
1243 n_in_ops += 2;
1244 return 3;
1245}
1246
1247// -----------------------------------------------------
1248
1249static int translate_op(unsigned int op, int *pc, int imm, int *end_cond, int *jump_pc)
1250{
1251 u32 tmpv, tmpv2, tmpv3;
1252 int ret = 0;
1253 known_regs.gr[SSP_PC].h = *pc;
1254
1255 switch (op >> 9)
1256 {
1257 // ld d, s
1258 case 0x00:
1259 if (op == 0) { ret++; break; } // nop
1260 tmpv = op & 0xf; // src
1261 tmpv2 = (op >> 4) & 0xf; // dst
1262 if (tmpv2 == SSP_A && tmpv == SSP_P) { // ld A, P
1263 tr_flush_dirty_P();
1264 EOP_MOV_REG_SIMPLE(5, 10);
1265 hostreg_sspreg_changed(SSP_A);
1266 known_regb &= ~(KRREG_A|KRREG_AL);
1267 ret++; break;
1268 }
1269 tr_read_funcs[tmpv](op);
1270 tr_write_funcs[tmpv2]((known_regb & (1 << tmpv)) ? known_regs.gr[tmpv].h : -1);
1271 if (tmpv2 == SSP_PC) {
1272 ret |= 0x10000;
1273 *end_cond = -A_COND_AL;
1274 }
1275 ret++; break;
1276
1277 // ld d, (ri)
1278 case 0x01: {
1279 int r = (op&3) | ((op>>6)&4);
1280 int mod = (op>>2)&3;
1281 tmpv = (op >> 4) & 0xf; // dst
1282 ret = tr_detect_rotate(op, pc, imm);
1283 if (ret > 0) break;
1284 if (tmpv != 0)
1285 tr_rX_read(r, mod);
1286 else {
1287 int cnt = 1;
1288 while (PROGRAM(*pc) == op) {
1289 (*pc)++; cnt++; ret++;
1290 n_in_ops++;
1291 }
1292 tr_ptrr_mod(r, mod, 1, cnt); // skip
1293 }
1294 tr_write_funcs[tmpv](-1);
1295 if (tmpv == SSP_PC) {
1296 ret |= 0x10000;
1297 *end_cond = -A_COND_AL;
1298 }
1299 ret++; break;
1300 }
1301
1302 // ld (ri), s
1303 case 0x02:
1304 tmpv = (op >> 4) & 0xf; // src
1305 tr_read_funcs[tmpv](op);
1306 tr_rX_write(op);
1307 ret++; break;
1308
1309 // ld a, adr
1310 case 0x03:
1311 tr_bank_read(op&0x1ff);
1312 tr_r0_to_A(-1);
1313 ret++; break;
1314
1315 // ldi d, imm
1316 case 0x04:
1317 tmpv = (op & 0xf0) >> 4; // dst
1318 ret = tr_detect_pm0_block(op, pc, imm);
1319 if (ret > 0) break;
1320 ret = tr_detect_set_pm(op, pc, imm);
1321 if (ret > 0) break;
1322 tr_mov16(0, imm);
1323 tr_write_funcs[tmpv](imm);
1324 if (tmpv == SSP_PC) {
1325 ret |= 0x10000;
1326 *jump_pc = imm;
1327 }
1328 ret += 2; break;
1329
1330 // ld d, ((ri))
1331 case 0x05:
1332 tmpv2 = (op >> 4) & 0xf; // dst
1333 tr_rX_read2(op);
1334 tr_write_funcs[tmpv2](-1);
1335 if (tmpv2 == SSP_PC) {
1336 ret |= 0x10000;
1337 *end_cond = -A_COND_AL;
1338 }
1339 ret += 3; break;
1340
1341 // ldi (ri), imm
1342 case 0x06:
1343 tr_mov16(0, imm);
1344 tr_rX_write(op);
1345 ret += 2; break;
1346
1347 // ld adr, a
1348 case 0x07:
1349 tr_A_to_r0(op);
1350 tr_bank_write(op&0x1ff);
1351 ret++; break;
1352
1353 // ld d, ri
1354 case 0x09: {
1355 int r;
1356 r = (op&3) | ((op>>6)&4); // src
1357 tmpv2 = (op >> 4) & 0xf; // dst
1358 if ((r&3) == 3) tr_unhandled();
1359
1360 if (known_regb & (1 << (r+8))) {
1361 tr_mov16(0, known_regs.r[r]);
1362 tr_write_funcs[tmpv2](known_regs.r[r]);
1363 } else {
1364 int reg = (r < 4) ? 8 : 9;
1365 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8); // mov r0, r{7,8}, lsr #lsr
1366 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff); // and r0, r{7,8}, <mask>
1367 hostreg_r[0] = -1;
1368 tr_write_funcs[tmpv2](-1);
1369 }
1370 ret++; break;
1371 }
1372
1373 // ld ri, s
1374 case 0x0a: {
1375 int r;
1376 r = (op&3) | ((op>>6)&4); // dst
1377 tmpv = (op >> 4) & 0xf; // src
1378 if ((r&3) == 3) tr_unhandled();
1379
1380 if (known_regb & (1 << tmpv)) {
1381 known_regs.r[r] = known_regs.gr[tmpv].h;
1382 known_regb |= 1 << (r + 8);
1383 dirty_regb |= 1 << (r + 8);
1384 } else {
1385 int reg = (r < 4) ? 8 : 9;
1386 int ror = ((4 - (r&3))*8) & 0x1f;
1387 tr_read_funcs[tmpv](op);
1388 EOP_BIC_IMM(reg, reg, ror/2, 0xff); // bic r{7,8}, r{7,8}, <mask>
1389 EOP_AND_IMM(0, 0, 0, 0xff); // and r0, r0, 0xff
1390 EOP_ORR_REG_LSL(reg, reg, 0, (r&3)*8); // orr r{7,8}, r{7,8}, r0, lsl #lsl
1391 hostreg_r[0] = -1;
1392 known_regb &= ~(1 << (r+8));
1393 dirty_regb &= ~(1 << (r+8));
1394 }
1395 ret++; break;
1396 }
1397
1398 // ldi ri, simm
1399 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1400 tmpv = (op>>8)&7;
1401 known_regs.r[tmpv] = op;
1402 known_regb |= 1 << (tmpv + 8);
1403 dirty_regb |= 1 << (tmpv + 8);
1404 ret++; break;
1405
1406 // call cond, addr
1407 case 0x24: {
1408 u32 *jump_op = NULL;
1409 tmpv = tr_cond_check(op);
1410 if (tmpv != A_COND_AL) {
1411 jump_op = tcache_ptr;
1412 EOP_MOV_IMM(0, 0, 0); // placeholder for branch
1413 }
1414 tr_mov16(0, *pc);
1415 tr_r0_to_STACK(*pc);
1416 if (tmpv != A_COND_AL) {
1417 u32 *real_ptr = tcache_ptr;
1418 tcache_ptr = jump_op;
1419 EOP_C_B(tr_neg_cond(tmpv),0,real_ptr - jump_op - 2);
1420 tcache_ptr = real_ptr;
1421 }
1422 tr_mov16_cond(tmpv, 0, imm);
1423 if (tmpv != A_COND_AL)
1424 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1425 tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1426 ret |= 0x10000;
1427 *end_cond = tmpv;
1428 *jump_pc = imm;
1429 ret += 2; break;
1430 }
1431
1432 // ld d, (a)
1433 case 0x25:
1434 tmpv2 = (op >> 4) & 0xf; // dst
1435 tr_A_to_r0(op);
1436 EOP_LDR_IMM(1,7,0x48c); // ptr_iram_rom
1437 EOP_ADD_REG_LSL(0,1,0,1); // add r0, r1, r0, lsl #1
1438 EOP_LDRH_SIMPLE(0,0); // ldrh r0, [r0]
1439 hostreg_r[0] = hostreg_r[1] = -1;
1440 tr_write_funcs[tmpv2](-1);
1441 if (tmpv2 == SSP_PC) {
1442 ret |= 0x10000;
1443 *end_cond = -A_COND_AL;
1444 }
1445 ret += 3; break;
1446
1447 // bra cond, addr
1448 case 0x26:
1449 tmpv = tr_cond_check(op);
1450 tr_mov16_cond(tmpv, 0, imm);
1451 if (tmpv != A_COND_AL)
1452 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1453 tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1454 ret |= 0x10000;
1455 *end_cond = tmpv;
1456 *jump_pc = imm;
1457 ret += 2; break;
1458
1459 // mod cond, op
1460 case 0x48: {
1461 // check for repeats of this op
1462 tmpv = 1; // count
1463 while (PROGRAM(*pc) == op && (op & 7) != 6) {
1464 (*pc)++; tmpv++;
1465 n_in_ops++;
1466 }
1467 if ((op&0xf0) != 0) // !always
1468 tr_make_dirty_ST();
1469
1470 tmpv2 = tr_cond_check(op);
1471 switch (op & 7) {
1472 case 2: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_ASR,5); break; // shr (arithmetic)
1473 case 3: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_LSL,5); break; // shl
1474 case 6: EOP_C_DOP_IMM(tmpv2,A_OP_RSB,1,5,5,0,0); break; // neg
1475 case 7: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_EOR,0,5,1,31,A_AM1_ASR,5); // eor r1, r5, r5, asr #31
1476 EOP_C_DOP_REG_XIMM(tmpv2,A_OP_ADD,1,1,5,31,A_AM1_LSR,5); // adds r5, r1, r5, lsr #31
1477 hostreg_r[1] = -1; break; // abs
1478 default: tr_unhandled();
1479 }
1480
1481 hostreg_sspreg_changed(SSP_A);
1482 dirty_regb |= KRREG_ST;
1483 known_regb &= ~KRREG_ST;
1484 known_regb &= ~(KRREG_A|KRREG_AL);
1485 ret += tmpv; break;
1486 }
1487
1488 // mpys?
1489 case 0x1b:
1490 tr_flush_dirty_P();
1491 tr_mac_load_XY(op);
1492 tr_make_dirty_ST();
1493 EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_SUB,1,5,5,0,A_AM1_LSL,10); // subs r5, r5, r10
1494 hostreg_sspreg_changed(SSP_A);
1495 known_regb &= ~(KRREG_A|KRREG_AL);
1496 dirty_regb |= KRREG_ST;
1497 ret++; break;
1498
1499 // mpya (rj), (ri), b
1500 case 0x4b:
1501 tr_flush_dirty_P();
1502 tr_mac_load_XY(op);
1503 tr_make_dirty_ST();
1504 EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_ADD,1,5,5,0,A_AM1_LSL,10); // adds r5, r5, r10
1505 hostreg_sspreg_changed(SSP_A);
1506 known_regb &= ~(KRREG_A|KRREG_AL);
1507 dirty_regb |= KRREG_ST;
1508 ret++; break;
1509
1510 // mld (rj), (ri), b
1511 case 0x5b:
1512 EOP_C_DOP_IMM(A_COND_AL,A_OP_MOV,1,0,5,0,0); // movs r5, #0
1513 hostreg_sspreg_changed(SSP_A);
1514 known_regs.gr[SSP_A].v = 0;
1515 known_regb |= (KRREG_A|KRREG_AL);
1516 dirty_regb |= KRREG_ST;
1517 tr_mac_load_XY(op);
1518 ret++; break;
1519
1520 // OP a, s
1521 case 0x10:
1522 case 0x30:
1523 case 0x40:
1524 case 0x50:
1525 case 0x60:
1526 case 0x70:
1527 tmpv = op & 0xf; // src
1528 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1529 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1530 if (tmpv == SSP_P) {
1531 tr_flush_dirty_P();
1532 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL,10); // OPs r5, r5, r10
1533 } else if (tmpv == SSP_A) {
1534 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL, 5); // OPs r5, r5, r5
1535 } else {
1536 tr_read_funcs[tmpv](op);
1537 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL, 0); // OPs r5, r5, r0, lsl #16
1538 }
1539 hostreg_sspreg_changed(SSP_A);
1540 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1541 dirty_regb |= KRREG_ST;
1542 ret++; break;
1543
1544 // OP a, (ri)
1545 case 0x11:
1546 case 0x31:
1547 case 0x41:
1548 case 0x51:
1549 case 0x61:
1550 case 0x71:
1551 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1552 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1553 tr_rX_read((op&3)|((op>>6)&4), (op>>2)&3);
1554 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1555 hostreg_sspreg_changed(SSP_A);
1556 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1557 dirty_regb |= KRREG_ST;
1558 ret++; break;
1559
1560 // OP a, adr
1561 case 0x13:
1562 case 0x33:
1563 case 0x43:
1564 case 0x53:
1565 case 0x63:
1566 case 0x73:
1567 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1568 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1569 tr_bank_read(op&0x1ff);
1570 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1571 hostreg_sspreg_changed(SSP_A);
1572 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1573 dirty_regb |= KRREG_ST;
1574 ret++; break;
1575
1576 // OP a, imm
1577 case 0x14:
1578 case 0x34:
1579 case 0x44:
1580 case 0x54:
1581 case 0x64:
1582 case 0x74:
1583 tmpv = (op & 0xf0) >> 4;
1584 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1585 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1586 tr_mov16(0, imm);
1587 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1588 hostreg_sspreg_changed(SSP_A);
1589 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1590 dirty_regb |= KRREG_ST;
1591 ret += 2; break;
1592
1593 // OP a, ((ri))
1594 case 0x15:
1595 case 0x35:
1596 case 0x45:
1597 case 0x55:
1598 case 0x65:
1599 case 0x75:
1600 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1601 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1602 tr_rX_read2(op);
1603 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1604 hostreg_sspreg_changed(SSP_A);
1605 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1606 dirty_regb |= KRREG_ST;
1607 ret += 3; break;
1608
1609 // OP a, ri
1610 case 0x19:
1611 case 0x39:
1612 case 0x49:
1613 case 0x59:
1614 case 0x69:
1615 case 0x79: {
1616 int r;
1617 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1618 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1619 r = (op&3) | ((op>>6)&4); // src
1620 if ((r&3) == 3) tr_unhandled();
1621
1622 if (known_regb & (1 << (r+8))) {
1623 EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,known_regs.r[r]); // OPs r5, r5, #val<<16
1624 } else {
1625 int reg = (r < 4) ? 8 : 9;
1626 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8); // mov r0, r{7,8}, lsr #lsr
1627 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff); // and r0, r{7,8}, <mask>
1628 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1629 hostreg_r[0] = -1;
1630 }
1631 hostreg_sspreg_changed(SSP_A);
1632 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1633 dirty_regb |= KRREG_ST;
1634 ret++; break;
1635 }
1636
1637 // OP simm
1638 case 0x1c:
1639 case 0x3c:
1640 case 0x4c:
1641 case 0x5c:
1642 case 0x6c:
1643 case 0x7c:
1644 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1645 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1646 EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,op & 0xff); // OPs r5, r5, #val<<16
1647 hostreg_sspreg_changed(SSP_A);
1648 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1649 dirty_regb |= KRREG_ST;
1650 ret++; break;
1651 }
1652
1653 n_in_ops++;
1654
1655 return ret;
1656}
1657
1658static void emit_block_prologue(void)
1659{
1660 // check if there are enough cycles..
1661 // note: r0 must contain PC of current block
1662 EOP_CMP_IMM(11,0,0); // cmp r11, #0
1663 emit_jump(A_COND_LE, ssp_drc_end);
1664}
1665
1666/* cond:
1667 * >0: direct (un)conditional jump
1668 * <0: indirect jump
1669 */
1670static void emit_block_epilogue(int cycles, int cond, int pc, int end_pc)
1671{
1672 if (cycles > 0xff) { elprintf(EL_ANOMALY, "large cycle count: %i\n", cycles); cycles = 0xff; }
1673 EOP_SUB_IMM(11,11,0,cycles); // sub r11, r11, #cycles
1674
1675 if (cond < 0 || (end_pc >= 0x400 && pc < 0x400)) {
1676 // indirect jump, or rom -> iram jump, must use dispatcher
1677 emit_jump(A_COND_AL, ssp_drc_next);
1678 }
1679 else if (cond == A_COND_AL) {
1680 u32 *target = (pc < 0x400) ? ssp_block_table_iram[ssp->drc.iram_context][pc] : ssp_block_table[pc];
1681 if (target != NULL)
1682 emit_jump(A_COND_AL, target);
1683 else {
1684 int ops = emit_jump(A_COND_AL, ssp_drc_next);
1685 // cause the next block to be emitted over jump instruction
1686 tcache_ptr -= ops;
1687 }
1688 }
1689 else {
1690 u32 *target1 = (pc < 0x400) ? ssp_block_table_iram[ssp->drc.iram_context][pc] : ssp_block_table[pc];
1691 u32 *target2 = (end_pc < 0x400) ? ssp_block_table_iram[ssp->drc.iram_context][end_pc] : ssp_block_table[end_pc];
1692 if (target1 != NULL)
1693 emit_jump(cond, target1);
1694 if (target2 != NULL)
1695 emit_jump(tr_neg_cond(cond), target2); // neg_cond, to be able to swap jumps if needed
1696#ifndef __EPOC32__
1697 // emit patchable branches
1698 if (target1 == NULL)
1699 emit_call(cond, ssp_drc_next_patch);
1700 if (target2 == NULL)
1701 emit_call(tr_neg_cond(cond), ssp_drc_next_patch);
1702#else
1703 // won't patch indirect jumps
1704 if (target1 == NULL || target2 == NULL)
1705 emit_jump(A_COND_AL, ssp_drc_next);
1706#endif
1707 }
1708}
1709
1710void *ssp_translate_block(int pc)
1711{
1712 unsigned int op, op1, imm, ccount = 0;
1713 unsigned int *block_start;
1714 int ret, end_cond = A_COND_AL, jump_pc = -1;
1715
1716 //printf("translate %04x -> %04x\n", pc<<1, (tcache_ptr-tcache)<<2);
1717
1718 block_start = tcache_ptr;
1719 known_regb = 0;
1720 dirty_regb = KRREG_P;
1721 known_regs.emu_status = 0;
1722 hostreg_clear();
1723
1724 emit_block_prologue();
1725
1726 for (; ccount < 100;)
1727 {
1728 op = PROGRAM(pc++);
1729 op1 = op >> 9;
1730 imm = (u32)-1;
1731
1732 if ((op1 & 0xf) == 4 || (op1 & 0xf) == 6)
1733 imm = PROGRAM(pc++); // immediate
1734
1735 ret = translate_op(op, &pc, imm, &end_cond, &jump_pc);
1736 if (ret <= 0)
1737 {
1738 elprintf(EL_ANOMALY, "NULL func! op=%08x (%02x)\n", op, op1);
1739 //exit(1);
1740 }
1741
1742 ccount += ret & 0xffff;
1743 if (ret & 0x10000) break;
1744 }
1745
1746 if (ccount >= 100) {
1747 end_cond = A_COND_AL;
1748 jump_pc = pc;
1749 emit_mov_const(A_COND_AL, 0, pc);
1750 }
1751
1752 tr_flush_dirty_prs();
1753 tr_flush_dirty_ST();
1754 tr_flush_dirty_pmcrs();
1755 emit_block_epilogue(ccount, end_cond, jump_pc, pc);
1756
1757 if (tcache_ptr - tcache > SSP_TCACHE_SIZE/4) {
1758 elprintf(EL_ANOMALY|EL_STATUS|EL_SVP, "tcache overflow!\n");
1759 fflush(stdout);
1760 exit(1);
1761 }
1762
1763 // stats
1764 nblocks++;
1765 //printf("%i blocks, %i bytes, k=%.3f\n", nblocks, (tcache_ptr - tcache)*4,
1766 // (double)(tcache_ptr - tcache) / (double)n_in_ops);
1767
1768#ifdef DUMP_BLOCK
1769 {
1770 FILE *f = fopen("tcache.bin", "wb");
1771 fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
1772 fclose(f);
1773 }
1774 printf("dumped tcache.bin\n");
1775 exit(0);
1776#endif
1777
1778 handle_caches();
1779
1780 return block_start;
1781}
1782
1783
1784
1785// -----------------------------------------------------
1786
1787static void ssp1601_state_load(void)
1788{
1789 ssp->drc.iram_dirty = 1;
1790 ssp->drc.iram_context = 0;
1791}
1792
1793int ssp1601_dyn_startup(void)
1794{
1795 drc_cmn_init();
1796
1797 memset(tcache, 0, SSP_TCACHE_SIZE);
1798 memset(ssp_block_table, 0, sizeof(ssp_block_table));
1799 memset(ssp_block_table_iram, 0, sizeof(ssp_block_table_iram));
1800 tcache_ptr = tcache;
1801
1802 PicoLoadStateHook = ssp1601_state_load;
1803
1804 n_in_ops = 0;
1805#ifdef ARM
1806 // hle'd blocks
1807 ssp_block_table[0x800/2] = (void *) ssp_hle_800;
1808 ssp_block_table[0x902/2] = (void *) ssp_hle_902;
1809 ssp_block_table_iram[ 7][0x030/2] = (void *) ssp_hle_07_030;
1810 ssp_block_table_iram[ 7][0x036/2] = (void *) ssp_hle_07_036;
1811 ssp_block_table_iram[ 7][0x6d6/2] = (void *) ssp_hle_07_6d6;
1812 ssp_block_table_iram[11][0x12c/2] = (void *) ssp_hle_11_12c;
1813 ssp_block_table_iram[11][0x384/2] = (void *) ssp_hle_11_384;
1814 ssp_block_table_iram[11][0x38a/2] = (void *) ssp_hle_11_38a;
1815#endif
1816
1817 return 0;
1818}
1819
1820
1821void ssp1601_dyn_reset(ssp1601_t *ssp)
1822{
1823 ssp1601_reset(ssp);
1824 ssp->drc.iram_dirty = 1;
1825 ssp->drc.iram_context = 0;
1826 // must do this here because ssp is not available @ startup()
1827 ssp->drc.ptr_rom = (u32) Pico.rom;
1828 ssp->drc.ptr_iram_rom = (u32) svp->iram_rom;
1829 ssp->drc.ptr_dram = (u32) svp->dram;
1830 ssp->drc.ptr_btable = (u32) ssp_block_table;
1831 ssp->drc.ptr_btable_iram = (u32) ssp_block_table_iram;
1832
1833 // prevent new versions of IRAM from appearing
1834 memset(svp->iram_rom, 0, 0x800);
1835}
1836
1837
1838void ssp1601_dyn_run(int cycles)
1839{
1840 if (ssp->emu_status & SSP_WAIT_MASK) return;
1841
1842#ifdef DUMP_BLOCK
1843 ssp_translate_block(DUMP_BLOCK >> 1);
1844#endif
1845#ifdef ARM
1846 ssp_drc_entry(cycles);
1847#endif
1848}
1849