gp2x+wiz binary support, wiz code wip
[picodrive.git] / pico / carthw / svp / ssp16.c
... / ...
CommitLineData
1// basic, incomplete SSP160x (SSP1601?) interpreter
2// with SVP memory controller emu
3
4// (c) Copyright 2008, Grazvydas "notaz" Ignotas
5// Free for non-commercial use.
6
7// For commercial use, separate licencing terms must be obtained.
8
9
10//#define USE_DEBUGGER
11/* detect ops with unimplemented/invalid fields.
12 * Useful for homebrew or if a new VR revision pops up. */
13//#define DO_CHECKS
14
15/*
16 * Register info
17 *
18 * 0. "-"
19 * size: 16
20 * desc: Constant register with all bits set (0xffff).
21 *
22 * 1. "X"
23 * size: 16
24 * desc: Generic register. When set, updates P (P = X * Y * 2)
25 *
26 * 2. "Y"
27 * size: 16
28 * desc: Generic register. When set, updates P (P = X * Y * 2)
29 *
30 * 3. "A"
31 * size: 32
32 * desc: Accumulator.
33 *
34 * 4. "ST"
35 * size: 16
36 * desc: Status register. From MAME: bits 0-9 are CONTROL, other FLAG
37 * fedc ba98 7654 3210
38 * 210 - RPL (?) "Loop size". If non-zero, makes (rX+) and (rX-) respectively
39 * modulo-increment and modulo-decrement. The value shows which
40 * power of 2 to use, i.e. 4 means modulo by 16.
41 * (e: fir16_32.sc, IIR_4B.SC, DECIM.SC)
42 * 43 - RB (?)
43 * 5 - GP0_0 (ST5?) Changed before acessing PM0 (affects banking?).
44 * 6 - GP0_1 (ST6?) Cleared before acessing PM0 (affects banking?). Set after.
45 * datasheet says these (5,6) bits correspond to hardware pins.
46 * 7 - IE (?) Not directly used by SVP code (never set, but preserved)?
47 * 8 - OP (?) Not used by SVP code (only cleared)? (MAME: saturated value
48 * (probably means clamping? i.e. 0x7ffc + 9 -> 0x7fff))
49 * 9 - MACS (?) Not used by SVP code (only cleared)? (e: "mac shift")
50 * a - GPI_0 Interrupt 0 enable/status?
51 * b - GPI_1 Interrupt 1 enable/status?
52 * c - L L flag. Carry?
53 * d - Z Zero flag.
54 * e - OV Overflow flag.
55 * f - N Negative flag.
56 * seen directly changing code sequences:
57 * ldi ST, 0 ld A, ST ld A, ST ld A, ST ldi st, 20h
58 * ldi ST, 60h ori A, 60h and A, E8h and A, E8h
59 * ld ST, A ld ST, A ori 3
60 * ld ST, A
61 *
62 * 5. "STACK"
63 * size: 16
64 * desc: hw stack of 6 levels (according to datasheet)
65 *
66 * 6. "PC"
67 * size: 16
68 * desc: Program counter.
69 *
70 * 7. "P"
71 * size: 32
72 * desc: multiply result register. P = X * Y * 2
73 * probably affected by MACS bit in ST.
74 *
75 * 8. "PM0" (PM from PMAR name from Tasco's docs)
76 * size: 16?
77 * desc: Programmable Memory access register.
78 * On reset, or when one (both?) GP0 bits are clear,
79 * acts as status for XST, mapped at 015004 at 68k side:
80 * bit0: ssp has written something to XST (cleared when 015004 is read)
81 * bit1: 68k has written something through a1500{0|2} (cleared on PM0 read)
82 *
83 * 9. "PM1"
84 * size: 16?
85 * desc: Programmable Memory access register.
86 * This reg. is only used as PMAR.
87 *
88 * 10. "PM2"
89 * size: 16?
90 * desc: Programmable Memory access register.
91 * This reg. is only used as PMAR.
92 *
93 * 11. "XST"
94 * size: 16?
95 * desc: eXternal STate. Mapped to a15000 and a15002 at 68k side.
96 * Can be programmed as PMAR? (only seen in test mode code)
97 * Affects PM0 when written to?
98 *
99 * 12. "PM4"
100 * size: 16?
101 * desc: Programmable Memory access register.
102 * This reg. is only used as PMAR. The most used PMAR by VR.
103 *
104 * 13. (unused by VR)
105 *
106 * 14. "PMC" (PMC from PMAC name from Tasco's docs)
107 * size: 32?
108 * desc: Programmable Memory access Control. Set using 2 16bit writes,
109 * first address, then mode word. After setting PMAC, PMAR sould
110 * be blind accessed (ld -, PMx or ld PMx, -) to program it for
111 * reading and writing respectively.
112 * Reading the register also shifts it's state (from "waiting for
113 * address" to "waiting for mode" and back). Reads always return
114 * address related to last PMx register accressed.
115 * (note: addresses do not wrap).
116 *
117 * 15. "AL"
118 * size: 16
119 * desc: Accumulator Low. 16 least significant bits of accumulator.
120 * (normally reading acc (ld X, A) you get 16 most significant bits).
121 *
122 *
123 * There are 8 8-bit pointer registers rX. r0-r3 (ri) point to RAM0, r4-r7 (rj) point to RAM1.
124 * They can be accessed directly, or 2 indirection levels can be used [ (rX), ((rX)) ],
125 * which work similar to * and ** operators in C, only they use different memory banks and
126 * ((rX)) also does post-increment. First indirection level (rX) accesses RAMx, second accesses
127 * program memory at address read from (rX), and increments value in (rX).
128 *
129 * r0,r1,r2,r4,r5,r6 can be modified [ex: ldi r0, 5].
130 * 3 modifiers can be applied (optional):
131 * + : post-increment [ex: ld a, (r0+) ]. Can be made modulo-increment by setting RPL bits in ST.
132 * - : post-decrement. Can be made modulo-decrement by setting RPL bits in ST (not sure).
133 * +!: post-increment, unaffected by RPL (probably).
134 * These are only used on 1st indirection level, so things like [ld a, ((r0+))] and [ld X, r6-]
135 * ar probably invalid.
136 *
137 * r3 and r7 are special and can not be changed (at least Samsung samples and VR code never do).
138 * They are fixed to the start of their RAM banks. (They are probably changeable for ssp1605+,
139 * Samsung's old DSP page claims that).
140 * 1 of these 4 modifiers must be used (short form direct addressing?):
141 * |00: RAMx[0] [ex: (r3|00), 0] (based on sample code)
142 * |01: RAMx[1]
143 * |10: RAMx[2] ? maybe 10h? accortding to Div_c_dp.sc, 2
144 * |11: RAMx[3]
145 *
146 *
147 * Instruction notes
148 *
149 * ld a, * doesn't affect flags! (e: A_LAW.SC, Div_c_dp.sc)
150 *
151 * mld (rj), (ri) [, b]
152 * operation: A = 0; P = (rj) * (ri)
153 * notes: based on IIR_4B.SC sample. flags? what is b???
154 *
155 * mpya (rj), (ri) [, b]
156 * name: multiply and add?
157 * operation: A += P; P = (rj) * (ri)
158 *
159 * mpys (rj), (ri), b
160 * name: multiply and subtract?
161 * notes: not used by VR code.
162 *
163 * mod cond, op
164 * mod cond, shr does arithmetic shift
165 *
166 * 'ld -, AL' and probably 'ld AL, -' are for dummy assigns
167 *
168 * memory map:
169 * 000000 - 1fffff ROM, accessable by both
170 * 200000 - 2fffff unused?
171 * 300000 - 31ffff DRAM, both
172 * 320000 - 38ffff unused?
173 * 390000 - 3907ff IRAM. can only be accessed by ssp?
174 * 390000 - 39ffff similar mapping to "cell arrange" in Sega CD, 68k only?
175 * 3a0000 - 3affff similar mapping to "cell arrange" in Sega CD, a bit different
176 *
177 * 30fe02 - 0 if SVP busy, 1 if done (set by SVP, checked and cleared by 68k)
178 * 30fe06 - also sync related.
179 * 30fe08 - job number [1-12] for SVP. 0 means no job. Set by 68k, read-cleared by VR.
180 *
181 * Assumptions and limitations in this code
182 * only Z and N status flags are emulated (others unused by VR)
183 * so all condition checks except N and Z are ignored (not used by VR)
184 * modifiers for 'OP a, ri' and ((ri)) are ignored (not used by VR)
185 * loop repeat mode when (ri) is destination is ignored
186 * ops not used by VR are not implemented
187 */
188
189#include "../../pico_int.h"
190
191#define u32 unsigned int
192
193// 0
194#define rX ssp->gr[SSP_X].h
195#define rY ssp->gr[SSP_Y].h
196#define rA ssp->gr[SSP_A].h
197#define rST ssp->gr[SSP_ST].h // 4
198#define rSTACK ssp->gr[SSP_STACK].h
199#define rPC ssp->gr[SSP_PC].h
200#define rP ssp->gr[SSP_P]
201#define rPM0 ssp->gr[SSP_PM0].h // 8
202#define rPM1 ssp->gr[SSP_PM1].h
203#define rPM2 ssp->gr[SSP_PM2].h
204#define rXST ssp->gr[SSP_XST].h
205#define rPM4 ssp->gr[SSP_PM4].h // 12
206// 13
207#define rPMC ssp->gr[SSP_PMC] // will keep addr in .l, mode in .h
208#define rAL ssp->gr[SSP_A].l
209
210#define rA32 ssp->gr[SSP_A].v
211#define rIJ ssp->r
212
213#define IJind (((op>>6)&4)|(op&3))
214
215#define GET_PC() (PC - (unsigned short *)svp->iram_rom)
216#define GET_PPC_OFFS() ((unsigned int)PC - (unsigned int)svp->iram_rom - 2)
217#define SET_PC(d) PC = (unsigned short *)svp->iram_rom + d
218
219#define REG_READ(r) (((r) <= 4) ? ssp->gr[r].h : read_handlers[r]())
220#define REG_WRITE(r,d) { \
221 int r1 = r; \
222 if (r1 >= 4) write_handlers[r1](d); \
223 else if (r1 > 0) ssp->gr[r1].h = d; \
224}
225
226// flags
227#define SSP_FLAG_L (1<<0xc)
228#define SSP_FLAG_Z (1<<0xd)
229#define SSP_FLAG_V (1<<0xe)
230#define SSP_FLAG_N (1<<0xf)
231
232// update ZN according to 32bit ACC.
233#define UPD_ACC_ZN \
234 rST &= ~(SSP_FLAG_Z|SSP_FLAG_N); \
235 if (!rA32) rST |= SSP_FLAG_Z; \
236 else rST |= (rA32>>16)&SSP_FLAG_N;
237
238// it seems SVP code never checks for L and OV, so we leave them out.
239// rST |= (t>>4)&SSP_FLAG_L;
240#define UPD_LZVN \
241 rST &= ~(SSP_FLAG_L|SSP_FLAG_Z|SSP_FLAG_V|SSP_FLAG_N); \
242 if (!rA32) rST |= SSP_FLAG_Z; \
243 else rST |= (rA32>>16)&SSP_FLAG_N;
244
245// standard cond processing.
246// again, only Z and N is checked, as VR doesn't seem to use any other conds.
247#define COND_CHECK \
248 switch (op&0xf0) { \
249 case 0x00: cond = 1; break; /* always true */ \
250 case 0x50: cond = !((rST ^ (op<<5)) & SSP_FLAG_Z); break; /* Z matches f(?) bit */ \
251 case 0x70: cond = !((rST ^ (op<<7)) & SSP_FLAG_N); break; /* N matches f(?) bit */ \
252 default:elprintf(EL_SVP|EL_ANOMALY, "ssp FIXME: unimplemented cond @ %04x", GET_PPC_OFFS()); break; \
253 }
254
255// ops with accumulator.
256// how is low word really affected by these?
257// nearly sure 'ld A' doesn't affect flags
258#define OP_LDA(x) \
259 ssp->gr[SSP_A].h = x
260
261#define OP_LDA32(x) \
262 rA32 = x
263
264#define OP_SUBA(x) { \
265 rA32 -= (x) << 16; \
266 UPD_LZVN \
267}
268
269#define OP_SUBA32(x) { \
270 rA32 -= (x); \
271 UPD_LZVN \
272}
273
274#define OP_CMPA(x) { \
275 u32 t = rA32 - ((x) << 16); \
276 rST &= ~(SSP_FLAG_L|SSP_FLAG_Z|SSP_FLAG_V|SSP_FLAG_N); \
277 if (!t) rST |= SSP_FLAG_Z; \
278 else rST |= (t>>16)&SSP_FLAG_N; \
279}
280
281#define OP_CMPA32(x) { \
282 u32 t = rA32 - (x); \
283 rST &= ~(SSP_FLAG_L|SSP_FLAG_Z|SSP_FLAG_V|SSP_FLAG_N); \
284 if (!t) rST |= SSP_FLAG_Z; \
285 else rST |= (t>>16)&SSP_FLAG_N; \
286}
287
288#define OP_ADDA(x) { \
289 rA32 += (x) << 16; \
290 UPD_LZVN \
291}
292
293#define OP_ADDA32(x) { \
294 rA32 += (x); \
295 UPD_LZVN \
296}
297
298#define OP_ANDA(x) \
299 rA32 &= (x) << 16; \
300 UPD_ACC_ZN
301
302#define OP_ANDA32(x) \
303 rA32 &= (x); \
304 UPD_ACC_ZN
305
306#define OP_ORA(x) \
307 rA32 |= (x) << 16; \
308 UPD_ACC_ZN
309
310#define OP_ORA32(x) \
311 rA32 |= (x); \
312 UPD_ACC_ZN
313
314#define OP_EORA(x) \
315 rA32 ^= (x) << 16; \
316 UPD_ACC_ZN
317
318#define OP_EORA32(x) \
319 rA32 ^= (x); \
320 UPD_ACC_ZN
321
322
323#define OP_CHECK32(OP) { \
324 if ((op & 0x0f) == SSP_P) { /* A <- P */ \
325 read_P(); /* update P */ \
326 OP(rP.v); \
327 break; \
328 } \
329 if ((op & 0x0f) == SSP_A) { /* A <- A */ \
330 OP(rA32); \
331 break; \
332 } \
333}
334
335
336#ifdef DO_CHECKS
337#define CHECK_IMM16() if (op&0x1ff) elprintf(EL_ANOMALY, "imm bits! %04x @ %04x", op, GET_PPC_OFFS())
338#define CHECK_B_SET() if (op&0x100) elprintf(EL_ANOMALY, "b set! %04x @ %04x", op, GET_PPC_OFFS())
339#define CHECK_B_CLEAR() if (!(op&0x100)) elprintf(EL_ANOMALY, "b clear! %04x @ %04x", op, GET_PPC_OFFS())
340#define CHECK_MOD() if (op&0x00c) elprintf(EL_ANOMALY, "mod bits! %04x @ %04x", op, GET_PPC_OFFS())
341#define CHECK_10f() if (op&0x10f) elprintf(EL_ANOMALY, "bits 10f! %04x @ %04x", op, GET_PPC_OFFS())
342#define CHECK_008() if (op&0x008) elprintf(EL_ANOMALY, "bits 008! %04x @ %04x", op, GET_PPC_OFFS())
343#define CHECK_00f() if (op&0x00f) elprintf(EL_ANOMALY, "bits 00f! %04x @ %04x", op, GET_PPC_OFFS())
344#define CHECK_0f0() if (op&0x0f0) elprintf(EL_ANOMALY, "bits 0f0! %04x @ %04x", op, GET_PPC_OFFS())
345#define CHECK_1f0() if (op&0x1f0) elprintf(EL_ANOMALY, "bits 1f0! %04x @ %04x", op, GET_PPC_OFFS())
346#define CHECK_RPL() if (rST&7) elprintf(EL_ANOMALY, "unhandled RPL! %04x @ %04x", op, GET_PPC_OFFS())
347#define CHECK_ST(d) if((rST^d)&0xf98)elprintf(EL_ANOMALY, "ssp FIXME ST %04x -> %04x @ %04x", rST, d, GET_PPC_OFFS())
348#else
349#define CHECK_IMM16()
350#define CHECK_B_SET()
351#define CHECK_B_CLEAR()
352#define CHECK_MOD()
353#define CHECK_10f()
354#define CHECK_008()
355#define CHECK_00f()
356#define CHECK_0f0()
357#define CHECK_1f0()
358#define CHECK_RPL()
359#define CHECK_ST(d)
360#endif
361
362ssp1601_t *ssp = NULL;
363static unsigned short *PC;
364static int g_cycles;
365
366#ifdef USE_DEBUGGER
367static int running = 0;
368static int last_iram = 0;
369#endif
370
371// -----------------------------------------------------
372// register i/o handlers
373
374// 0-4, 13
375static u32 read_unknown(void)
376{
377 elprintf(EL_ANOMALY|EL_SVP, "ssp FIXME: unknown read @ %04x", GET_PPC_OFFS());
378 return 0;
379}
380
381static void write_unknown(u32 d)
382{
383 elprintf(EL_ANOMALY|EL_SVP, "ssp FIXME: unknown write @ %04x", GET_PPC_OFFS());
384}
385
386// 4
387static void write_ST(u32 d)
388{
389 CHECK_ST(d);
390 rST = d;
391}
392
393// 5
394static u32 read_STACK(void)
395{
396 --rSTACK;
397 if ((short)rSTACK < 0) {
398 rSTACK = 5;
399 elprintf(EL_ANOMALY|EL_SVP, "ssp FIXME: stack underflow! (%i) @ %04x", rSTACK, GET_PPC_OFFS());
400 }
401 return ssp->stack[rSTACK];
402}
403
404static void write_STACK(u32 d)
405{
406 if (rSTACK >= 6) {
407 elprintf(EL_ANOMALY|EL_SVP, "ssp FIXME: stack overflow! (%i) @ %04x", rSTACK, GET_PPC_OFFS());
408 rSTACK = 0;
409 }
410 ssp->stack[rSTACK++] = d;
411}
412
413// 6
414static u32 read_PC(void)
415{
416 return GET_PC();
417}
418
419static void write_PC(u32 d)
420{
421 SET_PC(d);
422 g_cycles--;
423}
424
425// 7
426static u32 read_P(void)
427{
428 int m1 = (signed short)rX;
429 int m2 = (signed short)rY;
430 rP.v = (m1 * m2 * 2);
431 return rP.h;
432}
433
434// -----------------------------------------------------
435
436static int get_inc(int mode)
437{
438 int inc = (mode >> 11) & 7;
439 if (inc != 0) {
440 if (inc != 7) inc--;
441 inc = 1 << inc; // 0 1 2 4 8 16 32 128
442 if (mode & 0x8000) inc = -inc; // decrement mode
443 }
444 return inc;
445}
446
447#define overwrite_write(dst, d) \
448{ \
449 if (d & 0xf000) { dst &= ~0xf000; dst |= d & 0xf000; } \
450 if (d & 0x0f00) { dst &= ~0x0f00; dst |= d & 0x0f00; } \
451 if (d & 0x00f0) { dst &= ~0x00f0; dst |= d & 0x00f0; } \
452 if (d & 0x000f) { dst &= ~0x000f; dst |= d & 0x000f; } \
453}
454
455static u32 pm_io(int reg, int write, u32 d)
456{
457 if (ssp->emu_status & SSP_PMC_SET)
458 {
459 // this MUST be blind r or w
460 if ((*(PC-1) & 0xff0f) && (*(PC-1) & 0xfff0)) {
461 elprintf(EL_SVP|EL_ANOMALY, "ssp FIXME: tried to set PM%i (%c) with non-blind i/o %08x @ %04x",
462 reg, write ? 'w' : 'r', rPMC.v, GET_PPC_OFFS());
463 ssp->emu_status &= ~SSP_PMC_SET;
464 return 0;
465 }
466 elprintf(EL_SVP, "PM%i (%c) set to %08x @ %04x", reg, write ? 'w' : 'r', rPMC.v, GET_PPC_OFFS());
467 ssp->pmac_read[write ? reg + 6 : reg] = rPMC.v;
468 ssp->emu_status &= ~SSP_PMC_SET;
469 if ((rPMC.v & 0x7fffff) == 0x1c8000 || (rPMC.v & 0x7fffff) == 0x1c8240) {
470 elprintf(EL_SVP, "ssp IRAM copy from %06x to %04x", (ssp->RAM1[0]-1)<<1, (rPMC.v&0x7fff)<<1);
471#ifdef USE_DEBUGGER
472 last_iram = (ssp->RAM1[0]-1)<<1;
473#endif
474 }
475 return 0;
476 }
477
478 // just in case
479 if (ssp->emu_status & SSP_PMC_HAVE_ADDR) {
480 elprintf(EL_SVP|EL_ANOMALY, "ssp FIXME: PM%i (%c) with only addr set @ %04x",
481 reg, write ? 'w' : 'r', GET_PPC_OFFS());
482 ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
483 }
484
485 if (reg == 4 || (rST & 0x60))
486 {
487 #define CADDR ((((mode<<16)&0x7f0000)|addr)<<1)
488 unsigned short *dram = (unsigned short *)svp->dram;
489 if (write)
490 {
491 int mode = ssp->pmac_write[reg]>>16;
492 int addr = ssp->pmac_write[reg]&0xffff;
493 if ((mode & 0xb800) == 0xb800)
494 elprintf(EL_SVP|EL_ANOMALY, "ssp FIXME: mode %04x", mode);
495 if ((mode & 0x43ff) == 0x0018) // DRAM
496 {
497 int inc = get_inc(mode);
498 elprintf(EL_SVP, "ssp PM%i DRAM w [%06x] %04x (inc %i, ovrw %i)",
499 reg, CADDR, d, inc, (mode>>10)&1);
500 if (mode & 0x0400) {
501 overwrite_write(dram[addr], d);
502 } else dram[addr] = d;
503 ssp->pmac_write[reg] += inc;
504 }
505 else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
506 {
507 elprintf(EL_SVP, "ssp PM%i DRAM w [%06x] %04x (cell inc, ovrw %i) @ %04x",
508 reg, CADDR, d, (mode>>10)&1, GET_PPC_OFFS());
509 if (mode & 0x0400) {
510 overwrite_write(dram[addr], d);
511 } else dram[addr] = d;
512 ssp->pmac_write[reg] += (addr&1) ? 31 : 1;
513 }
514 else if ((mode & 0x47ff) == 0x001c) // IRAM
515 {
516 int inc = get_inc(mode);
517 if ((addr&0xfc00) != 0x8000)
518 elprintf(EL_SVP|EL_ANOMALY, "ssp FIXME: invalid IRAM addr: %04x", addr<<1);
519 elprintf(EL_SVP, "ssp IRAM w [%06x] %04x (inc %i)", (addr<<1)&0x7ff, d, inc);
520 ((unsigned short *)svp->iram_rom)[addr&0x3ff] = d;
521 ssp->pmac_write[reg] += inc;
522 }
523 else
524 {
525 elprintf(EL_SVP|EL_ANOMALY, "ssp FIXME: PM%i unhandled write mode %04x, [%06x] %04x @ %04x",
526 reg, mode, CADDR, d, GET_PPC_OFFS());
527 }
528 }
529 else
530 {
531 int mode = ssp->pmac_read[reg]>>16;
532 int addr = ssp->pmac_read[reg]&0xffff;
533 if ((mode & 0xfff0) == 0x0800) // ROM, inc 1, verified to be correct
534 {
535 elprintf(EL_SVP, "ssp ROM r [%06x] %04x", CADDR,
536 ((unsigned short *)Pico.rom)[addr|((mode&0xf)<<16)]);
537 ssp->pmac_read[reg] += 1;
538 d = ((unsigned short *)Pico.rom)[addr|((mode&0xf)<<16)];
539 }
540 else if ((mode & 0x47ff) == 0x0018) // DRAM
541 {
542 int inc = get_inc(mode);
543 elprintf(EL_SVP, "ssp PM%i DRAM r [%06x] %04x (inc %i)", reg, CADDR, dram[addr]);
544 d = dram[addr];
545 ssp->pmac_read[reg] += inc;
546 }
547 else
548 {
549 elprintf(EL_SVP|EL_ANOMALY, "ssp FIXME: PM%i unhandled read mode %04x, [%06x] @ %04x",
550 reg, mode, CADDR, GET_PPC_OFFS());
551 d = 0;
552 }
553 }
554
555 // PMC value corresponds to last PMR accessed (not sure).
556 rPMC.v = ssp->pmac_read[write ? reg + 6 : reg];
557
558 return d;
559 }
560
561 return (u32)-1;
562}
563
564// 8
565static u32 read_PM0(void)
566{
567 u32 d = pm_io(0, 0, 0);
568 if (d != (u32)-1) return d;
569 elprintf(EL_SVP, "PM0 raw r %04x @ %04x", rPM0, GET_PPC_OFFS());
570 d = rPM0;
571 if (!(d & 2) && (GET_PPC_OFFS() == 0x800 || GET_PPC_OFFS() == 0x1851E)) {
572 ssp->emu_status |= SSP_WAIT_PM0; elprintf(EL_SVP, "det TIGHT loop: PM0");
573 }
574 rPM0 &= ~2; // ?
575 return d;
576}
577
578static void write_PM0(u32 d)
579{
580 u32 r = pm_io(0, 1, d);
581 if (r != (u32)-1) return;
582 elprintf(EL_SVP, "PM0 raw w %04x @ %04x", d, GET_PPC_OFFS());
583 rPM0 = d;
584}
585
586// 9
587static u32 read_PM1(void)
588{
589 u32 d = pm_io(1, 0, 0);
590 if (d != (u32)-1) return d;
591 // can be removed?
592 elprintf(EL_SVP|EL_ANOMALY, "PM1 raw r %04x @ %04x", rPM1, GET_PPC_OFFS());
593 return rPM1;
594}
595
596static void write_PM1(u32 d)
597{
598 u32 r = pm_io(1, 1, d);
599 if (r != (u32)-1) return;
600 // can be removed?
601 elprintf(EL_SVP|EL_ANOMALY, "PM1 raw w %04x @ %04x", d, GET_PPC_OFFS());
602 rPM1 = d;
603}
604
605// 10
606static u32 read_PM2(void)
607{
608 u32 d = pm_io(2, 0, 0);
609 if (d != (u32)-1) return d;
610 // can be removed?
611 elprintf(EL_SVP|EL_ANOMALY, "PM2 raw r %04x @ %04x", rPM2, GET_PPC_OFFS());
612 return rPM2;
613}
614
615static void write_PM2(u32 d)
616{
617 u32 r = pm_io(2, 1, d);
618 if (r != (u32)-1) return;
619 // can be removed?
620 elprintf(EL_SVP|EL_ANOMALY, "PM2 raw w %04x @ %04x", d, GET_PPC_OFFS());
621 rPM2 = d;
622}
623
624// 11
625static u32 read_XST(void)
626{
627 // can be removed?
628 u32 d = pm_io(3, 0, 0);
629 if (d != (u32)-1) return d;
630
631 elprintf(EL_SVP, "XST raw r %04x @ %04x", rXST, GET_PPC_OFFS());
632 return rXST;
633}
634
635static void write_XST(u32 d)
636{
637 // can be removed?
638 u32 r = pm_io(3, 1, d);
639 if (r != (u32)-1) return;
640
641 elprintf(EL_SVP, "XST raw w %04x @ %04x", d, GET_PPC_OFFS());
642 rPM0 |= 1;
643 rXST = d;
644}
645
646// 12
647static u32 read_PM4(void)
648{
649 u32 d = pm_io(4, 0, 0);
650 if (d == 0) {
651 switch (GET_PPC_OFFS()) {
652 case 0x0854: ssp->emu_status |= SSP_WAIT_30FE08; elprintf(EL_SVP, "det TIGHT loop: [30fe08]"); break;
653 case 0x4f12: ssp->emu_status |= SSP_WAIT_30FE06; elprintf(EL_SVP, "det TIGHT loop: [30fe06]"); break;
654 }
655 }
656 if (d != (u32)-1) return d;
657 // can be removed?
658 elprintf(EL_SVP|EL_ANOMALY, "PM4 raw r %04x @ %04x", rPM4, GET_PPC_OFFS());
659 return rPM4;
660}
661
662static void write_PM4(u32 d)
663{
664 u32 r = pm_io(4, 1, d);
665 if (r != (u32)-1) return;
666 // can be removed?
667 elprintf(EL_SVP|EL_ANOMALY, "PM4 raw w %04x @ %04x", d, GET_PPC_OFFS());
668 rPM4 = d;
669}
670
671// 14
672static u32 read_PMC(void)
673{
674 elprintf(EL_SVP, "PMC r a %04x (st %c) @ %04x", rPMC.l,
675 (ssp->emu_status & SSP_PMC_HAVE_ADDR) ? 'm' : 'a', GET_PPC_OFFS());
676 if (ssp->emu_status & SSP_PMC_HAVE_ADDR) {
677 //if (ssp->emu_status & SSP_PMC_SET)
678 // elprintf(EL_ANOMALY|EL_SVP, "prev PMC not used @ %04x", GET_PPC_OFFS());
679 ssp->emu_status |= SSP_PMC_SET;
680 ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
681 return ((rPMC.l << 4) & 0xfff0) | ((rPMC.l >> 4) & 0xf);
682 } else {
683 ssp->emu_status |= SSP_PMC_HAVE_ADDR;
684 return rPMC.l;
685 }
686}
687
688static void write_PMC(u32 d)
689{
690 if (ssp->emu_status & SSP_PMC_HAVE_ADDR) {
691 //if (ssp->emu_status & SSP_PMC_SET)
692 // elprintf(EL_ANOMALY|EL_SVP, "prev PMC not used @ %04x", GET_PPC_OFFS());
693 ssp->emu_status |= SSP_PMC_SET;
694 ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
695 rPMC.h = d;
696 elprintf(EL_SVP, "PMC w m %04x @ %04x", rPMC.h, GET_PPC_OFFS());
697 } else {
698 ssp->emu_status |= SSP_PMC_HAVE_ADDR;
699 rPMC.l = d;
700 elprintf(EL_SVP, "PMC w a %04x @ %04x", rPMC.l, GET_PPC_OFFS());
701 }
702}
703
704// 15
705static u32 read_AL(void)
706{
707 if (*(PC-1) == 0x000f)
708 elprintf(EL_SVP, "ssp dummy PM assign %08x @ %04x", rPMC.v, GET_PPC_OFFS());
709 ssp->emu_status &= ~(SSP_PMC_SET|SSP_PMC_HAVE_ADDR); // ?
710 return rAL;
711}
712
713static void write_AL(u32 d)
714{
715 rAL = d;
716}
717
718
719typedef u32 (*read_func_t)(void);
720typedef void (*write_func_t)(u32 d);
721
722static read_func_t read_handlers[16] =
723{
724 read_unknown, read_unknown, read_unknown, read_unknown, // -, X, Y, A
725 read_unknown, // 4 ST
726 read_STACK,
727 read_PC,
728 read_P,
729 read_PM0, // 8
730 read_PM1,
731 read_PM2,
732 read_XST,
733 read_PM4, // 12
734 read_unknown, // 13 gr13
735 read_PMC,
736 read_AL
737};
738
739static write_func_t write_handlers[16] =
740{
741 write_unknown, write_unknown, write_unknown, write_unknown, // -, X, Y, A
742// write_unknown, // 4 ST
743 write_ST, // 4 ST (debug hook)
744 write_STACK,
745 write_PC,
746 write_unknown, // 7 P
747 write_PM0, // 8
748 write_PM1,
749 write_PM2,
750 write_XST,
751 write_PM4, // 12
752 write_unknown, // 13 gr13
753 write_PMC,
754 write_AL
755};
756
757// -----------------------------------------------------
758// pointer register handlers
759
760//
761#define ptr1_read(op) ptr1_read_(op&3,(op>>6)&4,(op<<1)&0x18)
762
763static u32 ptr1_read_(int ri, int isj2, int modi3)
764{
765 //int t = (op&3) | ((op>>6)&4) | ((op<<1)&0x18);
766 u32 mask, add = 0, t = ri | isj2 | modi3;
767 unsigned char *rp = NULL;
768 switch (t)
769 {
770 // mod=0 (00)
771 case 0x00:
772 case 0x01:
773 case 0x02: return ssp->RAM0[ssp->r0[t&3]];
774 case 0x03: return ssp->RAM0[0];
775 case 0x04:
776 case 0x05:
777 case 0x06: return ssp->RAM1[ssp->r1[t&3]];
778 case 0x07: return ssp->RAM1[0];
779 // mod=1 (01), "+!"
780 case 0x08:
781 case 0x09:
782 case 0x0a: return ssp->RAM0[ssp->r0[t&3]++];
783 case 0x0b: return ssp->RAM0[1];
784 case 0x0c:
785 case 0x0d:
786 case 0x0e: return ssp->RAM1[ssp->r1[t&3]++];
787 case 0x0f: return ssp->RAM1[1];
788 // mod=2 (10), "-"
789 case 0x10:
790 case 0x11:
791 case 0x12: rp = &ssp->r0[t&3]; t = ssp->RAM0[*rp];
792 if (!(rST&7)) { (*rp)--; return t; }
793 add = -1; goto modulo;
794 case 0x13: return ssp->RAM0[2];
795 case 0x14:
796 case 0x15:
797 case 0x16: rp = &ssp->r1[t&3]; t = ssp->RAM1[*rp];
798 if (!(rST&7)) { (*rp)--; return t; }
799 add = -1; goto modulo;
800 case 0x17: return ssp->RAM1[2];
801 // mod=3 (11), "+"
802 case 0x18:
803 case 0x19:
804 case 0x1a: rp = &ssp->r0[t&3]; t = ssp->RAM0[*rp];
805 if (!(rST&7)) { (*rp)++; return t; }
806 add = 1; goto modulo;
807 case 0x1b: return ssp->RAM0[3];
808 case 0x1c:
809 case 0x1d:
810 case 0x1e: rp = &ssp->r1[t&3]; t = ssp->RAM1[*rp];
811 if (!(rST&7)) { (*rp)++; return t; }
812 add = 1; goto modulo;
813 case 0x1f: return ssp->RAM1[3];
814 }
815
816 return 0;
817
818modulo:
819 mask = (1 << (rST&7)) - 1;
820 *rp = (*rp & ~mask) | ((*rp + add) & mask);
821 return t;
822}
823
824static void ptr1_write(int op, u32 d)
825{
826 int t = (op&3) | ((op>>6)&4) | ((op<<1)&0x18);
827 switch (t)
828 {
829 // mod=0 (00)
830 case 0x00:
831 case 0x01:
832 case 0x02: ssp->RAM0[ssp->r0[t&3]] = d; return;
833 case 0x03: ssp->RAM0[0] = d; return;
834 case 0x04:
835 case 0x05:
836 case 0x06: ssp->RAM1[ssp->r1[t&3]] = d; return;
837 case 0x07: ssp->RAM1[0] = d; return;
838 // mod=1 (01), "+!"
839 // mod=3, "+"
840 case 0x08:
841 case 0x09:
842 case 0x0a: ssp->RAM0[ssp->r0[t&3]++] = d; return;
843 case 0x0b: ssp->RAM0[1] = d; return;
844 case 0x0c:
845 case 0x0d:
846 case 0x0e: ssp->RAM1[ssp->r1[t&3]++] = d; return;
847 case 0x0f: ssp->RAM1[1] = d; return;
848 // mod=2 (10), "-"
849 case 0x10:
850 case 0x11:
851 case 0x12: ssp->RAM0[ssp->r0[t&3]--] = d; CHECK_RPL(); return;
852 case 0x13: ssp->RAM0[2] = d; return;
853 case 0x14:
854 case 0x15:
855 case 0x16: ssp->RAM1[ssp->r1[t&3]--] = d; CHECK_RPL(); return;
856 case 0x17: ssp->RAM1[2] = d; return;
857 // mod=3 (11), "+"
858 case 0x18:
859 case 0x19:
860 case 0x1a: ssp->RAM0[ssp->r0[t&3]++] = d; CHECK_RPL(); return;
861 case 0x1b: ssp->RAM0[3] = d; return;
862 case 0x1c:
863 case 0x1d:
864 case 0x1e: ssp->RAM1[ssp->r1[t&3]++] = d; CHECK_RPL(); return;
865 case 0x1f: ssp->RAM1[3] = d; return;
866 }
867}
868
869static u32 ptr2_read(int op)
870{
871 int mv = 0, t = (op&3) | ((op>>6)&4) | ((op<<1)&0x18);
872 switch (t)
873 {
874 // mod=0 (00)
875 case 0x00:
876 case 0x01:
877 case 0x02: mv = ssp->RAM0[ssp->r0[t&3]]++; break;
878 case 0x03: mv = ssp->RAM0[0]++; break;
879 case 0x04:
880 case 0x05:
881 case 0x06: mv = ssp->RAM1[ssp->r1[t&3]]++; break;
882 case 0x07: mv = ssp->RAM1[0]++; break;
883 // mod=1 (01)
884 case 0x0b: mv = ssp->RAM0[1]++; break;
885 case 0x0f: mv = ssp->RAM1[1]++; break;
886 // mod=2 (10)
887 case 0x13: mv = ssp->RAM0[2]++; break;
888 case 0x17: mv = ssp->RAM1[2]++; break;
889 // mod=3 (11)
890 case 0x1b: mv = ssp->RAM0[3]++; break;
891 case 0x1f: mv = ssp->RAM1[3]++; break;
892 default: elprintf(EL_SVP|EL_ANOMALY, "ssp FIXME: invalid mod in ((rX))? @ %04x", GET_PPC_OFFS());
893 return 0;
894 }
895
896 return ((unsigned short *)svp->iram_rom)[mv];
897}
898
899
900// -----------------------------------------------------
901
902#if defined(USE_DEBUGGER)
903static void debug_dump2file(const char *fname, void *mem, int len)
904{
905 FILE *f = fopen(fname, "wb");
906 unsigned short *p = mem;
907 int i;
908 if (f) {
909 for (i = 0; i < len/2; i++) p[i] = (p[i]<<8) | (p[i]>>8);
910 fwrite(mem, 1, len, f);
911 fclose(f);
912 for (i = 0; i < len/2; i++) p[i] = (p[i]<<8) | (p[i]>>8);
913 printf("dumped to %s\n", fname);
914 }
915 else
916 printf("dump failed\n");
917}
918#endif
919
920#ifdef USE_DEBUGGER
921static void debug_dump(void)
922{
923 printf("GR0: %04x X: %04x Y: %04x A: %08x\n", ssp->gr[SSP_GR0].h, rX, rY, ssp->gr[SSP_A].v);
924 printf("PC: %04x (%04x) P: %08x\n", GET_PC(), GET_PC() << 1, rP.v);
925 printf("PM0: %04x PM1: %04x PM2: %04x\n", rPM0, rPM1, rPM2);
926 printf("XST: %04x PM4: %04x PMC: %08x\n", rXST, rPM4, rPMC.v);
927 printf(" ST: %04x %c%c%c%c, GP0_0 %i, GP0_1 %i\n", rST, rST&SSP_FLAG_N?'N':'n', rST&SSP_FLAG_V?'V':'v',
928 rST&SSP_FLAG_Z?'Z':'z', rST&SSP_FLAG_L?'L':'l', (rST>>5)&1, (rST>>6)&1);
929 printf("STACK: %i %04x %04x %04x %04x %04x %04x\n", rSTACK, ssp->stack[0], ssp->stack[1],
930 ssp->stack[2], ssp->stack[3], ssp->stack[4], ssp->stack[5]);
931 printf("r0-r2: %02x %02x %02x r4-r6: %02x %02x %02x\n", rIJ[0], rIJ[1], rIJ[2], rIJ[4], rIJ[5], rIJ[6]);
932 elprintf(EL_SVP, "cycles: %i, emu_status: %x", g_cycles, ssp->emu_status);
933}
934
935static void debug_dump_mem(void)
936{
937 int h, i;
938 printf("RAM0\n");
939 for (h = 0; h < 32; h++)
940 {
941 if (h == 16) printf("RAM1\n");
942 printf("%03x:", h*16);
943 for (i = 0; i < 16; i++)
944 printf(" %04x", ssp->RAM[h*16+i]);
945 printf("\n");
946 }
947}
948
949static int bpts[10] = { 0, };
950
951static void debug(unsigned int pc, unsigned int op)
952{
953 static char buffo[64] = {0,};
954 char buff[64] = {0,};
955 int i;
956
957 if (running) {
958 for (i = 0; i < 10; i++)
959 if (pc != 0 && bpts[i] == pc) {
960 printf("breakpoint %i\n", i);
961 running = 0;
962 break;
963 }
964 }
965 if (running) return;
966
967 printf("%04x (%02x) @ %04x\n", op, op >> 9, pc<<1);
968
969 while (1)
970 {
971 printf("dbg> ");
972 fflush(stdout);
973 fgets(buff, sizeof(buff), stdin);
974 if (buff[0] == '\n') strcpy(buff, buffo);
975 else strcpy(buffo, buff);
976
977 switch (buff[0]) {
978 case 0: exit(0);
979 case 'c':
980 case 'r': running = 1; return;
981 case 's':
982 case 'n': return;
983 case 'x': debug_dump(); break;
984 case 'm': debug_dump_mem(); break;
985 case 'b': {
986 char *baddr = buff + 2;
987 i = 0;
988 if (buff[3] == ' ') { i = buff[2] - '0'; baddr = buff + 4; }
989 bpts[i] = strtol(baddr, NULL, 16) >> 1;
990 printf("breakpoint %i set @ %04x\n", i, bpts[i]<<1);
991 break;
992 }
993 case 'd':
994 sprintf(buff, "iramrom_%04x.bin", last_iram);
995 debug_dump2file(buff, svp->iram_rom, sizeof(svp->iram_rom));
996 debug_dump2file("dram.bin", svp->dram, sizeof(svp->dram));
997 break;
998 default: printf("unknown command\n"); break;
999 }
1000 }
1001}
1002#endif // USE_DEBUGGER
1003
1004
1005void ssp1601_reset(ssp1601_t *l_ssp)
1006{
1007 ssp = l_ssp;
1008 ssp->emu_status = 0;
1009 ssp->gr[SSP_GR0].v = 0xffff0000;
1010 rPC = 0x400;
1011 rSTACK = 0; // ? using ascending stack
1012 rST = 0;
1013}
1014
1015
1016void ssp1601_run(int cycles)
1017{
1018 SET_PC(rPC);
1019
1020 g_cycles = cycles;
1021
1022 while (g_cycles > 0 && !(ssp->emu_status & SSP_WAIT_MASK))
1023 {
1024 int op;
1025 u32 tmpv;
1026
1027 op = *PC++;
1028#ifdef USE_DEBUGGER
1029 debug(GET_PC()-1, op);
1030#endif
1031 switch (op >> 9)
1032 {
1033 // ld d, s
1034 case 0x00:
1035 CHECK_B_SET();
1036 if (op == 0) break; // nop
1037 if (op == ((SSP_A<<4)|SSP_P)) { // A <- P
1038 read_P(); // update P
1039 rA32 = rP.v;
1040 }
1041 else
1042 {
1043 tmpv = REG_READ(op & 0x0f);
1044 REG_WRITE((op & 0xf0) >> 4, tmpv);
1045 }
1046 break;
1047
1048 // ld d, (ri)
1049 case 0x01: tmpv = ptr1_read(op); REG_WRITE((op & 0xf0) >> 4, tmpv); break;
1050
1051 // ld (ri), s
1052 case 0x02: tmpv = REG_READ((op & 0xf0) >> 4); ptr1_write(op, tmpv); break;
1053
1054 // ldi d, imm
1055 case 0x04: CHECK_10f(); tmpv = *PC++; REG_WRITE((op & 0xf0) >> 4, tmpv); g_cycles--; break;
1056
1057 // ld d, ((ri))
1058 case 0x05: CHECK_MOD(); tmpv = ptr2_read(op); REG_WRITE((op & 0xf0) >> 4, tmpv); g_cycles -= 2; break;
1059
1060 // ldi (ri), imm
1061 case 0x06: tmpv = *PC++; ptr1_write(op, tmpv); g_cycles--; break;
1062
1063 // ld adr, a
1064 case 0x07: ssp->RAM[op & 0x1ff] = rA; break;
1065
1066 // ld d, ri
1067 case 0x09: CHECK_MOD(); tmpv = rIJ[(op&3)|((op>>6)&4)]; REG_WRITE((op & 0xf0) >> 4, tmpv); break;
1068
1069 // ld ri, s
1070 case 0x0a: CHECK_MOD(); rIJ[(op&3)|((op>>6)&4)] = REG_READ((op & 0xf0) >> 4); break;
1071
1072 // ldi ri, simm
1073 case 0x0c:
1074 case 0x0d:
1075 case 0x0e:
1076 case 0x0f: rIJ[(op>>8)&7] = op; break;
1077
1078 // call cond, addr
1079 case 0x24: {
1080 int cond = 0;
1081 CHECK_00f();
1082 COND_CHECK
1083 if (cond) { int new_PC = *PC++; write_STACK(GET_PC()); SET_PC(new_PC); }
1084 else PC++;
1085 g_cycles--; // always 2 cycles
1086 break;
1087 }
1088
1089 // ld d, (a)
1090 case 0x25:
1091 CHECK_10f();
1092 tmpv = ((unsigned short *)svp->iram_rom)[rA];
1093 REG_WRITE((op & 0xf0) >> 4, tmpv);
1094 g_cycles -= 2; // 3 cycles total
1095 break;
1096
1097 // bra cond, addr
1098 case 0x26: {
1099 int cond = 0;
1100 CHECK_00f();
1101 COND_CHECK
1102 if (cond) { int new_PC = *PC++; SET_PC(new_PC); }
1103 else PC++;
1104 g_cycles--;
1105 break;
1106 }
1107
1108 // mod cond, op
1109 case 0x48: {
1110 int cond = 0;
1111 CHECK_008();
1112 COND_CHECK
1113 if (cond) {
1114 switch (op & 7) {
1115 case 2: rA32 = (signed int)rA32 >> 1; break; // shr (arithmetic)
1116 case 3: rA32 <<= 1; break; // shl
1117 case 6: rA32 = -(signed int)rA32; break; // neg
1118 case 7: if ((int)rA32 < 0) rA32 = -(signed int)rA32; break; // abs
1119 default: elprintf(EL_SVP|EL_ANOMALY, "ssp FIXME: unhandled mod %i @ %04x",
1120 op&7, GET_PPC_OFFS());
1121 }
1122 UPD_ACC_ZN
1123 }
1124 break;
1125 }
1126
1127 // mpys?
1128 case 0x1b:
1129 CHECK_B_CLEAR();
1130 read_P(); // update P
1131 rA32 -= rP.v;
1132 UPD_ACC_ZN
1133 rX = ptr1_read_(op&3, 0, (op<<1)&0x18);
1134 rY = ptr1_read_((op>>4)&3, 4, (op>>3)&0x18);
1135 break;
1136
1137 // mpya (rj), (ri), b
1138 case 0x4b:
1139 CHECK_B_CLEAR();
1140 read_P(); // update P
1141 rA32 += rP.v;
1142 UPD_ACC_ZN
1143 rX = ptr1_read_(op&3, 0, (op<<1)&0x18);
1144 rY = ptr1_read_((op>>4)&3, 4, (op>>3)&0x18);
1145 break;
1146
1147 // mld (rj), (ri), b
1148 case 0x5b:
1149 CHECK_B_CLEAR();
1150 rA32 = 0;
1151 rST &= 0x0fff;
1152 rST |= SSP_FLAG_Z;
1153 rX = ptr1_read_(op&3, 0, (op<<1)&0x18);
1154 rY = ptr1_read_((op>>4)&3, 4, (op>>3)&0x18);
1155 break;
1156
1157 // OP a, s
1158 case 0x10: CHECK_1f0(); OP_CHECK32(OP_SUBA32); tmpv = REG_READ(op & 0x0f); OP_SUBA(tmpv); break;
1159 case 0x30: CHECK_1f0(); OP_CHECK32(OP_CMPA32); tmpv = REG_READ(op & 0x0f); OP_CMPA(tmpv); break;
1160 case 0x40: CHECK_1f0(); OP_CHECK32(OP_ADDA32); tmpv = REG_READ(op & 0x0f); OP_ADDA(tmpv); break;
1161 case 0x50: CHECK_1f0(); OP_CHECK32(OP_ANDA32); tmpv = REG_READ(op & 0x0f); OP_ANDA(tmpv); break;
1162 case 0x60: CHECK_1f0(); OP_CHECK32(OP_ORA32 ); tmpv = REG_READ(op & 0x0f); OP_ORA (tmpv); break;
1163 case 0x70: CHECK_1f0(); OP_CHECK32(OP_EORA32); tmpv = REG_READ(op & 0x0f); OP_EORA(tmpv); break;
1164
1165 // OP a, (ri)
1166 case 0x11: CHECK_0f0(); tmpv = ptr1_read(op); OP_SUBA(tmpv); break;
1167 case 0x31: CHECK_0f0(); tmpv = ptr1_read(op); OP_CMPA(tmpv); break;
1168 case 0x41: CHECK_0f0(); tmpv = ptr1_read(op); OP_ADDA(tmpv); break;
1169 case 0x51: CHECK_0f0(); tmpv = ptr1_read(op); OP_ANDA(tmpv); break;
1170 case 0x61: CHECK_0f0(); tmpv = ptr1_read(op); OP_ORA (tmpv); break;
1171 case 0x71: CHECK_0f0(); tmpv = ptr1_read(op); OP_EORA(tmpv); break;
1172
1173 // OP a, adr
1174 case 0x03: tmpv = ssp->RAM[op & 0x1ff]; OP_LDA (tmpv); break;
1175 case 0x13: tmpv = ssp->RAM[op & 0x1ff]; OP_SUBA(tmpv); break;
1176 case 0x33: tmpv = ssp->RAM[op & 0x1ff]; OP_CMPA(tmpv); break;
1177 case 0x43: tmpv = ssp->RAM[op & 0x1ff]; OP_ADDA(tmpv); break;
1178 case 0x53: tmpv = ssp->RAM[op & 0x1ff]; OP_ANDA(tmpv); break;
1179 case 0x63: tmpv = ssp->RAM[op & 0x1ff]; OP_ORA (tmpv); break;
1180 case 0x73: tmpv = ssp->RAM[op & 0x1ff]; OP_EORA(tmpv); break;
1181
1182 // OP a, imm
1183 case 0x14: CHECK_IMM16(); tmpv = *PC++; OP_SUBA(tmpv); g_cycles--; break;
1184 case 0x34: CHECK_IMM16(); tmpv = *PC++; OP_CMPA(tmpv); g_cycles--; break;
1185 case 0x44: CHECK_IMM16(); tmpv = *PC++; OP_ADDA(tmpv); g_cycles--; break;
1186 case 0x54: CHECK_IMM16(); tmpv = *PC++; OP_ANDA(tmpv); g_cycles--; break;
1187 case 0x64: CHECK_IMM16(); tmpv = *PC++; OP_ORA (tmpv); g_cycles--; break;
1188 case 0x74: CHECK_IMM16(); tmpv = *PC++; OP_EORA(tmpv); g_cycles--; break;
1189
1190 // OP a, ((ri))
1191 case 0x15: CHECK_MOD(); tmpv = ptr2_read(op); OP_SUBA(tmpv); g_cycles -= 2; break;
1192 case 0x35: CHECK_MOD(); tmpv = ptr2_read(op); OP_CMPA(tmpv); g_cycles -= 2; break;
1193 case 0x45: CHECK_MOD(); tmpv = ptr2_read(op); OP_ADDA(tmpv); g_cycles -= 2; break;
1194 case 0x55: CHECK_MOD(); tmpv = ptr2_read(op); OP_ANDA(tmpv); g_cycles -= 2; break;
1195 case 0x65: CHECK_MOD(); tmpv = ptr2_read(op); OP_ORA (tmpv); g_cycles -= 2; break;
1196 case 0x75: CHECK_MOD(); tmpv = ptr2_read(op); OP_EORA(tmpv); g_cycles -= 2; break;
1197
1198 // OP a, ri
1199 case 0x19: CHECK_MOD(); tmpv = rIJ[IJind]; OP_SUBA(tmpv); break;
1200 case 0x39: CHECK_MOD(); tmpv = rIJ[IJind]; OP_CMPA(tmpv); break;
1201 case 0x49: CHECK_MOD(); tmpv = rIJ[IJind]; OP_ADDA(tmpv); break;
1202 case 0x59: CHECK_MOD(); tmpv = rIJ[IJind]; OP_ANDA(tmpv); break;
1203 case 0x69: CHECK_MOD(); tmpv = rIJ[IJind]; OP_ORA (tmpv); break;
1204 case 0x79: CHECK_MOD(); tmpv = rIJ[IJind]; OP_EORA(tmpv); break;
1205
1206 // OP simm
1207 case 0x1c: CHECK_B_SET(); OP_SUBA(op & 0xff); break;
1208 case 0x3c: CHECK_B_SET(); OP_CMPA(op & 0xff); break;
1209 case 0x4c: CHECK_B_SET(); OP_ADDA(op & 0xff); break;
1210 case 0x5c: CHECK_B_SET(); OP_ANDA(op & 0xff); break;
1211 case 0x6c: CHECK_B_SET(); OP_ORA (op & 0xff); break;
1212 case 0x7c: CHECK_B_SET(); OP_EORA(op & 0xff); break;
1213
1214 default:
1215 elprintf(EL_ANOMALY|EL_SVP, "ssp FIXME unhandled op %04x @ %04x", op, GET_PPC_OFFS());
1216 break;
1217 }
1218 g_cycles--;
1219 }
1220
1221 rPC = GET_PC();
1222 read_P(); // update P
1223}
1224