| 1 | /* Decode a Game Genie code into an M68000 address/data pair. |
| 2 | * The Game Genie code is made of the characters |
| 3 | * ABCDEFGHJKLMNPRSTVWXYZ0123456789 (notice the missing I, O, Q and U). |
| 4 | * Where A = 00000, B = 00001, C = 00010, ... , on to 9 = 11111. |
| 5 | * |
| 6 | * These come out to a very scrambled bit pattern like this: |
| 7 | * (SCRA-MBLE is just an example) |
| 8 | * |
| 9 | * S C R A - M B L E |
| 10 | * 01111 00010 01110 00000 01011 00001 01010 00100 |
| 11 | * ijklm nopIJ KLMNO PABCD EFGHd efgha bcQRS TUVWX |
| 12 | * |
| 13 | * Our goal is to rearrange that to this: |
| 14 | * |
| 15 | * 0000 0101 1001 1100 0100 0100 : 1011 0000 0111 1000 |
| 16 | * ABCD EFGH IJKL MNOP QRST UVWX : abcd efgh ijkl mnop |
| 17 | * |
| 18 | * which in Hexadecimal is 059C44:B078. Simple, huh? ;) |
| 19 | * |
| 20 | * So, then, we dutifully change memory location 059C44 to B078! |
| 21 | * (of course, that's handled by a different source file :) |
| 22 | */ |
| 23 | |
| 24 | #include "pico_int.h" |
| 25 | #include "patch.h" |
| 26 | |
| 27 | struct patch |
| 28 | { |
| 29 | unsigned int addr; |
| 30 | unsigned short data; |
| 31 | }; |
| 32 | |
| 33 | struct patch_inst *PicoPatches = NULL; |
| 34 | int PicoPatchCount = 0; |
| 35 | |
| 36 | static char genie_chars[] = "AaBbCcDdEeFfGgHhJjKkLlMmNnPpRrSsTtVvWwXxYyZz0O1I2233445566778899"; |
| 37 | |
| 38 | /* genie_decode |
| 39 | * This function converts a Game Genie code to an address:data pair. |
| 40 | * The code is given as an 8-character string, like "BJX0SA1C". It need not |
| 41 | * be null terminated, since only the first 8 characters are taken. It is |
| 42 | * assumed that the code is already made of valid characters, i.e. there are no |
| 43 | * Q's, U's, or symbols. If such a character is |
| 44 | * encountered, the function will return with a warning on stderr. |
| 45 | * |
| 46 | * The resulting address:data pair is returned in the struct patch pointed to |
| 47 | * by result. If an error results, both the address and data will be set to -1. |
| 48 | */ |
| 49 | |
| 50 | static void genie_decode(const char* code, struct patch* result) |
| 51 | { |
| 52 | int i = 0, n; |
| 53 | char* x; |
| 54 | |
| 55 | for(; i < 8; ++i) |
| 56 | { |
| 57 | /* If strchr returns NULL, we were given a bad character */ |
| 58 | if(!(x = strchr(genie_chars, code[i]))) |
| 59 | { |
| 60 | result->addr = -1; result->data = -1; |
| 61 | return; |
| 62 | } |
| 63 | n = (x - genie_chars) >> 1; |
| 64 | /* Now, based on which character this is, fit it into the result */ |
| 65 | switch(i) |
| 66 | { |
| 67 | case 0: |
| 68 | /* ____ ____ ____ ____ ____ ____ : ____ ____ ABCD E___ */ |
| 69 | result->data |= n << 3; |
| 70 | break; |
| 71 | case 1: |
| 72 | /* ____ ____ DE__ ____ ____ ____ : ____ ____ ____ _ABC */ |
| 73 | result->data |= n >> 2; |
| 74 | result->addr |= (n & 3) << 14; |
| 75 | break; |
| 76 | case 2: |
| 77 | /* ____ ____ __AB CDE_ ____ ____ : ____ ____ ____ ____ */ |
| 78 | result->addr |= n << 9; |
| 79 | break; |
| 80 | case 3: |
| 81 | /* BCDE ____ ____ ___A ____ ____ : ____ ____ ____ ____ */ |
| 82 | result->addr |= (n & 0xF) << 20 | (n >> 4) << 8; |
| 83 | break; |
| 84 | case 4: |
| 85 | /* ____ ABCD ____ ____ ____ ____ : ___E ____ ____ ____ */ |
| 86 | result->data |= (n & 1) << 12; |
| 87 | result->addr |= (n >> 1) << 16; |
| 88 | break; |
| 89 | case 5: |
| 90 | /* ____ ____ ____ ____ ____ ____ : E___ ABCD ____ ____ */ |
| 91 | result->data |= (n & 1) << 15 | (n >> 1) << 8; |
| 92 | break; |
| 93 | case 6: |
| 94 | /* ____ ____ ____ ____ CDE_ ____ : _AB_ ____ ____ ____ */ |
| 95 | result->data |= (n >> 3) << 13; |
| 96 | result->addr |= (n & 7) << 5; |
| 97 | break; |
| 98 | case 7: |
| 99 | /* ____ ____ ____ ____ ___A BCDE : ____ ____ ____ ____ */ |
| 100 | result->addr |= n; |
| 101 | break; |
| 102 | } |
| 103 | /* Go around again */ |
| 104 | } |
| 105 | return; |
| 106 | } |
| 107 | |
| 108 | /* "Decode" an address/data pair into a structure. This is for "012345:ABCD" |
| 109 | * type codes. You're more likely to find Genie codes circulating around, but |
| 110 | * there's a chance you could come on to one of these. Which is nice, since |
| 111 | * they're MUCH easier to implement ;) Once again, the input should be depunc- |
| 112 | * tuated already. */ |
| 113 | |
| 114 | static char hex_chars[] = "00112233445566778899AaBbCcDdEeFf"; |
| 115 | |
| 116 | static void hex_decode(const char *code, struct patch *result) |
| 117 | { |
| 118 | char *x; |
| 119 | int i; |
| 120 | /* 6 digits for address */ |
| 121 | for(i = 0; i < 6; ++i) |
| 122 | { |
| 123 | if(!(x = strchr(hex_chars, code[i]))) |
| 124 | { |
| 125 | result->addr = result->data = -1; |
| 126 | return; |
| 127 | } |
| 128 | result->addr = (result->addr << 4) | ((x - hex_chars) >> 1); |
| 129 | } |
| 130 | /* 4 digits for data */ |
| 131 | for(i = 6; i < 10; ++i) |
| 132 | { |
| 133 | if(!(x = strchr(hex_chars, code[i]))) |
| 134 | { |
| 135 | result->addr = result->data = -1; |
| 136 | return; |
| 137 | } |
| 138 | result->data = (result->data << 4) | ((x - hex_chars) >> 1); |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | /* THIS is the function you call from the MegaDrive or whatever. This figures |
| 143 | * out whether it's a genie or hex code, depunctuates it, and calls the proper |
| 144 | * decoder. */ |
| 145 | static void decode(const char* code, struct patch* result) |
| 146 | { |
| 147 | int len = strlen(code), i, j; |
| 148 | char code_to_pass[16], *x; |
| 149 | const char *ad, *da; |
| 150 | int adl, dal; |
| 151 | |
| 152 | /* Initialize the result */ |
| 153 | result->addr = result->data = 0; |
| 154 | |
| 155 | /* Just assume 8 char long string to be Game Genie code */ |
| 156 | if (len == 8) |
| 157 | { |
| 158 | genie_decode(code, result); |
| 159 | return; |
| 160 | } |
| 161 | |
| 162 | /* If it's 9 chars long and the 5th is a hyphen, we have a Game Genie |
| 163 | * code. */ |
| 164 | if(len == 9 && code[4] == '-') |
| 165 | { |
| 166 | /* Remove the hyphen and pass to genie_decode */ |
| 167 | code_to_pass[0] = code[0]; |
| 168 | code_to_pass[1] = code[1]; |
| 169 | code_to_pass[2] = code[2]; |
| 170 | code_to_pass[3] = code[3]; |
| 171 | code_to_pass[4] = code[5]; |
| 172 | code_to_pass[5] = code[6]; |
| 173 | code_to_pass[6] = code[7]; |
| 174 | code_to_pass[7] = code[8]; |
| 175 | code_to_pass[8] = '\0'; |
| 176 | genie_decode(code_to_pass, result); |
| 177 | return; |
| 178 | } |
| 179 | |
| 180 | /* Otherwise, we assume it's a hex code. |
| 181 | * Find the colon so we know where address ends and data starts. If there's |
| 182 | * no colon, then we haven't a code at all! */ |
| 183 | if(!(x = strchr(code, ':'))) goto bad_code; |
| 184 | ad = code; da = x + 1; adl = x - code; dal = len - adl - 1; |
| 185 | |
| 186 | /* If a section is empty or too long, toss it */ |
| 187 | if(adl == 0 || adl > 6 || dal == 0 || dal > 4) goto bad_code; |
| 188 | |
| 189 | /* Pad the address with zeros, then fill it with the value */ |
| 190 | for(i = 0; i < (6 - adl); ++i) code_to_pass[i] = '0'; |
| 191 | for(j = 0; i < 6; ++i, ++j) code_to_pass[i] = ad[j]; |
| 192 | |
| 193 | /* Do the same for data */ |
| 194 | for(i = 6; i < (10 - dal); ++i) code_to_pass[i] = '0'; |
| 195 | for(j = 0; i < 10; ++i, ++j) code_to_pass[i] = da[j]; |
| 196 | |
| 197 | code_to_pass[10] = '\0'; |
| 198 | |
| 199 | /* Decode and goodbye */ |
| 200 | hex_decode(code_to_pass, result); |
| 201 | return; |
| 202 | |
| 203 | bad_code: |
| 204 | |
| 205 | /* AGH! Invalid code! */ |
| 206 | result->data = result->addr = -1; |
| 207 | return; |
| 208 | } |
| 209 | |
| 210 | |
| 211 | |
| 212 | unsigned int PicoRead16(unsigned int a); |
| 213 | void PicoWrite16(unsigned int a, unsigned short d); |
| 214 | |
| 215 | |
| 216 | void PicoPatchUnload(void) |
| 217 | { |
| 218 | if (PicoPatches != NULL) |
| 219 | { |
| 220 | free(PicoPatches); |
| 221 | PicoPatches = NULL; |
| 222 | } |
| 223 | PicoPatchCount = 0; |
| 224 | } |
| 225 | |
| 226 | int PicoPatchLoad(const char *fname) |
| 227 | { |
| 228 | FILE *f; |
| 229 | char buff[256]; |
| 230 | struct patch pt; |
| 231 | int array_len = 0; |
| 232 | |
| 233 | PicoPatchUnload(); |
| 234 | |
| 235 | f = fopen(fname, "r"); |
| 236 | if (f == NULL) |
| 237 | { |
| 238 | return -1; |
| 239 | } |
| 240 | |
| 241 | while (fgets(buff, sizeof(buff), f)) |
| 242 | { |
| 243 | int llen, clen; |
| 244 | |
| 245 | llen = strlen(buff); |
| 246 | for (clen = 0; clen < llen; clen++) |
| 247 | if (isspace_(buff[clen])) |
| 248 | break; |
| 249 | buff[clen] = 0; |
| 250 | |
| 251 | if (clen > 11 || clen < 8) |
| 252 | continue; |
| 253 | |
| 254 | decode(buff, &pt); |
| 255 | if (pt.addr == (unsigned int)-1 || pt.data == (unsigned short)-1) |
| 256 | continue; |
| 257 | |
| 258 | /* code was good, add it */ |
| 259 | if (array_len < PicoPatchCount + 1) |
| 260 | { |
| 261 | void *ptr; |
| 262 | array_len *= 2; |
| 263 | array_len++; |
| 264 | ptr = realloc(PicoPatches, array_len * sizeof(PicoPatches[0])); |
| 265 | if (ptr == NULL) break; |
| 266 | PicoPatches = ptr; |
| 267 | } |
| 268 | strcpy(PicoPatches[PicoPatchCount].code, buff); |
| 269 | /* strip */ |
| 270 | for (clen++; clen < llen; clen++) |
| 271 | if (!isspace_(buff[clen])) |
| 272 | break; |
| 273 | for (llen--; llen > 0; llen--) |
| 274 | if (!isspace_(buff[llen])) |
| 275 | break; |
| 276 | buff[llen+1] = 0; |
| 277 | strncpy(PicoPatches[PicoPatchCount].name, buff + clen, 51); |
| 278 | PicoPatches[PicoPatchCount].name[51] = 0; |
| 279 | PicoPatches[PicoPatchCount].active = 0; |
| 280 | PicoPatches[PicoPatchCount].addr = pt.addr; |
| 281 | PicoPatches[PicoPatchCount].data = pt.data; |
| 282 | PicoPatches[PicoPatchCount].data_old = 0; |
| 283 | PicoPatchCount++; |
| 284 | // fprintf(stderr, "loaded patch #%i: %06x:%04x \"%s\"\n", PicoPatchCount-1, pt.addr, pt.data, |
| 285 | // PicoPatches[PicoPatchCount-1].name); |
| 286 | } |
| 287 | fclose(f); |
| 288 | |
| 289 | return 0; |
| 290 | } |
| 291 | |
| 292 | /* to be called when the Rom is loaded and byteswapped */ |
| 293 | void PicoPatchPrepare(void) |
| 294 | { |
| 295 | int i; |
| 296 | |
| 297 | for (i = 0; i < PicoPatchCount; i++) |
| 298 | { |
| 299 | PicoPatches[i].addr &= ~1; |
| 300 | if (PicoPatches[i].addr < Pico.romsize) |
| 301 | PicoPatches[i].data_old = *(unsigned short *)(Pico.rom + PicoPatches[i].addr); |
| 302 | if (strstr(PicoPatches[i].name, "AUTO")) |
| 303 | PicoPatches[i].active = 1; |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | void PicoPatchApply(void) |
| 308 | { |
| 309 | int i, u; |
| 310 | unsigned int addr; |
| 311 | |
| 312 | for (i = 0; i < PicoPatchCount; i++) |
| 313 | { |
| 314 | addr = PicoPatches[i].addr; |
| 315 | if (addr < Pico.romsize) |
| 316 | { |
| 317 | if (PicoPatches[i].active) |
| 318 | *(unsigned short *)(Pico.rom + addr) = PicoPatches[i].data; |
| 319 | else { |
| 320 | // if current addr is not patched by older patch, write back original val |
| 321 | for (u = 0; u < i; u++) |
| 322 | if (PicoPatches[u].addr == addr) break; |
| 323 | if (u == i) |
| 324 | *(unsigned short *)(Pico.rom + addr) = PicoPatches[i].data_old; |
| 325 | } |
| 326 | // fprintf(stderr, "patched %i: %06x:%04x\n", PicoPatches[i].active, addr, |
| 327 | // *(unsigned short *)(Pico.rom + addr)); |
| 328 | } |
| 329 | else |
| 330 | { |
| 331 | /* TODO? */ |
| 332 | } |
| 333 | } |
| 334 | } |
| 335 | |