| 1 | /* @(#)e_log.c 5.1 93/09/24 */ |
| 2 | /* |
| 3 | * ==================================================== |
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 | * |
| 6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 7 | * Permission to use, copy, modify, and distribute this |
| 8 | * software is freely granted, provided that this notice |
| 9 | * is preserved. |
| 10 | * ==================================================== |
| 11 | */ |
| 12 | |
| 13 | #if defined(LIBM_SCCS) && !defined(lint) |
| 14 | static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $"; |
| 15 | #endif |
| 16 | |
| 17 | /* __ieee754_log(x) |
| 18 | * Return the logrithm of x |
| 19 | * |
| 20 | * Method : |
| 21 | * 1. Argument Reduction: find k and f such that |
| 22 | * x = 2^k * (1+f), |
| 23 | * where sqrt(2)/2 < 1+f < sqrt(2) . |
| 24 | * |
| 25 | * 2. Approximation of log(1+f). |
| 26 | * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
| 27 | * = 2s + 2/3 s**3 + 2/5 s**5 + ....., |
| 28 | * = 2s + s*R |
| 29 | * We use a special Reme algorithm on [0,0.1716] to generate |
| 30 | * a polynomial of degree 14 to approximate R The maximum error |
| 31 | * of this polynomial approximation is bounded by 2**-58.45. In |
| 32 | * other words, |
| 33 | * 2 4 6 8 10 12 14 |
| 34 | * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s |
| 35 | * (the values of Lg1 to Lg7 are listed in the program) |
| 36 | * and |
| 37 | * | 2 14 | -58.45 |
| 38 | * | Lg1*s +...+Lg7*s - R(z) | <= 2 |
| 39 | * | | |
| 40 | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |
| 41 | * In order to guarantee error in log below 1ulp, we compute log |
| 42 | * by |
| 43 | * log(1+f) = f - s*(f - R) (if f is not too large) |
| 44 | * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) |
| 45 | * |
| 46 | * 3. Finally, log(x) = k*ln2 + log(1+f). |
| 47 | * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) |
| 48 | * Here ln2 is split into two floating point number: |
| 49 | * ln2_hi + ln2_lo, |
| 50 | * where n*ln2_hi is always exact for |n| < 2000. |
| 51 | * |
| 52 | * Special cases: |
| 53 | * log(x) is NaN with signal if x < 0 (including -INF) ; |
| 54 | * log(+INF) is +INF; log(0) is -INF with signal; |
| 55 | * log(NaN) is that NaN with no signal. |
| 56 | * |
| 57 | * Accuracy: |
| 58 | * according to an error analysis, the error is always less than |
| 59 | * 1 ulp (unit in the last place). |
| 60 | * |
| 61 | * Constants: |
| 62 | * The hexadecimal values are the intended ones for the following |
| 63 | * constants. The decimal values may be used, provided that the |
| 64 | * compiler will convert from decimal to binary accurately enough |
| 65 | * to produce the hexadecimal values shown. |
| 66 | */ |
| 67 | |
| 68 | #include "math.h" |
| 69 | #include "math_private.h" |
| 70 | |
| 71 | #ifdef __STDC__ |
| 72 | static const double |
| 73 | #else |
| 74 | static double |
| 75 | #endif |
| 76 | ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ |
| 77 | ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ |
| 78 | two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ |
| 79 | Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
| 80 | Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
| 81 | Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
| 82 | Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
| 83 | Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
| 84 | Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
| 85 | Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
| 86 | |
| 87 | #ifdef __STDC__ |
| 88 | static const double zero = 0.0; |
| 89 | #else |
| 90 | static double zero = 0.0; |
| 91 | #endif |
| 92 | |
| 93 | #ifdef __STDC__ |
| 94 | double __ieee754_log(double x) |
| 95 | #else |
| 96 | double __ieee754_log(x) |
| 97 | double x; |
| 98 | #endif |
| 99 | { |
| 100 | double hfsq,f,s,z,R,w,t1,t2,dk; |
| 101 | int32_t k,hx,i,j; |
| 102 | u_int32_t lx; |
| 103 | |
| 104 | EXTRACT_WORDS(hx,lx,x); |
| 105 | |
| 106 | k=0; |
| 107 | if (hx < 0x00100000) { /* x < 2**-1022 */ |
| 108 | if (((hx&0x7fffffff)|lx)==0) |
| 109 | return -two54/zero; /* log(+-0)=-inf */ |
| 110 | if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ |
| 111 | k -= 54; x *= two54; /* subnormal number, scale up x */ |
| 112 | GET_HIGH_WORD(hx,x); |
| 113 | } |
| 114 | if (hx >= 0x7ff00000) return x+x; |
| 115 | k += (hx>>20)-1023; |
| 116 | hx &= 0x000fffff; |
| 117 | i = (hx+0x95f64)&0x100000; |
| 118 | SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */ |
| 119 | k += (i>>20); |
| 120 | f = x-1.0; |
| 121 | if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ |
| 122 | if(f==zero) {if(k==0) return zero; else {dk=(double)k; |
| 123 | return dk*ln2_hi+dk*ln2_lo;} |
| 124 | } |
| 125 | R = f*f*(0.5-0.33333333333333333*f); |
| 126 | if(k==0) return f-R; else {dk=(double)k; |
| 127 | return dk*ln2_hi-((R-dk*ln2_lo)-f);} |
| 128 | } |
| 129 | s = f/(2.0+f); |
| 130 | dk = (double)k; |
| 131 | z = s*s; |
| 132 | i = hx-0x6147a; |
| 133 | w = z*z; |
| 134 | j = 0x6b851-hx; |
| 135 | t1= w*(Lg2+w*(Lg4+w*Lg6)); |
| 136 | t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); |
| 137 | i |= j; |
| 138 | R = t2+t1; |
| 139 | if(i>0) { |
| 140 | hfsq=0.5*f*f; |
| 141 | if(k==0) return f-(hfsq-s*(hfsq+R)); else |
| 142 | return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); |
| 143 | } else { |
| 144 | if(k==0) return f-s*(f-R); else |
| 145 | return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); |
| 146 | } |
| 147 | } |