spu: try to clean up the interpolation mess
[pcsx_rearmed.git] / plugins / dfsound / spu.c
... / ...
CommitLineData
1/***************************************************************************
2 spu.c - description
3 -------------------
4 begin : Wed May 15 2002
5 copyright : (C) 2002 by Pete Bernert
6 email : BlackDove@addcom.de
7
8 Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2012,2014,2015
9
10 ***************************************************************************/
11/***************************************************************************
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. See also the license.txt file for *
17 * additional informations. *
18 * *
19 ***************************************************************************/
20
21#include "stdafx.h"
22
23#define _IN_SPU
24
25#include "externals.h"
26#include "registers.h"
27#include "out.h"
28#include "spu_config.h"
29
30#ifdef __arm__
31#include "arm_features.h"
32#endif
33
34#ifdef HAVE_ARMV7
35 #define ssat32_to_16(v) \
36 asm("ssat %0,#16,%1" : "=r" (v) : "r" (v))
37#else
38 #define ssat32_to_16(v) do { \
39 if (v < -32768) v = -32768; \
40 else if (v > 32767) v = 32767; \
41 } while (0)
42#endif
43
44#define PSXCLK 33868800 /* 33.8688 MHz */
45
46// intended to be ~1 frame
47#define IRQ_NEAR_BLOCKS 32
48
49/*
50#if defined (USEMACOSX)
51static char * libraryName = N_("Mac OS X Sound");
52#elif defined (USEALSA)
53static char * libraryName = N_("ALSA Sound");
54#elif defined (USEOSS)
55static char * libraryName = N_("OSS Sound");
56#elif defined (USESDL)
57static char * libraryName = N_("SDL Sound");
58#elif defined (USEPULSEAUDIO)
59static char * libraryName = N_("PulseAudio Sound");
60#else
61static char * libraryName = N_("NULL Sound");
62#endif
63
64static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n");
65*/
66
67// globals
68
69SPUInfo spu;
70SPUConfig spu_config;
71
72static int iFMod[NSSIZE];
73static int RVB[NSSIZE * 2];
74int ChanBuf[NSSIZE];
75
76#define CDDA_BUFFER_SIZE (16384 * sizeof(uint32_t)) // must be power of 2
77
78////////////////////////////////////////////////////////////////////////
79// CODE AREA
80////////////////////////////////////////////////////////////////////////
81
82// dirty inline func includes
83
84#include "reverb.c"
85#include "adsr.c"
86
87////////////////////////////////////////////////////////////////////////
88// helpers for simple interpolation
89
90//
91// easy interpolation on upsampling, no special filter, just "Pete's common sense" tm
92//
93// instead of having n equal sample values in a row like:
94// ____
95// |____
96//
97// we compare the current delta change with the next delta change.
98//
99// if curr_delta is positive,
100//
101// - and next delta is smaller (or changing direction):
102// \.
103// -__
104//
105// - and next delta significant (at least twice) bigger:
106// --_
107// \.
108//
109// - and next delta is nearly same:
110// \.
111// \.
112//
113//
114// if curr_delta is negative,
115//
116// - and next delta is smaller (or changing direction):
117// _--
118// /
119//
120// - and next delta significant (at least twice) bigger:
121// /
122// __-
123//
124// - and next delta is nearly same:
125// /
126// /
127//
128
129static void InterpolateUp(sample_buf *sb, int sinc)
130{
131 int *SB = sb->SB;
132 if (sb->sinc_old != sinc)
133 {
134 sb->sinc_old = sinc;
135 SB[32] = 1;
136 }
137 if(SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass
138 {
139 const int id1=SB[30]-SB[29]; // curr delta to next val
140 const int id2=SB[31]-SB[30]; // and next delta to next-next val :)
141
142 SB[32]=0;
143
144 if(id1>0) // curr delta positive
145 {
146 if(id2<id1)
147 {SB[28]=id1;SB[32]=2;}
148 else
149 if(id2<(id1<<1))
150 SB[28]=(id1*sinc)>>16;
151 else
152 SB[28]=(id1*sinc)>>17;
153 }
154 else // curr delta negative
155 {
156 if(id2>id1)
157 {SB[28]=id1;SB[32]=2;}
158 else
159 if(id2>(id1<<1))
160 SB[28]=(id1*sinc)>>16;
161 else
162 SB[28]=(id1*sinc)>>17;
163 }
164 }
165 else
166 if(SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass
167 {
168 SB[32]=0;
169
170 SB[28]=(SB[28]*sinc)>>17;
171 //if(sinc<=0x8000)
172 // SB[29]=SB[30]-(SB[28]*((0x10000/sinc)-1));
173 //else
174 SB[29]+=SB[28];
175 }
176 else // no flags? add bigger val (if possible), calc smaller step, set flag1
177 SB[29]+=SB[28];
178}
179
180//
181// even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm
182//
183
184static void InterpolateDown(sample_buf *sb, int sinc)
185{
186 int *SB = sb->SB;
187 if(sinc>=0x20000L) // we would skip at least one val?
188 {
189 SB[29]+=(SB[30]-SB[29])/2; // add easy weight
190 if(sinc>=0x30000L) // we would skip even more vals?
191 SB[29]+=(SB[31]-SB[30])/2; // add additional next weight
192 }
193}
194
195////////////////////////////////////////////////////////////////////////
196
197#include "gauss_i.h"
198#include "xa.c"
199
200static void do_irq(void)
201{
202 //if(!(spu.spuStat & STAT_IRQ))
203 {
204 spu.spuStat |= STAT_IRQ; // asserted status?
205 if(spu.irqCallback) spu.irqCallback();
206 }
207}
208
209static int check_irq(int ch, unsigned char *pos)
210{
211 if((spu.spuCtrl & (CTRL_ON|CTRL_IRQ)) == (CTRL_ON|CTRL_IRQ) && pos == spu.pSpuIrq)
212 {
213 //printf("ch%d irq %04x\n", ch, pos - spu.spuMemC);
214 do_irq();
215 return 1;
216 }
217 return 0;
218}
219
220void check_irq_io(unsigned int addr)
221{
222 unsigned int irq_addr = regAreaGet(H_SPUirqAddr) << 3;
223 //addr &= ~7; // ?
224 if((spu.spuCtrl & (CTRL_ON|CTRL_IRQ)) == (CTRL_ON|CTRL_IRQ) && addr == irq_addr)
225 {
226 //printf("io irq %04x\n", irq_addr);
227 do_irq();
228 }
229}
230
231////////////////////////////////////////////////////////////////////////
232// START SOUND... called by main thread to setup a new sound on a channel
233////////////////////////////////////////////////////////////////////////
234
235static void ResetInterpolation(sample_buf *sb)
236{
237 memset(&sb->interp, 0, sizeof(sb->interp));
238 sb->sinc_old = -1;
239}
240
241static void StartSoundSB(sample_buf *sb)
242{
243 sb->SB[26] = 0; // init mixing vars
244 sb->SB[27] = 0;
245 ResetInterpolation(sb);
246}
247
248static void StartSoundMain(int ch)
249{
250 SPUCHAN *s_chan = &spu.s_chan[ch];
251
252 StartADSR(ch);
253 StartREVERB(ch);
254
255 s_chan->prevflags = 2;
256 s_chan->iSBPos = 27;
257 s_chan->spos = 0;
258 s_chan->bStarting = 1;
259
260 s_chan->pCurr = spu.spuMemC + ((regAreaGetCh(ch, 6) & ~1) << 3);
261
262 spu.dwNewChannel&=~(1<<ch); // clear new channel bit
263 spu.dwChannelDead&=~(1<<ch);
264 spu.dwChannelsAudible|=1<<ch;
265}
266
267static void StartSound(int ch)
268{
269 StartSoundMain(ch);
270 StartSoundSB(&spu.sb[ch]);
271}
272
273////////////////////////////////////////////////////////////////////////
274// ALL KIND OF HELPERS
275////////////////////////////////////////////////////////////////////////
276
277INLINE int FModChangeFrequency(int pitch, int ns)
278{
279 pitch = (signed short)pitch;
280 pitch = ((32768 + iFMod[ns]) * pitch) >> 15;
281 pitch &= 0xffff;
282 if (pitch > 0x3fff)
283 pitch = 0x3fff;
284
285 iFMod[ns] = 0;
286
287 return pitch << 4;
288}
289
290INLINE void StoreInterpolationGaussCubic(sample_buf *sb, int fa)
291{
292 int gpos = sb->interp.gauss.pos & 3;
293 sb->interp.gauss.val[gpos++] = fa;
294 sb->interp.gauss.pos = gpos & 3;
295}
296
297#define gval(x) (int)sb->interp.gauss.val[(gpos + x) & 3]
298
299INLINE int GetInterpolationCubic(const sample_buf *sb, int spos)
300{
301 int gpos = sb->interp.gauss.pos;
302 int xd = (spos >> 1) + 1;
303 int fa;
304
305 fa = gval(3) - 3*gval(2) + 3*gval(1) - gval(0);
306 fa *= (xd - (2<<15)) / 6;
307 fa >>= 15;
308 fa += gval(2) - gval(1) - gval(1) + gval(0);
309 fa *= (xd - (1<<15)) >> 1;
310 fa >>= 15;
311 fa += gval(1) - gval(0);
312 fa *= xd;
313 fa >>= 15;
314 fa = fa + gval(0);
315 return fa;
316}
317
318INLINE int GetInterpolationGauss(const sample_buf *sb, int spos)
319{
320 int gpos = sb->interp.gauss.pos;
321 int vl = (spos >> 6) & ~3;
322 int vr;
323 vr = (gauss[vl+0] * gval(0)) >> 15;
324 vr += (gauss[vl+1] * gval(1)) >> 15;
325 vr += (gauss[vl+2] * gval(2)) >> 15;
326 vr += (gauss[vl+3] * gval(3)) >> 15;
327 return vr;
328}
329
330static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor)
331{
332 static const int f[16][2] = {
333 { 0, 0 },
334 { 60, 0 },
335 { 115, -52 },
336 { 98, -55 },
337 { 122, -60 }
338 };
339 int nSample;
340 int fa, s_1, s_2, d, s;
341
342 s_1 = dest[27];
343 s_2 = dest[26];
344
345 for (nSample = 0; nSample < 28; src++)
346 {
347 d = (int)*src;
348 s = (int)(signed short)((d & 0x0f) << 12);
349
350 fa = s >> shift_factor;
351 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
352 ssat32_to_16(fa);
353 s_2 = s_1; s_1 = fa;
354
355 dest[nSample++] = fa;
356
357 s = (int)(signed short)((d & 0xf0) << 8);
358 fa = s >> shift_factor;
359 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
360 ssat32_to_16(fa);
361 s_2 = s_1; s_1 = fa;
362
363 dest[nSample++] = fa;
364 }
365}
366
367static int decode_block(void *unused, int ch, int *SB)
368{
369 SPUCHAN *s_chan = &spu.s_chan[ch];
370 unsigned char *start;
371 int predict_nr, shift_factor, flags;
372 int ret = 0;
373
374 start = s_chan->pCurr; // set up the current pos
375 if (start - spu.spuMemC < 0x1000) { // ?
376 //log_unhandled("ch%02d plays decode bufs @%05lx\n",
377 // ch, (long)(start - spu.spuMemC));
378 ret = 1;
379 }
380
381 if (s_chan->prevflags & 1) // 1: stop/loop
382 {
383 if (!(s_chan->prevflags & 2))
384 ret = 1;
385
386 start = s_chan->pLoop;
387 }
388
389 check_irq(ch, start);
390
391 predict_nr = start[0];
392 shift_factor = predict_nr & 0xf;
393 predict_nr >>= 4;
394
395 decode_block_data(SB, start + 2, predict_nr, shift_factor);
396
397 flags = start[1];
398 if (flags & 4 && !s_chan->bIgnoreLoop)
399 s_chan->pLoop = start; // loop adress
400
401 start += 16;
402
403 s_chan->pCurr = start; // store values for next cycle
404 s_chan->prevflags = flags;
405 s_chan->bStarting = 0;
406
407 return ret;
408}
409
410// do block, but ignore sample data
411static int skip_block(int ch)
412{
413 SPUCHAN *s_chan = &spu.s_chan[ch];
414 unsigned char *start = s_chan->pCurr;
415 int flags;
416 int ret = 0;
417
418 if (s_chan->prevflags & 1) {
419 if (!(s_chan->prevflags & 2))
420 ret = 1;
421
422 start = s_chan->pLoop;
423 }
424
425 check_irq(ch, start);
426
427 flags = start[1];
428 if (flags & 4 && !s_chan->bIgnoreLoop)
429 s_chan->pLoop = start;
430
431 start += 16;
432
433 s_chan->pCurr = start;
434 s_chan->prevflags = flags;
435 s_chan->bStarting = 0;
436
437 return ret;
438}
439
440// if irq is going to trigger sooner than in upd_samples, set upd_samples
441static void scan_for_irq(int ch, unsigned int *upd_samples)
442{
443 SPUCHAN *s_chan = &spu.s_chan[ch];
444 int pos, sinc, sinc_inv, end;
445 unsigned char *block;
446 int flags;
447
448 block = s_chan->pCurr;
449 pos = s_chan->spos;
450 sinc = s_chan->sinc;
451 end = pos + *upd_samples * sinc;
452 if (s_chan->prevflags & 1) // 1: stop/loop
453 block = s_chan->pLoop;
454
455 pos += (28 - s_chan->iSBPos) << 16;
456 while (pos < end)
457 {
458 if (block == spu.pSpuIrq)
459 break;
460 flags = block[1];
461 block += 16;
462 if (flags & 1) { // 1: stop/loop
463 block = s_chan->pLoop;
464 }
465 pos += 28 << 16;
466 }
467
468 if (pos < end)
469 {
470 sinc_inv = s_chan->sinc_inv;
471 if (sinc_inv == 0)
472 sinc_inv = s_chan->sinc_inv = (0x80000000u / (uint32_t)sinc) << 1;
473
474 pos -= s_chan->spos;
475 *upd_samples = (((uint64_t)pos * sinc_inv) >> 32) + 1;
476 //xprintf("ch%02d: irq sched: %3d %03d\n",
477 // ch, *upd_samples, *upd_samples * 60 * 263 / 44100);
478 }
479}
480
481#define make_do_samples(name, fmod_code, interp_start, interp_store, interp_get, interp_end) \
482static noinline int name( \
483 int (*decode_f)(void *context, int ch, int *SB), void *ctx, \
484 int ch, int ns_to, sample_buf *sb, int sinc, int *spos, int *sbpos) \
485{ \
486 int ns, d, fa; \
487 int ret = ns_to; \
488 interp_start; \
489 \
490 for (ns = 0; ns < ns_to; ns++) \
491 { \
492 fmod_code; \
493 \
494 *spos += sinc; \
495 while (*spos >= 0x10000) \
496 { \
497 fa = sb->SB[(*sbpos)++]; \
498 if (*sbpos >= 28) \
499 { \
500 *sbpos = 0; \
501 d = decode_f(ctx, ch, sb->SB); \
502 if (d && ns < ret) \
503 ret = ns; \
504 } \
505 \
506 interp_store; \
507 *spos -= 0x10000; \
508 } \
509 \
510 interp_get; \
511 } \
512 \
513 interp_end; \
514 \
515 return ret; \
516}
517
518// helpers for simple linear interpolation: delay real val for two slots,
519// and calc the two deltas, for a 'look at the future behaviour'
520#define simple_interp_store \
521 sb->SB[28] = 0; \
522 sb->SB[29] = sb->SB[30]; \
523 sb->SB[30] = sb->SB[31]; \
524 sb->SB[31] = fa; \
525 sb->SB[32] = 1
526
527#define simple_interp_get \
528 if(sinc<0x10000) /* -> upsampling? */ \
529 InterpolateUp(sb, sinc); /* --> interpolate up */ \
530 else InterpolateDown(sb, sinc); /* --> else down */ \
531 ChanBuf[ns] = sb->SB[29]
532
533make_do_samples(do_samples_nointerp, , fa = sb->SB[29],
534 , ChanBuf[ns] = fa, sb->SB[29] = fa)
535make_do_samples(do_samples_simple, , ,
536 simple_interp_store, simple_interp_get, )
537make_do_samples(do_samples_gauss, , ,
538 StoreInterpolationGaussCubic(sb, fa),
539 ChanBuf[ns] = GetInterpolationGauss(sb, *spos), )
540make_do_samples(do_samples_cubic, , ,
541 StoreInterpolationGaussCubic(sb, fa),
542 ChanBuf[ns] = GetInterpolationCubic(sb, *spos), )
543make_do_samples(do_samples_fmod,
544 sinc = FModChangeFrequency(spu.s_chan[ch].iRawPitch, ns), ,
545 StoreInterpolationGaussCubic(sb, fa),
546 ChanBuf[ns] = GetInterpolationGauss(sb, *spos), )
547
548INLINE int do_samples_adpcm(
549 int (*decode_f)(void *context, int ch, int *SB), void *ctx,
550 int ch, int ns_to, int fmod, sample_buf *sb, int sinc, int *spos, int *sbpos)
551{
552 int interp = spu.interpolation;
553 if (fmod == 1)
554 return do_samples_fmod(decode_f, ctx, ch, ns_to, sb, sinc, spos, sbpos);
555 if (fmod)
556 interp = 2;
557 switch (interp) {
558 case 0:
559 return do_samples_nointerp(decode_f, ctx, ch, ns_to, sb, sinc, spos, sbpos);
560 case 1:
561 return do_samples_simple (decode_f, ctx, ch, ns_to, sb, sinc, spos, sbpos);
562 default:
563 return do_samples_gauss (decode_f, ctx, ch, ns_to, sb, sinc, spos, sbpos);
564 case 3:
565 return do_samples_cubic (decode_f, ctx, ch, ns_to, sb, sinc, spos, sbpos);
566 }
567}
568
569static int do_samples_skip(int ch, int ns_to)
570{
571 SPUCHAN *s_chan = &spu.s_chan[ch];
572 int spos = s_chan->spos;
573 int sinc = s_chan->sinc;
574 int ret = ns_to, ns, d;
575
576 spos += s_chan->iSBPos << 16;
577
578 for (ns = 0; ns < ns_to; ns++)
579 {
580 spos += sinc;
581 while (spos >= 28*0x10000)
582 {
583 d = skip_block(ch);
584 if (d && ns < ret)
585 ret = ns;
586 spos -= 28*0x10000;
587 }
588 }
589
590 s_chan->iSBPos = spos >> 16;
591 s_chan->spos = spos & 0xffff;
592
593 return ret;
594}
595
596static void do_lsfr_samples(int ns_to, int ctrl,
597 unsigned int *dwNoiseCount, unsigned int *dwNoiseVal)
598{
599 unsigned int counter = *dwNoiseCount;
600 unsigned int val = *dwNoiseVal;
601 unsigned int level, shift, bit;
602 int ns;
603
604 // modified from DrHell/shalma, no fraction
605 level = (ctrl >> 10) & 0x0f;
606 level = 0x8000 >> level;
607
608 for (ns = 0; ns < ns_to; ns++)
609 {
610 counter += 2;
611 if (counter >= level)
612 {
613 counter -= level;
614 shift = (val >> 10) & 0x1f;
615 bit = (0x69696969 >> shift) & 1;
616 bit ^= (val >> 15) & 1;
617 val = (val << 1) | bit;
618 }
619
620 ChanBuf[ns] = (signed short)val;
621 }
622
623 *dwNoiseCount = counter;
624 *dwNoiseVal = val;
625}
626
627static int do_samples_noise(int ch, int ns_to)
628{
629 int ret;
630
631 ret = do_samples_skip(ch, ns_to);
632
633 do_lsfr_samples(ns_to, spu.spuCtrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
634
635 return ret;
636}
637
638#ifdef HAVE_ARMV5
639// asm code; lv and rv must be 0-3fff
640extern void mix_chan(int *SSumLR, int count, int lv, int rv);
641extern void mix_chan_rvb(int *SSumLR, int count, int lv, int rv, int *rvb);
642#else
643static void mix_chan(int *SSumLR, int count, int lv, int rv)
644{
645 const int *src = ChanBuf;
646 int l, r;
647
648 while (count--)
649 {
650 int sval = *src++;
651
652 l = (sval * lv) >> 14;
653 r = (sval * rv) >> 14;
654 *SSumLR++ += l;
655 *SSumLR++ += r;
656 }
657}
658
659static void mix_chan_rvb(int *SSumLR, int count, int lv, int rv, int *rvb)
660{
661 const int *src = ChanBuf;
662 int *dst = SSumLR;
663 int *drvb = rvb;
664 int l, r;
665
666 while (count--)
667 {
668 int sval = *src++;
669
670 l = (sval * lv) >> 14;
671 r = (sval * rv) >> 14;
672 *dst++ += l;
673 *dst++ += r;
674 *drvb++ += l;
675 *drvb++ += r;
676 }
677}
678#endif
679
680// 0x0800-0x0bff Voice 1
681// 0x0c00-0x0fff Voice 3
682static noinline void do_decode_bufs(unsigned short *mem, int which,
683 int count, int decode_pos)
684{
685 unsigned short *dst = &mem[0x800/2 + which*0x400/2];
686 const int *src = ChanBuf;
687 int cursor = decode_pos;
688
689 while (count-- > 0)
690 {
691 cursor &= 0x1ff;
692 dst[cursor] = *src++;
693 cursor++;
694 }
695
696 // decode_pos is updated and irqs are checked later, after voice loop
697}
698
699static void do_silent_chans(int ns_to, int silentch)
700{
701 unsigned int mask;
702 SPUCHAN *s_chan;
703 int ch;
704
705 mask = silentch & 0xffffff;
706 for (ch = 0; mask != 0; ch++, mask >>= 1)
707 {
708 if (!(mask & 1)) continue;
709 if (spu.dwChannelDead & (1<<ch)) continue;
710
711 s_chan = &spu.s_chan[ch];
712 if (s_chan->pCurr > spu.pSpuIrq && s_chan->pLoop > spu.pSpuIrq)
713 continue;
714
715 s_chan->spos += s_chan->iSBPos << 16;
716 s_chan->iSBPos = 0;
717
718 s_chan->spos += s_chan->sinc * ns_to;
719 while (s_chan->spos >= 28 * 0x10000)
720 {
721 unsigned char *start = s_chan->pCurr;
722
723 skip_block(ch);
724 if (start == s_chan->pCurr || start - spu.spuMemC < 0x1000)
725 {
726 // looping on self or stopped(?)
727 spu.dwChannelDead |= 1<<ch;
728 s_chan->spos = 0;
729 break;
730 }
731
732 s_chan->spos -= 28 * 0x10000;
733 }
734 }
735}
736
737static void do_channels(int ns_to)
738{
739 unsigned int mask;
740 int do_rvb, ch, d;
741 SPUCHAN *s_chan;
742
743 if (unlikely(spu.interpolation != spu_config.iUseInterpolation))
744 {
745 spu.interpolation = spu_config.iUseInterpolation;
746 mask = spu.dwChannelsAudible & 0xffffff;
747 for (ch = 0; mask != 0; ch++, mask >>= 1)
748 if (mask & 1)
749 ResetInterpolation(&spu.sb[ch]);
750 }
751
752 do_rvb = spu.rvb->StartAddr && spu_config.iUseReverb;
753 if (do_rvb)
754 memset(RVB, 0, ns_to * sizeof(RVB[0]) * 2);
755
756 mask = spu.dwNewChannel & 0xffffff;
757 for (ch = 0; mask != 0; ch++, mask >>= 1) {
758 if (mask & 1)
759 StartSound(ch);
760 }
761
762 mask = spu.dwChannelsAudible & 0xffffff;
763 for (ch = 0; mask != 0; ch++, mask >>= 1) // loop em all...
764 {
765 if (!(mask & 1)) continue; // channel not playing? next
766
767 s_chan = &spu.s_chan[ch];
768 if (s_chan->bNoise)
769 d = do_samples_noise(ch, ns_to);
770 else
771 d = do_samples_adpcm(decode_block, NULL, ch, ns_to, s_chan->bFMod,
772 &spu.sb[ch], s_chan->sinc, &s_chan->spos, &s_chan->iSBPos);
773
774 if (!s_chan->bStarting) {
775 d = MixADSR(&s_chan->ADSRX, d);
776 if (d < ns_to) {
777 spu.dwChannelsAudible &= ~(1 << ch);
778 s_chan->ADSRX.State = ADSR_RELEASE;
779 s_chan->ADSRX.EnvelopeVol = 0;
780 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
781 }
782 }
783
784 if (ch == 1 || ch == 3)
785 {
786 do_decode_bufs(spu.spuMem, ch/2, ns_to, spu.decode_pos);
787 spu.decode_dirty_ch |= 1 << ch;
788 }
789
790 if (s_chan->bFMod == 2) // fmod freq channel
791 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
792 if (s_chan->bRVBActive && do_rvb)
793 mix_chan_rvb(spu.SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume, RVB);
794 else
795 mix_chan(spu.SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume);
796 }
797
798 MixXA(spu.SSumLR, RVB, ns_to, spu.decode_pos);
799
800 if (spu.rvb->StartAddr) {
801 if (do_rvb)
802 REVERBDo(spu.SSumLR, RVB, ns_to, spu.rvb->CurrAddr);
803
804 spu.rvb->CurrAddr += ns_to / 2;
805 while (spu.rvb->CurrAddr >= 0x40000)
806 spu.rvb->CurrAddr -= 0x40000 - spu.rvb->StartAddr;
807 }
808}
809
810static void do_samples_finish(int *SSumLR, int ns_to,
811 int silentch, int decode_pos);
812
813// optional worker thread handling
814
815#if P_HAVE_PTHREAD || defined(WANT_THREAD_CODE)
816
817// worker thread state
818static struct spu_worker {
819 union {
820 struct {
821 unsigned int exit_thread;
822 unsigned int i_ready;
823 unsigned int i_reaped;
824 unsigned int last_boot_cnt; // dsp
825 unsigned int ram_dirty;
826 };
827 // aligning for C64X_DSP
828 unsigned int _pad0[128/4];
829 };
830 union {
831 struct {
832 unsigned int i_done;
833 unsigned int active; // dsp
834 unsigned int boot_cnt;
835 };
836 unsigned int _pad1[128/4];
837 };
838 struct work_item {
839 int ns_to;
840 int ctrl;
841 int decode_pos;
842 int rvb_addr;
843 unsigned int channels_new;
844 unsigned int channels_on;
845 unsigned int channels_silent;
846 struct {
847 int spos;
848 int sbpos;
849 int sinc;
850 int start;
851 int loop;
852 short vol_l;
853 short vol_r;
854 unsigned short ns_to;
855 unsigned short bNoise:1;
856 unsigned short bFMod:2;
857 unsigned short bRVBActive:1;
858 ADSRInfoEx adsr;
859 } ch[24];
860 int SSumLR[NSSIZE * 2];
861 } i[4];
862} *worker;
863
864#define WORK_MAXCNT (sizeof(worker->i) / sizeof(worker->i[0]))
865#define WORK_I_MASK (WORK_MAXCNT - 1)
866
867static void thread_work_start(void);
868static void thread_work_wait_sync(struct work_item *work, int force);
869static void thread_sync_caches(void);
870static int thread_get_i_done(void);
871
872static int decode_block_work(void *context, int ch, int *SB)
873{
874 const unsigned char *ram = spu.spuMemC;
875 int predict_nr, shift_factor, flags;
876 struct work_item *work = context;
877 int start = work->ch[ch].start;
878 int loop = work->ch[ch].loop;
879
880 predict_nr = ram[start];
881 shift_factor = predict_nr & 0xf;
882 predict_nr >>= 4;
883
884 decode_block_data(SB, ram + start + 2, predict_nr, shift_factor);
885
886 flags = ram[start + 1];
887 if (flags & 4)
888 loop = start; // loop adress
889
890 start += 16;
891
892 if (flags & 1) // 1: stop/loop
893 start = loop;
894
895 work->ch[ch].start = start & 0x7ffff;
896 work->ch[ch].loop = loop;
897
898 return 0;
899}
900
901static void queue_channel_work(int ns_to, unsigned int silentch)
902{
903 struct work_item *work;
904 SPUCHAN *s_chan;
905 unsigned int mask;
906 int ch, d;
907
908 work = &worker->i[worker->i_ready & WORK_I_MASK];
909 work->ns_to = ns_to;
910 work->ctrl = spu.spuCtrl;
911 work->decode_pos = spu.decode_pos;
912 work->channels_silent = silentch;
913
914 mask = work->channels_new = spu.dwNewChannel & 0xffffff;
915 for (ch = 0; mask != 0; ch++, mask >>= 1) {
916 if (mask & 1)
917 StartSoundMain(ch);
918 }
919
920 mask = work->channels_on = spu.dwChannelsAudible & 0xffffff;
921 spu.decode_dirty_ch |= mask & 0x0a;
922
923 for (ch = 0; mask != 0; ch++, mask >>= 1)
924 {
925 if (!(mask & 1)) continue;
926
927 s_chan = &spu.s_chan[ch];
928 work->ch[ch].spos = s_chan->spos;
929 work->ch[ch].sbpos = s_chan->iSBPos;
930 work->ch[ch].sinc = s_chan->sinc;
931 work->ch[ch].adsr = s_chan->ADSRX;
932 work->ch[ch].vol_l = s_chan->iLeftVolume;
933 work->ch[ch].vol_r = s_chan->iRightVolume;
934 work->ch[ch].start = s_chan->pCurr - spu.spuMemC;
935 work->ch[ch].loop = s_chan->pLoop - spu.spuMemC;
936 work->ch[ch].bNoise = s_chan->bNoise;
937 work->ch[ch].bFMod = s_chan->bFMod;
938 work->ch[ch].bRVBActive = s_chan->bRVBActive;
939 if (s_chan->prevflags & 1)
940 work->ch[ch].start = work->ch[ch].loop;
941
942 d = do_samples_skip(ch, ns_to);
943 work->ch[ch].ns_to = d;
944
945 if (!s_chan->bStarting) {
946 // note: d is not accurate on skip
947 d = SkipADSR(&s_chan->ADSRX, d);
948 if (d < ns_to) {
949 spu.dwChannelsAudible &= ~(1 << ch);
950 s_chan->ADSRX.State = ADSR_RELEASE;
951 s_chan->ADSRX.EnvelopeVol = 0;
952 }
953 }
954 }
955
956 work->rvb_addr = 0;
957 if (spu.rvb->StartAddr) {
958 if (spu_config.iUseReverb)
959 work->rvb_addr = spu.rvb->CurrAddr;
960
961 spu.rvb->CurrAddr += ns_to / 2;
962 while (spu.rvb->CurrAddr >= 0x40000)
963 spu.rvb->CurrAddr -= 0x40000 - spu.rvb->StartAddr;
964 }
965
966 worker->i_ready++;
967 thread_work_start();
968}
969
970static void do_channel_work(struct work_item *work)
971{
972 unsigned int mask;
973 int spos, sbpos;
974 int d, ch, ns_to;
975
976 ns_to = work->ns_to;
977
978 if (unlikely(spu.interpolation != spu_config.iUseInterpolation))
979 {
980 spu.interpolation = spu_config.iUseInterpolation;
981 mask = spu.dwChannelsAudible & 0xffffff;
982 for (ch = 0; mask != 0; ch++, mask >>= 1)
983 if (mask & 1)
984 ResetInterpolation(&spu.sb[ch]);
985 }
986
987 if (work->rvb_addr)
988 memset(RVB, 0, ns_to * sizeof(RVB[0]) * 2);
989
990 mask = work->channels_new;
991 for (ch = 0; mask != 0; ch++, mask >>= 1) {
992 if (mask & 1)
993 StartSoundSB(&spu.sb[ch]);
994 }
995
996 mask = work->channels_on;
997 for (ch = 0; mask != 0; ch++, mask >>= 1)
998 {
999 if (!(mask & 1)) continue;
1000
1001 d = work->ch[ch].ns_to;
1002 spos = work->ch[ch].spos;
1003 sbpos = work->ch[ch].sbpos;
1004
1005 if (work->ch[ch].bNoise)
1006 do_lsfr_samples(d, work->ctrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
1007 else
1008 do_samples_adpcm(decode_block_work, work, ch, d, work->ch[ch].bFMod,
1009 &spu.sb[ch], work->ch[ch].sinc, &spos, &sbpos);
1010
1011 d = MixADSR(&work->ch[ch].adsr, d);
1012 if (d < ns_to) {
1013 work->ch[ch].adsr.EnvelopeVol = 0;
1014 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
1015 }
1016
1017 if (ch == 1 || ch == 3)
1018 do_decode_bufs(spu.spuMem, ch/2, ns_to, work->decode_pos);
1019
1020 if (work->ch[ch].bFMod == 2) // fmod freq channel
1021 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
1022 if (work->ch[ch].bRVBActive && work->rvb_addr)
1023 mix_chan_rvb(work->SSumLR, ns_to,
1024 work->ch[ch].vol_l, work->ch[ch].vol_r, RVB);
1025 else
1026 mix_chan(work->SSumLR, ns_to, work->ch[ch].vol_l, work->ch[ch].vol_r);
1027 }
1028
1029 if (work->rvb_addr)
1030 REVERBDo(work->SSumLR, RVB, ns_to, work->rvb_addr);
1031}
1032
1033static void sync_worker_thread(int force)
1034{
1035 struct work_item *work;
1036 int done, used_space;
1037
1038 // rvb offsets will change, thread may be using them
1039 force |= spu.rvb->dirty && spu.rvb->StartAddr;
1040
1041 done = thread_get_i_done() - worker->i_reaped;
1042 used_space = worker->i_ready - worker->i_reaped;
1043
1044 //printf("done: %d use: %d dsp: %u/%u\n", done, used_space,
1045 // worker->boot_cnt, worker->i_done);
1046
1047 while ((force && used_space > 0) || used_space >= WORK_MAXCNT || done > 0) {
1048 work = &worker->i[worker->i_reaped & WORK_I_MASK];
1049 thread_work_wait_sync(work, force);
1050
1051 MixXA(work->SSumLR, RVB, work->ns_to, work->decode_pos);
1052 do_samples_finish(work->SSumLR, work->ns_to,
1053 work->channels_silent, work->decode_pos);
1054
1055 worker->i_reaped++;
1056 done = thread_get_i_done() - worker->i_reaped;
1057 used_space = worker->i_ready - worker->i_reaped;
1058 }
1059 if (force)
1060 thread_sync_caches();
1061}
1062
1063#else
1064
1065static void queue_channel_work(int ns_to, int silentch) {}
1066static void sync_worker_thread(int force) {}
1067
1068static const void * const worker = NULL;
1069
1070#endif // P_HAVE_PTHREAD || defined(WANT_THREAD_CODE)
1071
1072////////////////////////////////////////////////////////////////////////
1073// MAIN SPU FUNCTION
1074// here is the main job handler...
1075////////////////////////////////////////////////////////////////////////
1076
1077void do_samples(unsigned int cycles_to, int do_direct)
1078{
1079 unsigned int silentch;
1080 int cycle_diff;
1081 int ns_to;
1082
1083 cycle_diff = cycles_to - spu.cycles_played;
1084 if (cycle_diff < -2*1048576 || cycle_diff > 2*1048576)
1085 {
1086 //xprintf("desync %u %d\n", cycles_to, cycle_diff);
1087 spu.cycles_played = cycles_to;
1088 return;
1089 }
1090
1091 silentch = ~(spu.dwChannelsAudible | spu.dwNewChannel) & 0xffffff;
1092
1093 do_direct |= (silentch == 0xffffff);
1094 if (worker != NULL)
1095 sync_worker_thread(do_direct);
1096
1097 if (cycle_diff < 2 * 768)
1098 return;
1099
1100 ns_to = (cycle_diff / 768 + 1) & ~1;
1101 if (ns_to > NSSIZE) {
1102 // should never happen
1103 //xprintf("ns_to oflow %d %d\n", ns_to, NSSIZE);
1104 ns_to = NSSIZE;
1105 }
1106
1107 //////////////////////////////////////////////////////
1108 // special irq handling in the decode buffers (0x0000-0x1000)
1109 // we know:
1110 // the decode buffers are located in spu memory in the following way:
1111 // 0x0000-0x03ff CD audio left
1112 // 0x0400-0x07ff CD audio right
1113 // 0x0800-0x0bff Voice 1
1114 // 0x0c00-0x0fff Voice 3
1115 // and decoded data is 16 bit for one sample
1116 // we assume:
1117 // even if voices 1/3 are off or no cd audio is playing, the internal
1118 // play positions will move on and wrap after 0x400 bytes.
1119 // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and
1120 // increase this pointer on each sample by 2 bytes. If this pointer
1121 // (or 0x400 offsets of this pointer) hits the spuirq address, we generate
1122 // an IRQ.
1123
1124 if (unlikely((spu.spuCtrl & CTRL_IRQ)
1125 && spu.pSpuIrq < spu.spuMemC+0x1000))
1126 {
1127 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1128 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1129 if (0 < left && left <= ns_to)
1130 {
1131 //xprintf("decoder irq %x\n", spu.decode_pos);
1132 do_irq();
1133 }
1134 }
1135 if (!spu.cycles_dma_end || (int)(spu.cycles_dma_end - cycles_to) < 0) {
1136 spu.cycles_dma_end = 0;
1137 check_irq_io(spu.spuAddr);
1138 }
1139
1140 if (unlikely(spu.rvb->dirty))
1141 REVERBPrep();
1142
1143 if (do_direct || worker == NULL || !spu_config.iUseThread) {
1144 do_channels(ns_to);
1145 do_samples_finish(spu.SSumLR, ns_to, silentch, spu.decode_pos);
1146 }
1147 else {
1148 queue_channel_work(ns_to, silentch);
1149 //sync_worker_thread(1); // uncomment for debug
1150 }
1151
1152 // advance "stopped" channels that can cause irqs
1153 // (all chans are always playing on the real thing..)
1154 if (spu.spuCtrl & CTRL_IRQ)
1155 do_silent_chans(ns_to, silentch);
1156
1157 spu.cycles_played += ns_to * 768;
1158 spu.decode_pos = (spu.decode_pos + ns_to) & 0x1ff;
1159#if 0
1160 static int ccount; static time_t ctime; ccount++;
1161 if (time(NULL) != ctime)
1162 { printf("%d\n", ccount); ccount = 0; ctime = time(NULL); }
1163#endif
1164}
1165
1166static void do_samples_finish(int *SSumLR, int ns_to,
1167 int silentch, int decode_pos)
1168{
1169 int vol_l = ((int)regAreaGet(H_SPUmvolL) << 17) >> 17;
1170 int vol_r = ((int)regAreaGet(H_SPUmvolR) << 17) >> 17;
1171 int ns;
1172 int d;
1173
1174 // must clear silent channel decode buffers
1175 if(unlikely(silentch & spu.decode_dirty_ch & (1<<1)))
1176 {
1177 memset(&spu.spuMem[0x800/2], 0, 0x400);
1178 spu.decode_dirty_ch &= ~(1<<1);
1179 }
1180 if(unlikely(silentch & spu.decode_dirty_ch & (1<<3)))
1181 {
1182 memset(&spu.spuMem[0xc00/2], 0, 0x400);
1183 spu.decode_dirty_ch &= ~(1<<3);
1184 }
1185
1186 vol_l = vol_l * spu_config.iVolume >> 10;
1187 vol_r = vol_r * spu_config.iVolume >> 10;
1188
1189 if (!(spu.spuCtrl & CTRL_MUTE) || !(vol_l | vol_r))
1190 {
1191 // muted? (rare)
1192 memset(spu.pS, 0, ns_to * 2 * sizeof(spu.pS[0]));
1193 memset(SSumLR, 0, ns_to * 2 * sizeof(SSumLR[0]));
1194 spu.pS += ns_to * 2;
1195 }
1196 else
1197 for (ns = 0; ns < ns_to * 2; )
1198 {
1199 d = SSumLR[ns]; SSumLR[ns] = 0;
1200 d = d * vol_l >> 14;
1201 ssat32_to_16(d);
1202 *spu.pS++ = d;
1203 ns++;
1204
1205 d = SSumLR[ns]; SSumLR[ns] = 0;
1206 d = d * vol_r >> 14;
1207 ssat32_to_16(d);
1208 *spu.pS++ = d;
1209 ns++;
1210 }
1211}
1212
1213void schedule_next_irq(void)
1214{
1215 unsigned int upd_samples;
1216 int ch;
1217
1218 if (spu.scheduleCallback == NULL)
1219 return;
1220
1221 upd_samples = 44100 / 50;
1222
1223 for (ch = 0; ch < MAXCHAN; ch++)
1224 {
1225 if (spu.dwChannelDead & (1 << ch))
1226 continue;
1227 if ((unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pCurr) > IRQ_NEAR_BLOCKS * 16
1228 && (unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pLoop) > IRQ_NEAR_BLOCKS * 16)
1229 continue;
1230 if (spu.s_chan[ch].sinc == 0)
1231 continue;
1232
1233 scan_for_irq(ch, &upd_samples);
1234 }
1235
1236 if (unlikely(spu.pSpuIrq < spu.spuMemC + 0x1000))
1237 {
1238 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1239 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1240 if (0 < left && left < upd_samples) {
1241 //xprintf("decode: %3d (%3d/%3d)\n", left, spu.decode_pos, irq_pos);
1242 upd_samples = left;
1243 }
1244 }
1245
1246 if (upd_samples < 44100 / 50)
1247 spu.scheduleCallback(upd_samples * 768);
1248}
1249
1250// SPU ASYNC... even newer epsxe func
1251// 1 time every 'cycle' cycles... harhar
1252
1253// rearmed: called dynamically now
1254
1255void CALLBACK SPUasync(unsigned int cycle, unsigned int flags)
1256{
1257 do_samples(cycle, 0);
1258
1259 if (spu.spuCtrl & CTRL_IRQ)
1260 schedule_next_irq();
1261
1262 if (flags & 1) {
1263 out_current->feed(spu.pSpuBuffer, (unsigned char *)spu.pS - spu.pSpuBuffer);
1264 spu.pS = (short *)spu.pSpuBuffer;
1265
1266 if (spu_config.iTempo) {
1267 if (!out_current->busy())
1268 // cause more samples to be generated
1269 // (and break some games because of bad sync)
1270 spu.cycles_played -= 44100 / 60 / 2 * 768;
1271 }
1272 }
1273}
1274
1275// SPU UPDATE... new epsxe func
1276// 1 time every 32 hsync lines
1277// (312/32)x50 in pal
1278// (262/32)x60 in ntsc
1279
1280// since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will
1281// leave that func in the linux port, until epsxe linux is using
1282// the async function as well
1283
1284void CALLBACK SPUupdate(void)
1285{
1286}
1287
1288// XA AUDIO
1289
1290void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap, unsigned int cycle, int is_start)
1291{
1292 if(!xap) return;
1293 if(!xap->freq) return; // no xa freq ? bye
1294
1295 if (is_start)
1296 do_samples(cycle, 1); // catch up to prevent source underflows later
1297
1298 FeedXA(xap); // call main XA feeder
1299 spu.xapGlobal = xap; // store info for save states
1300}
1301
1302// CDDA AUDIO
1303int CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes, unsigned int cycle, int is_start)
1304{
1305 if (!pcm) return -1;
1306 if (nbytes<=0) return -1;
1307
1308 if (is_start)
1309 do_samples(cycle, 1); // catch up to prevent source underflows later
1310
1311 FeedCDDA((unsigned char *)pcm, nbytes);
1312 return 0;
1313}
1314
1315// to be called after state load
1316void ClearWorkingState(void)
1317{
1318 memset(iFMod, 0, sizeof(iFMod));
1319 spu.pS=(short *)spu.pSpuBuffer; // setup soundbuffer pointer
1320}
1321
1322// SETUPSTREAMS: init most of the spu buffers
1323static void SetupStreams(void)
1324{
1325 spu.pSpuBuffer = (unsigned char *)malloc(32768); // alloc mixing buffer
1326 spu.SSumLR = calloc(NSSIZE * 2, sizeof(spu.SSumLR[0]));
1327
1328 spu.XAStart = malloc(44100 * sizeof(uint32_t)); // alloc xa buffer
1329 spu.XAEnd = spu.XAStart + 44100;
1330 spu.XAPlay = spu.XAStart;
1331 spu.XAFeed = spu.XAStart;
1332
1333 spu.CDDAStart = malloc(CDDA_BUFFER_SIZE); // alloc cdda buffer
1334 spu.CDDAEnd = spu.CDDAStart + CDDA_BUFFER_SIZE / sizeof(uint32_t);
1335 spu.CDDAPlay = spu.CDDAStart;
1336 spu.CDDAFeed = spu.CDDAStart;
1337
1338 ClearWorkingState();
1339}
1340
1341// REMOVESTREAMS: free most buffer
1342static void RemoveStreams(void)
1343{
1344 free(spu.pSpuBuffer); // free mixing buffer
1345 spu.pSpuBuffer = NULL;
1346 free(spu.SSumLR);
1347 spu.SSumLR = NULL;
1348 free(spu.XAStart); // free XA buffer
1349 spu.XAStart = NULL;
1350 free(spu.CDDAStart); // free CDDA buffer
1351 spu.CDDAStart = NULL;
1352}
1353
1354#if defined(C64X_DSP)
1355
1356/* special code for TI C64x DSP */
1357#include "spu_c64x.c"
1358
1359#elif P_HAVE_PTHREAD
1360
1361#include <pthread.h>
1362#include <semaphore.h>
1363#include <unistd.h>
1364
1365static struct {
1366 pthread_t thread;
1367 sem_t sem_avail;
1368 sem_t sem_done;
1369} t;
1370
1371/* generic pthread implementation */
1372
1373static void thread_work_start(void)
1374{
1375 sem_post(&t.sem_avail);
1376}
1377
1378static void thread_work_wait_sync(struct work_item *work, int force)
1379{
1380 sem_wait(&t.sem_done);
1381}
1382
1383static int thread_get_i_done(void)
1384{
1385 return worker->i_done;
1386}
1387
1388static void thread_sync_caches(void)
1389{
1390}
1391
1392static void *spu_worker_thread(void *unused)
1393{
1394 struct work_item *work;
1395
1396 while (1) {
1397 sem_wait(&t.sem_avail);
1398 if (worker->exit_thread)
1399 break;
1400
1401 work = &worker->i[worker->i_done & WORK_I_MASK];
1402 do_channel_work(work);
1403 worker->i_done++;
1404
1405 sem_post(&t.sem_done);
1406 }
1407
1408 return NULL;
1409}
1410
1411static void init_spu_thread(void)
1412{
1413 int ret;
1414
1415 if (sysconf(_SC_NPROCESSORS_ONLN) <= 1)
1416 return;
1417
1418 worker = calloc(1, sizeof(*worker));
1419 if (worker == NULL)
1420 return;
1421 ret = sem_init(&t.sem_avail, 0, 0);
1422 if (ret != 0)
1423 goto fail_sem_avail;
1424 ret = sem_init(&t.sem_done, 0, 0);
1425 if (ret != 0)
1426 goto fail_sem_done;
1427
1428 ret = pthread_create(&t.thread, NULL, spu_worker_thread, NULL);
1429 if (ret != 0)
1430 goto fail_thread;
1431
1432 spu_config.iThreadAvail = 1;
1433 return;
1434
1435fail_thread:
1436 sem_destroy(&t.sem_done);
1437fail_sem_done:
1438 sem_destroy(&t.sem_avail);
1439fail_sem_avail:
1440 free(worker);
1441 worker = NULL;
1442 spu_config.iThreadAvail = 0;
1443}
1444
1445static void exit_spu_thread(void)
1446{
1447 if (worker == NULL)
1448 return;
1449 worker->exit_thread = 1;
1450 sem_post(&t.sem_avail);
1451 pthread_join(t.thread, NULL);
1452 sem_destroy(&t.sem_done);
1453 sem_destroy(&t.sem_avail);
1454 free(worker);
1455 worker = NULL;
1456}
1457
1458#else // if !P_HAVE_PTHREAD
1459
1460static void init_spu_thread(void)
1461{
1462}
1463
1464static void exit_spu_thread(void)
1465{
1466}
1467
1468#endif
1469
1470// SPUINIT: this func will be called first by the main emu
1471long CALLBACK SPUinit(void)
1472{
1473 int i;
1474
1475 memset(&spu, 0, sizeof(spu));
1476 spu.spuMemC = calloc(1, 512 * 1024);
1477 InitADSR();
1478
1479 spu.s_chan = calloc(MAXCHAN+1, sizeof(spu.s_chan[0])); // channel + 1 infos (1 is security for fmod handling)
1480 spu.rvb = calloc(1, sizeof(REVERBInfo));
1481
1482 spu.spuAddr = 0;
1483 spu.decode_pos = 0;
1484 spu.pSpuIrq = spu.spuMemC;
1485
1486 SetupStreams(); // prepare streaming
1487
1488 if (spu_config.iVolume == 0)
1489 spu_config.iVolume = 768; // 1024 is 1.0
1490
1491 init_spu_thread();
1492
1493 for (i = 0; i < MAXCHAN; i++) // loop sound channels
1494 {
1495 spu.s_chan[i].ADSRX.SustainLevel = 0xf; // -> init sustain
1496 spu.s_chan[i].ADSRX.SustainIncrease = 1;
1497 spu.s_chan[i].pLoop = spu.spuMemC;
1498 spu.s_chan[i].pCurr = spu.spuMemC;
1499 spu.s_chan[i].bIgnoreLoop = 0;
1500 }
1501
1502 spu.bSpuInit=1; // flag: we are inited
1503
1504 return 0;
1505}
1506
1507// SPUOPEN: called by main emu after init
1508long CALLBACK SPUopen(void)
1509{
1510 if (spu.bSPUIsOpen) return 0; // security for some stupid main emus
1511
1512 SetupSound(); // setup sound (before init!)
1513
1514 spu.bSPUIsOpen = 1;
1515
1516 return PSE_SPU_ERR_SUCCESS;
1517}
1518
1519// SPUCLOSE: called before shutdown
1520long CALLBACK SPUclose(void)
1521{
1522 if (!spu.bSPUIsOpen) return 0; // some security
1523
1524 spu.bSPUIsOpen = 0; // no more open
1525
1526 out_current->finish(); // no more sound handling
1527
1528 return 0;
1529}
1530
1531// SPUSHUTDOWN: called by main emu on final exit
1532long CALLBACK SPUshutdown(void)
1533{
1534 SPUclose();
1535
1536 exit_spu_thread();
1537
1538 free(spu.spuMemC);
1539 spu.spuMemC = NULL;
1540 free(spu.s_chan);
1541 spu.s_chan = NULL;
1542 free(spu.rvb);
1543 spu.rvb = NULL;
1544
1545 RemoveStreams(); // no more streaming
1546 spu.bSpuInit=0;
1547
1548 return 0;
1549}
1550
1551// SETUP CALLBACKS
1552// this functions will be called once,
1553// passes a callback that should be called on SPU-IRQ/cdda volume change
1554void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void))
1555{
1556 spu.irqCallback = callback;
1557}
1558
1559void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(short, short))
1560{
1561 spu.cddavCallback = CDDAVcallback;
1562}
1563
1564void CALLBACK SPUregisterScheduleCb(void (CALLBACK *callback)(unsigned int))
1565{
1566 spu.scheduleCallback = callback;
1567}
1568
1569// COMMON PLUGIN INFO FUNCS
1570/*
1571char * CALLBACK PSEgetLibName(void)
1572{
1573 return _(libraryName);
1574}
1575
1576unsigned long CALLBACK PSEgetLibType(void)
1577{
1578 return PSE_LT_SPU;
1579}
1580
1581unsigned long CALLBACK PSEgetLibVersion(void)
1582{
1583 return (1 << 16) | (6 << 8);
1584}
1585
1586char * SPUgetLibInfos(void)
1587{
1588 return _(libraryInfo);
1589}
1590*/
1591
1592// debug
1593void spu_get_debug_info(int *chans_out, int *run_chans, int *fmod_chans_out, int *noise_chans_out)
1594{
1595 int ch = 0, fmod_chans = 0, noise_chans = 0, irq_chans = 0;
1596
1597 if (spu.s_chan == NULL)
1598 return;
1599
1600 for(;ch<MAXCHAN;ch++)
1601 {
1602 if (!(spu.dwChannelsAudible & (1<<ch)))
1603 continue;
1604 if (spu.s_chan[ch].bFMod == 2)
1605 fmod_chans |= 1 << ch;
1606 if (spu.s_chan[ch].bNoise)
1607 noise_chans |= 1 << ch;
1608 if((spu.spuCtrl&CTRL_IRQ) && spu.s_chan[ch].pCurr <= spu.pSpuIrq && spu.s_chan[ch].pLoop <= spu.pSpuIrq)
1609 irq_chans |= 1 << ch;
1610 }
1611
1612 *chans_out = spu.dwChannelsAudible;
1613 *run_chans = ~spu.dwChannelsAudible & ~spu.dwChannelDead & irq_chans;
1614 *fmod_chans_out = fmod_chans;
1615 *noise_chans_out = noise_chans;
1616}
1617
1618// vim:shiftwidth=1:expandtab