gpu_neon: add some intelace mode handling
[pcsx_rearmed.git] / plugins / dfsound / spu.c
... / ...
CommitLineData
1/***************************************************************************
2 spu.c - description
3 -------------------
4 begin : Wed May 15 2002
5 copyright : (C) 2002 by Pete Bernert
6 email : BlackDove@addcom.de
7
8 Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2011
9
10 ***************************************************************************/
11/***************************************************************************
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. See also the license.txt file for *
17 * additional informations. *
18 * *
19 ***************************************************************************/
20
21#include "stdafx.h"
22
23#define _IN_SPU
24
25#include "externals.h"
26#include "registers.h"
27#include "cfg.h"
28#include "dsoundoss.h"
29
30#ifdef ENABLE_NLS
31#include <libintl.h>
32#include <locale.h>
33#define _(x) gettext(x)
34#define N_(x) (x)
35#else
36#define _(x) (x)
37#define N_(x) (x)
38#endif
39
40#ifdef __ARM_ARCH_7A__
41 #define ssat32_to_16(v) \
42 asm("ssat %0,#16,%1" : "=r" (v) : "r" (v))
43#else
44 #define ssat32_to_16(v) do { \
45 if (v < -32768) v = -32768; \
46 else if (v > 32767) v = 32767; \
47 } while (0)
48#endif
49
50/*
51#if defined (USEMACOSX)
52static char * libraryName = N_("Mac OS X Sound");
53#elif defined (USEALSA)
54static char * libraryName = N_("ALSA Sound");
55#elif defined (USEOSS)
56static char * libraryName = N_("OSS Sound");
57#elif defined (USESDL)
58static char * libraryName = N_("SDL Sound");
59#elif defined (USEPULSEAUDIO)
60static char * libraryName = N_("PulseAudio Sound");
61#else
62static char * libraryName = N_("NULL Sound");
63#endif
64
65static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n");
66*/
67
68// globals
69
70// psx buffer / addresses
71
72unsigned short regArea[10000];
73unsigned short spuMem[256*1024];
74unsigned char * spuMemC;
75unsigned char * pSpuIrq=0;
76unsigned char * pSpuBuffer;
77unsigned char * pMixIrq=0;
78
79// user settings
80
81int iVolume=768; // 1024 is 1.0
82int iXAPitch=1;
83int iUseTimer=2;
84int iSPUIRQWait=1;
85int iDebugMode=0;
86int iRecordMode=0;
87int iUseReverb=2;
88int iUseInterpolation=2;
89
90// MAIN infos struct for each channel
91
92SPUCHAN s_chan[MAXCHAN+1]; // channel + 1 infos (1 is security for fmod handling)
93REVERBInfo rvb;
94
95unsigned int dwNoiseVal; // global noise generator
96unsigned int dwNoiseCount;
97int iSpuAsyncWait=0;
98
99unsigned short spuCtrl=0; // some vars to store psx reg infos
100unsigned short spuStat=0;
101unsigned short spuIrq=0;
102unsigned long spuAddr=0xffffffff; // address into spu mem
103int bEndThread=0; // thread handlers
104int bThreadEnded=0;
105int bSpuInit=0;
106int bSPUIsOpen=0;
107
108static pthread_t thread = (pthread_t)-1; // thread id (linux)
109
110unsigned int dwNewChannel=0; // flags for faster testing, if new channel starts
111unsigned int dwChannelOn=0; // not silent channels
112unsigned int dwPendingChanOff=0;
113unsigned int dwChannelDead=0; // silent+not useful channels
114
115void (CALLBACK *irqCallback)(void)=0; // func of main emu, called on spu irq
116void (CALLBACK *cddavCallback)(unsigned short,unsigned short)=0;
117
118// certain globals (were local before, but with the new timeproc I need em global)
119
120static const int f[8][2] = { { 0, 0 },
121 { 60, 0 },
122 { 115, -52 },
123 { 98, -55 },
124 { 122, -60 } };
125int ChanBuf[NSSIZE+3];
126int SSumLR[(NSSIZE+3)*2];
127int iFMod[NSSIZE];
128int iCycle = 0;
129short * pS;
130
131int lastch=-1; // last channel processed on spu irq in timer mode
132static int lastns=0; // last ns pos
133static int iSecureStart=0; // secure start counter
134
135#define CDDA_BUFFER_SIZE (16384 * sizeof(uint32_t)) // must be power of 2
136
137////////////////////////////////////////////////////////////////////////
138// CODE AREA
139////////////////////////////////////////////////////////////////////////
140
141// dirty inline func includes
142
143#include "reverb.c"
144#include "adsr.c"
145
146////////////////////////////////////////////////////////////////////////
147// helpers for simple interpolation
148
149//
150// easy interpolation on upsampling, no special filter, just "Pete's common sense" tm
151//
152// instead of having n equal sample values in a row like:
153// ____
154// |____
155//
156// we compare the current delta change with the next delta change.
157//
158// if curr_delta is positive,
159//
160// - and next delta is smaller (or changing direction):
161// \.
162// -__
163//
164// - and next delta significant (at least twice) bigger:
165// --_
166// \.
167//
168// - and next delta is nearly same:
169// \.
170// \.
171//
172//
173// if curr_delta is negative,
174//
175// - and next delta is smaller (or changing direction):
176// _--
177// /
178//
179// - and next delta significant (at least twice) bigger:
180// /
181// __-
182//
183// - and next delta is nearly same:
184// /
185// /
186//
187
188
189INLINE void InterpolateUp(int ch)
190{
191 if(s_chan[ch].SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass
192 {
193 const int id1=s_chan[ch].SB[30]-s_chan[ch].SB[29]; // curr delta to next val
194 const int id2=s_chan[ch].SB[31]-s_chan[ch].SB[30]; // and next delta to next-next val :)
195
196 s_chan[ch].SB[32]=0;
197
198 if(id1>0) // curr delta positive
199 {
200 if(id2<id1)
201 {s_chan[ch].SB[28]=id1;s_chan[ch].SB[32]=2;}
202 else
203 if(id2<(id1<<1))
204 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x10000L;
205 else
206 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x20000L;
207 }
208 else // curr delta negative
209 {
210 if(id2>id1)
211 {s_chan[ch].SB[28]=id1;s_chan[ch].SB[32]=2;}
212 else
213 if(id2>(id1<<1))
214 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x10000L;
215 else
216 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x20000L;
217 }
218 }
219 else
220 if(s_chan[ch].SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass
221 {
222 s_chan[ch].SB[32]=0;
223
224 s_chan[ch].SB[28]=(s_chan[ch].SB[28]*s_chan[ch].sinc)/0x20000L;
225 //if(s_chan[ch].sinc<=0x8000)
226 // s_chan[ch].SB[29]=s_chan[ch].SB[30]-(s_chan[ch].SB[28]*((0x10000/s_chan[ch].sinc)-1));
227 //else
228 s_chan[ch].SB[29]+=s_chan[ch].SB[28];
229 }
230 else // no flags? add bigger val (if possible), calc smaller step, set flag1
231 s_chan[ch].SB[29]+=s_chan[ch].SB[28];
232}
233
234//
235// even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm
236//
237
238INLINE void InterpolateDown(int ch)
239{
240 if(s_chan[ch].sinc>=0x20000L) // we would skip at least one val?
241 {
242 s_chan[ch].SB[29]+=(s_chan[ch].SB[30]-s_chan[ch].SB[29])/2; // add easy weight
243 if(s_chan[ch].sinc>=0x30000L) // we would skip even more vals?
244 s_chan[ch].SB[29]+=(s_chan[ch].SB[31]-s_chan[ch].SB[30])/2;// add additional next weight
245 }
246}
247
248////////////////////////////////////////////////////////////////////////
249// helpers for gauss interpolation
250
251#define gval0 (((short*)(&s_chan[ch].SB[29]))[gpos])
252#define gval(x) (((short*)(&s_chan[ch].SB[29]))[(gpos+x)&3])
253
254#include "gauss_i.h"
255
256////////////////////////////////////////////////////////////////////////
257
258#include "xa.c"
259
260////////////////////////////////////////////////////////////////////////
261// START SOUND... called by main thread to setup a new sound on a channel
262////////////////////////////////////////////////////////////////////////
263
264INLINE void StartSound(int ch)
265{
266 StartADSR(ch);
267 StartREVERB(ch);
268
269 // fussy timing issues - do in VoiceOn
270 //s_chan[ch].pCurr=s_chan[ch].pStart; // set sample start
271 //s_chan[ch].bStop=0;
272 //s_chan[ch].bOn=1;
273
274 s_chan[ch].SB[26]=0; // init mixing vars
275 s_chan[ch].SB[27]=0;
276 s_chan[ch].iSBPos=28;
277
278 s_chan[ch].SB[29]=0; // init our interpolation helpers
279 s_chan[ch].SB[30]=0;
280
281 if(iUseInterpolation>=2) // gauss interpolation?
282 {s_chan[ch].spos=0x30000L;s_chan[ch].SB[28]=0;} // -> start with more decoding
283 else {s_chan[ch].spos=0x10000L;s_chan[ch].SB[31]=0;} // -> no/simple interpolation starts with one 44100 decoding
284
285 dwNewChannel&=~(1<<ch); // clear new channel bit
286}
287
288////////////////////////////////////////////////////////////////////////
289// ALL KIND OF HELPERS
290////////////////////////////////////////////////////////////////////////
291
292INLINE int FModChangeFrequency(int ch,int ns)
293{
294 unsigned int NP=s_chan[ch].iRawPitch;
295 int sinc;
296
297 NP=((32768L+iFMod[ns])*NP)/32768L;
298
299 if(NP>0x3fff) NP=0x3fff;
300 if(NP<0x1) NP=0x1;
301
302 sinc=NP<<4; // calc frequency
303 if(iUseInterpolation==1) // freq change in simple interpolation mode
304 s_chan[ch].SB[32]=1;
305 iFMod[ns]=0;
306
307 return sinc;
308}
309
310////////////////////////////////////////////////////////////////////////
311
312INLINE void StoreInterpolationVal(int ch,int fa)
313{
314 if(s_chan[ch].bFMod==2) // fmod freq channel
315 s_chan[ch].SB[29]=fa;
316 else
317 {
318 ssat32_to_16(fa);
319
320 if(iUseInterpolation>=2) // gauss/cubic interpolation
321 {
322 int gpos = s_chan[ch].SB[28];
323 gval0 = fa;
324 gpos = (gpos+1) & 3;
325 s_chan[ch].SB[28] = gpos;
326 }
327 else
328 if(iUseInterpolation==1) // simple interpolation
329 {
330 s_chan[ch].SB[28] = 0;
331 s_chan[ch].SB[29] = s_chan[ch].SB[30]; // -> helpers for simple linear interpolation: delay real val for two slots, and calc the two deltas, for a 'look at the future behaviour'
332 s_chan[ch].SB[30] = s_chan[ch].SB[31];
333 s_chan[ch].SB[31] = fa;
334 s_chan[ch].SB[32] = 1; // -> flag: calc new interolation
335 }
336 else s_chan[ch].SB[29]=fa; // no interpolation
337 }
338}
339
340////////////////////////////////////////////////////////////////////////
341
342INLINE int iGetInterpolationVal(int ch, int spos)
343{
344 int fa;
345
346 if(s_chan[ch].bFMod==2) return s_chan[ch].SB[29];
347
348 switch(iUseInterpolation)
349 {
350 //--------------------------------------------------//
351 case 3: // cubic interpolation
352 {
353 long xd;int gpos;
354 xd = (spos >> 1)+1;
355 gpos = s_chan[ch].SB[28];
356
357 fa = gval(3) - 3*gval(2) + 3*gval(1) - gval0;
358 fa *= (xd - (2<<15)) / 6;
359 fa >>= 15;
360 fa += gval(2) - gval(1) - gval(1) + gval0;
361 fa *= (xd - (1<<15)) >> 1;
362 fa >>= 15;
363 fa += gval(1) - gval0;
364 fa *= xd;
365 fa >>= 15;
366 fa = fa + gval0;
367
368 } break;
369 //--------------------------------------------------//
370 case 2: // gauss interpolation
371 {
372 int vl, vr;int gpos;
373 vl = (spos >> 6) & ~3;
374 gpos = s_chan[ch].SB[28];
375 vr=(gauss[vl]*gval0)&~2047;
376 vr+=(gauss[vl+1]*gval(1))&~2047;
377 vr+=(gauss[vl+2]*gval(2))&~2047;
378 vr+=(gauss[vl+3]*gval(3))&~2047;
379 fa = vr>>11;
380 } break;
381 //--------------------------------------------------//
382 case 1: // simple interpolation
383 {
384 if(s_chan[ch].sinc<0x10000L) // -> upsampling?
385 InterpolateUp(ch); // --> interpolate up
386 else InterpolateDown(ch); // --> else down
387 fa=s_chan[ch].SB[29];
388 } break;
389 //--------------------------------------------------//
390 default: // no interpolation
391 {
392 fa=s_chan[ch].SB[29];
393 } break;
394 //--------------------------------------------------//
395 }
396
397 return fa;
398}
399
400static void do_irq(void)
401{
402 if(!(spuStat & STAT_IRQ))
403 {
404 spuStat |= STAT_IRQ;
405 if(irqCallback) irqCallback();
406 }
407}
408
409static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor)
410{
411 int nSample;
412 int fa, s_1, s_2, d, s;
413
414 s_1 = dest[27];
415 s_2 = dest[26];
416
417 for (nSample = 0; nSample < 28; src++)
418 {
419 d = (int)*src;
420 s = (int)(signed short)((d & 0x0f) << 12);
421
422 fa = s >> shift_factor;
423 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
424 s_2=s_1;s_1=fa;
425
426 dest[nSample++] = fa;
427
428 s = (int)(signed short)((d & 0xf0) << 8);
429 fa = s >> shift_factor;
430 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
431 s_2=s_1;s_1=fa;
432
433 dest[nSample++] = fa;
434 }
435}
436
437static int decode_block(int ch)
438{
439 unsigned char *start;
440 int predict_nr,shift_factor,flags;
441 int ret = 0;
442
443 start=s_chan[ch].pCurr; // set up the current pos
444 if(dwPendingChanOff&(1<<ch))
445 {
446 dwChannelOn&=~(1<<ch); // -> turn everything off
447 dwPendingChanOff&=~(1<<ch);
448 s_chan[ch].bStop=1;
449 s_chan[ch].ADSRX.EnvelopeVol=0;
450 }
451
452 //////////////////////////////////////////// irq check
453
454 if(spuCtrl&CTRL_IRQ)
455 {
456 if(pSpuIrq == start) // irq address reached?
457 {
458 do_irq(); // -> call main emu
459 ret = 1;
460 }
461 }
462
463 predict_nr=(int)start[0];
464 shift_factor=predict_nr&0xf;
465 predict_nr >>= 4;
466
467 decode_block_data(s_chan[ch].SB, start + 2, predict_nr, shift_factor);
468
469 //////////////////////////////////////////// flag handler
470
471 flags=(int)start[1];
472 if(flags&4)
473 s_chan[ch].pLoop=start; // loop adress
474
475 start+=16;
476 if(flags&1) // 1: stop/loop
477 {
478 if(!(flags&2))
479 dwPendingChanOff|=1<<ch;
480
481 start = s_chan[ch].pLoop;
482 }
483
484 if (start - spuMemC >= 0x80000) {
485 // most likely wrong
486 start = spuMemC;
487 printf("ch%d oflow\n", ch);
488 }
489
490 s_chan[ch].pCurr = start; // store values for next cycle
491 s_chan[ch].bJump = flags & 1;
492
493 return ret;
494}
495
496// do block, but ignore sample data
497static int skip_block(int ch)
498{
499 unsigned char *start = s_chan[ch].pCurr;
500 int flags = start[1];
501 int ret = 0;
502
503 if(start == pSpuIrq)
504 {
505 do_irq();
506 ret = 1;
507 }
508
509 if(flags & 4)
510 s_chan[ch].pLoop = start;
511
512 s_chan[ch].pCurr += 16;
513
514 if(flags & 1)
515 s_chan[ch].pCurr = s_chan[ch].pLoop;
516
517 s_chan[ch].bJump = flags & 1;
518 return ret;
519}
520
521#define make_do_samples(name, fmod_code, interp_start, interp1_code, interp2_code, interp_end) \
522static int do_samples_##name(int ch, int ns, int ns_to) \
523{ \
524 int sinc = s_chan[ch].sinc; \
525 int spos = s_chan[ch].spos; \
526 int sbpos = s_chan[ch].iSBPos; \
527 int *SB = s_chan[ch].SB; \
528 int ret = -1; \
529 int d, fa; \
530 interp_start; \
531 \
532 for (; ns < ns_to; ns++) \
533 { \
534 fmod_code; \
535 \
536 while (spos >= 0x10000) \
537 { \
538 if(sbpos == 28) \
539 { \
540 sbpos = 0; \
541 d = decode_block(ch); \
542 if(d && iSPUIRQWait) \
543 { \
544 ret = ns; \
545 goto out; \
546 } \
547 } \
548 \
549 fa = SB[sbpos++]; \
550 interp1_code; \
551 spos -= 0x10000; \
552 } \
553 \
554 interp2_code; \
555 spos += sinc; \
556 } \
557 \
558out: \
559 s_chan[ch].sinc = sinc; \
560 s_chan[ch].spos = spos; \
561 s_chan[ch].iSBPos = sbpos; \
562 interp_end; \
563 \
564 return ret; \
565}
566
567#define fmod_recv_check \
568 if(s_chan[ch].bFMod==1 && iFMod[ns]) \
569 sinc = FModChangeFrequency(ch,ns)
570
571make_do_samples(default, fmod_recv_check, ,
572 StoreInterpolationVal(ch, fa),
573 ChanBuf[ns] = iGetInterpolationVal(ch, spos), )
574make_do_samples(noint, , fa = s_chan[ch].SB[29], , ChanBuf[ns] = fa, s_chan[ch].SB[29] = fa)
575
576#define simple_interp_store \
577 s_chan[ch].SB[28] = 0; \
578 s_chan[ch].SB[29] = s_chan[ch].SB[30]; \
579 s_chan[ch].SB[30] = s_chan[ch].SB[31]; \
580 s_chan[ch].SB[31] = fa; \
581 s_chan[ch].SB[32] = 1
582
583#define simple_interp_get \
584 if(sinc<0x10000) /* -> upsampling? */ \
585 InterpolateUp(ch); /* --> interpolate up */ \
586 else InterpolateDown(ch); /* --> else down */ \
587 ChanBuf[ns] = s_chan[ch].SB[29]
588
589make_do_samples(simple, , ,
590 simple_interp_store, simple_interp_get, )
591
592static int do_samples_noise(int ch, int ns, int ns_to)
593{
594 int level, shift, bit;
595
596 s_chan[ch].spos += s_chan[ch].sinc * (ns_to - ns);
597 while (s_chan[ch].spos >= 28*0x10000)
598 {
599 skip_block(ch);
600 s_chan[ch].spos -= 28*0x10000;
601 }
602
603 // modified from DrHell/shalma, no fraction
604 level = (spuCtrl >> 10) & 0x0f;
605 level = 0x8000 >> level;
606
607 for (; ns < ns_to; ns++)
608 {
609 dwNoiseCount += 2;
610 if (dwNoiseCount >= level)
611 {
612 dwNoiseCount -= level;
613 shift = (dwNoiseVal >> 10) & 0x1f;
614 bit = (0x69696969 >> shift) & 1;
615 if (dwNoiseVal & 0x8000)
616 bit ^= 1;
617 dwNoiseVal = (dwNoiseVal << 1) | bit;
618 }
619
620 ChanBuf[ns] = (signed short)dwNoiseVal;
621 }
622
623 return -1;
624}
625
626#ifdef __arm__
627// asm code; lv and rv must be 0-3fff
628extern void mix_chan(int start, int count, int lv, int rv);
629extern void mix_chan_rvb(int start, int count, int lv, int rv);
630#else
631static void mix_chan(int start, int count, int lv, int rv)
632{
633 int *dst = SSumLR + start * 2;
634 const int *src = ChanBuf + start;
635 int l, r;
636
637 while (count--)
638 {
639 int sval = *src++;
640
641 l = (sval * lv) >> 14;
642 r = (sval * rv) >> 14;
643 *dst++ += l;
644 *dst++ += r;
645 }
646}
647
648static void mix_chan_rvb(int start, int count, int lv, int rv)
649{
650 int *dst = SSumLR + start * 2;
651 int *drvb = sRVBStart + start * 2;
652 const int *src = ChanBuf + start;
653 int l, r;
654
655 while (count--)
656 {
657 int sval = *src++;
658
659 l = (sval * lv) >> 14;
660 r = (sval * rv) >> 14;
661 *dst++ += l;
662 *dst++ += r;
663 *drvb++ += l;
664 *drvb++ += r;
665 }
666}
667#endif
668
669////////////////////////////////////////////////////////////////////////
670// MAIN SPU FUNCTION
671// here is the main job handler... thread, timer or direct func call
672// basically the whole sound processing is done in this fat func!
673////////////////////////////////////////////////////////////////////////
674
675// 5 ms waiting phase, if buffer is full and no new sound has to get started
676// .. can be made smaller (smallest val: 1 ms), but bigger waits give
677// better performance
678
679#define PAUSE_W 5
680#define PAUSE_L 5000
681
682////////////////////////////////////////////////////////////////////////
683
684static void *MAINThread(void *arg)
685{
686 int volmult = iVolume;
687 int ns,ns_from,ns_to;
688 int ch,d,silentch;
689 int bIRQReturn=0;
690
691 while(!bEndThread) // until we are shutting down
692 {
693 // ok, at the beginning we are looking if there is
694 // enuff free place in the dsound/oss buffer to
695 // fill in new data, or if there is a new channel to start.
696 // if not, we wait (thread) or return (timer/spuasync)
697 // until enuff free place is available/a new channel gets
698 // started
699
700 if(dwNewChannel) // new channel should start immedately?
701 { // (at least one bit 0 ... MAXCHANNEL is set?)
702 iSecureStart++; // -> set iSecure
703 if(iSecureStart>5) iSecureStart=0; // (if it is set 5 times - that means on 5 tries a new samples has been started - in a row, we will reset it, to give the sound update a chance)
704 }
705 else iSecureStart=0; // 0: no new channel should start
706
707 while(!iSecureStart && !bEndThread && // no new start? no thread end?
708 (SoundGetBytesBuffered()>TESTSIZE)) // and still enuff data in sound buffer?
709 {
710 iSecureStart=0; // reset secure
711
712 if(iUseTimer) return 0; // linux no-thread mode? bye
713 usleep(PAUSE_L); // else sleep for x ms (linux)
714
715 if(dwNewChannel) iSecureStart=1; // if a new channel kicks in (or, of course, sound buffer runs low), we will leave the loop
716 }
717
718 //--------------------------------------------------// continue from irq handling in timer mode?
719
720 ns_from=0;
721 ns_to=NSSIZE;
722 ch=0;
723 if(lastch>=0) // will be -1 if no continue is pending
724 {
725 ch=lastch; ns_from=lastns; lastch=-1; // -> setup all kind of vars to continue
726 }
727
728 silentch=~(dwChannelOn|dwNewChannel);
729
730 //--------------------------------------------------//
731 //- main channel loop -//
732 //--------------------------------------------------//
733 {
734 for(;ch<MAXCHAN;ch++) // loop em all... we will collect 1 ms of sound of each playing channel
735 {
736 if(dwNewChannel&(1<<ch)) StartSound(ch); // start new sound
737 if(!(dwChannelOn&(1<<ch))) continue; // channel not playing? next
738
739 if(s_chan[ch].bNoise)
740 d=do_samples_noise(ch, ns_from, ns_to);
741 else if(s_chan[ch].bFMod==2 || (s_chan[ch].bFMod==0 && iUseInterpolation==0))
742 d=do_samples_noint(ch, ns_from, ns_to);
743 else if(s_chan[ch].bFMod==0 && iUseInterpolation==1)
744 d=do_samples_simple(ch, ns_from, ns_to);
745 else
746 d=do_samples_default(ch, ns_from, ns_to);
747 if(d>=0)
748 {
749 bIRQReturn=1;
750 lastch=ch;
751 lastns=ns_to=d;
752 if(d==0)
753 break;
754 }
755
756 MixADSR(ch, ns_from, ns_to);
757
758 if(s_chan[ch].bFMod==2) // fmod freq channel
759 memcpy(iFMod, ChanBuf, sizeof(iFMod));
760 else if(s_chan[ch].bRVBActive)
761 mix_chan_rvb(ns_from,ns_to-ns_from,s_chan[ch].iLeftVolume,s_chan[ch].iRightVolume);
762 else
763 mix_chan(ns_from,ns_to-ns_from,s_chan[ch].iLeftVolume,s_chan[ch].iRightVolume);
764 }
765 }
766
767 // advance "stopped" channels that can cause irqs
768 // (all chans are always playing on the real thing..)
769 if(!bIRQReturn && (spuCtrl&CTRL_IRQ))
770 for(ch=0;ch<MAXCHAN;ch++)
771 {
772 if(!(silentch&(1<<ch))) continue; // already handled
773 if(dwChannelDead&(1<<ch)) continue;
774 if(s_chan[ch].pCurr > pSpuIrq && s_chan[ch].pLoop > pSpuIrq)
775 continue;
776
777 s_chan[ch].spos += s_chan[ch].sinc * NSSIZE;
778 while(s_chan[ch].spos >= 28 * 0x10000)
779 {
780 unsigned char *start = s_chan[ch].pCurr;
781
782 // no need for bIRQReturn since the channel is silent
783 iSpuAsyncWait |= skip_block(ch);
784 if(start == s_chan[ch].pCurr)
785 {
786 // looping on self
787 dwChannelDead |= 1<<ch;
788 s_chan[ch].spos = 0;
789 break;
790 }
791
792 s_chan[ch].spos -= 28 * 0x10000;
793 }
794 }
795
796 if(bIRQReturn && iSPUIRQWait) // special return for "spu irq - wait for cpu action"
797 {
798 iSpuAsyncWait=1;
799 bIRQReturn=0;
800 if(iUseTimer!=2)
801 {
802 DWORD dwWatchTime=timeGetTime_spu()+2500;
803
804 while(iSpuAsyncWait && !bEndThread &&
805 timeGetTime_spu()<dwWatchTime)
806 usleep(1000L);
807 continue;
808 }
809 else
810 {
811 return 0;
812 }
813 }
814
815
816 //---------------------------------------------------//
817 //- here we have another 1 ms of sound data
818 //---------------------------------------------------//
819 // mix XA infos (if any)
820
821 MixXA();
822
823 ///////////////////////////////////////////////////////
824 // mix all channels (including reverb) into one buffer
825
826 if(iUseReverb)
827 REVERBDo();
828
829 if((spuCtrl&0x4000)==0) // muted? (rare, don't optimize for this)
830 {
831 memset(pS, 0, NSSIZE * 2 * sizeof(pS[0]));
832 pS += NSSIZE*2;
833 }
834 else
835 for (ns = 0; ns < NSSIZE*2; )
836 {
837 d = SSumLR[ns]; SSumLR[ns] = 0;
838 d = d * volmult >> 10;
839 ssat32_to_16(d);
840 *pS++ = d;
841 ns++;
842
843 d = SSumLR[ns]; SSumLR[ns] = 0;
844 d = d * volmult >> 10;
845 ssat32_to_16(d);
846 *pS++ = d;
847 ns++;
848 }
849
850 //////////////////////////////////////////////////////
851 // special irq handling in the decode buffers (0x0000-0x1000)
852 // we know:
853 // the decode buffers are located in spu memory in the following way:
854 // 0x0000-0x03ff CD audio left
855 // 0x0400-0x07ff CD audio right
856 // 0x0800-0x0bff Voice 1
857 // 0x0c00-0x0fff Voice 3
858 // and decoded data is 16 bit for one sample
859 // we assume:
860 // even if voices 1/3 are off or no cd audio is playing, the internal
861 // play positions will move on and wrap after 0x400 bytes.
862 // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and
863 // increase this pointer on each sample by 2 bytes. If this pointer
864 // (or 0x400 offsets of this pointer) hits the spuirq address, we generate
865 // an IRQ. Only problem: the "wait for cpu" option is kinda hard to do here
866 // in some of Peops timer modes. So: we ignore this option here (for now).
867
868 if(pMixIrq)
869 {
870 for(ns=0;ns<NSSIZE;ns++)
871 {
872 if((spuCtrl&0x40) && pSpuIrq && pSpuIrq<spuMemC+0x1000)
873 {
874 for(ch=0;ch<4;ch++)
875 {
876 if(pSpuIrq>=pMixIrq+(ch*0x400) && pSpuIrq<pMixIrq+(ch*0x400)+2)
877 do_irq();
878 }
879 }
880 pMixIrq+=2;if(pMixIrq>spuMemC+0x3ff) pMixIrq=spuMemC;
881 }
882 }
883
884 InitREVERB();
885
886 // feed the sound
887 // wanna have around 1/60 sec (16.666 ms) updates
888 if (iCycle++ > 16/FRAG_MSECS)
889 {
890 SoundFeedStreamData((unsigned char *)pSpuBuffer,
891 ((unsigned char *)pS) - ((unsigned char *)pSpuBuffer));
892 pS = (short *)pSpuBuffer;
893 iCycle = 0;
894 }
895 }
896
897 // end of big main loop...
898
899 bThreadEnded = 1;
900
901 return 0;
902}
903
904// SPU ASYNC... even newer epsxe func
905// 1 time every 'cycle' cycles... harhar
906
907// rearmed: called every 2ms now
908
909void CALLBACK SPUasync(unsigned long cycle)
910{
911 if(iSpuAsyncWait)
912 {
913 iSpuAsyncWait++;
914 if(iSpuAsyncWait<=16/2) return;
915 iSpuAsyncWait=0;
916 }
917
918 if(iUseTimer==2) // special mode, only used in Linux by this spu (or if you enable the experimental Windows mode)
919 {
920 if(!bSpuInit) return; // -> no init, no call
921
922 MAINThread(0); // -> linux high-compat mode
923
924 // abuse iSpuAsyncWait mechanism to reduce calls to above function
925 // to make it do larger chunks
926 // note: doing it less often than once per frame causes skips
927 iSpuAsyncWait=1;
928 }
929}
930
931// SPU UPDATE... new epsxe func
932// 1 time every 32 hsync lines
933// (312/32)x50 in pal
934// (262/32)x60 in ntsc
935
936// since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will
937// leave that func in the linux port, until epsxe linux is using
938// the async function as well
939
940void CALLBACK SPUupdate(void)
941{
942 SPUasync(0);
943}
944
945// XA AUDIO
946
947void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap)
948{
949 if(!xap) return;
950 if(!xap->freq) return; // no xa freq ? bye
951
952 FeedXA(xap); // call main XA feeder
953}
954
955// CDDA AUDIO
956int CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes)
957{
958 if (!pcm) return -1;
959 if (nbytes<=0) return -1;
960
961 return FeedCDDA((unsigned char *)pcm, nbytes);
962}
963
964// SETUPTIMER: init of certain buffers and threads/timers
965void SetupTimer(void)
966{
967 memset(SSumLR,0,sizeof(SSumLR)); // init some mixing buffers
968 memset(iFMod,0,NSSIZE*sizeof(int));
969 pS=(short *)pSpuBuffer; // setup soundbuffer pointer
970
971 bEndThread=0; // init thread vars
972 bThreadEnded=0;
973 bSpuInit=1; // flag: we are inited
974
975 if(!iUseTimer) // linux: use thread
976 {
977 pthread_create(&thread, NULL, MAINThread, NULL);
978 }
979}
980
981// REMOVETIMER: kill threads/timers
982void RemoveTimer(void)
983{
984 bEndThread=1; // raise flag to end thread
985
986 if(!iUseTimer) // linux tread?
987 {
988 int i=0;
989 while(!bThreadEnded && i<2000) {usleep(1000L);i++;} // -> wait until thread has ended
990 if(thread!=(pthread_t)-1) {pthread_cancel(thread);thread=(pthread_t)-1;} // -> cancel thread anyway
991 }
992
993 bThreadEnded=0; // no more spu is running
994 bSpuInit=0;
995}
996
997// SETUPSTREAMS: init most of the spu buffers
998void SetupStreams(void)
999{
1000 int i;
1001
1002 pSpuBuffer=(unsigned char *)malloc(32768); // alloc mixing buffer
1003
1004 if(iUseReverb==1) i=88200*2;
1005 else i=NSSIZE*2;
1006
1007 sRVBStart = (int *)malloc(i*4); // alloc reverb buffer
1008 memset(sRVBStart,0,i*4);
1009 sRVBEnd = sRVBStart + i;
1010 sRVBPlay = sRVBStart;
1011
1012 XAStart = // alloc xa buffer
1013 (uint32_t *)malloc(44100 * sizeof(uint32_t));
1014 XAEnd = XAStart + 44100;
1015 XAPlay = XAStart;
1016 XAFeed = XAStart;
1017
1018 CDDAStart = // alloc cdda buffer
1019 (uint32_t *)malloc(CDDA_BUFFER_SIZE);
1020 CDDAEnd = CDDAStart + 16384;
1021 CDDAPlay = CDDAStart;
1022 CDDAFeed = CDDAStart;
1023
1024 for(i=0;i<MAXCHAN;i++) // loop sound channels
1025 {
1026// we don't use mutex sync... not needed, would only
1027// slow us down:
1028// s_chan[i].hMutex=CreateMutex(NULL,FALSE,NULL);
1029 s_chan[i].ADSRX.SustainLevel = 0xf; // -> init sustain
1030 s_chan[i].pLoop=spuMemC;
1031 s_chan[i].pCurr=spuMemC;
1032 }
1033
1034 pMixIrq=spuMemC; // enable decoded buffer irqs by setting the address
1035}
1036
1037// REMOVESTREAMS: free most buffer
1038void RemoveStreams(void)
1039{
1040 free(pSpuBuffer); // free mixing buffer
1041 pSpuBuffer = NULL;
1042 free(sRVBStart); // free reverb buffer
1043 sRVBStart = NULL;
1044 free(XAStart); // free XA buffer
1045 XAStart = NULL;
1046 free(CDDAStart); // free CDDA buffer
1047 CDDAStart = NULL;
1048}
1049
1050// INIT/EXIT STUFF
1051
1052// SPUINIT: this func will be called first by the main emu
1053long CALLBACK SPUinit(void)
1054{
1055 spuMemC = (unsigned char *)spuMem; // just small setup
1056 memset((void *)&rvb, 0, sizeof(REVERBInfo));
1057 InitADSR();
1058
1059 spuIrq = 0;
1060 spuAddr = 0xffffffff;
1061 bEndThread = 0;
1062 bThreadEnded = 0;
1063 spuMemC = (unsigned char *)spuMem;
1064 pMixIrq = 0;
1065 memset((void *)s_chan, 0, (MAXCHAN + 1) * sizeof(SPUCHAN));
1066 pSpuIrq = 0;
1067 //iSPUIRQWait = 0;
1068 lastch = -1;
1069
1070 //ReadConfigSPU(); // read user stuff
1071 SetupStreams(); // prepare streaming
1072
1073 return 0;
1074}
1075
1076// SPUOPEN: called by main emu after init
1077long CALLBACK SPUopen(void)
1078{
1079 if (bSPUIsOpen) return 0; // security for some stupid main emus
1080
1081 SetupSound(); // setup sound (before init!)
1082 SetupTimer(); // timer for feeding data
1083
1084 bSPUIsOpen = 1;
1085
1086 return PSE_SPU_ERR_SUCCESS;
1087}
1088
1089// SPUCLOSE: called before shutdown
1090long CALLBACK SPUclose(void)
1091{
1092 if (!bSPUIsOpen) return 0; // some security
1093
1094 bSPUIsOpen = 0; // no more open
1095
1096 RemoveTimer(); // no more feeding
1097 RemoveSound(); // no more sound handling
1098
1099 return 0;
1100}
1101
1102// SPUSHUTDOWN: called by main emu on final exit
1103long CALLBACK SPUshutdown(void)
1104{
1105 SPUclose();
1106 RemoveStreams(); // no more streaming
1107
1108 return 0;
1109}
1110
1111// SPUTEST: we don't test, we are always fine ;)
1112long CALLBACK SPUtest(void)
1113{
1114 return 0;
1115}
1116
1117// SPUCONFIGURE: call config dialog
1118long CALLBACK SPUconfigure(void)
1119{
1120#ifdef _MACOSX
1121 DoConfiguration();
1122#else
1123// StartCfgTool("CFG");
1124#endif
1125 return 0;
1126}
1127
1128// SPUABOUT: show about window
1129void CALLBACK SPUabout(void)
1130{
1131#ifdef _MACOSX
1132 DoAbout();
1133#else
1134// StartCfgTool("ABOUT");
1135#endif
1136}
1137
1138// SETUP CALLBACKS
1139// this functions will be called once,
1140// passes a callback that should be called on SPU-IRQ/cdda volume change
1141void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void))
1142{
1143 irqCallback = callback;
1144}
1145
1146void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(unsigned short,unsigned short))
1147{
1148 cddavCallback = CDDAVcallback;
1149}
1150
1151// COMMON PLUGIN INFO FUNCS
1152/*
1153char * CALLBACK PSEgetLibName(void)
1154{
1155 return _(libraryName);
1156}
1157
1158unsigned long CALLBACK PSEgetLibType(void)
1159{
1160 return PSE_LT_SPU;
1161}
1162
1163unsigned long CALLBACK PSEgetLibVersion(void)
1164{
1165 return (1 << 16) | (6 << 8);
1166}
1167
1168char * SPUgetLibInfos(void)
1169{
1170 return _(libraryInfo);
1171}
1172*/
1173
1174// debug
1175void spu_get_debug_info(int *chans_out, int *run_chans, int *fmod_chans_out, int *noise_chans_out)
1176{
1177 int ch = 0, fmod_chans = 0, noise_chans = 0, irq_chans = 0;
1178
1179 for(;ch<MAXCHAN;ch++)
1180 {
1181 if (!(dwChannelOn & (1<<ch)))
1182 continue;
1183 if (s_chan[ch].bFMod == 2)
1184 fmod_chans |= 1 << ch;
1185 if (s_chan[ch].bNoise)
1186 noise_chans |= 1 << ch;
1187 if((spuCtrl&CTRL_IRQ) && s_chan[ch].pCurr <= pSpuIrq && s_chan[ch].pLoop <= pSpuIrq)
1188 irq_chans |= 1 << ch;
1189 }
1190
1191 *chans_out = dwChannelOn;
1192 *run_chans = ~dwChannelOn & ~dwChannelDead & irq_chans;
1193 *fmod_chans_out = fmod_chans;
1194 *noise_chans_out = noise_chans;
1195}
1196
1197// vim:shiftwidth=1:expandtab