spu: some cdda/xa reverb support
[pcsx_rearmed.git] / plugins / dfsound / spu.c
... / ...
CommitLineData
1/***************************************************************************
2 spu.c - description
3 -------------------
4 begin : Wed May 15 2002
5 copyright : (C) 2002 by Pete Bernert
6 email : BlackDove@addcom.de
7
8 Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2012,2014,2015
9
10 ***************************************************************************/
11/***************************************************************************
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. See also the license.txt file for *
17 * additional informations. *
18 * *
19 ***************************************************************************/
20
21#include "stdafx.h"
22
23#define _IN_SPU
24
25#include "externals.h"
26#include "registers.h"
27#include "out.h"
28#include "spu_config.h"
29
30#ifdef __arm__
31#include "arm_features.h"
32#endif
33
34#ifdef HAVE_ARMV7
35 #define ssat32_to_16(v) \
36 asm("ssat %0,#16,%1" : "=r" (v) : "r" (v))
37#else
38 #define ssat32_to_16(v) do { \
39 if (v < -32768) v = -32768; \
40 else if (v > 32767) v = 32767; \
41 } while (0)
42#endif
43
44#define PSXCLK 33868800 /* 33.8688 MHz */
45
46// intended to be ~1 frame
47#define IRQ_NEAR_BLOCKS 32
48
49/*
50#if defined (USEMACOSX)
51static char * libraryName = N_("Mac OS X Sound");
52#elif defined (USEALSA)
53static char * libraryName = N_("ALSA Sound");
54#elif defined (USEOSS)
55static char * libraryName = N_("OSS Sound");
56#elif defined (USESDL)
57static char * libraryName = N_("SDL Sound");
58#elif defined (USEPULSEAUDIO)
59static char * libraryName = N_("PulseAudio Sound");
60#else
61static char * libraryName = N_("NULL Sound");
62#endif
63
64static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n");
65*/
66
67// globals
68
69SPUInfo spu;
70SPUConfig spu_config;
71
72static int iFMod[NSSIZE];
73static int RVB[NSSIZE * 2];
74int ChanBuf[NSSIZE];
75
76#define CDDA_BUFFER_SIZE (16384 * sizeof(uint32_t)) // must be power of 2
77
78////////////////////////////////////////////////////////////////////////
79// CODE AREA
80////////////////////////////////////////////////////////////////////////
81
82// dirty inline func includes
83
84#include "reverb.c"
85#include "adsr.c"
86
87////////////////////////////////////////////////////////////////////////
88// helpers for simple interpolation
89
90//
91// easy interpolation on upsampling, no special filter, just "Pete's common sense" tm
92//
93// instead of having n equal sample values in a row like:
94// ____
95// |____
96//
97// we compare the current delta change with the next delta change.
98//
99// if curr_delta is positive,
100//
101// - and next delta is smaller (or changing direction):
102// \.
103// -__
104//
105// - and next delta significant (at least twice) bigger:
106// --_
107// \.
108//
109// - and next delta is nearly same:
110// \.
111// \.
112//
113//
114// if curr_delta is negative,
115//
116// - and next delta is smaller (or changing direction):
117// _--
118// /
119//
120// - and next delta significant (at least twice) bigger:
121// /
122// __-
123//
124// - and next delta is nearly same:
125// /
126// /
127//
128
129static void InterpolateUp(int *SB, int sinc)
130{
131 if(SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass
132 {
133 const int id1=SB[30]-SB[29]; // curr delta to next val
134 const int id2=SB[31]-SB[30]; // and next delta to next-next val :)
135
136 SB[32]=0;
137
138 if(id1>0) // curr delta positive
139 {
140 if(id2<id1)
141 {SB[28]=id1;SB[32]=2;}
142 else
143 if(id2<(id1<<1))
144 SB[28]=(id1*sinc)>>16;
145 else
146 SB[28]=(id1*sinc)>>17;
147 }
148 else // curr delta negative
149 {
150 if(id2>id1)
151 {SB[28]=id1;SB[32]=2;}
152 else
153 if(id2>(id1<<1))
154 SB[28]=(id1*sinc)>>16;
155 else
156 SB[28]=(id1*sinc)>>17;
157 }
158 }
159 else
160 if(SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass
161 {
162 SB[32]=0;
163
164 SB[28]=(SB[28]*sinc)>>17;
165 //if(sinc<=0x8000)
166 // SB[29]=SB[30]-(SB[28]*((0x10000/sinc)-1));
167 //else
168 SB[29]+=SB[28];
169 }
170 else // no flags? add bigger val (if possible), calc smaller step, set flag1
171 SB[29]+=SB[28];
172}
173
174//
175// even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm
176//
177
178static void InterpolateDown(int *SB, int sinc)
179{
180 if(sinc>=0x20000L) // we would skip at least one val?
181 {
182 SB[29]+=(SB[30]-SB[29])/2; // add easy weight
183 if(sinc>=0x30000L) // we would skip even more vals?
184 SB[29]+=(SB[31]-SB[30])/2; // add additional next weight
185 }
186}
187
188////////////////////////////////////////////////////////////////////////
189// helpers for gauss interpolation
190
191#define gval0 (((short*)(&SB[29]))[gpos&3])
192#define gval(x) ((int)((short*)(&SB[29]))[(gpos+x)&3])
193
194#include "gauss_i.h"
195
196////////////////////////////////////////////////////////////////////////
197
198#include "xa.c"
199
200static void do_irq(void)
201{
202 //if(!(spu.spuStat & STAT_IRQ))
203 {
204 spu.spuStat |= STAT_IRQ; // asserted status?
205 if(spu.irqCallback) spu.irqCallback();
206 }
207}
208
209static int check_irq(int ch, unsigned char *pos)
210{
211 if((spu.spuCtrl & (CTRL_ON|CTRL_IRQ)) == (CTRL_ON|CTRL_IRQ) && pos == spu.pSpuIrq)
212 {
213 //printf("ch%d irq %04x\n", ch, pos - spu.spuMemC);
214 do_irq();
215 return 1;
216 }
217 return 0;
218}
219
220void check_irq_io(unsigned int addr)
221{
222 unsigned int irq_addr = regAreaGet(H_SPUirqAddr) << 3;
223 //addr &= ~7; // ?
224 if((spu.spuCtrl & (CTRL_ON|CTRL_IRQ)) == (CTRL_ON|CTRL_IRQ) && addr == irq_addr)
225 {
226 //printf("io irq %04x\n", irq_addr);
227 do_irq();
228 }
229}
230
231////////////////////////////////////////////////////////////////////////
232// START SOUND... called by main thread to setup a new sound on a channel
233////////////////////////////////////////////////////////////////////////
234
235static void StartSoundSB(int *SB)
236{
237 SB[26]=0; // init mixing vars
238 SB[27]=0;
239
240 SB[28]=0;
241 SB[29]=0; // init our interpolation helpers
242 SB[30]=0;
243 SB[31]=0;
244}
245
246static void StartSoundMain(int ch)
247{
248 SPUCHAN *s_chan = &spu.s_chan[ch];
249
250 StartADSR(ch);
251 StartREVERB(ch);
252
253 s_chan->prevflags=2;
254 s_chan->iSBPos=27;
255 s_chan->spos=0;
256
257 s_chan->pCurr = spu.spuMemC + ((regAreaGetCh(ch, 6) & ~1) << 3);
258
259 spu.dwNewChannel&=~(1<<ch); // clear new channel bit
260 spu.dwChannelDead&=~(1<<ch);
261 spu.dwChannelsAudible|=1<<ch;
262}
263
264static void StartSound(int ch)
265{
266 StartSoundMain(ch);
267 StartSoundSB(spu.SB + ch * SB_SIZE);
268}
269
270////////////////////////////////////////////////////////////////////////
271// ALL KIND OF HELPERS
272////////////////////////////////////////////////////////////////////////
273
274INLINE int FModChangeFrequency(int *SB, int pitch, int ns)
275{
276 unsigned int NP=pitch;
277 int sinc;
278
279 NP=((32768L+iFMod[ns])*NP)>>15;
280
281 if(NP>0x3fff) NP=0x3fff;
282 if(NP<0x1) NP=0x1;
283
284 sinc=NP<<4; // calc frequency
285 iFMod[ns]=0;
286 SB[32]=1; // reset interpolation
287
288 return sinc;
289}
290
291////////////////////////////////////////////////////////////////////////
292
293INLINE void StoreInterpolationVal(int *SB, int sinc, int fa, int fmod_freq)
294{
295 if(fmod_freq) // fmod freq channel
296 SB[29]=fa;
297 else
298 {
299 ssat32_to_16(fa);
300
301 if(spu_config.iUseInterpolation>=2) // gauss/cubic interpolation
302 {
303 int gpos = SB[28];
304 gval0 = fa;
305 gpos = (gpos+1) & 3;
306 SB[28] = gpos;
307 }
308 else
309 if(spu_config.iUseInterpolation==1) // simple interpolation
310 {
311 SB[28] = 0;
312 SB[29] = SB[30]; // -> helpers for simple linear interpolation: delay real val for two slots, and calc the two deltas, for a 'look at the future behaviour'
313 SB[30] = SB[31];
314 SB[31] = fa;
315 SB[32] = 1; // -> flag: calc new interolation
316 }
317 else SB[29]=fa; // no interpolation
318 }
319}
320
321////////////////////////////////////////////////////////////////////////
322
323INLINE int iGetInterpolationVal(int *SB, int sinc, int spos, int fmod_freq)
324{
325 int fa;
326
327 if(fmod_freq) return SB[29];
328
329 switch(spu_config.iUseInterpolation)
330 {
331 //--------------------------------------------------//
332 case 3: // cubic interpolation
333 {
334 long xd;int gpos;
335 xd = (spos >> 1)+1;
336 gpos = SB[28];
337
338 fa = gval(3) - 3*gval(2) + 3*gval(1) - gval0;
339 fa *= (xd - (2<<15)) / 6;
340 fa >>= 15;
341 fa += gval(2) - gval(1) - gval(1) + gval0;
342 fa *= (xd - (1<<15)) >> 1;
343 fa >>= 15;
344 fa += gval(1) - gval0;
345 fa *= xd;
346 fa >>= 15;
347 fa = fa + gval0;
348
349 } break;
350 //--------------------------------------------------//
351 case 2: // gauss interpolation
352 {
353 int vl, vr;int gpos;
354 vl = (spos >> 6) & ~3;
355 gpos = SB[28];
356 vr=(gauss[vl]*(int)gval0) >> 15;
357 vr+=(gauss[vl+1]*gval(1)) >> 15;
358 vr+=(gauss[vl+2]*gval(2)) >> 15;
359 vr+=(gauss[vl+3]*gval(3)) >> 15;
360 fa = vr;
361 } break;
362 //--------------------------------------------------//
363 case 1: // simple interpolation
364 {
365 if(sinc<0x10000L) // -> upsampling?
366 InterpolateUp(SB, sinc); // --> interpolate up
367 else InterpolateDown(SB, sinc); // --> else down
368 fa=SB[29];
369 } break;
370 //--------------------------------------------------//
371 default: // no interpolation
372 {
373 fa=SB[29];
374 } break;
375 //--------------------------------------------------//
376 }
377
378 return fa;
379}
380
381static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor)
382{
383 static const int f[16][2] = {
384 { 0, 0 },
385 { 60, 0 },
386 { 115, -52 },
387 { 98, -55 },
388 { 122, -60 }
389 };
390 int nSample;
391 int fa, s_1, s_2, d, s;
392
393 s_1 = dest[27];
394 s_2 = dest[26];
395
396 for (nSample = 0; nSample < 28; src++)
397 {
398 d = (int)*src;
399 s = (int)(signed short)((d & 0x0f) << 12);
400
401 fa = s >> shift_factor;
402 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
403 s_2=s_1;s_1=fa;
404
405 dest[nSample++] = fa;
406
407 s = (int)(signed short)((d & 0xf0) << 8);
408 fa = s >> shift_factor;
409 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
410 s_2=s_1;s_1=fa;
411
412 dest[nSample++] = fa;
413 }
414}
415
416static int decode_block(void *unused, int ch, int *SB)
417{
418 SPUCHAN *s_chan = &spu.s_chan[ch];
419 unsigned char *start;
420 int predict_nr, shift_factor, flags;
421 int ret = 0;
422
423 start = s_chan->pCurr; // set up the current pos
424 if (start == spu.spuMemC) // ?
425 ret = 1;
426
427 if (s_chan->prevflags & 1) // 1: stop/loop
428 {
429 if (!(s_chan->prevflags & 2))
430 ret = 1;
431
432 start = s_chan->pLoop;
433 }
434
435 check_irq(ch, start);
436
437 predict_nr = start[0];
438 shift_factor = predict_nr & 0xf;
439 predict_nr >>= 4;
440
441 decode_block_data(SB, start + 2, predict_nr, shift_factor);
442
443 flags = start[1];
444 if (flags & 4 && !s_chan->bIgnoreLoop)
445 s_chan->pLoop = start; // loop adress
446
447 start += 16;
448
449 s_chan->pCurr = start; // store values for next cycle
450 s_chan->prevflags = flags;
451
452 return ret;
453}
454
455// do block, but ignore sample data
456static int skip_block(int ch)
457{
458 SPUCHAN *s_chan = &spu.s_chan[ch];
459 unsigned char *start = s_chan->pCurr;
460 int flags;
461 int ret = 0;
462
463 if (s_chan->prevflags & 1) {
464 if (!(s_chan->prevflags & 2))
465 ret = 1;
466
467 start = s_chan->pLoop;
468 }
469
470 check_irq(ch, start);
471
472 flags = start[1];
473 if (flags & 4 && !s_chan->bIgnoreLoop)
474 s_chan->pLoop = start;
475
476 start += 16;
477
478 s_chan->pCurr = start;
479 s_chan->prevflags = flags;
480
481 return ret;
482}
483
484// if irq is going to trigger sooner than in upd_samples, set upd_samples
485static void scan_for_irq(int ch, unsigned int *upd_samples)
486{
487 SPUCHAN *s_chan = &spu.s_chan[ch];
488 int pos, sinc, sinc_inv, end;
489 unsigned char *block;
490 int flags;
491
492 block = s_chan->pCurr;
493 pos = s_chan->spos;
494 sinc = s_chan->sinc;
495 end = pos + *upd_samples * sinc;
496
497 pos += (28 - s_chan->iSBPos) << 16;
498 while (pos < end)
499 {
500 if (block == spu.pSpuIrq)
501 break;
502 flags = block[1];
503 block += 16;
504 if (flags & 1) { // 1: stop/loop
505 block = s_chan->pLoop;
506 }
507 pos += 28 << 16;
508 }
509
510 if (pos < end)
511 {
512 sinc_inv = s_chan->sinc_inv;
513 if (sinc_inv == 0)
514 sinc_inv = s_chan->sinc_inv = (0x80000000u / (uint32_t)sinc) << 1;
515
516 pos -= s_chan->spos;
517 *upd_samples = (((uint64_t)pos * sinc_inv) >> 32) + 1;
518 //xprintf("ch%02d: irq sched: %3d %03d\n",
519 // ch, *upd_samples, *upd_samples * 60 * 263 / 44100);
520 }
521}
522
523#define make_do_samples(name, fmod_code, interp_start, interp1_code, interp2_code, interp_end) \
524static noinline int do_samples_##name( \
525 int (*decode_f)(void *context, int ch, int *SB), void *ctx, \
526 int ch, int ns_to, int *SB, int sinc, int *spos, int *sbpos) \
527{ \
528 int ns, d, fa; \
529 int ret = ns_to; \
530 interp_start; \
531 \
532 for (ns = 0; ns < ns_to; ns++) \
533 { \
534 fmod_code; \
535 \
536 *spos += sinc; \
537 while (*spos >= 0x10000) \
538 { \
539 fa = SB[(*sbpos)++]; \
540 if (*sbpos >= 28) \
541 { \
542 *sbpos = 0; \
543 d = decode_f(ctx, ch, SB); \
544 if (d && ns < ret) \
545 ret = ns; \
546 } \
547 \
548 interp1_code; \
549 *spos -= 0x10000; \
550 } \
551 \
552 interp2_code; \
553 } \
554 \
555 interp_end; \
556 \
557 return ret; \
558}
559
560#define fmod_recv_check \
561 if(spu.s_chan[ch].bFMod==1 && iFMod[ns]) \
562 sinc = FModChangeFrequency(SB, spu.s_chan[ch].iRawPitch, ns)
563
564make_do_samples(default, fmod_recv_check, ,
565 StoreInterpolationVal(SB, sinc, fa, spu.s_chan[ch].bFMod==2),
566 ChanBuf[ns] = iGetInterpolationVal(SB, sinc, *spos, spu.s_chan[ch].bFMod==2), )
567make_do_samples(noint, , fa = SB[29], , ChanBuf[ns] = fa, SB[29] = fa)
568
569#define simple_interp_store \
570 SB[28] = 0; \
571 SB[29] = SB[30]; \
572 SB[30] = SB[31]; \
573 SB[31] = fa; \
574 SB[32] = 1
575
576#define simple_interp_get \
577 if(sinc<0x10000) /* -> upsampling? */ \
578 InterpolateUp(SB, sinc); /* --> interpolate up */ \
579 else InterpolateDown(SB, sinc); /* --> else down */ \
580 ChanBuf[ns] = SB[29]
581
582make_do_samples(simple, , ,
583 simple_interp_store, simple_interp_get, )
584
585static int do_samples_skip(int ch, int ns_to)
586{
587 SPUCHAN *s_chan = &spu.s_chan[ch];
588 int spos = s_chan->spos;
589 int sinc = s_chan->sinc;
590 int ret = ns_to, ns, d;
591
592 spos += s_chan->iSBPos << 16;
593
594 for (ns = 0; ns < ns_to; ns++)
595 {
596 spos += sinc;
597 while (spos >= 28*0x10000)
598 {
599 d = skip_block(ch);
600 if (d && ns < ret)
601 ret = ns;
602 spos -= 28*0x10000;
603 }
604 }
605
606 s_chan->iSBPos = spos >> 16;
607 s_chan->spos = spos & 0xffff;
608
609 return ret;
610}
611
612static void do_lsfr_samples(int ns_to, int ctrl,
613 unsigned int *dwNoiseCount, unsigned int *dwNoiseVal)
614{
615 unsigned int counter = *dwNoiseCount;
616 unsigned int val = *dwNoiseVal;
617 unsigned int level, shift, bit;
618 int ns;
619
620 // modified from DrHell/shalma, no fraction
621 level = (ctrl >> 10) & 0x0f;
622 level = 0x8000 >> level;
623
624 for (ns = 0; ns < ns_to; ns++)
625 {
626 counter += 2;
627 if (counter >= level)
628 {
629 counter -= level;
630 shift = (val >> 10) & 0x1f;
631 bit = (0x69696969 >> shift) & 1;
632 bit ^= (val >> 15) & 1;
633 val = (val << 1) | bit;
634 }
635
636 ChanBuf[ns] = (signed short)val;
637 }
638
639 *dwNoiseCount = counter;
640 *dwNoiseVal = val;
641}
642
643static int do_samples_noise(int ch, int ns_to)
644{
645 int ret;
646
647 ret = do_samples_skip(ch, ns_to);
648
649 do_lsfr_samples(ns_to, spu.spuCtrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
650
651 return ret;
652}
653
654#ifdef HAVE_ARMV5
655// asm code; lv and rv must be 0-3fff
656extern void mix_chan(int *SSumLR, int count, int lv, int rv);
657extern void mix_chan_rvb(int *SSumLR, int count, int lv, int rv, int *rvb);
658#else
659static void mix_chan(int *SSumLR, int count, int lv, int rv)
660{
661 const int *src = ChanBuf;
662 int l, r;
663
664 while (count--)
665 {
666 int sval = *src++;
667
668 l = (sval * lv) >> 14;
669 r = (sval * rv) >> 14;
670 *SSumLR++ += l;
671 *SSumLR++ += r;
672 }
673}
674
675static void mix_chan_rvb(int *SSumLR, int count, int lv, int rv, int *rvb)
676{
677 const int *src = ChanBuf;
678 int *dst = SSumLR;
679 int *drvb = rvb;
680 int l, r;
681
682 while (count--)
683 {
684 int sval = *src++;
685
686 l = (sval * lv) >> 14;
687 r = (sval * rv) >> 14;
688 *dst++ += l;
689 *dst++ += r;
690 *drvb++ += l;
691 *drvb++ += r;
692 }
693}
694#endif
695
696// 0x0800-0x0bff Voice 1
697// 0x0c00-0x0fff Voice 3
698static noinline void do_decode_bufs(unsigned short *mem, int which,
699 int count, int decode_pos)
700{
701 unsigned short *dst = &mem[0x800/2 + which*0x400/2];
702 const int *src = ChanBuf;
703 int cursor = decode_pos;
704
705 while (count-- > 0)
706 {
707 cursor &= 0x1ff;
708 dst[cursor] = *src++;
709 cursor++;
710 }
711
712 // decode_pos is updated and irqs are checked later, after voice loop
713}
714
715static void do_silent_chans(int ns_to, int silentch)
716{
717 unsigned int mask;
718 SPUCHAN *s_chan;
719 int ch;
720
721 mask = silentch & 0xffffff;
722 for (ch = 0; mask != 0; ch++, mask >>= 1)
723 {
724 if (!(mask & 1)) continue;
725 if (spu.dwChannelDead & (1<<ch)) continue;
726
727 s_chan = &spu.s_chan[ch];
728 if (s_chan->pCurr > spu.pSpuIrq && s_chan->pLoop > spu.pSpuIrq)
729 continue;
730
731 s_chan->spos += s_chan->iSBPos << 16;
732 s_chan->iSBPos = 0;
733
734 s_chan->spos += s_chan->sinc * ns_to;
735 while (s_chan->spos >= 28 * 0x10000)
736 {
737 unsigned char *start = s_chan->pCurr;
738
739 skip_block(ch);
740 if (start == s_chan->pCurr || start - spu.spuMemC < 0x1000)
741 {
742 // looping on self or stopped(?)
743 spu.dwChannelDead |= 1<<ch;
744 s_chan->spos = 0;
745 break;
746 }
747
748 s_chan->spos -= 28 * 0x10000;
749 }
750 }
751}
752
753static void do_channels(int ns_to)
754{
755 unsigned int mask;
756 int do_rvb, ch, d;
757 SPUCHAN *s_chan;
758 int *SB, sinc;
759
760 do_rvb = spu.rvb->StartAddr && spu_config.iUseReverb;
761 if (do_rvb)
762 memset(RVB, 0, ns_to * sizeof(RVB[0]) * 2);
763
764 mask = spu.dwNewChannel & 0xffffff;
765 for (ch = 0; mask != 0; ch++, mask >>= 1) {
766 if (mask & 1)
767 StartSound(ch);
768 }
769
770 mask = spu.dwChannelsAudible & 0xffffff;
771 for (ch = 0; mask != 0; ch++, mask >>= 1) // loop em all...
772 {
773 if (!(mask & 1)) continue; // channel not playing? next
774
775 s_chan = &spu.s_chan[ch];
776 SB = spu.SB + ch * SB_SIZE;
777 sinc = s_chan->sinc;
778 if (spu.s_chan[ch].bNewPitch)
779 SB[32] = 1; // reset interpolation
780 spu.s_chan[ch].bNewPitch = 0;
781
782 if (s_chan->bNoise)
783 d = do_samples_noise(ch, ns_to);
784 else if (s_chan->bFMod == 2
785 || (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 0))
786 d = do_samples_noint(decode_block, NULL, ch, ns_to,
787 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
788 else if (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 1)
789 d = do_samples_simple(decode_block, NULL, ch, ns_to,
790 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
791 else
792 d = do_samples_default(decode_block, NULL, ch, ns_to,
793 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
794
795 d = MixADSR(&s_chan->ADSRX, d);
796 if (d < ns_to) {
797 spu.dwChannelsAudible &= ~(1 << ch);
798 s_chan->ADSRX.State = ADSR_RELEASE;
799 s_chan->ADSRX.EnvelopeVol = 0;
800 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
801 }
802
803 if (ch == 1 || ch == 3)
804 {
805 do_decode_bufs(spu.spuMem, ch/2, ns_to, spu.decode_pos);
806 spu.decode_dirty_ch |= 1 << ch;
807 }
808
809 if (s_chan->bFMod == 2) // fmod freq channel
810 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
811 if (s_chan->bRVBActive && do_rvb)
812 mix_chan_rvb(spu.SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume, RVB);
813 else
814 mix_chan(spu.SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume);
815 }
816
817 MixXA(spu.SSumLR, RVB, ns_to, spu.decode_pos);
818
819 if (spu.rvb->StartAddr) {
820 if (do_rvb)
821 REVERBDo(spu.SSumLR, RVB, ns_to, spu.rvb->CurrAddr);
822
823 spu.rvb->CurrAddr += ns_to / 2;
824 while (spu.rvb->CurrAddr >= 0x40000)
825 spu.rvb->CurrAddr -= 0x40000 - spu.rvb->StartAddr;
826 }
827}
828
829static void do_samples_finish(int *SSumLR, int ns_to,
830 int silentch, int decode_pos);
831
832// optional worker thread handling
833
834#if P_HAVE_PTHREAD || defined(WANT_THREAD_CODE)
835
836// worker thread state
837static struct spu_worker {
838 union {
839 struct {
840 unsigned int exit_thread;
841 unsigned int i_ready;
842 unsigned int i_reaped;
843 unsigned int last_boot_cnt; // dsp
844 unsigned int ram_dirty;
845 };
846 // aligning for C64X_DSP
847 unsigned int _pad0[128/4];
848 };
849 union {
850 struct {
851 unsigned int i_done;
852 unsigned int active; // dsp
853 unsigned int boot_cnt;
854 };
855 unsigned int _pad1[128/4];
856 };
857 struct work_item {
858 int ns_to;
859 int ctrl;
860 int decode_pos;
861 int rvb_addr;
862 unsigned int channels_new;
863 unsigned int channels_on;
864 unsigned int channels_silent;
865 struct {
866 int spos;
867 int sbpos;
868 int sinc;
869 int start;
870 int loop;
871 short vol_l;
872 short vol_r;
873 unsigned short ns_to;
874 unsigned short bNoise:1;
875 unsigned short bFMod:2;
876 unsigned short bRVBActive:1;
877 unsigned short bNewPitch:1;
878 ADSRInfoEx adsr;
879 } ch[24];
880 int SSumLR[NSSIZE * 2];
881 } i[4];
882} *worker;
883
884#define WORK_MAXCNT (sizeof(worker->i) / sizeof(worker->i[0]))
885#define WORK_I_MASK (WORK_MAXCNT - 1)
886
887static void thread_work_start(void);
888static void thread_work_wait_sync(struct work_item *work, int force);
889static void thread_sync_caches(void);
890static int thread_get_i_done(void);
891
892static int decode_block_work(void *context, int ch, int *SB)
893{
894 const unsigned char *ram = spu.spuMemC;
895 int predict_nr, shift_factor, flags;
896 struct work_item *work = context;
897 int start = work->ch[ch].start;
898 int loop = work->ch[ch].loop;
899
900 predict_nr = ram[start];
901 shift_factor = predict_nr & 0xf;
902 predict_nr >>= 4;
903
904 decode_block_data(SB, ram + start + 2, predict_nr, shift_factor);
905
906 flags = ram[start + 1];
907 if (flags & 4)
908 loop = start; // loop adress
909
910 start += 16;
911
912 if (flags & 1) // 1: stop/loop
913 start = loop;
914
915 work->ch[ch].start = start & 0x7ffff;
916 work->ch[ch].loop = loop;
917
918 return 0;
919}
920
921static void queue_channel_work(int ns_to, unsigned int silentch)
922{
923 struct work_item *work;
924 SPUCHAN *s_chan;
925 unsigned int mask;
926 int ch, d;
927
928 work = &worker->i[worker->i_ready & WORK_I_MASK];
929 work->ns_to = ns_to;
930 work->ctrl = spu.spuCtrl;
931 work->decode_pos = spu.decode_pos;
932 work->channels_silent = silentch;
933
934 mask = work->channels_new = spu.dwNewChannel & 0xffffff;
935 for (ch = 0; mask != 0; ch++, mask >>= 1) {
936 if (mask & 1)
937 StartSoundMain(ch);
938 }
939
940 mask = work->channels_on = spu.dwChannelsAudible & 0xffffff;
941 spu.decode_dirty_ch |= mask & 0x0a;
942
943 for (ch = 0; mask != 0; ch++, mask >>= 1)
944 {
945 if (!(mask & 1)) continue;
946
947 s_chan = &spu.s_chan[ch];
948 work->ch[ch].spos = s_chan->spos;
949 work->ch[ch].sbpos = s_chan->iSBPos;
950 work->ch[ch].sinc = s_chan->sinc;
951 work->ch[ch].adsr = s_chan->ADSRX;
952 work->ch[ch].vol_l = s_chan->iLeftVolume;
953 work->ch[ch].vol_r = s_chan->iRightVolume;
954 work->ch[ch].start = s_chan->pCurr - spu.spuMemC;
955 work->ch[ch].loop = s_chan->pLoop - spu.spuMemC;
956 work->ch[ch].bNoise = s_chan->bNoise;
957 work->ch[ch].bFMod = s_chan->bFMod;
958 work->ch[ch].bRVBActive = s_chan->bRVBActive;
959 work->ch[ch].bNewPitch = s_chan->bNewPitch;
960 if (s_chan->prevflags & 1)
961 work->ch[ch].start = work->ch[ch].loop;
962
963 d = do_samples_skip(ch, ns_to);
964 work->ch[ch].ns_to = d;
965
966 // note: d is not accurate on skip
967 d = SkipADSR(&s_chan->ADSRX, d);
968 if (d < ns_to) {
969 spu.dwChannelsAudible &= ~(1 << ch);
970 s_chan->ADSRX.State = ADSR_RELEASE;
971 s_chan->ADSRX.EnvelopeVol = 0;
972 }
973 s_chan->bNewPitch = 0;
974 }
975
976 work->rvb_addr = 0;
977 if (spu.rvb->StartAddr) {
978 if (spu_config.iUseReverb)
979 work->rvb_addr = spu.rvb->CurrAddr;
980
981 spu.rvb->CurrAddr += ns_to / 2;
982 while (spu.rvb->CurrAddr >= 0x40000)
983 spu.rvb->CurrAddr -= 0x40000 - spu.rvb->StartAddr;
984 }
985
986 worker->i_ready++;
987 thread_work_start();
988}
989
990static void do_channel_work(struct work_item *work)
991{
992 unsigned int mask;
993 int *SB, sinc, spos, sbpos;
994 int d, ch, ns_to;
995
996 ns_to = work->ns_to;
997
998 if (work->rvb_addr)
999 memset(RVB, 0, ns_to * sizeof(RVB[0]) * 2);
1000
1001 mask = work->channels_new;
1002 for (ch = 0; mask != 0; ch++, mask >>= 1) {
1003 if (mask & 1)
1004 StartSoundSB(spu.SB + ch * SB_SIZE);
1005 }
1006
1007 mask = work->channels_on;
1008 for (ch = 0; mask != 0; ch++, mask >>= 1)
1009 {
1010 if (!(mask & 1)) continue;
1011
1012 d = work->ch[ch].ns_to;
1013 spos = work->ch[ch].spos;
1014 sbpos = work->ch[ch].sbpos;
1015 sinc = work->ch[ch].sinc;
1016
1017 SB = spu.SB + ch * SB_SIZE;
1018 if (work->ch[ch].bNewPitch)
1019 SB[32] = 1; // reset interpolation
1020
1021 if (work->ch[ch].bNoise)
1022 do_lsfr_samples(d, work->ctrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
1023 else if (work->ch[ch].bFMod == 2
1024 || (work->ch[ch].bFMod == 0 && spu_config.iUseInterpolation == 0))
1025 do_samples_noint(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos);
1026 else if (work->ch[ch].bFMod == 0 && spu_config.iUseInterpolation == 1)
1027 do_samples_simple(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos);
1028 else
1029 do_samples_default(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos);
1030
1031 d = MixADSR(&work->ch[ch].adsr, d);
1032 if (d < ns_to) {
1033 work->ch[ch].adsr.EnvelopeVol = 0;
1034 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
1035 }
1036
1037 if (ch == 1 || ch == 3)
1038 do_decode_bufs(spu.spuMem, ch/2, ns_to, work->decode_pos);
1039
1040 if (work->ch[ch].bFMod == 2) // fmod freq channel
1041 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
1042 if (work->ch[ch].bRVBActive && work->rvb_addr)
1043 mix_chan_rvb(work->SSumLR, ns_to,
1044 work->ch[ch].vol_l, work->ch[ch].vol_r, RVB);
1045 else
1046 mix_chan(work->SSumLR, ns_to, work->ch[ch].vol_l, work->ch[ch].vol_r);
1047 }
1048
1049 if (work->rvb_addr)
1050 REVERBDo(work->SSumLR, RVB, ns_to, work->rvb_addr);
1051}
1052
1053static void sync_worker_thread(int force)
1054{
1055 struct work_item *work;
1056 int done, used_space;
1057
1058 // rvb offsets will change, thread may be using them
1059 force |= spu.rvb->dirty && spu.rvb->StartAddr;
1060
1061 done = thread_get_i_done() - worker->i_reaped;
1062 used_space = worker->i_ready - worker->i_reaped;
1063
1064 //printf("done: %d use: %d dsp: %u/%u\n", done, used_space,
1065 // worker->boot_cnt, worker->i_done);
1066
1067 while ((force && used_space > 0) || used_space >= WORK_MAXCNT || done > 0) {
1068 work = &worker->i[worker->i_reaped & WORK_I_MASK];
1069 thread_work_wait_sync(work, force);
1070
1071 MixXA(work->SSumLR, RVB, work->ns_to, work->decode_pos);
1072 do_samples_finish(work->SSumLR, work->ns_to,
1073 work->channels_silent, work->decode_pos);
1074
1075 worker->i_reaped++;
1076 done = thread_get_i_done() - worker->i_reaped;
1077 used_space = worker->i_ready - worker->i_reaped;
1078 }
1079 if (force)
1080 thread_sync_caches();
1081}
1082
1083#else
1084
1085static void queue_channel_work(int ns_to, int silentch) {}
1086static void sync_worker_thread(int force) {}
1087
1088static const void * const worker = NULL;
1089
1090#endif // P_HAVE_PTHREAD || defined(WANT_THREAD_CODE)
1091
1092////////////////////////////////////////////////////////////////////////
1093// MAIN SPU FUNCTION
1094// here is the main job handler...
1095////////////////////////////////////////////////////////////////////////
1096
1097void do_samples(unsigned int cycles_to, int do_direct)
1098{
1099 unsigned int silentch;
1100 int cycle_diff;
1101 int ns_to;
1102
1103 cycle_diff = cycles_to - spu.cycles_played;
1104 if (cycle_diff < -2*1048576 || cycle_diff > 2*1048576)
1105 {
1106 //xprintf("desync %u %d\n", cycles_to, cycle_diff);
1107 spu.cycles_played = cycles_to;
1108 return;
1109 }
1110
1111 silentch = ~(spu.dwChannelsAudible | spu.dwNewChannel) & 0xffffff;
1112
1113 do_direct |= (silentch == 0xffffff);
1114 if (worker != NULL)
1115 sync_worker_thread(do_direct);
1116
1117 if (cycle_diff < 2 * 768)
1118 return;
1119
1120 ns_to = (cycle_diff / 768 + 1) & ~1;
1121 if (ns_to > NSSIZE) {
1122 // should never happen
1123 //xprintf("ns_to oflow %d %d\n", ns_to, NSSIZE);
1124 ns_to = NSSIZE;
1125 }
1126
1127 //////////////////////////////////////////////////////
1128 // special irq handling in the decode buffers (0x0000-0x1000)
1129 // we know:
1130 // the decode buffers are located in spu memory in the following way:
1131 // 0x0000-0x03ff CD audio left
1132 // 0x0400-0x07ff CD audio right
1133 // 0x0800-0x0bff Voice 1
1134 // 0x0c00-0x0fff Voice 3
1135 // and decoded data is 16 bit for one sample
1136 // we assume:
1137 // even if voices 1/3 are off or no cd audio is playing, the internal
1138 // play positions will move on and wrap after 0x400 bytes.
1139 // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and
1140 // increase this pointer on each sample by 2 bytes. If this pointer
1141 // (or 0x400 offsets of this pointer) hits the spuirq address, we generate
1142 // an IRQ.
1143
1144 if (unlikely((spu.spuCtrl & CTRL_IRQ)
1145 && spu.pSpuIrq < spu.spuMemC+0x1000))
1146 {
1147 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1148 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1149 if (0 < left && left <= ns_to)
1150 {
1151 //xprintf("decoder irq %x\n", spu.decode_pos);
1152 do_irq();
1153 }
1154 }
1155 check_irq_io(spu.spuAddr);
1156
1157 if (unlikely(spu.rvb->dirty))
1158 REVERBPrep();
1159
1160 if (do_direct || worker == NULL || !spu_config.iUseThread) {
1161 do_channels(ns_to);
1162 do_samples_finish(spu.SSumLR, ns_to, silentch, spu.decode_pos);
1163 }
1164 else {
1165 queue_channel_work(ns_to, silentch);
1166 //sync_worker_thread(1); // uncomment for debug
1167 }
1168
1169 // advance "stopped" channels that can cause irqs
1170 // (all chans are always playing on the real thing..)
1171 if (spu.spuCtrl & CTRL_IRQ)
1172 do_silent_chans(ns_to, silentch);
1173
1174 spu.cycles_played += ns_to * 768;
1175 spu.decode_pos = (spu.decode_pos + ns_to) & 0x1ff;
1176}
1177
1178static void do_samples_finish(int *SSumLR, int ns_to,
1179 int silentch, int decode_pos)
1180{
1181 int vol_l = ((int)regAreaGet(H_SPUmvolL) << 17) >> 17;
1182 int vol_r = ((int)regAreaGet(H_SPUmvolR) << 17) >> 17;
1183 int ns;
1184 int d;
1185
1186 // must clear silent channel decode buffers
1187 if(unlikely(silentch & spu.decode_dirty_ch & (1<<1)))
1188 {
1189 memset(&spu.spuMem[0x800/2], 0, 0x400);
1190 spu.decode_dirty_ch &= ~(1<<1);
1191 }
1192 if(unlikely(silentch & spu.decode_dirty_ch & (1<<3)))
1193 {
1194 memset(&spu.spuMem[0xc00/2], 0, 0x400);
1195 spu.decode_dirty_ch &= ~(1<<3);
1196 }
1197
1198 vol_l = vol_l * spu_config.iVolume >> 10;
1199 vol_r = vol_r * spu_config.iVolume >> 10;
1200
1201 if (!(spu.spuCtrl & CTRL_MUTE) || !(vol_l | vol_r))
1202 {
1203 // muted? (rare)
1204 memset(spu.pS, 0, ns_to * 2 * sizeof(spu.pS[0]));
1205 memset(SSumLR, 0, ns_to * 2 * sizeof(SSumLR[0]));
1206 spu.pS += ns_to * 2;
1207 }
1208 else
1209 for (ns = 0; ns < ns_to * 2; )
1210 {
1211 d = SSumLR[ns]; SSumLR[ns] = 0;
1212 d = d * vol_l >> 14;
1213 ssat32_to_16(d);
1214 *spu.pS++ = d;
1215 ns++;
1216
1217 d = SSumLR[ns]; SSumLR[ns] = 0;
1218 d = d * vol_r >> 14;
1219 ssat32_to_16(d);
1220 *spu.pS++ = d;
1221 ns++;
1222 }
1223}
1224
1225void schedule_next_irq(void)
1226{
1227 unsigned int upd_samples;
1228 int ch;
1229
1230 if (spu.scheduleCallback == NULL)
1231 return;
1232
1233 upd_samples = 44100 / 50;
1234
1235 for (ch = 0; ch < MAXCHAN; ch++)
1236 {
1237 if (spu.dwChannelDead & (1 << ch))
1238 continue;
1239 if ((unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pCurr) > IRQ_NEAR_BLOCKS * 16
1240 && (unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pLoop) > IRQ_NEAR_BLOCKS * 16)
1241 continue;
1242 if (spu.s_chan[ch].sinc == 0)
1243 continue;
1244
1245 scan_for_irq(ch, &upd_samples);
1246 }
1247
1248 if (unlikely(spu.pSpuIrq < spu.spuMemC + 0x1000))
1249 {
1250 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1251 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1252 if (0 < left && left < upd_samples) {
1253 //xprintf("decode: %3d (%3d/%3d)\n", left, spu.decode_pos, irq_pos);
1254 upd_samples = left;
1255 }
1256 }
1257
1258 if (upd_samples < 44100 / 50)
1259 spu.scheduleCallback(upd_samples * 768);
1260}
1261
1262// SPU ASYNC... even newer epsxe func
1263// 1 time every 'cycle' cycles... harhar
1264
1265// rearmed: called dynamically now
1266
1267void CALLBACK SPUasync(unsigned int cycle, unsigned int flags)
1268{
1269 do_samples(cycle, spu_config.iUseFixedUpdates);
1270
1271 if (spu.spuCtrl & CTRL_IRQ)
1272 schedule_next_irq();
1273
1274 if (flags & 1) {
1275 out_current->feed(spu.pSpuBuffer, (unsigned char *)spu.pS - spu.pSpuBuffer);
1276 spu.pS = (short *)spu.pSpuBuffer;
1277
1278 if (spu_config.iTempo) {
1279 if (!out_current->busy())
1280 // cause more samples to be generated
1281 // (and break some games because of bad sync)
1282 spu.cycles_played -= 44100 / 60 / 2 * 768;
1283 }
1284 }
1285}
1286
1287// SPU UPDATE... new epsxe func
1288// 1 time every 32 hsync lines
1289// (312/32)x50 in pal
1290// (262/32)x60 in ntsc
1291
1292// since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will
1293// leave that func in the linux port, until epsxe linux is using
1294// the async function as well
1295
1296void CALLBACK SPUupdate(void)
1297{
1298}
1299
1300// XA AUDIO
1301
1302void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap, unsigned int cycle, int is_start)
1303{
1304 if(!xap) return;
1305 if(!xap->freq) return; // no xa freq ? bye
1306
1307 if (is_start)
1308 do_samples(cycle, 1); // catch up to prevent source underflows later
1309
1310 FeedXA(xap); // call main XA feeder
1311}
1312
1313// CDDA AUDIO
1314int CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes, unsigned int cycle, int is_start)
1315{
1316 if (!pcm) return -1;
1317 if (nbytes<=0) return -1;
1318
1319 if (is_start)
1320 do_samples(cycle, 1); // catch up to prevent source underflows later
1321
1322 return FeedCDDA((unsigned char *)pcm, nbytes);
1323}
1324
1325// to be called after state load
1326void ClearWorkingState(void)
1327{
1328 memset(iFMod, 0, sizeof(iFMod));
1329 spu.pS=(short *)spu.pSpuBuffer; // setup soundbuffer pointer
1330}
1331
1332// SETUPSTREAMS: init most of the spu buffers
1333static void SetupStreams(void)
1334{
1335 spu.pSpuBuffer = (unsigned char *)malloc(32768); // alloc mixing buffer
1336 spu.SSumLR = calloc(NSSIZE * 2, sizeof(spu.SSumLR[0]));
1337
1338 spu.XAStart = malloc(44100 * sizeof(uint32_t)); // alloc xa buffer
1339 spu.XAEnd = spu.XAStart + 44100;
1340 spu.XAPlay = spu.XAStart;
1341 spu.XAFeed = spu.XAStart;
1342
1343 spu.CDDAStart = malloc(CDDA_BUFFER_SIZE); // alloc cdda buffer
1344 spu.CDDAEnd = spu.CDDAStart + 16384;
1345 spu.CDDAPlay = spu.CDDAStart;
1346 spu.CDDAFeed = spu.CDDAStart;
1347
1348 ClearWorkingState();
1349}
1350
1351// REMOVESTREAMS: free most buffer
1352static void RemoveStreams(void)
1353{
1354 free(spu.pSpuBuffer); // free mixing buffer
1355 spu.pSpuBuffer = NULL;
1356 free(spu.SSumLR);
1357 spu.SSumLR = NULL;
1358 free(spu.XAStart); // free XA buffer
1359 spu.XAStart = NULL;
1360 free(spu.CDDAStart); // free CDDA buffer
1361 spu.CDDAStart = NULL;
1362}
1363
1364#if defined(C64X_DSP)
1365
1366/* special code for TI C64x DSP */
1367#include "spu_c64x.c"
1368
1369#elif P_HAVE_PTHREAD
1370
1371#include <pthread.h>
1372#include <semaphore.h>
1373#include <unistd.h>
1374
1375static struct {
1376 pthread_t thread;
1377 sem_t sem_avail;
1378 sem_t sem_done;
1379} t;
1380
1381/* generic pthread implementation */
1382
1383static void thread_work_start(void)
1384{
1385 sem_post(&t.sem_avail);
1386}
1387
1388static void thread_work_wait_sync(struct work_item *work, int force)
1389{
1390 sem_wait(&t.sem_done);
1391}
1392
1393static int thread_get_i_done(void)
1394{
1395 return worker->i_done;
1396}
1397
1398static void thread_sync_caches(void)
1399{
1400}
1401
1402static void *spu_worker_thread(void *unused)
1403{
1404 struct work_item *work;
1405
1406 while (1) {
1407 sem_wait(&t.sem_avail);
1408 if (worker->exit_thread)
1409 break;
1410
1411 work = &worker->i[worker->i_done & WORK_I_MASK];
1412 do_channel_work(work);
1413 worker->i_done++;
1414
1415 sem_post(&t.sem_done);
1416 }
1417
1418 return NULL;
1419}
1420
1421static void init_spu_thread(void)
1422{
1423 int ret;
1424
1425 if (sysconf(_SC_NPROCESSORS_ONLN) <= 1)
1426 return;
1427
1428 worker = calloc(1, sizeof(*worker));
1429 if (worker == NULL)
1430 return;
1431 ret = sem_init(&t.sem_avail, 0, 0);
1432 if (ret != 0)
1433 goto fail_sem_avail;
1434 ret = sem_init(&t.sem_done, 0, 0);
1435 if (ret != 0)
1436 goto fail_sem_done;
1437
1438 ret = pthread_create(&t.thread, NULL, spu_worker_thread, NULL);
1439 if (ret != 0)
1440 goto fail_thread;
1441
1442 spu_config.iThreadAvail = 1;
1443 return;
1444
1445fail_thread:
1446 sem_destroy(&t.sem_done);
1447fail_sem_done:
1448 sem_destroy(&t.sem_avail);
1449fail_sem_avail:
1450 free(worker);
1451 worker = NULL;
1452 spu_config.iThreadAvail = 0;
1453}
1454
1455static void exit_spu_thread(void)
1456{
1457 if (worker == NULL)
1458 return;
1459 worker->exit_thread = 1;
1460 sem_post(&t.sem_avail);
1461 pthread_join(t.thread, NULL);
1462 sem_destroy(&t.sem_done);
1463 sem_destroy(&t.sem_avail);
1464 free(worker);
1465 worker = NULL;
1466}
1467
1468#else // if !P_HAVE_PTHREAD
1469
1470static void init_spu_thread(void)
1471{
1472}
1473
1474static void exit_spu_thread(void)
1475{
1476}
1477
1478#endif
1479
1480// SPUINIT: this func will be called first by the main emu
1481long CALLBACK SPUinit(void)
1482{
1483 int i;
1484
1485 spu.spuMemC = calloc(1, 512 * 1024);
1486 InitADSR();
1487
1488 spu.s_chan = calloc(MAXCHAN+1, sizeof(spu.s_chan[0])); // channel + 1 infos (1 is security for fmod handling)
1489 spu.rvb = calloc(1, sizeof(REVERBInfo));
1490 spu.SB = calloc(MAXCHAN, sizeof(spu.SB[0]) * SB_SIZE);
1491
1492 spu.spuAddr = 0;
1493 spu.decode_pos = 0;
1494 spu.pSpuIrq = spu.spuMemC;
1495
1496 SetupStreams(); // prepare streaming
1497
1498 if (spu_config.iVolume == 0)
1499 spu_config.iVolume = 768; // 1024 is 1.0
1500
1501 init_spu_thread();
1502
1503 for (i = 0; i < MAXCHAN; i++) // loop sound channels
1504 {
1505 spu.s_chan[i].ADSRX.SustainLevel = 0xf; // -> init sustain
1506 spu.s_chan[i].ADSRX.SustainIncrease = 1;
1507 spu.s_chan[i].pLoop = spu.spuMemC;
1508 spu.s_chan[i].pCurr = spu.spuMemC;
1509 spu.s_chan[i].bIgnoreLoop = 0;
1510 }
1511
1512 spu.bSpuInit=1; // flag: we are inited
1513
1514 return 0;
1515}
1516
1517// SPUOPEN: called by main emu after init
1518long CALLBACK SPUopen(void)
1519{
1520 if (spu.bSPUIsOpen) return 0; // security for some stupid main emus
1521
1522 SetupSound(); // setup sound (before init!)
1523
1524 spu.bSPUIsOpen = 1;
1525
1526 return PSE_SPU_ERR_SUCCESS;
1527}
1528
1529// SPUCLOSE: called before shutdown
1530long CALLBACK SPUclose(void)
1531{
1532 if (!spu.bSPUIsOpen) return 0; // some security
1533
1534 spu.bSPUIsOpen = 0; // no more open
1535
1536 out_current->finish(); // no more sound handling
1537
1538 return 0;
1539}
1540
1541// SPUSHUTDOWN: called by main emu on final exit
1542long CALLBACK SPUshutdown(void)
1543{
1544 SPUclose();
1545
1546 exit_spu_thread();
1547
1548 free(spu.spuMemC);
1549 spu.spuMemC = NULL;
1550 free(spu.SB);
1551 spu.SB = NULL;
1552 free(spu.s_chan);
1553 spu.s_chan = NULL;
1554 free(spu.rvb);
1555 spu.rvb = NULL;
1556
1557 RemoveStreams(); // no more streaming
1558 spu.bSpuInit=0;
1559
1560 return 0;
1561}
1562
1563// SPUTEST: we don't test, we are always fine ;)
1564long CALLBACK SPUtest(void)
1565{
1566 return 0;
1567}
1568
1569// SPUCONFIGURE: call config dialog
1570long CALLBACK SPUconfigure(void)
1571{
1572#ifdef _MACOSX
1573 DoConfiguration();
1574#else
1575// StartCfgTool("CFG");
1576#endif
1577 return 0;
1578}
1579
1580// SPUABOUT: show about window
1581void CALLBACK SPUabout(void)
1582{
1583#ifdef _MACOSX
1584 DoAbout();
1585#else
1586// StartCfgTool("ABOUT");
1587#endif
1588}
1589
1590// SETUP CALLBACKS
1591// this functions will be called once,
1592// passes a callback that should be called on SPU-IRQ/cdda volume change
1593void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void))
1594{
1595 spu.irqCallback = callback;
1596}
1597
1598void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(short, short))
1599{
1600 spu.cddavCallback = CDDAVcallback;
1601}
1602
1603void CALLBACK SPUregisterScheduleCb(void (CALLBACK *callback)(unsigned int))
1604{
1605 spu.scheduleCallback = callback;
1606}
1607
1608// COMMON PLUGIN INFO FUNCS
1609/*
1610char * CALLBACK PSEgetLibName(void)
1611{
1612 return _(libraryName);
1613}
1614
1615unsigned long CALLBACK PSEgetLibType(void)
1616{
1617 return PSE_LT_SPU;
1618}
1619
1620unsigned long CALLBACK PSEgetLibVersion(void)
1621{
1622 return (1 << 16) | (6 << 8);
1623}
1624
1625char * SPUgetLibInfos(void)
1626{
1627 return _(libraryInfo);
1628}
1629*/
1630
1631// debug
1632void spu_get_debug_info(int *chans_out, int *run_chans, int *fmod_chans_out, int *noise_chans_out)
1633{
1634 int ch = 0, fmod_chans = 0, noise_chans = 0, irq_chans = 0;
1635
1636 if (spu.s_chan == NULL)
1637 return;
1638
1639 for(;ch<MAXCHAN;ch++)
1640 {
1641 if (!(spu.dwChannelsAudible & (1<<ch)))
1642 continue;
1643 if (spu.s_chan[ch].bFMod == 2)
1644 fmod_chans |= 1 << ch;
1645 if (spu.s_chan[ch].bNoise)
1646 noise_chans |= 1 << ch;
1647 if((spu.spuCtrl&CTRL_IRQ) && spu.s_chan[ch].pCurr <= spu.pSpuIrq && spu.s_chan[ch].pLoop <= spu.pSpuIrq)
1648 irq_chans |= 1 << ch;
1649 }
1650
1651 *chans_out = spu.dwChannelsAudible;
1652 *run_chans = ~spu.dwChannelsAudible & ~spu.dwChannelDead & irq_chans;
1653 *fmod_chans_out = fmod_chans;
1654 *noise_chans_out = noise_chans;
1655}
1656
1657// vim:shiftwidth=1:expandtab