| | 1 | /* @(#)e_pow.c 5.1 93/09/24 */ |
| | 2 | /* |
| | 3 | * ==================================================== |
| | 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| | 5 | * |
| | 6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| | 7 | * Permission to use, copy, modify, and distribute this |
| | 8 | * software is freely granted, provided that this notice |
| | 9 | * is preserved. |
| | 10 | * ==================================================== |
| | 11 | */ |
| | 12 | |
| | 13 | #if defined(LIBM_SCCS) && !defined(lint) |
| | 14 | static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $"; |
| | 15 | #endif |
| | 16 | |
| | 17 | /* __ieee754_pow(x,y) return x**y |
| | 18 | * |
| | 19 | * n |
| | 20 | * Method: Let x = 2 * (1+f) |
| | 21 | * 1. Compute and return log2(x) in two pieces: |
| | 22 | * log2(x) = w1 + w2, |
| | 23 | * where w1 has 53-24 = 29 bit trailing zeros. |
| | 24 | * 2. Perform y*log2(x) = n+y' by simulating muti-precision |
| | 25 | * arithmetic, where |y'|<=0.5. |
| | 26 | * 3. Return x**y = 2**n*exp(y'*log2) |
| | 27 | * |
| | 28 | * Special cases: |
| | 29 | * 1. (anything) ** 0 is 1 |
| | 30 | * 2. (anything) ** 1 is itself |
| | 31 | * 3. (anything) ** NAN is NAN |
| | 32 | * 4. NAN ** (anything except 0) is NAN |
| | 33 | * 5. +-(|x| > 1) ** +INF is +INF |
| | 34 | * 6. +-(|x| > 1) ** -INF is +0 |
| | 35 | * 7. +-(|x| < 1) ** +INF is +0 |
| | 36 | * 8. +-(|x| < 1) ** -INF is +INF |
| | 37 | * 9. +-1 ** +-INF is NAN |
| | 38 | * 10. +0 ** (+anything except 0, NAN) is +0 |
| | 39 | * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 |
| | 40 | * 12. +0 ** (-anything except 0, NAN) is +INF |
| | 41 | * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF |
| | 42 | * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) |
| | 43 | * 15. +INF ** (+anything except 0,NAN) is +INF |
| | 44 | * 16. +INF ** (-anything except 0,NAN) is +0 |
| | 45 | * 17. -INF ** (anything) = -0 ** (-anything) |
| | 46 | * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) |
| | 47 | * 19. (-anything except 0 and inf) ** (non-integer) is NAN |
| | 48 | * |
| | 49 | * Accuracy: |
| | 50 | * pow(x,y) returns x**y nearly rounded. In particular |
| | 51 | * pow(integer,integer) |
| | 52 | * always returns the correct integer provided it is |
| | 53 | * representable. |
| | 54 | * |
| | 55 | * Constants : |
| | 56 | * The hexadecimal values are the intended ones for the following |
| | 57 | * constants. The decimal values may be used, provided that the |
| | 58 | * compiler will convert from decimal to binary accurately enough |
| | 59 | * to produce the hexadecimal values shown. |
| | 60 | */ |
| | 61 | |
| | 62 | /*#include "math.h"*/ |
| | 63 | #include "math_private.h" |
| | 64 | |
| | 65 | #ifdef __STDC__ |
| | 66 | static const double |
| | 67 | #else |
| | 68 | static double |
| | 69 | #endif |
| | 70 | bp[] = {1.0, 1.5,}, |
| | 71 | dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ |
| | 72 | dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ |
| | 73 | /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ |
| | 74 | L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ |
| | 75 | L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ |
| | 76 | L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ |
| | 77 | L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ |
| | 78 | L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ |
| | 79 | L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ |
| | 80 | P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
| | 81 | P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
| | 82 | P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
| | 83 | P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
| | 84 | P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ |
| | 85 | lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ |
| | 86 | lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ |
| | 87 | lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ |
| | 88 | ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ |
| | 89 | cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ |
| | 90 | cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ |
| | 91 | cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ |
| | 92 | ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ |
| | 93 | ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ |
| | 94 | ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ |
| | 95 | |
| | 96 | #ifdef __STDC__ |
| | 97 | double __ieee754_pow(double x, double y) |
| | 98 | #else |
| | 99 | double __ieee754_pow(x,y) |
| | 100 | double x, y; |
| | 101 | #endif |
| | 102 | { |
| | 103 | double z,ax,z_h,z_l,p_h,p_l; |
| | 104 | double y1,t1,t2,r,s,t,u,v,w; |
| | 105 | int32_t i,j,k,yisint,n; |
| | 106 | int32_t hx,hy,ix,iy; |
| | 107 | u_int32_t lx,ly; |
| | 108 | |
| | 109 | EXTRACT_WORDS(hx,lx,x); |
| | 110 | EXTRACT_WORDS(hy,ly,y); |
| | 111 | ix = hx&0x7fffffff; iy = hy&0x7fffffff; |
| | 112 | |
| | 113 | /* y==zero: x**0 = 1 */ |
| | 114 | if((iy|ly)==0) return one; |
| | 115 | |
| | 116 | /* +-NaN return x+y */ |
| | 117 | if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || |
| | 118 | iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) |
| | 119 | return x+y; |
| | 120 | |
| | 121 | /* determine if y is an odd int when x < 0 |
| | 122 | * yisint = 0 ... y is not an integer |
| | 123 | * yisint = 1 ... y is an odd int |
| | 124 | * yisint = 2 ... y is an even int |
| | 125 | */ |
| | 126 | yisint = 0; |
| | 127 | if(hx<0) { |
| | 128 | if(iy>=0x43400000) yisint = 2; /* even integer y */ |
| | 129 | else if(iy>=0x3ff00000) { |
| | 130 | k = (iy>>20)-0x3ff; /* exponent */ |
| | 131 | if(k>20) { |
| | 132 | j = ly>>(52-k); |
| | 133 | if((u_int32_t)(j<<(52-k))==ly) yisint = 2-(j&1); |
| | 134 | } else if(ly==0) { |
| | 135 | j = iy>>(20-k); |
| | 136 | if((j<<(20-k))==iy) yisint = 2-(j&1); |
| | 137 | } |
| | 138 | } |
| | 139 | } |
| | 140 | |
| | 141 | /* special value of y */ |
| | 142 | if(ly==0) { |
| | 143 | if (iy==0x7ff00000) { /* y is +-inf */ |
| | 144 | if(((ix-0x3ff00000)|lx)==0) |
| | 145 | return y - y; /* inf**+-1 is NaN */ |
| | 146 | else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ |
| | 147 | return (hy>=0)? y: zero; |
| | 148 | else /* (|x|<1)**-,+inf = inf,0 */ |
| | 149 | return (hy<0)?-y: zero; |
| | 150 | } |
| | 151 | if(iy==0x3ff00000) { /* y is +-1 */ |
| | 152 | if(hy<0) return one/x; else return x; |
| | 153 | } |
| | 154 | if(hy==0x40000000) return x*x; /* y is 2 */ |
| | 155 | if(hy==0x3fe00000) { /* y is 0.5 */ |
| | 156 | if(hx>=0) /* x >= +0 */ |
| | 157 | return __ieee754_sqrt(x); |
| | 158 | } |
| | 159 | } |
| | 160 | |
| | 161 | ax = x < 0 ? -x : x; /*fabs(x);*/ |
| | 162 | /* special value of x */ |
| | 163 | if(lx==0) { |
| | 164 | if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ |
| | 165 | z = ax; /*x is +-0,+-inf,+-1*/ |
| | 166 | if(hy<0) z = one/z; /* z = (1/|x|) */ |
| | 167 | if(hx<0) { |
| | 168 | if(((ix-0x3ff00000)|yisint)==0) { |
| | 169 | z = (z-z)/(z-z); /* (-1)**non-int is NaN */ |
| | 170 | } else if(yisint==1) |
| | 171 | z = -z; /* (x<0)**odd = -(|x|**odd) */ |
| | 172 | } |
| | 173 | return z; |
| | 174 | } |
| | 175 | } |
| | 176 | |
| | 177 | /* (x<0)**(non-int) is NaN */ |
| | 178 | if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x); |
| | 179 | |
| | 180 | /* |y| is huge */ |
| | 181 | if(iy>0x41e00000) { /* if |y| > 2**31 */ |
| | 182 | if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ |
| | 183 | if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; |
| | 184 | if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; |
| | 185 | } |
| | 186 | /* over/underflow if x is not close to one */ |
| | 187 | if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; |
| | 188 | if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; |
| | 189 | /* now |1-x| is tiny <= 2**-20, suffice to compute |
| | 190 | log(x) by x-x^2/2+x^3/3-x^4/4 */ |
| | 191 | t = x-1; /* t has 20 trailing zeros */ |
| | 192 | w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); |
| | 193 | u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ |
| | 194 | v = t*ivln2_l-w*ivln2; |
| | 195 | t1 = u+v; |
| | 196 | SET_LOW_WORD(t1,0); |
| | 197 | t2 = v-(t1-u); |
| | 198 | } else { |
| | 199 | double s2,s_h,s_l,t_h,t_l; |
| | 200 | n = 0; |
| | 201 | /* take care subnormal number */ |
| | 202 | if(ix<0x00100000) |
| | 203 | {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); } |
| | 204 | n += ((ix)>>20)-0x3ff; |
| | 205 | j = ix&0x000fffff; |
| | 206 | /* determine interval */ |
| | 207 | ix = j|0x3ff00000; /* normalize ix */ |
| | 208 | if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ |
| | 209 | else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ |
| | 210 | else {k=0;n+=1;ix -= 0x00100000;} |
| | 211 | SET_HIGH_WORD(ax,ix); |
| | 212 | |
| | 213 | /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
| | 214 | u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ |
| | 215 | v = one/(ax+bp[k]); |
| | 216 | s = u*v; |
| | 217 | s_h = s; |
| | 218 | SET_LOW_WORD(s_h,0); |
| | 219 | /* t_h=ax+bp[k] High */ |
| | 220 | t_h = zero; |
| | 221 | SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18)); |
| | 222 | t_l = ax - (t_h-bp[k]); |
| | 223 | s_l = v*((u-s_h*t_h)-s_h*t_l); |
| | 224 | /* compute log(ax) */ |
| | 225 | s2 = s*s; |
| | 226 | r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); |
| | 227 | r += s_l*(s_h+s); |
| | 228 | s2 = s_h*s_h; |
| | 229 | t_h = 3.0+s2+r; |
| | 230 | SET_LOW_WORD(t_h,0); |
| | 231 | t_l = r-((t_h-3.0)-s2); |
| | 232 | /* u+v = s*(1+...) */ |
| | 233 | u = s_h*t_h; |
| | 234 | v = s_l*t_h+t_l*s; |
| | 235 | /* 2/(3log2)*(s+...) */ |
| | 236 | p_h = u+v; |
| | 237 | SET_LOW_WORD(p_h,0); |
| | 238 | p_l = v-(p_h-u); |
| | 239 | z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ |
| | 240 | z_l = cp_l*p_h+p_l*cp+dp_l[k]; |
| | 241 | /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
| | 242 | t = (double)n; |
| | 243 | t1 = (((z_h+z_l)+dp_h[k])+t); |
| | 244 | SET_LOW_WORD(t1,0); |
| | 245 | t2 = z_l-(((t1-t)-dp_h[k])-z_h); |
| | 246 | } |
| | 247 | |
| | 248 | s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ |
| | 249 | if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0) |
| | 250 | s = -one;/* (-ve)**(odd int) */ |
| | 251 | |
| | 252 | /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ |
| | 253 | y1 = y; |
| | 254 | SET_LOW_WORD(y1,0); |
| | 255 | p_l = (y-y1)*t1+y*t2; |
| | 256 | p_h = y1*t1; |
| | 257 | z = p_l+p_h; |
| | 258 | EXTRACT_WORDS(j,i,z); |
| | 259 | if (j>=0x40900000) { /* z >= 1024 */ |
| | 260 | if(((j-0x40900000)|i)!=0) /* if z > 1024 */ |
| | 261 | return s*huge*huge; /* overflow */ |
| | 262 | else { |
| | 263 | if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ |
| | 264 | } |
| | 265 | } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ |
| | 266 | if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ |
| | 267 | return s*tiny*tiny; /* underflow */ |
| | 268 | else { |
| | 269 | if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ |
| | 270 | } |
| | 271 | } |
| | 272 | /* |
| | 273 | * compute 2**(p_h+p_l) |
| | 274 | */ |
| | 275 | i = j&0x7fffffff; |
| | 276 | k = (i>>20)-0x3ff; |
| | 277 | n = 0; |
| | 278 | if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ |
| | 279 | n = j+(0x00100000>>(k+1)); |
| | 280 | k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ |
| | 281 | t = zero; |
| | 282 | SET_HIGH_WORD(t,n&~(0x000fffff>>k)); |
| | 283 | n = ((n&0x000fffff)|0x00100000)>>(20-k); |
| | 284 | if(j<0) n = -n; |
| | 285 | p_h -= t; |
| | 286 | } |
| | 287 | t = p_l+p_h; |
| | 288 | SET_LOW_WORD(t,0); |
| | 289 | u = t*lg2_h; |
| | 290 | v = (p_l-(t-p_h))*lg2+t*lg2_l; |
| | 291 | z = u+v; |
| | 292 | w = v-(z-u); |
| | 293 | t = z*z; |
| | 294 | t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
| | 295 | r = (z*t1)/(t1-two)-(w+z*w); |
| | 296 | z = one-(r-z); |
| | 297 | GET_HIGH_WORD(j,z); |
| | 298 | j += (n<<20); |
| | 299 | if((j>>20)<=0) z = SDL_NAME(scalbn)(z,n); /* subnormal output */ |
| | 300 | else SET_HIGH_WORD(z,j); |
| | 301 | return s*z; |
| | 302 | } |