2 #include "../../PicoInt.h"
5 #define u32 unsigned int
7 static u32 *tcache_ptr = NULL;
9 static int nblocks = 0;
10 static int n_in_ops = 0;
12 extern ssp1601_t *ssp;
14 #define rPC ssp->gr[SSP_PC].h
15 #define rPMC ssp->gr[SSP_PMC]
17 #define SSP_FLAG_Z (1<<0xd)
18 #define SSP_FLAG_N (1<<0xf)
21 #define DUMP_BLOCK 0x0c9a
22 u32 *ssp_block_table[0x5090/2];
23 u32 *ssp_block_table_iram[15][0x800/2];
24 u32 tcache[SSP_TCACHE_SIZE/4];
25 void ssp_drc_next(void){}
26 void ssp_drc_next_patch(void){}
27 void ssp_drc_end(void){}
32 // -----------------------------------------------------
34 static int get_inc(int mode)
36 int inc = (mode >> 11) & 7;
39 inc = 1 << inc; // 0 1 2 4 8 16 32 128
40 if (mode & 0x8000) inc = -inc; // decrement mode
45 u32 ssp_pm_read(int reg)
49 if (ssp->emu_status & SSP_PMC_SET)
51 ssp->pmac_read[reg] = rPMC.v;
52 ssp->emu_status &= ~SSP_PMC_SET;
57 ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
59 mode = ssp->pmac_read[reg]>>16;
60 if ((mode & 0xfff0) == 0x0800) // ROM
62 d = ((unsigned short *)Pico.rom)[ssp->pmac_read[reg]&0xfffff];
63 ssp->pmac_read[reg] += 1;
65 else if ((mode & 0x47ff) == 0x0018) // DRAM
67 unsigned short *dram = (unsigned short *)svp->dram;
68 int inc = get_inc(mode);
69 d = dram[ssp->pmac_read[reg]&0xffff];
70 ssp->pmac_read[reg] += inc;
73 // PMC value corresponds to last PMR accessed
74 rPMC.v = ssp->pmac_read[reg];
79 #define overwrite_write(dst, d) \
81 if (d & 0xf000) { dst &= ~0xf000; dst |= d & 0xf000; } \
82 if (d & 0x0f00) { dst &= ~0x0f00; dst |= d & 0x0f00; } \
83 if (d & 0x00f0) { dst &= ~0x00f0; dst |= d & 0x00f0; } \
84 if (d & 0x000f) { dst &= ~0x000f; dst |= d & 0x000f; } \
87 void ssp_pm_write(u32 d, int reg)
92 if (ssp->emu_status & SSP_PMC_SET)
94 ssp->pmac_write[reg] = rPMC.v;
95 ssp->emu_status &= ~SSP_PMC_SET;
100 ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
102 dram = (unsigned short *)svp->dram;
103 mode = ssp->pmac_write[reg]>>16;
104 addr = ssp->pmac_write[reg]&0xffff;
105 if ((mode & 0x43ff) == 0x0018) // DRAM
107 int inc = get_inc(mode);
109 overwrite_write(dram[addr], d);
110 } else dram[addr] = d;
111 ssp->pmac_write[reg] += inc;
113 else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
116 overwrite_write(dram[addr], d);
117 } else dram[addr] = d;
118 ssp->pmac_write[reg] += (addr&1) ? 0x1f : 1;
120 else if ((mode & 0x47ff) == 0x001c) // IRAM
122 int inc = get_inc(mode);
123 ((unsigned short *)svp->iram_rom)[addr&0x3ff] = d;
124 ssp->pmac_write[reg] += inc;
125 ssp->drc.iram_dirty = 1;
128 rPMC.v = ssp->pmac_write[reg];
132 // -----------------------------------------------------
135 static unsigned char iram_context_map[] =
137 0, 0, 0, 0, 1, 0, 0, 0, // 04
138 0, 0, 0, 0, 0, 0, 2, 0, // 0e
139 0, 0, 0, 0, 0, 3, 0, 4, // 15 17
140 5, 0, 0, 6, 0, 7, 0, 0, // 18 1b 1d
141 8, 9, 0, 0, 0,10, 0, 0, // 20 21 25
142 0, 0, 0, 0, 0, 0, 0, 0,
143 0, 0,11, 0, 0,12, 0, 0, // 32 35
144 13,14, 0, 0, 0, 0, 0, 0 // 38 39
147 int ssp_get_iram_context(void)
149 unsigned char *ir = (unsigned char *)svp->iram_rom;
150 int val1, val = ir[0x083^1] + ir[0x4FA^1] + ir[0x5F7^1] + ir[0x47B^1];
151 val1 = iram_context_map[(val>>1)&0x3f];
154 elprintf(EL_ANOMALY, "svp: iram ctx val: %02x PC=%04x\n", (val>>1)&0x3f, rPC);
155 //debug_dump2file(name, svp->iram_rom, 0x800);
161 // -----------------------------------------------------
163 /* regs with known values */
168 unsigned int pmac_read[5];
169 unsigned int pmac_write[5];
171 unsigned int emu_status;
174 #define KRREG_X (1 << SSP_X)
175 #define KRREG_Y (1 << SSP_Y)
176 #define KRREG_A (1 << SSP_A) /* AH only */
177 #define KRREG_ST (1 << SSP_ST)
178 #define KRREG_STACK (1 << SSP_STACK)
179 #define KRREG_PC (1 << SSP_PC)
180 #define KRREG_P (1 << SSP_P)
181 #define KRREG_PR0 (1 << 8)
182 #define KRREG_PR4 (1 << 12)
183 #define KRREG_AL (1 << 16)
184 #define KRREG_PMCM (1 << 18) /* only mode word of PMC */
185 #define KRREG_PMC (1 << 19)
186 #define KRREG_PM0R (1 << 20)
187 #define KRREG_PM1R (1 << 21)
188 #define KRREG_PM2R (1 << 22)
189 #define KRREG_PM3R (1 << 23)
190 #define KRREG_PM4R (1 << 24)
191 #define KRREG_PM0W (1 << 25)
192 #define KRREG_PM1W (1 << 26)
193 #define KRREG_PM2W (1 << 27)
194 #define KRREG_PM3W (1 << 28)
195 #define KRREG_PM4W (1 << 29)
197 /* bitfield of known register values */
198 static u32 known_regb = 0;
200 /* known vals, which need to be flushed
201 * (only ST, P, r0-r7, PMCx, PMxR, PMxW)
202 * ST means flags are being held in ARM PSR
203 * P means that it needs to be recalculated
205 static u32 dirty_regb = 0;
207 /* known values of host regs.
209 * 000000-00ffff - 16bit value
210 * 100000-10ffff - base reg (r7) + 16bit val
211 * 0r0000 - means reg (low) eq gr[r].h, r != AL
213 static int hostreg_r[4];
215 static void hostreg_clear(void)
218 for (i = 0; i < 4; i++)
222 static void hostreg_sspreg_changed(int sspreg)
225 for (i = 0; i < 4; i++)
226 if (hostreg_r[i] == (sspreg<<16)) hostreg_r[i] = -1;
230 #define PROGRAM(x) ((unsigned short *)svp->iram_rom)[x]
231 #define PROGRAM_P(x) ((unsigned short *)svp->iram_rom + (x))
233 void tr_unhandled(void)
235 //FILE *f = fopen("tcache.bin", "wb");
236 //fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
238 elprintf(EL_ANOMALY, "unhandled @ %04x\n", known_regs.gr[SSP_PC].h<<1);
242 /* update P, if needed. Trashes r0 */
243 static void tr_flush_dirty_P(void)
246 if (!(dirty_regb & KRREG_P)) return;
247 EOP_MOV_REG_ASR(10, 4, 16); // mov r10, r4, asr #16
248 EOP_MOV_REG_LSL( 0, 4, 16); // mov r0, r4, lsl #16
249 EOP_MOV_REG_ASR( 0, 0, 15); // mov r0, r0, asr #15
250 EOP_MUL(10, 0, 10); // mul r10, r0, r10
251 dirty_regb &= ~KRREG_P;
255 /* write dirty pr to host reg. Nothing is trashed */
256 static void tr_flush_dirty_pr(int r)
260 if (!(dirty_regb & (1 << (r+8)))) return;
263 case 0: ror = 0; break;
264 case 1: ror = 24/2; break;
265 case 2: ror = 16/2; break;
267 reg = (r < 4) ? 8 : 9;
268 EOP_BIC_IMM(reg,reg,ror,0xff);
269 if (known_regs.r[r] != 0)
270 EOP_ORR_IMM(reg,reg,ror,known_regs.r[r]);
271 dirty_regb &= ~(1 << (r+8));
274 /* write all dirty pr0-pr7 to host regs. Nothing is trashed */
275 static void tr_flush_dirty_prs(void)
278 int dirty = dirty_regb >> 8;
279 if ((dirty&7) == 7) {
280 emit_mov_const(A_COND_AL, 8, known_regs.r[0]|(known_regs.r[1]<<8)|(known_regs.r[2]<<16));
283 if ((dirty&0x70) == 0x70) {
284 emit_mov_const(A_COND_AL, 9, known_regs.r[4]|(known_regs.r[5]<<8)|(known_regs.r[6]<<16));
288 for (i = 0; dirty && i < 8; i++, dirty >>= 1)
290 if (!(dirty&1)) continue;
292 case 0: ror = 0; break;
293 case 1: ror = 24/2; break;
294 case 2: ror = 16/2; break;
296 reg = (i < 4) ? 8 : 9;
297 EOP_BIC_IMM(reg,reg,ror,0xff);
298 if (known_regs.r[i] != 0)
299 EOP_ORR_IMM(reg,reg,ror,known_regs.r[i]);
301 dirty_regb &= ~0xff00;
304 /* write dirty pr and "forget" it. Nothing is trashed. */
305 static void tr_release_pr(int r)
307 tr_flush_dirty_pr(r);
308 known_regb &= ~(1 << (r+8));
311 /* fush ARM PSR to r6. Trashes r1 */
312 static void tr_flush_dirty_ST(void)
314 if (!(dirty_regb & KRREG_ST)) return;
315 EOP_BIC_IMM(6,6,0,0x0f);
317 EOP_ORR_REG_LSR(6,6,1,28);
318 dirty_regb &= ~KRREG_ST;
322 /* inverse of above. Trashes r1 */
323 static void tr_make_dirty_ST(void)
325 if (dirty_regb & KRREG_ST) return;
326 if (known_regb & KRREG_ST) {
328 if (known_regs.gr[SSP_ST].h & SSP_FLAG_N) flags |= 8;
329 if (known_regs.gr[SSP_ST].h & SSP_FLAG_Z) flags |= 4;
330 EOP_MSR_IMM(4/2, flags);
332 EOP_MOV_REG_LSL(1, 6, 28);
336 dirty_regb |= KRREG_ST;
339 /* load 16bit val into host reg r0-r3. Nothing is trashed */
340 static void tr_mov16(int r, int val)
342 if (hostreg_r[r] != val) {
343 emit_mov_const(A_COND_AL, r, val);
348 static void tr_mov16_cond(int cond, int r, int val)
350 emit_mov_const(cond, r, val);
355 static void tr_flush_dirty_pmcrs(void)
357 u32 i, val = (u32)-1;
358 if (!(dirty_regb & 0x3ff80000)) return;
360 if (dirty_regb & KRREG_PMC) {
361 val = known_regs.pmc.v;
362 emit_mov_const(A_COND_AL, 1, val);
363 EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
365 if (known_regs.emu_status & (SSP_PMC_SET|SSP_PMC_HAVE_ADDR)) {
366 elprintf(EL_ANOMALY, "!! SSP_PMC_SET|SSP_PMC_HAVE_ADDR set on flush\n");
370 for (i = 0; i < 5; i++)
372 if (dirty_regb & (1 << (20+i))) {
373 if (val != known_regs.pmac_read[i]) {
374 val = known_regs.pmac_read[i];
375 emit_mov_const(A_COND_AL, 1, val);
377 EOP_STR_IMM(1,7,0x454+i*4); // pmac_read
379 if (dirty_regb & (1 << (25+i))) {
380 if (val != known_regs.pmac_write[i]) {
381 val = known_regs.pmac_write[i];
382 emit_mov_const(A_COND_AL, 1, val);
384 EOP_STR_IMM(1,7,0x46c+i*4); // pmac_write
387 dirty_regb &= ~0x3ff80000;
391 /* read bank word to r0 (upper bits zero). Thrashes r1. */
392 static void tr_bank_read(int addr) /* word addr 0-0x1ff */
396 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
397 EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1); // add r1, r7, ((op&0x180)<<1)
398 hostreg_r[1] = 0x100000|((addr&0x180)<<1);
402 EOP_LDRH_IMM(0,breg,(addr&0x7f)<<1); // ldrh r0, [r1, (op&0x7f)<<1]
406 /* write r0 to bank. Trashes r1. */
407 static void tr_bank_write(int addr)
411 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
412 EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1); // add r1, r7, ((op&0x180)<<1)
413 hostreg_r[1] = 0x100000|((addr&0x180)<<1);
417 EOP_STRH_IMM(0,breg,(addr&0x7f)<<1); // strh r0, [r1, (op&0x7f)<<1]
420 /* handle RAM bank pointer modifiers. if need_modulo, trash r1-r3, else nothing */
421 static void tr_ptrr_mod(int r, int mod, int need_modulo, int count)
423 int modulo_shift = -1; /* unknown */
425 if (mod == 0) return;
427 if (!need_modulo || mod == 1) // +!
429 else if (need_modulo && (known_regb & KRREG_ST)) {
430 modulo_shift = known_regs.gr[SSP_ST].h & 7;
431 if (modulo_shift == 0) modulo_shift = 8;
434 if (modulo_shift == -1)
436 int reg = (r < 4) ? 8 : 9;
438 if (dirty_regb & KRREG_ST) {
439 // avoid flushing ARM flags
440 EOP_AND_IMM(1, 6, 0, 0x70);
441 EOP_SUB_IMM(1, 1, 0, 0x10);
442 EOP_AND_IMM(1, 1, 0, 0x70);
443 EOP_ADD_IMM(1, 1, 0, 0x10);
445 EOP_C_DOP_IMM(A_COND_AL,A_OP_AND,1,6,1,0,0x70); // ands r1, r6, #0x70
446 EOP_C_DOP_IMM(A_COND_EQ,A_OP_MOV,0,0,1,0,0x80); // moveq r1, #0x80
448 EOP_MOV_REG_LSR(1, 1, 4); // mov r1, r1, lsr #4
449 EOP_RSB_IMM(2, 1, 0, 8); // rsb r1, r1, #8
450 EOP_MOV_IMM(3, 8/2, count); // mov r3, #0x01000000
452 EOP_ADD_IMM(1, 1, 0, (r&3)*8); // add r1, r1, #(r&3)*8
453 EOP_MOV_REG2_ROR(reg,reg,1); // mov reg, reg, ror r1
455 EOP_SUB_REG2_LSL(reg,reg,3,2); // sub reg, reg, #0x01000000 << r2
456 else EOP_ADD_REG2_LSL(reg,reg,3,2);
457 EOP_RSB_IMM(1, 1, 0, 32); // rsb r1, r1, #32
458 EOP_MOV_REG2_ROR(reg,reg,1); // mov reg, reg, ror r1
459 hostreg_r[1] = hostreg_r[2] = hostreg_r[3] = -1;
461 else if (known_regb & (1 << (r + 8)))
463 int modulo = (1 << modulo_shift) - 1;
465 known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] - count) & modulo);
466 else known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] + count) & modulo);
470 int reg = (r < 4) ? 8 : 9;
471 int ror = ((r&3) + 1)*8 - (8 - modulo_shift);
472 EOP_MOV_REG_ROR(reg,reg,ror);
473 // {add|sub} reg, reg, #1<<shift
474 EOP_C_DOP_IMM(A_COND_AL,(mod==2)?A_OP_SUB:A_OP_ADD,0,reg,reg, 8/2, count << (8 - modulo_shift));
475 EOP_MOV_REG_ROR(reg,reg,32-ror);
479 /* handle writes r0 to (rX). Trashes r1.
480 * fortunately we can ignore modulo increment modes for writes. */
481 static void tr_rX_write(int op)
485 int mod = (op>>2) & 3; // direct addressing
486 tr_bank_write((op & 0x100) + mod);
490 int r = (op&3) | ((op>>6)&4);
491 if (known_regb & (1 << (r + 8))) {
492 tr_bank_write((op&0x100) | known_regs.r[r]);
494 int reg = (r < 4) ? 8 : 9;
495 int ror = ((4 - (r&3))*8) & 0x1f;
496 EOP_AND_IMM(1,reg,ror/2,0xff); // and r1, r{7,8}, <mask>
498 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1); // orr r1, r1, 1<<shift
499 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1); // add r1, r7, r1, lsr #lsr
500 else EOP_ADD_REG_LSL(1,7,1,1);
501 EOP_STRH_SIMPLE(0,1); // strh r0, [r1]
504 tr_ptrr_mod(r, (op>>2) & 3, 0, 1);
508 /* read (rX) to r0. Trashes r1-r3. */
509 static void tr_rX_read(int r, int mod)
513 tr_bank_read(((r << 6) & 0x100) + mod); // direct addressing
517 if (known_regb & (1 << (r + 8))) {
518 tr_bank_read(((r << 6) & 0x100) | known_regs.r[r]);
520 int reg = (r < 4) ? 8 : 9;
521 int ror = ((4 - (r&3))*8) & 0x1f;
522 EOP_AND_IMM(1,reg,ror/2,0xff); // and r1, r{7,8}, <mask>
524 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1); // orr r1, r1, 1<<shift
525 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1); // add r1, r7, r1, lsr #lsr
526 else EOP_ADD_REG_LSL(1,7,1,1);
527 EOP_LDRH_SIMPLE(0,1); // ldrh r0, [r1]
528 hostreg_r[0] = hostreg_r[1] = -1;
530 tr_ptrr_mod(r, mod, 1, 1);
534 /* read ((rX)) to r0. Trashes r1,r2. */
535 static void tr_rX_read2(int op)
537 int r = (op&3) | ((op>>6)&4); // src
540 tr_bank_read((op&0x100) | ((op>>2)&3));
541 } else if (known_regb & (1 << (r+8))) {
542 tr_bank_read((op&0x100) | known_regs.r[r]);
544 int reg = (r < 4) ? 8 : 9;
545 int ror = ((4 - (r&3))*8) & 0x1f;
546 EOP_AND_IMM(1,reg,ror/2,0xff); // and r1, r{7,8}, <mask>
548 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1); // orr r1, r1, 1<<shift
549 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1); // add r1, r7, r1, lsr #lsr
550 else EOP_ADD_REG_LSL(1,7,1,1);
551 EOP_LDRH_SIMPLE(0,1); // ldrh r0, [r1]
553 EOP_LDR_IMM(2,7,0x48c); // ptr_iram_rom
554 EOP_ADD_REG_LSL(2,2,0,1); // add r2, r2, r0, lsl #1
555 EOP_ADD_IMM(0,0,0,1); // add r0, r0, #1
557 tr_bank_write((op&0x100) | ((op>>2)&3));
558 } else if (known_regb & (1 << (r+8))) {
559 tr_bank_write((op&0x100) | known_regs.r[r]);
561 EOP_STRH_SIMPLE(0,1); // strh r0, [r1]
564 EOP_LDRH_SIMPLE(0,2); // ldrh r0, [r2]
565 hostreg_r[0] = hostreg_r[2] = -1;
568 // check if AL is going to be used later in block
569 static int tr_predict_al_need(void)
571 int tmpv, tmpv2, op, pc = known_regs.gr[SSP_PC].h;
580 tmpv2 = (op >> 4) & 0xf; // dst
581 tmpv = op & 0xf; // src
582 if ((tmpv2 == SSP_A && tmpv == SSP_P) || tmpv2 == SSP_AL) // ld A, P; ld AL, *
591 case 0x10: case 0x30: case 0x40: case 0x60: case 0x70:
592 tmpv = op & 0xf; // src
593 if (tmpv == SSP_AL) // OP *, AL
603 case 0x74: pc++; break;
613 // mpya (rj), (ri), b
617 case 0x5b: return 0; // cleared anyway
621 tmpv = op & 0xf; // src
622 if (tmpv == SSP_AL) return 1;
623 case 0x51: case 0x53: case 0x54: case 0x55: case 0x59: case 0x5c:
631 /* get ARM cond which would mean that SSP cond is satisfied. No trash. */
632 static int tr_cond_check(int op)
634 int f = (op & 0x100) >> 8;
636 case 0x00: return A_COND_AL; /* always true */
637 case 0x50: /* Z matches f(?) bit */
638 if (dirty_regb & KRREG_ST) return f ? A_COND_EQ : A_COND_NE;
639 EOP_TST_IMM(6, 0, 4);
640 return f ? A_COND_NE : A_COND_EQ;
641 case 0x70: /* N matches f(?) bit */
642 if (dirty_regb & KRREG_ST) return f ? A_COND_MI : A_COND_PL;
643 EOP_TST_IMM(6, 0, 8);
644 return f ? A_COND_NE : A_COND_EQ;
646 elprintf(EL_ANOMALY, "unimplemented cond?\n");
652 static int tr_neg_cond(int cond)
655 case A_COND_AL: elprintf(EL_ANOMALY, "neg for AL?\n"); exit(1);
656 case A_COND_EQ: return A_COND_NE;
657 case A_COND_NE: return A_COND_EQ;
658 case A_COND_MI: return A_COND_PL;
659 case A_COND_PL: return A_COND_MI;
660 default: elprintf(EL_ANOMALY, "bad cond for neg\n"); exit(1);
665 static int tr_aop_ssp2arm(int op)
668 case 1: return A_OP_SUB;
669 case 3: return A_OP_CMP;
670 case 4: return A_OP_ADD;
671 case 5: return A_OP_AND;
672 case 6: return A_OP_ORR;
673 case 7: return A_OP_EOR;
680 // -----------------------------------------------------
684 //@ r6: STACK and emu flags
688 // read general reg to r0. Trashes r1
689 static void tr_GR0_to_r0(int op)
694 static void tr_X_to_r0(int op)
696 if (hostreg_r[0] != (SSP_X<<16)) {
697 EOP_MOV_REG_LSR(0, 4, 16); // mov r0, r4, lsr #16
698 hostreg_r[0] = SSP_X<<16;
702 static void tr_Y_to_r0(int op)
704 if (hostreg_r[0] != (SSP_Y<<16)) {
705 EOP_MOV_REG_SIMPLE(0, 4); // mov r0, r4
706 hostreg_r[0] = SSP_Y<<16;
710 static void tr_A_to_r0(int op)
712 if (hostreg_r[0] != (SSP_A<<16)) {
713 EOP_MOV_REG_LSR(0, 5, 16); // mov r0, r5, lsr #16 @ AH
714 hostreg_r[0] = SSP_A<<16;
718 static void tr_ST_to_r0(int op)
720 // VR doesn't need much accuracy here..
721 EOP_MOV_REG_LSR(0, 6, 4); // mov r0, r6, lsr #4
722 EOP_AND_IMM(0, 0, 0, 0x67); // and r0, r0, #0x67
726 static void tr_STACK_to_r0(int op)
729 EOP_SUB_IMM(6, 6, 8/2, 0x20); // sub r6, r6, #1<<29
730 EOP_ADD_IMM(1, 7, 24/2, 0x04); // add r1, r7, 0x400
731 EOP_ADD_IMM(1, 1, 0, 0x48); // add r1, r1, 0x048
732 EOP_ADD_REG_LSR(1, 1, 6, 28); // add r1, r1, r6, lsr #28
733 EOP_LDRH_SIMPLE(0, 1); // ldrh r0, [r1]
734 hostreg_r[0] = hostreg_r[1] = -1;
737 static void tr_PC_to_r0(int op)
739 tr_mov16(0, known_regs.gr[SSP_PC].h);
742 static void tr_P_to_r0(int op)
745 EOP_MOV_REG_LSR(0, 10, 16); // mov r0, r10, lsr #16
749 static void tr_AL_to_r0(int op)
752 if (known_regb & KRREG_PMC) {
753 known_regs.emu_status &= ~(SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
755 EOP_LDR_IMM(0,7,0x484); // ldr r1, [r7, #0x484] // emu_status
756 EOP_BIC_IMM(0,0,0,SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
757 EOP_STR_IMM(0,7,0x484);
761 if (hostreg_r[0] != (SSP_AL<<16)) {
762 EOP_MOV_REG_SIMPLE(0, 5); // mov r0, r5
763 hostreg_r[0] = SSP_AL<<16;
767 static void tr_PMX_to_r0(int reg)
769 if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
771 known_regs.pmac_read[reg] = known_regs.pmc.v;
772 known_regs.emu_status &= ~SSP_PMC_SET;
773 known_regb |= 1 << (20+reg);
774 dirty_regb |= 1 << (20+reg);
778 if ((known_regb & KRREG_PMC) && (known_regb & (1 << (20+reg))))
780 u32 pmcv = known_regs.pmac_read[reg];
782 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
784 if ((mode & 0xfff0) == 0x0800)
786 EOP_LDR_IMM(1,7,0x488); // rom_ptr
787 emit_mov_const(A_COND_AL, 0, (pmcv&0xfffff)<<1);
788 EOP_LDRH_REG(0,1,0); // ldrh r0, [r1, r0]
789 known_regs.pmac_read[reg] += 1;
791 else if ((mode & 0x47ff) == 0x0018) // DRAM
793 int inc = get_inc(mode);
794 EOP_LDR_IMM(1,7,0x490); // dram_ptr
795 emit_mov_const(A_COND_AL, 0, (pmcv&0xffff)<<1);
796 EOP_LDRH_REG(0,1,0); // ldrh r0, [r1, r0]
797 if (reg == 4 && (pmcv == 0x187f03 || pmcv == 0x187f04)) // wait loop detection
799 int flag = (pmcv == 0x187f03) ? SSP_WAIT_30FE06 : SSP_WAIT_30FE08;
801 EOP_LDR_IMM(1,7,0x484); // ldr r1, [r7, #0x484] // emu_status
802 EOP_TST_REG_SIMPLE(0,0);
803 EOP_C_DOP_IMM(A_COND_EQ,A_OP_SUB,0,11,11,22/2,1); // subeq r11, r11, #1024
804 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1,24/2,flag>>8); // orreq r1, r1, #SSP_WAIT_30FE08
805 EOP_STR_IMM(1,7,0x484); // str r1, [r7, #0x484] // emu_status
807 known_regs.pmac_read[reg] += inc;
813 known_regs.pmc.v = known_regs.pmac_read[reg];
814 //known_regb |= KRREG_PMC;
815 dirty_regb |= KRREG_PMC;
816 dirty_regb |= 1 << (20+reg);
817 hostreg_r[0] = hostreg_r[1] = -1;
821 known_regb &= ~KRREG_PMC;
822 dirty_regb &= ~KRREG_PMC;
823 known_regb &= ~(1 << (20+reg));
824 dirty_regb &= ~(1 << (20+reg));
826 // call the C code to handle this
828 //tr_flush_dirty_pmcrs();
830 emit_call(A_COND_AL, ssp_pm_read);
834 static void tr_PM0_to_r0(int op)
839 static void tr_PM1_to_r0(int op)
844 static void tr_PM2_to_r0(int op)
849 static void tr_XST_to_r0(int op)
851 EOP_ADD_IMM(0, 7, 24/2, 4); // add r0, r7, #0x400
852 EOP_LDRH_IMM(0, 0, SSP_XST*4+2);
855 static void tr_PM4_to_r0(int op)
860 static void tr_PMC_to_r0(int op)
862 if (known_regb & KRREG_PMC)
864 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
865 known_regs.emu_status |= SSP_PMC_SET;
866 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
867 // do nothing - this is handled elsewhere
869 tr_mov16(0, known_regs.pmc.l);
870 known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
875 EOP_LDR_IMM(1,7,0x484); // ldr r1, [r7, #0x484] // emu_status
878 EOP_LDR_IMM(0, 7, 0x400+SSP_PMC*4);
879 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
880 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
881 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
882 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET); // orrne r1, r1, #..
883 EOP_STR_IMM(1,7,0x484);
884 hostreg_r[0] = hostreg_r[1] = -1;
889 typedef void (tr_read_func)(int op);
891 static tr_read_func *tr_read_funcs[16] =
906 (tr_read_func *)tr_unhandled,
912 // write r0 to general reg handlers. Trashes r1
913 #define TR_WRITE_R0_TO_REG(reg) \
915 hostreg_sspreg_changed(reg); \
916 hostreg_r[0] = (reg)<<16; \
917 if (const_val != -1) { \
918 known_regs.gr[reg].h = const_val; \
919 known_regb |= 1 << (reg); \
921 known_regb &= ~(1 << (reg)); \
925 static void tr_r0_to_GR0(int const_val)
930 static void tr_r0_to_X(int const_val)
932 EOP_MOV_REG_LSL(4, 4, 16); // mov r4, r4, lsl #16
933 EOP_MOV_REG_LSR(4, 4, 16); // mov r4, r4, lsr #16
934 EOP_ORR_REG_LSL(4, 4, 0, 16); // orr r4, r4, r0, lsl #16
935 dirty_regb |= KRREG_P; // touching X or Y makes P dirty.
936 TR_WRITE_R0_TO_REG(SSP_X);
939 static void tr_r0_to_Y(int const_val)
941 EOP_MOV_REG_LSR(4, 4, 16); // mov r4, r4, lsr #16
942 EOP_ORR_REG_LSL(4, 4, 0, 16); // orr r4, r4, r0, lsl #16
943 EOP_MOV_REG_ROR(4, 4, 16); // mov r4, r4, ror #16
944 dirty_regb |= KRREG_P;
945 TR_WRITE_R0_TO_REG(SSP_Y);
948 static void tr_r0_to_A(int const_val)
950 if (tr_predict_al_need()) {
951 EOP_MOV_REG_LSL(5, 5, 16); // mov r5, r5, lsl #16
952 EOP_MOV_REG_LSR(5, 5, 16); // mov r5, r5, lsr #16 @ AL
953 EOP_ORR_REG_LSL(5, 5, 0, 16); // orr r5, r5, r0, lsl #16
956 EOP_MOV_REG_LSL(5, 0, 16);
957 TR_WRITE_R0_TO_REG(SSP_A);
960 static void tr_r0_to_ST(int const_val)
962 // VR doesn't need much accuracy here..
963 EOP_AND_IMM(1, 0, 0, 0x67); // and r1, r0, #0x67
964 EOP_AND_IMM(6, 6, 8/2, 0xe0); // and r6, r6, #7<<29 @ preserve STACK
965 EOP_ORR_REG_LSL(6, 6, 1, 4); // orr r6, r6, r1, lsl #4
966 TR_WRITE_R0_TO_REG(SSP_ST);
968 dirty_regb &= ~KRREG_ST;
971 static void tr_r0_to_STACK(int const_val)
974 EOP_ADD_IMM(1, 7, 24/2, 0x04); // add r1, r7, 0x400
975 EOP_ADD_IMM(1, 1, 0, 0x48); // add r1, r1, 0x048
976 EOP_ADD_REG_LSR(1, 1, 6, 28); // add r1, r1, r6, lsr #28
977 EOP_STRH_SIMPLE(0, 1); // strh r0, [r1]
978 EOP_ADD_IMM(6, 6, 8/2, 0x20); // add r6, r6, #1<<29
982 static void tr_r0_to_PC(int const_val)
985 * do nothing - dispatcher will take care of this
986 EOP_MOV_REG_LSL(1, 0, 16); // mov r1, r0, lsl #16
987 EOP_STR_IMM(1,7,0x400+6*4); // str r1, [r7, #(0x400+6*8)]
992 static void tr_r0_to_AL(int const_val)
994 EOP_MOV_REG_LSR(5, 5, 16); // mov r5, r5, lsr #16
995 EOP_ORR_REG_LSL(5, 5, 0, 16); // orr r5, r5, r0, lsl #16
996 EOP_MOV_REG_ROR(5, 5, 16); // mov r5, r5, ror #16
997 hostreg_sspreg_changed(SSP_AL);
998 if (const_val != -1) {
999 known_regs.gr[SSP_A].l = const_val;
1000 known_regb |= 1 << SSP_AL;
1002 known_regb &= ~(1 << SSP_AL);
1005 static void tr_r0_to_PMX(int reg)
1007 if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
1009 known_regs.pmac_write[reg] = known_regs.pmc.v;
1010 known_regs.emu_status &= ~SSP_PMC_SET;
1011 known_regb |= 1 << (25+reg);
1012 dirty_regb |= 1 << (25+reg);
1016 if ((known_regb & KRREG_PMC) && (known_regb & (1 << (25+reg))))
1020 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1022 mode = known_regs.pmac_write[reg]>>16;
1023 addr = known_regs.pmac_write[reg]&0xffff;
1024 if ((mode & 0x43ff) == 0x0018) // DRAM
1026 int inc = get_inc(mode);
1027 if (mode & 0x0400) tr_unhandled();
1028 EOP_LDR_IMM(1,7,0x490); // dram_ptr
1029 emit_mov_const(A_COND_AL, 2, addr<<1);
1030 EOP_STRH_REG(0,1,2); // strh r0, [r1, r2]
1031 known_regs.pmac_write[reg] += inc;
1033 else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
1035 if (mode & 0x0400) tr_unhandled();
1036 EOP_LDR_IMM(1,7,0x490); // dram_ptr
1037 emit_mov_const(A_COND_AL, 2, addr<<1);
1038 EOP_STRH_REG(0,1,2); // strh r0, [r1, r2]
1039 known_regs.pmac_write[reg] += (addr&1) ? 31 : 1;
1041 else if ((mode & 0x47ff) == 0x001c) // IRAM
1043 int inc = get_inc(mode);
1044 EOP_LDR_IMM(1,7,0x48c); // iram_ptr
1045 emit_mov_const(A_COND_AL, 2, (addr&0x3ff)<<1);
1046 EOP_STRH_REG(0,1,2); // strh r0, [r1, r2]
1048 EOP_STR_IMM(1,7,0x494); // iram_dirty
1049 known_regs.pmac_write[reg] += inc;
1054 known_regs.pmc.v = known_regs.pmac_write[reg];
1055 //known_regb |= KRREG_PMC;
1056 dirty_regb |= KRREG_PMC;
1057 dirty_regb |= 1 << (25+reg);
1058 hostreg_r[1] = hostreg_r[2] = -1;
1062 known_regb &= ~KRREG_PMC;
1063 dirty_regb &= ~KRREG_PMC;
1064 known_regb &= ~(1 << (25+reg));
1065 dirty_regb &= ~(1 << (25+reg));
1067 // call the C code to handle this
1068 tr_flush_dirty_ST();
1069 //tr_flush_dirty_pmcrs();
1071 emit_call(A_COND_AL, ssp_pm_write);
1075 static void tr_r0_to_PM0(int const_val)
1080 static void tr_r0_to_PM1(int const_val)
1085 static void tr_r0_to_PM2(int const_val)
1090 static void tr_r0_to_PM4(int const_val)
1095 static void tr_r0_to_PMC(int const_val)
1097 if ((known_regb & KRREG_PMC) && const_val != -1)
1099 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
1100 known_regs.emu_status |= SSP_PMC_SET;
1101 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1102 known_regs.pmc.h = const_val;
1104 known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
1105 known_regs.pmc.l = const_val;
1110 tr_flush_dirty_ST();
1111 if (known_regb & KRREG_PMC) {
1112 emit_mov_const(A_COND_AL, 1, known_regs.pmc.v);
1113 EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
1114 known_regb &= ~KRREG_PMC;
1115 dirty_regb &= ~KRREG_PMC;
1117 EOP_LDR_IMM(1,7,0x484); // ldr r1, [r7, #0x484] // emu_status
1118 EOP_ADD_IMM(2,7,24/2,4); // add r2, r7, #0x400
1119 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
1120 EOP_C_AM3_IMM(A_COND_EQ,1,0,2,0,0,1,SSP_PMC*4); // strxx r0, [r2, #SSP_PMC]
1121 EOP_C_AM3_IMM(A_COND_NE,1,0,2,0,0,1,SSP_PMC*4+2);
1122 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
1123 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
1124 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET); // orrne r1, r1, #..
1125 EOP_STR_IMM(1,7,0x484);
1126 hostreg_r[1] = hostreg_r[2] = -1;
1130 typedef void (tr_write_func)(int const_val);
1132 static tr_write_func *tr_write_funcs[16] =
1141 (tr_write_func *)tr_unhandled,
1145 (tr_write_func *)tr_unhandled,
1147 (tr_write_func *)tr_unhandled,
1152 static void tr_mac_load_XY(int op)
1154 tr_rX_read(op&3, (op>>2)&3); // X
1155 EOP_MOV_REG_LSL(4, 0, 16);
1156 tr_rX_read(((op>>4)&3)|4, (op>>6)&3); // Y
1157 EOP_ORR_REG_SIMPLE(4, 0);
1158 dirty_regb |= KRREG_P;
1159 hostreg_sspreg_changed(SSP_X);
1160 hostreg_sspreg_changed(SSP_Y);
1161 known_regb &= ~KRREG_X;
1162 known_regb &= ~KRREG_Y;
1165 // -----------------------------------------------------
1167 static int tr_detect_set_pm(unsigned int op, int *pc, int imm)
1170 if (!((op&0xfef0) == 0x08e0 && (PROGRAM(*pc)&0xfef0) == 0x08e0)) return 0;
1176 pmcv = imm | (PROGRAM((*pc)++) << 16);
1177 known_regs.pmc.v = pmcv;
1178 known_regb |= KRREG_PMC;
1179 dirty_regb |= KRREG_PMC;
1180 known_regs.emu_status |= SSP_PMC_SET;
1183 // check for possible reg programming
1184 tmpv = PROGRAM(*pc);
1185 if ((tmpv & 0xfff8) == 0x08 || (tmpv & 0xff8f) == 0x80)
1187 int is_write = (tmpv & 0xff8f) == 0x80;
1188 int reg = is_write ? ((tmpv>>4)&0x7) : (tmpv&0x7);
1189 if (reg > 4) tr_unhandled();
1190 if ((tmpv & 0x0f) != 0 && (tmpv & 0xf0) != 0) tr_unhandled();
1191 known_regs.pmac_read[is_write ? reg + 5 : reg] = pmcv;
1192 known_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1193 dirty_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1194 known_regs.emu_status &= ~SSP_PMC_SET;
1204 static const short pm0_block_seq[] = { 0x0880, 0, 0x0880, 0, 0x0840, 0x60 };
1206 static int tr_detect_pm0_block(unsigned int op, int *pc, int imm)
1213 if (op != 0x0840 || imm != 0) return 0;
1214 pp = PROGRAM_P(*pc);
1215 if (memcmp(pp, pm0_block_seq, sizeof(pm0_block_seq)) != 0) return 0;
1217 EOP_AND_IMM(6, 6, 8/2, 0xe0); // and r6, r6, #7<<29 @ preserve STACK
1218 EOP_ORR_IMM(6, 6, 24/2, 6); // orr r6, r6, 0x600
1219 hostreg_sspreg_changed(SSP_ST);
1220 known_regs.gr[SSP_ST].h = 0x60;
1221 known_regb |= 1 << SSP_ST;
1222 dirty_regb &= ~KRREG_ST;
1228 static int tr_detect_rotate(unsigned int op, int *pc, int imm)
1234 if (op != 0x02e3 || PROGRAM(*pc) != 0x04e3 || PROGRAM(*pc + 1) != 0x000f) return 0;
1237 EOP_MOV_REG_LSL(0, 0, 4);
1238 EOP_ORR_REG_LSR(0, 0, 0, 16);
1245 // -----------------------------------------------------
1247 static int translate_op(unsigned int op, int *pc, int imm, int *end_cond, int *jump_pc)
1249 u32 tmpv, tmpv2, tmpv3;
1251 known_regs.gr[SSP_PC].h = *pc;
1257 if (op == 0) { ret++; break; } // nop
1258 tmpv = op & 0xf; // src
1259 tmpv2 = (op >> 4) & 0xf; // dst
1260 if (tmpv2 == SSP_A && tmpv == SSP_P) { // ld A, P
1262 EOP_MOV_REG_SIMPLE(5, 10);
1263 hostreg_sspreg_changed(SSP_A);
1264 known_regb &= ~(KRREG_A|KRREG_AL);
1267 tr_read_funcs[tmpv](op);
1268 tr_write_funcs[tmpv2]((known_regb & (1 << tmpv)) ? known_regs.gr[tmpv].h : -1);
1269 if (tmpv2 == SSP_PC) {
1271 *end_cond = -A_COND_AL;
1277 int r = (op&3) | ((op>>6)&4);
1278 int mod = (op>>2)&3;
1279 tmpv = (op >> 4) & 0xf; // dst
1280 ret = tr_detect_rotate(op, pc, imm);
1286 while (PROGRAM(*pc) == op) {
1287 (*pc)++; cnt++; ret++;
1290 tr_ptrr_mod(r, mod, 1, cnt); // skip
1292 tr_write_funcs[tmpv](-1);
1293 if (tmpv == SSP_PC) {
1295 *end_cond = -A_COND_AL;
1302 tmpv = (op >> 4) & 0xf; // src
1303 tr_read_funcs[tmpv](op);
1309 tr_bank_read(op&0x1ff);
1315 tmpv = (op & 0xf0) >> 4; // dst
1316 ret = tr_detect_pm0_block(op, pc, imm);
1318 ret = tr_detect_set_pm(op, pc, imm);
1321 tr_write_funcs[tmpv](imm);
1322 if (tmpv == SSP_PC) {
1330 tmpv2 = (op >> 4) & 0xf; // dst
1332 tr_write_funcs[tmpv2](-1);
1333 if (tmpv2 == SSP_PC) {
1335 *end_cond = -A_COND_AL;
1348 tr_bank_write(op&0x1ff);
1354 r = (op&3) | ((op>>6)&4); // src
1355 tmpv2 = (op >> 4) & 0xf; // dst
1356 if ((r&3) == 3) tr_unhandled();
1358 if (known_regb & (1 << (r+8))) {
1359 tr_mov16(0, known_regs.r[r]);
1360 tr_write_funcs[tmpv2](known_regs.r[r]);
1362 int reg = (r < 4) ? 8 : 9;
1363 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8); // mov r0, r{7,8}, lsr #lsr
1364 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff); // and r0, r{7,8}, <mask>
1366 tr_write_funcs[tmpv2](-1);
1374 r = (op&3) | ((op>>6)&4); // dst
1375 tmpv = (op >> 4) & 0xf; // src
1376 if ((r&3) == 3) tr_unhandled();
1378 if (known_regb & (1 << tmpv)) {
1379 known_regs.r[r] = known_regs.gr[tmpv].h;
1380 known_regb |= 1 << (r + 8);
1381 dirty_regb |= 1 << (r + 8);
1383 int reg = (r < 4) ? 8 : 9;
1384 int ror = ((4 - (r&3))*8) & 0x1f;
1385 tr_read_funcs[tmpv](op);
1386 EOP_BIC_IMM(reg, reg, ror/2, 0xff); // bic r{7,8}, r{7,8}, <mask>
1387 EOP_AND_IMM(0, 0, 0, 0xff); // and r0, r0, 0xff
1388 EOP_ORR_REG_LSL(reg, reg, 0, (r&3)*8); // orr r{7,8}, r{7,8}, r0, lsl #lsl
1390 known_regb &= ~(1 << (r+8));
1391 dirty_regb &= ~(1 << (r+8));
1399 known_regs.r[tmpv] = op;
1400 known_regb |= 1 << (tmpv + 8);
1401 dirty_regb |= 1 << (tmpv + 8);
1406 u32 *jump_op = NULL;
1407 tmpv = tr_cond_check(op);
1408 if (tmpv != A_COND_AL) {
1409 jump_op = tcache_ptr;
1410 EOP_MOV_IMM(0, 0, 0); // placeholder for branch
1413 tr_r0_to_STACK(*pc);
1414 if (tmpv != A_COND_AL) {
1415 u32 *real_ptr = tcache_ptr;
1416 tcache_ptr = jump_op;
1417 EOP_C_B(tr_neg_cond(tmpv),0,real_ptr - jump_op - 2);
1418 tcache_ptr = real_ptr;
1420 tr_mov16_cond(tmpv, 0, imm);
1421 if (tmpv != A_COND_AL)
1422 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1423 tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1432 tmpv2 = (op >> 4) & 0xf; // dst
1434 EOP_LDR_IMM(1,7,0x48c); // ptr_iram_rom
1435 EOP_ADD_REG_LSL(0,1,0,1); // add r0, r1, r0, lsl #1
1436 EOP_LDRH_SIMPLE(0,0); // ldrh r0, [r0]
1437 hostreg_r[0] = hostreg_r[1] = -1;
1438 tr_write_funcs[tmpv2](-1);
1439 if (tmpv2 == SSP_PC) {
1441 *end_cond = -A_COND_AL;
1447 tmpv = tr_cond_check(op);
1448 tr_mov16_cond(tmpv, 0, imm);
1449 if (tmpv != A_COND_AL)
1450 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1451 tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1459 // check for repeats of this op
1461 while (PROGRAM(*pc) == op && (op & 7) != 6) {
1465 if ((op&0xf0) != 0) // !always
1468 tmpv2 = tr_cond_check(op);
1470 case 2: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_ASR,5); break; // shr (arithmetic)
1471 case 3: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_LSL,5); break; // shl
1472 case 6: EOP_C_DOP_IMM(tmpv2,A_OP_RSB,1,5,5,0,0); break; // neg
1473 case 7: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_EOR,0,5,1,31,A_AM1_ASR,5); // eor r1, r5, r5, asr #31
1474 EOP_C_DOP_REG_XIMM(tmpv2,A_OP_ADD,1,1,5,31,A_AM1_LSR,5); // adds r5, r1, r5, lsr #31
1475 hostreg_r[1] = -1; break; // abs
1476 default: tr_unhandled();
1479 hostreg_sspreg_changed(SSP_A);
1480 dirty_regb |= KRREG_ST;
1481 known_regb &= ~KRREG_ST;
1482 known_regb &= ~(KRREG_A|KRREG_AL);
1491 EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_SUB,1,5,5,0,A_AM1_LSL,10); // subs r5, r5, r10
1492 hostreg_sspreg_changed(SSP_A);
1493 known_regb &= ~(KRREG_A|KRREG_AL);
1494 dirty_regb |= KRREG_ST;
1497 // mpya (rj), (ri), b
1502 EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_ADD,1,5,5,0,A_AM1_LSL,10); // adds r5, r5, r10
1503 hostreg_sspreg_changed(SSP_A);
1504 known_regb &= ~(KRREG_A|KRREG_AL);
1505 dirty_regb |= KRREG_ST;
1508 // mld (rj), (ri), b
1510 EOP_C_DOP_IMM(A_COND_AL,A_OP_MOV,1,0,5,0,0); // movs r5, #0
1511 hostreg_sspreg_changed(SSP_A);
1512 known_regs.gr[SSP_A].v = 0;
1513 known_regb |= (KRREG_A|KRREG_AL);
1514 dirty_regb |= KRREG_ST;
1525 tmpv = op & 0xf; // src
1526 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1527 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1528 if (tmpv == SSP_P) {
1530 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL,10); // OPs r5, r5, r10
1531 } else if (tmpv == SSP_A) {
1532 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL, 5); // OPs r5, r5, r5
1534 tr_read_funcs[tmpv](op);
1535 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL, 0); // OPs r5, r5, r0, lsl #16
1537 hostreg_sspreg_changed(SSP_A);
1538 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1539 dirty_regb |= KRREG_ST;
1549 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1550 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1551 tr_rX_read((op&3)|((op>>6)&4), (op>>2)&3);
1552 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1553 hostreg_sspreg_changed(SSP_A);
1554 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1555 dirty_regb |= KRREG_ST;
1565 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1566 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1567 tr_bank_read(op&0x1ff);
1568 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1569 hostreg_sspreg_changed(SSP_A);
1570 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1571 dirty_regb |= KRREG_ST;
1581 tmpv = (op & 0xf0) >> 4;
1582 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1583 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1585 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1586 hostreg_sspreg_changed(SSP_A);
1587 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1588 dirty_regb |= KRREG_ST;
1598 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1599 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1601 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1602 hostreg_sspreg_changed(SSP_A);
1603 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1604 dirty_regb |= KRREG_ST;
1615 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1616 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1617 r = (op&3) | ((op>>6)&4); // src
1618 if ((r&3) == 3) tr_unhandled();
1620 if (known_regb & (1 << (r+8))) {
1621 EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,known_regs.r[r]); // OPs r5, r5, #val<<16
1623 int reg = (r < 4) ? 8 : 9;
1624 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8); // mov r0, r{7,8}, lsr #lsr
1625 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff); // and r0, r{7,8}, <mask>
1626 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1629 hostreg_sspreg_changed(SSP_A);
1630 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1631 dirty_regb |= KRREG_ST;
1642 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1643 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1644 EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,op & 0xff); // OPs r5, r5, #val<<16
1645 hostreg_sspreg_changed(SSP_A);
1646 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1647 dirty_regb |= KRREG_ST;
1656 static void emit_block_prologue(void)
1658 // check if there are enough cycles..
1659 // note: r0 must contain PC of current block
1660 EOP_CMP_IMM(11,0,0); // cmp r11, #0
1661 emit_call(A_COND_LE, ssp_drc_end);
1665 * >0: direct (un)conditional jump
1668 static void emit_block_epilogue(int cycles, int cond, int pc, int end_pc)
1670 if (cycles > 0xff) { elprintf(EL_ANOMALY, "large cycle count: %i\n", cycles); cycles = 0xff; }
1671 EOP_SUB_IMM(11,11,0,cycles); // sub r11, r11, #cycles
1673 if (cond < 0 || (end_pc >= 0x400 && pc < 0x400)) {
1674 // indirect jump, or rom -> iram jump, must use dispatcher
1675 emit_jump(A_COND_AL, ssp_drc_next);
1677 else if (cond == A_COND_AL) {
1678 u32 *target = (pc < 0x400) ? ssp_block_table_iram[ssp->drc.iram_context][pc] : ssp_block_table[pc];
1680 emit_jump(A_COND_AL, target);
1682 emit_jump(A_COND_AL, ssp_drc_next);
1683 // cause the next block to be emitted over jump instrction
1688 u32 *target1 = (pc < 0x400) ? ssp_block_table_iram[ssp->drc.iram_context][pc] : ssp_block_table[pc];
1689 u32 *target2 = (end_pc < 0x400) ? ssp_block_table_iram[ssp->drc.iram_context][end_pc] : ssp_block_table[end_pc];
1690 if (target1 != NULL)
1691 emit_jump(cond, target1);
1692 else emit_call(cond, ssp_drc_next_patch);
1693 if (target2 != NULL)
1694 emit_jump(tr_neg_cond(cond), target2); // neg_cond, to be able to swap jumps if needed
1695 else emit_call(tr_neg_cond(cond), ssp_drc_next_patch);
1699 void *ssp_translate_block(int pc)
1701 unsigned int op, op1, imm, ccount = 0;
1702 unsigned int *block_start;
1703 int ret, end_cond = A_COND_AL, jump_pc = -1;
1705 //printf("translate %04x -> %04x\n", pc<<1, (tcache_ptr-tcache)<<2);
1706 block_start = tcache_ptr;
1708 dirty_regb = KRREG_P;
1709 known_regs.emu_status = 0;
1712 emit_block_prologue();
1714 for (; ccount < 100;)
1720 if ((op1 & 0xf) == 4 || (op1 & 0xf) == 6)
1721 imm = PROGRAM(pc++); // immediate
1723 ret = translate_op(op, &pc, imm, &end_cond, &jump_pc);
1726 elprintf(EL_ANOMALY, "NULL func! op=%08x (%02x)\n", op, op1);
1730 ccount += ret & 0xffff;
1731 if (ret & 0x10000) break;
1734 if (ccount >= 100) {
1735 end_cond = A_COND_AL;
1737 emit_mov_const(A_COND_AL, 0, pc);
1740 tr_flush_dirty_prs();
1741 tr_flush_dirty_ST();
1742 tr_flush_dirty_pmcrs();
1743 emit_block_epilogue(ccount, end_cond, jump_pc, pc);
1745 if (tcache_ptr - tcache > SSP_TCACHE_SIZE/4) {
1746 elprintf(EL_ANOMALY, "tcache overflow!\n");
1753 //printf("%i blocks, %i bytes, k=%.3f\n", nblocks, (tcache_ptr - tcache)*4,
1754 // (double)(tcache_ptr - tcache) / (double)n_in_ops);
1758 FILE *f = fopen("tcache.bin", "wb");
1759 fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
1772 // -----------------------------------------------------
1774 static void ssp1601_state_load(void)
1776 ssp->drc.iram_dirty = 1;
1777 ssp->drc.iram_context = 0;
1780 int ssp1601_dyn_startup(void)
1782 memset(tcache, 0, SSP_TCACHE_SIZE);
1783 memset(ssp_block_table, 0, sizeof(ssp_block_table));
1784 memset(ssp_block_table_iram, 0, sizeof(ssp_block_table_iram));
1785 tcache_ptr = tcache;
1787 PicoLoadStateHook = ssp1601_state_load;
1792 ssp_block_table[0x800/2] = (void *) ssp_hle_800;
1793 ssp_block_table[0x902/2] = (void *) ssp_hle_902;
1794 ssp_block_table_iram[ 7][0x030/2] = (void *) ssp_hle_07_030;
1795 ssp_block_table_iram[ 7][0x036/2] = (void *) ssp_hle_07_036;
1796 ssp_block_table_iram[ 7][0x6d6/2] = (void *) ssp_hle_07_6d6;
1797 ssp_block_table_iram[11][0x12c/2] = (void *) ssp_hle_11_12c;
1798 ssp_block_table_iram[11][0x384/2] = (void *) ssp_hle_11_384;
1799 ssp_block_table_iram[11][0x38a/2] = (void *) ssp_hle_11_38a;
1806 void ssp1601_dyn_reset(ssp1601_t *ssp)
1809 ssp->drc.iram_dirty = 1;
1810 ssp->drc.iram_context = 0;
1811 // must do this here because ssp is not available @ startup()
1812 ssp->drc.ptr_rom = (u32) Pico.rom;
1813 ssp->drc.ptr_iram_rom = (u32) svp->iram_rom;
1814 ssp->drc.ptr_dram = (u32) svp->dram;
1815 ssp->drc.ptr_btable = (u32) ssp_block_table;
1816 ssp->drc.ptr_btable_iram = (u32) ssp_block_table_iram;
1818 // prevent new versions of IRAM from appearing
1819 memset(svp->iram_rom, 0, 0x800);
1822 void ssp1601_dyn_run(int cycles)
1824 if (ssp->emu_status & SSP_WAIT_MASK) return;
1827 ssp_translate_block(DUMP_BLOCK >> 1);
1830 ssp_drc_entry(cycles);