2 ** This is a bunch of remains of original fm.c from MAME project. All stuff
\r
3 ** unrelated to ym2612 was removed, multiple chip support was removed,
\r
4 ** some parts of code were slightly rewritten and tied to the emulator.
\r
6 ** SSG-EG was also removed, because it's rarely used, Sega2.doc even does not
\r
7 ** document it ("proprietary") and tells to write 0 to SSG-EG control register.
\r
12 ** File: fm.c -- software implementation of Yamaha FM sound generator
\r
14 ** Copyright (C) 2001, 2002, 2003 Jarek Burczynski (bujar at mame dot net)
\r
15 ** Copyright (C) 1998 Tatsuyuki Satoh , MultiArcadeMachineEmulator development
\r
17 ** Version 1.4 (final beta)
\r
24 ** 03-08-2003 Jarek Burczynski:
\r
25 ** - fixed YM2608 initial values (after the reset)
\r
26 ** - fixed flag and irqmask handling (YM2608)
\r
27 ** - fixed BUFRDY flag handling (YM2608)
\r
29 ** 14-06-2003 Jarek Burczynski:
\r
30 ** - implemented all of the YM2608 status register flags
\r
31 ** - implemented support for external memory read/write via YM2608
\r
32 ** - implemented support for deltat memory limit register in YM2608 emulation
\r
34 ** 22-05-2003 Jarek Burczynski:
\r
35 ** - fixed LFO PM calculations (copy&paste bugfix)
\r
37 ** 08-05-2003 Jarek Burczynski:
\r
38 ** - fixed SSG support
\r
40 ** 22-04-2003 Jarek Burczynski:
\r
41 ** - implemented 100% correct LFO generator (verified on real YM2610 and YM2608)
\r
43 ** 15-04-2003 Jarek Burczynski:
\r
44 ** - added support for YM2608's register 0x110 - status mask
\r
46 ** 01-12-2002 Jarek Burczynski:
\r
47 ** - fixed register addressing in YM2608, YM2610, YM2610B chips. (verified on real YM2608)
\r
48 ** The addressing patch used for early Neo-Geo games can be removed now.
\r
50 ** 26-11-2002 Jarek Burczynski, Nicola Salmoria:
\r
51 ** - recreated YM2608 ADPCM ROM using data from real YM2608's output which leads to:
\r
52 ** - added emulation of YM2608 drums.
\r
53 ** - output of YM2608 is two times lower now - same as YM2610 (verified on real YM2608)
\r
55 ** 16-08-2002 Jarek Burczynski:
\r
56 ** - binary exact Envelope Generator (verified on real YM2203);
\r
57 ** identical to YM2151
\r
58 ** - corrected 'off by one' error in feedback calculations (when feedback is off)
\r
59 ** - corrected connection (algorithm) calculation (verified on real YM2203 and YM2610)
\r
61 ** 18-12-2001 Jarek Burczynski:
\r
62 ** - added SSG-EG support (verified on real YM2203)
\r
64 ** 12-08-2001 Jarek Burczynski:
\r
65 ** - corrected ym_sin_tab and ym_tl_tab data (verified on real chip)
\r
66 ** - corrected feedback calculations (verified on real chip)
\r
67 ** - corrected phase generator calculations (verified on real chip)
\r
68 ** - corrected envelope generator calculations (verified on real chip)
\r
69 ** - corrected FM volume level (YM2610 and YM2610B).
\r
70 ** - changed YMxxxUpdateOne() functions (YM2203, YM2608, YM2610, YM2610B, YM2612) :
\r
71 ** this was needed to calculate YM2610 FM channels output correctly.
\r
72 ** (Each FM channel is calculated as in other chips, but the output of the channel
\r
73 ** gets shifted right by one *before* sending to accumulator. That was impossible to do
\r
74 ** with previous implementation).
\r
76 ** 23-07-2001 Jarek Burczynski, Nicola Salmoria:
\r
77 ** - corrected YM2610 ADPCM type A algorithm and tables (verified on real chip)
\r
79 ** 11-06-2001 Jarek Burczynski:
\r
80 ** - corrected end of sample bug in ADPCMA_calc_cha().
\r
81 ** Real YM2610 checks for equality between current and end addresses (only 20 LSB bits).
\r
83 ** 08-12-98 hiro-shi:
\r
84 ** rename ADPCMA -> ADPCMB, ADPCMB -> ADPCMA
\r
85 ** move ROM limit check.(CALC_CH? -> 2610Write1/2)
\r
86 ** test program (ADPCMB_TEST)
\r
87 ** move ADPCM A/B end check.
\r
88 ** ADPCMB repeat flag(no check)
\r
89 ** change ADPCM volume rate (8->16) (32->48).
\r
91 ** 09-12-98 hiro-shi:
\r
92 ** change ADPCM volume. (8->16, 48->64)
\r
93 ** replace ym2610 ch0/3 (YM-2610B)
\r
94 ** change ADPCM_SHIFT (10->8) missing bank change 0x4000-0xffff.
\r
95 ** add ADPCM_SHIFT_MASK
\r
96 ** change ADPCMA_DECODE_MIN/MAX.
\r
102 /************************************************************************/
\r
103 /* comment of hiro-shi(Hiromitsu Shioya) */
\r
104 /* YM2610(B) = OPN-B */
\r
105 /* YM2610 : PSG:3ch FM:4ch ADPCM(18.5KHz):6ch DeltaT ADPCM:1ch */
\r
106 /* YM2610B : PSG:3ch FM:6ch ADPCM(18.5KHz):6ch DeltaT ADPCM:1ch */
\r
107 /************************************************************************/
\r
109 //#include <stdio.h>
\r
111 #include <string.h>
\r
114 #include "ym2612.h"
\r
116 #ifndef EXTERNAL_YM2612
\r
117 #include <stdlib.h>
\r
118 // let it be 1 global to simplify things
\r
119 static YM2612 ym2612;
\r
122 extern YM2612 *ym2612_940;
\r
123 #define ym2612 (*ym2612_940)
\r
127 void memset32(int *dest, int c, int count);
\r
131 #pragma warning (disable:4100) // unreferenced formal parameter
\r
132 #pragma warning (disable:4244)
\r
133 #pragma warning (disable:4245) // signed/unsigned in conversion
\r
134 #pragma warning (disable:4710)
\r
135 #pragma warning (disable:4018) // signed/unsigned
\r
139 #define INLINE static __inline
\r
143 #define M_PI 3.14159265358979323846
\r
149 #define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */
\r
150 #define EG_SH 16 /* 16.16 fixed point (envelope generator timing) */
\r
151 #define LFO_SH 25 /* 7.25 fixed point (LFO calculations) */
\r
152 #define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */
\r
154 #define ENV_BITS 10
\r
155 #define ENV_LEN (1<<ENV_BITS)
\r
156 #define ENV_STEP (128.0/ENV_LEN)
\r
158 #define MAX_ATT_INDEX (ENV_LEN-1) /* 1023 */
\r
159 #define MIN_ATT_INDEX (0) /* 0 */
\r
167 #define SIN_BITS 10
\r
168 #define SIN_LEN (1<<SIN_BITS)
\r
169 #define SIN_MASK (SIN_LEN-1)
\r
171 #define TL_RES_LEN (256) /* 8 bits addressing (real chip) */
\r
173 #define EG_TIMER_OVERFLOW (3*(1<<EG_SH)) /* envelope generator timer overflows every 3 samples (on real chip) */
\r
175 #define MAXOUT (+32767)
\r
176 #define MINOUT (-32768)
\r
179 #define Limit(val, max,min) { \
\r
180 if ( val > max ) val = max; \
\r
181 else if ( val < min ) val = min; \
\r
185 /* TL_TAB_LEN is calculated as:
\r
186 * 13 - sinus amplitude bits (Y axis)
\r
187 * 2 - sinus sign bit (Y axis)
\r
188 * TL_RES_LEN - sinus resolution (X axis)
\r
190 //#define TL_TAB_LEN (13*2*TL_RES_LEN)
\r
191 #define TL_TAB_LEN (13*TL_RES_LEN*256/8) // 106496*2
\r
192 UINT16 ym_tl_tab[TL_TAB_LEN];
\r
194 /* ~3K wasted but oh well */
\r
195 UINT16 ym_tl_tab2[13*TL_RES_LEN];
\r
197 #define ENV_QUIET (2*13*TL_RES_LEN/8)
\r
199 /* sin waveform table in 'decibel' scale (use only period/4 values) */
\r
200 static UINT16 ym_sin_tab[256];
\r
202 /* sustain level table (3dB per step) */
\r
203 /* bit0, bit1, bit2, bit3, bit4, bit5, bit6 */
\r
204 /* 1, 2, 4, 8, 16, 32, 64 (value)*/
\r
205 /* 0.75, 1.5, 3, 6, 12, 24, 48 (dB)*/
\r
207 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
\r
208 #define SC(db) (UINT32) ( db * (4.0/ENV_STEP) )
\r
209 static const UINT32 sl_table[16]={
\r
210 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
\r
211 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
\r
217 #define RATE_STEPS (8)
\r
218 static const UINT8 eg_inc[19*RATE_STEPS]={
\r
220 /*cycle:0 1 2 3 4 5 6 7*/
\r
222 /* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..11 0 (increment by 0 or 1) */
\r
223 /* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..11 1 */
\r
224 /* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..11 2 */
\r
225 /* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..11 3 */
\r
227 /* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 12 0 (increment by 1) */
\r
228 /* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 12 1 */
\r
229 /* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 12 2 */
\r
230 /* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 12 3 */
\r
232 /* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 13 0 (increment by 2) */
\r
233 /* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 13 1 */
\r
234 /*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 13 2 */
\r
235 /*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 13 3 */
\r
237 /*12 */ 4,4, 4,4, 4,4, 4,4, /* rate 14 0 (increment by 4) */
\r
238 /*13 */ 4,4, 4,8, 4,4, 4,8, /* rate 14 1 */
\r
239 /*14 */ 4,8, 4,8, 4,8, 4,8, /* rate 14 2 */
\r
240 /*15 */ 4,8, 8,8, 4,8, 8,8, /* rate 14 3 */
\r
242 /*16 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 8) */
\r
243 /*17 */ 16,16,16,16,16,16,16,16, /* rates 15 2, 15 3 for attack */
\r
244 /*18 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */
\r
249 #define PACK(a0,a1,a2,a3,a4,a5,a6,a7) ((a7<<21)|(a6<<18)|(a5<<15)|(a4<<12)|(a3<<9)|(a2<<6)|(a1<<3)|(a0<<0))
\r
250 static const UINT32 eg_inc_pack[19] =
\r
252 /* 0 */ PACK(0,1,0,1,0,1,0,1), /* rates 00..11 0 (increment by 0 or 1) */
\r
253 /* 1 */ PACK(0,1,0,1,1,1,0,1), /* rates 00..11 1 */
\r
254 /* 2 */ PACK(0,1,1,1,0,1,1,1), /* rates 00..11 2 */
\r
255 /* 3 */ PACK(0,1,1,1,1,1,1,1), /* rates 00..11 3 */
\r
257 /* 4 */ PACK(1,1,1,1,1,1,1,1), /* rate 12 0 (increment by 1) */
\r
258 /* 5 */ PACK(1,1,1,2,1,1,1,2), /* rate 12 1 */
\r
259 /* 6 */ PACK(1,2,1,2,1,2,1,2), /* rate 12 2 */
\r
260 /* 7 */ PACK(1,2,2,2,1,2,2,2), /* rate 12 3 */
\r
262 /* 8 */ PACK(2,2,2,2,2,2,2,2), /* rate 13 0 (increment by 2) */
\r
263 /* 9 */ PACK(2,2,2,3,2,2,2,3), /* rate 13 1 */
\r
264 /*10 */ PACK(2,3,2,3,2,3,2,3), /* rate 13 2 */
\r
265 /*11 */ PACK(2,3,3,3,2,3,3,3), /* rate 13 3 */
\r
267 /*12 */ PACK(3,3,3,3,3,3,3,3), /* rate 14 0 (increment by 4) */
\r
268 /*13 */ PACK(3,3,3,4,3,3,3,4), /* rate 14 1 */
\r
269 /*14 */ PACK(3,4,3,4,3,4,3,4), /* rate 14 2 */
\r
270 /*15 */ PACK(3,4,4,4,3,4,4,4), /* rate 14 3 */
\r
272 /*16 */ PACK(4,4,4,4,4,4,4,4), /* rates 15 0, 15 1, 15 2, 15 3 (increment by 8) */
\r
273 /*17 */ PACK(5,5,5,5,5,5,5,5), /* rates 15 2, 15 3 for attack */
\r
274 /*18 */ PACK(0,0,0,0,0,0,0,0), /* infinity rates for attack and decay(s) */
\r
278 //#define O(a) (a*RATE_STEPS)
\r
281 /*note that there is no O(17) in this table - it's directly in the code */
\r
282 static const UINT8 eg_rate_select[32+64+32]={ /* Envelope Generator rates (32 + 64 rates + 32 RKS) */
\r
283 /* 32 infinite time rates */
\r
284 O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
\r
285 O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
\r
286 O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
\r
287 O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
\r
290 O( 0),O( 1),O( 2),O( 3),
\r
291 O( 0),O( 1),O( 2),O( 3),
\r
292 O( 0),O( 1),O( 2),O( 3),
\r
293 O( 0),O( 1),O( 2),O( 3),
\r
294 O( 0),O( 1),O( 2),O( 3),
\r
295 O( 0),O( 1),O( 2),O( 3),
\r
296 O( 0),O( 1),O( 2),O( 3),
\r
297 O( 0),O( 1),O( 2),O( 3),
\r
298 O( 0),O( 1),O( 2),O( 3),
\r
299 O( 0),O( 1),O( 2),O( 3),
\r
300 O( 0),O( 1),O( 2),O( 3),
\r
301 O( 0),O( 1),O( 2),O( 3),
\r
304 O( 4),O( 5),O( 6),O( 7),
\r
307 O( 8),O( 9),O(10),O(11),
\r
310 O(12),O(13),O(14),O(15),
\r
313 O(16),O(16),O(16),O(16),
\r
315 /* 32 dummy rates (same as 15 3) */
\r
316 O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),
\r
317 O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),
\r
318 O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),
\r
319 O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16)
\r
324 /*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15*/
\r
325 /*shift 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0 */
\r
326 /*mask 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0, 0 */
\r
329 static const UINT8 eg_rate_shift[32+64+32]={ /* Envelope Generator counter shifts (32 + 64 rates + 32 RKS) */
\r
330 /* 32 infinite time rates */
\r
331 O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
\r
332 O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
\r
333 O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
\r
334 O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
\r
337 O(11),O(11),O(11),O(11),
\r
338 O(10),O(10),O(10),O(10),
\r
339 O( 9),O( 9),O( 9),O( 9),
\r
340 O( 8),O( 8),O( 8),O( 8),
\r
341 O( 7),O( 7),O( 7),O( 7),
\r
342 O( 6),O( 6),O( 6),O( 6),
\r
343 O( 5),O( 5),O( 5),O( 5),
\r
344 O( 4),O( 4),O( 4),O( 4),
\r
345 O( 3),O( 3),O( 3),O( 3),
\r
346 O( 2),O( 2),O( 2),O( 2),
\r
347 O( 1),O( 1),O( 1),O( 1),
\r
348 O( 0),O( 0),O( 0),O( 0),
\r
351 O( 0),O( 0),O( 0),O( 0),
\r
354 O( 0),O( 0),O( 0),O( 0),
\r
357 O( 0),O( 0),O( 0),O( 0),
\r
360 O( 0),O( 0),O( 0),O( 0),
\r
362 /* 32 dummy rates (same as 15 3) */
\r
363 O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
\r
364 O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
\r
365 O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
\r
366 O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0)
\r
371 static const UINT8 dt_tab[4 * 32]={
\r
372 /* this is YM2151 and YM2612 phase increment data (in 10.10 fixed point format)*/
\r
374 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
\r
375 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
\r
377 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
\r
378 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8,
\r
380 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,
\r
381 5, 6, 6, 7, 8, 8, 9,10,11,12,13,14,16,16,16,16,
\r
383 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7,
\r
384 8 , 8, 9,10,11,12,13,14,16,17,19,20,22,22,22,22
\r
388 /* OPN key frequency number -> key code follow table */
\r
389 /* fnum higher 4bit -> keycode lower 2bit */
\r
390 static const UINT8 opn_fktable[16] = {0,0,0,0,0,0,0,1,2,3,3,3,3,3,3,3};
\r
393 /* 8 LFO speed parameters */
\r
394 /* each value represents number of samples that one LFO level will last for */
\r
395 static const UINT32 lfo_samples_per_step[8] = {108, 77, 71, 67, 62, 44, 8, 5};
\r
399 /*There are 4 different LFO AM depths available, they are:
\r
400 0 dB, 1.4 dB, 5.9 dB, 11.8 dB
\r
401 Here is how it is generated (in EG steps):
\r
403 11.8 dB = 0, 2, 4, 6, 8, 10,12,14,16...126,126,124,122,120,118,....4,2,0
\r
404 5.9 dB = 0, 1, 2, 3, 4, 5, 6, 7, 8....63, 63, 62, 61, 60, 59,.....2,1,0
\r
405 1.4 dB = 0, 0, 0, 0, 1, 1, 1, 1, 2,...15, 15, 15, 15, 14, 14,.....0,0,0
\r
407 (1.4 dB is loosing precision as you can see)
\r
409 It's implemented as generator from 0..126 with step 2 then a shift
\r
410 right N times, where N is:
\r
416 static const UINT8 lfo_ams_depth_shift[4] = {8, 3, 1, 0};
\r
420 /*There are 8 different LFO PM depths available, they are:
\r
421 0, 3.4, 6.7, 10, 14, 20, 40, 80 (cents)
\r
423 Modulation level at each depth depends on F-NUMBER bits: 4,5,6,7,8,9,10
\r
424 (bits 8,9,10 = FNUM MSB from OCT/FNUM register)
\r
426 Here we store only first quarter (positive one) of full waveform.
\r
427 Full table (lfo_pm_table) containing all 128 waveforms is build
\r
428 at run (init) time.
\r
430 One value in table below represents 4 (four) basic LFO steps
\r
431 (1 PM step = 4 AM steps).
\r
434 at LFO SPEED=0 (which is 108 samples per basic LFO step)
\r
435 one value from "lfo_pm_output" table lasts for 432 consecutive
\r
436 samples (4*108=432) and one full LFO waveform cycle lasts for 13824
\r
437 samples (32*432=13824; 32 because we store only a quarter of whole
\r
438 waveform in the table below)
\r
440 static const UINT8 lfo_pm_output[7*8][8]={ /* 7 bits meaningful (of F-NUMBER), 8 LFO output levels per one depth (out of 32), 8 LFO depths */
\r
441 /* FNUM BIT 4: 000 0001xxxx */
\r
442 /* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
443 /* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
444 /* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
445 /* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
446 /* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
447 /* DEPTH 5 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
448 /* DEPTH 6 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
449 /* DEPTH 7 */ {0, 0, 0, 0, 1, 1, 1, 1},
\r
451 /* FNUM BIT 5: 000 0010xxxx */
\r
452 /* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
453 /* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
454 /* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
455 /* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
456 /* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
457 /* DEPTH 5 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
458 /* DEPTH 6 */ {0, 0, 0, 0, 1, 1, 1, 1},
\r
459 /* DEPTH 7 */ {0, 0, 1, 1, 2, 2, 2, 3},
\r
461 /* FNUM BIT 6: 000 0100xxxx */
\r
462 /* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
463 /* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
464 /* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
465 /* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
466 /* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 1},
\r
467 /* DEPTH 5 */ {0, 0, 0, 0, 1, 1, 1, 1},
\r
468 /* DEPTH 6 */ {0, 0, 1, 1, 2, 2, 2, 3},
\r
469 /* DEPTH 7 */ {0, 0, 2, 3, 4, 4, 5, 6},
\r
471 /* FNUM BIT 7: 000 1000xxxx */
\r
472 /* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
473 /* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
474 /* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 1, 1},
\r
475 /* DEPTH 3 */ {0, 0, 0, 0, 1, 1, 1, 1},
\r
476 /* DEPTH 4 */ {0, 0, 0, 1, 1, 1, 1, 2},
\r
477 /* DEPTH 5 */ {0, 0, 1, 1, 2, 2, 2, 3},
\r
478 /* DEPTH 6 */ {0, 0, 2, 3, 4, 4, 5, 6},
\r
479 /* DEPTH 7 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},
\r
481 /* FNUM BIT 8: 001 0000xxxx */
\r
482 /* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
483 /* DEPTH 1 */ {0, 0, 0, 0, 1, 1, 1, 1},
\r
484 /* DEPTH 2 */ {0, 0, 0, 1, 1, 1, 2, 2},
\r
485 /* DEPTH 3 */ {0, 0, 1, 1, 2, 2, 3, 3},
\r
486 /* DEPTH 4 */ {0, 0, 1, 2, 2, 2, 3, 4},
\r
487 /* DEPTH 5 */ {0, 0, 2, 3, 4, 4, 5, 6},
\r
488 /* DEPTH 6 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},
\r
489 /* DEPTH 7 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},
\r
491 /* FNUM BIT 9: 010 0000xxxx */
\r
492 /* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
493 /* DEPTH 1 */ {0, 0, 0, 0, 2, 2, 2, 2},
\r
494 /* DEPTH 2 */ {0, 0, 0, 2, 2, 2, 4, 4},
\r
495 /* DEPTH 3 */ {0, 0, 2, 2, 4, 4, 6, 6},
\r
496 /* DEPTH 4 */ {0, 0, 2, 4, 4, 4, 6, 8},
\r
497 /* DEPTH 5 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},
\r
498 /* DEPTH 6 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},
\r
499 /* DEPTH 7 */ {0, 0,0x10,0x18,0x20,0x20,0x28,0x30},
\r
501 /* FNUM BIT10: 100 0000xxxx */
\r
502 /* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
\r
503 /* DEPTH 1 */ {0, 0, 0, 0, 4, 4, 4, 4},
\r
504 /* DEPTH 2 */ {0, 0, 0, 4, 4, 4, 8, 8},
\r
505 /* DEPTH 3 */ {0, 0, 4, 4, 8, 8, 0xc, 0xc},
\r
506 /* DEPTH 4 */ {0, 0, 4, 8, 8, 8, 0xc,0x10},
\r
507 /* DEPTH 5 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},
\r
508 /* DEPTH 6 */ {0, 0,0x10,0x18,0x20,0x20,0x28,0x30},
\r
509 /* DEPTH 7 */ {0, 0,0x20,0x30,0x40,0x40,0x50,0x60},
\r
513 /* all 128 LFO PM waveforms */
\r
514 static INT32 lfo_pm_table[128*8*32]; /* 128 combinations of 7 bits meaningful (of F-NUMBER), 8 LFO depths, 32 LFO output levels per one depth */
\r
516 /* there are 2048 FNUMs that can be generated using FNUM/BLK registers
\r
517 but LFO works with one more bit of a precision so we really need 4096 elements */
\r
518 static UINT32 fn_table[4096]; /* fnumber->increment counter */
\r
520 static int g_lfo_ampm = 0;
\r
522 /* register number to channel number , slot offset */
\r
523 #define OPN_CHAN(N) (N&3)
\r
524 #define OPN_SLOT(N) ((N>>2)&3)
\r
533 /* OPN Mode Register Write */
\r
534 INLINE void set_timers( int v )
\r
536 /* b7 = CSM MODE */
\r
537 /* b6 = 3 slot mode */
\r
540 /* b3 = timer enable b */
\r
541 /* b2 = timer enable a */
\r
544 ym2612.OPN.ST.mode = v;
\r
546 /* reset Timer b flag */
\r
548 ym2612.OPN.ST.status &= ~2;
\r
550 /* reset Timer a flag */
\r
552 ym2612.OPN.ST.status &= ~1;
\r
556 INLINE void FM_KEYON(int c , int s )
\r
558 FM_SLOT *SLOT = &ym2612.CH[c].SLOT[s];
\r
562 SLOT->phase = 0; /* restart Phase Generator */
\r
563 SLOT->state = EG_ATT; /* phase -> Attack */
\r
564 ym2612.slot_mask |= (1<<s) << (c*4);
\r
568 INLINE void FM_KEYOFF(int c , int s )
\r
570 FM_SLOT *SLOT = &ym2612.CH[c].SLOT[s];
\r
574 if (SLOT->state>EG_REL)
\r
575 SLOT->state = EG_REL;/* phase -> Release */
\r
580 /* set detune & multiple */
\r
581 INLINE void set_det_mul(FM_CH *CH, FM_SLOT *SLOT, int v)
\r
583 SLOT->mul = (v&0x0f)? (v&0x0f)*2 : 1;
\r
584 SLOT->DT = ym2612.OPN.ST.dt_tab[(v>>4)&7];
\r
585 CH->SLOT[SLOT1].Incr=-1;
\r
588 /* set total level */
\r
589 INLINE void set_tl(FM_SLOT *SLOT, int v)
\r
591 SLOT->tl = (v&0x7f)<<(ENV_BITS-7); /* 7bit TL */
\r
594 /* set attack rate & key scale */
\r
595 INLINE void set_ar_ksr(FM_CH *CH, FM_SLOT *SLOT, int v)
\r
597 UINT8 old_KSR = SLOT->KSR;
\r
599 SLOT->ar = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;
\r
601 SLOT->KSR = 3-(v>>6);
\r
602 if (SLOT->KSR != old_KSR)
\r
604 CH->SLOT[SLOT1].Incr=-1;
\r
608 int eg_sh_ar, eg_sel_ar;
\r
610 /* refresh Attack rate */
\r
611 if ((SLOT->ar + SLOT->ksr) < 32+62)
\r
613 eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
\r
614 eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
\r
622 SLOT->eg_pack_ar = eg_inc_pack[eg_sel_ar] | (eg_sh_ar<<24);
\r
626 /* set decay rate */
\r
627 INLINE void set_dr(FM_SLOT *SLOT, int v)
\r
629 int eg_sh_d1r, eg_sel_d1r;
\r
631 SLOT->d1r = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;
\r
633 eg_sh_d1r = eg_rate_shift [SLOT->d1r + SLOT->ksr];
\r
634 eg_sel_d1r= eg_rate_select[SLOT->d1r + SLOT->ksr];
\r
636 SLOT->eg_pack_d1r = eg_inc_pack[eg_sel_d1r] | (eg_sh_d1r<<24);
\r
639 /* set sustain rate */
\r
640 INLINE void set_sr(FM_SLOT *SLOT, int v)
\r
642 int eg_sh_d2r, eg_sel_d2r;
\r
644 SLOT->d2r = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;
\r
646 eg_sh_d2r = eg_rate_shift [SLOT->d2r + SLOT->ksr];
\r
647 eg_sel_d2r= eg_rate_select[SLOT->d2r + SLOT->ksr];
\r
649 SLOT->eg_pack_d2r = eg_inc_pack[eg_sel_d2r] | (eg_sh_d2r<<24);
\r
652 /* set release rate */
\r
653 INLINE void set_sl_rr(FM_SLOT *SLOT, int v)
\r
655 int eg_sh_rr, eg_sel_rr;
\r
657 SLOT->sl = sl_table[ v>>4 ];
\r
659 SLOT->rr = 34 + ((v&0x0f)<<2);
\r
661 eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr];
\r
662 eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr];
\r
664 SLOT->eg_pack_rr = eg_inc_pack[eg_sel_rr] | (eg_sh_rr<<24);
\r
669 INLINE signed int op_calc(UINT32 phase, unsigned int env, signed int pm)
\r
671 int ret, sin = (phase>>16) + (pm>>1);
\r
672 int neg = sin & 0x200;
\r
673 if (sin & 0x100) sin ^= 0xff;
\r
677 // this was already checked
\r
678 // if (env >= ENV_QUIET) // 384
\r
681 ret = ym_tl_tab[sin | (env<<7)];
\r
683 return neg ? -ret : ret;
\r
686 INLINE signed int op_calc1(UINT32 phase, unsigned int env, signed int pm)
\r
688 int ret, sin = (phase+pm)>>16;
\r
689 int neg = sin & 0x200;
\r
690 if (sin & 0x100) sin ^= 0xff;
\r
694 // if (env >= ENV_QUIET) // 384
\r
697 ret = ym_tl_tab[sin | (env<<7)];
\r
699 return neg ? -ret : ret;
\r
702 #if !defined(_ASM_YM2612_C) || defined(EXTERNAL_YM2612)
\r
703 /* advance LFO to next sample */
\r
704 INLINE int advance_lfo(int lfo_ampm, UINT32 lfo_cnt_old, UINT32 lfo_cnt)
\r
709 prev_pos = (lfo_cnt_old >> LFO_SH) & 127;
\r
711 pos = (lfo_cnt >> LFO_SH) & 127;
\r
713 /* update AM when LFO output changes */
\r
715 if (prev_pos != pos)
\r
719 /* AM: 0 to 126 step +2, 126 to 0 step -2 */
\r
721 lfo_ampm |= ((pos&63) * 2) << 8; /* 0 - 126 */
\r
723 lfo_ampm |= (126 - (pos&63)*2) << 8;
\r
730 /* PM works with 4 times slower clock */
\r
733 /* update PM when LFO output changes */
\r
734 if (prev_pos != pos)
\r
737 lfo_ampm |= pos; /* 0 - 32 */
\r
742 #define EG_INC_VAL() \
\r
743 ((1 << ((pack >> ((eg_cnt>>shift)&7)*3)&7)) >> 1)
\r
745 INLINE UINT32 update_eg_phase(FM_SLOT *SLOT, UINT32 eg_cnt)
\r
747 INT32 volume = SLOT->volume;
\r
749 switch(SLOT->state)
\r
751 case EG_ATT: /* attack phase */
\r
753 UINT32 pack = SLOT->eg_pack_ar;
\r
754 UINT32 shift = pack>>24;
\r
755 if ( !(eg_cnt & ((1<<shift)-1) ) )
\r
757 volume += ( ~volume * EG_INC_VAL() ) >>4;
\r
759 if (volume <= MIN_ATT_INDEX)
\r
761 volume = MIN_ATT_INDEX;
\r
762 SLOT->state = EG_DEC;
\r
768 case EG_DEC: /* decay phase */
\r
770 UINT32 pack = SLOT->eg_pack_d1r;
\r
771 UINT32 shift = pack>>24;
\r
772 if ( !(eg_cnt & ((1<<shift)-1) ) )
\r
774 volume += EG_INC_VAL();
\r
776 if ( volume >= (INT32) SLOT->sl )
\r
777 SLOT->state = EG_SUS;
\r
782 case EG_SUS: /* sustain phase */
\r
784 UINT32 pack = SLOT->eg_pack_d2r;
\r
785 UINT32 shift = pack>>24;
\r
786 if ( !(eg_cnt & ((1<<shift)-1) ) )
\r
788 volume += EG_INC_VAL();
\r
790 if ( volume >= MAX_ATT_INDEX )
\r
792 volume = MAX_ATT_INDEX;
\r
793 /* do not change SLOT->state (verified on real chip) */
\r
799 case EG_REL: /* release phase */
\r
801 UINT32 pack = SLOT->eg_pack_rr;
\r
802 UINT32 shift = pack>>24;
\r
803 if ( !(eg_cnt & ((1<<shift)-1) ) )
\r
805 volume += EG_INC_VAL();
\r
807 if ( volume >= MAX_ATT_INDEX )
\r
809 volume = MAX_ATT_INDEX;
\r
810 SLOT->state = EG_OFF;
\r
817 SLOT->volume = volume;
\r
818 return SLOT->tl + ((UINT32)volume); /* tl is 7bit<<3, volume 0-1023 (0-2039 total) */
\r
825 UINT16 vol_out1; /* 00: current output from EG circuit (without AM from LFO) */
\r
830 UINT32 phase1; /* 10 */
\r
834 UINT32 incr1; /* 20: phase step */
\r
838 UINT32 lfo_cnt; /* 30 */
\r
840 INT32 mem; /* one sample delay memory */
\r
841 UINT32 eg_cnt; /* envelope generator counter */
\r
842 FM_CH *CH; /* 40: envelope generator counter */
\r
844 UINT32 eg_timer_add;
\r
845 UINT32 pack; // 4c: stereo, lastchan, disabled, lfo_enabled | pan_r, pan_l, ams[2] | AMmasks[4] | FB[4] | lfo_ampm[16]
\r
846 UINT32 algo; /* 50: algo[3], was_update */
\r
848 #ifdef _MIPS_ARCH_ALLEGREX
\r
851 } chan_rend_context;
\r
854 #if !defined(_ASM_YM2612_C) || defined(EXTERNAL_YM2612)
\r
855 static void chan_render_loop(chan_rend_context *ct, int *buffer, int length)
\r
857 int scounter; /* sample counter */
\r
859 /* sample generating loop */
\r
860 for (scounter = 0; scounter < length; scounter++)
\r
862 int smp = 0; /* produced sample */
\r
863 unsigned int eg_out, eg_out2, eg_out4;
\r
865 if (ct->pack & 8) { /* LFO enabled ? (test Earthworm Jim in between demo 1 and 2) */
\r
866 ct->pack = (ct->pack&0xffff) | (advance_lfo(ct->pack >> 16, ct->lfo_cnt, ct->lfo_cnt + ct->lfo_inc) << 16);
\r
867 ct->lfo_cnt += ct->lfo_inc;
\r
870 ct->eg_timer += ct->eg_timer_add;
\r
871 while (ct->eg_timer >= EG_TIMER_OVERFLOW)
\r
873 ct->eg_timer -= EG_TIMER_OVERFLOW;
\r
876 if (ct->CH->SLOT[SLOT1].state != EG_OFF) ct->vol_out1 = update_eg_phase(&ct->CH->SLOT[SLOT1], ct->eg_cnt);
\r
877 if (ct->CH->SLOT[SLOT2].state != EG_OFF) ct->vol_out2 = update_eg_phase(&ct->CH->SLOT[SLOT2], ct->eg_cnt);
\r
878 if (ct->CH->SLOT[SLOT3].state != EG_OFF) ct->vol_out3 = update_eg_phase(&ct->CH->SLOT[SLOT3], ct->eg_cnt);
\r
879 if (ct->CH->SLOT[SLOT4].state != EG_OFF) ct->vol_out4 = update_eg_phase(&ct->CH->SLOT[SLOT4], ct->eg_cnt);
\r
882 if (ct->pack & 4) continue; /* output disabled */
\r
884 /* calculate channel sample */
\r
885 eg_out = ct->vol_out1;
\r
886 if ( (ct->pack & 8) && (ct->pack&(1<<(SLOT1+8))) ) eg_out += ct->pack >> (((ct->pack&0xc0)>>6)+24);
\r
888 if( eg_out < ENV_QUIET ) /* SLOT 1 */
\r
892 if (ct->pack&0xf000) out = ((ct->op1_out>>16) + (ct->op1_out<<16>>16)) << ((ct->pack&0xf000)>>12); /* op1_out0 + op1_out1 */
\r
893 ct->op1_out <<= 16;
\r
894 ct->op1_out |= (unsigned short)op_calc1(ct->phase1, eg_out, out);
\r
896 ct->op1_out <<= 16; /* op1_out0 = op1_out1; op1_out1 = 0; */
\r
899 eg_out = ct->vol_out3; // volume_calc(&CH->SLOT[SLOT3]);
\r
900 eg_out2 = ct->vol_out2; // volume_calc(&CH->SLOT[SLOT2]);
\r
901 eg_out4 = ct->vol_out4; // volume_calc(&CH->SLOT[SLOT4]);
\r
903 if (ct->pack & 8) {
\r
904 unsigned int add = ct->pack >> (((ct->pack&0xc0)>>6)+24);
\r
905 if (ct->pack & (1<<(SLOT3+8))) eg_out += add;
\r
906 if (ct->pack & (1<<(SLOT2+8))) eg_out2 += add;
\r
907 if (ct->pack & (1<<(SLOT4+8))) eg_out4 += add;
\r
910 switch( ct->CH->ALGO )
\r
914 /* M1---C1---MEM---M2---C2---OUT */
\r
915 int m2,c1,c2=0; /* Phase Modulation input for operators 2,3,4 */
\r
917 c1 = ct->op1_out>>16;
\r
918 if( eg_out < ENV_QUIET ) { /* SLOT 3 */
\r
919 c2 = op_calc(ct->phase3, eg_out, m2);
\r
921 if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */
\r
922 ct->mem = op_calc(ct->phase2, eg_out2, c1);
\r
925 if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */
\r
926 smp = op_calc(ct->phase4, eg_out4, c2);
\r
932 /* M1------+-MEM---M2---C2---OUT */
\r
936 ct->mem = ct->op1_out>>16;
\r
937 if( eg_out < ENV_QUIET ) { /* SLOT 3 */
\r
938 c2 = op_calc(ct->phase3, eg_out, m2);
\r
940 if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */
\r
941 ct->mem+= op_calc(ct->phase2, eg_out2, 0);
\r
943 if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */
\r
944 smp = op_calc(ct->phase4, eg_out4, c2);
\r
950 /* M1-----------------+-C2---OUT */
\r
951 /* C1---MEM---M2-+ */
\r
954 c2 = ct->op1_out>>16;
\r
955 if( eg_out < ENV_QUIET ) { /* SLOT 3 */
\r
956 c2 += op_calc(ct->phase3, eg_out, m2);
\r
958 if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */
\r
959 ct->mem = op_calc(ct->phase2, eg_out2, 0);
\r
962 if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */
\r
963 smp = op_calc(ct->phase4, eg_out4, c2);
\r
969 /* M1---C1---MEM------+-C2---OUT */
\r
973 c1 = ct->op1_out>>16;
\r
974 if( eg_out < ENV_QUIET ) { /* SLOT 3 */
\r
975 c2 += op_calc(ct->phase3, eg_out, 0);
\r
977 if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */
\r
978 ct->mem = op_calc(ct->phase2, eg_out2, c1);
\r
981 if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */
\r
982 smp = op_calc(ct->phase4, eg_out4, c2);
\r
988 /* M1---C1-+-OUT */
\r
990 /* MEM: not used */
\r
992 c1 = ct->op1_out>>16;
\r
993 if( eg_out < ENV_QUIET ) { /* SLOT 3 */
\r
994 c2 = op_calc(ct->phase3, eg_out, 0);
\r
996 if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */
\r
997 smp = op_calc(ct->phase2, eg_out2, c1);
\r
999 if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */
\r
1000 smp+= op_calc(ct->phase4, eg_out4, c2);
\r
1006 /* +----C1----+ */
\r
1007 /* M1-+-MEM---M2-+-OUT */
\r
1008 /* +----C2----+ */
\r
1011 ct->mem = c1 = c2 = ct->op1_out>>16;
\r
1012 if( eg_out < ENV_QUIET ) { /* SLOT 3 */
\r
1013 smp = op_calc(ct->phase3, eg_out, m2);
\r
1015 if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */
\r
1016 smp+= op_calc(ct->phase2, eg_out2, c1);
\r
1018 if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */
\r
1019 smp+= op_calc(ct->phase4, eg_out4, c2);
\r
1028 /* MEM: not used */
\r
1030 c1 = ct->op1_out>>16;
\r
1031 if( eg_out < ENV_QUIET ) { /* SLOT 3 */
\r
1032 smp = op_calc(ct->phase3, eg_out, 0);
\r
1034 if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */
\r
1035 smp+= op_calc(ct->phase2, eg_out2, c1);
\r
1037 if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */
\r
1038 smp+= op_calc(ct->phase4, eg_out4, 0);
\r
1048 /* MEM: not used*/
\r
1049 smp = ct->op1_out>>16;
\r
1050 if( eg_out < ENV_QUIET ) { /* SLOT 3 */
\r
1051 smp += op_calc(ct->phase3, eg_out, 0);
\r
1053 if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */
\r
1054 smp += op_calc(ct->phase2, eg_out2, 0);
\r
1056 if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */
\r
1057 smp += op_calc(ct->phase4, eg_out4, 0);
\r
1062 /* done calculating channel sample */
\r
1064 /* mix sample to output buffer */
\r
1066 if (ct->pack & 1) { /* stereo */
\r
1067 if (ct->pack & 0x20) /* L */ /* TODO: check correctness */
\r
1068 buffer[scounter*2] += smp;
\r
1069 if (ct->pack & 0x10) /* R */
\r
1070 buffer[scounter*2+1] += smp;
\r
1072 buffer[scounter] += smp;
\r
1074 ct->algo = 8; // algo is only used in asm, here only bit3 is used
\r
1077 /* update phase counters AFTER output calculations */
\r
1078 ct->phase1 += ct->incr1;
\r
1079 ct->phase2 += ct->incr2;
\r
1080 ct->phase3 += ct->incr3;
\r
1081 ct->phase4 += ct->incr4;
\r
1085 void chan_render_loop(chan_rend_context *ct, int *buffer, unsigned short length);
\r
1088 static chan_rend_context crct;
\r
1090 static int chan_render(int *buffer, int length, int c, UINT32 flags) // flags: stereo, ?, disabled, ?, pan_r, pan_l
\r
1092 crct.CH = &ym2612.CH[c];
\r
1093 crct.mem = crct.CH->mem_value; /* one sample delay memory */
\r
1094 crct.lfo_cnt = ym2612.OPN.lfo_cnt;
\r
1095 crct.lfo_inc = ym2612.OPN.lfo_inc;
\r
1099 if (crct.lfo_inc) {
\r
1101 flags |= g_lfo_ampm << 16;
\r
1102 flags |= crct.CH->AMmasks << 8;
\r
1103 if (crct.CH->ams == 8) // no ams
\r
1105 else flags |= (crct.CH->ams&3)<<6;
\r
1107 flags |= (crct.CH->FB&0xf)<<12; /* feedback shift */
\r
1108 crct.pack = flags;
\r
1110 crct.eg_cnt = ym2612.OPN.eg_cnt; /* envelope generator counter */
\r
1111 crct.eg_timer = ym2612.OPN.eg_timer;
\r
1112 crct.eg_timer_add = ym2612.OPN.eg_timer_add;
\r
1114 /* precalculate phase modulation incr */
\r
1115 crct.phase1 = crct.CH->SLOT[SLOT1].phase;
\r
1116 crct.phase2 = crct.CH->SLOT[SLOT2].phase;
\r
1117 crct.phase3 = crct.CH->SLOT[SLOT3].phase;
\r
1118 crct.phase4 = crct.CH->SLOT[SLOT4].phase;
\r
1120 /* current output from EG circuit (without AM from LFO) */
\r
1121 crct.vol_out1 = crct.CH->SLOT[SLOT1].tl + ((UINT32)crct.CH->SLOT[SLOT1].volume);
\r
1122 crct.vol_out2 = crct.CH->SLOT[SLOT2].tl + ((UINT32)crct.CH->SLOT[SLOT2].volume);
\r
1123 crct.vol_out3 = crct.CH->SLOT[SLOT3].tl + ((UINT32)crct.CH->SLOT[SLOT3].volume);
\r
1124 crct.vol_out4 = crct.CH->SLOT[SLOT4].tl + ((UINT32)crct.CH->SLOT[SLOT4].volume);
\r
1126 crct.op1_out = crct.CH->op1_out;
\r
1127 crct.algo = crct.CH->ALGO & 7;
\r
1131 /* add support for 3 slot mode */
\r
1132 UINT32 block_fnum = crct.CH->block_fnum;
\r
1134 UINT32 fnum_lfo = ((block_fnum & 0x7f0) >> 4) * 32 * 8;
\r
1135 INT32 lfo_fn_table_index_offset = lfo_pm_table[ fnum_lfo + crct.CH->pms + ((crct.pack>>16)&0xff) ];
\r
1137 if (lfo_fn_table_index_offset) /* LFO phase modulation active */
\r
1143 block_fnum = block_fnum*2 + lfo_fn_table_index_offset;
\r
1145 blk = (block_fnum&0x7000) >> 12;
\r
1146 fn = block_fnum & 0xfff;
\r
1148 /* keyscale code */
\r
1149 kc = (blk<<2) | opn_fktable[fn >> 8];
\r
1150 /* phase increment counter */
\r
1151 fc = fn_table[fn]>>(7-blk);
\r
1153 crct.incr1 = ((fc+crct.CH->SLOT[SLOT1].DT[kc])*crct.CH->SLOT[SLOT1].mul) >> 1;
\r
1154 crct.incr2 = ((fc+crct.CH->SLOT[SLOT2].DT[kc])*crct.CH->SLOT[SLOT2].mul) >> 1;
\r
1155 crct.incr3 = ((fc+crct.CH->SLOT[SLOT3].DT[kc])*crct.CH->SLOT[SLOT3].mul) >> 1;
\r
1156 crct.incr4 = ((fc+crct.CH->SLOT[SLOT4].DT[kc])*crct.CH->SLOT[SLOT4].mul) >> 1;
\r
1158 else /* LFO phase modulation = zero */
\r
1160 crct.incr1 = crct.CH->SLOT[SLOT1].Incr;
\r
1161 crct.incr2 = crct.CH->SLOT[SLOT2].Incr;
\r
1162 crct.incr3 = crct.CH->SLOT[SLOT3].Incr;
\r
1163 crct.incr4 = crct.CH->SLOT[SLOT4].Incr;
\r
1166 else /* no LFO phase modulation */
\r
1168 crct.incr1 = crct.CH->SLOT[SLOT1].Incr;
\r
1169 crct.incr2 = crct.CH->SLOT[SLOT2].Incr;
\r
1170 crct.incr3 = crct.CH->SLOT[SLOT3].Incr;
\r
1171 crct.incr4 = crct.CH->SLOT[SLOT4].Incr;
\r
1174 chan_render_loop(&crct, buffer, length);
\r
1176 crct.CH->op1_out = crct.op1_out;
\r
1177 crct.CH->mem_value = crct.mem;
\r
1178 if (crct.CH->SLOT[SLOT1].state | crct.CH->SLOT[SLOT2].state | crct.CH->SLOT[SLOT3].state | crct.CH->SLOT[SLOT4].state)
\r
1180 crct.CH->SLOT[SLOT1].phase = crct.phase1;
\r
1181 crct.CH->SLOT[SLOT2].phase = crct.phase2;
\r
1182 crct.CH->SLOT[SLOT3].phase = crct.phase3;
\r
1183 crct.CH->SLOT[SLOT4].phase = crct.phase4;
\r
1186 ym2612.slot_mask &= ~(0xf << (c*4));
\r
1188 // if this the last call, write back persistent stuff:
\r
1189 if ((ym2612.slot_mask >> ((c+1)*4)) == 0)
\r
1191 ym2612.OPN.eg_cnt = crct.eg_cnt;
\r
1192 ym2612.OPN.eg_timer = crct.eg_timer;
\r
1193 g_lfo_ampm = crct.pack >> 16;
\r
1194 ym2612.OPN.lfo_cnt = crct.lfo_cnt;
\r
1197 return (crct.algo & 8) >> 3; // had output
\r
1200 /* update phase increment and envelope generator */
\r
1201 INLINE void refresh_fc_eg_slot(FM_SLOT *SLOT, int fc, int kc)
\r
1205 /* (frequency) phase increment counter */
\r
1206 SLOT->Incr = ((fc+SLOT->DT[kc])*SLOT->mul) >> 1;
\r
1208 ksr = kc >> SLOT->KSR;
\r
1209 if( SLOT->ksr != ksr )
\r
1211 int eg_sh, eg_sel;
\r
1214 /* calculate envelope generator rates */
\r
1215 if ((SLOT->ar + SLOT->ksr) < 32+62)
\r
1217 eg_sh = eg_rate_shift [SLOT->ar + SLOT->ksr ];
\r
1218 eg_sel = eg_rate_select[SLOT->ar + SLOT->ksr ];
\r
1226 SLOT->eg_pack_ar = eg_inc_pack[eg_sel] | (eg_sh<<24);
\r
1228 eg_sh = eg_rate_shift [SLOT->d1r + SLOT->ksr];
\r
1229 eg_sel = eg_rate_select[SLOT->d1r + SLOT->ksr];
\r
1231 SLOT->eg_pack_d1r = eg_inc_pack[eg_sel] | (eg_sh<<24);
\r
1233 eg_sh = eg_rate_shift [SLOT->d2r + SLOT->ksr];
\r
1234 eg_sel = eg_rate_select[SLOT->d2r + SLOT->ksr];
\r
1236 SLOT->eg_pack_d2r = eg_inc_pack[eg_sel] | (eg_sh<<24);
\r
1238 eg_sh = eg_rate_shift [SLOT->rr + SLOT->ksr];
\r
1239 eg_sel = eg_rate_select[SLOT->rr + SLOT->ksr];
\r
1241 SLOT->eg_pack_rr = eg_inc_pack[eg_sel] | (eg_sh<<24);
\r
1245 /* update phase increment counters */
\r
1246 INLINE void refresh_fc_eg_chan(FM_CH *CH)
\r
1248 if( CH->SLOT[SLOT1].Incr==-1){
\r
1250 int kc = CH->kcode;
\r
1251 refresh_fc_eg_slot(&CH->SLOT[SLOT1] , fc , kc );
\r
1252 refresh_fc_eg_slot(&CH->SLOT[SLOT2] , fc , kc );
\r
1253 refresh_fc_eg_slot(&CH->SLOT[SLOT3] , fc , kc );
\r
1254 refresh_fc_eg_slot(&CH->SLOT[SLOT4] , fc , kc );
\r
1258 /* initialize time tables */
\r
1259 static void init_timetables(const UINT8 *dttable)
\r
1264 /* DeTune table */
\r
1265 for (d = 0;d <= 3;d++){
\r
1266 for (i = 0;i <= 31;i++){
\r
1267 rate = ((double)dttable[d*32 + i]) * SIN_LEN * ym2612.OPN.ST.freqbase * (1<<FREQ_SH) / ((double)(1<<20));
\r
1268 ym2612.OPN.ST.dt_tab[d][i] = (INT32) rate;
\r
1269 ym2612.OPN.ST.dt_tab[d+4][i] = -ym2612.OPN.ST.dt_tab[d][i];
\r
1275 static void reset_channels(FM_CH *CH)
\r
1279 ym2612.OPN.ST.mode = 0; /* normal mode */
\r
1280 ym2612.OPN.ST.TA = 0;
\r
1281 ym2612.OPN.ST.TAC = 0;
\r
1282 ym2612.OPN.ST.TB = 0;
\r
1283 ym2612.OPN.ST.TBC = 0;
\r
1285 for( c = 0 ; c < 6 ; c++ )
\r
1288 for(s = 0 ; s < 4 ; s++ )
\r
1290 CH[c].SLOT[s].state= EG_OFF;
\r
1291 CH[c].SLOT[s].volume = MAX_ATT_INDEX;
\r
1294 ym2612.slot_mask = 0;
\r
1297 /* initialize generic tables */
\r
1298 static void init_tables(void)
\r
1300 signed int i,x,y,p;
\r
1304 for (i=0; i < 256; i++)
\r
1306 /* non-standard sinus */
\r
1307 m = sin( ((i*2)+1) * M_PI / SIN_LEN ); /* checked against the real chip */
\r
1309 /* we never reach zero here due to ((i*2)+1) */
\r
1312 o = 8*log(1.0/m)/log(2); /* convert to 'decibels' */
\r
1314 o = 8*log(-1.0/m)/log(2); /* convert to 'decibels' */
\r
1316 o = o / (ENV_STEP/4);
\r
1319 if (n&1) /* round to nearest */
\r
1324 ym_sin_tab[ i ] = n;
\r
1325 //dprintf("FM.C: sin [%4i]= %4i", i, ym_sin_tab[i]);
\r
1328 //dprintf("FM.C: ENV_QUIET= %08x", ENV_QUIET );
\r
1331 for (x=0; x < TL_RES_LEN; x++)
\r
1333 m = (1<<16) / pow(2, (x+1) * (ENV_STEP/4.0) / 8.0);
\r
1336 /* we never reach (1<<16) here due to the (x+1) */
\r
1337 /* result fits within 16 bits at maximum */
\r
1339 n = (int)m; /* 16 bits here */
\r
1340 n >>= 4; /* 12 bits here */
\r
1341 if (n&1) /* round to nearest */
\r
1345 /* 11 bits here (rounded) */
\r
1346 n <<= 2; /* 13 bits here (as in real chip) */
\r
1347 ym_tl_tab2[ x ] = n;
\r
1349 for (i=1; i < 13; i++)
\r
1351 ym_tl_tab2[ x + i*TL_RES_LEN ] = n >> i;
\r
1355 for (x=0; x < 256; x++)
\r
1357 int sin = ym_sin_tab[ x ];
\r
1359 for (y=0; y < 2*13*TL_RES_LEN/8; y+=2)
\r
1362 if (p >= 13*TL_RES_LEN)
\r
1363 ym_tl_tab[(y<<7) | x] = 0;
\r
1364 else ym_tl_tab[(y<<7) | x] = ym_tl_tab2[p];
\r
1369 /* build LFO PM modulation table */
\r
1370 for(i = 0; i < 8; i++) /* 8 PM depths */
\r
1373 for (fnum=0; fnum<128; fnum++) /* 7 bits meaningful of F-NUMBER */
\r
1377 UINT32 offset_depth = i;
\r
1378 UINT32 offset_fnum_bit;
\r
1381 for (step=0; step<8; step++)
\r
1384 for (bit_tmp=0; bit_tmp<7; bit_tmp++) /* 7 bits */
\r
1386 if (fnum & (1<<bit_tmp)) /* only if bit "bit_tmp" is set */
\r
1388 offset_fnum_bit = bit_tmp * 8;
\r
1389 value += lfo_pm_output[offset_fnum_bit + offset_depth][step];
\r
1392 lfo_pm_table[(fnum*32*8) + (i*32) + step + 0] = value;
\r
1393 lfo_pm_table[(fnum*32*8) + (i*32) +(step^7)+ 8] = value;
\r
1394 lfo_pm_table[(fnum*32*8) + (i*32) + step +16] = -value;
\r
1395 lfo_pm_table[(fnum*32*8) + (i*32) +(step^7)+24] = -value;
\r
1402 /* CSM Key Controll */
\r
1404 INLINE void CSMKeyControll(FM_CH *CH)
\r
1406 /* this is wrong, atm */
\r
1409 FM_KEYON(CH,SLOT1);
\r
1410 FM_KEYON(CH,SLOT2);
\r
1411 FM_KEYON(CH,SLOT3);
\r
1412 FM_KEYON(CH,SLOT4);
\r
1417 /* prescaler set (and make time tables) */
\r
1418 static void OPNSetPres(int pres)
\r
1422 /* frequency base */
\r
1423 ym2612.OPN.ST.freqbase = (ym2612.OPN.ST.rate) ? ((double)ym2612.OPN.ST.clock / ym2612.OPN.ST.rate) / pres : 0;
\r
1425 ym2612.OPN.eg_timer_add = (1<<EG_SH) * ym2612.OPN.ST.freqbase;
\r
1428 /* make time tables */
\r
1429 init_timetables( dt_tab );
\r
1431 /* there are 2048 FNUMs that can be generated using FNUM/BLK registers
\r
1432 but LFO works with one more bit of a precision so we really need 4096 elements */
\r
1433 /* calculate fnumber -> increment counter table */
\r
1434 for(i = 0; i < 4096; i++)
\r
1436 /* freq table for octave 7 */
\r
1437 /* OPN phase increment counter = 20bit */
\r
1438 fn_table[i] = (UINT32)( (double)i * 32 * ym2612.OPN.ST.freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */
\r
1441 /* LFO freq. table */
\r
1442 for(i = 0; i < 8; i++)
\r
1444 /* Amplitude modulation: 64 output levels (triangle waveform); 1 level lasts for one of "lfo_samples_per_step" samples */
\r
1445 /* Phase modulation: one entry from lfo_pm_output lasts for one of 4 * "lfo_samples_per_step" samples */
\r
1446 ym2612.OPN.lfo_freq[i] = (1.0 / lfo_samples_per_step[i]) * (1<<LFO_SH) * ym2612.OPN.ST.freqbase;
\r
1451 /* write a OPN register (0x30-0xff) */
\r
1452 static int OPNWriteReg(int r, int v)
\r
1458 UINT8 c = OPN_CHAN(r);
\r
1460 if (c == 3) return 0; /* 0xX3,0xX7,0xXB,0xXF */
\r
1462 if (r >= 0x100) c+=3;
\r
1464 CH = &ym2612.CH[c];
\r
1466 SLOT = &(CH->SLOT[OPN_SLOT(r)]);
\r
1468 switch( r & 0xf0 ) {
\r
1469 case 0x30: /* DET , MUL */
\r
1470 set_det_mul(CH,SLOT,v);
\r
1473 case 0x40: /* TL */
\r
1477 case 0x50: /* KS, AR */
\r
1478 set_ar_ksr(CH,SLOT,v);
\r
1481 case 0x60: /* bit7 = AM ENABLE, DR */
\r
1483 if(v&0x80) CH->AMmasks |= 1<<OPN_SLOT(r);
\r
1484 else CH->AMmasks &= ~(1<<OPN_SLOT(r));
\r
1487 case 0x70: /* SR */
\r
1491 case 0x80: /* SL, RR */
\r
1492 set_sl_rr(SLOT,v);
\r
1495 case 0x90: /* SSG-EG */
\r
1501 switch( OPN_SLOT(r) ){
\r
1502 case 0: /* 0xa0-0xa2 : FNUM1 */
\r
1504 UINT32 fn = (((UINT32)( (ym2612.OPN.ST.fn_h)&7))<<8) + v;
\r
1505 UINT8 blk = ym2612.OPN.ST.fn_h>>3;
\r
1506 /* keyscale code */
\r
1507 CH->kcode = (blk<<2) | opn_fktable[fn >> 7];
\r
1508 /* phase increment counter */
\r
1509 CH->fc = fn_table[fn*2]>>(7-blk);
\r
1511 /* store fnum in clear form for LFO PM calculations */
\r
1512 CH->block_fnum = (blk<<11) | fn;
\r
1514 CH->SLOT[SLOT1].Incr=-1;
\r
1517 case 1: /* 0xa4-0xa6 : FNUM2,BLK */
\r
1518 ym2612.OPN.ST.fn_h = v&0x3f;
\r
1521 case 2: /* 0xa8-0xaa : 3CH FNUM1 */
\r
1524 UINT32 fn = (((UINT32)(ym2612.OPN.SL3.fn_h&7))<<8) + v;
\r
1525 UINT8 blk = ym2612.OPN.SL3.fn_h>>3;
\r
1526 /* keyscale code */
\r
1527 ym2612.OPN.SL3.kcode[c]= (blk<<2) | opn_fktable[fn >> 7];
\r
1528 /* phase increment counter */
\r
1529 ym2612.OPN.SL3.fc[c] = fn_table[fn*2]>>(7-blk);
\r
1530 ym2612.OPN.SL3.block_fnum[c] = fn;
\r
1531 ym2612.CH[2].SLOT[SLOT1].Incr=-1;
\r
1534 case 3: /* 0xac-0xae : 3CH FNUM2,BLK */
\r
1536 ym2612.OPN.SL3.fn_h = v&0x3f;
\r
1546 switch( OPN_SLOT(r) ){
\r
1547 case 0: /* 0xb0-0xb2 : FB,ALGO */
\r
1549 int feedback = (v>>3)&7;
\r
1551 CH->FB = feedback ? feedback+6 : 0;
\r
1554 case 1: /* 0xb4-0xb6 : L , R , AMS , PMS (YM2612/YM2610B/YM2610/YM2608) */
\r
1556 int panshift = c<<1;
\r
1559 CH->pms = (v & 7) * 32; /* CH->pms = PM depth * 32 (index in lfo_pm_table) */
\r
1562 CH->ams = lfo_ams_depth_shift[(v>>4) & 3];
\r
1564 /* PAN : b7 = L, b6 = R */
\r
1565 ym2612.OPN.pan &= ~(3<<panshift);
\r
1566 ym2612.OPN.pan |= ((v & 0xc0) >> 6) << panshift; // ..LRLR
\r
1583 /*******************************************************************************/
\r
1584 /* YM2612 local section */
\r
1585 /*******************************************************************************/
\r
1587 int *ym2612_dacen;
\r
1588 INT32 *ym2612_dacout;
\r
1592 /* Generate samples for YM2612 */
\r
1593 int YM2612UpdateOne_(int *buffer, int length, int stereo, int is_buf_empty)
\r
1596 int active_chs = 0;
\r
1598 // if !is_buf_empty, it means it has valid samples to mix with, else it may contain trash
\r
1599 if (is_buf_empty) memset32(buffer, 0, length<<stereo);
\r
1605 for (c = 0; c < 6; c++) {
\r
1607 printf("%i: ", c);
\r
1608 for (s = 0; s < 4; s++) {
\r
1609 if (ym2612.CH[c].SLOT[s].state != EG_OFF) slr = 1;
\r
1610 printf(" %i", ym2612.CH[c].SLOT[s].state != EG_OFF);
\r
1612 slm = (ym2612.slot_mask&(0xf<<(c*4))) ? 1 : 0;
\r
1613 printf(" | %i", slm);
\r
1614 printf(" | %i\n", ym2612.CH[c].SLOT[SLOT1].Incr==-1);
\r
1615 if (slr != slm) exit(1);
\r
1619 /* refresh PG and EG */
\r
1620 refresh_fc_eg_chan( &ym2612.CH[0] );
\r
1621 refresh_fc_eg_chan( &ym2612.CH[1] );
\r
1622 if( (ym2612.OPN.ST.mode & 0xc0) )
\r
1625 if( ym2612.CH[2].SLOT[SLOT1].Incr==-1)
\r
1627 refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT1], ym2612.OPN.SL3.fc[1], ym2612.OPN.SL3.kcode[1] );
\r
1628 refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT2], ym2612.OPN.SL3.fc[2], ym2612.OPN.SL3.kcode[2] );
\r
1629 refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT3], ym2612.OPN.SL3.fc[0], ym2612.OPN.SL3.kcode[0] );
\r
1630 refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT4], ym2612.CH[2].fc , ym2612.CH[2].kcode );
\r
1632 } else refresh_fc_eg_chan( &ym2612.CH[2] );
\r
1633 refresh_fc_eg_chan( &ym2612.CH[3] );
\r
1634 refresh_fc_eg_chan( &ym2612.CH[4] );
\r
1635 refresh_fc_eg_chan( &ym2612.CH[5] );
\r
1637 pan = ym2612.OPN.pan;
\r
1638 if (stereo) stereo = 1;
\r
1640 /* mix to 32bit dest */
\r
1641 // flags: stereo, ?, disabled, ?, pan_r, pan_l
\r
1642 if (ym2612.slot_mask & 0x00000f) active_chs |= chan_render(buffer, length, 0, stereo|((pan&0x003)<<4)) << 0;
\r
1643 if (ym2612.slot_mask & 0x0000f0) active_chs |= chan_render(buffer, length, 1, stereo|((pan&0x00c)<<2)) << 1;
\r
1644 if (ym2612.slot_mask & 0x000f00) active_chs |= chan_render(buffer, length, 2, stereo|((pan&0x030) )) << 2;
\r
1645 if (ym2612.slot_mask & 0x00f000) active_chs |= chan_render(buffer, length, 3, stereo|((pan&0x0c0)>>2)) << 3;
\r
1646 if (ym2612.slot_mask & 0x0f0000) active_chs |= chan_render(buffer, length, 4, stereo|((pan&0x300)>>4)) << 4;
\r
1647 if (ym2612.slot_mask & 0xf00000) active_chs |= chan_render(buffer, length, 5, stereo|((pan&0xc00)>>6)|(ym2612.dacen<<2)) << 5;
\r
1649 return active_chs; // 1 if buffer updated
\r
1653 /* initialize YM2612 emulator */
\r
1654 void YM2612Init_(int clock, int rate)
\r
1657 ym2612_dacen = &ym2612.dacen;
\r
1658 ym2612_dacout = &ym2612.dacout;
\r
1659 ym2612_st = &ym2612.OPN.ST;
\r
1661 memset(&ym2612, 0, sizeof(ym2612));
\r
1664 ym2612.OPN.ST.clock = clock;
\r
1665 ym2612.OPN.ST.rate = rate;
\r
1667 /* Extend handler */
\r
1668 YM2612ResetChip_();
\r
1673 void YM2612ResetChip_(void)
\r
1677 memset(ym2612.REGS, 0, sizeof(ym2612.REGS));
\r
1679 OPNSetPres( 6*24 );
\r
1680 set_timers( 0x30 ); /* mode 0 , timer reset */
\r
1681 ym2612.REGS[0x27] = 0x30;
\r
1683 ym2612.OPN.eg_timer = 0;
\r
1684 ym2612.OPN.eg_cnt = 0;
\r
1685 ym2612.OPN.ST.status = 0;
\r
1687 reset_channels( &ym2612.CH[0] );
\r
1688 for(i = 0xb6 ; i >= 0xb4 ; i-- )
\r
1690 OPNWriteReg(i ,0xc0);
\r
1691 OPNWriteReg(i|0x100,0xc0);
\r
1692 ym2612.REGS[i ] = 0xc0;
\r
1693 ym2612.REGS[i|0x100] = 0xc0;
\r
1695 for(i = 0xb2 ; i >= 0x30 ; i-- )
\r
1697 OPNWriteReg(i ,0);
\r
1698 OPNWriteReg(i|0x100,0);
\r
1700 for(i = 0x26 ; i >= 0x20 ; i-- ) OPNWriteReg(i,0);
\r
1701 /* DAC mode clear */
\r
1703 ym2612.addr_A1 = 0;
\r
1707 /* YM2612 write */
\r
1710 /* returns 1 if sample affecting state changed */
\r
1711 int YM2612Write_(unsigned int a, unsigned int v)
\r
1715 v &= 0xff; /* adjust to 8 bit bus */
\r
1718 case 0: /* address port 0 */
\r
1719 ym2612.OPN.ST.address = v;
\r
1720 ym2612.addr_A1 = 0;
\r
1724 case 1: /* data port 0 */
\r
1725 if (ym2612.addr_A1 != 0) {
\r
1727 break; /* verified on real YM2608 */
\r
1730 addr = ym2612.OPN.ST.address;
\r
1731 #ifndef EXTERNAL_YM2612
\r
1732 ym2612.REGS[addr] = v;
\r
1735 switch( addr & 0xf0 )
\r
1737 case 0x20: /* 0x20-0x2f Mode */
\r
1740 case 0x22: /* LFO FREQ (YM2608/YM2610/YM2610B/YM2612) */
\r
1741 if (v&0x08) /* LFO enabled ? */
\r
1743 ym2612.OPN.lfo_inc = ym2612.OPN.lfo_freq[v&7];
\r
1747 ym2612.OPN.lfo_inc = 0;
\r
1750 case 0x24: { // timer A High 8
\r
1751 int TAnew = (ym2612.OPN.ST.TA & 0x03)|(((int)v)<<2);
\r
1752 if(ym2612.OPN.ST.TA != TAnew) {
\r
1753 // we should reset ticker only if new value is written. Outrun requires this.
\r
1754 ym2612.OPN.ST.TA = TAnew;
\r
1755 ym2612.OPN.ST.TAC = (1024-TAnew)*18;
\r
1756 ym2612.OPN.ST.TAT = 0;
\r
1761 case 0x25: { // timer A Low 2
\r
1762 int TAnew = (ym2612.OPN.ST.TA & 0x3fc)|(v&3);
\r
1763 if(ym2612.OPN.ST.TA != TAnew) {
\r
1764 ym2612.OPN.ST.TA = TAnew;
\r
1765 ym2612.OPN.ST.TAC = (1024-TAnew)*18;
\r
1766 ym2612.OPN.ST.TAT = 0;
\r
1771 case 0x26: // timer B
\r
1772 if(ym2612.OPN.ST.TB != v) {
\r
1773 ym2612.OPN.ST.TB = v;
\r
1774 ym2612.OPN.ST.TBC = (256-v)<<4;
\r
1775 ym2612.OPN.ST.TBC *= 18;
\r
1776 ym2612.OPN.ST.TBT = 0;
\r
1780 case 0x27: /* mode, timer control */
\r
1784 case 0x28: /* key on / off */
\r
1789 if( c == 3 ) { ret=0; break; }
\r
1790 if( v&0x04 ) c+=3;
\r
1791 if(v&0x10) FM_KEYON(c,SLOT1); else FM_KEYOFF(c,SLOT1);
\r
1792 if(v&0x20) FM_KEYON(c,SLOT2); else FM_KEYOFF(c,SLOT2);
\r
1793 if(v&0x40) FM_KEYON(c,SLOT3); else FM_KEYOFF(c,SLOT3);
\r
1794 if(v&0x80) FM_KEYON(c,SLOT4); else FM_KEYOFF(c,SLOT4);
\r
1797 case 0x2a: /* DAC data (YM2612) */
\r
1798 ym2612.dacout = ((int)v - 0x80) << 6; /* level unknown (notaz: 8 seems to be too much) */
\r
1801 case 0x2b: /* DAC Sel (YM2612) */
\r
1802 /* b7 = dac enable */
\r
1803 ym2612.dacen = v & 0x80;
\r
1810 default: /* 0x30-0xff OPN section */
\r
1811 /* write register */
\r
1812 ret = OPNWriteReg(addr,v);
\r
1816 case 2: /* address port 1 */
\r
1817 ym2612.OPN.ST.address = v;
\r
1818 ym2612.addr_A1 = 1;
\r
1822 case 3: /* data port 1 */
\r
1823 if (ym2612.addr_A1 != 1) {
\r
1825 break; /* verified on real YM2608 */
\r
1828 addr = ym2612.OPN.ST.address | 0x100;
\r
1829 #ifndef EXTERNAL_YM2612
\r
1830 ym2612.REGS[addr] = v;
\r
1833 ret = OPNWriteReg(addr, v);
\r
1838 extern int Scanline;
\r
1839 dprintf("ymw [%i]", Scanline);
\r
1846 UINT8 YM2612Read_(void)
\r
1848 return ym2612.OPN.ST.status;
\r
1851 int YM2612PicoTick_(int n)
\r
1856 if(ym2612.OPN.ST.mode & 0x01 && (ym2612.OPN.ST.TAT+=64*n) >= ym2612.OPN.ST.TAC) {
\r
1857 ym2612.OPN.ST.TAT -= ym2612.OPN.ST.TAC;
\r
1858 if(ym2612.OPN.ST.mode & 0x04) ym2612.OPN.ST.status |= 1;
\r
1859 // CSM mode total level latch and auto key on
\r
1860 if(ym2612.OPN.ST.mode & 0x80) {
\r
1861 CSMKeyControll( &(ym2612.CH[2]) ); // Vectorman2, etc.
\r
1867 if(ym2612.OPN.ST.mode & 0x02 && (ym2612.OPN.ST.TBT+=64*n) >= ym2612.OPN.ST.TBC) {
\r
1868 ym2612.OPN.ST.TBT -= ym2612.OPN.ST.TBC;
\r
1869 if(ym2612.OPN.ST.mode & 0x08) ym2612.OPN.ST.status |= 2;
\r
1876 void YM2612PicoStateLoad_(void)
\r
1878 #ifndef EXTERNAL_YM2612
\r
1879 int i, real_A1 = ym2612.addr_A1;
\r
1881 reset_channels( &ym2612.CH[0] );
\r
1883 // feed all the registers and update internal state
\r
1884 for(i = 0; i < 0x100; i++) {
\r
1885 YM2612Write_(0, i);
\r
1886 YM2612Write_(1, ym2612.REGS[i]);
\r
1889 for(i = 0; i < 0x100; i++) {
\r
1890 YM2612Write_(2, i);
\r
1891 YM2612Write_(3, ym2612.REGS[i|0x100]);
\r
1894 ym2612.addr_A1 = real_A1;
\r
1896 reset_channels( &ym2612.CH[0] );
\r
1900 #ifndef EXTERNAL_YM2612
\r
1901 void *YM2612GetRegs(void)
\r
1903 return ym2612.REGS;
\r