2 /* ======================================================================== */
\r
3 /* ========================= LICENSING & COPYRIGHT ======================== */
\r
4 /* ======================================================================== */
\r
9 * A portable Motorola M680x0 processor emulation engine.
\r
10 * Copyright 1998-2007 Karl Stenerud. All rights reserved.
\r
12 * This code may be freely used for non-commercial purposes as long as this
\r
13 * copyright notice remains unaltered in the source code and any binary files
\r
14 * containing this code in compiled form.
\r
16 * All other lisencing terms must be negotiated with the author
\r
19 * The latest version of this code can be obtained at:
\r
20 * http://kstenerud.cjb.net
\r
26 #ifndef M68KCPU__HEADER
\r
27 #define M68KCPU__HEADER
\r
29 // notaz: something's missing this
\r
31 #define UINT64 unsigned long long
\r
34 #define UINT32 unsigned int
\r
35 #define UINT16 unsigned short
\r
36 #define UINT8 unsigned char
\r
42 #if M68K_EMULATE_ADDRESS_ERROR
\r
44 #endif /* M68K_EMULATE_ADDRESS_ERROR */
\r
46 /* ======================================================================== */
\r
47 /* ==================== ARCHITECTURE-DEPENDANT DEFINES ==================== */
\r
48 /* ======================================================================== */
\r
50 /* Check for > 32bit sizes */
\r
51 #if UINT_MAX > 0xffffffff
\r
52 #define M68K_INT_GT_32_BIT 1
\r
54 #define M68K_INT_GT_32_BIT 0
\r
57 /* Data types used in this emulation core */
\r
69 #define sint8 signed char /* ASG: changed from char to signed char */
\r
70 #define sint16 signed short
\r
71 #define sint32 signed int /* AWJ: changed from long to int */
\r
72 #define uint8 unsigned char
\r
73 #define uint16 unsigned short
\r
74 #define uint32 unsigned int /* AWJ: changed from long to int */
\r
76 /* signed and unsigned int must be at least 32 bits wide */
\r
77 #define sint signed int
\r
78 #define uint unsigned int
\r
82 #define sint64 signed long long
\r
83 #define uint64 unsigned long long
\r
85 #define sint64 sint32
\r
86 #define uint64 uint32
\r
87 #endif /* M68K_USE_64_BIT */
\r
91 /* Allow for architectures that don't have 8-bit sizes */
\r
92 #if UCHAR_MAX == 0xff
\r
93 #define MAKE_INT_8(A) (sint8)(A)
\r
96 #define sint8 signed int
\r
98 #define uint8 unsigned int
\r
99 INLINE sint MAKE_INT_8(uint value)
\r
101 return (value & 0x80) ? value | ~0xff : value & 0xff;
\r
103 #endif /* UCHAR_MAX == 0xff */
\r
106 /* Allow for architectures that don't have 16-bit sizes */
\r
107 #if USHRT_MAX == 0xffff
\r
108 #define MAKE_INT_16(A) (sint16)(A)
\r
111 #define sint16 signed int
\r
113 #define uint16 unsigned int
\r
114 INLINE sint MAKE_INT_16(uint value)
\r
116 return (value & 0x8000) ? value | ~0xffff : value & 0xffff;
\r
118 #endif /* USHRT_MAX == 0xffff */
\r
121 /* Allow for architectures that don't have 32-bit sizes */
\r
122 #if UINT_MAX == 0xffffffff
\r
123 #define MAKE_INT_32(A) (sint32)(A)
\r
126 #define sint32 signed int
\r
128 #define uint32 unsigned int
\r
129 INLINE sint MAKE_INT_32(uint value)
\r
131 return (value & 0x80000000) ? value | ~0xffffffff : value & 0xffffffff;
\r
133 #endif /* UINT_MAX == 0xffffffff */
\r
138 /* ======================================================================== */
\r
139 /* ============================ GENERAL DEFINES =========================== */
\r
140 /* ======================================================================== */
\r
142 /* Exception Vectors handled by emulation */
\r
143 #define EXCEPTION_BUS_ERROR 2 /* This one is not emulated! */
\r
144 #define EXCEPTION_ADDRESS_ERROR 3 /* This one is partially emulated (doesn't stack a proper frame yet) */
\r
145 #define EXCEPTION_ILLEGAL_INSTRUCTION 4
\r
146 #define EXCEPTION_ZERO_DIVIDE 5
\r
147 #define EXCEPTION_CHK 6
\r
148 #define EXCEPTION_TRAPV 7
\r
149 #define EXCEPTION_PRIVILEGE_VIOLATION 8
\r
150 #define EXCEPTION_TRACE 9
\r
151 #define EXCEPTION_1010 10
\r
152 #define EXCEPTION_1111 11
\r
153 #define EXCEPTION_FORMAT_ERROR 14
\r
154 #define EXCEPTION_UNINITIALIZED_INTERRUPT 15
\r
155 #define EXCEPTION_SPURIOUS_INTERRUPT 24
\r
156 #define EXCEPTION_INTERRUPT_AUTOVECTOR 24
\r
157 #define EXCEPTION_TRAP_BASE 32
\r
159 /* Function codes set by CPU during data/address bus activity */
\r
160 #define FUNCTION_CODE_USER_DATA 1
\r
161 #define FUNCTION_CODE_USER_PROGRAM 2
\r
162 #define FUNCTION_CODE_SUPERVISOR_DATA 5
\r
163 #define FUNCTION_CODE_SUPERVISOR_PROGRAM 6
\r
164 #define FUNCTION_CODE_CPU_SPACE 7
\r
166 /* CPU types for deciding what to emulate */
\r
167 #define CPU_TYPE_000 1
\r
168 #define CPU_TYPE_008 2
\r
169 #define CPU_TYPE_010 4
\r
170 #define CPU_TYPE_EC020 8
\r
171 #define CPU_TYPE_020 16
\r
172 #define CPU_TYPE_040 32
\r
174 /* Different ways to stop the CPU */
\r
175 #define STOP_LEVEL_STOP 1
\r
176 #define STOP_LEVEL_HALT 2
\r
178 /* Used for 68000 address error processing */
\r
179 #define INSTRUCTION_YES 0
\r
180 #define INSTRUCTION_NO 0x08
\r
181 #define MODE_READ 0x10
\r
182 #define MODE_WRITE 0
\r
184 #define RUN_MODE_NORMAL 0
\r
185 #define RUN_MODE_BERR_AERR_RESET 1
\r
188 #define NULL ((void*)0)
\r
191 /* ======================================================================== */
\r
192 /* ================================ MACROS ================================ */
\r
193 /* ======================================================================== */
\r
196 /* ---------------------------- General Macros ---------------------------- */
\r
198 /* Bit Isolation Macros */
\r
199 #define BIT_0(A) ((A) & 0x00000001)
\r
200 #define BIT_1(A) ((A) & 0x00000002)
\r
201 #define BIT_2(A) ((A) & 0x00000004)
\r
202 #define BIT_3(A) ((A) & 0x00000008)
\r
203 #define BIT_4(A) ((A) & 0x00000010)
\r
204 #define BIT_5(A) ((A) & 0x00000020)
\r
205 #define BIT_6(A) ((A) & 0x00000040)
\r
206 #define BIT_7(A) ((A) & 0x00000080)
\r
207 #define BIT_8(A) ((A) & 0x00000100)
\r
208 #define BIT_9(A) ((A) & 0x00000200)
\r
209 #define BIT_A(A) ((A) & 0x00000400)
\r
210 #define BIT_B(A) ((A) & 0x00000800)
\r
211 #define BIT_C(A) ((A) & 0x00001000)
\r
212 #define BIT_D(A) ((A) & 0x00002000)
\r
213 #define BIT_E(A) ((A) & 0x00004000)
\r
214 #define BIT_F(A) ((A) & 0x00008000)
\r
215 #define BIT_10(A) ((A) & 0x00010000)
\r
216 #define BIT_11(A) ((A) & 0x00020000)
\r
217 #define BIT_12(A) ((A) & 0x00040000)
\r
218 #define BIT_13(A) ((A) & 0x00080000)
\r
219 #define BIT_14(A) ((A) & 0x00100000)
\r
220 #define BIT_15(A) ((A) & 0x00200000)
\r
221 #define BIT_16(A) ((A) & 0x00400000)
\r
222 #define BIT_17(A) ((A) & 0x00800000)
\r
223 #define BIT_18(A) ((A) & 0x01000000)
\r
224 #define BIT_19(A) ((A) & 0x02000000)
\r
225 #define BIT_1A(A) ((A) & 0x04000000)
\r
226 #define BIT_1B(A) ((A) & 0x08000000)
\r
227 #define BIT_1C(A) ((A) & 0x10000000)
\r
228 #define BIT_1D(A) ((A) & 0x20000000)
\r
229 #define BIT_1E(A) ((A) & 0x40000000)
\r
230 #define BIT_1F(A) ((A) & 0x80000000)
\r
232 /* Get the most significant bit for specific sizes */
\r
233 #define GET_MSB_8(A) ((A) & 0x80)
\r
234 #define GET_MSB_9(A) ((A) & 0x100)
\r
235 #define GET_MSB_16(A) ((A) & 0x8000)
\r
236 #define GET_MSB_17(A) ((A) & 0x10000)
\r
237 #define GET_MSB_32(A) ((A) & 0x80000000)
\r
238 #if M68K_USE_64_BIT
\r
239 #define GET_MSB_33(A) ((A) & 0x100000000)
\r
240 #endif /* M68K_USE_64_BIT */
\r
242 /* Isolate nibbles */
\r
243 #define LOW_NIBBLE(A) ((A) & 0x0f)
\r
244 #define HIGH_NIBBLE(A) ((A) & 0xf0)
\r
246 /* These are used to isolate 8, 16, and 32 bit sizes */
\r
247 #define MASK_OUT_ABOVE_2(A) ((A) & 3)
\r
248 #define MASK_OUT_ABOVE_8(A) ((A) & 0xff)
\r
249 #define MASK_OUT_ABOVE_16(A) ((A) & 0xffff)
\r
250 #define MASK_OUT_BELOW_2(A) ((A) & ~3)
\r
251 #define MASK_OUT_BELOW_8(A) ((A) & ~0xff)
\r
252 #define MASK_OUT_BELOW_16(A) ((A) & ~0xffff)
\r
254 /* No need to mask if we are 32 bit */
\r
255 #if M68K_INT_GT_32_BIT || M68K_USE_64_BIT
\r
256 #define MASK_OUT_ABOVE_32(A) ((A) & 0xffffffff)
\r
257 #define MASK_OUT_BELOW_32(A) ((A) & ~0xffffffff)
\r
259 #define MASK_OUT_ABOVE_32(A) (A)
\r
260 #define MASK_OUT_BELOW_32(A) 0
\r
261 #endif /* M68K_INT_GT_32_BIT || M68K_USE_64_BIT */
\r
263 /* Simulate address lines of 68k family */
\r
264 #define ADDRESS_68K(A) ((A)&CPU_ADDRESS_MASK)
\r
267 /* Shift & Rotate Macros. */
\r
268 #define LSL(A, C) ((A) << (C))
\r
269 #define LSR(A, C) ((A) >> (C))
\r
271 /* Some > 32-bit optimizations */
\r
272 #if M68K_INT_GT_32_BIT
\r
273 /* Shift left and right */
\r
274 #define LSR_32(A, C) ((A) >> (C))
\r
275 #define LSL_32(A, C) ((A) << (C))
\r
277 /* We have to do this because the morons at ANSI decided that shifts
\r
278 * by >= data size are undefined.
\r
280 #define LSR_32(A, C) ((C) < 32 ? (A) >> (C) : 0)
\r
281 #define LSL_32(A, C) ((C) < 32 ? (A) << (C) : 0)
\r
282 #endif /* M68K_INT_GT_32_BIT */
\r
284 #if M68K_USE_64_BIT
\r
285 #define LSL_32_64(A, C) ((A) << (C))
\r
286 #define LSR_32_64(A, C) ((A) >> (C))
\r
287 #define ROL_33_64(A, C) (LSL_32_64(A, C) | LSR_32_64(A, 33-(C)))
\r
288 #define ROR_33_64(A, C) (LSR_32_64(A, C) | LSL_32_64(A, 33-(C)))
\r
289 #endif /* M68K_USE_64_BIT */
\r
291 #define ROL_8(A, C) MASK_OUT_ABOVE_8(LSL(A, C) | LSR(A, 8-(C)))
\r
292 #define ROL_9(A, C) (LSL(A, C) | LSR(A, 9-(C)))
\r
293 #define ROL_16(A, C) MASK_OUT_ABOVE_16(LSL(A, C) | LSR(A, 16-(C)))
\r
294 #define ROL_17(A, C) (LSL(A, C) | LSR(A, 17-(C)))
\r
295 #define ROL_32(A, C) MASK_OUT_ABOVE_32(LSL_32(A, C) | LSR_32(A, 32-(C)))
\r
296 #define ROL_33(A, C) (LSL_32(A, C) | LSR_32(A, 33-(C)))
\r
298 #define ROR_8(A, C) MASK_OUT_ABOVE_8(LSR(A, C) | LSL(A, 8-(C)))
\r
299 #define ROR_9(A, C) (LSR(A, C) | LSL(A, 9-(C)))
\r
300 #define ROR_16(A, C) MASK_OUT_ABOVE_16(LSR(A, C) | LSL(A, 16-(C)))
\r
301 #define ROR_17(A, C) (LSR(A, C) | LSL(A, 17-(C)))
\r
302 #define ROR_32(A, C) MASK_OUT_ABOVE_32(LSR_32(A, C) | LSL_32(A, 32-(C)))
\r
303 #define ROR_33(A, C) (LSR_32(A, C) | LSL_32(A, 33-(C)))
\r
307 /* ------------------------------ CPU Access ------------------------------ */
\r
309 /* Access the CPU registers */
\r
310 #define CPU_TYPE m68ki_cpu.cpu_type
\r
312 #define REG_DA m68ki_cpu.dar /* easy access to data and address regs */
\r
313 #define REG_D m68ki_cpu.dar
\r
314 #define REG_A (m68ki_cpu.dar+8)
\r
315 #define REG_PPC m68ki_cpu.ppc
\r
316 #define REG_PC m68ki_cpu.pc
\r
317 #define REG_SP_BASE m68ki_cpu.sp
\r
318 #define REG_USP m68ki_cpu.sp[0]
\r
319 #define REG_ISP m68ki_cpu.sp[4]
\r
320 #define REG_MSP m68ki_cpu.sp[6]
\r
321 #define REG_SP m68ki_cpu.dar[15]
\r
322 #define REG_VBR m68ki_cpu.vbr
\r
323 #define REG_SFC m68ki_cpu.sfc
\r
324 #define REG_DFC m68ki_cpu.dfc
\r
325 #define REG_CACR m68ki_cpu.cacr
\r
326 #define REG_CAAR m68ki_cpu.caar
\r
327 #define REG_IR m68ki_cpu.ir
\r
329 #define REG_FP m68ki_cpu.fpr
\r
330 #define REG_FPCR m68ki_cpu.fpcr
\r
331 #define REG_FPSR m68ki_cpu.fpsr
\r
332 #define REG_FPIAR m68ki_cpu.fpiar
\r
334 #define FLAG_T1 m68ki_cpu.t1_flag
\r
335 #define FLAG_T0 m68ki_cpu.t0_flag
\r
336 #define FLAG_S m68ki_cpu.s_flag
\r
337 #define FLAG_M m68ki_cpu.m_flag
\r
338 #define FLAG_X m68ki_cpu.x_flag
\r
339 #define FLAG_N m68ki_cpu.n_flag
\r
340 #define FLAG_Z m68ki_cpu.not_z_flag
\r
341 #define FLAG_V m68ki_cpu.v_flag
\r
342 #define FLAG_C m68ki_cpu.c_flag
\r
343 #define FLAG_INT_MASK m68ki_cpu.int_mask
\r
345 #define CPU_INT_LEVEL m68ki_cpu.int_level /* ASG: changed from CPU_INTS_PENDING */
\r
346 #define CPU_INT_CYCLES m68ki_cpu.int_cycles /* ASG */
\r
347 #define CPU_STOPPED m68ki_cpu.stopped
\r
348 #define CPU_PREF_ADDR m68ki_cpu.pref_addr
\r
349 #define CPU_PREF_DATA m68ki_cpu.pref_data
\r
350 #define CPU_ADDRESS_MASK m68ki_cpu.address_mask
\r
351 #define CPU_SR_MASK m68ki_cpu.sr_mask
\r
352 #define CPU_INSTR_MODE m68ki_cpu.instr_mode
\r
353 #define CPU_RUN_MODE m68ki_cpu.run_mode
\r
355 #define CYC_INSTRUCTION m68ki_cpu.cyc_instruction
\r
356 #define CYC_EXCEPTION m68ki_cpu.cyc_exception
\r
357 #define CYC_BCC_NOTAKE_B m68ki_cpu.cyc_bcc_notake_b
\r
358 #define CYC_BCC_NOTAKE_W m68ki_cpu.cyc_bcc_notake_w
\r
359 #define CYC_DBCC_F_NOEXP m68ki_cpu.cyc_dbcc_f_noexp
\r
360 #define CYC_DBCC_F_EXP m68ki_cpu.cyc_dbcc_f_exp
\r
361 #define CYC_SCC_R_TRUE m68ki_cpu.cyc_scc_r_true
\r
362 #define CYC_MOVEM_W m68ki_cpu.cyc_movem_w
\r
363 #define CYC_MOVEM_L m68ki_cpu.cyc_movem_l
\r
364 #define CYC_SHIFT m68ki_cpu.cyc_shift
\r
365 #define CYC_RESET m68ki_cpu.cyc_reset
\r
368 #define CALLBACK_INT_ACK m68ki_cpu.int_ack_callback
\r
369 #define CALLBACK_BKPT_ACK m68ki_cpu.bkpt_ack_callback
\r
370 #define CALLBACK_RESET_INSTR m68ki_cpu.reset_instr_callback
\r
371 #define CALLBACK_CMPILD_INSTR m68ki_cpu.cmpild_instr_callback
\r
372 #define CALLBACK_RTE_INSTR m68ki_cpu.rte_instr_callback
\r
373 #define CALLBACK_TAS_INSTR m68ki_cpu.tas_instr_callback
\r
374 #define CALLBACK_PC_CHANGED m68ki_cpu.pc_changed_callback
\r
375 #define CALLBACK_SET_FC m68ki_cpu.set_fc_callback
\r
376 #define CALLBACK_INSTR_HOOK m68ki_cpu.instr_hook_callback
\r
380 /* ----------------------------- Configuration ---------------------------- */
\r
382 /* These defines are dependant on the configuration defines in m68kconf.h */
\r
384 /* Disable certain comparisons if we're not using all CPU types */
\r
385 #if M68K_EMULATE_040
\r
386 #define CPU_TYPE_IS_040_PLUS(A) ((A) & CPU_TYPE_040)
\r
387 #define CPU_TYPE_IS_040_LESS(A) 1
\r
389 #define CPU_TYPE_IS_040_PLUS(A) 0
\r
390 #define CPU_TYPE_IS_040_LESS(A) 1
\r
393 #if M68K_EMULATE_020
\r
394 #define CPU_TYPE_IS_020_PLUS(A) ((A) & (CPU_TYPE_020 | CPU_TYPE_040))
\r
395 #define CPU_TYPE_IS_020_LESS(A) 1
\r
397 #define CPU_TYPE_IS_020_PLUS(A) 0
\r
398 #define CPU_TYPE_IS_020_LESS(A) 1
\r
401 #if M68K_EMULATE_EC020
\r
402 #define CPU_TYPE_IS_EC020_PLUS(A) ((A) & (CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_040))
\r
403 #define CPU_TYPE_IS_EC020_LESS(A) ((A) & (CPU_TYPE_000 | CPU_TYPE_008 | CPU_TYPE_010 | CPU_TYPE_EC020))
\r
405 #define CPU_TYPE_IS_EC020_PLUS(A) CPU_TYPE_IS_020_PLUS(A)
\r
406 #define CPU_TYPE_IS_EC020_LESS(A) CPU_TYPE_IS_020_LESS(A)
\r
409 #if M68K_EMULATE_010
\r
410 #define CPU_TYPE_IS_010(A) ((A) == CPU_TYPE_010)
\r
411 #define CPU_TYPE_IS_010_PLUS(A) ((A) & (CPU_TYPE_010 | CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_040))
\r
412 #define CPU_TYPE_IS_010_LESS(A) ((A) & (CPU_TYPE_000 | CPU_TYPE_008 | CPU_TYPE_010))
\r
414 #define CPU_TYPE_IS_010(A) 0
\r
415 #define CPU_TYPE_IS_010_PLUS(A) CPU_TYPE_IS_EC020_PLUS(A)
\r
416 #define CPU_TYPE_IS_010_LESS(A) CPU_TYPE_IS_EC020_LESS(A)
\r
419 #if M68K_EMULATE_020 || M68K_EMULATE_EC020
\r
420 #define CPU_TYPE_IS_020_VARIANT(A) ((A) & (CPU_TYPE_EC020 | CPU_TYPE_020))
\r
422 #define CPU_TYPE_IS_020_VARIANT(A) 0
\r
425 #if M68K_EMULATE_040 || M68K_EMULATE_020 || M68K_EMULATE_EC020 || M68K_EMULATE_010
\r
426 #define CPU_TYPE_IS_000(A) ((A) == CPU_TYPE_000 || (A) == CPU_TYPE_008)
\r
428 #define CPU_TYPE_IS_000(A) 1
\r
432 #if !M68K_SEPARATE_READS
\r
433 #define m68k_read_immediate_16(A) m68ki_read_program_16(A)
\r
434 #define m68k_read_immediate_32(A) m68ki_read_program_32(A)
\r
436 #define m68k_read_pcrelative_8(A) m68ki_read_program_8(A)
\r
437 #define m68k_read_pcrelative_16(A) m68ki_read_program_16(A)
\r
438 #define m68k_read_pcrelative_32(A) m68ki_read_program_32(A)
\r
439 #endif /* M68K_SEPARATE_READS */
\r
442 /* Enable or disable callback functions */
\r
443 #if M68K_EMULATE_INT_ACK
\r
444 #if M68K_EMULATE_INT_ACK == OPT_SPECIFY_HANDLER
\r
445 #define m68ki_int_ack(A) M68K_INT_ACK_CALLBACK(A)
\r
447 #define m68ki_int_ack(A) CALLBACK_INT_ACK(A)
\r
450 /* Default action is to used autovector mode, which is most common */
\r
451 #define m68ki_int_ack(A) M68K_INT_ACK_AUTOVECTOR
\r
452 #endif /* M68K_EMULATE_INT_ACK */
\r
454 #if M68K_EMULATE_BKPT_ACK
\r
455 #if M68K_EMULATE_BKPT_ACK == OPT_SPECIFY_HANDLER
\r
456 #define m68ki_bkpt_ack(A) M68K_BKPT_ACK_CALLBACK(A)
\r
458 #define m68ki_bkpt_ack(A) CALLBACK_BKPT_ACK(A)
\r
461 #define m68ki_bkpt_ack(A)
\r
462 #endif /* M68K_EMULATE_BKPT_ACK */
\r
464 #if M68K_EMULATE_RESET
\r
465 #if M68K_EMULATE_RESET == OPT_SPECIFY_HANDLER
\r
466 #define m68ki_output_reset() M68K_RESET_CALLBACK()
\r
468 #define m68ki_output_reset() CALLBACK_RESET_INSTR()
\r
471 #define m68ki_output_reset()
\r
472 #endif /* M68K_EMULATE_RESET */
\r
474 #if M68K_CMPILD_HAS_CALLBACK
\r
475 #if M68K_CMPILD_HAS_CALLBACK == OPT_SPECIFY_HANDLER
\r
476 #define m68ki_cmpild_callback(v,r) M68K_CMPILD_CALLBACK(v,r)
\r
478 #define m68ki_cmpild_callback(v,r) CALLBACK_CMPILD_INSTR(v,r)
\r
481 #define m68ki_cmpild_callback(v,r)
\r
482 #endif /* M68K_CMPILD_HAS_CALLBACK */
\r
484 #if M68K_RTE_HAS_CALLBACK
\r
485 #if M68K_RTE_HAS_CALLBACK == OPT_SPECIFY_HANDLER
\r
486 #define m68ki_rte_callback() M68K_RTE_CALLBACK()
\r
488 #define m68ki_rte_callback() CALLBACK_RTE_INSTR()
\r
491 #define m68ki_rte_callback()
\r
492 #endif /* M68K_RTE_HAS_CALLBACK */
\r
494 #if M68K_TAS_HAS_CALLBACK
\r
495 #if M68K_TAS_HAS_CALLBACK == OPT_SPECIFY_HANDLER
\r
496 #define m68ki_tas_callback() M68K_TAS_CALLBACK()
\r
498 #define m68ki_tas_callback() CALLBACK_TAS_INSTR()
\r
501 #define m68ki_tas_callback()
\r
502 #endif /* M68K_TAS_HAS_CALLBACK */
\r
505 #if M68K_INSTRUCTION_HOOK
\r
506 #if M68K_INSTRUCTION_HOOK == OPT_SPECIFY_HANDLER
\r
507 #define m68ki_instr_hook() M68K_INSTRUCTION_CALLBACK()
\r
509 #define m68ki_instr_hook() CALLBACK_INSTR_HOOK()
\r
512 #define m68ki_instr_hook()
\r
513 #endif /* M68K_INSTRUCTION_HOOK */
\r
515 #if M68K_MONITOR_PC
\r
516 #if M68K_MONITOR_PC == OPT_SPECIFY_HANDLER
\r
517 #define m68ki_pc_changed(A) M68K_SET_PC_CALLBACK(ADDRESS_68K(A))
\r
519 #define m68ki_pc_changed(A) CALLBACK_PC_CHANGED(ADDRESS_68K(A))
\r
522 #define m68ki_pc_changed(A)
\r
523 #endif /* M68K_MONITOR_PC */
\r
526 /* Enable or disable function code emulation */
\r
527 #if M68K_EMULATE_FC
\r
528 #if M68K_EMULATE_FC == OPT_SPECIFY_HANDLER
\r
529 #define m68ki_set_fc(A) M68K_SET_FC_CALLBACK(A)
\r
531 #define m68ki_set_fc(A) CALLBACK_SET_FC(A)
\r
533 #define m68ki_use_data_space() m68ki_address_space = FUNCTION_CODE_USER_DATA
\r
534 #define m68ki_use_program_space() m68ki_address_space = FUNCTION_CODE_USER_PROGRAM
\r
535 #define m68ki_get_address_space() m68ki_address_space
\r
537 #define m68ki_set_fc(A)
\r
538 #define m68ki_use_data_space()
\r
539 #define m68ki_use_program_space()
\r
540 #define m68ki_get_address_space() FUNCTION_CODE_USER_DATA
\r
541 #endif /* M68K_EMULATE_FC */
\r
544 /* Enable or disable trace emulation */
\r
545 #if M68K_EMULATE_TRACE
\r
546 /* Initiates trace checking before each instruction (t1) */
\r
547 #define m68ki_trace_t1() m68ki_tracing = FLAG_T1
\r
548 /* adds t0 to trace checking if we encounter change of flow */
\r
549 #define m68ki_trace_t0() m68ki_tracing |= FLAG_T0
\r
550 /* Clear all tracing */
\r
551 #define m68ki_clear_trace() m68ki_tracing = 0
\r
552 /* Cause a trace exception if we are tracing */
\r
553 #define m68ki_exception_if_trace() if(m68ki_tracing) m68ki_exception_trace()
\r
555 #define m68ki_trace_t1()
\r
556 #define m68ki_trace_t0()
\r
557 #define m68ki_clear_trace()
\r
558 #define m68ki_exception_if_trace()
\r
559 #endif /* M68K_EMULATE_TRACE */
\r
563 /* Address error */
\r
564 #if M68K_EMULATE_ADDRESS_ERROR
\r
565 #include <setjmp.h>
\r
566 extern jmp_buf m68ki_aerr_trap;
\r
568 #define m68ki_set_address_error_trap() \
\r
569 if(setjmp(m68ki_aerr_trap) != 0) \
\r
571 m68ki_exception_address_error(); \
\r
575 CPU_INT_CYCLES = 0; \
\r
576 return m68ki_initial_cycles; \
\r
580 #define m68ki_check_address_error(ADDR, WRITE_MODE, FC) \
\r
583 m68ki_aerr_address = ADDR; \
\r
584 m68ki_aerr_write_mode = WRITE_MODE; \
\r
585 m68ki_aerr_fc = FC; \
\r
586 longjmp(m68ki_aerr_trap, 1); \
\r
589 #define m68ki_check_address_error_010_less(ADDR, WRITE_MODE, FC) \
\r
590 if (CPU_TYPE_IS_010_LESS(CPU_TYPE)) \
\r
592 m68ki_check_address_error(ADDR, WRITE_MODE, FC) \
\r
595 #define m68ki_set_address_error_trap()
\r
596 #define m68ki_check_address_error(ADDR, WRITE_MODE, FC)
\r
597 #define m68ki_check_address_error_010_less(ADDR, WRITE_MODE, FC)
\r
598 #endif /* M68K_ADDRESS_ERROR */
\r
601 #if M68K_LOG_ENABLE
\r
603 extern FILE* M68K_LOG_FILEHANDLE
\r
604 extern char* m68ki_cpu_names[];
\r
606 #define M68K_DO_LOG(A) if(M68K_LOG_FILEHANDLE) fprintf A
\r
607 #if M68K_LOG_1010_1111
\r
608 #define M68K_DO_LOG_EMU(A) if(M68K_LOG_FILEHANDLE) fprintf A
\r
610 #define M68K_DO_LOG_EMU(A)
\r
613 #define M68K_DO_LOG(A)
\r
614 #define M68K_DO_LOG_EMU(A)
\r
619 /* -------------------------- EA / Operand Access ------------------------- */
\r
622 * The general instruction format follows this pattern:
\r
623 * .... XXX. .... .YYY
\r
624 * where XXX is register X and YYY is register Y
\r
626 /* Data Register Isolation */
\r
627 #define DX (REG_D[(REG_IR >> 9) & 7])
\r
628 #define DY (REG_D[REG_IR & 7])
\r
629 /* Address Register Isolation */
\r
630 #define AX (REG_A[(REG_IR >> 9) & 7])
\r
631 #define AY (REG_A[REG_IR & 7])
\r
634 /* Effective Address Calculations */
\r
635 #define EA_AY_AI_8() AY /* address register indirect */
\r
636 #define EA_AY_AI_16() EA_AY_AI_8()
\r
637 #define EA_AY_AI_32() EA_AY_AI_8()
\r
638 #define EA_AY_PI_8() (AY++) /* postincrement (size = byte) */
\r
639 #define EA_AY_PI_16() ((AY+=2)-2) /* postincrement (size = word) */
\r
640 #define EA_AY_PI_32() ((AY+=4)-4) /* postincrement (size = long) */
\r
641 #define EA_AY_PD_8() (--AY) /* predecrement (size = byte) */
\r
642 #define EA_AY_PD_16() (AY-=2) /* predecrement (size = word) */
\r
643 #define EA_AY_PD_32() (AY-=4) /* predecrement (size = long) */
\r
644 #define EA_AY_DI_8() (AY+MAKE_INT_16(m68ki_read_imm_16())) /* displacement */
\r
645 #define EA_AY_DI_16() EA_AY_DI_8()
\r
646 #define EA_AY_DI_32() EA_AY_DI_8()
\r
647 #define EA_AY_IX_8() m68ki_get_ea_ix(AY) /* indirect + index */
\r
648 #define EA_AY_IX_16() EA_AY_IX_8()
\r
649 #define EA_AY_IX_32() EA_AY_IX_8()
\r
651 #define EA_AX_AI_8() AX
\r
652 #define EA_AX_AI_16() EA_AX_AI_8()
\r
653 #define EA_AX_AI_32() EA_AX_AI_8()
\r
654 #define EA_AX_PI_8() (AX++)
\r
655 #define EA_AX_PI_16() ((AX+=2)-2)
\r
656 #define EA_AX_PI_32() ((AX+=4)-4)
\r
657 #define EA_AX_PD_8() (--AX)
\r
658 #define EA_AX_PD_16() (AX-=2)
\r
659 #define EA_AX_PD_32() (AX-=4)
\r
660 #define EA_AX_DI_8() (AX+MAKE_INT_16(m68ki_read_imm_16()))
\r
661 #define EA_AX_DI_16() EA_AX_DI_8()
\r
662 #define EA_AX_DI_32() EA_AX_DI_8()
\r
663 #define EA_AX_IX_8() m68ki_get_ea_ix(AX)
\r
664 #define EA_AX_IX_16() EA_AX_IX_8()
\r
665 #define EA_AX_IX_32() EA_AX_IX_8()
\r
667 #define EA_A7_PI_8() ((REG_A[7]+=2)-2)
\r
668 #define EA_A7_PD_8() (REG_A[7]-=2)
\r
670 #define EA_AW_8() MAKE_INT_16(m68ki_read_imm_16()) /* absolute word */
\r
671 #define EA_AW_16() EA_AW_8()
\r
672 #define EA_AW_32() EA_AW_8()
\r
673 #define EA_AL_8() m68ki_read_imm_32() /* absolute long */
\r
674 #define EA_AL_16() EA_AL_8()
\r
675 #define EA_AL_32() EA_AL_8()
\r
676 #define EA_PCDI_8() m68ki_get_ea_pcdi() /* pc indirect + displacement */
\r
677 #define EA_PCDI_16() EA_PCDI_8()
\r
678 #define EA_PCDI_32() EA_PCDI_8()
\r
679 #define EA_PCIX_8() m68ki_get_ea_pcix() /* pc indirect + index */
\r
680 #define EA_PCIX_16() EA_PCIX_8()
\r
681 #define EA_PCIX_32() EA_PCIX_8()
\r
684 #define OPER_I_8() m68ki_read_imm_8()
\r
685 #define OPER_I_16() m68ki_read_imm_16()
\r
686 #define OPER_I_32() m68ki_read_imm_32()
\r
690 /* --------------------------- Status Register ---------------------------- */
\r
692 /* Flag Calculation Macros */
\r
693 #define CFLAG_8(A) (A)
\r
694 #define CFLAG_16(A) ((A)>>8)
\r
696 #if M68K_INT_GT_32_BIT
\r
697 #define CFLAG_ADD_32(S, D, R) ((R)>>24)
\r
698 #define CFLAG_SUB_32(S, D, R) ((R)>>24)
\r
700 #define CFLAG_ADD_32(S, D, R) (((S & D) | (~R & (S | D)))>>23)
\r
701 #define CFLAG_SUB_32(S, D, R) (((S & R) | (~D & (S | R)))>>23)
\r
702 #endif /* M68K_INT_GT_32_BIT */
\r
704 #define VFLAG_ADD_8(S, D, R) ((S^R) & (D^R))
\r
705 #define VFLAG_ADD_16(S, D, R) (((S^R) & (D^R))>>8)
\r
706 #define VFLAG_ADD_32(S, D, R) (((S^R) & (D^R))>>24)
\r
708 #define VFLAG_SUB_8(S, D, R) ((S^D) & (R^D))
\r
709 #define VFLAG_SUB_16(S, D, R) (((S^D) & (R^D))>>8)
\r
710 #define VFLAG_SUB_32(S, D, R) (((S^D) & (R^D))>>24)
\r
712 #define NFLAG_8(A) (A)
\r
713 #define NFLAG_16(A) ((A)>>8)
\r
714 #define NFLAG_32(A) ((A)>>24)
\r
715 #define NFLAG_64(A) ((A)>>56)
\r
717 #define ZFLAG_8(A) MASK_OUT_ABOVE_8(A)
\r
718 #define ZFLAG_16(A) MASK_OUT_ABOVE_16(A)
\r
719 #define ZFLAG_32(A) MASK_OUT_ABOVE_32(A)
\r
723 #define NFLAG_SET 0x80
\r
724 #define NFLAG_CLEAR 0
\r
725 #define CFLAG_SET 0x100
\r
726 #define CFLAG_CLEAR 0
\r
727 #define XFLAG_SET 0x100
\r
728 #define XFLAG_CLEAR 0
\r
729 #define VFLAG_SET 0x80
\r
730 #define VFLAG_CLEAR 0
\r
731 #define ZFLAG_SET 0
\r
732 #define ZFLAG_CLEAR 0xffffffff
\r
734 #define SFLAG_SET 4
\r
735 #define SFLAG_CLEAR 0
\r
736 #define MFLAG_SET 2
\r
737 #define MFLAG_CLEAR 0
\r
739 /* Turn flag values into 1 or 0 */
\r
740 #define XFLAG_AS_1() ((FLAG_X>>8)&1)
\r
741 #define NFLAG_AS_1() ((FLAG_N>>7)&1)
\r
742 #define VFLAG_AS_1() ((FLAG_V>>7)&1)
\r
743 #define ZFLAG_AS_1() (!FLAG_Z)
\r
744 #define CFLAG_AS_1() ((FLAG_C>>8)&1)
\r
748 #define COND_CS() (FLAG_C&0x100)
\r
749 #define COND_CC() (!COND_CS())
\r
750 #define COND_VS() (FLAG_V&0x80)
\r
751 #define COND_VC() (!COND_VS())
\r
752 #define COND_NE() FLAG_Z
\r
753 #define COND_EQ() (!COND_NE())
\r
754 #define COND_MI() (FLAG_N&0x80)
\r
755 #define COND_PL() (!COND_MI())
\r
756 #define COND_LT() ((FLAG_N^FLAG_V)&0x80)
\r
757 #define COND_GE() (!COND_LT())
\r
758 #define COND_HI() (COND_CC() && COND_NE())
\r
759 #define COND_LS() (COND_CS() || COND_EQ())
\r
760 #define COND_GT() (COND_GE() && COND_NE())
\r
761 #define COND_LE() (COND_LT() || COND_EQ())
\r
763 /* Reversed conditions */
\r
764 #define COND_NOT_CS() COND_CC()
\r
765 #define COND_NOT_CC() COND_CS()
\r
766 #define COND_NOT_VS() COND_VC()
\r
767 #define COND_NOT_VC() COND_VS()
\r
768 #define COND_NOT_NE() COND_EQ()
\r
769 #define COND_NOT_EQ() COND_NE()
\r
770 #define COND_NOT_MI() COND_PL()
\r
771 #define COND_NOT_PL() COND_MI()
\r
772 #define COND_NOT_LT() COND_GE()
\r
773 #define COND_NOT_GE() COND_LT()
\r
774 #define COND_NOT_HI() COND_LS()
\r
775 #define COND_NOT_LS() COND_HI()
\r
776 #define COND_NOT_GT() COND_LE()
\r
777 #define COND_NOT_LE() COND_GT()
\r
779 /* Not real conditions, but here for convenience */
\r
780 #define COND_XS() (FLAG_X&0x100)
\r
781 #define COND_XC() (!COND_XS)
\r
784 /* Get the condition code register */
\r
785 #define m68ki_get_ccr() ((COND_XS() >> 4) | \
\r
786 (COND_MI() >> 4) | \
\r
787 (COND_EQ() << 2) | \
\r
788 (COND_VS() >> 6) | \
\r
791 /* Get the status register */
\r
792 #define m68ki_get_sr() ( FLAG_T1 | \
\r
801 /* ---------------------------- Cycle Counting ---------------------------- */
\r
803 #define ADD_CYCLES(A) m68ki_remaining_cycles += (A)
\r
804 #define USE_CYCLES(A) m68ki_remaining_cycles -= (A)
\r
805 #define SET_CYCLES(A) m68ki_remaining_cycles = A
\r
806 #define GET_CYCLES() m68ki_remaining_cycles
\r
807 #define USE_ALL_CYCLES() m68ki_remaining_cycles = 0
\r
811 /* ----------------------------- Read / Write ----------------------------- */
\r
813 /* Read from the current address space */
\r
814 #define m68ki_read_8(A) m68ki_read_8_fc (A, FLAG_S | m68ki_get_address_space())
\r
815 #define m68ki_read_16(A) m68ki_read_16_fc(A, FLAG_S | m68ki_get_address_space())
\r
816 #define m68ki_read_32(A) m68ki_read_32_fc(A, FLAG_S | m68ki_get_address_space())
\r
818 /* Write to the current data space */
\r
819 #define m68ki_write_8(A, V) m68ki_write_8_fc (A, FLAG_S | FUNCTION_CODE_USER_DATA, V)
\r
820 #define m68ki_write_16(A, V) m68ki_write_16_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA, V)
\r
821 #define m68ki_write_32(A, V) m68ki_write_32_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA, V)
\r
823 #if M68K_SIMULATE_PD_WRITES
\r
824 #define m68ki_write_32_pd(A, V) m68ki_write_32_pd_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA, V)
\r
826 #define m68ki_write_32_pd(A, V) m68ki_write_32_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA, V)
\r
829 /* map read immediate 8 to read immediate 16 */
\r
830 #define m68ki_read_imm_8() MASK_OUT_ABOVE_8(m68ki_read_imm_16())
\r
832 /* Map PC-relative reads */
\r
833 #define m68ki_read_pcrel_8(A) m68k_read_pcrelative_8(A)
\r
834 #define m68ki_read_pcrel_16(A) m68k_read_pcrelative_16(A)
\r
835 #define m68ki_read_pcrel_32(A) m68k_read_pcrelative_32(A)
\r
837 /* Read from the program space */
\r
838 #define m68ki_read_program_8(A) m68ki_read_8_fc(A, FLAG_S | FUNCTION_CODE_USER_PROGRAM)
\r
839 #define m68ki_read_program_16(A) m68ki_read_16_fc(A, FLAG_S | FUNCTION_CODE_USER_PROGRAM)
\r
840 #define m68ki_read_program_32(A) m68ki_read_32_fc(A, FLAG_S | FUNCTION_CODE_USER_PROGRAM)
\r
842 /* Read from the data space */
\r
843 #define m68ki_read_data_8(A) m68ki_read_8_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA)
\r
844 #define m68ki_read_data_16(A) m68ki_read_16_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA)
\r
845 #define m68ki_read_data_32(A) m68ki_read_32_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA)
\r
849 /* ======================================================================== */
\r
850 /* =============================== PROTOTYPES ============================= */
\r
851 /* ======================================================================== */
\r
861 uint cpu_type; /* CPU Type: 68000, 68008, 68010, 68EC020, or 68020 */
\r
862 uint dar[16]; /* Data and Address Registers */
\r
863 uint ppc; /* Previous program counter */
\r
864 uint pc; /* Program Counter */
\r
865 uint sp[7]; /* User, Interrupt, and Master Stack Pointers */
\r
866 uint vbr; /* Vector Base Register (m68010+) */
\r
867 uint sfc; /* Source Function Code Register (m68010+) */
\r
868 uint dfc; /* Destination Function Code Register (m68010+) */
\r
869 uint cacr; /* Cache Control Register (m68020, unemulated) */
\r
870 uint caar; /* Cache Address Register (m68020, unemulated) */
\r
871 uint ir; /* Instruction Register */
\r
872 fp_reg fpr[8]; /* FPU Data Register (m68040) */
\r
873 uint fpiar; /* FPU Instruction Address Register (m68040) */
\r
874 uint fpsr; /* FPU Status Register (m68040) */
\r
875 uint fpcr; /* FPU Control Register (m68040) */
\r
876 uint t1_flag; /* Trace 1 */
\r
877 uint t0_flag; /* Trace 0 */
\r
878 uint s_flag; /* Supervisor */
\r
879 uint m_flag; /* Master/Interrupt state */
\r
880 uint x_flag; /* Extend */
\r
881 uint n_flag; /* Negative */
\r
882 uint not_z_flag; /* Zero, inverted for speedups */
\r
883 uint v_flag; /* Overflow */
\r
884 uint c_flag; /* Carry */
\r
885 uint int_mask; /* I0-I2 */
\r
886 uint int_level; /* State of interrupt pins IPL0-IPL2 -- ASG: changed from ints_pending */
\r
887 uint int_cycles; /* ASG: extra cycles from generated interrupts */
\r
888 uint stopped; /* Stopped state */
\r
889 uint pref_addr; /* Last prefetch address */
\r
890 uint pref_data; /* Data in the prefetch queue */
\r
891 uint address_mask; /* Available address pins */
\r
892 uint sr_mask; /* Implemented status register bits */
\r
893 uint instr_mode; /* Stores whether we are in instruction mode or group 0/1 exception mode */
\r
894 uint run_mode; /* Stores whether we are processing a reset, bus error, address error, or something else */
\r
896 /* Clocks required for instructions / exceptions */
\r
897 uint cyc_bcc_notake_b;
\r
898 uint cyc_bcc_notake_w;
\r
899 uint cyc_dbcc_f_noexp;
\r
900 uint cyc_dbcc_f_exp;
\r
901 uint cyc_scc_r_true;
\r
906 uint8* cyc_instruction;
\r
907 uint8* cyc_exception;
\r
909 /* Callbacks to host */
\r
910 int (*int_ack_callback)(int int_line); /* Interrupt Acknowledge */
\r
911 void (*bkpt_ack_callback)(unsigned int data); /* Breakpoint Acknowledge */
\r
912 void (*reset_instr_callback)(void); /* Called when a RESET instruction is encountered */
\r
913 void (*cmpild_instr_callback)(unsigned int, int); /* Called when a CMPI.L #v, Dn instruction is encountered */
\r
914 void (*rte_instr_callback)(void); /* Called when a RTE instruction is encountered */
\r
915 int (*tas_instr_callback)(void); /* Called when a TAS instruction is encountered, allows / disallows writeback */
\r
916 void (*pc_changed_callback)(unsigned int new_pc); /* Called when the PC changes by a large amount */
\r
917 void (*set_fc_callback)(unsigned int new_fc); /* Called when the CPU function code changes */
\r
918 void (*instr_hook_callback)(void); /* Called every instruction cycle prior to execution */
\r
921 sint cyc_remaining_cycles;
\r
926 extern m68ki_cpu_core *m68ki_cpu_p;
\r
927 #define m68ki_cpu (*m68ki_cpu_p)
\r
928 #define m68ki_remaining_cycles m68ki_cpu_p->cyc_remaining_cycles
\r
931 //extern m68ki_cpu_core m68ki_cpu;
\r
932 //extern sint m68ki_remaining_cycles;
\r
933 extern uint m68ki_tracing;
\r
934 extern uint8 m68ki_shift_8_table[];
\r
935 extern uint16 m68ki_shift_16_table[];
\r
936 extern uint m68ki_shift_32_table[];
\r
937 extern uint8 m68ki_exception_cycle_table[][256];
\r
938 extern uint m68ki_address_space;
\r
939 extern uint8 m68ki_ea_idx_cycle_table[];
\r
941 extern uint m68ki_aerr_address;
\r
942 extern uint m68ki_aerr_write_mode;
\r
943 extern uint m68ki_aerr_fc;
\r
945 /* Read data immediately after the program counter */
\r
946 INLINE uint m68ki_read_imm_16(void);
\r
947 INLINE uint m68ki_read_imm_32(void);
\r
949 /* Read data with specific function code */
\r
950 INLINE uint m68ki_read_8_fc (uint address, uint fc);
\r
951 INLINE uint m68ki_read_16_fc (uint address, uint fc);
\r
952 INLINE uint m68ki_read_32_fc (uint address, uint fc);
\r
954 /* Write data with specific function code */
\r
955 INLINE void m68ki_write_8_fc (uint address, uint fc, uint value);
\r
956 INLINE void m68ki_write_16_fc(uint address, uint fc, uint value);
\r
957 INLINE void m68ki_write_32_fc(uint address, uint fc, uint value);
\r
958 #if M68K_SIMULATE_PD_WRITES
\r
959 INLINE void m68ki_write_32_pd_fc(uint address, uint fc, uint value);
\r
960 #endif /* M68K_SIMULATE_PD_WRITES */
\r
962 /* Indexed and PC-relative ea fetching */
\r
963 INLINE uint m68ki_get_ea_pcdi(void);
\r
964 INLINE uint m68ki_get_ea_pcix(void);
\r
965 INLINE uint m68ki_get_ea_ix(uint An);
\r
967 /* Operand fetching */
\r
968 INLINE uint OPER_AY_AI_8(void);
\r
969 INLINE uint OPER_AY_AI_16(void);
\r
970 INLINE uint OPER_AY_AI_32(void);
\r
971 INLINE uint OPER_AY_PI_8(void);
\r
972 INLINE uint OPER_AY_PI_16(void);
\r
973 INLINE uint OPER_AY_PI_32(void);
\r
974 INLINE uint OPER_AY_PD_8(void);
\r
975 INLINE uint OPER_AY_PD_16(void);
\r
976 INLINE uint OPER_AY_PD_32(void);
\r
977 INLINE uint OPER_AY_DI_8(void);
\r
978 INLINE uint OPER_AY_DI_16(void);
\r
979 INLINE uint OPER_AY_DI_32(void);
\r
980 INLINE uint OPER_AY_IX_8(void);
\r
981 INLINE uint OPER_AY_IX_16(void);
\r
982 INLINE uint OPER_AY_IX_32(void);
\r
984 INLINE uint OPER_AX_AI_8(void);
\r
985 INLINE uint OPER_AX_AI_16(void);
\r
986 INLINE uint OPER_AX_AI_32(void);
\r
987 INLINE uint OPER_AX_PI_8(void);
\r
988 INLINE uint OPER_AX_PI_16(void);
\r
989 INLINE uint OPER_AX_PI_32(void);
\r
990 INLINE uint OPER_AX_PD_8(void);
\r
991 INLINE uint OPER_AX_PD_16(void);
\r
992 INLINE uint OPER_AX_PD_32(void);
\r
993 INLINE uint OPER_AX_DI_8(void);
\r
994 INLINE uint OPER_AX_DI_16(void);
\r
995 INLINE uint OPER_AX_DI_32(void);
\r
996 INLINE uint OPER_AX_IX_8(void);
\r
997 INLINE uint OPER_AX_IX_16(void);
\r
998 INLINE uint OPER_AX_IX_32(void);
\r
1000 INLINE uint OPER_A7_PI_8(void);
\r
1001 INLINE uint OPER_A7_PD_8(void);
\r
1003 INLINE uint OPER_AW_8(void);
\r
1004 INLINE uint OPER_AW_16(void);
\r
1005 INLINE uint OPER_AW_32(void);
\r
1006 INLINE uint OPER_AL_8(void);
\r
1007 INLINE uint OPER_AL_16(void);
\r
1008 INLINE uint OPER_AL_32(void);
\r
1009 INLINE uint OPER_PCDI_8(void);
\r
1010 INLINE uint OPER_PCDI_16(void);
\r
1011 INLINE uint OPER_PCDI_32(void);
\r
1012 INLINE uint OPER_PCIX_8(void);
\r
1013 INLINE uint OPER_PCIX_16(void);
\r
1014 INLINE uint OPER_PCIX_32(void);
\r
1016 /* Stack operations */
\r
1017 INLINE void m68ki_push_16(uint value);
\r
1018 INLINE void m68ki_push_32(uint value);
\r
1019 INLINE uint m68ki_pull_16(void);
\r
1020 INLINE uint m68ki_pull_32(void);
\r
1022 /* Program flow operations */
\r
1023 INLINE void m68ki_jump(uint new_pc);
\r
1024 INLINE void m68ki_jump_vector(uint vector);
\r
1025 INLINE void m68ki_branch_8(uint offset);
\r
1026 INLINE void m68ki_branch_16(uint offset);
\r
1027 INLINE void m68ki_branch_32(uint offset);
\r
1029 /* Status register operations. */
\r
1030 INLINE void m68ki_set_s_flag(uint value); /* Only bit 2 of value should be set (i.e. 4 or 0) */
\r
1031 INLINE void m68ki_set_sm_flag(uint value); /* only bits 1 and 2 of value should be set */
\r
1032 INLINE void m68ki_set_ccr(uint value); /* set the condition code register */
\r
1033 INLINE void m68ki_set_sr(uint value); /* set the status register */
\r
1034 INLINE void m68ki_set_sr_noint(uint value); /* set the status register */
\r
1036 /* Exception processing */
\r
1037 INLINE uint m68ki_init_exception(void); /* Initial exception processing */
\r
1039 INLINE void m68ki_stack_frame_3word(uint pc, uint sr); /* Stack various frame types */
\r
1040 INLINE void m68ki_stack_frame_buserr(uint sr);
\r
1042 INLINE void m68ki_stack_frame_0000(uint pc, uint sr, uint vector);
\r
1043 INLINE void m68ki_stack_frame_0001(uint pc, uint sr, uint vector);
\r
1044 INLINE void m68ki_stack_frame_0010(uint sr, uint vector);
\r
1045 INLINE void m68ki_stack_frame_1000(uint pc, uint sr, uint vector);
\r
1046 INLINE void m68ki_stack_frame_1010(uint sr, uint vector, uint pc);
\r
1047 INLINE void m68ki_stack_frame_1011(uint sr, uint vector, uint pc);
\r
1049 INLINE void m68ki_exception_trap(uint vector);
\r
1050 INLINE void m68ki_exception_trapN(uint vector);
\r
1051 INLINE void m68ki_exception_trace(void);
\r
1052 INLINE void m68ki_exception_privilege_violation(void);
\r
1053 INLINE void m68ki_exception_1010(void);
\r
1054 INLINE void m68ki_exception_1111(void);
\r
1055 INLINE void m68ki_exception_illegal(void);
\r
1056 INLINE void m68ki_exception_format_error(void);
\r
1057 INLINE void m68ki_exception_address_error(void);
\r
1058 INLINE void m68ki_exception_interrupt(uint int_level);
\r
1059 INLINE void m68ki_check_interrupts(void); /* ASG: check for interrupts */
\r
1061 /* quick disassembly (used for logging) */
\r
1062 char* m68ki_disassemble_quick(unsigned int pc, unsigned int cpu_type);
\r
1065 /* ======================================================================== */
\r
1066 /* =========================== UTILITY FUNCTIONS ========================== */
\r
1067 /* ======================================================================== */
\r
1070 /* ---------------------------- Read Immediate ---------------------------- */
\r
1072 /* Handles all immediate reads, does address error check, function code setting,
\r
1073 * and prefetching if they are enabled in m68kconf.h
\r
1075 INLINE uint m68ki_read_imm_16(void)
\r
1077 m68ki_set_fc(FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
\r
1078 m68ki_check_address_error(REG_PC, MODE_READ, FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
\r
1079 #if M68K_EMULATE_PREFETCH
\r
1080 if(MASK_OUT_BELOW_2(REG_PC) != CPU_PREF_ADDR)
\r
1082 CPU_PREF_ADDR = MASK_OUT_BELOW_2(REG_PC);
\r
1083 CPU_PREF_DATA = m68k_read_immediate_32(ADDRESS_68K(CPU_PREF_ADDR));
\r
1086 return MASK_OUT_ABOVE_16(CPU_PREF_DATA >> ((2-((REG_PC-2)&2))<<3));
\r
1089 return m68k_read_immediate_16(ADDRESS_68K(REG_PC-2));
\r
1090 #endif /* M68K_EMULATE_PREFETCH */
\r
1092 INLINE uint m68ki_read_imm_32(void)
\r
1094 #if M68K_EMULATE_PREFETCH
\r
1097 m68ki_set_fc(FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
\r
1098 m68ki_check_address_error(REG_PC, MODE_READ, FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
\r
1099 if(MASK_OUT_BELOW_2(REG_PC) != CPU_PREF_ADDR)
\r
1101 CPU_PREF_ADDR = MASK_OUT_BELOW_2(REG_PC);
\r
1102 CPU_PREF_DATA = m68k_read_immediate_32(ADDRESS_68K(CPU_PREF_ADDR));
\r
1104 temp_val = CPU_PREF_DATA;
\r
1106 if(MASK_OUT_BELOW_2(REG_PC) != CPU_PREF_ADDR)
\r
1108 CPU_PREF_ADDR = MASK_OUT_BELOW_2(REG_PC);
\r
1109 CPU_PREF_DATA = m68k_read_immediate_32(ADDRESS_68K(CPU_PREF_ADDR));
\r
1110 temp_val = MASK_OUT_ABOVE_32((temp_val << 16) | (CPU_PREF_DATA >> 16));
\r
1116 m68ki_set_fc(FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
\r
1117 m68ki_check_address_error(REG_PC, MODE_READ, FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
\r
1119 return m68k_read_immediate_32(ADDRESS_68K(REG_PC-4));
\r
1120 #endif /* M68K_EMULATE_PREFETCH */
\r
1125 /* ------------------------- Top level read/write ------------------------- */
\r
1127 /* Handles all memory accesses (except for immediate reads if they are
\r
1128 * configured to use separate functions in m68kconf.h).
\r
1129 * All memory accesses must go through these top level functions.
\r
1130 * These functions will also check for address error and set the function
\r
1131 * code if they are enabled in m68kconf.h.
\r
1133 INLINE uint m68ki_read_8_fc(uint address, uint fc)
\r
1135 m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
\r
1136 return m68k_read_memory_8(ADDRESS_68K(address));
\r
1138 INLINE uint m68ki_read_16_fc(uint address, uint fc)
\r
1140 m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
\r
1141 m68ki_check_address_error_010_less(address, MODE_READ, fc); /* auto-disable (see m68kcpu.h) */
\r
1142 return m68k_read_memory_16(ADDRESS_68K(address));
\r
1144 INLINE uint m68ki_read_32_fc(uint address, uint fc)
\r
1146 m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
\r
1147 m68ki_check_address_error_010_less(address, MODE_READ, fc); /* auto-disable (see m68kcpu.h) */
\r
1148 return m68k_read_memory_32(ADDRESS_68K(address));
\r
1151 INLINE void m68ki_write_8_fc(uint address, uint fc, uint value)
\r
1153 m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
\r
1154 m68k_write_memory_8(ADDRESS_68K(address), value);
\r
1156 INLINE void m68ki_write_16_fc(uint address, uint fc, uint value)
\r
1158 m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
\r
1159 m68ki_check_address_error_010_less(address, MODE_WRITE, fc); /* auto-disable (see m68kcpu.h) */
\r
1160 m68k_write_memory_16(ADDRESS_68K(address), value);
\r
1162 INLINE void m68ki_write_32_fc(uint address, uint fc, uint value)
\r
1164 m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
\r
1165 m68ki_check_address_error_010_less(address, MODE_WRITE, fc); /* auto-disable (see m68kcpu.h) */
\r
1166 m68k_write_memory_32(ADDRESS_68K(address), value);
\r
1169 #if M68K_SIMULATE_PD_WRITES
\r
1170 INLINE void m68ki_write_32_pd_fc(uint address, uint fc, uint value)
\r
1172 m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
\r
1173 m68ki_check_address_error_010_less(address, MODE_WRITE, fc); /* auto-disable (see m68kcpu.h) */
\r
1174 m68k_write_memory_32_pd(ADDRESS_68K(address), value);
\r
1179 /* --------------------- Effective Address Calculation -------------------- */
\r
1181 /* The program counter relative addressing modes cause operands to be
\r
1182 * retrieved from program space, not data space.
\r
1184 INLINE uint m68ki_get_ea_pcdi(void)
\r
1186 uint old_pc = REG_PC;
\r
1187 m68ki_use_program_space(); /* auto-disable */
\r
1188 return old_pc + MAKE_INT_16(m68ki_read_imm_16());
\r
1192 INLINE uint m68ki_get_ea_pcix(void)
\r
1194 m68ki_use_program_space(); /* auto-disable */
\r
1195 return m68ki_get_ea_ix(REG_PC);
\r
1198 /* Indexed addressing modes are encoded as follows:
\r
1200 * Base instruction format:
\r
1201 * F E D C B A 9 8 7 6 | 5 4 3 | 2 1 0
\r
1202 * x x x x x x x x x x | 1 1 0 | BASE REGISTER (An)
\r
1204 * Base instruction format for destination EA in move instructions:
\r
1205 * F E D C | B A 9 | 8 7 6 | 5 4 3 2 1 0
\r
1206 * x x x x | BASE REG | 1 1 0 | X X X X X X (An)
\r
1208 * Brief extension format:
\r
1209 * F | E D C | B | A 9 | 8 | 7 6 5 4 3 2 1 0
\r
1210 * D/A | REGISTER | W/L | SCALE | 0 | DISPLACEMENT
\r
1212 * Full extension format:
\r
1213 * F E D C B A 9 8 7 6 5 4 3 2 1 0
\r
1214 * D/A | REGISTER | W/L | SCALE | 1 | BS | IS | BD SIZE | 0 | I/IS
\r
1215 * BASE DISPLACEMENT (0, 16, 32 bit) (bd)
\r
1216 * OUTER DISPLACEMENT (0, 16, 32 bit) (od)
\r
1218 * D/A: 0 = Dn, 1 = An (Xn)
\r
1219 * W/L: 0 = W (sign extend), 1 = L (.SIZE)
\r
1220 * SCALE: 00=1, 01=2, 10=4, 11=8 (*SCALE)
\r
1221 * BS: 0=add base reg, 1=suppress base reg (An suppressed)
\r
1222 * IS: 0=add index, 1=suppress index (Xn suppressed)
\r
1223 * BD SIZE: 00=reserved, 01=NULL, 10=Word, 11=Long (size of bd)
\r
1225 * IS I/IS Operation
\r
1226 * 0 000 No Memory Indirect
\r
1227 * 0 001 indir prex with null outer
\r
1228 * 0 010 indir prex with word outer
\r
1229 * 0 011 indir prex with long outer
\r
1231 * 0 101 indir postx with null outer
\r
1232 * 0 110 indir postx with word outer
\r
1233 * 0 111 indir postx with long outer
\r
1234 * 1 000 no memory indirect
\r
1235 * 1 001 mem indir with null outer
\r
1236 * 1 010 mem indir with word outer
\r
1237 * 1 011 mem indir with long outer
\r
1238 * 1 100-111 reserved
\r
1240 INLINE uint m68ki_get_ea_ix(uint An)
\r
1242 /* An = base register */
\r
1243 uint extension = m68ki_read_imm_16();
\r
1244 uint Xn = 0; /* Index register */
\r
1245 uint bd = 0; /* Base Displacement */
\r
1246 uint od = 0; /* Outer Displacement */
\r
1248 if(CPU_TYPE_IS_010_LESS(CPU_TYPE))
\r
1250 /* Calculate index */
\r
1251 Xn = REG_DA[extension>>12]; /* Xn */
\r
1252 if(!BIT_B(extension)) /* W/L */
\r
1253 Xn = MAKE_INT_16(Xn);
\r
1255 /* Add base register and displacement and return */
\r
1256 return An + Xn + MAKE_INT_8(extension);
\r
1259 /* Brief extension format */
\r
1260 if(!BIT_8(extension))
\r
1262 /* Calculate index */
\r
1263 Xn = REG_DA[extension>>12]; /* Xn */
\r
1264 if(!BIT_B(extension)) /* W/L */
\r
1265 Xn = MAKE_INT_16(Xn);
\r
1266 /* Add scale if proper CPU type */
\r
1267 if(CPU_TYPE_IS_EC020_PLUS(CPU_TYPE))
\r
1268 Xn <<= (extension>>9) & 3; /* SCALE */
\r
1270 /* Add base register and displacement and return */
\r
1271 return An + Xn + MAKE_INT_8(extension);
\r
1274 /* Full extension format */
\r
1276 USE_CYCLES(m68ki_ea_idx_cycle_table[extension&0x3f]);
\r
1278 /* Check if base register is present */
\r
1279 if(BIT_7(extension)) /* BS */
\r
1282 /* Check if index is present */
\r
1283 if(!BIT_6(extension)) /* IS */
\r
1285 Xn = REG_DA[extension>>12]; /* Xn */
\r
1286 if(!BIT_B(extension)) /* W/L */
\r
1287 Xn = MAKE_INT_16(Xn);
\r
1288 Xn <<= (extension>>9) & 3; /* SCALE */
\r
1291 /* Check if base displacement is present */
\r
1292 if(BIT_5(extension)) /* BD SIZE */
\r
1293 bd = BIT_4(extension) ? m68ki_read_imm_32() : MAKE_INT_16(m68ki_read_imm_16());
\r
1295 /* If no indirect action, we are done */
\r
1296 if(!(extension&7)) /* No Memory Indirect */
\r
1297 return An + bd + Xn;
\r
1299 /* Check if outer displacement is present */
\r
1300 if(BIT_1(extension)) /* I/IS: od */
\r
1301 od = BIT_0(extension) ? m68ki_read_imm_32() : MAKE_INT_16(m68ki_read_imm_16());
\r
1304 if(BIT_2(extension)) /* I/IS: 0 = preindex, 1 = postindex */
\r
1305 return m68ki_read_32(An + bd) + Xn + od;
\r
1308 return m68ki_read_32(An + bd + Xn) + od;
\r
1312 /* Fetch operands */
\r
1313 INLINE uint OPER_AY_AI_8(void) {uint ea = EA_AY_AI_8(); return m68ki_read_8(ea); }
\r
1314 INLINE uint OPER_AY_AI_16(void) {uint ea = EA_AY_AI_16(); return m68ki_read_16(ea);}
\r
1315 INLINE uint OPER_AY_AI_32(void) {uint ea = EA_AY_AI_32(); return m68ki_read_32(ea);}
\r
1316 INLINE uint OPER_AY_PI_8(void) {uint ea = EA_AY_PI_8(); return m68ki_read_8(ea); }
\r
1317 INLINE uint OPER_AY_PI_16(void) {uint ea = EA_AY_PI_16(); return m68ki_read_16(ea);}
\r
1318 INLINE uint OPER_AY_PI_32(void) {uint ea = EA_AY_PI_32(); return m68ki_read_32(ea);}
\r
1319 INLINE uint OPER_AY_PD_8(void) {uint ea = EA_AY_PD_8(); return m68ki_read_8(ea); }
\r
1320 INLINE uint OPER_AY_PD_16(void) {uint ea = EA_AY_PD_16(); return m68ki_read_16(ea);}
\r
1321 INLINE uint OPER_AY_PD_32(void) {uint ea = EA_AY_PD_32(); return m68ki_read_32(ea);}
\r
1322 INLINE uint OPER_AY_DI_8(void) {uint ea = EA_AY_DI_8(); return m68ki_read_8(ea); }
\r
1323 INLINE uint OPER_AY_DI_16(void) {uint ea = EA_AY_DI_16(); return m68ki_read_16(ea);}
\r
1324 INLINE uint OPER_AY_DI_32(void) {uint ea = EA_AY_DI_32(); return m68ki_read_32(ea);}
\r
1325 INLINE uint OPER_AY_IX_8(void) {uint ea = EA_AY_IX_8(); return m68ki_read_8(ea); }
\r
1326 INLINE uint OPER_AY_IX_16(void) {uint ea = EA_AY_IX_16(); return m68ki_read_16(ea);}
\r
1327 INLINE uint OPER_AY_IX_32(void) {uint ea = EA_AY_IX_32(); return m68ki_read_32(ea);}
\r
1329 INLINE uint OPER_AX_AI_8(void) {uint ea = EA_AX_AI_8(); return m68ki_read_8(ea); }
\r
1330 INLINE uint OPER_AX_AI_16(void) {uint ea = EA_AX_AI_16(); return m68ki_read_16(ea);}
\r
1331 INLINE uint OPER_AX_AI_32(void) {uint ea = EA_AX_AI_32(); return m68ki_read_32(ea);}
\r
1332 INLINE uint OPER_AX_PI_8(void) {uint ea = EA_AX_PI_8(); return m68ki_read_8(ea); }
\r
1333 INLINE uint OPER_AX_PI_16(void) {uint ea = EA_AX_PI_16(); return m68ki_read_16(ea);}
\r
1334 INLINE uint OPER_AX_PI_32(void) {uint ea = EA_AX_PI_32(); return m68ki_read_32(ea);}
\r
1335 INLINE uint OPER_AX_PD_8(void) {uint ea = EA_AX_PD_8(); return m68ki_read_8(ea); }
\r
1336 INLINE uint OPER_AX_PD_16(void) {uint ea = EA_AX_PD_16(); return m68ki_read_16(ea);}
\r
1337 INLINE uint OPER_AX_PD_32(void) {uint ea = EA_AX_PD_32(); return m68ki_read_32(ea);}
\r
1338 INLINE uint OPER_AX_DI_8(void) {uint ea = EA_AX_DI_8(); return m68ki_read_8(ea); }
\r
1339 INLINE uint OPER_AX_DI_16(void) {uint ea = EA_AX_DI_16(); return m68ki_read_16(ea);}
\r
1340 INLINE uint OPER_AX_DI_32(void) {uint ea = EA_AX_DI_32(); return m68ki_read_32(ea);}
\r
1341 INLINE uint OPER_AX_IX_8(void) {uint ea = EA_AX_IX_8(); return m68ki_read_8(ea); }
\r
1342 INLINE uint OPER_AX_IX_16(void) {uint ea = EA_AX_IX_16(); return m68ki_read_16(ea);}
\r
1343 INLINE uint OPER_AX_IX_32(void) {uint ea = EA_AX_IX_32(); return m68ki_read_32(ea);}
\r
1345 INLINE uint OPER_A7_PI_8(void) {uint ea = EA_A7_PI_8(); return m68ki_read_8(ea); }
\r
1346 INLINE uint OPER_A7_PD_8(void) {uint ea = EA_A7_PD_8(); return m68ki_read_8(ea); }
\r
1348 INLINE uint OPER_AW_8(void) {uint ea = EA_AW_8(); return m68ki_read_8(ea); }
\r
1349 INLINE uint OPER_AW_16(void) {uint ea = EA_AW_16(); return m68ki_read_16(ea);}
\r
1350 INLINE uint OPER_AW_32(void) {uint ea = EA_AW_32(); return m68ki_read_32(ea);}
\r
1351 INLINE uint OPER_AL_8(void) {uint ea = EA_AL_8(); return m68ki_read_8(ea); }
\r
1352 INLINE uint OPER_AL_16(void) {uint ea = EA_AL_16(); return m68ki_read_16(ea);}
\r
1353 INLINE uint OPER_AL_32(void) {uint ea = EA_AL_32(); return m68ki_read_32(ea);}
\r
1354 INLINE uint OPER_PCDI_8(void) {uint ea = EA_PCDI_8(); return m68ki_read_pcrel_8(ea); }
\r
1355 INLINE uint OPER_PCDI_16(void) {uint ea = EA_PCDI_16(); return m68ki_read_pcrel_16(ea);}
\r
1356 INLINE uint OPER_PCDI_32(void) {uint ea = EA_PCDI_32(); return m68ki_read_pcrel_32(ea);}
\r
1357 INLINE uint OPER_PCIX_8(void) {uint ea = EA_PCIX_8(); return m68ki_read_pcrel_8(ea); }
\r
1358 INLINE uint OPER_PCIX_16(void) {uint ea = EA_PCIX_16(); return m68ki_read_pcrel_16(ea);}
\r
1359 INLINE uint OPER_PCIX_32(void) {uint ea = EA_PCIX_32(); return m68ki_read_pcrel_32(ea);}
\r
1363 /* ---------------------------- Stack Functions --------------------------- */
\r
1365 /* Push/pull data from the stack */
\r
1366 INLINE void m68ki_push_16(uint value)
\r
1368 REG_SP = MASK_OUT_ABOVE_32(REG_SP - 2);
\r
1369 m68ki_write_16(REG_SP, value);
\r
1372 INLINE void m68ki_push_32(uint value)
\r
1374 REG_SP = MASK_OUT_ABOVE_32(REG_SP - 4);
\r
1375 m68ki_write_32(REG_SP, value);
\r
1378 INLINE uint m68ki_pull_16(void)
\r
1380 REG_SP = MASK_OUT_ABOVE_32(REG_SP + 2);
\r
1381 return m68ki_read_16(REG_SP-2);
\r
1384 INLINE uint m68ki_pull_32(void)
\r
1386 REG_SP = MASK_OUT_ABOVE_32(REG_SP + 4);
\r
1387 return m68ki_read_32(REG_SP-4);
\r
1391 /* Increment/decrement the stack as if doing a push/pull but
\r
1392 * don't do any memory access.
\r
1394 INLINE void m68ki_fake_push_16(void)
\r
1396 REG_SP = MASK_OUT_ABOVE_32(REG_SP - 2);
\r
1399 INLINE void m68ki_fake_push_32(void)
\r
1401 REG_SP = MASK_OUT_ABOVE_32(REG_SP - 4);
\r
1404 INLINE void m68ki_fake_pull_16(void)
\r
1406 REG_SP = MASK_OUT_ABOVE_32(REG_SP + 2);
\r
1409 INLINE void m68ki_fake_pull_32(void)
\r
1411 REG_SP = MASK_OUT_ABOVE_32(REG_SP + 4);
\r
1415 /* ----------------------------- Program Flow ----------------------------- */
\r
1417 /* Jump to a new program location or vector.
\r
1418 * These functions will also call the pc_changed callback if it was enabled
\r
1421 INLINE void m68ki_jump(uint new_pc)
\r
1424 m68ki_pc_changed(REG_PC);
\r
1427 INLINE void m68ki_jump_vector(uint vector)
\r
1429 REG_PC = (vector<<2) + REG_VBR;
\r
1430 REG_PC = m68ki_read_data_32(REG_PC);
\r
1431 m68ki_pc_changed(REG_PC);
\r
1435 /* Branch to a new memory location.
\r
1436 * The 32-bit branch will call pc_changed if it was enabled in m68kconf.h.
\r
1437 * So far I've found no problems with not calling pc_changed for 8 or 16
\r
1440 INLINE void m68ki_branch_8(uint offset)
\r
1442 REG_PC += MAKE_INT_8(offset);
\r
1445 INLINE void m68ki_branch_16(uint offset)
\r
1447 REG_PC += MAKE_INT_16(offset);
\r
1450 INLINE void m68ki_branch_32(uint offset)
\r
1453 m68ki_pc_changed(REG_PC);
\r
1458 /* ---------------------------- Status Register --------------------------- */
\r
1460 /* Set the S flag and change the active stack pointer.
\r
1461 * Note that value MUST be 4 or 0.
\r
1463 INLINE void m68ki_set_s_flag(uint value)
\r
1465 /* Backup the old stack pointer */
\r
1466 REG_SP_BASE[FLAG_S | ((FLAG_S>>1) & FLAG_M)] = REG_SP;
\r
1467 /* Set the S flag */
\r
1469 /* Set the new stack pointer */
\r
1470 REG_SP = REG_SP_BASE[FLAG_S | ((FLAG_S>>1) & FLAG_M)];
\r
1473 /* Set the S and M flags and change the active stack pointer.
\r
1474 * Note that value MUST be 0, 2, 4, or 6 (bit2 = S, bit1 = M).
\r
1476 INLINE void m68ki_set_sm_flag(uint value)
\r
1478 /* Backup the old stack pointer */
\r
1479 REG_SP_BASE[FLAG_S | ((FLAG_S>>1) & FLAG_M)] = REG_SP;
\r
1480 /* Set the S and M flags */
\r
1481 FLAG_S = value & SFLAG_SET;
\r
1482 FLAG_M = value & MFLAG_SET;
\r
1483 /* Set the new stack pointer */
\r
1484 REG_SP = REG_SP_BASE[FLAG_S | ((FLAG_S>>1) & FLAG_M)];
\r
1487 /* Set the S and M flags. Don't touch the stack pointer. */
\r
1488 INLINE void m68ki_set_sm_flag_nosp(uint value)
\r
1490 /* Set the S and M flags */
\r
1491 FLAG_S = value & SFLAG_SET;
\r
1492 FLAG_M = value & MFLAG_SET;
\r
1496 /* Set the condition code register */
\r
1497 INLINE void m68ki_set_ccr(uint value)
\r
1499 FLAG_X = BIT_4(value) << 4;
\r
1500 FLAG_N = BIT_3(value) << 4;
\r
1501 FLAG_Z = !BIT_2(value);
\r
1502 FLAG_V = BIT_1(value) << 6;
\r
1503 FLAG_C = BIT_0(value) << 8;
\r
1506 /* Set the status register but don't check for interrupts */
\r
1507 INLINE void m68ki_set_sr_noint(uint value)
\r
1509 /* Mask out the "unimplemented" bits */
\r
1510 value &= CPU_SR_MASK;
\r
1512 /* Now set the status register */
\r
1513 FLAG_T1 = BIT_F(value);
\r
1514 FLAG_T0 = BIT_E(value);
\r
1515 FLAG_INT_MASK = value & 0x0700;
\r
1516 m68ki_set_ccr(value);
\r
1517 m68ki_set_sm_flag((value >> 11) & 6);
\r
1520 /* Set the status register but don't check for interrupts nor
\r
1521 * change the stack pointer
\r
1523 INLINE void m68ki_set_sr_noint_nosp(uint value)
\r
1525 /* Mask out the "unimplemented" bits */
\r
1526 value &= CPU_SR_MASK;
\r
1528 /* Now set the status register */
\r
1529 FLAG_T1 = BIT_F(value);
\r
1530 FLAG_T0 = BIT_E(value);
\r
1531 FLAG_INT_MASK = value & 0x0700;
\r
1532 m68ki_set_ccr(value);
\r
1533 m68ki_set_sm_flag_nosp((value >> 11) & 6);
\r
1536 /* Set the status register and check for interrupts */
\r
1537 INLINE void m68ki_set_sr(uint value)
\r
1539 m68ki_set_sr_noint(value);
\r
1540 if (GET_CYCLES() >= 0) // notaz
\r
1541 m68ki_check_interrupts();
\r
1545 /* ------------------------- Exception Processing ------------------------- */
\r
1547 /* Initiate exception processing */
\r
1548 INLINE uint m68ki_init_exception(void)
\r
1550 /* Save the old status register */
\r
1551 uint sr = m68ki_get_sr();
\r
1553 /* Turn off trace flag, clear pending traces */
\r
1554 FLAG_T1 = FLAG_T0 = 0;
\r
1555 m68ki_clear_trace();
\r
1556 /* Enter supervisor mode */
\r
1557 m68ki_set_s_flag(SFLAG_SET);
\r
1562 /* 3 word stack frame (68000 only) */
\r
1563 INLINE void m68ki_stack_frame_3word(uint pc, uint sr)
\r
1565 m68ki_push_32(pc);
\r
1566 m68ki_push_16(sr);
\r
1569 /* Format 0 stack frame.
\r
1570 * This is the standard stack frame for 68010+.
\r
1572 INLINE void m68ki_stack_frame_0000(uint pc, uint sr, uint vector)
\r
1574 /* Stack a 3-word frame if we are 68000 */
\r
1575 if(CPU_TYPE == CPU_TYPE_000 || CPU_TYPE == CPU_TYPE_008)
\r
1577 m68ki_stack_frame_3word(pc, sr);
\r
1580 m68ki_push_16(vector<<2);
\r
1581 m68ki_push_32(pc);
\r
1582 m68ki_push_16(sr);
\r
1585 /* Format 1 stack frame (68020).
\r
1586 * For 68020, this is the 4 word throwaway frame.
\r
1588 INLINE void m68ki_stack_frame_0001(uint pc, uint sr, uint vector)
\r
1590 m68ki_push_16(0x1000 | (vector<<2));
\r
1591 m68ki_push_32(pc);
\r
1592 m68ki_push_16(sr);
\r
1595 /* Format 2 stack frame.
\r
1596 * This is used only by 68020 for trap exceptions.
\r
1598 INLINE void m68ki_stack_frame_0010(uint sr, uint vector)
\r
1600 m68ki_push_32(REG_PPC);
\r
1601 m68ki_push_16(0x2000 | (vector<<2));
\r
1602 m68ki_push_32(REG_PC);
\r
1603 m68ki_push_16(sr);
\r
1607 /* Bus error stack frame (68000 only).
\r
1609 INLINE void m68ki_stack_frame_buserr(uint sr)
\r
1611 m68ki_push_32(REG_PC);
\r
1612 m68ki_push_16(sr);
\r
1613 m68ki_push_16(REG_IR);
\r
1614 m68ki_push_32(m68ki_aerr_address); /* access address */
\r
1615 /* 0 0 0 0 0 0 0 0 0 0 0 R/W I/N FC
\r
1616 * R/W 0 = write, 1 = read
\r
1617 * I/N 0 = instruction, 1 = not
\r
1618 * FC 3-bit function code
\r
1620 m68ki_push_16(m68ki_aerr_write_mode | CPU_INSTR_MODE | m68ki_aerr_fc);
\r
1623 /* Format 8 stack frame (68010).
\r
1624 * 68010 only. This is the 29 word bus/address error frame.
\r
1626 INLINE void m68ki_stack_frame_1000(uint pc, uint sr, uint vector)
\r
1630 * INTERNAL INFORMATION, 16 WORDS
\r
1632 m68ki_fake_push_32();
\r
1633 m68ki_fake_push_32();
\r
1634 m68ki_fake_push_32();
\r
1635 m68ki_fake_push_32();
\r
1636 m68ki_fake_push_32();
\r
1637 m68ki_fake_push_32();
\r
1638 m68ki_fake_push_32();
\r
1639 m68ki_fake_push_32();
\r
1641 /* INSTRUCTION INPUT BUFFER */
\r
1644 /* UNUSED, RESERVED (not written) */
\r
1645 m68ki_fake_push_16();
\r
1647 /* DATA INPUT BUFFER */
\r
1650 /* UNUSED, RESERVED (not written) */
\r
1651 m68ki_fake_push_16();
\r
1653 /* DATA OUTPUT BUFFER */
\r
1656 /* UNUSED, RESERVED (not written) */
\r
1657 m68ki_fake_push_16();
\r
1659 /* FAULT ADDRESS */
\r
1662 /* SPECIAL STATUS WORD */
\r
1665 /* 1000, VECTOR OFFSET */
\r
1666 m68ki_push_16(0x8000 | (vector<<2));
\r
1668 /* PROGRAM COUNTER */
\r
1669 m68ki_push_32(pc);
\r
1671 /* STATUS REGISTER */
\r
1672 m68ki_push_16(sr);
\r
1675 /* Format A stack frame (short bus fault).
\r
1676 * This is used only by 68020 for bus fault and address error
\r
1677 * if the error happens at an instruction boundary.
\r
1678 * PC stacked is address of next instruction.
\r
1680 INLINE void m68ki_stack_frame_1010(uint sr, uint vector, uint pc)
\r
1682 /* INTERNAL REGISTER */
\r
1685 /* INTERNAL REGISTER */
\r
1688 /* DATA OUTPUT BUFFER (2 words) */
\r
1691 /* INTERNAL REGISTER */
\r
1694 /* INTERNAL REGISTER */
\r
1697 /* DATA CYCLE FAULT ADDRESS (2 words) */
\r
1700 /* INSTRUCTION PIPE STAGE B */
\r
1703 /* INSTRUCTION PIPE STAGE C */
\r
1706 /* SPECIAL STATUS REGISTER */
\r
1709 /* INTERNAL REGISTER */
\r
1712 /* 1010, VECTOR OFFSET */
\r
1713 m68ki_push_16(0xa000 | (vector<<2));
\r
1715 /* PROGRAM COUNTER */
\r
1716 m68ki_push_32(pc);
\r
1718 /* STATUS REGISTER */
\r
1719 m68ki_push_16(sr);
\r
1722 /* Format B stack frame (long bus fault).
\r
1723 * This is used only by 68020 for bus fault and address error
\r
1724 * if the error happens during instruction execution.
\r
1725 * PC stacked is address of instruction in progress.
\r
1727 INLINE void m68ki_stack_frame_1011(uint sr, uint vector, uint pc)
\r
1729 /* INTERNAL REGISTERS (18 words) */
\r
1740 /* VERSION# (4 bits), INTERNAL INFORMATION */
\r
1743 /* INTERNAL REGISTERS (3 words) */
\r
1747 /* DATA INTPUT BUFFER (2 words) */
\r
1750 /* INTERNAL REGISTERS (2 words) */
\r
1753 /* STAGE B ADDRESS (2 words) */
\r
1756 /* INTERNAL REGISTER (4 words) */
\r
1760 /* DATA OUTPUT BUFFER (2 words) */
\r
1763 /* INTERNAL REGISTER */
\r
1766 /* INTERNAL REGISTER */
\r
1769 /* DATA CYCLE FAULT ADDRESS (2 words) */
\r
1772 /* INSTRUCTION PIPE STAGE B */
\r
1775 /* INSTRUCTION PIPE STAGE C */
\r
1778 /* SPECIAL STATUS REGISTER */
\r
1781 /* INTERNAL REGISTER */
\r
1784 /* 1011, VECTOR OFFSET */
\r
1785 m68ki_push_16(0xb000 | (vector<<2));
\r
1787 /* PROGRAM COUNTER */
\r
1788 m68ki_push_32(pc);
\r
1790 /* STATUS REGISTER */
\r
1791 m68ki_push_16(sr);
\r
1795 /* Used for Group 2 exceptions.
\r
1796 * These stack a type 2 frame on the 020.
\r
1798 INLINE void m68ki_exception_trap(uint vector)
\r
1800 uint sr = m68ki_init_exception();
\r
1802 if(CPU_TYPE_IS_010_LESS(CPU_TYPE))
\r
1803 m68ki_stack_frame_0000(REG_PC, sr, vector);
\r
1805 m68ki_stack_frame_0010(sr, vector);
\r
1807 m68ki_jump_vector(vector);
\r
1809 /* Use up some clock cycles */
\r
1810 USE_CYCLES(CYC_EXCEPTION[vector]);
\r
1813 /* Trap#n stacks a 0 frame but behaves like group2 otherwise */
\r
1814 INLINE void m68ki_exception_trapN(uint vector)
\r
1816 uint sr = m68ki_init_exception();
\r
1817 m68ki_stack_frame_0000(REG_PC, sr, vector);
\r
1818 m68ki_jump_vector(vector);
\r
1820 /* Use up some clock cycles */
\r
1821 USE_CYCLES(CYC_EXCEPTION[vector]);
\r
1824 /* Exception for trace mode */
\r
1825 INLINE void m68ki_exception_trace(void)
\r
1827 uint sr = m68ki_init_exception();
\r
1829 if(CPU_TYPE_IS_010_LESS(CPU_TYPE))
\r
1831 #if M68K_EMULATE_ADDRESS_ERROR == OPT_ON
\r
1832 if(CPU_TYPE_IS_000(CPU_TYPE))
\r
1834 CPU_INSTR_MODE = INSTRUCTION_NO;
\r
1836 #endif /* M68K_EMULATE_ADDRESS_ERROR */
\r
1837 m68ki_stack_frame_0000(REG_PC, sr, EXCEPTION_TRACE);
\r
1840 m68ki_stack_frame_0010(sr, EXCEPTION_TRACE);
\r
1842 m68ki_jump_vector(EXCEPTION_TRACE);
\r
1844 /* Trace nullifies a STOP instruction */
\r
1845 CPU_STOPPED &= ~STOP_LEVEL_STOP;
\r
1847 /* Use up some clock cycles */
\r
1848 USE_CYCLES(CYC_EXCEPTION[EXCEPTION_TRACE]);
\r
1851 /* Exception for privilege violation */
\r
1852 INLINE void m68ki_exception_privilege_violation(void)
\r
1854 uint sr = m68ki_init_exception();
\r
1856 #if M68K_EMULATE_ADDRESS_ERROR == OPT_ON
\r
1857 if(CPU_TYPE_IS_000(CPU_TYPE))
\r
1859 CPU_INSTR_MODE = INSTRUCTION_NO;
\r
1861 #endif /* M68K_EMULATE_ADDRESS_ERROR */
\r
1863 m68ki_stack_frame_0000(REG_PPC, sr, EXCEPTION_PRIVILEGE_VIOLATION);
\r
1864 m68ki_jump_vector(EXCEPTION_PRIVILEGE_VIOLATION);
\r
1866 /* Use up some clock cycles and undo the instruction's cycles */
\r
1867 USE_CYCLES(CYC_EXCEPTION[EXCEPTION_PRIVILEGE_VIOLATION] - CYC_INSTRUCTION[REG_IR]);
\r
1870 /* Exception for A-Line instructions */
\r
1871 INLINE void m68ki_exception_1010(void)
\r
1874 #if M68K_LOG_1010_1111 == OPT_ON
\r
1875 M68K_DO_LOG_EMU((M68K_LOG_FILEHANDLE "%s at %08x: called 1010 instruction %04x (%s)\n",
\r
1876 m68ki_cpu_names[CPU_TYPE], ADDRESS_68K(REG_PPC), REG_IR,
\r
1877 m68ki_disassemble_quick(ADDRESS_68K(REG_PPC))));
\r
1880 sr = m68ki_init_exception();
\r
1881 m68ki_stack_frame_0000(REG_PPC, sr, EXCEPTION_1010);
\r
1882 m68ki_jump_vector(EXCEPTION_1010);
\r
1884 /* Use up some clock cycles and undo the instruction's cycles */
\r
1885 USE_CYCLES(CYC_EXCEPTION[EXCEPTION_1010] - CYC_INSTRUCTION[REG_IR]);
\r
1888 /* Exception for F-Line instructions */
\r
1889 INLINE void m68ki_exception_1111(void)
\r
1893 #if M68K_LOG_1010_1111 == OPT_ON
\r
1894 M68K_DO_LOG_EMU((M68K_LOG_FILEHANDLE "%s at %08x: called 1111 instruction %04x (%s)\n",
\r
1895 m68ki_cpu_names[CPU_TYPE], ADDRESS_68K(REG_PPC), REG_IR,
\r
1896 m68ki_disassemble_quick(ADDRESS_68K(REG_PPC))));
\r
1899 sr = m68ki_init_exception();
\r
1900 m68ki_stack_frame_0000(REG_PPC, sr, EXCEPTION_1111);
\r
1901 m68ki_jump_vector(EXCEPTION_1111);
\r
1903 /* Use up some clock cycles and undo the instruction's cycles */
\r
1904 USE_CYCLES(CYC_EXCEPTION[EXCEPTION_1111] - CYC_INSTRUCTION[REG_IR]);
\r
1907 /* Exception for illegal instructions */
\r
1908 INLINE void m68ki_exception_illegal(void)
\r
1912 M68K_DO_LOG((M68K_LOG_FILEHANDLE "%s at %08x: illegal instruction %04x (%s)\n",
\r
1913 m68ki_cpu_names[CPU_TYPE], ADDRESS_68K(REG_PPC), REG_IR,
\r
1914 m68ki_disassemble_quick(ADDRESS_68K(REG_PPC))));
\r
1916 sr = m68ki_init_exception();
\r
1918 #if M68K_EMULATE_ADDRESS_ERROR == OPT_ON
\r
1919 if(CPU_TYPE_IS_000(CPU_TYPE))
\r
1921 CPU_INSTR_MODE = INSTRUCTION_NO;
\r
1923 #endif /* M68K_EMULATE_ADDRESS_ERROR */
\r
1925 m68ki_stack_frame_0000(REG_PPC, sr, EXCEPTION_ILLEGAL_INSTRUCTION);
\r
1926 m68ki_jump_vector(EXCEPTION_ILLEGAL_INSTRUCTION);
\r
1928 /* Use up some clock cycles and undo the instruction's cycles */
\r
1929 USE_CYCLES(CYC_EXCEPTION[EXCEPTION_ILLEGAL_INSTRUCTION] - CYC_INSTRUCTION[REG_IR]);
\r
1932 /* Exception for format errror in RTE */
\r
1933 INLINE void m68ki_exception_format_error(void)
\r
1935 uint sr = m68ki_init_exception();
\r
1936 m68ki_stack_frame_0000(REG_PC, sr, EXCEPTION_FORMAT_ERROR);
\r
1937 m68ki_jump_vector(EXCEPTION_FORMAT_ERROR);
\r
1939 /* Use up some clock cycles and undo the instruction's cycles */
\r
1940 USE_CYCLES(CYC_EXCEPTION[EXCEPTION_FORMAT_ERROR] - CYC_INSTRUCTION[REG_IR]);
\r
1943 /* Exception for address error */
\r
1944 INLINE void m68ki_exception_address_error(void)
\r
1946 uint sr = m68ki_init_exception();
\r
1948 /* If we were processing a bus error, address error, or reset,
\r
1949 * this is a catastrophic failure.
\r
1952 if(CPU_RUN_MODE == RUN_MODE_BERR_AERR_RESET)
\r
1954 m68k_read_memory_8(0x00ffff01);
\r
1955 CPU_STOPPED = STOP_LEVEL_HALT;
\r
1958 CPU_RUN_MODE = RUN_MODE_BERR_AERR_RESET;
\r
1960 /* Note: This is implemented for 68000 only! */
\r
1961 m68ki_stack_frame_buserr(sr);
\r
1963 m68ki_jump_vector(EXCEPTION_ADDRESS_ERROR);
\r
1965 /* Use up some clock cycles and undo the instruction's cycles */
\r
1966 USE_CYCLES(CYC_EXCEPTION[EXCEPTION_ADDRESS_ERROR] - CYC_INSTRUCTION[REG_IR]);
\r
1970 /* Service an interrupt request and start exception processing */
\r
1971 INLINE void m68ki_exception_interrupt(uint int_level)
\r
1977 #if M68K_EMULATE_ADDRESS_ERROR == OPT_ON
\r
1978 if(CPU_TYPE_IS_000(CPU_TYPE))
\r
1980 CPU_INSTR_MODE = INSTRUCTION_NO;
\r
1982 #endif /* M68K_EMULATE_ADDRESS_ERROR */
\r
1984 /* Turn off the stopped state */
\r
1985 CPU_STOPPED &= ~STOP_LEVEL_STOP;
\r
1987 /* If we are halted, don't do anything */
\r
1991 /* Acknowledge the interrupt */
\r
1992 vector = m68ki_int_ack(int_level);
\r
1994 /* Get the interrupt vector */
\r
1995 if(vector == M68K_INT_ACK_AUTOVECTOR)
\r
1996 /* Use the autovectors. This is the most commonly used implementation */
\r
1997 vector = EXCEPTION_INTERRUPT_AUTOVECTOR+int_level;
\r
1998 else if(vector == M68K_INT_ACK_SPURIOUS)
\r
1999 /* Called if no devices respond to the interrupt acknowledge */
\r
2000 vector = EXCEPTION_SPURIOUS_INTERRUPT;
\r
2001 else if(vector > 255)
\r
2003 M68K_DO_LOG_EMU((M68K_LOG_FILEHANDLE "%s at %08x: Interrupt acknowledge returned invalid vector $%x\n",
\r
2004 m68ki_cpu_names[CPU_TYPE], ADDRESS_68K(REG_PC), vector));
\r
2008 /* Start exception processing */
\r
2009 sr = m68ki_init_exception();
\r
2011 /* Set the interrupt mask to the level of the one being serviced */
\r
2012 FLAG_INT_MASK = int_level<<8;
\r
2014 /* Get the new PC */
\r
2015 new_pc = m68ki_read_data_32((vector<<2) + REG_VBR);
\r
2016 //new_pc = m68k_read_immediate_32((vector<<2) + REG_VBR); // notaz hack
\r
2018 /* If vector is uninitialized, call the uninitialized interrupt vector */
\r
2020 new_pc = m68ki_read_data_32((EXCEPTION_UNINITIALIZED_INTERRUPT<<2) + REG_VBR);
\r
2022 /* Generate a stack frame */
\r
2023 m68ki_stack_frame_0000(REG_PC, sr, vector);
\r
2024 if(FLAG_M && CPU_TYPE_IS_EC020_PLUS(CPU_TYPE))
\r
2026 /* Create throwaway frame */
\r
2027 m68ki_set_sm_flag(FLAG_S); /* clear M */
\r
2028 sr |= 0x2000; /* Same as SR in master stack frame except S is forced high */
\r
2029 m68ki_stack_frame_0001(REG_PC, sr, vector);
\r
2032 m68ki_jump(new_pc);
\r
2034 /* Defer cycle counting until later */
\r
2035 CPU_INT_CYCLES += CYC_EXCEPTION[vector];
\r
2037 #if !M68K_EMULATE_INT_ACK
\r
2038 /* Automatically clear IRQ if we are not using an acknowledge scheme */
\r
2039 CPU_INT_LEVEL = 0;
\r
2040 #endif /* M68K_EMULATE_INT_ACK */
\r
2044 /* ASG: Check for interrupts */
\r
2045 INLINE void m68ki_check_interrupts(void)
\r
2047 if(CPU_INT_LEVEL > FLAG_INT_MASK)
\r
2048 m68ki_exception_interrupt(CPU_INT_LEVEL>>8);
\r
2053 /* ======================================================================== */
\r
2054 /* ============================== END OF FILE ============================= */
\r
2055 /* ======================================================================== */
\r
2057 #endif /* M68KCPU__HEADER */
\r