2 /* ======================================================================== */
\r
3 /* ========================= LICENSING & COPYRIGHT ======================== */
\r
4 /* ======================================================================== */
\r
9 * A portable Motorola M680x0 processor emulation engine.
\r
10 * Copyright 1998-2001 Karl Stenerud. All rights reserved.
\r
12 * This code may be freely used for non-commercial purposes as long as this
\r
13 * copyright notice remains unaltered in the source code and any binary files
\r
14 * containing this code in compiled form.
\r
16 * All other lisencing terms must be negotiated with the author
\r
19 * The latest version of this code can be obtained at:
\r
20 * http://kstenerud.cjb.net
\r
26 #ifndef M68KCPU__HEADER
\r
27 #define M68KCPU__HEADER
\r
29 // notaz: something's missing this
\r
31 #define UINT32 unsigned int
\r
32 #define UINT16 unsigned short
\r
33 #define UINT8 unsigned char
\r
39 #if M68K_EMULATE_ADDRESS_ERROR
\r
41 #endif /* M68K_EMULATE_ADDRESS_ERROR */
\r
43 /* ======================================================================== */
\r
44 /* ==================== ARCHITECTURE-DEPENDANT DEFINES ==================== */
\r
45 /* ======================================================================== */
\r
47 /* Check for > 32bit sizes */
\r
48 #if UINT_MAX > 0xffffffff
\r
49 #define M68K_INT_GT_32_BIT 1
\r
51 #define M68K_INT_GT_32_BIT 0
\r
54 /* Data types used in this emulation core */
\r
66 #define sint8 signed char /* ASG: changed from char to signed char */
\r
67 #define sint16 signed short
\r
68 #define sint32 signed long
\r
69 #define uint8 unsigned char
\r
70 #define uint16 unsigned short
\r
71 #define uint32 unsigned long
\r
73 /* signed and unsigned int must be at least 32 bits wide */
\r
74 #define sint signed int
\r
75 #define uint unsigned int
\r
79 #define sint64 signed long long
\r
80 #define uint64 unsigned long long
\r
82 #define sint64 sint32
\r
83 #define uint64 uint32
\r
84 #endif /* M68K_USE_64_BIT */
\r
88 /* Allow for architectures that don't have 8-bit sizes */
\r
89 #if UCHAR_MAX == 0xff
\r
90 #define MAKE_INT_8(A) (sint8)(A)
\r
93 #define sint8 signed int
\r
95 #define uint8 unsigned int
\r
96 INLINE sint MAKE_INT_8(uint value)
\r
98 return (value & 0x80) ? value | ~0xff : value & 0xff;
\r
100 #endif /* UCHAR_MAX == 0xff */
\r
103 /* Allow for architectures that don't have 16-bit sizes */
\r
104 #if USHRT_MAX == 0xffff
\r
105 #define MAKE_INT_16(A) (sint16)(A)
\r
108 #define sint16 signed int
\r
110 #define uint16 unsigned int
\r
111 INLINE sint MAKE_INT_16(uint value)
\r
113 return (value & 0x8000) ? value | ~0xffff : value & 0xffff;
\r
115 #endif /* USHRT_MAX == 0xffff */
\r
118 /* Allow for architectures that don't have 32-bit sizes */
\r
119 #if ULONG_MAX == 0xffffffff
\r
120 #define MAKE_INT_32(A) (sint32)(A)
\r
123 #define sint32 signed int
\r
125 #define uint32 unsigned int
\r
126 INLINE sint MAKE_INT_32(uint value)
\r
128 return (value & 0x80000000) ? value | ~0xffffffff : value & 0xffffffff;
\r
130 #endif /* ULONG_MAX == 0xffffffff */
\r
133 INLINE sint32 MAKE_INT_24(uint value)
\r
135 return (value & 0x800000) ? value | ~0xffffff : value & 0xffffff;
\r
140 /* ======================================================================== */
\r
141 /* ============================ GENERAL DEFINES =========================== */
\r
142 /* ======================================================================== */
\r
144 /* Exception Vectors handled by emulation */
\r
145 #define EXCEPTION_BUS_ERROR 2 /* This one is not emulated! */
\r
146 #define EXCEPTION_ADDRESS_ERROR 3 /* This one is partially emulated (doesn't stack a proper frame yet) */
\r
147 #define EXCEPTION_ILLEGAL_INSTRUCTION 4
\r
148 #define EXCEPTION_ZERO_DIVIDE 5
\r
149 #define EXCEPTION_CHK 6
\r
150 #define EXCEPTION_TRAPV 7
\r
151 #define EXCEPTION_PRIVILEGE_VIOLATION 8
\r
152 #define EXCEPTION_TRACE 9
\r
153 #define EXCEPTION_1010 10
\r
154 #define EXCEPTION_1111 11
\r
155 #define EXCEPTION_FORMAT_ERROR 14
\r
156 #define EXCEPTION_UNINITIALIZED_INTERRUPT 15
\r
157 #define EXCEPTION_SPURIOUS_INTERRUPT 24
\r
158 #define EXCEPTION_INTERRUPT_AUTOVECTOR 24
\r
159 #define EXCEPTION_TRAP_BASE 32
\r
161 /* Function codes set by CPU during data/address bus activity */
\r
162 #define FUNCTION_CODE_USER_DATA 1
\r
163 #define FUNCTION_CODE_USER_PROGRAM 2
\r
164 #define FUNCTION_CODE_SUPERVISOR_DATA 5
\r
165 #define FUNCTION_CODE_SUPERVISOR_PROGRAM 6
\r
166 #define FUNCTION_CODE_CPU_SPACE 7
\r
168 /* CPU types for deciding what to emulate */
\r
169 #define CPU_TYPE_000 1
\r
170 #define CPU_TYPE_008 2
\r
171 #define CPU_TYPE_010 4
\r
172 #define CPU_TYPE_EC020 8
\r
173 #define CPU_TYPE_020 16
\r
174 #define CPU_TYPE_040 32
\r
176 /* Different ways to stop the CPU */
\r
177 #define STOP_LEVEL_STOP 1
\r
178 #define STOP_LEVEL_HALT 2
\r
180 /* Used for 68000 address error processing */
\r
181 #define INSTRUCTION_YES 0
\r
182 #define INSTRUCTION_NO 0x08
\r
183 #define MODE_READ 0x10
\r
184 #define MODE_WRITE 0
\r
186 #define RUN_MODE_NORMAL 0
\r
187 #define RUN_MODE_BERR_AERR_RESET 1
\r
190 #define NULL ((void*)0)
\r
193 /* ======================================================================== */
\r
194 /* ================================ MACROS ================================ */
\r
195 /* ======================================================================== */
\r
198 /* ---------------------------- General Macros ---------------------------- */
\r
200 /* Bit Isolation Macros */
\r
201 #define BIT_0(A) ((A) & 0x00000001)
\r
202 #define BIT_1(A) ((A) & 0x00000002)
\r
203 #define BIT_2(A) ((A) & 0x00000004)
\r
204 #define BIT_3(A) ((A) & 0x00000008)
\r
205 #define BIT_4(A) ((A) & 0x00000010)
\r
206 #define BIT_5(A) ((A) & 0x00000020)
\r
207 #define BIT_6(A) ((A) & 0x00000040)
\r
208 #define BIT_7(A) ((A) & 0x00000080)
\r
209 #define BIT_8(A) ((A) & 0x00000100)
\r
210 #define BIT_9(A) ((A) & 0x00000200)
\r
211 #define BIT_A(A) ((A) & 0x00000400)
\r
212 #define BIT_B(A) ((A) & 0x00000800)
\r
213 #define BIT_C(A) ((A) & 0x00001000)
\r
214 #define BIT_D(A) ((A) & 0x00002000)
\r
215 #define BIT_E(A) ((A) & 0x00004000)
\r
216 #define BIT_F(A) ((A) & 0x00008000)
\r
217 #define BIT_10(A) ((A) & 0x00010000)
\r
218 #define BIT_11(A) ((A) & 0x00020000)
\r
219 #define BIT_12(A) ((A) & 0x00040000)
\r
220 #define BIT_13(A) ((A) & 0x00080000)
\r
221 #define BIT_14(A) ((A) & 0x00100000)
\r
222 #define BIT_15(A) ((A) & 0x00200000)
\r
223 #define BIT_16(A) ((A) & 0x00400000)
\r
224 #define BIT_17(A) ((A) & 0x00800000)
\r
225 #define BIT_18(A) ((A) & 0x01000000)
\r
226 #define BIT_19(A) ((A) & 0x02000000)
\r
227 #define BIT_1A(A) ((A) & 0x04000000)
\r
228 #define BIT_1B(A) ((A) & 0x08000000)
\r
229 #define BIT_1C(A) ((A) & 0x10000000)
\r
230 #define BIT_1D(A) ((A) & 0x20000000)
\r
231 #define BIT_1E(A) ((A) & 0x40000000)
\r
232 #define BIT_1F(A) ((A) & 0x80000000)
\r
234 /* Get the most significant bit for specific sizes */
\r
235 #define GET_MSB_8(A) ((A) & 0x80)
\r
236 #define GET_MSB_9(A) ((A) & 0x100)
\r
237 #define GET_MSB_16(A) ((A) & 0x8000)
\r
238 #define GET_MSB_17(A) ((A) & 0x10000)
\r
239 #define GET_MSB_32(A) ((A) & 0x80000000)
\r
240 #if M68K_USE_64_BIT
\r
241 #define GET_MSB_33(A) ((A) & 0x100000000)
\r
242 #endif /* M68K_USE_64_BIT */
\r
244 /* Isolate nibbles */
\r
245 #define LOW_NIBBLE(A) ((A) & 0x0f)
\r
246 #define HIGH_NIBBLE(A) ((A) & 0xf0)
\r
248 /* These are used to isolate 8, 16, and 32 bit sizes */
\r
249 #define MASK_OUT_ABOVE_2(A) ((A) & 3)
\r
250 #define MASK_OUT_ABOVE_8(A) ((A) & 0xff)
\r
251 #define MASK_OUT_ABOVE_16(A) ((A) & 0xffff)
\r
252 #define MASK_OUT_BELOW_2(A) ((A) & ~3)
\r
253 #define MASK_OUT_BELOW_8(A) ((A) & ~0xff)
\r
254 #define MASK_OUT_BELOW_16(A) ((A) & ~0xffff)
\r
256 /* No need to mask if we are 32 bit */
\r
257 #if M68K_INT_GT_32_BIT || M68K_USE_64_BIT
\r
258 #define MASK_OUT_ABOVE_32(A) ((A) & 0xffffffff)
\r
259 #define MASK_OUT_BELOW_32(A) ((A) & ~0xffffffff)
\r
261 #define MASK_OUT_ABOVE_32(A) (A)
\r
262 #define MASK_OUT_BELOW_32(A) 0
\r
263 #endif /* M68K_INT_GT_32_BIT || M68K_USE_64_BIT */
\r
265 /* Simulate address lines of 68k family */
\r
266 #define ADDRESS_68K(A) ((A)&CPU_ADDRESS_MASK)
\r
269 /* Shift & Rotate Macros. */
\r
270 #define LSL(A, C) ((A) << (C))
\r
271 #define LSR(A, C) ((A) >> (C))
\r
273 /* Some > 32-bit optimizations */
\r
274 #if M68K_INT_GT_32_BIT
\r
275 /* Shift left and right */
\r
276 #define LSR_32(A, C) ((A) >> (C))
\r
277 #define LSL_32(A, C) ((A) << (C))
\r
279 /* We have to do this because the morons at ANSI decided that shifts
\r
280 * by >= data size are undefined.
\r
282 #define LSR_32(A, C) ((C) < 32 ? (A) >> (C) : 0)
\r
283 #define LSL_32(A, C) ((C) < 32 ? (A) << (C) : 0)
\r
284 #endif /* M68K_INT_GT_32_BIT */
\r
286 #if M68K_USE_64_BIT
\r
287 #define LSL_32_64(A, C) ((A) << (C))
\r
288 #define LSR_32_64(A, C) ((A) >> (C))
\r
289 #define ROL_33_64(A, C) (LSL_32_64(A, C) | LSR_32_64(A, 33-(C)))
\r
290 #define ROR_33_64(A, C) (LSR_32_64(A, C) | LSL_32_64(A, 33-(C)))
\r
291 #endif /* M68K_USE_64_BIT */
\r
293 #define ROL_8(A, C) MASK_OUT_ABOVE_8(LSL(A, C) | LSR(A, 8-(C)))
\r
294 #define ROL_9(A, C) (LSL(A, C) | LSR(A, 9-(C)))
\r
295 #define ROL_16(A, C) MASK_OUT_ABOVE_16(LSL(A, C) | LSR(A, 16-(C)))
\r
296 #define ROL_17(A, C) (LSL(A, C) | LSR(A, 17-(C)))
\r
297 #define ROL_32(A, C) MASK_OUT_ABOVE_32(LSL_32(A, C) | LSR_32(A, 32-(C)))
\r
298 #define ROL_33(A, C) (LSL_32(A, C) | LSR_32(A, 33-(C)))
\r
300 #define ROR_8(A, C) MASK_OUT_ABOVE_8(LSR(A, C) | LSL(A, 8-(C)))
\r
301 #define ROR_9(A, C) (LSR(A, C) | LSL(A, 9-(C)))
\r
302 #define ROR_16(A, C) MASK_OUT_ABOVE_16(LSR(A, C) | LSL(A, 16-(C)))
\r
303 #define ROR_17(A, C) (LSR(A, C) | LSL(A, 17-(C)))
\r
304 #define ROR_32(A, C) MASK_OUT_ABOVE_32(LSR_32(A, C) | LSL_32(A, 32-(C)))
\r
305 #define ROR_33(A, C) (LSR_32(A, C) | LSL_32(A, 33-(C)))
\r
309 /* ------------------------------ CPU Access ------------------------------ */
\r
311 /* Access the CPU registers */
\r
312 #define CPU_TYPE m68ki_cpu.cpu_type
\r
314 #define REG_DA m68ki_cpu.dar /* easy access to data and address regs */
\r
315 #define REG_D m68ki_cpu.dar
\r
316 #define REG_A (m68ki_cpu.dar+8)
\r
317 #define REG_PPC m68ki_cpu.ppc
\r
318 #define REG_PC m68ki_cpu.pc
\r
319 #define REG_SP_BASE m68ki_cpu.sp
\r
320 #define REG_USP m68ki_cpu.sp[0]
\r
321 #define REG_ISP m68ki_cpu.sp[4]
\r
322 #define REG_MSP m68ki_cpu.sp[6]
\r
323 #define REG_SP m68ki_cpu.dar[15]
\r
324 #define REG_VBR m68ki_cpu.vbr
\r
325 #define REG_SFC m68ki_cpu.sfc
\r
326 #define REG_DFC m68ki_cpu.dfc
\r
327 #define REG_CACR m68ki_cpu.cacr
\r
328 #define REG_CAAR m68ki_cpu.caar
\r
329 #define REG_IR m68ki_cpu.ir
\r
331 #define FLAG_T1 m68ki_cpu.t1_flag
\r
332 #define FLAG_T0 m68ki_cpu.t0_flag
\r
333 #define FLAG_S m68ki_cpu.s_flag
\r
334 #define FLAG_M m68ki_cpu.m_flag
\r
335 #define FLAG_X m68ki_cpu.x_flag
\r
336 #define FLAG_N m68ki_cpu.n_flag
\r
337 #define FLAG_Z m68ki_cpu.not_z_flag
\r
338 #define FLAG_V m68ki_cpu.v_flag
\r
339 #define FLAG_C m68ki_cpu.c_flag
\r
340 #define FLAG_INT_MASK m68ki_cpu.int_mask
\r
342 #define CPU_INT_LEVEL m68ki_cpu.int_level /* ASG: changed from CPU_INTS_PENDING */
\r
343 #define CPU_INT_CYCLES m68ki_cpu.int_cycles /* ASG */
\r
344 #define CPU_STOPPED m68ki_cpu.stopped
\r
345 #define CPU_PREF_ADDR m68ki_cpu.pref_addr
\r
346 #define CPU_PREF_DATA m68ki_cpu.pref_data
\r
347 #define CPU_ADDRESS_MASK m68ki_cpu.address_mask
\r
348 #define CPU_SR_MASK m68ki_cpu.sr_mask
\r
349 #define CPU_INSTR_MODE m68ki_cpu.instr_mode
\r
350 #define CPU_RUN_MODE m68ki_cpu.run_mode
\r
352 #define CYC_INSTRUCTION m68ki_cpu.cyc_instruction
\r
353 #define CYC_EXCEPTION m68ki_cpu.cyc_exception
\r
354 #define CYC_BCC_NOTAKE_B m68ki_cpu.cyc_bcc_notake_b
\r
355 #define CYC_BCC_NOTAKE_W m68ki_cpu.cyc_bcc_notake_w
\r
356 #define CYC_DBCC_F_NOEXP m68ki_cpu.cyc_dbcc_f_noexp
\r
357 #define CYC_DBCC_F_EXP m68ki_cpu.cyc_dbcc_f_exp
\r
358 #define CYC_SCC_R_TRUE m68ki_cpu.cyc_scc_r_true
\r
359 #define CYC_MOVEM_W m68ki_cpu.cyc_movem_w
\r
360 #define CYC_MOVEM_L m68ki_cpu.cyc_movem_l
\r
361 #define CYC_SHIFT m68ki_cpu.cyc_shift
\r
362 #define CYC_RESET m68ki_cpu.cyc_reset
\r
365 #define CALLBACK_INT_ACK m68ki_cpu.int_ack_callback
\r
366 #define CALLBACK_BKPT_ACK m68ki_cpu.bkpt_ack_callback
\r
367 #define CALLBACK_RESET_INSTR m68ki_cpu.reset_instr_callback
\r
368 #define CALLBACK_CMPILD_INSTR m68ki_cpu.cmpild_instr_callback
\r
369 #define CALLBACK_RTE_INSTR m68ki_cpu.rte_instr_callback
\r
370 #define CALLBACK_PC_CHANGED m68ki_cpu.pc_changed_callback
\r
371 #define CALLBACK_SET_FC m68ki_cpu.set_fc_callback
\r
372 #define CALLBACK_INSTR_HOOK m68ki_cpu.instr_hook_callback
\r
376 /* ----------------------------- Configuration ---------------------------- */
\r
378 /* These defines are dependant on the configuration defines in m68kconf.h */
\r
380 /* Disable certain comparisons if we're not using all CPU types */
\r
381 #if M68K_EMULATE_040
\r
382 #define CPU_TYPE_IS_040_PLUS(A) ((A) & CPU_TYPE_040)
\r
383 #define CPU_TYPE_IS_040_LESS(A) 1
\r
385 #define CPU_TYPE_IS_040_PLUS(A) 0
\r
386 #define CPU_TYPE_IS_040_LESS(A) 1
\r
389 #if M68K_EMULATE_020
\r
390 #define CPU_TYPE_IS_020_PLUS(A) ((A) & (CPU_TYPE_020 | CPU_TYPE_040))
\r
391 #define CPU_TYPE_IS_020_LESS(A) 1
\r
393 #define CPU_TYPE_IS_020_PLUS(A) 0
\r
394 #define CPU_TYPE_IS_020_LESS(A) 1
\r
397 #if M68K_EMULATE_EC020
\r
398 #define CPU_TYPE_IS_EC020_PLUS(A) ((A) & (CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_040))
\r
399 #define CPU_TYPE_IS_EC020_LESS(A) ((A) & (CPU_TYPE_000 | CPU_TYPE_008 | CPU_TYPE_010 | CPU_TYPE_EC020))
\r
401 #define CPU_TYPE_IS_EC020_PLUS(A) CPU_TYPE_IS_020_PLUS(A)
\r
402 #define CPU_TYPE_IS_EC020_LESS(A) CPU_TYPE_IS_020_LESS(A)
\r
405 #if M68K_EMULATE_010
\r
406 #define CPU_TYPE_IS_010(A) ((A) == CPU_TYPE_010)
\r
407 #define CPU_TYPE_IS_010_PLUS(A) ((A) & (CPU_TYPE_010 | CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_040))
\r
408 #define CPU_TYPE_IS_010_LESS(A) ((A) & (CPU_TYPE_000 | CPU_TYPE_008 | CPU_TYPE_010))
\r
410 #define CPU_TYPE_IS_010(A) 0
\r
411 #define CPU_TYPE_IS_010_PLUS(A) CPU_TYPE_IS_EC020_PLUS(A)
\r
412 #define CPU_TYPE_IS_010_LESS(A) CPU_TYPE_IS_EC020_LESS(A)
\r
415 #if M68K_EMULATE_020 || M68K_EMULATE_EC020
\r
416 #define CPU_TYPE_IS_020_VARIANT(A) ((A) & (CPU_TYPE_EC020 | CPU_TYPE_020))
\r
418 #define CPU_TYPE_IS_020_VARIANT(A) 0
\r
421 #if M68K_EMULATE_040 || M68K_EMULATE_020 || M68K_EMULATE_EC020 || M68K_EMULATE_010
\r
422 #define CPU_TYPE_IS_000(A) ((A) == CPU_TYPE_000 || (A) == CPU_TYPE_008)
\r
424 #define CPU_TYPE_IS_000(A) 1
\r
428 #if !M68K_SEPARATE_READS
\r
429 #define m68k_read_immediate_16(A) m68ki_read_program_16(A)
\r
430 #define m68k_read_immediate_32(A) m68ki_read_program_32(A)
\r
432 #define m68k_read_pcrelative_8(A) m68ki_read_program_8(A)
\r
433 #define m68k_read_pcrelative_16(A) m68ki_read_program_16(A)
\r
434 #define m68k_read_pcrelative_32(A) m68ki_read_program_32(A)
\r
435 #endif /* M68K_SEPARATE_READS */
\r
438 /* Enable or disable callback functions */
\r
439 #if M68K_EMULATE_INT_ACK
\r
440 #if M68K_EMULATE_INT_ACK == OPT_SPECIFY_HANDLER
\r
441 #define m68ki_int_ack(A) M68K_INT_ACK_CALLBACK(A)
\r
443 #define m68ki_int_ack(A) CALLBACK_INT_ACK(A)
\r
446 /* Default action is to used autovector mode, which is most common */
\r
447 #define m68ki_int_ack(A) M68K_INT_ACK_AUTOVECTOR
\r
448 #endif /* M68K_EMULATE_INT_ACK */
\r
450 #if M68K_EMULATE_BKPT_ACK
\r
451 #if M68K_EMULATE_BKPT_ACK == OPT_SPECIFY_HANDLER
\r
452 #define m68ki_bkpt_ack(A) M68K_BKPT_ACK_CALLBACK(A)
\r
454 #define m68ki_bkpt_ack(A) CALLBACK_BKPT_ACK(A)
\r
457 #define m68ki_bkpt_ack(A)
\r
458 #endif /* M68K_EMULATE_BKPT_ACK */
\r
460 #if M68K_EMULATE_RESET
\r
461 #if M68K_EMULATE_RESET == OPT_SPECIFY_HANDLER
\r
462 #define m68ki_output_reset() M68K_RESET_CALLBACK()
\r
464 #define m68ki_output_reset() CALLBACK_RESET_INSTR()
\r
467 #define m68ki_output_reset()
\r
468 #endif /* M68K_EMULATE_RESET */
\r
470 #if M68K_CMPILD_HAS_CALLBACK
\r
471 #if M68K_CMPILD_HAS_CALLBACK == OPT_SPECIFY_HANDLER
\r
472 #define m68ki_cmpild_callback(v,r) M68K_CMPILD_CALLBACK(v,r)
\r
474 #define m68ki_cmpild_callback(v,r) CALLBACK_CMPILD_INSTR(v,r)
\r
477 #define m68ki_cmpild_callback(v,r)
\r
478 #endif /* M68K_CMPILD_HAS_CALLBACK */
\r
480 #if M68K_RTE_HAS_CALLBACK
\r
481 #if M68K_RTE_HAS_CALLBACK == OPT_SPECIFY_HANDLER
\r
482 #define m68ki_rte_callback() M68K_RTE_CALLBACK()
\r
484 #define m68ki_rte_callback() CALLBACK_RTE_INSTR()
\r
487 #define m68ki_rte_callback()
\r
488 #endif /* M68K_RTE_HAS_CALLBACK */
\r
490 #if M68K_INSTRUCTION_HOOK
\r
491 #if M68K_INSTRUCTION_HOOK == OPT_SPECIFY_HANDLER
\r
492 #define m68ki_instr_hook() M68K_INSTRUCTION_CALLBACK()
\r
494 #define m68ki_instr_hook() CALLBACK_INSTR_HOOK()
\r
497 #define m68ki_instr_hook()
\r
498 #endif /* M68K_INSTRUCTION_HOOK */
\r
500 #if M68K_MONITOR_PC
\r
501 #if M68K_MONITOR_PC == OPT_SPECIFY_HANDLER
\r
502 #define m68ki_pc_changed(A) M68K_SET_PC_CALLBACK(ADDRESS_68K(A))
\r
504 #define m68ki_pc_changed(A) CALLBACK_PC_CHANGED(ADDRESS_68K(A))
\r
507 #define m68ki_pc_changed(A)
\r
508 #endif /* M68K_MONITOR_PC */
\r
511 /* Enable or disable function code emulation */
\r
512 #if M68K_EMULATE_FC
\r
513 #if M68K_EMULATE_FC == OPT_SPECIFY_HANDLER
\r
514 #define m68ki_set_fc(A) M68K_SET_FC_CALLBACK(A)
\r
516 #define m68ki_set_fc(A) CALLBACK_SET_FC(A)
\r
518 #define m68ki_use_data_space() m68ki_address_space = FUNCTION_CODE_USER_DATA
\r
519 #define m68ki_use_program_space() m68ki_address_space = FUNCTION_CODE_USER_PROGRAM
\r
520 #define m68ki_get_address_space() m68ki_address_space
\r
522 #define m68ki_set_fc(A)
\r
523 #define m68ki_use_data_space()
\r
524 #define m68ki_use_program_space()
\r
525 #define m68ki_get_address_space() FUNCTION_CODE_USER_DATA
\r
526 #endif /* M68K_EMULATE_FC */
\r
529 /* Enable or disable trace emulation */
\r
530 #if M68K_EMULATE_TRACE
\r
531 /* Initiates trace checking before each instruction (t1) */
\r
532 #define m68ki_trace_t1() m68ki_tracing = FLAG_T1
\r
533 /* adds t0 to trace checking if we encounter change of flow */
\r
534 #define m68ki_trace_t0() m68ki_tracing |= FLAG_T0
\r
535 /* Clear all tracing */
\r
536 #define m68ki_clear_trace() m68ki_tracing = 0
\r
537 /* Cause a trace exception if we are tracing */
\r
538 #define m68ki_exception_if_trace() if(m68ki_tracing) m68ki_exception_trace()
\r
540 #define m68ki_trace_t1()
\r
541 #define m68ki_trace_t0()
\r
542 #define m68ki_clear_trace()
\r
543 #define m68ki_exception_if_trace()
\r
544 #endif /* M68K_EMULATE_TRACE */
\r
548 /* Address error */
\r
549 #if M68K_EMULATE_ADDRESS_ERROR
\r
550 #include <setjmp.h>
\r
551 extern jmp_buf m68ki_aerr_trap;
\r
553 #define m68ki_set_address_error_trap() \
\r
554 if(setjmp(m68ki_aerr_trap) != 0) \
\r
556 m68ki_exception_address_error(); \
\r
560 CPU_INT_CYCLES = 0; \
\r
561 return m68ki_initial_cycles; \
\r
565 #define m68ki_check_address_error(ADDR, WRITE_MODE, FC) \
\r
568 m68ki_aerr_address = ADDR; \
\r
569 m68ki_aerr_write_mode = WRITE_MODE; \
\r
570 m68ki_aerr_fc = FC; \
\r
571 longjmp(m68ki_aerr_trap, 1); \
\r
574 #define m68ki_check_address_error_010_less(ADDR, WRITE_MODE, FC) \
\r
575 if (CPU_TYPE_IS_010_LESS(CPU_TYPE)) \
\r
577 m68ki_check_address_error(ADDR, WRITE_MODE, FC) \
\r
580 #define m68ki_set_address_error_trap()
\r
581 #define m68ki_check_address_error(ADDR, WRITE_MODE, FC)
\r
582 #define m68ki_check_address_error_010_less(ADDR, WRITE_MODE, FC)
\r
583 #endif /* M68K_ADDRESS_ERROR */
\r
586 #if M68K_LOG_ENABLE
\r
588 extern FILE* M68K_LOG_FILEHANDLE
\r
589 extern char* m68ki_cpu_names[];
\r
591 #define M68K_DO_LOG(A) if(M68K_LOG_FILEHANDLE) fprintf A
\r
592 #if M68K_LOG_1010_1111
\r
593 #define M68K_DO_LOG_EMU(A) if(M68K_LOG_FILEHANDLE) fprintf A
\r
595 #define M68K_DO_LOG_EMU(A)
\r
598 #define M68K_DO_LOG(A)
\r
599 #define M68K_DO_LOG_EMU(A)
\r
604 /* -------------------------- EA / Operand Access ------------------------- */
\r
607 * The general instruction format follows this pattern:
\r
608 * .... XXX. .... .YYY
\r
609 * where XXX is register X and YYY is register Y
\r
611 /* Data Register Isolation */
\r
612 #define DX (REG_D[(REG_IR >> 9) & 7])
\r
613 #define DY (REG_D[REG_IR & 7])
\r
614 /* Address Register Isolation */
\r
615 #define AX (REG_A[(REG_IR >> 9) & 7])
\r
616 #define AY (REG_A[REG_IR & 7])
\r
619 /* Effective Address Calculations */
\r
620 #define EA_AY_AI_8() AY /* address register indirect */
\r
621 #define EA_AY_AI_16() EA_AY_AI_8()
\r
622 #define EA_AY_AI_32() EA_AY_AI_8()
\r
623 #define EA_AY_PI_8() (AY++) /* postincrement (size = byte) */
\r
624 #define EA_AY_PI_16() ((AY+=2)-2) /* postincrement (size = word) */
\r
625 #define EA_AY_PI_32() ((AY+=4)-4) /* postincrement (size = long) */
\r
626 #define EA_AY_PD_8() (--AY) /* predecrement (size = byte) */
\r
627 #define EA_AY_PD_16() (AY-=2) /* predecrement (size = word) */
\r
628 #define EA_AY_PD_32() (AY-=4) /* predecrement (size = long) */
\r
629 #define EA_AY_DI_8() (AY+MAKE_INT_16(m68ki_read_imm_16())) /* displacement */
\r
630 #define EA_AY_DI_16() EA_AY_DI_8()
\r
631 #define EA_AY_DI_32() EA_AY_DI_8()
\r
632 #define EA_AY_IX_8() m68ki_get_ea_ix(AY) /* indirect + index */
\r
633 #define EA_AY_IX_16() EA_AY_IX_8()
\r
634 #define EA_AY_IX_32() EA_AY_IX_8()
\r
636 #define EA_AX_AI_8() AX
\r
637 #define EA_AX_AI_16() EA_AX_AI_8()
\r
638 #define EA_AX_AI_32() EA_AX_AI_8()
\r
639 #define EA_AX_PI_8() (AX++)
\r
640 #define EA_AX_PI_16() ((AX+=2)-2)
\r
641 #define EA_AX_PI_32() ((AX+=4)-4)
\r
642 #define EA_AX_PD_8() (--AX)
\r
643 #define EA_AX_PD_16() (AX-=2)
\r
644 #define EA_AX_PD_32() (AX-=4)
\r
645 #define EA_AX_DI_8() (AX+MAKE_INT_16(m68ki_read_imm_16()))
\r
646 #define EA_AX_DI_16() EA_AX_DI_8()
\r
647 #define EA_AX_DI_32() EA_AX_DI_8()
\r
648 #define EA_AX_IX_8() m68ki_get_ea_ix(AX)
\r
649 #define EA_AX_IX_16() EA_AX_IX_8()
\r
650 #define EA_AX_IX_32() EA_AX_IX_8()
\r
652 #define EA_A7_PI_8() ((REG_A[7]+=2)-2)
\r
653 #define EA_A7_PD_8() (REG_A[7]-=2)
\r
655 #define EA_AW_8() MAKE_INT_16(m68ki_read_imm_16()) /* absolute word */
\r
656 #define EA_AW_16() EA_AW_8()
\r
657 #define EA_AW_32() EA_AW_8()
\r
658 #define EA_AL_8() m68ki_read_imm_32() /* absolute long */
\r
659 #define EA_AL_16() EA_AL_8()
\r
660 #define EA_AL_32() EA_AL_8()
\r
661 #define EA_PCDI_8() m68ki_get_ea_pcdi() /* pc indirect + displacement */
\r
662 #define EA_PCDI_16() EA_PCDI_8()
\r
663 #define EA_PCDI_32() EA_PCDI_8()
\r
664 #define EA_PCIX_8() m68ki_get_ea_pcix() /* pc indirect + index */
\r
665 #define EA_PCIX_16() EA_PCIX_8()
\r
666 #define EA_PCIX_32() EA_PCIX_8()
\r
669 #define OPER_I_8() m68ki_read_imm_8()
\r
670 #define OPER_I_16() m68ki_read_imm_16()
\r
671 #define OPER_I_32() m68ki_read_imm_32()
\r
675 /* --------------------------- Status Register ---------------------------- */
\r
677 /* Flag Calculation Macros */
\r
678 #define CFLAG_8(A) (A)
\r
679 #define CFLAG_16(A) ((A)>>8)
\r
681 #if M68K_INT_GT_32_BIT
\r
682 #define CFLAG_ADD_32(S, D, R) ((R)>>24)
\r
683 #define CFLAG_SUB_32(S, D, R) ((R)>>24)
\r
685 #define CFLAG_ADD_32(S, D, R) (((S & D) | (~R & (S | D)))>>23)
\r
686 #define CFLAG_SUB_32(S, D, R) (((S & R) | (~D & (S | R)))>>23)
\r
687 #endif /* M68K_INT_GT_32_BIT */
\r
689 #define VFLAG_ADD_8(S, D, R) ((S^R) & (D^R))
\r
690 #define VFLAG_ADD_16(S, D, R) (((S^R) & (D^R))>>8)
\r
691 #define VFLAG_ADD_32(S, D, R) (((S^R) & (D^R))>>24)
\r
693 #define VFLAG_SUB_8(S, D, R) ((S^D) & (R^D))
\r
694 #define VFLAG_SUB_16(S, D, R) (((S^D) & (R^D))>>8)
\r
695 #define VFLAG_SUB_32(S, D, R) (((S^D) & (R^D))>>24)
\r
697 #define NFLAG_8(A) (A)
\r
698 #define NFLAG_16(A) ((A)>>8)
\r
699 #define NFLAG_32(A) ((A)>>24)
\r
700 #define NFLAG_64(A) ((A)>>56)
\r
702 #define ZFLAG_8(A) MASK_OUT_ABOVE_8(A)
\r
703 #define ZFLAG_16(A) MASK_OUT_ABOVE_16(A)
\r
704 #define ZFLAG_32(A) MASK_OUT_ABOVE_32(A)
\r
708 #define NFLAG_SET 0x80
\r
709 #define NFLAG_CLEAR 0
\r
710 #define CFLAG_SET 0x100
\r
711 #define CFLAG_CLEAR 0
\r
712 #define XFLAG_SET 0x100
\r
713 #define XFLAG_CLEAR 0
\r
714 #define VFLAG_SET 0x80
\r
715 #define VFLAG_CLEAR 0
\r
716 #define ZFLAG_SET 0
\r
717 #define ZFLAG_CLEAR 0xffffffff
\r
719 #define SFLAG_SET 4
\r
720 #define SFLAG_CLEAR 0
\r
721 #define MFLAG_SET 2
\r
722 #define MFLAG_CLEAR 0
\r
724 /* Turn flag values into 1 or 0 */
\r
725 #define XFLAG_AS_1() ((FLAG_X>>8)&1)
\r
726 #define NFLAG_AS_1() ((FLAG_N>>7)&1)
\r
727 #define VFLAG_AS_1() ((FLAG_V>>7)&1)
\r
728 #define ZFLAG_AS_1() (!FLAG_Z)
\r
729 #define CFLAG_AS_1() ((FLAG_C>>8)&1)
\r
733 #define COND_CS() (FLAG_C&0x100)
\r
734 #define COND_CC() (!COND_CS())
\r
735 #define COND_VS() (FLAG_V&0x80)
\r
736 #define COND_VC() (!COND_VS())
\r
737 #define COND_NE() FLAG_Z
\r
738 #define COND_EQ() (!COND_NE())
\r
739 #define COND_MI() (FLAG_N&0x80)
\r
740 #define COND_PL() (!COND_MI())
\r
741 #define COND_LT() ((FLAG_N^FLAG_V)&0x80)
\r
742 #define COND_GE() (!COND_LT())
\r
743 #define COND_HI() (COND_CC() && COND_NE())
\r
744 #define COND_LS() (COND_CS() || COND_EQ())
\r
745 #define COND_GT() (COND_GE() && COND_NE())
\r
746 #define COND_LE() (COND_LT() || COND_EQ())
\r
748 /* Reversed conditions */
\r
749 #define COND_NOT_CS() COND_CC()
\r
750 #define COND_NOT_CC() COND_CS()
\r
751 #define COND_NOT_VS() COND_VC()
\r
752 #define COND_NOT_VC() COND_VS()
\r
753 #define COND_NOT_NE() COND_EQ()
\r
754 #define COND_NOT_EQ() COND_NE()
\r
755 #define COND_NOT_MI() COND_PL()
\r
756 #define COND_NOT_PL() COND_MI()
\r
757 #define COND_NOT_LT() COND_GE()
\r
758 #define COND_NOT_GE() COND_LT()
\r
759 #define COND_NOT_HI() COND_LS()
\r
760 #define COND_NOT_LS() COND_HI()
\r
761 #define COND_NOT_GT() COND_LE()
\r
762 #define COND_NOT_LE() COND_GT()
\r
764 /* Not real conditions, but here for convenience */
\r
765 #define COND_XS() (FLAG_X&0x100)
\r
766 #define COND_XC() (!COND_XS)
\r
769 /* Get the condition code register */
\r
770 #define m68ki_get_ccr() ((COND_XS() >> 4) | \
\r
771 (COND_MI() >> 4) | \
\r
772 (COND_EQ() << 2) | \
\r
773 (COND_VS() >> 6) | \
\r
776 /* Get the status register */
\r
777 #define m68ki_get_sr() ( FLAG_T1 | \
\r
786 /* ---------------------------- Cycle Counting ---------------------------- */
\r
788 #define ADD_CYCLES(A) m68ki_remaining_cycles += (A)
\r
789 #define USE_CYCLES(A) m68ki_remaining_cycles -= (A)
\r
790 #define SET_CYCLES(A) m68ki_remaining_cycles = A
\r
791 #define GET_CYCLES() m68ki_remaining_cycles
\r
792 #define USE_ALL_CYCLES() m68ki_remaining_cycles = 0
\r
796 /* ----------------------------- Read / Write ----------------------------- */
\r
798 /* Read from the current address space */
\r
799 #define m68ki_read_8(A) m68ki_read_8_fc (A, FLAG_S | m68ki_get_address_space())
\r
800 #define m68ki_read_16(A) m68ki_read_16_fc(A, FLAG_S | m68ki_get_address_space())
\r
801 #define m68ki_read_32(A) m68ki_read_32_fc(A, FLAG_S | m68ki_get_address_space())
\r
803 /* Write to the current data space */
\r
804 #define m68ki_write_8(A, V) m68ki_write_8_fc (A, FLAG_S | FUNCTION_CODE_USER_DATA, V)
\r
805 #define m68ki_write_16(A, V) m68ki_write_16_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA, V)
\r
806 #define m68ki_write_32(A, V) m68ki_write_32_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA, V)
\r
808 #if M68K_SIMULATE_PD_WRITES
\r
809 #define m68ki_write_32_pd(A, V) m68ki_write_32_pd_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA, V)
\r
811 #define m68ki_write_32_pd(A, V) m68ki_write_32_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA, V)
\r
814 /* map read immediate 8 to read immediate 16 */
\r
815 #define m68ki_read_imm_8() MASK_OUT_ABOVE_8(m68ki_read_imm_16())
\r
817 /* Map PC-relative reads */
\r
818 #define m68ki_read_pcrel_8(A) m68k_read_pcrelative_8(A)
\r
819 #define m68ki_read_pcrel_16(A) m68k_read_pcrelative_16(A)
\r
820 #define m68ki_read_pcrel_32(A) m68k_read_pcrelative_32(A)
\r
822 /* Read from the program space */
\r
823 #define m68ki_read_program_8(A) m68ki_read_8_fc(A, FLAG_S | FUNCTION_CODE_USER_PROGRAM)
\r
824 #define m68ki_read_program_16(A) m68ki_read_16_fc(A, FLAG_S | FUNCTION_CODE_USER_PROGRAM)
\r
825 #define m68ki_read_program_32(A) m68ki_read_32_fc(A, FLAG_S | FUNCTION_CODE_USER_PROGRAM)
\r
827 /* Read from the data space */
\r
828 #define m68ki_read_data_8(A) m68ki_read_8_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA)
\r
829 #define m68ki_read_data_16(A) m68ki_read_16_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA)
\r
830 #define m68ki_read_data_32(A) m68ki_read_32_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA)
\r
834 /* ======================================================================== */
\r
835 /* =============================== PROTOTYPES ============================= */
\r
836 /* ======================================================================== */
\r
840 uint cpu_type; /* CPU Type: 68000, 68008, 68010, 68EC020, or 68020 */
\r
841 uint dar[16]; /* Data and Address Registers */
\r
842 uint ppc; /* Previous program counter */
\r
843 uint pc; /* Program Counter */
\r
844 uint sp[7]; /* User, Interrupt, and Master Stack Pointers */
\r
845 uint vbr; /* Vector Base Register (m68010+) */
\r
846 uint sfc; /* Source Function Code Register (m68010+) */
\r
847 uint dfc; /* Destination Function Code Register (m68010+) */
\r
848 uint cacr; /* Cache Control Register (m68020, unemulated) */
\r
849 uint caar; /* Cache Address Register (m68020, unemulated) */
\r
850 uint ir; /* Instruction Register */
\r
851 uint t1_flag; /* Trace 1 */
\r
852 uint t0_flag; /* Trace 0 */
\r
853 uint s_flag; /* Supervisor */
\r
854 uint m_flag; /* Master/Interrupt state */
\r
855 uint x_flag; /* Extend */
\r
856 uint n_flag; /* Negative */
\r
857 uint not_z_flag; /* Zero, inverted for speedups */
\r
858 uint v_flag; /* Overflow */
\r
859 uint c_flag; /* Carry */
\r
860 uint int_mask; /* I0-I2 */
\r
861 uint int_level; /* State of interrupt pins IPL0-IPL2 -- ASG: changed from ints_pending */
\r
862 uint int_cycles; /* ASG: extra cycles from generated interrupts */
\r
863 uint stopped; /* Stopped state */
\r
864 uint pref_addr; /* Last prefetch address */
\r
865 uint pref_data; /* Data in the prefetch queue */
\r
866 uint address_mask; /* Available address pins */
\r
867 uint sr_mask; /* Implemented status register bits */
\r
868 uint instr_mode; /* Stores whether we are in instruction mode or group 0/1 exception mode */
\r
869 uint run_mode; /* Stores whether we are processing a reset, bus error, address error, or something else */
\r
871 /* Clocks required for instructions / exceptions */
\r
872 uint cyc_bcc_notake_b;
\r
873 uint cyc_bcc_notake_w;
\r
874 uint cyc_dbcc_f_noexp;
\r
875 uint cyc_dbcc_f_exp;
\r
876 uint cyc_scc_r_true;
\r
881 uint8* cyc_instruction;
\r
882 uint8* cyc_exception;
\r
884 /* Callbacks to host */
\r
885 int (*int_ack_callback)(int int_line); /* Interrupt Acknowledge */
\r
886 void (*bkpt_ack_callback)(unsigned int data); /* Breakpoint Acknowledge */
\r
887 void (*reset_instr_callback)(void); /* Called when a RESET instruction is encountered */
\r
888 void (*cmpild_instr_callback)(unsigned int, int); /* Called when a CMPI.L #v, Dn instruction is encountered */
\r
889 void (*rte_instr_callback)(void); /* Called when a RTE instruction is encountered */
\r
890 void (*pc_changed_callback)(unsigned int new_pc); /* Called when the PC changes by a large amount */
\r
891 void (*set_fc_callback)(unsigned int new_fc); /* Called when the CPU function code changes */
\r
892 void (*instr_hook_callback)(void); /* Called every instruction cycle prior to execution */
\r
894 sint cyc_remaining_cycles;
\r
898 extern m68ki_cpu_core *m68ki_cpu_p;
\r
899 #define m68ki_cpu (*m68ki_cpu_p) // test
\r
901 // extern sint m68ki_remaining_cycles;
\r
902 #define m68ki_remaining_cycles m68ki_cpu_p->cyc_remaining_cycles
\r
904 extern uint m68ki_tracing;
\r
905 extern uint8 m68ki_shift_8_table[];
\r
906 extern uint16 m68ki_shift_16_table[];
\r
907 extern uint m68ki_shift_32_table[];
\r
908 extern uint8 m68ki_exception_cycle_table[][256];
\r
909 extern uint m68ki_address_space;
\r
910 extern uint8 m68ki_ea_idx_cycle_table[];
\r
912 extern uint m68ki_aerr_address;
\r
913 extern uint m68ki_aerr_write_mode;
\r
914 extern uint m68ki_aerr_fc;
\r
916 /* Read data immediately after the program counter */
\r
917 INLINE uint m68ki_read_imm_16(void);
\r
918 INLINE uint m68ki_read_imm_32(void);
\r
920 /* Read data with specific function code */
\r
921 INLINE uint m68ki_read_8_fc (uint address, uint fc);
\r
922 INLINE uint m68ki_read_16_fc (uint address, uint fc);
\r
923 INLINE uint m68ki_read_32_fc (uint address, uint fc);
\r
925 /* Write data with specific function code */
\r
926 INLINE void m68ki_write_8_fc (uint address, uint fc, uint value);
\r
927 INLINE void m68ki_write_16_fc(uint address, uint fc, uint value);
\r
928 INLINE void m68ki_write_32_fc(uint address, uint fc, uint value);
\r
929 #if M68K_SIMULATE_PD_WRITES
\r
930 INLINE void m68ki_write_32_pd_fc(uint address, uint fc, uint value);
\r
931 #endif /* M68K_SIMULATE_PD_WRITES */
\r
933 /* Indexed and PC-relative ea fetching */
\r
934 INLINE uint m68ki_get_ea_pcdi(void);
\r
935 INLINE uint m68ki_get_ea_pcix(void);
\r
936 INLINE uint m68ki_get_ea_ix(uint An);
\r
938 /* Operand fetching */
\r
939 INLINE uint OPER_AY_AI_8(void);
\r
940 INLINE uint OPER_AY_AI_16(void);
\r
941 INLINE uint OPER_AY_AI_32(void);
\r
942 INLINE uint OPER_AY_PI_8(void);
\r
943 INLINE uint OPER_AY_PI_16(void);
\r
944 INLINE uint OPER_AY_PI_32(void);
\r
945 INLINE uint OPER_AY_PD_8(void);
\r
946 INLINE uint OPER_AY_PD_16(void);
\r
947 INLINE uint OPER_AY_PD_32(void);
\r
948 INLINE uint OPER_AY_DI_8(void);
\r
949 INLINE uint OPER_AY_DI_16(void);
\r
950 INLINE uint OPER_AY_DI_32(void);
\r
951 INLINE uint OPER_AY_IX_8(void);
\r
952 INLINE uint OPER_AY_IX_16(void);
\r
953 INLINE uint OPER_AY_IX_32(void);
\r
955 INLINE uint OPER_AX_AI_8(void);
\r
956 INLINE uint OPER_AX_AI_16(void);
\r
957 INLINE uint OPER_AX_AI_32(void);
\r
958 INLINE uint OPER_AX_PI_8(void);
\r
959 INLINE uint OPER_AX_PI_16(void);
\r
960 INLINE uint OPER_AX_PI_32(void);
\r
961 INLINE uint OPER_AX_PD_8(void);
\r
962 INLINE uint OPER_AX_PD_16(void);
\r
963 INLINE uint OPER_AX_PD_32(void);
\r
964 INLINE uint OPER_AX_DI_8(void);
\r
965 INLINE uint OPER_AX_DI_16(void);
\r
966 INLINE uint OPER_AX_DI_32(void);
\r
967 INLINE uint OPER_AX_IX_8(void);
\r
968 INLINE uint OPER_AX_IX_16(void);
\r
969 INLINE uint OPER_AX_IX_32(void);
\r
971 INLINE uint OPER_A7_PI_8(void);
\r
972 INLINE uint OPER_A7_PD_8(void);
\r
974 INLINE uint OPER_AW_8(void);
\r
975 INLINE uint OPER_AW_16(void);
\r
976 INLINE uint OPER_AW_32(void);
\r
977 INLINE uint OPER_AL_8(void);
\r
978 INLINE uint OPER_AL_16(void);
\r
979 INLINE uint OPER_AL_32(void);
\r
980 INLINE uint OPER_PCDI_8(void);
\r
981 INLINE uint OPER_PCDI_16(void);
\r
982 INLINE uint OPER_PCDI_32(void);
\r
983 INLINE uint OPER_PCIX_8(void);
\r
984 INLINE uint OPER_PCIX_16(void);
\r
985 INLINE uint OPER_PCIX_32(void);
\r
987 /* Stack operations */
\r
988 INLINE void m68ki_push_16(uint value);
\r
989 INLINE void m68ki_push_32(uint value);
\r
990 INLINE uint m68ki_pull_16(void);
\r
991 INLINE uint m68ki_pull_32(void);
\r
993 /* Program flow operations */
\r
994 INLINE void m68ki_jump(uint new_pc);
\r
995 INLINE void m68ki_jump_vector(uint vector);
\r
996 INLINE void m68ki_branch_8(uint offset);
\r
997 INLINE void m68ki_branch_16(uint offset);
\r
998 INLINE void m68ki_branch_32(uint offset);
\r
1000 /* Status register operations. */
\r
1001 INLINE void m68ki_set_s_flag(uint value); /* Only bit 2 of value should be set (i.e. 4 or 0) */
\r
1002 INLINE void m68ki_set_sm_flag(uint value); /* only bits 1 and 2 of value should be set */
\r
1003 INLINE void m68ki_set_ccr(uint value); /* set the condition code register */
\r
1004 INLINE void m68ki_set_sr(uint value); /* set the status register */
\r
1005 INLINE void m68ki_set_sr_noint(uint value); /* set the status register */
\r
1007 /* Exception processing */
\r
1008 INLINE uint m68ki_init_exception(void); /* Initial exception processing */
\r
1010 INLINE void m68ki_stack_frame_3word(uint pc, uint sr); /* Stack various frame types */
\r
1011 INLINE void m68ki_stack_frame_buserr(uint sr);
\r
1013 INLINE void m68ki_stack_frame_0000(uint pc, uint sr, uint vector);
\r
1014 INLINE void m68ki_stack_frame_0001(uint pc, uint sr, uint vector);
\r
1015 INLINE void m68ki_stack_frame_0010(uint sr, uint vector);
\r
1016 INLINE void m68ki_stack_frame_1000(uint pc, uint sr, uint vector);
\r
1017 INLINE void m68ki_stack_frame_1010(uint sr, uint vector, uint pc);
\r
1018 INLINE void m68ki_stack_frame_1011(uint sr, uint vector, uint pc);
\r
1020 INLINE void m68ki_exception_trap(uint vector);
\r
1021 INLINE void m68ki_exception_trapN(uint vector);
\r
1022 INLINE void m68ki_exception_trace(void);
\r
1023 INLINE void m68ki_exception_privilege_violation(void);
\r
1024 INLINE void m68ki_exception_1010(void);
\r
1025 INLINE void m68ki_exception_1111(void);
\r
1026 INLINE void m68ki_exception_illegal(void);
\r
1027 INLINE void m68ki_exception_format_error(void);
\r
1028 INLINE void m68ki_exception_address_error(void);
\r
1029 INLINE void m68ki_exception_interrupt(uint int_level);
\r
1030 INLINE void m68ki_check_interrupts(void); /* ASG: check for interrupts */
\r
1032 /* quick disassembly (used for logging) */
\r
1033 char* m68ki_disassemble_quick(unsigned int pc, unsigned int cpu_type);
\r
1036 /* ======================================================================== */
\r
1037 /* =========================== UTILITY FUNCTIONS ========================== */
\r
1038 /* ======================================================================== */
\r
1041 /* ---------------------------- Read Immediate ---------------------------- */
\r
1043 /* Handles all immediate reads, does address error check, function code setting,
\r
1044 * and prefetching if they are enabled in m68kconf.h
\r
1046 INLINE uint m68ki_read_imm_16(void)
\r
1048 m68ki_set_fc(FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
\r
1049 m68ki_check_address_error(REG_PC, MODE_READ, FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
\r
1050 #if M68K_EMULATE_PREFETCH
\r
1051 if(MASK_OUT_BELOW_2(REG_PC) != CPU_PREF_ADDR)
\r
1053 CPU_PREF_ADDR = MASK_OUT_BELOW_2(REG_PC);
\r
1054 CPU_PREF_DATA = m68k_read_immediate_32(ADDRESS_68K(CPU_PREF_ADDR));
\r
1057 return MASK_OUT_ABOVE_16(CPU_PREF_DATA >> ((2-((REG_PC-2)&2))<<3));
\r
1060 return m68k_read_immediate_16(ADDRESS_68K(REG_PC-2));
\r
1061 #endif /* M68K_EMULATE_PREFETCH */
\r
1063 INLINE uint m68ki_read_imm_32(void)
\r
1065 #if M68K_EMULATE_PREFETCH
\r
1068 m68ki_set_fc(FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
\r
1069 m68ki_check_address_error(REG_PC, MODE_READ, FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
\r
1070 if(MASK_OUT_BELOW_2(REG_PC) != CPU_PREF_ADDR)
\r
1072 CPU_PREF_ADDR = MASK_OUT_BELOW_2(REG_PC);
\r
1073 CPU_PREF_DATA = m68k_read_immediate_32(ADDRESS_68K(CPU_PREF_ADDR));
\r
1075 temp_val = CPU_PREF_DATA;
\r
1077 if(MASK_OUT_BELOW_2(REG_PC) != CPU_PREF_ADDR)
\r
1079 CPU_PREF_ADDR = MASK_OUT_BELOW_2(REG_PC);
\r
1080 CPU_PREF_DATA = m68k_read_immediate_32(ADDRESS_68K(CPU_PREF_ADDR));
\r
1081 temp_val = MASK_OUT_ABOVE_32((temp_val << 16) | (CPU_PREF_DATA >> 16));
\r
1087 m68ki_set_fc(FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
\r
1088 m68ki_check_address_error(REG_PC, MODE_READ, FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
\r
1090 return m68k_read_immediate_32(ADDRESS_68K(REG_PC-4));
\r
1091 #endif /* M68K_EMULATE_PREFETCH */
\r
1096 /* ------------------------- Top level read/write ------------------------- */
\r
1098 /* Handles all memory accesses (except for immediate reads if they are
\r
1099 * configured to use separate functions in m68kconf.h).
\r
1100 * All memory accesses must go through these top level functions.
\r
1101 * These functions will also check for address error and set the function
\r
1102 * code if they are enabled in m68kconf.h.
\r
1104 INLINE uint m68ki_read_8_fc(uint address, uint fc)
\r
1106 m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
\r
1107 return m68k_read_memory_8(ADDRESS_68K(address));
\r
1109 INLINE uint m68ki_read_16_fc(uint address, uint fc)
\r
1111 m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
\r
1112 m68ki_check_address_error_010_less(address, MODE_READ, fc); /* auto-disable (see m68kcpu.h) */
\r
1113 return m68k_read_memory_16(ADDRESS_68K(address));
\r
1115 INLINE uint m68ki_read_32_fc(uint address, uint fc)
\r
1117 m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
\r
1118 m68ki_check_address_error_010_less(address, MODE_READ, fc); /* auto-disable (see m68kcpu.h) */
\r
1119 return m68k_read_memory_32(ADDRESS_68K(address));
\r
1122 INLINE void m68ki_write_8_fc(uint address, uint fc, uint value)
\r
1124 m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
\r
1125 m68k_write_memory_8(ADDRESS_68K(address), value);
\r
1127 INLINE void m68ki_write_16_fc(uint address, uint fc, uint value)
\r
1129 m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
\r
1130 m68ki_check_address_error_010_less(address, MODE_WRITE, fc); /* auto-disable (see m68kcpu.h) */
\r
1131 m68k_write_memory_16(ADDRESS_68K(address), value);
\r
1133 INLINE void m68ki_write_32_fc(uint address, uint fc, uint value)
\r
1135 m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
\r
1136 m68ki_check_address_error_010_less(address, MODE_WRITE, fc); /* auto-disable (see m68kcpu.h) */
\r
1137 m68k_write_memory_32(ADDRESS_68K(address), value);
\r
1140 #if M68K_SIMULATE_PD_WRITES
\r
1141 INLINE void m68ki_write_32_pd_fc(uint address, uint fc, uint value)
\r
1143 m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
\r
1144 m68ki_check_address_error_010_less(address, MODE_WRITE, fc); /* auto-disable (see m68kcpu.h) */
\r
1145 m68k_write_memory_32_pd(ADDRESS_68K(address), value);
\r
1150 /* --------------------- Effective Address Calculation -------------------- */
\r
1152 /* The program counter relative addressing modes cause operands to be
\r
1153 * retrieved from program space, not data space.
\r
1155 INLINE uint m68ki_get_ea_pcdi(void)
\r
1157 uint old_pc = REG_PC;
\r
1158 m68ki_use_program_space(); /* auto-disable */
\r
1159 return old_pc + MAKE_INT_16(m68ki_read_imm_16());
\r
1163 INLINE uint m68ki_get_ea_pcix(void)
\r
1165 m68ki_use_program_space(); /* auto-disable */
\r
1166 return m68ki_get_ea_ix(REG_PC);
\r
1169 /* Indexed addressing modes are encoded as follows:
\r
1171 * Base instruction format:
\r
1172 * F E D C B A 9 8 7 6 | 5 4 3 | 2 1 0
\r
1173 * x x x x x x x x x x | 1 1 0 | BASE REGISTER (An)
\r
1175 * Base instruction format for destination EA in move instructions:
\r
1176 * F E D C | B A 9 | 8 7 6 | 5 4 3 2 1 0
\r
1177 * x x x x | BASE REG | 1 1 0 | X X X X X X (An)
\r
1179 * Brief extension format:
\r
1180 * F | E D C | B | A 9 | 8 | 7 6 5 4 3 2 1 0
\r
1181 * D/A | REGISTER | W/L | SCALE | 0 | DISPLACEMENT
\r
1183 * Full extension format:
\r
1184 * F E D C B A 9 8 7 6 5 4 3 2 1 0
\r
1185 * D/A | REGISTER | W/L | SCALE | 1 | BS | IS | BD SIZE | 0 | I/IS
\r
1186 * BASE DISPLACEMENT (0, 16, 32 bit) (bd)
\r
1187 * OUTER DISPLACEMENT (0, 16, 32 bit) (od)
\r
1189 * D/A: 0 = Dn, 1 = An (Xn)
\r
1190 * W/L: 0 = W (sign extend), 1 = L (.SIZE)
\r
1191 * SCALE: 00=1, 01=2, 10=4, 11=8 (*SCALE)
\r
1192 * BS: 0=add base reg, 1=suppress base reg (An suppressed)
\r
1193 * IS: 0=add index, 1=suppress index (Xn suppressed)
\r
1194 * BD SIZE: 00=reserved, 01=NULL, 10=Word, 11=Long (size of bd)
\r
1196 * IS I/IS Operation
\r
1197 * 0 000 No Memory Indirect
\r
1198 * 0 001 indir prex with null outer
\r
1199 * 0 010 indir prex with word outer
\r
1200 * 0 011 indir prex with long outer
\r
1202 * 0 101 indir postx with null outer
\r
1203 * 0 110 indir postx with word outer
\r
1204 * 0 111 indir postx with long outer
\r
1205 * 1 000 no memory indirect
\r
1206 * 1 001 mem indir with null outer
\r
1207 * 1 010 mem indir with word outer
\r
1208 * 1 011 mem indir with long outer
\r
1209 * 1 100-111 reserved
\r
1211 INLINE uint m68ki_get_ea_ix(uint An)
\r
1213 /* An = base register */
\r
1214 uint extension = m68ki_read_imm_16();
\r
1215 uint Xn = 0; /* Index register */
\r
1216 uint bd = 0; /* Base Displacement */
\r
1217 uint od = 0; /* Outer Displacement */
\r
1219 if(CPU_TYPE_IS_010_LESS(CPU_TYPE))
\r
1221 /* Calculate index */
\r
1222 Xn = REG_DA[extension>>12]; /* Xn */
\r
1223 if(!BIT_B(extension)) /* W/L */
\r
1224 Xn = MAKE_INT_16(Xn);
\r
1226 /* Add base register and displacement and return */
\r
1227 return An + Xn + MAKE_INT_8(extension);
\r
1230 /* Brief extension format */
\r
1231 if(!BIT_8(extension))
\r
1233 /* Calculate index */
\r
1234 Xn = REG_DA[extension>>12]; /* Xn */
\r
1235 if(!BIT_B(extension)) /* W/L */
\r
1236 Xn = MAKE_INT_16(Xn);
\r
1237 /* Add scale if proper CPU type */
\r
1238 if(CPU_TYPE_IS_EC020_PLUS(CPU_TYPE))
\r
1239 Xn <<= (extension>>9) & 3; /* SCALE */
\r
1241 /* Add base register and displacement and return */
\r
1242 return An + Xn + MAKE_INT_8(extension);
\r
1245 /* Full extension format */
\r
1247 USE_CYCLES(m68ki_ea_idx_cycle_table[extension&0x3f]);
\r
1249 /* Check if base register is present */
\r
1250 if(BIT_7(extension)) /* BS */
\r
1253 /* Check if index is present */
\r
1254 if(!BIT_6(extension)) /* IS */
\r
1256 Xn = REG_DA[extension>>12]; /* Xn */
\r
1257 if(!BIT_B(extension)) /* W/L */
\r
1258 Xn = MAKE_INT_16(Xn);
\r
1259 Xn <<= (extension>>9) & 3; /* SCALE */
\r
1262 /* Check if base displacement is present */
\r
1263 if(BIT_5(extension)) /* BD SIZE */
\r
1264 bd = BIT_4(extension) ? m68ki_read_imm_32() : MAKE_INT_16(m68ki_read_imm_16());
\r
1266 /* If no indirect action, we are done */
\r
1267 if(!(extension&7)) /* No Memory Indirect */
\r
1268 return An + bd + Xn;
\r
1270 /* Check if outer displacement is present */
\r
1271 if(BIT_1(extension)) /* I/IS: od */
\r
1272 od = BIT_0(extension) ? m68ki_read_imm_32() : MAKE_INT_16(m68ki_read_imm_16());
\r
1275 if(BIT_2(extension)) /* I/IS: 0 = preindex, 1 = postindex */
\r
1276 return m68ki_read_32(An + bd) + Xn + od;
\r
1279 return m68ki_read_32(An + bd + Xn) + od;
\r
1283 /* Fetch operands */
\r
1284 INLINE uint OPER_AY_AI_8(void) {uint ea = EA_AY_AI_8(); return m68ki_read_8(ea); }
\r
1285 INLINE uint OPER_AY_AI_16(void) {uint ea = EA_AY_AI_16(); return m68ki_read_16(ea);}
\r
1286 INLINE uint OPER_AY_AI_32(void) {uint ea = EA_AY_AI_32(); return m68ki_read_32(ea);}
\r
1287 INLINE uint OPER_AY_PI_8(void) {uint ea = EA_AY_PI_8(); return m68ki_read_8(ea); }
\r
1288 INLINE uint OPER_AY_PI_16(void) {uint ea = EA_AY_PI_16(); return m68ki_read_16(ea);}
\r
1289 INLINE uint OPER_AY_PI_32(void) {uint ea = EA_AY_PI_32(); return m68ki_read_32(ea);}
\r
1290 INLINE uint OPER_AY_PD_8(void) {uint ea = EA_AY_PD_8(); return m68ki_read_8(ea); }
\r
1291 INLINE uint OPER_AY_PD_16(void) {uint ea = EA_AY_PD_16(); return m68ki_read_16(ea);}
\r
1292 INLINE uint OPER_AY_PD_32(void) {uint ea = EA_AY_PD_32(); return m68ki_read_32(ea);}
\r
1293 INLINE uint OPER_AY_DI_8(void) {uint ea = EA_AY_DI_8(); return m68ki_read_8(ea); }
\r
1294 INLINE uint OPER_AY_DI_16(void) {uint ea = EA_AY_DI_16(); return m68ki_read_16(ea);}
\r
1295 INLINE uint OPER_AY_DI_32(void) {uint ea = EA_AY_DI_32(); return m68ki_read_32(ea);}
\r
1296 INLINE uint OPER_AY_IX_8(void) {uint ea = EA_AY_IX_8(); return m68ki_read_8(ea); }
\r
1297 INLINE uint OPER_AY_IX_16(void) {uint ea = EA_AY_IX_16(); return m68ki_read_16(ea);}
\r
1298 INLINE uint OPER_AY_IX_32(void) {uint ea = EA_AY_IX_32(); return m68ki_read_32(ea);}
\r
1300 INLINE uint OPER_AX_AI_8(void) {uint ea = EA_AX_AI_8(); return m68ki_read_8(ea); }
\r
1301 INLINE uint OPER_AX_AI_16(void) {uint ea = EA_AX_AI_16(); return m68ki_read_16(ea);}
\r
1302 INLINE uint OPER_AX_AI_32(void) {uint ea = EA_AX_AI_32(); return m68ki_read_32(ea);}
\r
1303 INLINE uint OPER_AX_PI_8(void) {uint ea = EA_AX_PI_8(); return m68ki_read_8(ea); }
\r
1304 INLINE uint OPER_AX_PI_16(void) {uint ea = EA_AX_PI_16(); return m68ki_read_16(ea);}
\r
1305 INLINE uint OPER_AX_PI_32(void) {uint ea = EA_AX_PI_32(); return m68ki_read_32(ea);}
\r
1306 INLINE uint OPER_AX_PD_8(void) {uint ea = EA_AX_PD_8(); return m68ki_read_8(ea); }
\r
1307 INLINE uint OPER_AX_PD_16(void) {uint ea = EA_AX_PD_16(); return m68ki_read_16(ea);}
\r
1308 INLINE uint OPER_AX_PD_32(void) {uint ea = EA_AX_PD_32(); return m68ki_read_32(ea);}
\r
1309 INLINE uint OPER_AX_DI_8(void) {uint ea = EA_AX_DI_8(); return m68ki_read_8(ea); }
\r
1310 INLINE uint OPER_AX_DI_16(void) {uint ea = EA_AX_DI_16(); return m68ki_read_16(ea);}
\r
1311 INLINE uint OPER_AX_DI_32(void) {uint ea = EA_AX_DI_32(); return m68ki_read_32(ea);}
\r
1312 INLINE uint OPER_AX_IX_8(void) {uint ea = EA_AX_IX_8(); return m68ki_read_8(ea); }
\r
1313 INLINE uint OPER_AX_IX_16(void) {uint ea = EA_AX_IX_16(); return m68ki_read_16(ea);}
\r
1314 INLINE uint OPER_AX_IX_32(void) {uint ea = EA_AX_IX_32(); return m68ki_read_32(ea);}
\r
1316 INLINE uint OPER_A7_PI_8(void) {uint ea = EA_A7_PI_8(); return m68ki_read_8(ea); }
\r
1317 INLINE uint OPER_A7_PD_8(void) {uint ea = EA_A7_PD_8(); return m68ki_read_8(ea); }
\r
1319 INLINE uint OPER_AW_8(void) {uint ea = EA_AW_8(); return m68ki_read_8(ea); }
\r
1320 INLINE uint OPER_AW_16(void) {uint ea = EA_AW_16(); return m68ki_read_16(ea);}
\r
1321 INLINE uint OPER_AW_32(void) {uint ea = EA_AW_32(); return m68ki_read_32(ea);}
\r
1322 INLINE uint OPER_AL_8(void) {uint ea = EA_AL_8(); return m68ki_read_8(ea); }
\r
1323 INLINE uint OPER_AL_16(void) {uint ea = EA_AL_16(); return m68ki_read_16(ea);}
\r
1324 INLINE uint OPER_AL_32(void) {uint ea = EA_AL_32(); return m68ki_read_32(ea);}
\r
1325 INLINE uint OPER_PCDI_8(void) {uint ea = EA_PCDI_8(); return m68ki_read_pcrel_8(ea); }
\r
1326 INLINE uint OPER_PCDI_16(void) {uint ea = EA_PCDI_16(); return m68ki_read_pcrel_16(ea);}
\r
1327 INLINE uint OPER_PCDI_32(void) {uint ea = EA_PCDI_32(); return m68ki_read_pcrel_32(ea);}
\r
1328 INLINE uint OPER_PCIX_8(void) {uint ea = EA_PCIX_8(); return m68ki_read_pcrel_8(ea); }
\r
1329 INLINE uint OPER_PCIX_16(void) {uint ea = EA_PCIX_16(); return m68ki_read_pcrel_16(ea);}
\r
1330 INLINE uint OPER_PCIX_32(void) {uint ea = EA_PCIX_32(); return m68ki_read_pcrel_32(ea);}
\r
1334 /* ---------------------------- Stack Functions --------------------------- */
\r
1336 /* Push/pull data from the stack */
\r
1337 INLINE void m68ki_push_16(uint value)
\r
1339 REG_SP = MASK_OUT_ABOVE_32(REG_SP - 2);
\r
1340 m68ki_write_16(REG_SP, value);
\r
1343 INLINE void m68ki_push_32(uint value)
\r
1345 REG_SP = MASK_OUT_ABOVE_32(REG_SP - 4);
\r
1346 m68ki_write_32(REG_SP, value);
\r
1349 INLINE uint m68ki_pull_16(void)
\r
1351 REG_SP = MASK_OUT_ABOVE_32(REG_SP + 2);
\r
1352 return m68ki_read_16(REG_SP-2);
\r
1355 INLINE uint m68ki_pull_32(void)
\r
1357 REG_SP = MASK_OUT_ABOVE_32(REG_SP + 4);
\r
1358 return m68ki_read_32(REG_SP-4);
\r
1362 /* Increment/decrement the stack as if doing a push/pull but
\r
1363 * don't do any memory access.
\r
1365 INLINE void m68ki_fake_push_16(void)
\r
1367 REG_SP = MASK_OUT_ABOVE_32(REG_SP - 2);
\r
1370 INLINE void m68ki_fake_push_32(void)
\r
1372 REG_SP = MASK_OUT_ABOVE_32(REG_SP - 4);
\r
1375 INLINE void m68ki_fake_pull_16(void)
\r
1377 REG_SP = MASK_OUT_ABOVE_32(REG_SP + 2);
\r
1380 INLINE void m68ki_fake_pull_32(void)
\r
1382 REG_SP = MASK_OUT_ABOVE_32(REG_SP + 4);
\r
1386 /* ----------------------------- Program Flow ----------------------------- */
\r
1388 /* Jump to a new program location or vector.
\r
1389 * These functions will also call the pc_changed callback if it was enabled
\r
1392 INLINE void m68ki_jump(uint new_pc)
\r
1395 m68ki_pc_changed(REG_PC);
\r
1398 INLINE void m68ki_jump_vector(uint vector)
\r
1400 REG_PC = (vector<<2) + REG_VBR;
\r
1401 REG_PC = m68ki_read_data_32(REG_PC);
\r
1402 m68ki_pc_changed(REG_PC);
\r
1406 /* Branch to a new memory location.
\r
1407 * The 32-bit branch will call pc_changed if it was enabled in m68kconf.h.
\r
1408 * So far I've found no problems with not calling pc_changed for 8 or 16
\r
1411 INLINE void m68ki_branch_8(uint offset)
\r
1413 REG_PC += MAKE_INT_8(offset);
\r
1416 INLINE void m68ki_branch_16(uint offset)
\r
1418 REG_PC += MAKE_INT_16(offset);
\r
1421 INLINE void m68ki_branch_32(uint offset)
\r
1424 m68ki_pc_changed(REG_PC);
\r
1429 /* ---------------------------- Status Register --------------------------- */
\r
1431 /* Set the S flag and change the active stack pointer.
\r
1432 * Note that value MUST be 4 or 0.
\r
1434 INLINE void m68ki_set_s_flag(uint value)
\r
1436 /* Backup the old stack pointer */
\r
1437 REG_SP_BASE[FLAG_S | ((FLAG_S>>1) & FLAG_M)] = REG_SP;
\r
1438 /* Set the S flag */
\r
1440 /* Set the new stack pointer */
\r
1441 REG_SP = REG_SP_BASE[FLAG_S | ((FLAG_S>>1) & FLAG_M)];
\r
1444 /* Set the S and M flags and change the active stack pointer.
\r
1445 * Note that value MUST be 0, 2, 4, or 6 (bit2 = S, bit1 = M).
\r
1447 INLINE void m68ki_set_sm_flag(uint value)
\r
1449 /* Backup the old stack pointer */
\r
1450 REG_SP_BASE[FLAG_S | ((FLAG_S>>1) & FLAG_M)] = REG_SP;
\r
1451 /* Set the S and M flags */
\r
1452 FLAG_S = value & SFLAG_SET;
\r
1453 FLAG_M = value & MFLAG_SET;
\r
1454 /* Set the new stack pointer */
\r
1455 REG_SP = REG_SP_BASE[FLAG_S | ((FLAG_S>>1) & FLAG_M)];
\r
1458 /* Set the S and M flags. Don't touch the stack pointer. */
\r
1459 INLINE void m68ki_set_sm_flag_nosp(uint value)
\r
1461 /* Set the S and M flags */
\r
1462 FLAG_S = value & SFLAG_SET;
\r
1463 FLAG_M = value & MFLAG_SET;
\r
1467 /* Set the condition code register */
\r
1468 INLINE void m68ki_set_ccr(uint value)
\r
1470 FLAG_X = BIT_4(value) << 4;
\r
1471 FLAG_N = BIT_3(value) << 4;
\r
1472 FLAG_Z = !BIT_2(value);
\r
1473 FLAG_V = BIT_1(value) << 6;
\r
1474 FLAG_C = BIT_0(value) << 8;
\r
1477 /* Set the status register but don't check for interrupts */
\r
1478 INLINE void m68ki_set_sr_noint(uint value)
\r
1480 /* Mask out the "unimplemented" bits */
\r
1481 value &= CPU_SR_MASK;
\r
1483 /* Now set the status register */
\r
1484 FLAG_T1 = BIT_F(value);
\r
1485 FLAG_T0 = BIT_E(value);
\r
1486 FLAG_INT_MASK = value & 0x0700;
\r
1487 m68ki_set_ccr(value);
\r
1488 m68ki_set_sm_flag((value >> 11) & 6);
\r
1491 /* Set the status register but don't check for interrupts nor
\r
1492 * change the stack pointer
\r
1494 INLINE void m68ki_set_sr_noint_nosp(uint value)
\r
1496 /* Mask out the "unimplemented" bits */
\r
1497 value &= CPU_SR_MASK;
\r
1499 /* Now set the status register */
\r
1500 FLAG_T1 = BIT_F(value);
\r
1501 FLAG_T0 = BIT_E(value);
\r
1502 FLAG_INT_MASK = value & 0x0700;
\r
1503 m68ki_set_ccr(value);
\r
1504 m68ki_set_sm_flag_nosp((value >> 11) & 6);
\r
1507 /* Set the status register and check for interrupts */
\r
1508 INLINE void m68ki_set_sr(uint value)
\r
1510 m68ki_set_sr_noint(value);
\r
1511 m68ki_check_interrupts();
\r
1515 /* ------------------------- Exception Processing ------------------------- */
\r
1517 /* Initiate exception processing */
\r
1518 INLINE uint m68ki_init_exception(void)
\r
1520 /* Save the old status register */
\r
1521 uint sr = m68ki_get_sr();
\r
1523 /* Turn off trace flag, clear pending traces */
\r
1524 FLAG_T1 = FLAG_T0 = 0;
\r
1525 m68ki_clear_trace();
\r
1526 /* Enter supervisor mode */
\r
1527 m68ki_set_s_flag(SFLAG_SET);
\r
1532 /* 3 word stack frame (68000 only) */
\r
1533 INLINE void m68ki_stack_frame_3word(uint pc, uint sr)
\r
1535 m68ki_push_32(pc);
\r
1536 m68ki_push_16(sr);
\r
1539 /* Format 0 stack frame.
\r
1540 * This is the standard stack frame for 68010+.
\r
1542 INLINE void m68ki_stack_frame_0000(uint pc, uint sr, uint vector)
\r
1544 /* Stack a 3-word frame if we are 68000 */
\r
1545 if(CPU_TYPE == CPU_TYPE_000 || CPU_TYPE == CPU_TYPE_008)
\r
1547 m68ki_stack_frame_3word(pc, sr);
\r
1550 m68ki_push_16(vector<<2);
\r
1551 m68ki_push_32(pc);
\r
1552 m68ki_push_16(sr);
\r
1555 /* Format 1 stack frame (68020).
\r
1556 * For 68020, this is the 4 word throwaway frame.
\r
1558 INLINE void m68ki_stack_frame_0001(uint pc, uint sr, uint vector)
\r
1560 m68ki_push_16(0x1000 | (vector<<2));
\r
1561 m68ki_push_32(pc);
\r
1562 m68ki_push_16(sr);
\r
1565 /* Format 2 stack frame.
\r
1566 * This is used only by 68020 for trap exceptions.
\r
1568 INLINE void m68ki_stack_frame_0010(uint sr, uint vector)
\r
1570 m68ki_push_32(REG_PPC);
\r
1571 m68ki_push_16(0x2000 | (vector<<2));
\r
1572 m68ki_push_32(REG_PC);
\r
1573 m68ki_push_16(sr);
\r
1577 /* Bus error stack frame (68000 only).
\r
1579 INLINE void m68ki_stack_frame_buserr(uint sr)
\r
1581 m68ki_push_32(REG_PC);
\r
1582 m68ki_push_16(sr);
\r
1583 m68ki_push_16(REG_IR);
\r
1584 m68ki_push_32(m68ki_aerr_address); /* access address */
\r
1585 /* 0 0 0 0 0 0 0 0 0 0 0 R/W I/N FC
\r
1586 * R/W 0 = write, 1 = read
\r
1587 * I/N 0 = instruction, 1 = not
\r
1588 * FC 3-bit function code
\r
1590 m68ki_push_16(m68ki_aerr_write_mode | CPU_INSTR_MODE | m68ki_aerr_fc);
\r
1593 /* Format 8 stack frame (68010).
\r
1594 * 68010 only. This is the 29 word bus/address error frame.
\r
1596 void m68ki_stack_frame_1000(uint pc, uint sr, uint vector)
\r
1600 * INTERNAL INFORMATION, 16 WORDS
\r
1602 m68ki_fake_push_32();
\r
1603 m68ki_fake_push_32();
\r
1604 m68ki_fake_push_32();
\r
1605 m68ki_fake_push_32();
\r
1606 m68ki_fake_push_32();
\r
1607 m68ki_fake_push_32();
\r
1608 m68ki_fake_push_32();
\r
1609 m68ki_fake_push_32();
\r
1611 /* INSTRUCTION INPUT BUFFER */
\r
1614 /* UNUSED, RESERVED (not written) */
\r
1615 m68ki_fake_push_16();
\r
1617 /* DATA INPUT BUFFER */
\r
1620 /* UNUSED, RESERVED (not written) */
\r
1621 m68ki_fake_push_16();
\r
1623 /* DATA OUTPUT BUFFER */
\r
1626 /* UNUSED, RESERVED (not written) */
\r
1627 m68ki_fake_push_16();
\r
1629 /* FAULT ADDRESS */
\r
1632 /* SPECIAL STATUS WORD */
\r
1635 /* 1000, VECTOR OFFSET */
\r
1636 m68ki_push_16(0x8000 | (vector<<2));
\r
1638 /* PROGRAM COUNTER */
\r
1639 m68ki_push_32(pc);
\r
1641 /* STATUS REGISTER */
\r
1642 m68ki_push_16(sr);
\r
1645 /* Format A stack frame (short bus fault).
\r
1646 * This is used only by 68020 for bus fault and address error
\r
1647 * if the error happens at an instruction boundary.
\r
1648 * PC stacked is address of next instruction.
\r
1650 void m68ki_stack_frame_1010(uint sr, uint vector, uint pc)
\r
1652 /* INTERNAL REGISTER */
\r
1655 /* INTERNAL REGISTER */
\r
1658 /* DATA OUTPUT BUFFER (2 words) */
\r
1661 /* INTERNAL REGISTER */
\r
1664 /* INTERNAL REGISTER */
\r
1667 /* DATA CYCLE FAULT ADDRESS (2 words) */
\r
1670 /* INSTRUCTION PIPE STAGE B */
\r
1673 /* INSTRUCTION PIPE STAGE C */
\r
1676 /* SPECIAL STATUS REGISTER */
\r
1679 /* INTERNAL REGISTER */
\r
1682 /* 1010, VECTOR OFFSET */
\r
1683 m68ki_push_16(0xa000 | (vector<<2));
\r
1685 /* PROGRAM COUNTER */
\r
1686 m68ki_push_32(pc);
\r
1688 /* STATUS REGISTER */
\r
1689 m68ki_push_16(sr);
\r
1692 /* Format B stack frame (long bus fault).
\r
1693 * This is used only by 68020 for bus fault and address error
\r
1694 * if the error happens during instruction execution.
\r
1695 * PC stacked is address of instruction in progress.
\r
1697 void m68ki_stack_frame_1011(uint sr, uint vector, uint pc)
\r
1699 /* INTERNAL REGISTERS (18 words) */
\r
1710 /* VERSION# (4 bits), INTERNAL INFORMATION */
\r
1713 /* INTERNAL REGISTERS (3 words) */
\r
1717 /* DATA INTPUT BUFFER (2 words) */
\r
1720 /* INTERNAL REGISTERS (2 words) */
\r
1723 /* STAGE B ADDRESS (2 words) */
\r
1726 /* INTERNAL REGISTER (4 words) */
\r
1730 /* DATA OUTPUT BUFFER (2 words) */
\r
1733 /* INTERNAL REGISTER */
\r
1736 /* INTERNAL REGISTER */
\r
1739 /* DATA CYCLE FAULT ADDRESS (2 words) */
\r
1742 /* INSTRUCTION PIPE STAGE B */
\r
1745 /* INSTRUCTION PIPE STAGE C */
\r
1748 /* SPECIAL STATUS REGISTER */
\r
1751 /* INTERNAL REGISTER */
\r
1754 /* 1011, VECTOR OFFSET */
\r
1755 m68ki_push_16(0xb000 | (vector<<2));
\r
1757 /* PROGRAM COUNTER */
\r
1758 m68ki_push_32(pc);
\r
1760 /* STATUS REGISTER */
\r
1761 m68ki_push_16(sr);
\r
1765 /* Used for Group 2 exceptions.
\r
1766 * These stack a type 2 frame on the 020.
\r
1768 INLINE void m68ki_exception_trap(uint vector)
\r
1770 uint sr = m68ki_init_exception();
\r
1772 if(CPU_TYPE_IS_010_LESS(CPU_TYPE))
\r
1773 m68ki_stack_frame_0000(REG_PC, sr, vector);
\r
1775 m68ki_stack_frame_0010(sr, vector);
\r
1777 m68ki_jump_vector(vector);
\r
1779 /* Use up some clock cycles */
\r
1780 USE_CYCLES(CYC_EXCEPTION[vector]);
\r
1783 /* Trap#n stacks a 0 frame but behaves like group2 otherwise */
\r
1784 INLINE void m68ki_exception_trapN(uint vector)
\r
1786 uint sr = m68ki_init_exception();
\r
1787 m68ki_stack_frame_0000(REG_PC, sr, vector);
\r
1788 m68ki_jump_vector(vector);
\r
1790 /* Use up some clock cycles */
\r
1791 USE_CYCLES(CYC_EXCEPTION[vector]);
\r
1794 /* Exception for trace mode */
\r
1795 INLINE void m68ki_exception_trace(void)
\r
1797 uint sr = m68ki_init_exception();
\r
1799 if(CPU_TYPE_IS_010_LESS(CPU_TYPE))
\r
1801 #if M68K_EMULATE_ADDRESS_ERROR == OPT_ON
\r
1802 if(CPU_TYPE_IS_000(CPU_TYPE))
\r
1804 CPU_INSTR_MODE = INSTRUCTION_NO;
\r
1806 #endif /* M68K_EMULATE_ADDRESS_ERROR */
\r
1807 m68ki_stack_frame_0000(REG_PC, sr, EXCEPTION_TRACE);
\r
1810 m68ki_stack_frame_0010(sr, EXCEPTION_TRACE);
\r
1812 m68ki_jump_vector(EXCEPTION_TRACE);
\r
1814 /* Trace nullifies a STOP instruction */
\r
1815 CPU_STOPPED &= ~STOP_LEVEL_STOP;
\r
1817 /* Use up some clock cycles */
\r
1818 USE_CYCLES(CYC_EXCEPTION[EXCEPTION_TRACE]);
\r
1821 /* Exception for privilege violation */
\r
1822 INLINE void m68ki_exception_privilege_violation(void)
\r
1824 uint sr = m68ki_init_exception();
\r
1826 #if M68K_EMULATE_ADDRESS_ERROR == OPT_ON
\r
1827 if(CPU_TYPE_IS_000(CPU_TYPE))
\r
1829 CPU_INSTR_MODE = INSTRUCTION_NO;
\r
1831 #endif /* M68K_EMULATE_ADDRESS_ERROR */
\r
1833 m68ki_stack_frame_0000(REG_PPC, sr, EXCEPTION_PRIVILEGE_VIOLATION);
\r
1834 m68ki_jump_vector(EXCEPTION_PRIVILEGE_VIOLATION);
\r
1836 /* Use up some clock cycles and undo the instruction's cycles */
\r
1837 USE_CYCLES(CYC_EXCEPTION[EXCEPTION_PRIVILEGE_VIOLATION] - CYC_INSTRUCTION[REG_IR]);
\r
1840 /* Exception for A-Line instructions */
\r
1841 INLINE void m68ki_exception_1010(void)
\r
1844 #if M68K_LOG_1010_1111 == OPT_ON
\r
1845 M68K_DO_LOG_EMU((M68K_LOG_FILEHANDLE "%s at %08x: called 1010 instruction %04x (%s)\n",
\r
1846 m68ki_cpu_names[CPU_TYPE], ADDRESS_68K(REG_PPC), REG_IR,
\r
1847 m68ki_disassemble_quick(ADDRESS_68K(REG_PPC))));
\r
1850 sr = m68ki_init_exception();
\r
1851 m68ki_stack_frame_0000(REG_PPC, sr, EXCEPTION_1010);
\r
1852 m68ki_jump_vector(EXCEPTION_1010);
\r
1854 /* Use up some clock cycles and undo the instruction's cycles */
\r
1855 USE_CYCLES(CYC_EXCEPTION[EXCEPTION_1010] - CYC_INSTRUCTION[REG_IR]);
\r
1858 /* Exception for F-Line instructions */
\r
1859 INLINE void m68ki_exception_1111(void)
\r
1863 #if M68K_LOG_1010_1111 == OPT_ON
\r
1864 M68K_DO_LOG_EMU((M68K_LOG_FILEHANDLE "%s at %08x: called 1111 instruction %04x (%s)\n",
\r
1865 m68ki_cpu_names[CPU_TYPE], ADDRESS_68K(REG_PPC), REG_IR,
\r
1866 m68ki_disassemble_quick(ADDRESS_68K(REG_PPC))));
\r
1869 sr = m68ki_init_exception();
\r
1870 m68ki_stack_frame_0000(REG_PPC, sr, EXCEPTION_1111);
\r
1871 m68ki_jump_vector(EXCEPTION_1111);
\r
1873 /* Use up some clock cycles and undo the instruction's cycles */
\r
1874 USE_CYCLES(CYC_EXCEPTION[EXCEPTION_1111] - CYC_INSTRUCTION[REG_IR]);
\r
1877 /* Exception for illegal instructions */
\r
1878 INLINE void m68ki_exception_illegal(void)
\r
1882 M68K_DO_LOG((M68K_LOG_FILEHANDLE "%s at %08x: illegal instruction %04x (%s)\n",
\r
1883 m68ki_cpu_names[CPU_TYPE], ADDRESS_68K(REG_PPC), REG_IR,
\r
1884 m68ki_disassemble_quick(ADDRESS_68K(REG_PPC))));
\r
1886 sr = m68ki_init_exception();
\r
1888 #if M68K_EMULATE_ADDRESS_ERROR == OPT_ON
\r
1889 if(CPU_TYPE_IS_000(CPU_TYPE))
\r
1891 CPU_INSTR_MODE = INSTRUCTION_NO;
\r
1893 #endif /* M68K_EMULATE_ADDRESS_ERROR */
\r
1895 m68ki_stack_frame_0000(REG_PPC, sr, EXCEPTION_ILLEGAL_INSTRUCTION);
\r
1896 m68ki_jump_vector(EXCEPTION_ILLEGAL_INSTRUCTION);
\r
1898 /* Use up some clock cycles and undo the instruction's cycles */
\r
1899 USE_CYCLES(CYC_EXCEPTION[EXCEPTION_ILLEGAL_INSTRUCTION] - CYC_INSTRUCTION[REG_IR]);
\r
1902 /* Exception for format errror in RTE */
\r
1903 INLINE void m68ki_exception_format_error(void)
\r
1905 uint sr = m68ki_init_exception();
\r
1906 m68ki_stack_frame_0000(REG_PC, sr, EXCEPTION_FORMAT_ERROR);
\r
1907 m68ki_jump_vector(EXCEPTION_FORMAT_ERROR);
\r
1909 /* Use up some clock cycles and undo the instruction's cycles */
\r
1910 USE_CYCLES(CYC_EXCEPTION[EXCEPTION_FORMAT_ERROR] - CYC_INSTRUCTION[REG_IR]);
\r
1913 /* Exception for address error */
\r
1914 INLINE void m68ki_exception_address_error(void)
\r
1916 uint sr = m68ki_init_exception();
\r
1918 /* If we were processing a bus error, address error, or reset,
\r
1919 * this is a catastrophic failure.
\r
1922 if(CPU_RUN_MODE == RUN_MODE_BERR_AERR_RESET)
\r
1924 m68k_read_memory_8(0x00ffff01);
\r
1925 CPU_STOPPED = STOP_LEVEL_HALT;
\r
1928 CPU_RUN_MODE = RUN_MODE_BERR_AERR_RESET;
\r
1930 /* Note: This is implemented for 68000 only! */
\r
1931 m68ki_stack_frame_buserr(sr);
\r
1933 m68ki_jump_vector(EXCEPTION_ADDRESS_ERROR);
\r
1935 /* Use up some clock cycles and undo the instruction's cycles */
\r
1936 USE_CYCLES(CYC_EXCEPTION[EXCEPTION_ADDRESS_ERROR] - CYC_INSTRUCTION[REG_IR]);
\r
1939 /* Service an interrupt request and start exception processing */
\r
1940 void m68ki_exception_interrupt(uint int_level)
\r
1946 #if M68K_EMULATE_ADDRESS_ERROR == OPT_ON
\r
1947 if(CPU_TYPE_IS_000(CPU_TYPE))
\r
1949 CPU_INSTR_MODE = INSTRUCTION_NO;
\r
1951 #endif /* M68K_EMULATE_ADDRESS_ERROR */
\r
1953 /* Turn off the stopped state */
\r
1954 CPU_STOPPED &= ~STOP_LEVEL_STOP;
\r
1956 /* If we are halted, don't do anything */
\r
1960 /* Acknowledge the interrupt */
\r
1961 vector = m68ki_int_ack(int_level);
\r
1963 /* Get the interrupt vector */
\r
1964 if(vector == M68K_INT_ACK_AUTOVECTOR)
\r
1965 /* Use the autovectors. This is the most commonly used implementation */
\r
1966 vector = EXCEPTION_INTERRUPT_AUTOVECTOR+int_level;
\r
1967 else if(vector == M68K_INT_ACK_SPURIOUS)
\r
1968 /* Called if no devices respond to the interrupt acknowledge */
\r
1969 vector = EXCEPTION_SPURIOUS_INTERRUPT;
\r
1970 else if(vector > 255)
\r
1972 M68K_DO_LOG_EMU((M68K_LOG_FILEHANDLE "%s at %08x: Interrupt acknowledge returned invalid vector $%x\n",
\r
1973 m68ki_cpu_names[CPU_TYPE], ADDRESS_68K(REG_PC), vector));
\r
1977 /* Start exception processing */
\r
1978 sr = m68ki_init_exception();
\r
1980 /* Set the interrupt mask to the level of the one being serviced */
\r
1981 FLAG_INT_MASK = int_level<<8;
\r
1983 /* Get the new PC */
\r
1984 new_pc = m68ki_read_data_32((vector<<2) + REG_VBR);
\r
1986 /* If vector is uninitialized, call the uninitialized interrupt vector */
\r
1988 new_pc = m68ki_read_data_32((EXCEPTION_UNINITIALIZED_INTERRUPT<<2) + REG_VBR);
\r
1990 /* Generate a stack frame */
\r
1991 m68ki_stack_frame_0000(REG_PC, sr, vector);
\r
1992 if(FLAG_M && CPU_TYPE_IS_EC020_PLUS(CPU_TYPE))
\r
1994 /* Create throwaway frame */
\r
1995 m68ki_set_sm_flag(FLAG_S); /* clear M */
\r
1996 sr |= 0x2000; /* Same as SR in master stack frame except S is forced high */
\r
1997 m68ki_stack_frame_0001(REG_PC, sr, vector);
\r
2000 m68ki_jump(new_pc);
\r
2002 /* Defer cycle counting until later */
\r
2003 CPU_INT_CYCLES += CYC_EXCEPTION[vector];
\r
2005 #if !M68K_EMULATE_INT_ACK
\r
2006 /* Automatically clear IRQ if we are not using an acknowledge scheme */
\r
2007 CPU_INT_LEVEL = 0;
\r
2008 #endif /* M68K_EMULATE_INT_ACK */
\r
2012 /* ASG: Check for interrupts */
\r
2013 INLINE void m68ki_check_interrupts(void)
\r
2015 if(CPU_INT_LEVEL > FLAG_INT_MASK)
\r
2016 m68ki_exception_interrupt(CPU_INT_LEVEL>>8);
\r
2021 /* ======================================================================== */
\r
2022 /* ============================== END OF FILE ============================= */
\r
2023 /* ======================================================================== */
\r
2025 #endif /* M68KCPU__HEADER */
\r