add CHD support.
[pcsx_rearmed.git] / deps / flac-1.3.2 / src / libFLAC / fixed_intrin_sse2.c
1 /* libFLAC - Free Lossless Audio Codec library
2  * Copyright (C) 2000-2009  Josh Coalson
3  * Copyright (C) 2011-2016  Xiph.Org Foundation
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * - Redistributions of source code must retain the above copyright
10  * notice, this list of conditions and the following disclaimer.
11  *
12  * - Redistributions in binary form must reproduce the above copyright
13  * notice, this list of conditions and the following disclaimer in the
14  * documentation and/or other materials provided with the distribution.
15  *
16  * - Neither the name of the Xiph.org Foundation nor the names of its
17  * contributors may be used to endorse or promote products derived from
18  * this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
24  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #ifdef HAVE_CONFIG_H
34 #  include <config.h>
35 #endif
36
37 #include "private/cpu.h"
38
39 #ifndef FLAC__INTEGER_ONLY_LIBRARY
40 #ifndef FLAC__NO_ASM
41 #if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X86INTRIN
42 #include "private/fixed.h"
43 #ifdef FLAC__SSE2_SUPPORTED
44
45 #include <emmintrin.h> /* SSE2 */
46 #include <math.h>
47 #include "private/macros.h"
48 #include "share/compat.h"
49 #include "FLAC/assert.h"
50
51 #ifdef FLAC__CPU_IA32
52 #define m128i_to_i64(dest, src) _mm_storel_epi64((__m128i*)&dest, src)
53 #else
54 #define m128i_to_i64(dest, src) dest = _mm_cvtsi128_si64(src)
55 #endif
56
57 FLAC__SSE_TARGET("sse2")
58 unsigned FLAC__fixed_compute_best_predictor_intrin_sse2(const FLAC__int32 data[], unsigned data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1])
59 {
60         FLAC__uint32 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4;
61         unsigned i, order;
62
63         __m128i total_err0, total_err1, total_err2;
64
65         {
66                 FLAC__int32 itmp;
67                 __m128i last_error;
68
69                 last_error = _mm_cvtsi32_si128(data[-1]);                                                       // 0   0   0   le0
70                 itmp = data[-2];
71                 last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
72                 last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));        // 0   0   le0 le1
73                 itmp -= data[-3];
74                 last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
75                 last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));        // 0   le0 le1 le2
76                 itmp -= data[-3] - data[-4];
77                 last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
78                 last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));        // le0 le1 le2 le3
79
80                 total_err0 = total_err1 = _mm_setzero_si128();
81                 for(i = 0; i < data_len; i++) {
82                         __m128i err0, err1, tmp;
83                         err0 = _mm_cvtsi32_si128(data[i]);                                                              // 0   0   0   e0
84                         err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0));                   // e0  e0  e0  e0
85 #if 1 /* OPT_SSE */
86                         err1 = _mm_sub_epi32(err1, last_error);
87                         last_error = _mm_srli_si128(last_error, 4);                                             // 0   le0 le1 le2
88                         err1 = _mm_sub_epi32(err1, last_error);
89                         last_error = _mm_srli_si128(last_error, 4);                                             // 0   0   le0 le1
90                         err1 = _mm_sub_epi32(err1, last_error);
91                         last_error = _mm_srli_si128(last_error, 4);                                             // 0   0   0   le0
92                         err1 = _mm_sub_epi32(err1, last_error);                                                 // e1  e2  e3  e4
93 #else
94                         last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8));  // le0  le1  le2+le0  le3+le1
95                         last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4));  // le0  le1+le0  le2+le0+le1  le3+le1+le2+le0
96                         err1 = _mm_sub_epi32(err1, last_error);                                                 // e1  e2  e3  e4
97 #endif
98                         tmp = _mm_slli_si128(err0, 12);                                                                 // e0   0   0   0
99                         last_error = _mm_srli_si128(err1, 4);                                                   //  0  e1  e2  e3
100                         last_error = _mm_or_si128(last_error, tmp);                                             // e0  e1  e2  e3
101
102                         tmp = _mm_srai_epi32(err0, 31);
103                         err0 = _mm_xor_si128(err0, tmp);
104                         err0 = _mm_sub_epi32(err0, tmp);
105                         tmp = _mm_srai_epi32(err1, 31);
106                         err1 = _mm_xor_si128(err1, tmp);
107                         err1 = _mm_sub_epi32(err1, tmp);
108
109                         total_err0 = _mm_add_epi32(total_err0, err0);                                   // 0   0   0   te0
110                         total_err1 = _mm_add_epi32(total_err1, err1);                                   // te1 te2 te3 te4
111                 }
112         }
113
114         total_error_0 = _mm_cvtsi128_si32(total_err0);
115         total_err2 = total_err1;                                                                                        // te1  te2  te3  te4
116         total_err1 = _mm_srli_si128(total_err1, 8);                                                     //  0    0   te1  te2
117         total_error_4 = _mm_cvtsi128_si32(total_err2);
118         total_error_2 = _mm_cvtsi128_si32(total_err1);
119         total_err2 = _mm_srli_si128(total_err2, 4);                                                     //  0   te1  te2  te3
120         total_err1 = _mm_srli_si128(total_err1, 4);                                                     //  0    0    0   te1
121         total_error_3 = _mm_cvtsi128_si32(total_err2);
122         total_error_1 = _mm_cvtsi128_si32(total_err1);
123
124         /* prefer higher order */
125         if(total_error_0 < flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
126                 order = 0;
127         else if(total_error_1 < flac_min(flac_min(total_error_2, total_error_3), total_error_4))
128                 order = 1;
129         else if(total_error_2 < flac_min(total_error_3, total_error_4))
130                 order = 2;
131         else if(total_error_3 < total_error_4)
132                 order = 3;
133         else
134                 order = 4;
135
136         /* Estimate the expected number of bits per residual signal sample. */
137         /* 'total_error*' is linearly related to the variance of the residual */
138         /* signal, so we use it directly to compute E(|x|) */
139         FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
140         FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
141         FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
142         FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
143         FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
144
145         residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
146         residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
147         residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
148         residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
149         residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);
150
151         return order;
152 }
153
154 FLAC__SSE_TARGET("sse2")
155 unsigned FLAC__fixed_compute_best_predictor_wide_intrin_sse2(const FLAC__int32 data[], unsigned data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1])
156 {
157         FLAC__uint64 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4;
158         unsigned i, order;
159
160         __m128i total_err0, total_err1, total_err3;
161
162         {
163                 FLAC__int32 itmp;
164                 __m128i last_error, zero = _mm_setzero_si128();
165
166                 last_error = _mm_cvtsi32_si128(data[-1]);                                                       // 0   0   0   le0
167                 itmp = data[-2];
168                 last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
169                 last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));        // 0   0   le0 le1
170                 itmp -= data[-3];
171                 last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
172                 last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));        // 0   le0 le1 le2
173                 itmp -= data[-3] - data[-4];
174                 last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
175                 last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));        // le0 le1 le2 le3
176
177                 total_err0 = total_err1 = total_err3 = _mm_setzero_si128();
178                 for(i = 0; i < data_len; i++) {
179                         __m128i err0, err1, tmp;
180                         err0 = _mm_cvtsi32_si128(data[i]);                                                              // 0   0   0   e0
181                         err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0));                   // e0  e0  e0  e0
182 #if 1 /* OPT_SSE */
183                         err1 = _mm_sub_epi32(err1, last_error);
184                         last_error = _mm_srli_si128(last_error, 4);                                             // 0   le0 le1 le2
185                         err1 = _mm_sub_epi32(err1, last_error);
186                         last_error = _mm_srli_si128(last_error, 4);                                             // 0   0   le0 le1
187                         err1 = _mm_sub_epi32(err1, last_error);
188                         last_error = _mm_srli_si128(last_error, 4);                                             // 0   0   0   le0
189                         err1 = _mm_sub_epi32(err1, last_error);                                                 // e1  e2  e3  e4
190 #else
191                         last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8));  // le0  le1  le2+le0  le3+le1
192                         last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4));  // le0  le1+le0  le2+le0+le1  le3+le1+le2+le0
193                         err1 = _mm_sub_epi32(err1, last_error);                                                 // e1  e2  e3  e4
194 #endif
195                         tmp = _mm_slli_si128(err0, 12);                                                                 // e0   0   0   0
196                         last_error = _mm_srli_si128(err1, 4);                                                   //  0  e1  e2  e3
197                         last_error = _mm_or_si128(last_error, tmp);                                             // e0  e1  e2  e3
198
199                         tmp = _mm_srai_epi32(err0, 31);
200                         err0 = _mm_xor_si128(err0, tmp);
201                         err0 = _mm_sub_epi32(err0, tmp);
202                         tmp = _mm_srai_epi32(err1, 31);
203                         err1 = _mm_xor_si128(err1, tmp);
204                         err1 = _mm_sub_epi32(err1, tmp);
205
206                         total_err0 = _mm_add_epi64(total_err0, err0);                                   //        0       te0
207                         err0 = _mm_unpacklo_epi32(err1, zero);                                                  //   0  |e3|   0  |e4|
208                         err1 = _mm_unpackhi_epi32(err1, zero);                                                  //   0  |e1|   0  |e2|
209                         total_err3 = _mm_add_epi64(total_err3, err0);                                   //       te3      te4
210                         total_err1 = _mm_add_epi64(total_err1, err1);                                   //       te1      te2
211                 }
212         }
213
214         m128i_to_i64(total_error_0, total_err0);
215         m128i_to_i64(total_error_4, total_err3);
216         m128i_to_i64(total_error_2, total_err1);
217         total_err3 = _mm_srli_si128(total_err3, 8);                                                     //         0      te3
218         total_err1 = _mm_srli_si128(total_err1, 8);                                                     //         0      te1
219         m128i_to_i64(total_error_3, total_err3);
220         m128i_to_i64(total_error_1, total_err1);
221
222         /* prefer higher order */
223         if(total_error_0 < flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
224                 order = 0;
225         else if(total_error_1 < flac_min(flac_min(total_error_2, total_error_3), total_error_4))
226                 order = 1;
227         else if(total_error_2 < flac_min(total_error_3, total_error_4))
228                 order = 2;
229         else if(total_error_3 < total_error_4)
230                 order = 3;
231         else
232                 order = 4;
233
234         /* Estimate the expected number of bits per residual signal sample. */
235         /* 'total_error*' is linearly related to the variance of the residual */
236         /* signal, so we use it directly to compute E(|x|) */
237         FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
238         FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
239         FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
240         FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
241         FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
242
243         residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
244         residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
245         residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
246         residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
247         residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);
248
249         return order;
250 }
251
252 #endif /* FLAC__SSE2_SUPPORTED */
253 #endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */
254 #endif /* FLAC__NO_ASM */
255 #endif /* FLAC__INTEGER_ONLY_LIBRARY */