git subrepo pull (merge) --force deps/libchdr
[pcsx_rearmed.git] / deps / libchdr / deps / zlib-1.3.1 / examples / zran.c
1 /* zran.c -- example of deflate stream indexing and random access
2  * Copyright (C) 2005, 2012, 2018, 2023 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  * Version 1.4  13 Apr 2023  Mark Adler */
5
6 /* Version History:
7  1.0  29 May 2005  First version
8  1.1  29 Sep 2012  Fix memory reallocation error
9  1.2  14 Oct 2018  Handle gzip streams with multiple members
10                    Add a header file to facilitate usage in applications
11  1.3  18 Feb 2023  Permit raw deflate streams as well as zlib and gzip
12                    Permit crossing gzip member boundaries when extracting
13                    Support a size_t size when extracting (was an int)
14                    Do a binary search over the index for an access point
15                    Expose the access point type to enable save and load
16  1.4  13 Apr 2023  Add a NOPRIME define to not use inflatePrime()
17  */
18
19 // Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
20 // for random access of a compressed file. A file containing a raw deflate
21 // stream is provided on the command line. The compressed stream is decoded in
22 // its entirety, and an index built with access points about every SPAN bytes
23 // in the uncompressed output. The compressed file is left open, and can then
24 // be read randomly, having to decompress on the average SPAN/2 uncompressed
25 // bytes before getting to the desired block of data.
26 //
27 // An access point can be created at the start of any deflate block, by saving
28 // the starting file offset and bit of that block, and the 32K bytes of
29 // uncompressed data that precede that block. Also the uncompressed offset of
30 // that block is saved to provide a reference for locating a desired starting
31 // point in the uncompressed stream. deflate_index_build() decompresses the
32 // input raw deflate stream a block at a time, and at the end of each block
33 // decides if enough uncompressed data has gone by to justify the creation of a
34 // new access point. If so, that point is saved in a data structure that grows
35 // as needed to accommodate the points.
36 //
37 // To use the index, an offset in the uncompressed data is provided, for which
38 // the latest access point at or preceding that offset is located in the index.
39 // The input file is positioned to the specified location in the index, and if
40 // necessary the first few bits of the compressed data is read from the file.
41 // inflate is initialized with those bits and the 32K of uncompressed data, and
42 // decompression then proceeds until the desired offset in the file is reached.
43 // Then decompression continues to read the requested uncompressed data from
44 // the file.
45 //
46 // There is some fair bit of overhead to starting inflation for the random
47 // access, mainly copying the 32K byte dictionary. If small pieces of the file
48 // are being accessed, it would make sense to implement a cache to hold some
49 // lookahead to avoid many calls to deflate_index_extract() for small lengths.
50 //
51 // Another way to build an index would be to use inflateCopy(). That would not
52 // be constrained to have access points at block boundaries, but would require
53 // more memory per access point, and could not be saved to a file due to the
54 // use of pointers in the state. The approach here allows for storage of the
55 // index in a file.
56
57 #include <stdio.h>
58 #include <stdlib.h>
59 #include <string.h>
60 #include <limits.h>
61 #include "zlib.h"
62 #include "zran.h"
63
64 #define WINSIZE 32768U      // sliding window size
65 #define CHUNK 16384         // file input buffer size
66
67 // See comments in zran.h.
68 void deflate_index_free(struct deflate_index *index) {
69     if (index != NULL) {
70         free(index->list);
71         free(index);
72     }
73 }
74
75 // Add an access point to the list. If out of memory, deallocate the existing
76 // list and return NULL. index->mode is temporarily the allocated number of
77 // access points, until it is time for deflate_index_build() to return. Then
78 // index->mode is set to the mode of inflation.
79 static struct deflate_index *add_point(struct deflate_index *index, int bits,
80                                        off_t in, off_t out, unsigned left,
81                                        unsigned char *window) {
82     if (index == NULL) {
83         // The list is empty. Create it, starting with eight access points.
84         index = malloc(sizeof(struct deflate_index));
85         if (index == NULL)
86             return NULL;
87         index->have = 0;
88         index->mode = 8;
89         index->list = malloc(sizeof(point_t) * index->mode);
90         if (index->list == NULL) {
91             free(index);
92             return NULL;
93         }
94     }
95
96     else if (index->have == index->mode) {
97         // The list is full. Make it bigger.
98         index->mode <<= 1;
99         point_t *next = realloc(index->list, sizeof(point_t) * index->mode);
100         if (next == NULL) {
101             deflate_index_free(index);
102             return NULL;
103         }
104         index->list = next;
105     }
106
107     // Fill in the access point and increment how many we have.
108     point_t *next = (point_t *)(index->list) + index->have++;
109     if (index->have < 0) {
110         // Overflowed the int!
111         deflate_index_free(index);
112         return NULL;
113     }
114     next->out = out;
115     next->in = in;
116     next->bits = bits;
117     if (left)
118         memcpy(next->window, window + WINSIZE - left, left);
119     if (left < WINSIZE)
120         memcpy(next->window + left, window, WINSIZE - left);
121
122     // Return the index, which may have been newly allocated or destroyed.
123     return index;
124 }
125
126 // Decompression modes. These are the inflateInit2() windowBits parameter.
127 #define RAW -15
128 #define ZLIB 15
129 #define GZIP 31
130
131 // See comments in zran.h.
132 int deflate_index_build(FILE *in, off_t span, struct deflate_index **built) {
133     // Set up inflation state.
134     z_stream strm = {0};        // inflate engine (gets fired up later)
135     unsigned char buf[CHUNK];   // input buffer
136     unsigned char win[WINSIZE] = {0};   // output sliding window
137     off_t totin = 0;            // total bytes read from input
138     off_t totout = 0;           // total bytes uncompressed
139     int mode = 0;               // mode: RAW, ZLIB, or GZIP (0 => not set yet)
140
141     // Decompress from in, generating access points along the way.
142     int ret;                    // the return value from zlib, or Z_ERRNO
143     off_t last;                 // last access point uncompressed offset
144     struct deflate_index *index = NULL;     // list of access points
145     do {
146         // Assure available input, at least until reaching EOF.
147         if (strm.avail_in == 0) {
148             strm.avail_in = fread(buf, 1, sizeof(buf), in);
149             totin += strm.avail_in;
150             strm.next_in = buf;
151             if (strm.avail_in < sizeof(buf) && ferror(in)) {
152                 ret = Z_ERRNO;
153                 break;
154             }
155
156             if (mode == 0) {
157                 // At the start of the input -- determine the type. Assume raw
158                 // if it is neither zlib nor gzip. This could in theory result
159                 // in a false positive for zlib, but in practice the fill bits
160                 // after a stored block are always zeros, so a raw stream won't
161                 // start with an 8 in the low nybble.
162                 mode = strm.avail_in == 0 ? RAW :       // empty -- will fail
163                        (strm.next_in[0] & 0xf) == 8 ? ZLIB :
164                        strm.next_in[0] == 0x1f ? GZIP :
165                        /* else */ RAW;
166                 ret = inflateInit2(&strm, mode);
167                 if (ret != Z_OK)
168                     break;
169             }
170         }
171
172         // Assure available output. This rotates the output through, for use as
173         // a sliding window on the uncompressed data.
174         if (strm.avail_out == 0) {
175             strm.avail_out = sizeof(win);
176             strm.next_out = win;
177         }
178
179         if (mode == RAW && index == NULL)
180             // We skip the inflate() call at the start of raw deflate data in
181             // order generate an access point there. Set data_type to imitate
182             // the end of a header.
183             strm.data_type = 0x80;
184         else {
185             // Inflate and update the number of uncompressed bytes.
186             unsigned before = strm.avail_out;
187             ret = inflate(&strm, Z_BLOCK);
188             totout += before - strm.avail_out;
189         }
190
191         if ((strm.data_type & 0xc0) == 0x80 &&
192             (index == NULL || totout - last >= span)) {
193             // We are at the end of a header or a non-last deflate block, so we
194             // can add an access point here. Furthermore, we are either at the
195             // very start for the first access point, or there has been span or
196             // more uncompressed bytes since the last access point, so we want
197             // to add an access point here.
198             index = add_point(index, strm.data_type & 7, totin - strm.avail_in,
199                               totout, strm.avail_out, win);
200             if (index == NULL) {
201                 ret = Z_MEM_ERROR;
202                 break;
203             }
204             last = totout;
205         }
206
207         if (ret == Z_STREAM_END && mode == GZIP &&
208             (strm.avail_in || ungetc(getc(in), in) != EOF))
209             // There is more input after the end of a gzip member. Reset the
210             // inflate state to read another gzip member. On success, this will
211             // set ret to Z_OK to continue decompressing.
212             ret = inflateReset2(&strm, GZIP);
213
214         // Keep going until Z_STREAM_END or error. If the compressed data ends
215         // prematurely without a file read error, Z_BUF_ERROR is returned.
216     } while (ret == Z_OK);
217     inflateEnd(&strm);
218
219     if (ret != Z_STREAM_END) {
220         // An error was encountered. Discard the index and return a negative
221         // error code.
222         deflate_index_free(index);
223         return ret == Z_NEED_DICT ? Z_DATA_ERROR : ret;
224     }
225
226     // Shrink the index to only the occupied access points and return it.
227     index->mode = mode;
228     index->length = totout;
229     point_t *list = realloc(index->list, sizeof(point_t) * index->have);
230     if (list == NULL) {
231         // Seems like a realloc() to make something smaller should always work,
232         // but just in case.
233         deflate_index_free(index);
234         return Z_MEM_ERROR;
235     }
236     index->list = list;
237     *built = index;
238     return index->have;
239 }
240
241 #ifdef NOPRIME
242 // Support zlib versions before 1.2.3 (July 2005), or incomplete zlib clones
243 // that do not have inflatePrime().
244
245 #  define INFLATEPRIME inflatePreface
246
247 // Append the low bits bits of value to in[] at bit position *have, updating
248 // *have. value must be zero above its low bits bits. bits must be positive.
249 // This assumes that any bits above the *have bits in the last byte are zeros.
250 // That assumption is preserved on return, as any bits above *have + bits in
251 // the last byte written will be set to zeros.
252 static inline void append_bits(unsigned value, int bits,
253                                unsigned char *in, int *have) {
254     in += *have >> 3;           // where the first bits from value will go
255     int k = *have & 7;          // the number of bits already there
256     *have += bits;
257     if (k)
258         *in |= value << k;      // write value above the low k bits
259     else
260         *in = value;
261     k = 8 - k;                  // the number of bits just appended
262     while (bits > k) {
263         value >>= k;            // drop the bits appended
264         bits -= k;
265         k = 8;                  // now at a byte boundary
266         *++in = value;
267     }
268 }
269
270 // Insert enough bits in the form of empty deflate blocks in front of the
271 // low bits bits of value, in order to bring the sequence to a byte boundary.
272 // Then feed that to inflate(). This does what inflatePrime() does, except that
273 // a negative value of bits is not supported. bits must be in 0..16. If the
274 // arguments are invalid, Z_STREAM_ERROR is returned. Otherwise the return
275 // value from inflate() is returned.
276 static int inflatePreface(z_stream *strm, int bits, int value) {
277     // Check input.
278     if (strm == Z_NULL || bits < 0 || bits > 16)
279         return Z_STREAM_ERROR;
280     if (bits == 0)
281         return Z_OK;
282     value &= (2 << (bits - 1)) - 1;
283
284     // An empty dynamic block with an odd number of bits (95). The high bit of
285     // the last byte is unused.
286     static const unsigned char dyn[] = {
287         4, 0xe0, 0x81, 8, 0, 0, 0, 0, 0x20, 0xa8, 0xab, 0x1f
288     };
289     const int dynlen = 95;          // number of bits in the block
290
291     // Build an input buffer for inflate that is a multiple of eight bits in
292     // length, and that ends with the low bits bits of value.
293     unsigned char in[(dynlen + 3 * 10 + 16 + 7) / 8];
294     int have = 0;
295     if (bits & 1) {
296         // Insert an empty dynamic block to get to an odd number of bits, so
297         // when bits bits from value are appended, we are at an even number of
298         // bits.
299         memcpy(in, dyn, sizeof(dyn));
300         have = dynlen;
301     }
302     while ((have + bits) & 7)
303         // Insert empty fixed blocks until appending bits bits would put us on
304         // a byte boundary. This will insert at most three fixed blocks.
305         append_bits(2, 10, in, &have);
306
307     // Append the bits bits from value, which takes us to a byte boundary.
308     append_bits(value, bits, in, &have);
309
310     // Deliver the input to inflate(). There is no output space provided, but
311     // inflate() can't get stuck waiting on output not ingesting all of the
312     // provided input. The reason is that there will be at most 16 bits of
313     // input from value after the empty deflate blocks (which themselves
314     // generate no output). At least ten bits are needed to generate the first
315     // output byte from a fixed block. The last two bytes of the buffer have to
316     // be ingested in order to get ten bits, which is the most that value can
317     // occupy.
318     strm->avail_in = have >> 3;
319     strm->next_in = in;
320     strm->avail_out = 0;
321     strm->next_out = in;                // not used, but can't be NULL
322     return inflate(strm, Z_NO_FLUSH);
323 }
324
325 #else
326 #  define INFLATEPRIME inflatePrime
327 #endif
328
329 // See comments in zran.h.
330 ptrdiff_t deflate_index_extract(FILE *in, struct deflate_index *index,
331                                 off_t offset, unsigned char *buf, size_t len) {
332     // Do a quick sanity check on the index.
333     if (index == NULL || index->have < 1 || index->list[0].out != 0)
334         return Z_STREAM_ERROR;
335
336     // If nothing to extract, return zero bytes extracted.
337     if (len == 0 || offset < 0 || offset >= index->length)
338         return 0;
339
340     // Find the access point closest to but not after offset.
341     int lo = -1, hi = index->have;
342     point_t *point = index->list;
343     while (hi - lo > 1) {
344         int mid = (lo + hi) >> 1;
345         if (offset < point[mid].out)
346             hi = mid;
347         else
348             lo = mid;
349     }
350     point += lo;
351
352     // Initialize the input file and prime the inflate engine to start there.
353     int ret = fseeko(in, point->in - (point->bits ? 1 : 0), SEEK_SET);
354     if (ret == -1)
355         return Z_ERRNO;
356     int ch = 0;
357     if (point->bits && (ch = getc(in)) == EOF)
358         return ferror(in) ? Z_ERRNO : Z_BUF_ERROR;
359     z_stream strm = {0};
360     ret = inflateInit2(&strm, RAW);
361     if (ret != Z_OK)
362         return ret;
363     if (point->bits)
364         INFLATEPRIME(&strm, point->bits, ch >> (8 - point->bits));
365     inflateSetDictionary(&strm, point->window, WINSIZE);
366
367     // Skip uncompressed bytes until offset reached, then satisfy request.
368     unsigned char input[CHUNK];
369     unsigned char discard[WINSIZE];
370     offset -= point->out;       // number of bytes to skip to get to offset
371     size_t left = len;          // number of bytes left to read after offset
372     do {
373         if (offset) {
374             // Discard up to offset uncompressed bytes.
375             strm.avail_out = offset < WINSIZE ? (unsigned)offset : WINSIZE;
376             strm.next_out = discard;
377         }
378         else {
379             // Uncompress up to left bytes into buf.
380             strm.avail_out = left < UINT_MAX ? (unsigned)left : UINT_MAX;
381             strm.next_out = buf + len - left;
382         }
383
384         // Uncompress, setting got to the number of bytes uncompressed.
385         if (strm.avail_in == 0) {
386             // Assure available input.
387             strm.avail_in = fread(input, 1, CHUNK, in);
388             if (strm.avail_in < CHUNK && ferror(in)) {
389                 ret = Z_ERRNO;
390                 break;
391             }
392             strm.next_in = input;
393         }
394         unsigned got = strm.avail_out;
395         ret = inflate(&strm, Z_NO_FLUSH);
396         got -= strm.avail_out;
397
398         // Update the appropriate count.
399         if (offset)
400             offset -= got;
401         else
402             left -= got;
403
404         // If we're at the end of a gzip member and there's more to read,
405         // continue to the next gzip member.
406         if (ret == Z_STREAM_END && index->mode == GZIP) {
407             // Discard the gzip trailer.
408             unsigned drop = 8;              // length of gzip trailer
409             if (strm.avail_in >= drop) {
410                 strm.avail_in -= drop;
411                 strm.next_in += drop;
412             }
413             else {
414                 // Read and discard the remainder of the gzip trailer.
415                 drop -= strm.avail_in;
416                 strm.avail_in = 0;
417                 do {
418                     if (getc(in) == EOF)
419                         // The input does not have a complete trailer.
420                         return ferror(in) ? Z_ERRNO : Z_BUF_ERROR;
421                 } while (--drop);
422             }
423
424             if (strm.avail_in || ungetc(getc(in), in) != EOF) {
425                 // There's more after the gzip trailer. Use inflate to skip the
426                 // gzip header and resume the raw inflate there.
427                 inflateReset2(&strm, GZIP);
428                 do {
429                     if (strm.avail_in == 0) {
430                         strm.avail_in = fread(input, 1, CHUNK, in);
431                         if (strm.avail_in < CHUNK && ferror(in)) {
432                             ret = Z_ERRNO;
433                             break;
434                         }
435                         strm.next_in = input;
436                     }
437                     strm.avail_out = WINSIZE;
438                     strm.next_out = discard;
439                     ret = inflate(&strm, Z_BLOCK);  // stop at end of header
440                 } while (ret == Z_OK && (strm.data_type & 0x80) == 0);
441                 if (ret != Z_OK)
442                     break;
443                 inflateReset2(&strm, RAW);
444             }
445         }
446
447         // Continue until we have the requested data, the deflate data has
448         // ended, or an error is encountered.
449     } while (ret == Z_OK && left);
450     inflateEnd(&strm);
451
452     // Return the number of uncompressed bytes read into buf, or the error.
453     return ret == Z_OK || ret == Z_STREAM_END ? len - left : ret;
454 }
455
456 #ifdef TEST
457
458 #define SPAN 1048576L       // desired distance between access points
459 #define LEN 16384           // number of bytes to extract
460
461 // Demonstrate the use of deflate_index_build() and deflate_index_extract() by
462 // processing the file provided on the command line, and extracting LEN bytes
463 // from 2/3rds of the way through the uncompressed output, writing that to
464 // stdout. An offset can be provided as the second argument, in which case the
465 // data is extracted from there instead.
466 int main(int argc, char **argv) {
467     // Open the input file.
468     if (argc < 2 || argc > 3) {
469         fprintf(stderr, "usage: zran file.raw [offset]\n");
470         return 1;
471     }
472     FILE *in = fopen(argv[1], "rb");
473     if (in == NULL) {
474         fprintf(stderr, "zran: could not open %s for reading\n", argv[1]);
475         return 1;
476     }
477
478     // Get optional offset.
479     off_t offset = -1;
480     if (argc == 3) {
481         char *end;
482         offset = strtoll(argv[2], &end, 10);
483         if (*end || offset < 0) {
484             fprintf(stderr, "zran: %s is not a valid offset\n", argv[2]);
485             return 1;
486         }
487     }
488
489     // Build index.
490     struct deflate_index *index = NULL;
491     int len = deflate_index_build(in, SPAN, &index);
492     if (len < 0) {
493         fclose(in);
494         switch (len) {
495         case Z_MEM_ERROR:
496             fprintf(stderr, "zran: out of memory\n");
497             break;
498         case Z_BUF_ERROR:
499             fprintf(stderr, "zran: %s ended prematurely\n", argv[1]);
500             break;
501         case Z_DATA_ERROR:
502             fprintf(stderr, "zran: compressed data error in %s\n", argv[1]);
503             break;
504         case Z_ERRNO:
505             fprintf(stderr, "zran: read error on %s\n", argv[1]);
506             break;
507         default:
508             fprintf(stderr, "zran: error %d while building index\n", len);
509         }
510         return 1;
511     }
512     fprintf(stderr, "zran: built index with %d access points\n", len);
513
514     // Use index by reading some bytes from an arbitrary offset.
515     unsigned char buf[LEN];
516     if (offset == -1)
517         offset = ((index->length + 1) << 1) / 3;
518     ptrdiff_t got = deflate_index_extract(in, index, offset, buf, LEN);
519     if (got < 0)
520         fprintf(stderr, "zran: extraction failed: %s error\n",
521                 got == Z_MEM_ERROR ? "out of memory" : "input corrupted");
522     else {
523         fwrite(buf, 1, got, stdout);
524         fprintf(stderr, "zran: extracted %ld bytes at %lld\n", got, offset);
525     }
526
527     // Clean up and exit.
528     deflate_index_free(index);
529     fclose(in);
530     return 0;
531 }
532
533 #endif