git subrepo pull --force deps/lightrec
[pcsx_rearmed.git] / deps / lightrec / optimizer.c
1 // SPDX-License-Identifier: LGPL-2.1-or-later
2 /*
3  * Copyright (C) 2014-2021 Paul Cercueil <paul@crapouillou.net>
4  */
5
6 #include "constprop.h"
7 #include "lightrec-config.h"
8 #include "disassembler.h"
9 #include "lightrec.h"
10 #include "memmanager.h"
11 #include "optimizer.h"
12 #include "regcache.h"
13
14 #include <errno.h>
15 #include <stdbool.h>
16 #include <stdlib.h>
17 #include <string.h>
18
19 #define IF_OPT(opt, ptr) ((opt) ? (ptr) : NULL)
20
21 struct optimizer_list {
22         void (**optimizers)(struct opcode *);
23         unsigned int nb_optimizers;
24 };
25
26 static bool is_nop(union code op);
27
28 bool is_unconditional_jump(union code c)
29 {
30         switch (c.i.op) {
31         case OP_SPECIAL:
32                 return c.r.op == OP_SPECIAL_JR || c.r.op == OP_SPECIAL_JALR;
33         case OP_J:
34         case OP_JAL:
35                 return true;
36         case OP_BEQ:
37         case OP_BLEZ:
38                 return c.i.rs == c.i.rt;
39         case OP_REGIMM:
40                 return (c.r.rt == OP_REGIMM_BGEZ ||
41                         c.r.rt == OP_REGIMM_BGEZAL) && c.i.rs == 0;
42         default:
43                 return false;
44         }
45 }
46
47 bool is_syscall(union code c)
48 {
49         return (c.i.op == OP_SPECIAL && c.r.op == OP_SPECIAL_SYSCALL) ||
50                 (c.i.op == OP_CP0 && (c.r.rs == OP_CP0_MTC0 ||
51                                         c.r.rs == OP_CP0_CTC0) &&
52                  (c.r.rd == 12 || c.r.rd == 13));
53 }
54
55 static u64 opcode_read_mask(union code op)
56 {
57         switch (op.i.op) {
58         case OP_SPECIAL:
59                 switch (op.r.op) {
60                 case OP_SPECIAL_SYSCALL:
61                 case OP_SPECIAL_BREAK:
62                         return 0;
63                 case OP_SPECIAL_JR:
64                 case OP_SPECIAL_JALR:
65                 case OP_SPECIAL_MTHI:
66                 case OP_SPECIAL_MTLO:
67                         return BIT(op.r.rs);
68                 case OP_SPECIAL_MFHI:
69                         return BIT(REG_HI);
70                 case OP_SPECIAL_MFLO:
71                         return BIT(REG_LO);
72                 case OP_SPECIAL_SLL:
73                         if (!op.r.imm)
74                                 return 0;
75                         fallthrough;
76                 case OP_SPECIAL_SRL:
77                 case OP_SPECIAL_SRA:
78                         return BIT(op.r.rt);
79                 default:
80                         return BIT(op.r.rs) | BIT(op.r.rt);
81                 }
82         case OP_CP0:
83                 switch (op.r.rs) {
84                 case OP_CP0_MTC0:
85                 case OP_CP0_CTC0:
86                         return BIT(op.r.rt);
87                 default:
88                         return 0;
89                 }
90         case OP_CP2:
91                 if (op.r.op == OP_CP2_BASIC) {
92                         switch (op.r.rs) {
93                         case OP_CP2_BASIC_MTC2:
94                         case OP_CP2_BASIC_CTC2:
95                                 return BIT(op.r.rt);
96                         default:
97                                 break;
98                         }
99                 }
100                 return 0;
101         case OP_J:
102         case OP_JAL:
103         case OP_LUI:
104                 return 0;
105         case OP_BEQ:
106                 if (op.i.rs == op.i.rt)
107                         return 0;
108                 fallthrough;
109         case OP_BNE:
110         case OP_LWL:
111         case OP_LWR:
112         case OP_SB:
113         case OP_SH:
114         case OP_SWL:
115         case OP_SW:
116         case OP_SWR:
117                 return BIT(op.i.rs) | BIT(op.i.rt);
118         case OP_META:
119                 return BIT(op.m.rs);
120         default:
121                 return BIT(op.i.rs);
122         }
123 }
124
125 static u64 mult_div_write_mask(union code op)
126 {
127         u64 flags;
128
129         if (!OPT_FLAG_MULT_DIV)
130                 return BIT(REG_LO) | BIT(REG_HI);
131
132         if (op.r.rd)
133                 flags = BIT(op.r.rd);
134         else
135                 flags = BIT(REG_LO);
136         if (op.r.imm)
137                 flags |= BIT(op.r.imm);
138         else
139                 flags |= BIT(REG_HI);
140
141         return flags;
142 }
143
144 u64 opcode_write_mask(union code op)
145 {
146         switch (op.i.op) {
147         case OP_META_MULT2:
148         case OP_META_MULTU2:
149                 return mult_div_write_mask(op);
150         case OP_META:
151                 return BIT(op.m.rd);
152         case OP_SPECIAL:
153                 switch (op.r.op) {
154                 case OP_SPECIAL_JR:
155                 case OP_SPECIAL_SYSCALL:
156                 case OP_SPECIAL_BREAK:
157                         return 0;
158                 case OP_SPECIAL_MULT:
159                 case OP_SPECIAL_MULTU:
160                 case OP_SPECIAL_DIV:
161                 case OP_SPECIAL_DIVU:
162                         return mult_div_write_mask(op);
163                 case OP_SPECIAL_MTHI:
164                         return BIT(REG_HI);
165                 case OP_SPECIAL_MTLO:
166                         return BIT(REG_LO);
167                 case OP_SPECIAL_SLL:
168                         if (!op.r.imm)
169                                 return 0;
170                         fallthrough;
171                 default:
172                         return BIT(op.r.rd);
173                 }
174         case OP_ADDI:
175         case OP_ADDIU:
176         case OP_SLTI:
177         case OP_SLTIU:
178         case OP_ANDI:
179         case OP_ORI:
180         case OP_XORI:
181         case OP_LUI:
182         case OP_LB:
183         case OP_LH:
184         case OP_LWL:
185         case OP_LW:
186         case OP_LBU:
187         case OP_LHU:
188         case OP_LWR:
189                 return BIT(op.i.rt);
190         case OP_JAL:
191                 return BIT(31);
192         case OP_CP0:
193                 switch (op.r.rs) {
194                 case OP_CP0_MFC0:
195                 case OP_CP0_CFC0:
196                         return BIT(op.i.rt);
197                 default:
198                         return 0;
199                 }
200         case OP_CP2:
201                 if (op.r.op == OP_CP2_BASIC) {
202                         switch (op.r.rs) {
203                         case OP_CP2_BASIC_MFC2:
204                         case OP_CP2_BASIC_CFC2:
205                                 return BIT(op.i.rt);
206                         default:
207                                 break;
208                         }
209                 }
210                 return 0;
211         case OP_REGIMM:
212                 switch (op.r.rt) {
213                 case OP_REGIMM_BLTZAL:
214                 case OP_REGIMM_BGEZAL:
215                         return BIT(31);
216                 default:
217                         return 0;
218                 }
219         default:
220                 return 0;
221         }
222 }
223
224 bool opcode_reads_register(union code op, u8 reg)
225 {
226         return opcode_read_mask(op) & BIT(reg);
227 }
228
229 bool opcode_writes_register(union code op, u8 reg)
230 {
231         return opcode_write_mask(op) & BIT(reg);
232 }
233
234 static int find_prev_writer(const struct opcode *list, unsigned int offset, u8 reg)
235 {
236         union code c;
237         unsigned int i;
238
239         if (op_flag_sync(list[offset].flags))
240                 return -1;
241
242         for (i = offset; i > 0; i--) {
243                 c = list[i - 1].c;
244
245                 if (opcode_writes_register(c, reg)) {
246                         if (i > 1 && has_delay_slot(list[i - 2].c))
247                                 break;
248
249                         return i - 1;
250                 }
251
252                 if (op_flag_sync(list[i - 1].flags) ||
253                     has_delay_slot(c) ||
254                     opcode_reads_register(c, reg))
255                         break;
256         }
257
258         return -1;
259 }
260
261 static int find_next_reader(const struct opcode *list, unsigned int offset, u8 reg)
262 {
263         unsigned int i;
264         union code c;
265
266         if (op_flag_sync(list[offset].flags))
267                 return -1;
268
269         for (i = offset; ; i++) {
270                 c = list[i].c;
271
272                 if (opcode_reads_register(c, reg))
273                         return i;
274
275                 if (op_flag_sync(list[i].flags)
276                     || (op_flag_no_ds(list[i].flags) && has_delay_slot(c))
277                     || is_delay_slot(list, i)
278                     || opcode_writes_register(c, reg))
279                         break;
280         }
281
282         return -1;
283 }
284
285 static bool reg_is_dead(const struct opcode *list, unsigned int offset, u8 reg)
286 {
287         unsigned int i;
288
289         if (op_flag_sync(list[offset].flags) || is_delay_slot(list, offset))
290                 return false;
291
292         for (i = offset + 1; ; i++) {
293                 if (opcode_reads_register(list[i].c, reg))
294                         return false;
295
296                 if (opcode_writes_register(list[i].c, reg))
297                         return true;
298
299                 if (has_delay_slot(list[i].c)) {
300                         if (op_flag_no_ds(list[i].flags) ||
301                             opcode_reads_register(list[i + 1].c, reg))
302                                 return false;
303
304                         return opcode_writes_register(list[i + 1].c, reg);
305                 }
306         }
307 }
308
309 static bool reg_is_read(const struct opcode *list,
310                         unsigned int a, unsigned int b, u8 reg)
311 {
312         /* Return true if reg is read in one of the opcodes of the interval
313          * [a, b[ */
314         for (; a < b; a++) {
315                 if (!is_nop(list[a].c) && opcode_reads_register(list[a].c, reg))
316                         return true;
317         }
318
319         return false;
320 }
321
322 static bool reg_is_written(const struct opcode *list,
323                            unsigned int a, unsigned int b, u8 reg)
324 {
325         /* Return true if reg is written in one of the opcodes of the interval
326          * [a, b[ */
327
328         for (; a < b; a++) {
329                 if (!is_nop(list[a].c) && opcode_writes_register(list[a].c, reg))
330                         return true;
331         }
332
333         return false;
334 }
335
336 static bool reg_is_read_or_written(const struct opcode *list,
337                                    unsigned int a, unsigned int b, u8 reg)
338 {
339         return reg_is_read(list, a, b, reg) || reg_is_written(list, a, b, reg);
340 }
341
342 bool opcode_is_mfc(union code op)
343 {
344         switch (op.i.op) {
345         case OP_CP0:
346                 switch (op.r.rs) {
347                 case OP_CP0_MFC0:
348                 case OP_CP0_CFC0:
349                         return true;
350                 default:
351                         break;
352                 }
353
354                 break;
355         case OP_CP2:
356                 if (op.r.op == OP_CP2_BASIC) {
357                         switch (op.r.rs) {
358                         case OP_CP2_BASIC_MFC2:
359                         case OP_CP2_BASIC_CFC2:
360                                 return true;
361                         default:
362                                 break;
363                         }
364                 }
365
366                 break;
367         default:
368                 break;
369         }
370
371         return false;
372 }
373
374 bool opcode_is_load(union code op)
375 {
376         switch (op.i.op) {
377         case OP_LB:
378         case OP_LH:
379         case OP_LWL:
380         case OP_LW:
381         case OP_LBU:
382         case OP_LHU:
383         case OP_LWR:
384         case OP_LWC2:
385                 return true;
386         default:
387                 return false;
388         }
389 }
390
391 static bool opcode_is_store(union code op)
392 {
393         switch (op.i.op) {
394         case OP_SB:
395         case OP_SH:
396         case OP_SW:
397         case OP_SWL:
398         case OP_SWR:
399         case OP_SWC2:
400                 return true;
401         default:
402                 return false;
403         }
404 }
405
406 static u8 opcode_get_io_size(union code op)
407 {
408         switch (op.i.op) {
409         case OP_LB:
410         case OP_LBU:
411         case OP_SB:
412                 return 8;
413         case OP_LH:
414         case OP_LHU:
415         case OP_SH:
416                 return 16;
417         default:
418                 return 32;
419         }
420 }
421
422 bool opcode_is_io(union code op)
423 {
424         return opcode_is_load(op) || opcode_is_store(op);
425 }
426
427 /* TODO: Complete */
428 static bool is_nop(union code op)
429 {
430         if (opcode_writes_register(op, 0)) {
431                 switch (op.i.op) {
432                 case OP_CP0:
433                         return op.r.rs != OP_CP0_MFC0;
434                 case OP_LB:
435                 case OP_LH:
436                 case OP_LWL:
437                 case OP_LW:
438                 case OP_LBU:
439                 case OP_LHU:
440                 case OP_LWR:
441                         return false;
442                 default:
443                         return true;
444                 }
445         }
446
447         switch (op.i.op) {
448         case OP_SPECIAL:
449                 switch (op.r.op) {
450                 case OP_SPECIAL_AND:
451                         return op.r.rd == op.r.rt && op.r.rd == op.r.rs;
452                 case OP_SPECIAL_ADD:
453                 case OP_SPECIAL_ADDU:
454                         return (op.r.rd == op.r.rt && op.r.rs == 0) ||
455                                 (op.r.rd == op.r.rs && op.r.rt == 0);
456                 case OP_SPECIAL_SUB:
457                 case OP_SPECIAL_SUBU:
458                         return op.r.rd == op.r.rs && op.r.rt == 0;
459                 case OP_SPECIAL_OR:
460                         if (op.r.rd == op.r.rt)
461                                 return op.r.rd == op.r.rs || op.r.rs == 0;
462                         else
463                                 return (op.r.rd == op.r.rs) && op.r.rt == 0;
464                 case OP_SPECIAL_SLL:
465                 case OP_SPECIAL_SRA:
466                 case OP_SPECIAL_SRL:
467                         return op.r.rd == op.r.rt && op.r.imm == 0;
468                 case OP_SPECIAL_MFHI:
469                 case OP_SPECIAL_MFLO:
470                         return op.r.rd == 0;
471                 default:
472                         return false;
473                 }
474         case OP_ORI:
475         case OP_ADDI:
476         case OP_ADDIU:
477                 return op.i.rt == op.i.rs && op.i.imm == 0;
478         case OP_BGTZ:
479                 return (op.i.rs == 0 || op.i.imm == 1);
480         case OP_REGIMM:
481                 return (op.i.op == OP_REGIMM_BLTZ ||
482                                 op.i.op == OP_REGIMM_BLTZAL) &&
483                         (op.i.rs == 0 || op.i.imm == 1);
484         case OP_BNE:
485                 return (op.i.rs == op.i.rt || op.i.imm == 1);
486         default:
487                 return false;
488         }
489 }
490
491 static void lightrec_optimize_sll_sra(struct opcode *list, unsigned int offset,
492                                       struct constprop_data *v)
493 {
494         struct opcode *ldop = NULL, *curr = &list[offset], *next;
495         struct opcode *to_change, *to_nop;
496         int idx, idx2;
497
498         if (curr->r.imm != 24 && curr->r.imm != 16)
499                 return;
500
501         if (is_delay_slot(list, offset))
502                 return;
503
504         idx = find_next_reader(list, offset + 1, curr->r.rd);
505         if (idx < 0)
506                 return;
507
508         next = &list[idx];
509
510         if (next->i.op != OP_SPECIAL || next->r.op != OP_SPECIAL_SRA ||
511             next->r.imm != curr->r.imm || next->r.rt != curr->r.rd)
512                 return;
513
514         if (curr->r.rd != curr->r.rt && next->r.rd != next->r.rt) {
515                 /* sll rY, rX, 16
516                  * ...
517                  * sra rZ, rY, 16 */
518
519                 if (!reg_is_dead(list, idx, curr->r.rd) ||
520                     reg_is_read_or_written(list, offset, idx, next->r.rd))
521                         return;
522
523                 /* If rY is dead after the SRL, and rZ is not used after the SLL,
524                  * we can change rY to rZ */
525
526                 pr_debug("Detected SLL/SRA with middle temp register\n");
527                 curr->r.rd = next->r.rd;
528                 next->r.rt = curr->r.rd;
529         }
530
531         /* We got a SLL/SRA combo. If imm #16, that's a cast to s16.
532          * If imm #24 that's a cast to s8.
533          *
534          * First of all, make sure that the target register of the SLL is not
535          * read after the SRA. */
536
537         if (curr->r.rd == curr->r.rt) {
538                 /* sll rX, rX, 16
539                  * ...
540                  * sra rY, rX, 16 */
541                 to_change = next;
542                 to_nop = curr;
543
544                 /* rX is used after the SRA - we cannot convert it. */
545                 if (curr->r.rd != next->r.rd && !reg_is_dead(list, idx, curr->r.rd))
546                         return;
547         } else {
548                 /* sll rY, rX, 16
549                  * ...
550                  * sra rY, rY, 16 */
551                 to_change = curr;
552                 to_nop = next;
553         }
554
555         idx2 = find_prev_writer(list, offset, curr->r.rt);
556         if (idx2 >= 0) {
557                 /* Note that PSX games sometimes do casts after
558                  * a LHU or LBU; in this case we can change the
559                  * load opcode to a LH or LB, and the cast can
560                  * be changed to a MOV or a simple NOP. */
561
562                 ldop = &list[idx2];
563
564                 if (next->r.rd != ldop->i.rt &&
565                     !reg_is_dead(list, idx, ldop->i.rt))
566                         ldop = NULL;
567                 else if (curr->r.imm == 16 && ldop->i.op == OP_LHU)
568                         ldop->i.op = OP_LH;
569                 else if (curr->r.imm == 24 && ldop->i.op == OP_LBU)
570                         ldop->i.op = OP_LB;
571                 else
572                         ldop = NULL;
573
574                 if (ldop) {
575                         if (next->r.rd == ldop->i.rt) {
576                                 to_change->opcode = 0;
577                         } else if (reg_is_dead(list, idx, ldop->i.rt) &&
578                                    !reg_is_read_or_written(list, idx2 + 1, idx, next->r.rd)) {
579                                 /* The target register of the SRA is dead after the
580                                  * LBU/LHU; we can change the target register of the
581                                  * LBU/LHU to the one of the SRA. */
582                                 v[ldop->i.rt].known = 0;
583                                 v[ldop->i.rt].sign = 0;
584                                 ldop->i.rt = next->r.rd;
585                                 to_change->opcode = 0;
586                         } else {
587                                 to_change->i.op = OP_META;
588                                 to_change->m.op = OP_META_MOV;
589                                 to_change->m.rd = next->r.rd;
590                                 to_change->m.rs = ldop->i.rt;
591                         }
592
593                         if (to_nop->r.imm == 24)
594                                 pr_debug("Convert LBU+SLL+SRA to LB\n");
595                         else
596                                 pr_debug("Convert LHU+SLL+SRA to LH\n");
597
598                         v[ldop->i.rt].known = 0;
599                         v[ldop->i.rt].sign = 0xffffff80 << 24 - curr->r.imm;
600                 }
601         }
602
603         if (!ldop) {
604                 pr_debug("Convert SLL/SRA #%u to EXT%c\n",
605                          curr->r.imm, curr->r.imm == 24 ? 'C' : 'S');
606
607                 to_change->m.rs = curr->r.rt;
608                 to_change->m.op = to_nop->r.imm == 24 ? OP_META_EXTC : OP_META_EXTS;
609                 to_change->i.op = OP_META;
610         }
611
612         to_nop->opcode = 0;
613 }
614
615 static void
616 lightrec_remove_useless_lui(struct block *block, unsigned int offset,
617                             const struct constprop_data *v)
618 {
619         struct opcode *list = block->opcode_list,
620                       *op = &block->opcode_list[offset];
621         int reader;
622
623         if (!op_flag_sync(op->flags) && is_known(v, op->i.rt) &&
624             v[op->i.rt].value == op->i.imm << 16) {
625                 pr_debug("Converting duplicated LUI to NOP\n");
626                 op->opcode = 0x0;
627                 return;
628         }
629
630         if (op->i.imm != 0 || op->i.rt == 0 || offset == block->nb_ops - 1)
631                 return;
632
633         reader = find_next_reader(list, offset + 1, op->i.rt);
634         if (reader <= 0)
635                 return;
636
637         if (opcode_writes_register(list[reader].c, op->i.rt) ||
638             reg_is_dead(list, reader, op->i.rt)) {
639                 pr_debug("Removing useless LUI 0x0\n");
640
641                 if (list[reader].i.rs == op->i.rt)
642                         list[reader].i.rs = 0;
643                 if (list[reader].i.op == OP_SPECIAL &&
644                     list[reader].i.rt == op->i.rt)
645                         list[reader].i.rt = 0;
646                 op->opcode = 0x0;
647         }
648 }
649
650 static void lightrec_modify_lui(struct block *block, unsigned int offset)
651 {
652         union code c, *lui = &block->opcode_list[offset].c;
653         bool stop = false, stop_next = false;
654         unsigned int i;
655
656         for (i = offset + 1; !stop && i < block->nb_ops; i++) {
657                 c = block->opcode_list[i].c;
658                 stop = stop_next;
659
660                 if ((opcode_is_store(c) && c.i.rt == lui->i.rt)
661                     || (!opcode_is_load(c) && opcode_reads_register(c, lui->i.rt)))
662                         break;
663
664                 if (opcode_writes_register(c, lui->i.rt)) {
665                         if (c.i.op == OP_LWL || c.i.op == OP_LWR) {
666                                 /* LWL/LWR only partially write their target register;
667                                  * therefore the LUI should not write a different value. */
668                                 break;
669                         }
670
671                         pr_debug("Convert LUI at offset 0x%x to kuseg\n",
672                                  i - 1 << 2);
673                         lui->i.imm = kunseg(lui->i.imm << 16) >> 16;
674                         break;
675                 }
676
677                 if (has_delay_slot(c))
678                         stop_next = true;
679         }
680 }
681
682 static int lightrec_transform_branches(struct lightrec_state *state,
683                                        struct block *block)
684 {
685         struct opcode *op;
686         unsigned int i;
687         s32 offset;
688
689         for (i = 0; i < block->nb_ops; i++) {
690                 op = &block->opcode_list[i];
691
692                 switch (op->i.op) {
693                 case OP_J:
694                         /* Transform J opcode into BEQ $zero, $zero if possible. */
695                         offset = (s32)((block->pc & 0xf0000000) >> 2 | op->j.imm)
696                                 - (s32)(block->pc >> 2) - (s32)i - 1;
697
698                         if (offset == (s16)offset) {
699                                 pr_debug("Transform J into BEQ $zero, $zero\n");
700                                 op->i.op = OP_BEQ;
701                                 op->i.rs = 0;
702                                 op->i.rt = 0;
703                                 op->i.imm = offset;
704
705                         }
706                         fallthrough;
707                 default:
708                         break;
709                 }
710         }
711
712         return 0;
713 }
714
715 static inline bool is_power_of_two(u32 value)
716 {
717         return popcount32(value) == 1;
718 }
719
720 static void lightrec_patch_known_zero(struct opcode *op,
721                                       const struct constprop_data *v)
722 {
723         switch (op->i.op) {
724         case OP_SPECIAL:
725                 switch (op->r.op) {
726                 case OP_SPECIAL_JR:
727                 case OP_SPECIAL_JALR:
728                 case OP_SPECIAL_MTHI:
729                 case OP_SPECIAL_MTLO:
730                         if (is_known_zero(v, op->r.rs))
731                                 op->r.rs = 0;
732                         break;
733                 default:
734                         if (is_known_zero(v, op->r.rs))
735                                 op->r.rs = 0;
736                         fallthrough;
737                 case OP_SPECIAL_SLL:
738                 case OP_SPECIAL_SRL:
739                 case OP_SPECIAL_SRA:
740                         if (is_known_zero(v, op->r.rt))
741                                 op->r.rt = 0;
742                         break;
743                 case OP_SPECIAL_SYSCALL:
744                 case OP_SPECIAL_BREAK:
745                 case OP_SPECIAL_MFHI:
746                 case OP_SPECIAL_MFLO:
747                         break;
748                 }
749                 break;
750         case OP_CP0:
751                 switch (op->r.rs) {
752                 case OP_CP0_MTC0:
753                 case OP_CP0_CTC0:
754                         if (is_known_zero(v, op->r.rt))
755                                 op->r.rt = 0;
756                         break;
757                 default:
758                         break;
759                 }
760                 break;
761         case OP_CP2:
762                 if (op->r.op == OP_CP2_BASIC) {
763                         switch (op->r.rs) {
764                         case OP_CP2_BASIC_MTC2:
765                         case OP_CP2_BASIC_CTC2:
766                                 if (is_known_zero(v, op->r.rt))
767                                         op->r.rt = 0;
768                                 break;
769                         default:
770                                 break;
771                         }
772                 }
773                 break;
774         case OP_BEQ:
775         case OP_BNE:
776                 if (is_known_zero(v, op->i.rt))
777                         op->i.rt = 0;
778                 fallthrough;
779         case OP_REGIMM:
780         case OP_BLEZ:
781         case OP_BGTZ:
782         case OP_ADDI:
783         case OP_ADDIU:
784         case OP_SLTI:
785         case OP_SLTIU:
786         case OP_ANDI:
787         case OP_ORI:
788         case OP_XORI:
789         case OP_META_MULT2:
790         case OP_META_MULTU2:
791         case OP_META:
792                 if (is_known_zero(v, op->m.rs))
793                         op->m.rs = 0;
794                 break;
795         case OP_SB:
796         case OP_SH:
797         case OP_SWL:
798         case OP_SW:
799         case OP_SWR:
800                 if (is_known_zero(v, op->i.rt))
801                         op->i.rt = 0;
802                 fallthrough;
803         case OP_LB:
804         case OP_LH:
805         case OP_LWL:
806         case OP_LW:
807         case OP_LBU:
808         case OP_LHU:
809         case OP_LWR:
810         case OP_LWC2:
811         case OP_SWC2:
812                 if (is_known(v, op->i.rs)
813                     && kunseg(v[op->i.rs].value) == 0)
814                         op->i.rs = 0;
815                 break;
816         default:
817                 break;
818         }
819 }
820
821 static void lightrec_reset_syncs(struct block *block)
822 {
823         struct opcode *op, *list = block->opcode_list;
824         unsigned int i;
825         s32 offset;
826
827         for (i = 0; i < block->nb_ops; i++)
828                 list[i].flags &= ~LIGHTREC_SYNC;
829
830         for (i = 0; i < block->nb_ops; i++) {
831                 op = &list[i];
832
833                 if (has_delay_slot(op->c)) {
834                         if (op_flag_local_branch(op->flags)) {
835                                 offset = i + 1 - op_flag_no_ds(op->flags) + (s16)op->i.imm;
836                                 list[offset].flags |= LIGHTREC_SYNC;
837                         }
838
839                         if (op_flag_emulate_branch(op->flags) && i + 2 < block->nb_ops)
840                                 list[i + 2].flags |= LIGHTREC_SYNC;
841                 }
842         }
843 }
844
845 static int lightrec_transform_ops(struct lightrec_state *state, struct block *block)
846 {
847         struct opcode *op, *list = block->opcode_list;
848         struct constprop_data v[32] = LIGHTREC_CONSTPROP_INITIALIZER;
849         unsigned int i;
850         bool local;
851         u8 tmp;
852
853         for (i = 0; i < block->nb_ops; i++) {
854                 op = &list[i];
855
856                 lightrec_consts_propagate(block, i, v);
857
858                 lightrec_patch_known_zero(op, v);
859
860                 /* Transform all opcodes detected as useless to real NOPs
861                  * (0x0: SLL r0, r0, #0) */
862                 if (op->opcode != 0 && is_nop(op->c)) {
863                         pr_debug("Converting useless opcode 0x%08x to NOP\n",
864                                         op->opcode);
865                         op->opcode = 0x0;
866                 }
867
868                 if (!op->opcode)
869                         continue;
870
871                 switch (op->i.op) {
872                 case OP_BEQ:
873                         if (op->i.rs == op->i.rt ||
874                             (is_known(v, op->i.rs) && is_known(v, op->i.rt) &&
875                              v[op->i.rs].value == v[op->i.rt].value)) {
876                                 if (op->i.rs != op->i.rt)
877                                         pr_debug("Found always-taken BEQ\n");
878
879                                 op->i.rs = 0;
880                                 op->i.rt = 0;
881                         } else if (v[op->i.rs].known & v[op->i.rt].known &
882                                    (v[op->i.rs].value ^ v[op->i.rt].value)) {
883                                 pr_debug("Found never-taken BEQ\n");
884
885                                 local = op_flag_local_branch(op->flags);
886                                 op->opcode = 0;
887                                 op->flags = 0;
888
889                                 if (local)
890                                         lightrec_reset_syncs(block);
891                         } else if (op->i.rs == 0) {
892                                 op->i.rs = op->i.rt;
893                                 op->i.rt = 0;
894                         }
895                         break;
896
897                 case OP_BNE:
898                         if (v[op->i.rs].known & v[op->i.rt].known &
899                             (v[op->i.rs].value ^ v[op->i.rt].value)) {
900                                 pr_debug("Found always-taken BNE\n");
901
902                                 op->i.op = OP_BEQ;
903                                 op->i.rs = 0;
904                                 op->i.rt = 0;
905                         } else if (is_known(v, op->i.rs) && is_known(v, op->i.rt) &&
906                                    v[op->i.rs].value == v[op->i.rt].value) {
907                                 pr_debug("Found never-taken BNE\n");
908
909                                 local = op_flag_local_branch(op->flags);
910                                 op->opcode = 0;
911                                 op->flags = 0;
912
913                                 if (local)
914                                         lightrec_reset_syncs(block);
915                         } else if (op->i.rs == 0) {
916                                 op->i.rs = op->i.rt;
917                                 op->i.rt = 0;
918                         }
919                         break;
920
921                 case OP_BLEZ:
922                         if (v[op->i.rs].known & BIT(31) &&
923                             v[op->i.rs].value & BIT(31)) {
924                                 pr_debug("Found always-taken BLEZ\n");
925
926                                 op->i.op = OP_BEQ;
927                                 op->i.rs = 0;
928                                 op->i.rt = 0;
929                         }
930                         break;
931
932                 case OP_BGTZ:
933                         if (v[op->i.rs].known & BIT(31) &&
934                             v[op->i.rs].value & BIT(31)) {
935                                 pr_debug("Found never-taken BGTZ\n");
936
937                                 local = op_flag_local_branch(op->flags);
938                                 op->opcode = 0;
939                                 op->flags = 0;
940
941                                 if (local)
942                                         lightrec_reset_syncs(block);
943                         }
944                         break;
945
946                 case OP_LUI:
947                         if (i == 0 || !has_delay_slot(list[i - 1].c))
948                                 lightrec_modify_lui(block, i);
949                         lightrec_remove_useless_lui(block, i, v);
950                         break;
951
952                 /* Transform ORI/ADDI/ADDIU with imm #0 or ORR/ADD/ADDU/SUB/SUBU
953                  * with register $zero to the MOV meta-opcode */
954                 case OP_ORI:
955                 case OP_ADDI:
956                 case OP_ADDIU:
957                         if (op->i.imm == 0) {
958                                 pr_debug("Convert ORI/ADDI/ADDIU #0 to MOV\n");
959                                 op->m.rd = op->i.rt;
960                                 op->m.op = OP_META_MOV;
961                                 op->i.op = OP_META;
962                         }
963                         break;
964                 case OP_ANDI:
965                         if (bits_are_known_zero(v, op->i.rs, ~op->i.imm)) {
966                                 pr_debug("Found useless ANDI 0x%x\n", op->i.imm);
967
968                                 if (op->i.rs == op->i.rt) {
969                                         op->opcode = 0;
970                                 } else {
971                                         op->m.rd = op->i.rt;
972                                         op->m.op = OP_META_MOV;
973                                         op->i.op = OP_META;
974                                 }
975                         }
976                         break;
977                 case OP_REGIMM:
978                         switch (op->r.rt) {
979                         case OP_REGIMM_BLTZ:
980                         case OP_REGIMM_BGEZ:
981                                 if (!(v[op->r.rs].known & BIT(31)))
982                                         break;
983
984                                 if (!!(v[op->r.rs].value & BIT(31))
985                                     ^ (op->r.rt == OP_REGIMM_BGEZ)) {
986                                         pr_debug("Found always-taken BLTZ/BGEZ\n");
987                                         op->i.op = OP_BEQ;
988                                         op->i.rs = 0;
989                                         op->i.rt = 0;
990                                 } else {
991                                         pr_debug("Found never-taken BLTZ/BGEZ\n");
992
993                                         local = op_flag_local_branch(op->flags);
994                                         op->opcode = 0;
995                                         op->flags = 0;
996
997                                         if (local)
998                                                 lightrec_reset_syncs(block);
999                                 }
1000                                 break;
1001                         case OP_REGIMM_BLTZAL:
1002                         case OP_REGIMM_BGEZAL:
1003                                 /* TODO: Detect always-taken and replace with JAL */
1004                                 break;
1005                         }
1006                         break;
1007                 case OP_SPECIAL:
1008                         switch (op->r.op) {
1009                         case OP_SPECIAL_SRAV:
1010                                 if ((v[op->r.rs].known & 0x1f) != 0x1f)
1011                                         break;
1012
1013                                 pr_debug("Convert SRAV to SRA\n");
1014                                 op->r.imm = v[op->r.rs].value & 0x1f;
1015                                 op->r.op = OP_SPECIAL_SRA;
1016
1017                                 fallthrough;
1018                         case OP_SPECIAL_SRA:
1019                                 if (op->r.imm == 0) {
1020                                         pr_debug("Convert SRA #0 to MOV\n");
1021                                         op->m.rs = op->r.rt;
1022                                         op->m.op = OP_META_MOV;
1023                                         op->i.op = OP_META;
1024                                         break;
1025                                 }
1026                                 break;
1027
1028                         case OP_SPECIAL_SLLV:
1029                                 if ((v[op->r.rs].known & 0x1f) != 0x1f)
1030                                         break;
1031
1032                                 pr_debug("Convert SLLV to SLL\n");
1033                                 op->r.imm = v[op->r.rs].value & 0x1f;
1034                                 op->r.op = OP_SPECIAL_SLL;
1035
1036                                 fallthrough;
1037                         case OP_SPECIAL_SLL:
1038                                 if (op->r.imm == 0) {
1039                                         pr_debug("Convert SLL #0 to MOV\n");
1040                                         op->m.rs = op->r.rt;
1041                                         op->m.op = OP_META_MOV;
1042                                         op->i.op = OP_META;
1043                                 }
1044
1045                                 lightrec_optimize_sll_sra(block->opcode_list, i, v);
1046                                 break;
1047
1048                         case OP_SPECIAL_SRLV:
1049                                 if ((v[op->r.rs].known & 0x1f) != 0x1f)
1050                                         break;
1051
1052                                 pr_debug("Convert SRLV to SRL\n");
1053                                 op->r.imm = v[op->r.rs].value & 0x1f;
1054                                 op->r.op = OP_SPECIAL_SRL;
1055
1056                                 fallthrough;
1057                         case OP_SPECIAL_SRL:
1058                                 if (op->r.imm == 0) {
1059                                         pr_debug("Convert SRL #0 to MOV\n");
1060                                         op->m.rs = op->r.rt;
1061                                         op->m.op = OP_META_MOV;
1062                                         op->i.op = OP_META;
1063                                 }
1064                                 break;
1065
1066                         case OP_SPECIAL_MULT:
1067                         case OP_SPECIAL_MULTU:
1068                                 if (is_known(v, op->r.rs) &&
1069                                     is_power_of_two(v[op->r.rs].value)) {
1070                                         tmp = op->c.i.rs;
1071                                         op->c.i.rs = op->c.i.rt;
1072                                         op->c.i.rt = tmp;
1073                                 } else if (!is_known(v, op->r.rt) ||
1074                                            !is_power_of_two(v[op->r.rt].value)) {
1075                                         break;
1076                                 }
1077
1078                                 pr_debug("Multiply by power-of-two: %u\n",
1079                                          v[op->r.rt].value);
1080
1081                                 if (op->r.op == OP_SPECIAL_MULT)
1082                                         op->i.op = OP_META_MULT2;
1083                                 else
1084                                         op->i.op = OP_META_MULTU2;
1085
1086                                 op->r.op = ctz32(v[op->r.rt].value);
1087                                 break;
1088                         case OP_SPECIAL_NOR:
1089                                 if (op->r.rs == 0 || op->r.rt == 0) {
1090                                         pr_debug("Convert NOR $zero to COM\n");
1091                                         op->i.op = OP_META;
1092                                         op->m.op = OP_META_COM;
1093                                         if (!op->m.rs)
1094                                                 op->m.rs = op->r.rt;
1095                                 }
1096                                 break;
1097                         case OP_SPECIAL_OR:
1098                         case OP_SPECIAL_ADD:
1099                         case OP_SPECIAL_ADDU:
1100                                 if (op->r.rs == 0) {
1101                                         pr_debug("Convert OR/ADD $zero to MOV\n");
1102                                         op->m.rs = op->r.rt;
1103                                         op->m.op = OP_META_MOV;
1104                                         op->i.op = OP_META;
1105                                 }
1106                                 fallthrough;
1107                         case OP_SPECIAL_SUB:
1108                         case OP_SPECIAL_SUBU:
1109                                 if (op->r.rt == 0) {
1110                                         pr_debug("Convert OR/ADD/SUB $zero to MOV\n");
1111                                         op->m.op = OP_META_MOV;
1112                                         op->i.op = OP_META;
1113                                 }
1114                                 fallthrough;
1115                         default:
1116                                 break;
1117                         }
1118                         fallthrough;
1119                 default:
1120                         break;
1121                 }
1122         }
1123
1124         return 0;
1125 }
1126
1127 static bool lightrec_can_switch_delay_slot(union code op, union code next_op)
1128 {
1129         switch (op.i.op) {
1130         case OP_SPECIAL:
1131                 switch (op.r.op) {
1132                 case OP_SPECIAL_JALR:
1133                         if (opcode_reads_register(next_op, op.r.rd) ||
1134                             opcode_writes_register(next_op, op.r.rd))
1135                                 return false;
1136                         fallthrough;
1137                 case OP_SPECIAL_JR:
1138                         if (opcode_writes_register(next_op, op.r.rs))
1139                                 return false;
1140                         fallthrough;
1141                 default:
1142                         break;
1143                 }
1144                 fallthrough;
1145         case OP_J:
1146                 break;
1147         case OP_JAL:
1148                 if (opcode_reads_register(next_op, 31) ||
1149                     opcode_writes_register(next_op, 31))
1150                         return false;;
1151
1152                 break;
1153         case OP_BEQ:
1154         case OP_BNE:
1155                 if (op.i.rt && opcode_writes_register(next_op, op.i.rt))
1156                         return false;
1157                 fallthrough;
1158         case OP_BLEZ:
1159         case OP_BGTZ:
1160                 if (op.i.rs && opcode_writes_register(next_op, op.i.rs))
1161                         return false;
1162                 break;
1163         case OP_REGIMM:
1164                 switch (op.r.rt) {
1165                 case OP_REGIMM_BLTZAL:
1166                 case OP_REGIMM_BGEZAL:
1167                         if (opcode_reads_register(next_op, 31) ||
1168                             opcode_writes_register(next_op, 31))
1169                                 return false;
1170                         fallthrough;
1171                 case OP_REGIMM_BLTZ:
1172                 case OP_REGIMM_BGEZ:
1173                         if (op.i.rs && opcode_writes_register(next_op, op.i.rs))
1174                                 return false;
1175                         break;
1176                 }
1177                 fallthrough;
1178         default:
1179                 break;
1180         }
1181
1182         return true;
1183 }
1184
1185 static int lightrec_switch_delay_slots(struct lightrec_state *state, struct block *block)
1186 {
1187         struct opcode *list, *next = &block->opcode_list[0];
1188         unsigned int i;
1189         union code op, next_op;
1190         u32 flags;
1191
1192         for (i = 0; i < block->nb_ops - 1; i++) {
1193                 list = next;
1194                 next = &block->opcode_list[i + 1];
1195                 next_op = next->c;
1196                 op = list->c;
1197
1198                 if (!has_delay_slot(op) || op_flag_no_ds(list->flags) ||
1199                     op_flag_emulate_branch(list->flags) ||
1200                     op.opcode == 0 || next_op.opcode == 0)
1201                         continue;
1202
1203                 if (is_delay_slot(block->opcode_list, i))
1204                         continue;
1205
1206                 if (op_flag_sync(next->flags))
1207                         continue;
1208
1209                 if (op_flag_load_delay(next->flags) && opcode_is_load(next_op))
1210                         continue;
1211
1212                 if (!lightrec_can_switch_delay_slot(list->c, next_op))
1213                         continue;
1214
1215                 pr_debug("Swap branch and delay slot opcodes "
1216                          "at offsets 0x%x / 0x%x\n",
1217                          i << 2, (i + 1) << 2);
1218
1219                 flags = next->flags | (list->flags & LIGHTREC_SYNC);
1220                 list->c = next_op;
1221                 next->c = op;
1222                 next->flags = (list->flags | LIGHTREC_NO_DS) & ~LIGHTREC_SYNC;
1223                 list->flags = flags | LIGHTREC_NO_DS;
1224         }
1225
1226         return 0;
1227 }
1228
1229 static int lightrec_detect_impossible_branches(struct lightrec_state *state,
1230                                                struct block *block)
1231 {
1232         struct opcode *op, *list = block->opcode_list, *next = &list[0];
1233         unsigned int i;
1234         int ret = 0;
1235
1236         for (i = 0; i < block->nb_ops - 1; i++) {
1237                 op = next;
1238                 next = &list[i + 1];
1239
1240                 if (!has_delay_slot(op->c) ||
1241                     (!has_delay_slot(next->c) &&
1242                      !opcode_is_mfc(next->c) &&
1243                      !(next->i.op == OP_CP0 && next->r.rs == OP_CP0_RFE)))
1244                         continue;
1245
1246                 if (op->c.opcode == next->c.opcode) {
1247                         /* The delay slot is the exact same opcode as the branch
1248                          * opcode: this is effectively a NOP */
1249                         next->c.opcode = 0;
1250                         continue;
1251                 }
1252
1253                 op->flags |= LIGHTREC_EMULATE_BRANCH;
1254
1255                 if (OPT_LOCAL_BRANCHES && i + 2 < block->nb_ops) {
1256                         /* The interpreter will only emulate the branch, then
1257                          * return to the compiled code. Add a SYNC after the
1258                          * branch + delay slot in the case where the branch
1259                          * was not taken. */
1260                         list[i + 2].flags |= LIGHTREC_SYNC;
1261                 }
1262         }
1263
1264         return ret;
1265 }
1266
1267 static bool is_local_branch(const struct block *block, unsigned int idx)
1268 {
1269         const struct opcode *op = &block->opcode_list[idx];
1270         s32 offset;
1271
1272         switch (op->c.i.op) {
1273         case OP_BEQ:
1274         case OP_BNE:
1275         case OP_BLEZ:
1276         case OP_BGTZ:
1277         case OP_REGIMM:
1278                 offset = idx + 1 + (s16)op->c.i.imm;
1279                 if (offset >= 0 && offset < block->nb_ops)
1280                         return true;
1281                 fallthrough;
1282         default:
1283                 return false;
1284         }
1285 }
1286
1287 static int lightrec_handle_load_delays(struct lightrec_state *state,
1288                                        struct block *block)
1289 {
1290         struct opcode *op, *list = block->opcode_list;
1291         unsigned int i;
1292         s16 imm;
1293
1294         for (i = 0; i < block->nb_ops; i++) {
1295                 op = &list[i];
1296
1297                 if (!opcode_is_load(op->c) || !op->c.i.rt || op->c.i.op == OP_LWC2)
1298                         continue;
1299
1300                 if (!is_delay_slot(list, i)) {
1301                         /* Only handle load delays in delay slots.
1302                          * PSX games never abused load delay slots otherwise. */
1303                         continue;
1304                 }
1305
1306                 if (is_local_branch(block, i - 1)) {
1307                         imm = (s16)list[i - 1].c.i.imm;
1308
1309                         if (!opcode_reads_register(list[i + imm].c, op->c.i.rt)) {
1310                                 /* The target opcode of the branch is inside
1311                                  * the block, and it does not read the register
1312                                  * written to by the load opcode; we can ignore
1313                                  * the load delay. */
1314                                 continue;
1315                         }
1316                 }
1317
1318                 op->flags |= LIGHTREC_LOAD_DELAY;
1319         }
1320
1321         return 0;
1322 }
1323
1324 static int lightrec_swap_load_delays(struct lightrec_state *state,
1325                                      struct block *block)
1326 {
1327         unsigned int i;
1328         union code c, next;
1329         bool in_ds = false, skip_next = false;
1330         struct opcode op;
1331
1332         if (block->nb_ops < 2)
1333                 return 0;
1334
1335         for (i = 0; i < block->nb_ops - 2; i++) {
1336                 c = block->opcode_list[i].c;
1337
1338                 if (skip_next) {
1339                         skip_next = false;
1340                 } else if (!in_ds && opcode_is_load(c) && c.i.op != OP_LWC2) {
1341                         next = block->opcode_list[i + 1].c;
1342
1343                         switch (next.i.op) {
1344                         case OP_LWL:
1345                         case OP_LWR:
1346                         case OP_REGIMM:
1347                         case OP_BEQ:
1348                         case OP_BNE:
1349                         case OP_BLEZ:
1350                         case OP_BGTZ:
1351                                 continue;
1352                         }
1353
1354                         if (opcode_reads_register(next, c.i.rt)
1355                             && !opcode_writes_register(next, c.i.rs)) {
1356                                 pr_debug("Swapping opcodes at offset 0x%x to "
1357                                          "respect load delay\n", i << 2);
1358
1359                                 op = block->opcode_list[i];
1360                                 block->opcode_list[i] = block->opcode_list[i + 1];
1361                                 block->opcode_list[i + 1] = op;
1362                                 skip_next = true;
1363                         }
1364                 }
1365
1366                 in_ds = has_delay_slot(c);
1367         }
1368
1369         return 0;
1370 }
1371
1372 static int lightrec_local_branches(struct lightrec_state *state, struct block *block)
1373 {
1374         const struct opcode *ds;
1375         struct opcode *list;
1376         unsigned int i;
1377         s32 offset;
1378
1379         for (i = 0; i < block->nb_ops; i++) {
1380                 list = &block->opcode_list[i];
1381
1382                 if (should_emulate(list) || !is_local_branch(block, i))
1383                         continue;
1384
1385                 offset = i + 1 + (s16)list->c.i.imm;
1386
1387                 pr_debug("Found local branch to offset 0x%x\n", offset << 2);
1388
1389                 ds = get_delay_slot(block->opcode_list, i);
1390                 if (op_flag_load_delay(ds->flags) && opcode_is_load(ds->c)) {
1391                         pr_debug("Branch delay slot has a load delay - skip\n");
1392                         continue;
1393                 }
1394
1395                 if (should_emulate(&block->opcode_list[offset])) {
1396                         pr_debug("Branch target must be emulated - skip\n");
1397                         continue;
1398                 }
1399
1400                 if (offset && has_delay_slot(block->opcode_list[offset - 1].c)) {
1401                         pr_debug("Branch target is a delay slot - skip\n");
1402                         continue;
1403                 }
1404
1405                 list->flags |= LIGHTREC_LOCAL_BRANCH;
1406         }
1407
1408         lightrec_reset_syncs(block);
1409
1410         return 0;
1411 }
1412
1413 bool has_delay_slot(union code op)
1414 {
1415         switch (op.i.op) {
1416         case OP_SPECIAL:
1417                 switch (op.r.op) {
1418                 case OP_SPECIAL_JR:
1419                 case OP_SPECIAL_JALR:
1420                         return true;
1421                 default:
1422                         return false;
1423                 }
1424         case OP_J:
1425         case OP_JAL:
1426         case OP_BEQ:
1427         case OP_BNE:
1428         case OP_BLEZ:
1429         case OP_BGTZ:
1430         case OP_REGIMM:
1431                 return true;
1432         default:
1433                 return false;
1434         }
1435 }
1436
1437 bool is_delay_slot(const struct opcode *list, unsigned int offset)
1438 {
1439         return offset > 0
1440                 && !op_flag_no_ds(list[offset - 1].flags)
1441                 && has_delay_slot(list[offset - 1].c);
1442 }
1443
1444 bool should_emulate(const struct opcode *list)
1445 {
1446         return op_flag_emulate_branch(list->flags) && has_delay_slot(list->c);
1447 }
1448
1449 static bool op_writes_rd(union code c)
1450 {
1451         switch (c.i.op) {
1452         case OP_SPECIAL:
1453         case OP_META:
1454                 return true;
1455         default:
1456                 return false;
1457         }
1458 }
1459
1460 static void lightrec_add_reg_op(struct opcode *op, u8 reg, u32 reg_op)
1461 {
1462         if (op_writes_rd(op->c) && reg == op->r.rd)
1463                 op->flags |= LIGHTREC_REG_RD(reg_op);
1464         else if (op->i.rs == reg)
1465                 op->flags |= LIGHTREC_REG_RS(reg_op);
1466         else if (op->i.rt == reg)
1467                 op->flags |= LIGHTREC_REG_RT(reg_op);
1468         else
1469                 pr_debug("Cannot add unload/clean/discard flag: "
1470                          "opcode does not touch register %s!\n",
1471                          lightrec_reg_name(reg));
1472 }
1473
1474 static void lightrec_add_unload(struct opcode *op, u8 reg)
1475 {
1476         lightrec_add_reg_op(op, reg, LIGHTREC_REG_UNLOAD);
1477 }
1478
1479 static void lightrec_add_discard(struct opcode *op, u8 reg)
1480 {
1481         lightrec_add_reg_op(op, reg, LIGHTREC_REG_DISCARD);
1482 }
1483
1484 static void lightrec_add_clean(struct opcode *op, u8 reg)
1485 {
1486         lightrec_add_reg_op(op, reg, LIGHTREC_REG_CLEAN);
1487 }
1488
1489 static void
1490 lightrec_early_unload_sync(struct opcode *list, s16 *last_r, s16 *last_w)
1491 {
1492         unsigned int reg;
1493         s16 offset;
1494
1495         for (reg = 0; reg < 34; reg++) {
1496                 offset = s16_max(last_w[reg], last_r[reg]);
1497
1498                 if (offset >= 0)
1499                         lightrec_add_unload(&list[offset], reg);
1500         }
1501
1502         memset(last_r, 0xff, sizeof(*last_r) * 34);
1503         memset(last_w, 0xff, sizeof(*last_w) * 34);
1504 }
1505
1506 static int lightrec_early_unload(struct lightrec_state *state, struct block *block)
1507 {
1508         u16 i, offset;
1509         struct opcode *op;
1510         s16 last_r[34], last_w[34], last_sync = 0, next_sync = 0;
1511         u64 mask_r, mask_w, dirty = 0, loaded = 0;
1512         u8 reg, load_delay_reg = 0;
1513
1514         memset(last_r, 0xff, sizeof(last_r));
1515         memset(last_w, 0xff, sizeof(last_w));
1516
1517         /*
1518          * Clean if:
1519          * - the register is dirty, and is read again after a branch opcode
1520          *
1521          * Unload if:
1522          * - the register is dirty or loaded, and is not read again
1523          * - the register is dirty or loaded, and is written again after a branch opcode
1524          * - the next opcode has the SYNC flag set
1525          *
1526          * Discard if:
1527          * - the register is dirty or loaded, and is written again
1528          */
1529
1530         for (i = 0; i < block->nb_ops; i++) {
1531                 op = &block->opcode_list[i];
1532
1533                 if (OPT_HANDLE_LOAD_DELAYS && load_delay_reg) {
1534                         /* Handle delayed register write from load opcodes in
1535                          * delay slots */
1536                         last_w[load_delay_reg] = i;
1537                         load_delay_reg = 0;
1538                 }
1539
1540                 if (op_flag_sync(op->flags) || should_emulate(op)) {
1541                         /* The next opcode has the SYNC flag set, or is a branch
1542                          * that should be emulated: unload all registers. */
1543                         lightrec_early_unload_sync(block->opcode_list, last_r, last_w);
1544                         dirty = 0;
1545                         loaded = 0;
1546                 }
1547
1548                 if (next_sync == i) {
1549                         last_sync = i;
1550                         pr_debug("Last sync: 0x%x\n", last_sync << 2);
1551                 }
1552
1553                 if (has_delay_slot(op->c)) {
1554                         next_sync = i + 1 + !op_flag_no_ds(op->flags);
1555                         pr_debug("Next sync: 0x%x\n", next_sync << 2);
1556                 }
1557
1558                 mask_r = opcode_read_mask(op->c);
1559                 mask_w = opcode_write_mask(op->c);
1560
1561                 if (op_flag_load_delay(op->flags) && opcode_is_load(op->c)) {
1562                         /* If we have a load opcode in a delay slot, its target
1563                          * register is actually not written there but at a
1564                          * later point, in the dispatcher. Prevent the algorithm
1565                          * from discarding its previous value. */
1566                         load_delay_reg = op->c.i.rt;
1567                         mask_w &= ~BIT(op->c.i.rt);
1568                 }
1569
1570                 for (reg = 0; reg < 34; reg++) {
1571                         if (mask_r & BIT(reg)) {
1572                                 if (dirty & BIT(reg) && last_w[reg] < last_sync) {
1573                                         /* The register is dirty, and is read
1574                                          * again after a branch: clean it */
1575
1576                                         lightrec_add_clean(&block->opcode_list[last_w[reg]], reg);
1577                                         dirty &= ~BIT(reg);
1578                                         loaded |= BIT(reg);
1579                                 }
1580
1581                                 last_r[reg] = i;
1582                         }
1583
1584                         if (mask_w & BIT(reg)) {
1585                                 if ((dirty & BIT(reg) && last_w[reg] < last_sync) ||
1586                                     (loaded & BIT(reg) && last_r[reg] < last_sync)) {
1587                                         /* The register is dirty or loaded, and
1588                                          * is written again after a branch:
1589                                          * unload it */
1590
1591                                         offset = s16_max(last_w[reg], last_r[reg]);
1592                                         lightrec_add_unload(&block->opcode_list[offset], reg);
1593                                         dirty &= ~BIT(reg);
1594                                         loaded &= ~BIT(reg);
1595                                 } else if (!(mask_r & BIT(reg)) &&
1596                                            ((dirty & BIT(reg) && last_w[reg] > last_sync) ||
1597                                            (loaded & BIT(reg) && last_r[reg] > last_sync))) {
1598                                         /* The register is dirty or loaded, and
1599                                          * is written again: discard it */
1600
1601                                         offset = s16_max(last_w[reg], last_r[reg]);
1602                                         lightrec_add_discard(&block->opcode_list[offset], reg);
1603                                         dirty &= ~BIT(reg);
1604                                         loaded &= ~BIT(reg);
1605                                 }
1606
1607                                 last_w[reg] = i;
1608                         }
1609
1610                 }
1611
1612                 dirty |= mask_w;
1613                 loaded |= mask_r;
1614         }
1615
1616         /* Unload all registers that are dirty or loaded at the end of block. */
1617         lightrec_early_unload_sync(block->opcode_list, last_r, last_w);
1618
1619         return 0;
1620 }
1621
1622 static int lightrec_flag_io(struct lightrec_state *state, struct block *block)
1623 {
1624         struct opcode *list;
1625         enum psx_map psx_map;
1626         struct constprop_data v[32] = LIGHTREC_CONSTPROP_INITIALIZER;
1627         unsigned int i;
1628         u32 val, kunseg_val;
1629         bool no_mask;
1630
1631         for (i = 0; i < block->nb_ops; i++) {
1632                 list = &block->opcode_list[i];
1633
1634                 lightrec_consts_propagate(block, i, v);
1635
1636                 switch (list->i.op) {
1637                 case OP_SB:
1638                 case OP_SH:
1639                 case OP_SW:
1640                         /* Mark all store operations that target $sp or $gp
1641                          * as not requiring code invalidation. This is based
1642                          * on the heuristic that stores using one of these
1643                          * registers as address will never hit a code page. */
1644                         if (list->i.rs >= 28 && list->i.rs <= 29 &&
1645                             !state->maps[PSX_MAP_KERNEL_USER_RAM].ops) {
1646                                 pr_debug("Flaging opcode 0x%08x as not requiring invalidation\n",
1647                                          list->opcode);
1648                                 list->flags |= LIGHTREC_NO_INVALIDATE;
1649                         }
1650
1651                         /* Detect writes whose destination address is inside the
1652                          * current block, using constant propagation. When these
1653                          * occur, we mark the blocks as not compilable. */
1654                         if (is_known(v, list->i.rs) &&
1655                             kunseg(v[list->i.rs].value) >= kunseg(block->pc) &&
1656                             kunseg(v[list->i.rs].value) < (kunseg(block->pc) + block->nb_ops * 4)) {
1657                                 pr_debug("Self-modifying block detected\n");
1658                                 block_set_flags(block, BLOCK_NEVER_COMPILE);
1659                                 list->flags |= LIGHTREC_SMC;
1660                         }
1661                         fallthrough;
1662                 case OP_SWL:
1663                 case OP_SWR:
1664                 case OP_SWC2:
1665                 case OP_LB:
1666                 case OP_LBU:
1667                 case OP_LH:
1668                 case OP_LHU:
1669                 case OP_LW:
1670                 case OP_LWL:
1671                 case OP_LWR:
1672                 case OP_LWC2:
1673                         if (v[list->i.rs].known | v[list->i.rs].sign) {
1674                                 psx_map = lightrec_get_constprop_map(state, v,
1675                                                                      list->i.rs,
1676                                                                      (s16) list->i.imm);
1677
1678                                 if (psx_map != PSX_MAP_UNKNOWN && !is_known(v, list->i.rs))
1679                                         pr_debug("Detected map thanks to bit-level const propagation!\n");
1680
1681                                 list->flags &= ~LIGHTREC_IO_MASK;
1682
1683                                 val = v[list->i.rs].value + (s16) list->i.imm;
1684                                 kunseg_val = kunseg(val);
1685
1686                                 no_mask = (v[list->i.rs].known & ~v[list->i.rs].value
1687                                            & 0xe0000000) == 0xe0000000;
1688
1689                                 switch (psx_map) {
1690                                 case PSX_MAP_KERNEL_USER_RAM:
1691                                         if (no_mask)
1692                                                 list->flags |= LIGHTREC_NO_MASK;
1693                                         fallthrough;
1694                                 case PSX_MAP_MIRROR1:
1695                                 case PSX_MAP_MIRROR2:
1696                                 case PSX_MAP_MIRROR3:
1697                                         pr_debug("Flaging opcode %u as RAM access\n", i);
1698                                         list->flags |= LIGHTREC_IO_MODE(LIGHTREC_IO_RAM);
1699                                         if (no_mask && state->mirrors_mapped)
1700                                                 list->flags |= LIGHTREC_NO_MASK;
1701                                         break;
1702                                 case PSX_MAP_BIOS:
1703                                         pr_debug("Flaging opcode %u as BIOS access\n", i);
1704                                         list->flags |= LIGHTREC_IO_MODE(LIGHTREC_IO_BIOS);
1705                                         if (no_mask)
1706                                                 list->flags |= LIGHTREC_NO_MASK;
1707                                         break;
1708                                 case PSX_MAP_SCRATCH_PAD:
1709                                         pr_debug("Flaging opcode %u as scratchpad access\n", i);
1710                                         list->flags |= LIGHTREC_IO_MODE(LIGHTREC_IO_SCRATCH);
1711                                         if (no_mask)
1712                                                 list->flags |= LIGHTREC_NO_MASK;
1713
1714                                         /* Consider that we're never going to run code from
1715                                          * the scratchpad. */
1716                                         list->flags |= LIGHTREC_NO_INVALIDATE;
1717                                         break;
1718                                 case PSX_MAP_HW_REGISTERS:
1719                                         if (state->ops.hw_direct &&
1720                                             state->ops.hw_direct(kunseg_val,
1721                                                                  opcode_is_store(list->c),
1722                                                                  opcode_get_io_size(list->c))) {
1723                                                 pr_debug("Flagging opcode %u as direct I/O access\n",
1724                                                          i);
1725                                                 list->flags |= LIGHTREC_IO_MODE(LIGHTREC_IO_DIRECT_HW);
1726
1727                                                 if (no_mask)
1728                                                         list->flags |= LIGHTREC_NO_MASK;
1729                                         } else {
1730                                                 pr_debug("Flagging opcode %u as I/O access\n",
1731                                                          i);
1732                                                 list->flags |= LIGHTREC_IO_MODE(LIGHTREC_IO_HW);
1733                                         }
1734                                         break;
1735                                 default:
1736                                         break;
1737                                 }
1738                         }
1739
1740                         if (!LIGHTREC_FLAGS_GET_IO_MODE(list->flags)
1741                             && list->i.rs >= 28 && list->i.rs <= 29
1742                             && !state->maps[PSX_MAP_KERNEL_USER_RAM].ops) {
1743                                 /* Assume that all I/O operations that target
1744                                  * $sp or $gp will always only target a mapped
1745                                  * memory (RAM, BIOS, scratchpad). */
1746                                 list->flags |= LIGHTREC_IO_MODE(LIGHTREC_IO_DIRECT);
1747                         }
1748
1749                         fallthrough;
1750                 default:
1751                         break;
1752                 }
1753         }
1754
1755         return 0;
1756 }
1757
1758 static u8 get_mfhi_mflo_reg(const struct block *block, u16 offset,
1759                             const struct opcode *last,
1760                             u32 mask, bool sync, bool mflo, bool another)
1761 {
1762         const struct opcode *op, *next = &block->opcode_list[offset];
1763         u32 old_mask;
1764         u8 reg2, reg = mflo ? REG_LO : REG_HI;
1765         u16 branch_offset;
1766         unsigned int i;
1767
1768         for (i = offset; i < block->nb_ops; i++) {
1769                 op = next;
1770                 next = &block->opcode_list[i + 1];
1771                 old_mask = mask;
1772
1773                 /* If any other opcode writes or reads to the register
1774                  * we'd use, then we cannot use it anymore. */
1775                 mask |= opcode_read_mask(op->c);
1776                 mask |= opcode_write_mask(op->c);
1777
1778                 if (op_flag_sync(op->flags))
1779                         sync = true;
1780
1781                 switch (op->i.op) {
1782                 case OP_BEQ:
1783                 case OP_BNE:
1784                 case OP_BLEZ:
1785                 case OP_BGTZ:
1786                 case OP_REGIMM:
1787                         /* TODO: handle backwards branches too */
1788                         if (!last && op_flag_local_branch(op->flags) &&
1789                             (s16)op->c.i.imm >= 0) {
1790                                 branch_offset = i + 1 + (s16)op->c.i.imm
1791                                         - !!op_flag_no_ds(op->flags);
1792
1793                                 reg = get_mfhi_mflo_reg(block, branch_offset, NULL,
1794                                                         mask, sync, mflo, false);
1795                                 reg2 = get_mfhi_mflo_reg(block, offset + 1, next,
1796                                                          mask, sync, mflo, false);
1797                                 if (reg > 0 && reg == reg2)
1798                                         return reg;
1799                                 if (!reg && !reg2)
1800                                         return 0;
1801                         }
1802
1803                         return mflo ? REG_LO : REG_HI;
1804                 case OP_META_MULT2:
1805                 case OP_META_MULTU2:
1806                         return 0;
1807                 case OP_SPECIAL:
1808                         switch (op->r.op) {
1809                         case OP_SPECIAL_MULT:
1810                         case OP_SPECIAL_MULTU:
1811                         case OP_SPECIAL_DIV:
1812                         case OP_SPECIAL_DIVU:
1813                                 return 0;
1814                         case OP_SPECIAL_MTHI:
1815                                 if (!mflo)
1816                                         return 0;
1817                                 continue;
1818                         case OP_SPECIAL_MTLO:
1819                                 if (mflo)
1820                                         return 0;
1821                                 continue;
1822                         case OP_SPECIAL_JR:
1823                                 if (op->r.rs != 31)
1824                                         return reg;
1825
1826                                 if (!sync && !op_flag_no_ds(op->flags) &&
1827                                     (next->i.op == OP_SPECIAL) &&
1828                                     ((!mflo && next->r.op == OP_SPECIAL_MFHI) ||
1829                                     (mflo && next->r.op == OP_SPECIAL_MFLO)))
1830                                         return next->r.rd;
1831
1832                                 return 0;
1833                         case OP_SPECIAL_JALR:
1834                                 return reg;
1835                         case OP_SPECIAL_MFHI:
1836                                 if (!mflo) {
1837                                         if (another)
1838                                                 return op->r.rd;
1839                                         /* Must use REG_HI if there is another MFHI target*/
1840                                         reg2 = get_mfhi_mflo_reg(block, i + 1, next,
1841                                                          0, sync, mflo, true);
1842                                         if (reg2 > 0 && reg2 != REG_HI)
1843                                                 return REG_HI;
1844
1845                                         if (!sync && !(old_mask & BIT(op->r.rd)))
1846                                                 return op->r.rd;
1847                                         else
1848                                                 return REG_HI;
1849                                 }
1850                                 continue;
1851                         case OP_SPECIAL_MFLO:
1852                                 if (mflo) {
1853                                         if (another)
1854                                                 return op->r.rd;
1855                                         /* Must use REG_LO if there is another MFLO target*/
1856                                         reg2 = get_mfhi_mflo_reg(block, i + 1, next,
1857                                                          0, sync, mflo, true);
1858                                         if (reg2 > 0 && reg2 != REG_LO)
1859                                                 return REG_LO;
1860
1861                                         if (!sync && !(old_mask & BIT(op->r.rd)))
1862                                                 return op->r.rd;
1863                                         else
1864                                                 return REG_LO;
1865                                 }
1866                                 continue;
1867                         default:
1868                                 break;
1869                         }
1870
1871                         fallthrough;
1872                 default:
1873                         continue;
1874                 }
1875         }
1876
1877         return reg;
1878 }
1879
1880 static void lightrec_replace_lo_hi(struct block *block, u16 offset,
1881                                    u16 last, bool lo)
1882 {
1883         unsigned int i;
1884         u32 branch_offset;
1885
1886         /* This function will remove the following MFLO/MFHI. It must be called
1887          * only if get_mfhi_mflo_reg() returned a non-zero value. */
1888
1889         for (i = offset; i < last; i++) {
1890                 struct opcode *op = &block->opcode_list[i];
1891
1892                 switch (op->i.op) {
1893                 case OP_BEQ:
1894                 case OP_BNE:
1895                 case OP_BLEZ:
1896                 case OP_BGTZ:
1897                 case OP_REGIMM:
1898                         /* TODO: handle backwards branches too */
1899                         if (op_flag_local_branch(op->flags) && (s16)op->c.i.imm >= 0) {
1900                                 branch_offset = i + 1 + (s16)op->c.i.imm
1901                                         - !!op_flag_no_ds(op->flags);
1902
1903                                 lightrec_replace_lo_hi(block, branch_offset, last, lo);
1904                                 lightrec_replace_lo_hi(block, i + 1, branch_offset, lo);
1905                         }
1906                         break;
1907
1908                 case OP_SPECIAL:
1909                         if (lo && op->r.op == OP_SPECIAL_MFLO) {
1910                                 pr_debug("Removing MFLO opcode at offset 0x%x\n",
1911                                          i << 2);
1912                                 op->opcode = 0;
1913                                 return;
1914                         } else if (!lo && op->r.op == OP_SPECIAL_MFHI) {
1915                                 pr_debug("Removing MFHI opcode at offset 0x%x\n",
1916                                          i << 2);
1917                                 op->opcode = 0;
1918                                 return;
1919                         }
1920
1921                         fallthrough;
1922                 default:
1923                         break;
1924                 }
1925         }
1926 }
1927
1928 static bool lightrec_always_skip_div_check(void)
1929 {
1930 #ifdef __mips__
1931         return true;
1932 #else
1933         return false;
1934 #endif
1935 }
1936
1937 static int lightrec_flag_mults_divs(struct lightrec_state *state, struct block *block)
1938 {
1939         struct opcode *list = NULL;
1940         struct constprop_data v[32] = LIGHTREC_CONSTPROP_INITIALIZER;
1941         u8 reg_hi, reg_lo;
1942         unsigned int i;
1943
1944         for (i = 0; i < block->nb_ops - 1; i++) {
1945                 list = &block->opcode_list[i];
1946
1947                 lightrec_consts_propagate(block, i, v);
1948
1949                 switch (list->i.op) {
1950                 case OP_SPECIAL:
1951                         switch (list->r.op) {
1952                         case OP_SPECIAL_DIV:
1953                         case OP_SPECIAL_DIVU:
1954                                 /* If we are dividing by a non-zero constant, don't
1955                                  * emit the div-by-zero check. */
1956                                 if (lightrec_always_skip_div_check() ||
1957                                     (v[list->r.rt].known & v[list->r.rt].value)) {
1958                                         list->flags |= LIGHTREC_NO_DIV_CHECK;
1959                                 }
1960                                 fallthrough;
1961                         case OP_SPECIAL_MULT:
1962                         case OP_SPECIAL_MULTU:
1963                                 break;
1964                         default:
1965                                 continue;
1966                         }
1967                         fallthrough;
1968                 case OP_META_MULT2:
1969                 case OP_META_MULTU2:
1970                         break;
1971                 default:
1972                         continue;
1973                 }
1974
1975                 /* Don't support opcodes in delay slots */
1976                 if (is_delay_slot(block->opcode_list, i) ||
1977                     op_flag_no_ds(list->flags)) {
1978                         continue;
1979                 }
1980
1981                 reg_lo = get_mfhi_mflo_reg(block, i + 1, NULL, 0, false, true, false);
1982                 if (reg_lo == 0) {
1983                         pr_debug("Mark MULT(U)/DIV(U) opcode at offset 0x%x as"
1984                                  " not writing LO\n", i << 2);
1985                         list->flags |= LIGHTREC_NO_LO;
1986                 }
1987
1988                 reg_hi = get_mfhi_mflo_reg(block, i + 1, NULL, 0, false, false, false);
1989                 if (reg_hi == 0) {
1990                         pr_debug("Mark MULT(U)/DIV(U) opcode at offset 0x%x as"
1991                                  " not writing HI\n", i << 2);
1992                         list->flags |= LIGHTREC_NO_HI;
1993                 }
1994
1995                 if (!reg_lo && !reg_hi) {
1996                         pr_debug("Both LO/HI unused in this block, they will "
1997                                  "probably be used in parent block - removing "
1998                                  "flags.\n");
1999                         list->flags &= ~(LIGHTREC_NO_LO | LIGHTREC_NO_HI);
2000                 }
2001
2002                 if (reg_lo > 0 && reg_lo != REG_LO) {
2003                         pr_debug("Found register %s to hold LO (rs = %u, rt = %u)\n",
2004                                  lightrec_reg_name(reg_lo), list->r.rs, list->r.rt);
2005
2006                         lightrec_replace_lo_hi(block, i + 1, block->nb_ops, true);
2007                         list->r.rd = reg_lo;
2008                 } else {
2009                         list->r.rd = 0;
2010                 }
2011
2012                 if (reg_hi > 0 && reg_hi != REG_HI) {
2013                         pr_debug("Found register %s to hold HI (rs = %u, rt = %u)\n",
2014                                  lightrec_reg_name(reg_hi), list->r.rs, list->r.rt);
2015
2016                         lightrec_replace_lo_hi(block, i + 1, block->nb_ops, false);
2017                         list->r.imm = reg_hi;
2018                 } else {
2019                         list->r.imm = 0;
2020                 }
2021         }
2022
2023         return 0;
2024 }
2025
2026 static bool remove_div_sequence(struct block *block, unsigned int offset)
2027 {
2028         struct opcode *op;
2029         unsigned int i, found = 0;
2030
2031         /*
2032          * Scan for the zero-checking sequence that GCC automatically introduced
2033          * after most DIV/DIVU opcodes. This sequence checks the value of the
2034          * divisor, and if zero, executes a BREAK opcode, causing the BIOS
2035          * handler to crash the PS1.
2036          *
2037          * For DIV opcodes, this sequence additionally checks that the signed
2038          * operation does not overflow.
2039          *
2040          * With the assumption that the games never crashed the PS1, we can
2041          * therefore assume that the games never divided by zero or overflowed,
2042          * and these sequences can be removed.
2043          */
2044
2045         for (i = offset; i < block->nb_ops; i++) {
2046                 op = &block->opcode_list[i];
2047
2048                 if (!found) {
2049                         if (op->i.op == OP_SPECIAL &&
2050                             (op->r.op == OP_SPECIAL_DIV || op->r.op == OP_SPECIAL_DIVU))
2051                                 break;
2052
2053                         if ((op->opcode & 0xfc1fffff) == 0x14000002) {
2054                                 /* BNE ???, zero, +8 */
2055                                 found++;
2056                         } else {
2057                                 offset++;
2058                         }
2059                 } else if (found == 1 && !op->opcode) {
2060                         /* NOP */
2061                         found++;
2062                 } else if (found == 2 && op->opcode == 0x0007000d) {
2063                         /* BREAK 0x1c00 */
2064                         found++;
2065                 } else if (found == 3 && op->opcode == 0x2401ffff) {
2066                         /* LI at, -1 */
2067                         found++;
2068                 } else if (found == 4 && (op->opcode & 0xfc1fffff) == 0x14010004) {
2069                         /* BNE ???, at, +16 */
2070                         found++;
2071                 } else if (found == 5 && op->opcode == 0x3c018000) {
2072                         /* LUI at, 0x8000 */
2073                         found++;
2074                 } else if (found == 6 && (op->opcode & 0x141fffff) == 0x14010002) {
2075                         /* BNE ???, at, +16 */
2076                         found++;
2077                 } else if (found == 7 && !op->opcode) {
2078                         /* NOP */
2079                         found++;
2080                 } else if (found == 8 && op->opcode == 0x0006000d) {
2081                         /* BREAK 0x1800 */
2082                         found++;
2083                         break;
2084                 } else {
2085                         break;
2086                 }
2087         }
2088
2089         if (found >= 3) {
2090                 if (found != 9)
2091                         found = 3;
2092
2093                 pr_debug("Removing DIV%s sequence at offset 0x%x\n",
2094                          found == 9 ? "" : "U", offset << 2);
2095
2096                 for (i = 0; i < found; i++)
2097                         block->opcode_list[offset + i].opcode = 0;
2098
2099                 return true;
2100         }
2101
2102         return false;
2103 }
2104
2105 static int lightrec_remove_div_by_zero_check_sequence(struct lightrec_state *state,
2106                                                       struct block *block)
2107 {
2108         struct opcode *op;
2109         unsigned int i;
2110
2111         for (i = 0; i < block->nb_ops; i++) {
2112                 op = &block->opcode_list[i];
2113
2114                 if (op->i.op == OP_SPECIAL &&
2115                     (op->r.op == OP_SPECIAL_DIVU || op->r.op == OP_SPECIAL_DIV) &&
2116                     remove_div_sequence(block, i + 1))
2117                         op->flags |= LIGHTREC_NO_DIV_CHECK;
2118         }
2119
2120         return 0;
2121 }
2122
2123 static const u32 memset_code[] = {
2124         0x10a00006,     // beqz         a1, 2f
2125         0x24a2ffff,     // addiu        v0,a1,-1
2126         0x2403ffff,     // li           v1,-1
2127         0xac800000,     // 1: sw        zero,0(a0)
2128         0x2442ffff,     // addiu        v0,v0,-1
2129         0x1443fffd,     // bne          v0,v1, 1b
2130         0x24840004,     // addiu        a0,a0,4
2131         0x03e00008,     // 2: jr        ra
2132         0x00000000,     // nop
2133 };
2134
2135 static int lightrec_replace_memset(struct lightrec_state *state, struct block *block)
2136 {
2137         unsigned int i;
2138         union code c;
2139
2140         for (i = 0; i < block->nb_ops; i++) {
2141                 c = block->opcode_list[i].c;
2142
2143                 if (c.opcode != memset_code[i])
2144                         return 0;
2145
2146                 if (i == ARRAY_SIZE(memset_code) - 1) {
2147                         /* success! */
2148                         pr_debug("Block at PC 0x%x is a memset\n", block->pc);
2149                         block_set_flags(block,
2150                                         BLOCK_IS_MEMSET | BLOCK_NEVER_COMPILE);
2151
2152                         /* Return non-zero to skip other optimizers. */
2153                         return 1;
2154                 }
2155         }
2156
2157         return 0;
2158 }
2159
2160 static int (*lightrec_optimizers[])(struct lightrec_state *state, struct block *) = {
2161         IF_OPT(OPT_REMOVE_DIV_BY_ZERO_SEQ, &lightrec_remove_div_by_zero_check_sequence),
2162         IF_OPT(OPT_REPLACE_MEMSET, &lightrec_replace_memset),
2163         IF_OPT(OPT_DETECT_IMPOSSIBLE_BRANCHES, &lightrec_detect_impossible_branches),
2164         IF_OPT(OPT_HANDLE_LOAD_DELAYS, &lightrec_handle_load_delays),
2165         IF_OPT(OPT_HANDLE_LOAD_DELAYS, &lightrec_swap_load_delays),
2166         IF_OPT(OPT_TRANSFORM_OPS, &lightrec_transform_branches),
2167         IF_OPT(OPT_LOCAL_BRANCHES, &lightrec_local_branches),
2168         IF_OPT(OPT_TRANSFORM_OPS, &lightrec_transform_ops),
2169         IF_OPT(OPT_SWITCH_DELAY_SLOTS, &lightrec_switch_delay_slots),
2170         IF_OPT(OPT_FLAG_IO, &lightrec_flag_io),
2171         IF_OPT(OPT_FLAG_MULT_DIV, &lightrec_flag_mults_divs),
2172         IF_OPT(OPT_EARLY_UNLOAD, &lightrec_early_unload),
2173 };
2174
2175 int lightrec_optimize(struct lightrec_state *state, struct block *block)
2176 {
2177         unsigned int i;
2178         int ret;
2179
2180         for (i = 0; i < ARRAY_SIZE(lightrec_optimizers); i++) {
2181                 if (lightrec_optimizers[i]) {
2182                         ret = (*lightrec_optimizers[i])(state, block);
2183                         if (ret)
2184                                 return ret;
2185                 }
2186         }
2187
2188         return 0;
2189 }