git subrepo pull --force deps/lightrec
[pcsx_rearmed.git] / deps / lightrec / optimizer.c
1 // SPDX-License-Identifier: LGPL-2.1-or-later
2 /*
3  * Copyright (C) 2014-2021 Paul Cercueil <paul@crapouillou.net>
4  */
5
6 #include "lightrec-config.h"
7 #include "disassembler.h"
8 #include "lightrec.h"
9 #include "memmanager.h"
10 #include "optimizer.h"
11 #include "regcache.h"
12
13 #include <errno.h>
14 #include <stdbool.h>
15 #include <stdlib.h>
16 #include <string.h>
17
18 #define IF_OPT(opt, ptr) ((opt) ? (ptr) : NULL)
19
20 struct optimizer_list {
21         void (**optimizers)(struct opcode *);
22         unsigned int nb_optimizers;
23 };
24
25 static bool is_nop(union code op);
26
27 bool is_unconditional_jump(union code c)
28 {
29         switch (c.i.op) {
30         case OP_SPECIAL:
31                 return c.r.op == OP_SPECIAL_JR || c.r.op == OP_SPECIAL_JALR;
32         case OP_J:
33         case OP_JAL:
34                 return true;
35         case OP_BEQ:
36         case OP_BLEZ:
37                 return c.i.rs == c.i.rt;
38         case OP_REGIMM:
39                 return (c.r.rt == OP_REGIMM_BGEZ ||
40                         c.r.rt == OP_REGIMM_BGEZAL) && c.i.rs == 0;
41         default:
42                 return false;
43         }
44 }
45
46 bool is_syscall(union code c)
47 {
48         return (c.i.op == OP_SPECIAL && c.r.op == OP_SPECIAL_SYSCALL) ||
49                 (c.i.op == OP_CP0 && (c.r.rs == OP_CP0_MTC0 ||
50                                         c.r.rs == OP_CP0_CTC0) &&
51                  (c.r.rd == 12 || c.r.rd == 13));
52 }
53
54 static u64 opcode_read_mask(union code op)
55 {
56         switch (op.i.op) {
57         case OP_SPECIAL:
58                 switch (op.r.op) {
59                 case OP_SPECIAL_SYSCALL:
60                 case OP_SPECIAL_BREAK:
61                         return 0;
62                 case OP_SPECIAL_JR:
63                 case OP_SPECIAL_JALR:
64                 case OP_SPECIAL_MTHI:
65                 case OP_SPECIAL_MTLO:
66                         return BIT(op.r.rs);
67                 case OP_SPECIAL_MFHI:
68                         return BIT(REG_HI);
69                 case OP_SPECIAL_MFLO:
70                         return BIT(REG_LO);
71                 case OP_SPECIAL_SLL:
72                 case OP_SPECIAL_SRL:
73                 case OP_SPECIAL_SRA:
74                         return BIT(op.r.rt);
75                 default:
76                         return BIT(op.r.rs) | BIT(op.r.rt);
77                 }
78         case OP_CP0:
79                 switch (op.r.rs) {
80                 case OP_CP0_MTC0:
81                 case OP_CP0_CTC0:
82                         return BIT(op.r.rt);
83                 default:
84                         return 0;
85                 }
86         case OP_CP2:
87                 if (op.r.op == OP_CP2_BASIC) {
88                         switch (op.r.rs) {
89                         case OP_CP2_BASIC_MTC2:
90                         case OP_CP2_BASIC_CTC2:
91                                 return BIT(op.r.rt);
92                         default:
93                                 break;
94                         }
95                 }
96                 return 0;
97         case OP_J:
98         case OP_JAL:
99         case OP_LUI:
100                 return 0;
101         case OP_BEQ:
102         case OP_BNE:
103         case OP_LWL:
104         case OP_LWR:
105         case OP_SB:
106         case OP_SH:
107         case OP_SWL:
108         case OP_SW:
109         case OP_SWR:
110                 return BIT(op.i.rs) | BIT(op.i.rt);
111         default:
112                 return BIT(op.i.rs);
113         }
114 }
115
116 static u64 opcode_write_mask(union code op)
117 {
118         u64 flags;
119
120         switch (op.i.op) {
121         case OP_SPECIAL:
122                 switch (op.r.op) {
123                 case OP_SPECIAL_JR:
124                 case OP_SPECIAL_SYSCALL:
125                 case OP_SPECIAL_BREAK:
126                         return 0;
127                 case OP_SPECIAL_MULT:
128                 case OP_SPECIAL_MULTU:
129                 case OP_SPECIAL_DIV:
130                 case OP_SPECIAL_DIVU:
131                         if (!OPT_FLAG_MULT_DIV)
132                                 return BIT(REG_LO) | BIT(REG_HI);
133
134                         if (op.r.rd)
135                                 flags = BIT(op.r.rd);
136                         else
137                                 flags = BIT(REG_LO);
138                         if (op.r.imm)
139                                 flags |= BIT(op.r.imm);
140                         else
141                                 flags |= BIT(REG_HI);
142                         return flags;
143                 case OP_SPECIAL_MTHI:
144                         return BIT(REG_HI);
145                 case OP_SPECIAL_MTLO:
146                         return BIT(REG_LO);
147                 default:
148                         return BIT(op.r.rd);
149                 }
150         case OP_ADDI:
151         case OP_ADDIU:
152         case OP_SLTI:
153         case OP_SLTIU:
154         case OP_ANDI:
155         case OP_ORI:
156         case OP_XORI:
157         case OP_LUI:
158         case OP_LB:
159         case OP_LH:
160         case OP_LWL:
161         case OP_LW:
162         case OP_LBU:
163         case OP_LHU:
164         case OP_LWR:
165                 return BIT(op.i.rt);
166         case OP_JAL:
167                 return BIT(31);
168         case OP_CP0:
169                 switch (op.r.rs) {
170                 case OP_CP0_MFC0:
171                 case OP_CP0_CFC0:
172                         return BIT(op.i.rt);
173                 default:
174                         return 0;
175                 }
176         case OP_CP2:
177                 if (op.r.op == OP_CP2_BASIC) {
178                         switch (op.r.rs) {
179                         case OP_CP2_BASIC_MFC2:
180                         case OP_CP2_BASIC_CFC2:
181                                 return BIT(op.i.rt);
182                         default:
183                                 break;
184                         }
185                 }
186                 return 0;
187         case OP_REGIMM:
188                 switch (op.r.rt) {
189                 case OP_REGIMM_BLTZAL:
190                 case OP_REGIMM_BGEZAL:
191                         return BIT(31);
192                 default:
193                         return 0;
194                 }
195         case OP_META_MOV:
196                 return BIT(op.r.rd);
197         default:
198                 return 0;
199         }
200 }
201
202 bool opcode_reads_register(union code op, u8 reg)
203 {
204         return opcode_read_mask(op) & BIT(reg);
205 }
206
207 bool opcode_writes_register(union code op, u8 reg)
208 {
209         return opcode_write_mask(op) & BIT(reg);
210 }
211
212 static int find_prev_writer(const struct opcode *list, unsigned int offset, u8 reg)
213 {
214         union code c;
215         unsigned int i;
216
217         if (list[offset].flags & LIGHTREC_SYNC)
218                 return -1;
219
220         for (i = offset; i > 0; i--) {
221                 c = list[i - 1].c;
222
223                 if (opcode_writes_register(c, reg)) {
224                         if (i > 1 && has_delay_slot(list[i - 2].c))
225                                 break;
226
227                         return i - 1;
228                 }
229
230                 if ((list[i - 1].flags & LIGHTREC_SYNC) ||
231                     has_delay_slot(c) ||
232                     opcode_reads_register(c, reg))
233                         break;
234         }
235
236         return -1;
237 }
238
239 static int find_next_reader(const struct opcode *list, unsigned int offset, u8 reg)
240 {
241         unsigned int i;
242         union code c;
243
244         if (list[offset].flags & LIGHTREC_SYNC)
245                 return -1;
246
247         for (i = offset; ; i++) {
248                 c = list[i].c;
249
250                 if (opcode_reads_register(c, reg)) {
251                         if (i > 0 && has_delay_slot(list[i - 1].c))
252                                 break;
253
254                         return i;
255                 }
256
257                 if ((list[i].flags & LIGHTREC_SYNC) ||
258                     has_delay_slot(c) || opcode_writes_register(c, reg))
259                         break;
260         }
261
262         return -1;
263 }
264
265 static bool reg_is_dead(const struct opcode *list, unsigned int offset, u8 reg)
266 {
267         unsigned int i;
268
269         if (list[offset].flags & LIGHTREC_SYNC)
270                 return false;
271
272         for (i = offset + 1; ; i++) {
273                 if (opcode_reads_register(list[i].c, reg))
274                         return false;
275
276                 if (opcode_writes_register(list[i].c, reg))
277                         return true;
278
279                 if (has_delay_slot(list[i].c)) {
280                         if (list[i].flags & LIGHTREC_NO_DS)
281                                 return false;
282
283                         return opcode_writes_register(list[i + 1].c, reg);
284                 }
285         }
286 }
287
288 static bool reg_is_read(const struct opcode *list,
289                         unsigned int a, unsigned int b, u8 reg)
290 {
291         /* Return true if reg is read in one of the opcodes of the interval
292          * [a, b[ */
293         for (; a < b; a++) {
294                 if (!is_nop(list[a].c) && opcode_reads_register(list[a].c, reg))
295                         return true;
296         }
297
298         return false;
299 }
300
301 static bool reg_is_written(const struct opcode *list,
302                            unsigned int a, unsigned int b, u8 reg)
303 {
304         /* Return true if reg is written in one of the opcodes of the interval
305          * [a, b[ */
306
307         for (; a < b; a++) {
308                 if (!is_nop(list[a].c) && opcode_writes_register(list[a].c, reg))
309                         return true;
310         }
311
312         return false;
313 }
314
315 static bool reg_is_read_or_written(const struct opcode *list,
316                                    unsigned int a, unsigned int b, u8 reg)
317 {
318         return reg_is_read(list, a, b, reg) || reg_is_written(list, a, b, reg);
319 }
320
321 static bool opcode_is_load(union code op)
322 {
323         switch (op.i.op) {
324         case OP_LB:
325         case OP_LH:
326         case OP_LWL:
327         case OP_LW:
328         case OP_LBU:
329         case OP_LHU:
330         case OP_LWR:
331         case OP_LWC2:
332                 return true;
333         default:
334                 return false;
335         }
336 }
337
338 static bool opcode_is_store(union code op)
339 {
340         switch (op.i.op) {
341         case OP_SB:
342         case OP_SH:
343         case OP_SW:
344         case OP_SWL:
345         case OP_SWR:
346         case OP_SWC2:
347                 return true;
348         default:
349                 return false;
350         }
351 }
352
353 bool opcode_is_io(union code op)
354 {
355         return opcode_is_load(op) || opcode_is_store(op);
356 }
357
358 /* TODO: Complete */
359 static bool is_nop(union code op)
360 {
361         if (opcode_writes_register(op, 0)) {
362                 switch (op.i.op) {
363                 case OP_CP0:
364                         return op.r.rs != OP_CP0_MFC0;
365                 case OP_LB:
366                 case OP_LH:
367                 case OP_LWL:
368                 case OP_LW:
369                 case OP_LBU:
370                 case OP_LHU:
371                 case OP_LWR:
372                         return false;
373                 default:
374                         return true;
375                 }
376         }
377
378         switch (op.i.op) {
379         case OP_SPECIAL:
380                 switch (op.r.op) {
381                 case OP_SPECIAL_AND:
382                         return op.r.rd == op.r.rt && op.r.rd == op.r.rs;
383                 case OP_SPECIAL_ADD:
384                 case OP_SPECIAL_ADDU:
385                         return (op.r.rd == op.r.rt && op.r.rs == 0) ||
386                                 (op.r.rd == op.r.rs && op.r.rt == 0);
387                 case OP_SPECIAL_SUB:
388                 case OP_SPECIAL_SUBU:
389                         return op.r.rd == op.r.rs && op.r.rt == 0;
390                 case OP_SPECIAL_OR:
391                         if (op.r.rd == op.r.rt)
392                                 return op.r.rd == op.r.rs || op.r.rs == 0;
393                         else
394                                 return (op.r.rd == op.r.rs) && op.r.rt == 0;
395                 case OP_SPECIAL_SLL:
396                 case OP_SPECIAL_SRA:
397                 case OP_SPECIAL_SRL:
398                         return op.r.rd == op.r.rt && op.r.imm == 0;
399                 case OP_SPECIAL_MFHI:
400                 case OP_SPECIAL_MFLO:
401                         return op.r.rd == 0;
402                 default:
403                         return false;
404                 }
405         case OP_ORI:
406         case OP_ADDI:
407         case OP_ADDIU:
408                 return op.i.rt == op.i.rs && op.i.imm == 0;
409         case OP_BGTZ:
410                 return (op.i.rs == 0 || op.i.imm == 1);
411         case OP_REGIMM:
412                 return (op.i.op == OP_REGIMM_BLTZ ||
413                                 op.i.op == OP_REGIMM_BLTZAL) &&
414                         (op.i.rs == 0 || op.i.imm == 1);
415         case OP_BNE:
416                 return (op.i.rs == op.i.rt || op.i.imm == 1);
417         default:
418                 return false;
419         }
420 }
421
422 bool load_in_delay_slot(union code op)
423 {
424         switch (op.i.op) {
425         case OP_CP0:
426                 switch (op.r.rs) {
427                 case OP_CP0_MFC0:
428                 case OP_CP0_CFC0:
429                         return true;
430                 default:
431                         break;
432                 }
433
434                 break;
435         case OP_CP2:
436                 if (op.r.op == OP_CP2_BASIC) {
437                         switch (op.r.rs) {
438                         case OP_CP2_BASIC_MFC2:
439                         case OP_CP2_BASIC_CFC2:
440                                 return true;
441                         default:
442                                 break;
443                         }
444                 }
445
446                 break;
447         case OP_LB:
448         case OP_LH:
449         case OP_LW:
450         case OP_LWL:
451         case OP_LWR:
452         case OP_LBU:
453         case OP_LHU:
454                 return true;
455         default:
456                 break;
457         }
458
459         return false;
460 }
461
462 static u32 lightrec_propagate_consts(const struct opcode *op, u32 known, u32 *v)
463 {
464         union code c = op->c;
465
466         if (op->flags & LIGHTREC_SYNC)
467                 return 0;
468
469         switch (c.i.op) {
470         case OP_SPECIAL:
471                 switch (c.r.op) {
472                 case OP_SPECIAL_SLL:
473                         if (known & BIT(c.r.rt)) {
474                                 known |= BIT(c.r.rd);
475                                 v[c.r.rd] = v[c.r.rt] << c.r.imm;
476                         } else {
477                                 known &= ~BIT(c.r.rd);
478                         }
479                         break;
480                 case OP_SPECIAL_SRL:
481                         if (known & BIT(c.r.rt)) {
482                                 known |= BIT(c.r.rd);
483                                 v[c.r.rd] = v[c.r.rt] >> c.r.imm;
484                         } else {
485                                 known &= ~BIT(c.r.rd);
486                         }
487                         break;
488                 case OP_SPECIAL_SRA:
489                         if (known & BIT(c.r.rt)) {
490                                 known |= BIT(c.r.rd);
491                                 v[c.r.rd] = (s32)v[c.r.rt] >> c.r.imm;
492                         } else {
493                                 known &= ~BIT(c.r.rd);
494                         }
495                         break;
496                 case OP_SPECIAL_SLLV:
497                         if (known & BIT(c.r.rt) && known & BIT(c.r.rs)) {
498                                 known |= BIT(c.r.rd);
499                                 v[c.r.rd] = v[c.r.rt] << (v[c.r.rs] & 0x1f);
500                         } else {
501                                 known &= ~BIT(c.r.rd);
502                         }
503                         break;
504                 case OP_SPECIAL_SRLV:
505                         if (known & BIT(c.r.rt) && known & BIT(c.r.rs)) {
506                                 known |= BIT(c.r.rd);
507                                 v[c.r.rd] = v[c.r.rt] >> (v[c.r.rs] & 0x1f);
508                         } else {
509                                 known &= ~BIT(c.r.rd);
510                         }
511                         break;
512                 case OP_SPECIAL_SRAV:
513                         if (known & BIT(c.r.rt) && known & BIT(c.r.rs)) {
514                                 known |= BIT(c.r.rd);
515                                 v[c.r.rd] = (s32)v[c.r.rt]
516                                           >> (v[c.r.rs] & 0x1f);
517                         } else {
518                                 known &= ~BIT(c.r.rd);
519                         }
520                         break;
521                 case OP_SPECIAL_ADD:
522                 case OP_SPECIAL_ADDU:
523                         if (known & BIT(c.r.rt) && known & BIT(c.r.rs)) {
524                                 known |= BIT(c.r.rd);
525                                 v[c.r.rd] = (s32)v[c.r.rt] + (s32)v[c.r.rs];
526                         } else {
527                                 known &= ~BIT(c.r.rd);
528                         }
529                         break;
530                 case OP_SPECIAL_SUB:
531                 case OP_SPECIAL_SUBU:
532                         if (known & BIT(c.r.rt) && known & BIT(c.r.rs)) {
533                                 known |= BIT(c.r.rd);
534                                 v[c.r.rd] = v[c.r.rt] - v[c.r.rs];
535                         } else {
536                                 known &= ~BIT(c.r.rd);
537                         }
538                         break;
539                 case OP_SPECIAL_AND:
540                         if (known & BIT(c.r.rt) && known & BIT(c.r.rs)) {
541                                 known |= BIT(c.r.rd);
542                                 v[c.r.rd] = v[c.r.rt] & v[c.r.rs];
543                         } else {
544                                 known &= ~BIT(c.r.rd);
545                         }
546                         break;
547                 case OP_SPECIAL_OR:
548                         if (known & BIT(c.r.rt) && known & BIT(c.r.rs)) {
549                                 known |= BIT(c.r.rd);
550                                 v[c.r.rd] = v[c.r.rt] | v[c.r.rs];
551                         } else {
552                                 known &= ~BIT(c.r.rd);
553                         }
554                         break;
555                 case OP_SPECIAL_XOR:
556                         if (known & BIT(c.r.rt) && known & BIT(c.r.rs)) {
557                                 known |= BIT(c.r.rd);
558                                 v[c.r.rd] = v[c.r.rt] ^ v[c.r.rs];
559                         } else {
560                                 known &= ~BIT(c.r.rd);
561                         }
562                         break;
563                 case OP_SPECIAL_NOR:
564                         if (known & BIT(c.r.rt) && known & BIT(c.r.rs)) {
565                                 known |= BIT(c.r.rd);
566                                 v[c.r.rd] = ~(v[c.r.rt] | v[c.r.rs]);
567                         } else {
568                                 known &= ~BIT(c.r.rd);
569                         }
570                         break;
571                 case OP_SPECIAL_SLT:
572                         if (known & BIT(c.r.rt) && known & BIT(c.r.rs)) {
573                                 known |= BIT(c.r.rd);
574                                 v[c.r.rd] = (s32)v[c.r.rs] < (s32)v[c.r.rt];
575                         } else {
576                                 known &= ~BIT(c.r.rd);
577                         }
578                         break;
579                 case OP_SPECIAL_SLTU:
580                         if (known & BIT(c.r.rt) && known & BIT(c.r.rs)) {
581                                 known |= BIT(c.r.rd);
582                                 v[c.r.rd] = v[c.r.rs] < v[c.r.rt];
583                         } else {
584                                 known &= ~BIT(c.r.rd);
585                         }
586                         break;
587                 default:
588                         break;
589                 }
590                 break;
591         case OP_REGIMM:
592                 break;
593         case OP_ADDI:
594         case OP_ADDIU:
595                 if (known & BIT(c.i.rs)) {
596                         known |= BIT(c.i.rt);
597                         v[c.i.rt] = v[c.i.rs] + (s32)(s16)c.i.imm;
598                 } else {
599                         known &= ~BIT(c.i.rt);
600                 }
601                 break;
602         case OP_SLTI:
603                 if (known & BIT(c.i.rs)) {
604                         known |= BIT(c.i.rt);
605                         v[c.i.rt] = (s32)v[c.i.rs] < (s32)(s16)c.i.imm;
606                 } else {
607                         known &= ~BIT(c.i.rt);
608                 }
609                 break;
610         case OP_SLTIU:
611                 if (known & BIT(c.i.rs)) {
612                         known |= BIT(c.i.rt);
613                         v[c.i.rt] = v[c.i.rs] < (u32)(s32)(s16)c.i.imm;
614                 } else {
615                         known &= ~BIT(c.i.rt);
616                 }
617                 break;
618         case OP_ANDI:
619                 if (known & BIT(c.i.rs)) {
620                         known |= BIT(c.i.rt);
621                         v[c.i.rt] = v[c.i.rs] & c.i.imm;
622                 } else {
623                         known &= ~BIT(c.i.rt);
624                 }
625                 break;
626         case OP_ORI:
627                 if (known & BIT(c.i.rs)) {
628                         known |= BIT(c.i.rt);
629                         v[c.i.rt] = v[c.i.rs] | c.i.imm;
630                 } else {
631                         known &= ~BIT(c.i.rt);
632                 }
633                 break;
634         case OP_XORI:
635                 if (known & BIT(c.i.rs)) {
636                         known |= BIT(c.i.rt);
637                         v[c.i.rt] = v[c.i.rs] ^ c.i.imm;
638                 } else {
639                         known &= ~BIT(c.i.rt);
640                 }
641                 break;
642         case OP_LUI:
643                 known |= BIT(c.i.rt);
644                 v[c.i.rt] = c.i.imm << 16;
645                 break;
646         case OP_CP0:
647                 switch (c.r.rs) {
648                 case OP_CP0_MFC0:
649                 case OP_CP0_CFC0:
650                         known &= ~BIT(c.r.rt);
651                         break;
652                 }
653                 break;
654         case OP_CP2:
655                 if (c.r.op == OP_CP2_BASIC) {
656                         switch (c.r.rs) {
657                         case OP_CP2_BASIC_MFC2:
658                         case OP_CP2_BASIC_CFC2:
659                                 known &= ~BIT(c.r.rt);
660                                 break;
661                         }
662                 }
663                 break;
664         case OP_LB:
665         case OP_LH:
666         case OP_LWL:
667         case OP_LW:
668         case OP_LBU:
669         case OP_LHU:
670         case OP_LWR:
671         case OP_LWC2:
672                 known &= ~BIT(c.i.rt);
673                 break;
674         case OP_META_MOV:
675                 if (known & BIT(c.r.rs)) {
676                         known |= BIT(c.r.rd);
677                         v[c.r.rd] = v[c.r.rs];
678                 } else {
679                         known &= ~BIT(c.r.rd);
680                 }
681                 break;
682         default:
683                 break;
684         }
685
686         return known;
687 }
688
689 static void lightrec_optimize_sll_sra(struct opcode *list, unsigned int offset)
690 {
691         struct opcode *prev, *prev2 = NULL, *curr = &list[offset];
692         struct opcode *to_change, *to_nop;
693         int idx, idx2;
694
695         if (curr->r.imm != 24 && curr->r.imm != 16)
696                 return;
697
698         idx = find_prev_writer(list, offset, curr->r.rt);
699         if (idx < 0)
700                 return;
701
702         prev = &list[idx];
703
704         if (prev->i.op != OP_SPECIAL || prev->r.op != OP_SPECIAL_SLL ||
705             prev->r.imm != curr->r.imm || prev->r.rd != curr->r.rt)
706                 return;
707
708         if (prev->r.rd != prev->r.rt && curr->r.rd != curr->r.rt) {
709                 /* sll rY, rX, 16
710                  * ...
711                  * srl rZ, rY, 16 */
712
713                 if (!reg_is_dead(list, offset, curr->r.rt) ||
714                     reg_is_read_or_written(list, idx, offset, curr->r.rd))
715                         return;
716
717                 /* If rY is dead after the SRL, and rZ is not used after the SLL,
718                  * we can change rY to rZ */
719
720                 pr_debug("Detected SLL/SRA with middle temp register\n");
721                 prev->r.rd = curr->r.rd;
722                 curr->r.rt = prev->r.rd;
723         }
724
725         /* We got a SLL/SRA combo. If imm #16, that's a cast to u16.
726          * If imm #24 that's a cast to u8.
727          *
728          * First of all, make sure that the target register of the SLL is not
729          * read before the SRA. */
730
731         if (prev->r.rd == prev->r.rt) {
732                 /* sll rX, rX, 16
733                  * ...
734                  * srl rY, rX, 16 */
735                 to_change = curr;
736                 to_nop = prev;
737
738                 /* rX is used after the SRA - we cannot convert it. */
739                 if (prev->r.rd != curr->r.rd && !reg_is_dead(list, offset, prev->r.rd))
740                         return;
741         } else {
742                 /* sll rY, rX, 16
743                  * ...
744                  * srl rY, rY, 16 */
745                 to_change = prev;
746                 to_nop = curr;
747         }
748
749         idx2 = find_prev_writer(list, idx, prev->r.rt);
750         if (idx2 >= 0) {
751                 /* Note that PSX games sometimes do casts after
752                  * a LHU or LBU; in this case we can change the
753                  * load opcode to a LH or LB, and the cast can
754                  * be changed to a MOV or a simple NOP. */
755
756                 prev2 = &list[idx2];
757
758                 if (curr->r.rd != prev2->i.rt &&
759                     !reg_is_dead(list, offset, prev2->i.rt))
760                         prev2 = NULL;
761                 else if (curr->r.imm == 16 && prev2->i.op == OP_LHU)
762                         prev2->i.op = OP_LH;
763                 else if (curr->r.imm == 24 && prev2->i.op == OP_LBU)
764                         prev2->i.op = OP_LB;
765                 else
766                         prev2 = NULL;
767
768                 if (prev2) {
769                         if (curr->r.rd == prev2->i.rt) {
770                                 to_change->opcode = 0;
771                         } else if (reg_is_dead(list, offset, prev2->i.rt) &&
772                                    !reg_is_read_or_written(list, idx2 + 1, offset, curr->r.rd)) {
773                                 /* The target register of the SRA is dead after the
774                                  * LBU/LHU; we can change the target register of the
775                                  * LBU/LHU to the one of the SRA. */
776                                 prev2->i.rt = curr->r.rd;
777                                 to_change->opcode = 0;
778                         } else {
779                                 to_change->i.op = OP_META_MOV;
780                                 to_change->r.rd = curr->r.rd;
781                                 to_change->r.rs = prev2->i.rt;
782                         }
783
784                         if (to_nop->r.imm == 24)
785                                 pr_debug("Convert LBU+SLL+SRA to LB\n");
786                         else
787                                 pr_debug("Convert LHU+SLL+SRA to LH\n");
788                 }
789         }
790
791         if (!prev2) {
792                 pr_debug("Convert SLL/SRA #%u to EXT%c\n",
793                          prev->r.imm,
794                          prev->r.imm == 24 ? 'C' : 'S');
795
796                 if (to_change == prev) {
797                         to_change->i.rs = prev->r.rt;
798                         to_change->i.rt = curr->r.rd;
799                 } else {
800                         to_change->i.rt = curr->r.rd;
801                         to_change->i.rs = prev->r.rt;
802                 }
803
804                 if (to_nop->r.imm == 24)
805                         to_change->i.op = OP_META_EXTC;
806                 else
807                         to_change->i.op = OP_META_EXTS;
808         }
809
810         to_nop->opcode = 0;
811 }
812
813 static int lightrec_transform_ops(struct lightrec_state *state, struct block *block)
814 {
815         struct opcode *list = block->opcode_list;
816         struct opcode *op;
817         u32 known = BIT(0);
818         u32 values[32] = { 0 };
819         unsigned int i;
820         int reader;
821
822         for (i = 0; i < block->nb_ops; i++) {
823                 op = &list[i];
824
825                 /* Transform all opcodes detected as useless to real NOPs
826                  * (0x0: SLL r0, r0, #0) */
827                 if (op->opcode != 0 && is_nop(op->c)) {
828                         pr_debug("Converting useless opcode 0x%08x to NOP\n",
829                                         op->opcode);
830                         op->opcode = 0x0;
831                 }
832
833                 if (!op->opcode)
834                         continue;
835
836                 /* Register $zero is always, well, zero */
837                 known |= BIT(0);
838                 values[0] = 0;
839
840                 switch (op->i.op) {
841                 case OP_BEQ:
842                         if (op->i.rs == op->i.rt) {
843                                 op->i.rs = 0;
844                                 op->i.rt = 0;
845                         } else if (op->i.rs == 0) {
846                                 op->i.rs = op->i.rt;
847                                 op->i.rt = 0;
848                         }
849                         break;
850
851                 case OP_BNE:
852                         if (op->i.rs == 0) {
853                                 op->i.rs = op->i.rt;
854                                 op->i.rt = 0;
855                         }
856                         break;
857
858                 case OP_LUI:
859                         if (!(op->flags & LIGHTREC_SYNC) &&
860                             (known & BIT(op->i.rt)) &&
861                             values[op->i.rt] == op->i.imm << 16) {
862                                 pr_debug("Converting duplicated LUI to NOP\n");
863                                 op->opcode = 0x0;
864                         }
865
866                         if (op->i.imm != 0 || op->i.rt == 0)
867                                 break;
868
869                         reader = find_next_reader(list, i + 1, op->i.rt);
870                         if (reader > 0 &&
871                             (opcode_writes_register(list[reader].c, op->i.rt) ||
872                              reg_is_dead(list, reader, op->i.rt))) {
873
874                                 pr_debug("Removing useless LUI 0x0\n");
875
876                                 if (list[reader].i.rs == op->i.rt)
877                                         list[reader].i.rs = 0;
878                                 if (list[reader].i.op == OP_SPECIAL &&
879                                     list[reader].i.rt == op->i.rt)
880                                         list[reader].i.rt = 0;
881                                 op->opcode = 0x0;
882                         }
883                         break;
884
885                 /* Transform ORI/ADDI/ADDIU with imm #0 or ORR/ADD/ADDU/SUB/SUBU
886                  * with register $zero to the MOV meta-opcode */
887                 case OP_ORI:
888                 case OP_ADDI:
889                 case OP_ADDIU:
890                         if (op->i.imm == 0) {
891                                 pr_debug("Convert ORI/ADDI/ADDIU #0 to MOV\n");
892                                 op->i.op = OP_META_MOV;
893                                 op->r.rd = op->i.rt;
894                         }
895                         break;
896                 case OP_SPECIAL:
897                         switch (op->r.op) {
898                         case OP_SPECIAL_SRA:
899                                 if (op->r.imm == 0) {
900                                         pr_debug("Convert SRA #0 to MOV\n");
901                                         op->i.op = OP_META_MOV;
902                                         op->r.rs = op->r.rt;
903                                         break;
904                                 }
905
906                                 lightrec_optimize_sll_sra(block->opcode_list, i);
907                                 break;
908                         case OP_SPECIAL_SLL:
909                         case OP_SPECIAL_SRL:
910                                 if (op->r.imm == 0) {
911                                         pr_debug("Convert SLL/SRL #0 to MOV\n");
912                                         op->i.op = OP_META_MOV;
913                                         op->r.rs = op->r.rt;
914                                 }
915                                 break;
916                         case OP_SPECIAL_OR:
917                         case OP_SPECIAL_ADD:
918                         case OP_SPECIAL_ADDU:
919                                 if (op->r.rs == 0) {
920                                         pr_debug("Convert OR/ADD $zero to MOV\n");
921                                         op->i.op = OP_META_MOV;
922                                         op->r.rs = op->r.rt;
923                                 }
924                         case OP_SPECIAL_SUB: /* fall-through */
925                         case OP_SPECIAL_SUBU:
926                                 if (op->r.rt == 0) {
927                                         pr_debug("Convert OR/ADD/SUB $zero to MOV\n");
928                                         op->i.op = OP_META_MOV;
929                                 }
930                         default: /* fall-through */
931                                 break;
932                         }
933                 default: /* fall-through */
934                         break;
935                 }
936
937                 known = lightrec_propagate_consts(op, known, values);
938         }
939
940         return 0;
941 }
942
943 static int lightrec_switch_delay_slots(struct lightrec_state *state, struct block *block)
944 {
945         struct opcode *list, *next = &block->opcode_list[0];
946         unsigned int i;
947         union code op, next_op;
948         u8 flags;
949
950         for (i = 0; i < block->nb_ops - 1; i++) {
951                 list = next;
952                 next = &block->opcode_list[i + 1];
953                 next_op = next->c;
954                 op = list->c;
955
956                 if (!has_delay_slot(op) ||
957                     list->flags & (LIGHTREC_NO_DS | LIGHTREC_EMULATE_BRANCH) ||
958                     op.opcode == 0 || next_op.opcode == 0)
959                         continue;
960
961                 if (i && has_delay_slot(block->opcode_list[i - 1].c) &&
962                     !(block->opcode_list[i - 1].flags & LIGHTREC_NO_DS))
963                         continue;
964
965                 if ((list->flags & LIGHTREC_SYNC) ||
966                     (next->flags & LIGHTREC_SYNC))
967                         continue;
968
969                 switch (list->i.op) {
970                 case OP_SPECIAL:
971                         switch (op.r.op) {
972                         case OP_SPECIAL_JALR:
973                                 if (opcode_reads_register(next_op, op.r.rd) ||
974                                     opcode_writes_register(next_op, op.r.rd))
975                                         continue;
976                         case OP_SPECIAL_JR: /* fall-through */
977                                 if (opcode_writes_register(next_op, op.r.rs))
978                                         continue;
979                         default: /* fall-through */
980                                 break;
981                         }
982                 case OP_J: /* fall-through */
983                         break;
984                 case OP_JAL:
985                         if (opcode_reads_register(next_op, 31) ||
986                             opcode_writes_register(next_op, 31))
987                                 continue;
988                         else
989                                 break;
990                 case OP_BEQ:
991                 case OP_BNE:
992                         if (op.i.rt && opcode_writes_register(next_op, op.i.rt))
993                                 continue;
994                 case OP_BLEZ: /* fall-through */
995                 case OP_BGTZ:
996                         if (op.i.rs && opcode_writes_register(next_op, op.i.rs))
997                                 continue;
998                         break;
999                 case OP_REGIMM:
1000                         switch (op.r.rt) {
1001                         case OP_REGIMM_BLTZAL:
1002                         case OP_REGIMM_BGEZAL:
1003                                 if (opcode_reads_register(next_op, 31) ||
1004                                     opcode_writes_register(next_op, 31))
1005                                         continue;
1006                         case OP_REGIMM_BLTZ: /* fall-through */
1007                         case OP_REGIMM_BGEZ:
1008                                 if (op.i.rs &&
1009                                     opcode_writes_register(next_op, op.i.rs))
1010                                         continue;
1011                                 break;
1012                         }
1013                 default: /* fall-through */
1014                         break;
1015                 }
1016
1017                 pr_debug("Swap branch and delay slot opcodes "
1018                          "at offsets 0x%x / 0x%x\n",
1019                          i << 2, (i + 1) << 2);
1020
1021                 flags = next->flags;
1022                 list->c = next_op;
1023                 next->c = op;
1024                 next->flags = list->flags | LIGHTREC_NO_DS;
1025                 list->flags = flags | LIGHTREC_NO_DS;
1026         }
1027
1028         return 0;
1029 }
1030
1031 static int shrink_opcode_list(struct lightrec_state *state, struct block *block, u16 new_size)
1032 {
1033         struct opcode *list;
1034
1035         if (new_size >= block->nb_ops) {
1036                 pr_err("Invalid shrink size (%u vs %u)\n",
1037                        new_size, block->nb_ops);
1038                 return -EINVAL;
1039         }
1040
1041
1042         list = lightrec_malloc(state, MEM_FOR_IR,
1043                                sizeof(*list) * new_size);
1044         if (!list) {
1045                 pr_err("Unable to allocate memory\n");
1046                 return -ENOMEM;
1047         }
1048
1049         memcpy(list, block->opcode_list, sizeof(*list) * new_size);
1050
1051         lightrec_free_opcode_list(state, block);
1052         block->opcode_list = list;
1053         block->nb_ops = new_size;
1054
1055         pr_debug("Shrunk opcode list of block PC 0x%08x to %u opcodes\n",
1056                  block->pc, new_size);
1057
1058         return 0;
1059 }
1060
1061 static int lightrec_detect_impossible_branches(struct lightrec_state *state,
1062                                                struct block *block)
1063 {
1064         struct opcode *op, *next = &block->opcode_list[0];
1065         unsigned int i;
1066         int ret = 0;
1067
1068         for (i = 0; i < block->nb_ops - 1; i++) {
1069                 op = next;
1070                 next = &block->opcode_list[i + 1];
1071
1072                 if (!has_delay_slot(op->c) ||
1073                     (!load_in_delay_slot(next->c) &&
1074                      !has_delay_slot(next->c) &&
1075                      !(next->i.op == OP_CP0 && next->r.rs == OP_CP0_RFE)))
1076                         continue;
1077
1078                 if (op->c.opcode == next->c.opcode) {
1079                         /* The delay slot is the exact same opcode as the branch
1080                          * opcode: this is effectively a NOP */
1081                         next->c.opcode = 0;
1082                         continue;
1083                 }
1084
1085                 op->flags |= LIGHTREC_EMULATE_BRANCH;
1086
1087                 if (op == block->opcode_list) {
1088                         pr_debug("First opcode of block PC 0x%08x is an impossible branch\n",
1089                                  block->pc);
1090
1091                         /* If the first opcode is an 'impossible' branch, we
1092                          * only keep the first two opcodes of the block (the
1093                          * branch itself + its delay slot) */
1094                         if (block->nb_ops > 2)
1095                                 ret = shrink_opcode_list(state, block, 2);
1096                         break;
1097                 }
1098         }
1099
1100         return ret;
1101 }
1102
1103 static int lightrec_local_branches(struct lightrec_state *state, struct block *block)
1104 {
1105         struct opcode *list;
1106         unsigned int i;
1107         s32 offset;
1108
1109         for (i = 0; i < block->nb_ops; i++) {
1110                 list = &block->opcode_list[i];
1111
1112                 if (should_emulate(list))
1113                         continue;
1114
1115                 switch (list->i.op) {
1116                 case OP_BEQ:
1117                 case OP_BNE:
1118                 case OP_BLEZ:
1119                 case OP_BGTZ:
1120                 case OP_REGIMM:
1121                         offset = i + 1 + (s16)list->i.imm;
1122                         if (offset >= 0 && offset < block->nb_ops)
1123                                 break;
1124                 default: /* fall-through */
1125                         continue;
1126                 }
1127
1128                 pr_debug("Found local branch to offset 0x%x\n", offset << 2);
1129
1130                 if (should_emulate(&block->opcode_list[offset])) {
1131                         pr_debug("Branch target must be emulated - skip\n");
1132                         continue;
1133                 }
1134
1135                 if (offset && has_delay_slot(block->opcode_list[offset - 1].c)) {
1136                         pr_debug("Branch target is a delay slot - skip\n");
1137                         continue;
1138                 }
1139
1140                 pr_debug("Adding sync at offset 0x%x\n", offset << 2);
1141
1142                 block->opcode_list[offset].flags |= LIGHTREC_SYNC;
1143                 list->flags |= LIGHTREC_LOCAL_BRANCH;
1144         }
1145
1146         return 0;
1147 }
1148
1149 bool has_delay_slot(union code op)
1150 {
1151         switch (op.i.op) {
1152         case OP_SPECIAL:
1153                 switch (op.r.op) {
1154                 case OP_SPECIAL_JR:
1155                 case OP_SPECIAL_JALR:
1156                         return true;
1157                 default:
1158                         return false;
1159                 }
1160         case OP_J:
1161         case OP_JAL:
1162         case OP_BEQ:
1163         case OP_BNE:
1164         case OP_BLEZ:
1165         case OP_BGTZ:
1166         case OP_REGIMM:
1167                 return true;
1168         default:
1169                 return false;
1170         }
1171 }
1172
1173 bool should_emulate(const struct opcode *list)
1174 {
1175         return has_delay_slot(list->c) &&
1176                 (list->flags & LIGHTREC_EMULATE_BRANCH);
1177 }
1178
1179 static void lightrec_add_unload(struct opcode *op, u8 reg)
1180 {
1181         if (op->i.op == OP_SPECIAL && reg == op->r.rd)
1182                 op->flags |= LIGHTREC_UNLOAD_RD;
1183
1184         if (op->i.rs == reg)
1185                 op->flags |= LIGHTREC_UNLOAD_RS;
1186         if (op->i.rt == reg)
1187                 op->flags |= LIGHTREC_UNLOAD_RT;
1188 }
1189
1190 static int lightrec_early_unload(struct lightrec_state *state, struct block *block)
1191 {
1192         unsigned int i, offset;
1193         struct opcode *op;
1194         u8 reg;
1195
1196         for (reg = 1; reg < 34; reg++) {
1197                 int last_r_id = -1, last_w_id = -1;
1198
1199                 for (i = 0; i < block->nb_ops; i++) {
1200                         union code c = block->opcode_list[i].c;
1201
1202                         if (opcode_reads_register(c, reg))
1203                                 last_r_id = i;
1204                         if (opcode_writes_register(c, reg))
1205                                 last_w_id = i;
1206                 }
1207
1208                 if (last_w_id > last_r_id)
1209                         offset = (unsigned int)last_w_id;
1210                 else if (last_r_id >= 0)
1211                         offset = (unsigned int)last_r_id;
1212                 else
1213                         continue;
1214
1215                 op = &block->opcode_list[offset];
1216
1217                 if (has_delay_slot(op->c) && (op->flags & LIGHTREC_NO_DS))
1218                         offset++;
1219
1220                 if (offset == block->nb_ops)
1221                         continue;
1222
1223                 lightrec_add_unload(&block->opcode_list[offset], reg);
1224         }
1225
1226         return 0;
1227 }
1228
1229 static int lightrec_flag_io(struct lightrec_state *state, struct block *block)
1230 {
1231         const struct lightrec_mem_map *map;
1232         struct opcode *list;
1233         u32 known = BIT(0);
1234         u32 values[32] = { 0 };
1235         unsigned int i;
1236         u32 val;
1237
1238         for (i = 0; i < block->nb_ops; i++) {
1239                 list = &block->opcode_list[i];
1240
1241                 /* Register $zero is always, well, zero */
1242                 known |= BIT(0);
1243                 values[0] = 0;
1244
1245                 switch (list->i.op) {
1246                 case OP_SB:
1247                 case OP_SH:
1248                 case OP_SW:
1249                         if (OPT_FLAG_STORES) {
1250                                 /* Mark all store operations that target $sp or $gp
1251                                  * as not requiring code invalidation. This is based
1252                                  * on the heuristic that stores using one of these
1253                                  * registers as address will never hit a code page. */
1254                                 if (list->i.rs >= 28 && list->i.rs <= 29 &&
1255                                     !state->maps[PSX_MAP_KERNEL_USER_RAM].ops) {
1256                                         pr_debug("Flaging opcode 0x%08x as not "
1257                                                  "requiring invalidation\n",
1258                                                  list->opcode);
1259                                         list->flags |= LIGHTREC_NO_INVALIDATE;
1260                                 }
1261
1262                                 /* Detect writes whose destination address is inside the
1263                                  * current block, using constant propagation. When these
1264                                  * occur, we mark the blocks as not compilable. */
1265                                 if ((known & BIT(list->i.rs)) &&
1266                                     kunseg(values[list->i.rs]) >= kunseg(block->pc) &&
1267                                     kunseg(values[list->i.rs]) < (kunseg(block->pc) +
1268                                                                   block->nb_ops * 4)) {
1269                                         pr_debug("Self-modifying block detected\n");
1270                                         block->flags |= BLOCK_NEVER_COMPILE;
1271                                         list->flags |= LIGHTREC_SMC;
1272                                 }
1273                         }
1274                 case OP_SWL: /* fall-through */
1275                 case OP_SWR:
1276                 case OP_SWC2:
1277                 case OP_LB:
1278                 case OP_LBU:
1279                 case OP_LH:
1280                 case OP_LHU:
1281                 case OP_LW:
1282                 case OP_LWL:
1283                 case OP_LWR:
1284                 case OP_LWC2:
1285                         if (OPT_FLAG_IO && (known & BIT(list->i.rs))) {
1286                                 val = kunseg(values[list->i.rs] + (s16) list->i.imm);
1287                                 map = lightrec_get_map(state, NULL, val);
1288
1289                                 if (!map || map->ops ||
1290                                     map == &state->maps[PSX_MAP_PARALLEL_PORT]) {
1291                                         pr_debug("Flagging opcode %u as accessing I/O registers\n",
1292                                                  i);
1293                                         list->flags |= LIGHTREC_HW_IO;
1294                                 } else {
1295                                         pr_debug("Flaging opcode %u as direct memory access\n", i);
1296                                         list->flags |= LIGHTREC_DIRECT_IO;
1297                                 }
1298                         }
1299                 default: /* fall-through */
1300                         break;
1301                 }
1302
1303                 known = lightrec_propagate_consts(list, known, values);
1304         }
1305
1306         return 0;
1307 }
1308
1309 static u8 get_mfhi_mflo_reg(const struct block *block, u16 offset,
1310                             const struct opcode *last,
1311                             u32 mask, bool sync, bool mflo, bool another)
1312 {
1313         const struct opcode *op, *next = &block->opcode_list[offset];
1314         u32 old_mask;
1315         u8 reg2, reg = mflo ? REG_LO : REG_HI;
1316         u16 branch_offset;
1317         unsigned int i;
1318
1319         for (i = offset; i < block->nb_ops; i++) {
1320                 op = next;
1321                 next = &block->opcode_list[i + 1];
1322                 old_mask = mask;
1323
1324                 /* If any other opcode writes or reads to the register
1325                  * we'd use, then we cannot use it anymore. */
1326                 mask |= opcode_read_mask(op->c);
1327                 mask |= opcode_write_mask(op->c);
1328
1329                 if (op->flags & LIGHTREC_SYNC)
1330                         sync = true;
1331
1332                 switch (op->i.op) {
1333                 case OP_BEQ:
1334                 case OP_BNE:
1335                 case OP_BLEZ:
1336                 case OP_BGTZ:
1337                 case OP_REGIMM:
1338                         /* TODO: handle backwards branches too */
1339                         if (!last &&
1340                             (op->flags & LIGHTREC_LOCAL_BRANCH) &&
1341                             (s16)op->c.i.imm >= 0) {
1342                                 branch_offset = i + 1 + (s16)op->c.i.imm
1343                                         - !!(OPT_SWITCH_DELAY_SLOTS && (op->flags & LIGHTREC_NO_DS));
1344
1345                                 reg = get_mfhi_mflo_reg(block, branch_offset, NULL,
1346                                                         mask, sync, mflo, false);
1347                                 reg2 = get_mfhi_mflo_reg(block, offset + 1, next,
1348                                                          mask, sync, mflo, false);
1349                                 if (reg > 0 && reg == reg2)
1350                                         return reg;
1351                                 if (!reg && !reg2)
1352                                         return 0;
1353                         }
1354
1355                         return mflo ? REG_LO : REG_HI;
1356                 case OP_SPECIAL:
1357                         switch (op->r.op) {
1358                         case OP_SPECIAL_MULT:
1359                         case OP_SPECIAL_MULTU:
1360                         case OP_SPECIAL_DIV:
1361                         case OP_SPECIAL_DIVU:
1362                                 return 0;
1363                         case OP_SPECIAL_MTHI:
1364                                 if (!mflo)
1365                                         return 0;
1366                                 continue;
1367                         case OP_SPECIAL_MTLO:
1368                                 if (mflo)
1369                                         return 0;
1370                                 continue;
1371                         case OP_SPECIAL_JR:
1372                                 if (op->r.rs != 31)
1373                                         return reg;
1374
1375                                 if (!sync &&
1376                                     !(op->flags & LIGHTREC_NO_DS) &&
1377                                     (next->i.op == OP_SPECIAL) &&
1378                                     ((!mflo && next->r.op == OP_SPECIAL_MFHI) ||
1379                                     (mflo && next->r.op == OP_SPECIAL_MFLO)))
1380                                         return next->r.rd;
1381
1382                                 return 0;
1383                         case OP_SPECIAL_JALR:
1384                                 return reg;
1385                         case OP_SPECIAL_MFHI:
1386                                 if (!mflo) {
1387                                         if (another)
1388                                                 return op->r.rd;
1389                                         /* Must use REG_HI if there is another MFHI target*/
1390                                         reg2 = get_mfhi_mflo_reg(block, i + 1, next,
1391                                                          0, sync, mflo, true);
1392                                         if (reg2 > 0 && reg2 != REG_HI)
1393                                                 return REG_HI;
1394
1395                                         if (!sync && !(old_mask & BIT(op->r.rd)))
1396                                                 return op->r.rd;
1397                                         else
1398                                                 return REG_HI;
1399                                 }
1400                                 continue;
1401                         case OP_SPECIAL_MFLO:
1402                                 if (mflo) {
1403                                         if (another)
1404                                                 return op->r.rd;
1405                                         /* Must use REG_LO if there is another MFLO target*/
1406                                         reg2 = get_mfhi_mflo_reg(block, i + 1, next,
1407                                                          0, sync, mflo, true);
1408                                         if (reg2 > 0 && reg2 != REG_LO)
1409                                                 return REG_LO;
1410
1411                                         if (!sync && !(old_mask & BIT(op->r.rd)))
1412                                                 return op->r.rd;
1413                                         else
1414                                                 return REG_LO;
1415                                 }
1416                                 continue;
1417                         default:
1418                                 break;
1419                         }
1420
1421                         /* fall-through */
1422                 default:
1423                         continue;
1424                 }
1425         }
1426
1427         return reg;
1428 }
1429
1430 static void lightrec_replace_lo_hi(struct block *block, u16 offset,
1431                                    u16 last, bool lo)
1432 {
1433         unsigned int i;
1434         u32 branch_offset;
1435
1436         /* This function will remove the following MFLO/MFHI. It must be called
1437          * only if get_mfhi_mflo_reg() returned a non-zero value. */
1438
1439         for (i = offset; i < last; i++) {
1440                 struct opcode *op = &block->opcode_list[i];
1441
1442                 switch (op->i.op) {
1443                 case OP_BEQ:
1444                 case OP_BNE:
1445                 case OP_BLEZ:
1446                 case OP_BGTZ:
1447                 case OP_REGIMM:
1448                         /* TODO: handle backwards branches too */
1449                         if ((op->flags & LIGHTREC_LOCAL_BRANCH) &&
1450                             (s16)op->c.i.imm >= 0) {
1451                                 branch_offset = i + 1 + (s16)op->c.i.imm
1452                                         - !!(OPT_SWITCH_DELAY_SLOTS && (op->flags & LIGHTREC_NO_DS));
1453
1454                                 lightrec_replace_lo_hi(block, branch_offset, last, lo);
1455                                 lightrec_replace_lo_hi(block, i + 1, branch_offset, lo);
1456                         }
1457                         break;
1458
1459                 case OP_SPECIAL:
1460                         if (lo && op->r.op == OP_SPECIAL_MFLO) {
1461                                 pr_debug("Removing MFLO opcode at offset 0x%x\n",
1462                                          i << 2);
1463                                 op->opcode = 0;
1464                                 return;
1465                         } else if (!lo && op->r.op == OP_SPECIAL_MFHI) {
1466                                 pr_debug("Removing MFHI opcode at offset 0x%x\n",
1467                                          i << 2);
1468                                 op->opcode = 0;
1469                                 return;
1470                         }
1471
1472                         /* fall-through */
1473                 default:
1474                         break;
1475                 }
1476         }
1477 }
1478
1479 static int lightrec_flag_mults_divs(struct lightrec_state *state, struct block *block)
1480 {
1481         struct opcode *list;
1482         u8 reg_hi, reg_lo;
1483         unsigned int i;
1484
1485         for (i = 0; i < block->nb_ops - 1; i++) {
1486                 list = &block->opcode_list[i];
1487
1488                 if (list->i.op != OP_SPECIAL)
1489                         continue;
1490
1491                 switch (list->r.op) {
1492                 case OP_SPECIAL_MULT:
1493                 case OP_SPECIAL_MULTU:
1494                 case OP_SPECIAL_DIV:
1495                 case OP_SPECIAL_DIVU:
1496                         break;
1497                 default:
1498                         continue;
1499                 }
1500
1501                 /* Don't support opcodes in delay slots */
1502                 if ((i && has_delay_slot(block->opcode_list[i - 1].c)) ||
1503                     (list->flags & LIGHTREC_NO_DS))
1504                         continue;
1505
1506                 reg_lo = get_mfhi_mflo_reg(block, i + 1, NULL, 0, false, true, false);
1507                 if (reg_lo == 0) {
1508                         pr_debug("Mark MULT(U)/DIV(U) opcode at offset 0x%x as"
1509                                  " not writing LO\n", i << 2);
1510                         list->flags |= LIGHTREC_NO_LO;
1511                 }
1512
1513                 reg_hi = get_mfhi_mflo_reg(block, i + 1, NULL, 0, false, false, false);
1514                 if (reg_hi == 0) {
1515                         pr_debug("Mark MULT(U)/DIV(U) opcode at offset 0x%x as"
1516                                  " not writing HI\n", i << 2);
1517                         list->flags |= LIGHTREC_NO_HI;
1518                 }
1519
1520                 if (!reg_lo && !reg_hi) {
1521                         pr_debug("Both LO/HI unused in this block, they will "
1522                                  "probably be used in parent block - removing "
1523                                  "flags.\n");
1524                         list->flags &= ~(LIGHTREC_NO_LO | LIGHTREC_NO_HI);
1525                 }
1526
1527                 if (reg_lo > 0 && reg_lo != REG_LO) {
1528                         pr_debug("Found register %s to hold LO (rs = %u, rt = %u)\n",
1529                                  lightrec_reg_name(reg_lo), list->r.rs, list->r.rt);
1530
1531                         lightrec_replace_lo_hi(block, i + 1, block->nb_ops, true);
1532                         list->r.rd = reg_lo;
1533                 } else {
1534                         list->r.rd = 0;
1535                 }
1536
1537                 if (reg_hi > 0 && reg_hi != REG_HI) {
1538                         pr_debug("Found register %s to hold HI (rs = %u, rt = %u)\n",
1539                                  lightrec_reg_name(reg_hi), list->r.rs, list->r.rt);
1540
1541                         lightrec_replace_lo_hi(block, i + 1, block->nb_ops, false);
1542                         list->r.imm = reg_hi;
1543                 } else {
1544                         list->r.imm = 0;
1545                 }
1546         }
1547
1548         return 0;
1549 }
1550
1551 static bool remove_div_sequence(struct block *block, unsigned int offset)
1552 {
1553         struct opcode *op;
1554         unsigned int i, found = 0;
1555
1556         /*
1557          * Scan for the zero-checking sequence that GCC automatically introduced
1558          * after most DIV/DIVU opcodes. This sequence checks the value of the
1559          * divisor, and if zero, executes a BREAK opcode, causing the BIOS
1560          * handler to crash the PS1.
1561          *
1562          * For DIV opcodes, this sequence additionally checks that the signed
1563          * operation does not overflow.
1564          *
1565          * With the assumption that the games never crashed the PS1, we can
1566          * therefore assume that the games never divided by zero or overflowed,
1567          * and these sequences can be removed.
1568          */
1569
1570         for (i = offset; i < block->nb_ops; i++) {
1571                 op = &block->opcode_list[i];
1572
1573                 if (!found) {
1574                         if (op->i.op == OP_SPECIAL &&
1575                             (op->r.op == OP_SPECIAL_DIV || op->r.op == OP_SPECIAL_DIVU))
1576                                 break;
1577
1578                         if ((op->opcode & 0xfc1fffff) == 0x14000002) {
1579                                 /* BNE ???, zero, +8 */
1580                                 found++;
1581                         } else {
1582                                 offset++;
1583                         }
1584                 } else if (found == 1 && !op->opcode) {
1585                         /* NOP */
1586                         found++;
1587                 } else if (found == 2 && op->opcode == 0x0007000d) {
1588                         /* BREAK 0x1c00 */
1589                         found++;
1590                 } else if (found == 3 && op->opcode == 0x2401ffff) {
1591                         /* LI at, -1 */
1592                         found++;
1593                 } else if (found == 4 && (op->opcode & 0xfc1fffff) == 0x14010004) {
1594                         /* BNE ???, at, +16 */
1595                         found++;
1596                 } else if (found == 5 && op->opcode == 0x3c018000) {
1597                         /* LUI at, 0x8000 */
1598                         found++;
1599                 } else if (found == 6 && (op->opcode & 0x141fffff) == 0x14010002) {
1600                         /* BNE ???, at, +16 */
1601                         found++;
1602                 } else if (found == 7 && !op->opcode) {
1603                         /* NOP */
1604                         found++;
1605                 } else if (found == 8 && op->opcode == 0x0006000d) {
1606                         /* BREAK 0x1800 */
1607                         found++;
1608                         break;
1609                 } else {
1610                         break;
1611                 }
1612         }
1613
1614         if (found >= 3) {
1615                 if (found != 9)
1616                         found = 3;
1617
1618                 pr_debug("Removing DIV%s sequence at offset 0x%x\n",
1619                          found == 9 ? "" : "U", offset << 2);
1620
1621                 for (i = 0; i < found; i++)
1622                         block->opcode_list[offset + i].opcode = 0;
1623
1624                 return true;
1625         }
1626
1627         return false;
1628 }
1629
1630 static int lightrec_remove_div_by_zero_check_sequence(struct lightrec_state *state,
1631                                                       struct block *block)
1632 {
1633         struct opcode *op;
1634         unsigned int i;
1635
1636         for (i = 0; i < block->nb_ops; i++) {
1637                 op = &block->opcode_list[i];
1638
1639                 if (op->i.op == OP_SPECIAL &&
1640                     (op->r.op == OP_SPECIAL_DIVU || op->r.op == OP_SPECIAL_DIV) &&
1641                     remove_div_sequence(block, i + 1))
1642                         op->flags |= LIGHTREC_NO_DIV_CHECK;
1643         }
1644
1645         return 0;
1646 }
1647
1648 static const u32 memset_code[] = {
1649         0x10a00006,     // beqz         a1, 2f
1650         0x24a2ffff,     // addiu        v0,a1,-1
1651         0x2403ffff,     // li           v1,-1
1652         0xac800000,     // 1: sw        zero,0(a0)
1653         0x2442ffff,     // addiu        v0,v0,-1
1654         0x1443fffd,     // bne          v0,v1, 1b
1655         0x24840004,     // addiu        a0,a0,4
1656         0x03e00008,     // 2: jr        ra
1657         0x00000000,     // nop
1658 };
1659
1660 static int lightrec_replace_memset(struct lightrec_state *state, struct block *block)
1661 {
1662         unsigned int i;
1663         union code c;
1664
1665         for (i = 0; i < block->nb_ops; i++) {
1666                 c = block->opcode_list[i].c;
1667
1668                 if (c.opcode != memset_code[i])
1669                         return 0;
1670
1671                 if (i == ARRAY_SIZE(memset_code) - 1) {
1672                         /* success! */
1673                         pr_debug("Block at PC 0x%x is a memset\n", block->pc);
1674                         block->flags |= BLOCK_IS_MEMSET | BLOCK_NEVER_COMPILE;
1675
1676                         /* Return non-zero to skip other optimizers. */
1677                         return 1;
1678                 }
1679         }
1680
1681         return 0;
1682 }
1683
1684 static int (*lightrec_optimizers[])(struct lightrec_state *state, struct block *) = {
1685         IF_OPT(OPT_REMOVE_DIV_BY_ZERO_SEQ, &lightrec_remove_div_by_zero_check_sequence),
1686         IF_OPT(OPT_REPLACE_MEMSET, &lightrec_replace_memset),
1687         IF_OPT(OPT_DETECT_IMPOSSIBLE_BRANCHES, &lightrec_detect_impossible_branches),
1688         IF_OPT(OPT_LOCAL_BRANCHES, &lightrec_local_branches),
1689         IF_OPT(OPT_TRANSFORM_OPS, &lightrec_transform_ops),
1690         IF_OPT(OPT_SWITCH_DELAY_SLOTS, &lightrec_switch_delay_slots),
1691         IF_OPT(OPT_FLAG_IO || OPT_FLAG_STORES, &lightrec_flag_io),
1692         IF_OPT(OPT_FLAG_MULT_DIV, &lightrec_flag_mults_divs),
1693         IF_OPT(OPT_EARLY_UNLOAD, &lightrec_early_unload),
1694 };
1695
1696 int lightrec_optimize(struct lightrec_state *state, struct block *block)
1697 {
1698         unsigned int i;
1699         int ret;
1700
1701         for (i = 0; i < ARRAY_SIZE(lightrec_optimizers); i++) {
1702                 if (lightrec_optimizers[i]) {
1703                         ret = (*lightrec_optimizers[i])(state, block);
1704                         if (ret)
1705                                 return ret;
1706                 }
1707         }
1708
1709         return 0;
1710 }