lightrec: use cycle_multiplier
[pcsx_rearmed.git] / libpcsxcore / lightrec / plugin.c
1 #include <lightrec.h>
2 #include <stdbool.h>
3 #include <stdio.h>
4 #include <unistd.h>
5 #include <signal.h>
6 #include <assert.h>
7
8 #include "../cdrom.h"
9 #include "../gpu.h"
10 #include "../gte.h"
11 #include "../mdec.h"
12 #include "../psxdma.h"
13 #include "../psxhw.h"
14 #include "../psxmem.h"
15 #include "../r3000a.h"
16 #include "../psxinterpreter.h"
17 #include "../new_dynarec/events.h"
18
19 #include "../frontend/main.h"
20
21 #include "mem.h"
22 #include "plugin.h"
23
24 #if (defined(__arm__) || defined(__aarch64__)) && !defined(ALLOW_LIGHTREC_ON_ARM)
25 #error "Lightrec should not be used on ARM (please specify DYNAREC=ari64 to make)"
26 #endif
27
28 #define ARRAY_SIZE(x) (sizeof(x) ? sizeof(x) / sizeof((x)[0]) : 0)
29
30 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
31 #       define LE32TOH(x)       __builtin_bswap32(x)
32 #       define HTOLE32(x)       __builtin_bswap32(x)
33 #       define LE16TOH(x)       __builtin_bswap16(x)
34 #       define HTOLE16(x)       __builtin_bswap16(x)
35 #else
36 #       define LE32TOH(x)       (x)
37 #       define HTOLE32(x)       (x)
38 #       define LE16TOH(x)       (x)
39 #       define HTOLE16(x)       (x)
40 #endif
41
42 #ifdef __GNUC__
43 #       define likely(x)       __builtin_expect(!!(x),1)
44 #       define unlikely(x)     __builtin_expect(!!(x),0)
45 #else
46 #       define likely(x)       (x)
47 #       define unlikely(x)     (x)
48 #endif
49
50 psxRegisters psxRegs;
51 Rcnt rcnts[4];
52
53 static struct lightrec_state *lightrec_state;
54
55 static char *name = "retroarch.exe";
56
57 static bool use_lightrec_interpreter;
58 static bool use_pcsx_interpreter;
59 static bool block_stepping;
60 static u32 cycle_mult_to_pcsx; // 22.10 fractional
61 static u32 cycle_mult_from_pcsx;
62
63 enum my_cp2_opcodes {
64         OP_CP2_RTPS             = 0x01,
65         OP_CP2_NCLIP            = 0x06,
66         OP_CP2_OP               = 0x0c,
67         OP_CP2_DPCS             = 0x10,
68         OP_CP2_INTPL            = 0x11,
69         OP_CP2_MVMVA            = 0x12,
70         OP_CP2_NCDS             = 0x13,
71         OP_CP2_CDP              = 0x14,
72         OP_CP2_NCDT             = 0x16,
73         OP_CP2_NCCS             = 0x1b,
74         OP_CP2_CC               = 0x1c,
75         OP_CP2_NCS              = 0x1e,
76         OP_CP2_NCT              = 0x20,
77         OP_CP2_SQR              = 0x28,
78         OP_CP2_DCPL             = 0x29,
79         OP_CP2_DPCT             = 0x2a,
80         OP_CP2_AVSZ3            = 0x2d,
81         OP_CP2_AVSZ4            = 0x2e,
82         OP_CP2_RTPT             = 0x30,
83         OP_CP2_GPF              = 0x3d,
84         OP_CP2_GPL              = 0x3e,
85         OP_CP2_NCCT             = 0x3f,
86 };
87
88 static void (*cp2_ops[])(struct psxCP2Regs *) = {
89         [OP_CP2_RTPS] = gteRTPS,
90         [OP_CP2_RTPS] = gteRTPS,
91         [OP_CP2_NCLIP] = gteNCLIP,
92         [OP_CP2_OP] = gteOP,
93         [OP_CP2_DPCS] = gteDPCS,
94         [OP_CP2_INTPL] = gteINTPL,
95         [OP_CP2_MVMVA] = gteMVMVA,
96         [OP_CP2_NCDS] = gteNCDS,
97         [OP_CP2_CDP] = gteCDP,
98         [OP_CP2_NCDT] = gteNCDT,
99         [OP_CP2_NCCS] = gteNCCS,
100         [OP_CP2_CC] = gteCC,
101         [OP_CP2_NCS] = gteNCS,
102         [OP_CP2_NCT] = gteNCT,
103         [OP_CP2_SQR] = gteSQR,
104         [OP_CP2_DCPL] = gteDCPL,
105         [OP_CP2_DPCT] = gteDPCT,
106         [OP_CP2_AVSZ3] = gteAVSZ3,
107         [OP_CP2_AVSZ4] = gteAVSZ4,
108         [OP_CP2_RTPT] = gteRTPT,
109         [OP_CP2_GPF] = gteGPF,
110         [OP_CP2_GPL] = gteGPL,
111         [OP_CP2_NCCT] = gteNCCT,
112 };
113
114 static char cache_buf[64 * 1024];
115
116 static void cop2_op(struct lightrec_state *state, u32 func)
117 {
118         struct lightrec_registers *regs = lightrec_get_registers(state);
119
120         psxRegs.code = func;
121
122         if (unlikely(!cp2_ops[func & 0x3f])) {
123                 fprintf(stderr, "Invalid CP2 function %u\n", func);
124         } else {
125                 /* This works because regs->cp2c comes right after regs->cp2d,
126                  * so it can be cast to a pcsxCP2Regs pointer. */
127                 cp2_ops[func & 0x3f]((psxCP2Regs *) regs->cp2d);
128         }
129 }
130
131 static bool has_interrupt(void)
132 {
133         struct lightrec_registers *regs = lightrec_get_registers(lightrec_state);
134
135         return ((psxHu32(0x1070) & psxHu32(0x1074)) &&
136                 (regs->cp0[12] & 0x401) == 0x401) ||
137                 (regs->cp0[12] & regs->cp0[13] & 0x0300);
138 }
139
140 static u32 cycles_pcsx_to_lightrec(u32 c)
141 {
142         assert((u64)c * cycle_mult_from_pcsx <= (u32)-1);
143         return c * cycle_mult_from_pcsx >> 10;
144 }
145
146 static void lightrec_tansition_to_pcsx(struct lightrec_state *state)
147 {
148         psxRegs.cycle += lightrec_current_cycle_count(state) * cycle_mult_to_pcsx >> 10;
149         lightrec_reset_cycle_count(state, 0);
150 }
151
152 static void lightrec_tansition_from_pcsx(struct lightrec_state *state)
153 {
154         s32 cycles_left = next_interupt - psxRegs.cycle;
155
156         if (block_stepping || cycles_left <= 0 || has_interrupt())
157                 lightrec_set_exit_flags(state, LIGHTREC_EXIT_CHECK_INTERRUPT);
158         else {
159                 lightrec_set_target_cycle_count(state,
160                         cycles_pcsx_to_lightrec(cycles_left));
161         }
162 }
163
164 static void hw_write_byte(struct lightrec_state *state,
165                           u32 op, void *host, u32 mem, u8 val)
166 {
167         lightrec_tansition_to_pcsx(state);
168
169         psxHwWrite8(mem, val);
170
171         lightrec_tansition_from_pcsx(state);
172 }
173
174 static void hw_write_half(struct lightrec_state *state,
175                           u32 op, void *host, u32 mem, u16 val)
176 {
177         lightrec_tansition_to_pcsx(state);
178
179         psxHwWrite16(mem, val);
180
181         lightrec_tansition_from_pcsx(state);
182 }
183
184 static void hw_write_word(struct lightrec_state *state,
185                           u32 op, void *host, u32 mem, u32 val)
186 {
187         lightrec_tansition_to_pcsx(state);
188
189         psxHwWrite32(mem, val);
190
191         lightrec_tansition_from_pcsx(state);
192 }
193
194 static u8 hw_read_byte(struct lightrec_state *state, u32 op, void *host, u32 mem)
195 {
196         u8 val;
197
198         lightrec_tansition_to_pcsx(state);
199
200         val = psxHwRead8(mem);
201
202         lightrec_tansition_from_pcsx(state);
203
204         return val;
205 }
206
207 static u16 hw_read_half(struct lightrec_state *state,
208                         u32 op, void *host, u32 mem)
209 {
210         u16 val;
211
212         lightrec_tansition_to_pcsx(state);
213
214         val = psxHwRead16(mem);
215
216         lightrec_tansition_from_pcsx(state);
217
218         return val;
219 }
220
221 static u32 hw_read_word(struct lightrec_state *state,
222                         u32 op, void *host, u32 mem)
223 {
224         u32 val;
225
226         lightrec_tansition_to_pcsx(state);
227
228         val = psxHwRead32(mem);
229
230         lightrec_tansition_from_pcsx(state);
231
232         return val;
233 }
234
235 static struct lightrec_mem_map_ops hw_regs_ops = {
236         .sb = hw_write_byte,
237         .sh = hw_write_half,
238         .sw = hw_write_word,
239         .lb = hw_read_byte,
240         .lh = hw_read_half,
241         .lw = hw_read_word,
242 };
243
244 static u32 cache_ctrl;
245
246 static void cache_ctrl_write_word(struct lightrec_state *state,
247                                   u32 op, void *host, u32 mem, u32 val)
248 {
249         cache_ctrl = val;
250 }
251
252 static u32 cache_ctrl_read_word(struct lightrec_state *state,
253                                 u32 op, void *host, u32 mem)
254 {
255         return cache_ctrl;
256 }
257
258 static struct lightrec_mem_map_ops cache_ctrl_ops = {
259         .sw = cache_ctrl_write_word,
260         .lw = cache_ctrl_read_word,
261 };
262
263 static struct lightrec_mem_map lightrec_map[] = {
264         [PSX_MAP_KERNEL_USER_RAM] = {
265                 /* Kernel and user memory */
266                 .pc = 0x00000000,
267                 .length = 0x200000,
268         },
269         [PSX_MAP_BIOS] = {
270                 /* BIOS */
271                 .pc = 0x1fc00000,
272                 .length = 0x80000,
273         },
274         [PSX_MAP_SCRATCH_PAD] = {
275                 /* Scratch pad */
276                 .pc = 0x1f800000,
277                 .length = 0x400,
278         },
279         [PSX_MAP_PARALLEL_PORT] = {
280                 /* Parallel port */
281                 .pc = 0x1f000000,
282                 .length = 0x10000,
283         },
284         [PSX_MAP_HW_REGISTERS] = {
285                 /* Hardware registers */
286                 .pc = 0x1f801000,
287                 .length = 0x2000,
288                 .ops = &hw_regs_ops,
289         },
290         [PSX_MAP_CACHE_CONTROL] = {
291                 /* Cache control */
292                 .pc = 0x5ffe0130,
293                 .length = 4,
294                 .ops = &cache_ctrl_ops,
295         },
296
297         /* Mirrors of the kernel/user memory */
298         [PSX_MAP_MIRROR1] = {
299                 .pc = 0x00200000,
300                 .length = 0x200000,
301                 .mirror_of = &lightrec_map[PSX_MAP_KERNEL_USER_RAM],
302         },
303         [PSX_MAP_MIRROR2] = {
304                 .pc = 0x00400000,
305                 .length = 0x200000,
306                 .mirror_of = &lightrec_map[PSX_MAP_KERNEL_USER_RAM],
307         },
308         [PSX_MAP_MIRROR3] = {
309                 .pc = 0x00600000,
310                 .length = 0x200000,
311                 .mirror_of = &lightrec_map[PSX_MAP_KERNEL_USER_RAM],
312         },
313         [PSX_MAP_CODE_BUFFER] = {
314                 .length = CODE_BUFFER_SIZE,
315         },
316 };
317
318 static void lightrec_enable_ram(struct lightrec_state *state, bool enable)
319 {
320         if (enable)
321                 memcpy(psxM, cache_buf, sizeof(cache_buf));
322         else
323                 memcpy(cache_buf, psxM, sizeof(cache_buf));
324 }
325
326 static bool lightrec_can_hw_direct(u32 kaddr, bool is_write, u8 size)
327 {
328         switch (size) {
329         case 8:
330                 switch (kaddr) {
331                 case 0x1f801040:
332                 case 0x1f801050:
333                 case 0x1f801800:
334                 case 0x1f801801:
335                 case 0x1f801802:
336                 case 0x1f801803:
337                         return false;
338                 default:
339                         return true;
340                 }
341         case 16:
342                 switch (kaddr) {
343                 case 0x1f801040:
344                 case 0x1f801044:
345                 case 0x1f801048:
346                 case 0x1f80104a:
347                 case 0x1f80104e:
348                 case 0x1f801050:
349                 case 0x1f801054:
350                 case 0x1f80105a:
351                 case 0x1f80105e:
352                 case 0x1f801100:
353                 case 0x1f801104:
354                 case 0x1f801108:
355                 case 0x1f801110:
356                 case 0x1f801114:
357                 case 0x1f801118:
358                 case 0x1f801120:
359                 case 0x1f801124:
360                 case 0x1f801128:
361                         return false;
362                 case 0x1f801070:
363                 case 0x1f801074:
364                         return !is_write;
365                 default:
366                         return kaddr < 0x1f801c00 || kaddr >= 0x1f801e00;
367                 }
368         default:
369                 switch (kaddr) {
370                 case 0x1f801040:
371                 case 0x1f801050:
372                 case 0x1f801100:
373                 case 0x1f801104:
374                 case 0x1f801108:
375                 case 0x1f801110:
376                 case 0x1f801114:
377                 case 0x1f801118:
378                 case 0x1f801120:
379                 case 0x1f801124:
380                 case 0x1f801128:
381                 case 0x1f801810:
382                 case 0x1f801814:
383                 case 0x1f801820:
384                 case 0x1f801824:
385                         return false;
386                 case 0x1f801070:
387                 case 0x1f801074:
388                 case 0x1f801088:
389                 case 0x1f801098:
390                 case 0x1f8010a8:
391                 case 0x1f8010b8:
392                 case 0x1f8010c8:
393                 case 0x1f8010e8:
394                 case 0x1f8010f4:
395                         return !is_write;
396                 default:
397                         return !is_write || kaddr < 0x1f801c00 || kaddr >= 0x1f801e00;
398                 }
399         }
400 }
401
402 static const struct lightrec_ops lightrec_ops = {
403         .cop2_op = cop2_op,
404         .enable_ram = lightrec_enable_ram,
405         .hw_direct = lightrec_can_hw_direct,
406 };
407
408 static int lightrec_plugin_init(void)
409 {
410         lightrec_map[PSX_MAP_KERNEL_USER_RAM].address = psxM;
411         lightrec_map[PSX_MAP_BIOS].address = psxR;
412         lightrec_map[PSX_MAP_SCRATCH_PAD].address = psxH;
413         lightrec_map[PSX_MAP_HW_REGISTERS].address = psxH + 0x1000;
414         lightrec_map[PSX_MAP_PARALLEL_PORT].address = psxP;
415
416         if (LIGHTREC_CUSTOM_MAP) {
417                 lightrec_map[PSX_MAP_MIRROR1].address = psxM + 0x200000;
418                 lightrec_map[PSX_MAP_MIRROR2].address = psxM + 0x400000;
419                 lightrec_map[PSX_MAP_MIRROR3].address = psxM + 0x600000;
420                 lightrec_map[PSX_MAP_CODE_BUFFER].address = code_buffer;
421         }
422
423         use_lightrec_interpreter = !!getenv("LIGHTREC_INTERPRETER");
424
425         lightrec_state = lightrec_init(name,
426                         lightrec_map, ARRAY_SIZE(lightrec_map),
427                         &lightrec_ops);
428
429         // fprintf(stderr, "M=0x%lx, P=0x%lx, R=0x%lx, H=0x%lx\n",
430         //              (uintptr_t) psxM,
431         //              (uintptr_t) psxP,
432         //              (uintptr_t) psxR,
433         //              (uintptr_t) psxH);
434
435 #ifndef _WIN32
436         signal(SIGPIPE, exit);
437 #endif
438         return 0;
439 }
440
441 static void lightrec_plugin_execute_internal(bool block_only)
442 {
443         struct lightrec_registers *regs;
444         u32 flags, cycles_pcsx;
445
446         regs = lightrec_get_registers(lightrec_state);
447         gen_interupt((psxCP0Regs *)regs->cp0);
448         cycles_pcsx = next_interupt - psxRegs.cycle;
449         assert((s32)cycles_pcsx > 0);
450
451         // step during early boot so that 0x80030000 fastboot hack works
452         block_stepping = block_only;
453         if (block_only)
454                 cycles_pcsx = 0;
455
456         if (use_pcsx_interpreter) {
457                 intExecuteBlock(0);
458         } else {
459                 u32 cycles_lightrec = cycles_pcsx_to_lightrec(cycles_pcsx);
460                 if (unlikely(use_lightrec_interpreter)) {
461                         psxRegs.pc = lightrec_run_interpreter(lightrec_state,
462                                                               psxRegs.pc,
463                                                               cycles_lightrec);
464                 } else {
465                         psxRegs.pc = lightrec_execute(lightrec_state,
466                                                       psxRegs.pc, cycles_lightrec);
467                 }
468
469                 lightrec_tansition_to_pcsx(lightrec_state);
470
471                 flags = lightrec_exit_flags(lightrec_state);
472
473                 if (flags & LIGHTREC_EXIT_SEGFAULT) {
474                         fprintf(stderr, "Exiting at cycle 0x%08x\n",
475                                 psxRegs.cycle);
476                         exit(1);
477                 }
478
479                 if (flags & LIGHTREC_EXIT_SYSCALL)
480                         psxException(0x20, 0, (psxCP0Regs *)regs->cp0);
481         }
482
483         if ((regs->cp0[13] & regs->cp0[12] & 0x300) && (regs->cp0[12] & 0x1)) {
484                 /* Handle software interrupts */
485                 regs->cp0[13] &= ~0x7c;
486                 psxException(regs->cp0[13], 0, (psxCP0Regs *)regs->cp0);
487         }
488 }
489
490 static void lightrec_plugin_execute(void)
491 {
492         extern int stop;
493
494         while (!stop)
495                 lightrec_plugin_execute_internal(false);
496 }
497
498 static void lightrec_plugin_execute_block(enum blockExecCaller caller)
499 {
500         lightrec_plugin_execute_internal(true);
501 }
502
503 static void lightrec_plugin_clear(u32 addr, u32 size)
504 {
505         if (addr == 0 && size == UINT32_MAX)
506                 lightrec_invalidate_all(lightrec_state);
507         else
508                 /* size * 4: PCSX uses DMA units */
509                 lightrec_invalidate(lightrec_state, addr, size * 4);
510 }
511
512 static void lightrec_plugin_sync_regs_to_pcsx(void);
513 static void lightrec_plugin_sync_regs_from_pcsx(void);
514
515 static void lightrec_plugin_notify(enum R3000Anote note, void *data)
516 {
517         switch (note)
518         {
519         case R3000ACPU_NOTIFY_CACHE_ISOLATED:
520         case R3000ACPU_NOTIFY_CACHE_UNISOLATED:
521                 /* not used, lightrec calls lightrec_enable_ram() instead */
522                 break;
523         case R3000ACPU_NOTIFY_BEFORE_SAVE:
524                 lightrec_plugin_sync_regs_to_pcsx();
525                 break;
526         case R3000ACPU_NOTIFY_AFTER_LOAD:
527                 lightrec_plugin_sync_regs_from_pcsx();
528                 break;
529         }
530 }
531
532 static void lightrec_plugin_apply_config()
533 {
534         u32 cycle_mult = Config.cycle_multiplier_override && Config.cycle_multiplier == CYCLE_MULT_DEFAULT
535                 ? Config.cycle_multiplier_override : Config.cycle_multiplier;
536         assert(cycle_mult);
537         cycle_mult_to_pcsx = (cycle_mult * 1024 + 199) / 200;
538         cycle_mult_from_pcsx = (200 * 1024 + cycle_mult/2) / cycle_mult;
539 }
540
541 static void lightrec_plugin_shutdown(void)
542 {
543         lightrec_destroy(lightrec_state);
544 }
545
546 static void lightrec_plugin_reset(void)
547 {
548         struct lightrec_registers *regs;
549
550         regs = lightrec_get_registers(lightrec_state);
551
552         /* Invalidate all blocks */
553         lightrec_invalidate_all(lightrec_state);
554
555         /* Reset registers */
556         memset(regs, 0, sizeof(*regs));
557
558         regs->cp0[12] = 0x10900000; // COP0 enabled | BEV = 1 | TS = 1
559         regs->cp0[15] = 0x00000002; // PRevID = Revision ID, same as R3000A
560 }
561
562 static void lightrec_plugin_sync_regs_from_pcsx(void)
563 {
564         struct lightrec_registers *regs;
565
566         regs = lightrec_get_registers(lightrec_state);
567         memcpy(regs->cp2d, &psxRegs.CP2, sizeof(regs->cp2d) + sizeof(regs->cp2c));
568         memcpy(regs->cp0, &psxRegs.CP0, sizeof(regs->cp0));
569         memcpy(regs->gpr, &psxRegs.GPR, sizeof(regs->gpr));
570
571         lightrec_invalidate_all(lightrec_state);
572 }
573
574 static void lightrec_plugin_sync_regs_to_pcsx(void)
575 {
576         struct lightrec_registers *regs;
577
578         regs = lightrec_get_registers(lightrec_state);
579         memcpy(&psxRegs.CP2, regs->cp2d, sizeof(regs->cp2d) + sizeof(regs->cp2c));
580         memcpy(&psxRegs.CP0, regs->cp0, sizeof(regs->cp0));
581         memcpy(&psxRegs.GPR, regs->gpr, sizeof(regs->gpr));
582 }
583
584 R3000Acpu psxRec =
585 {
586         lightrec_plugin_init,
587         lightrec_plugin_reset,
588         lightrec_plugin_execute,
589         lightrec_plugin_execute_block,
590         lightrec_plugin_clear,
591         lightrec_plugin_notify,
592         lightrec_plugin_apply_config,
593         lightrec_plugin_shutdown,
594 };