1 // SSP1601 to ARM recompiler
3 // (c) Copyright 2008, Grazvydas "notaz" Ignotas
4 // Free for non-commercial use.
6 #include "../../pico_int.h"
9 #define u32 unsigned int
11 static u32 *tcache_ptr = NULL;
13 static int nblocks = 0;
14 static int n_in_ops = 0;
16 extern ssp1601_t *ssp;
18 #define rPC ssp->gr[SSP_PC].h
19 #define rPMC ssp->gr[SSP_PMC]
21 #define SSP_FLAG_Z (1<<0xd)
22 #define SSP_FLAG_N (1<<0xf)
25 #define DUMP_BLOCK 0x0c9a
26 u32 tcache[SSP_TCACHE_SIZE/4];
27 u32 *ssp_block_table[0x5090/2];
28 u32 *ssp_block_table_iram[15][0x800/2];
29 char ssp_align[SSP_BLOCKTAB_ALIGN_SIZE];
30 void ssp_drc_next(void){}
31 void ssp_drc_next_patch(void){}
32 void ssp_drc_end(void){}
37 // -----------------------------------------------------
39 static int get_inc(int mode)
41 int inc = (mode >> 11) & 7;
44 inc = 1 << inc; // 0 1 2 4 8 16 32 128
45 if (mode & 0x8000) inc = -inc; // decrement mode
50 u32 ssp_pm_read(int reg)
54 if (ssp->emu_status & SSP_PMC_SET)
56 ssp->pmac_read[reg] = rPMC.v;
57 ssp->emu_status &= ~SSP_PMC_SET;
62 ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
64 mode = ssp->pmac_read[reg]>>16;
65 if ((mode & 0xfff0) == 0x0800) // ROM
67 d = ((unsigned short *)Pico.rom)[ssp->pmac_read[reg]&0xfffff];
68 ssp->pmac_read[reg] += 1;
70 else if ((mode & 0x47ff) == 0x0018) // DRAM
72 unsigned short *dram = (unsigned short *)svp->dram;
73 int inc = get_inc(mode);
74 d = dram[ssp->pmac_read[reg]&0xffff];
75 ssp->pmac_read[reg] += inc;
78 // PMC value corresponds to last PMR accessed
79 rPMC.v = ssp->pmac_read[reg];
84 #define overwrite_write(dst, d) \
86 if (d & 0xf000) { dst &= ~0xf000; dst |= d & 0xf000; } \
87 if (d & 0x0f00) { dst &= ~0x0f00; dst |= d & 0x0f00; } \
88 if (d & 0x00f0) { dst &= ~0x00f0; dst |= d & 0x00f0; } \
89 if (d & 0x000f) { dst &= ~0x000f; dst |= d & 0x000f; } \
92 void ssp_pm_write(u32 d, int reg)
97 if (ssp->emu_status & SSP_PMC_SET)
99 ssp->pmac_write[reg] = rPMC.v;
100 ssp->emu_status &= ~SSP_PMC_SET;
105 ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
107 dram = (unsigned short *)svp->dram;
108 mode = ssp->pmac_write[reg]>>16;
109 addr = ssp->pmac_write[reg]&0xffff;
110 if ((mode & 0x43ff) == 0x0018) // DRAM
112 int inc = get_inc(mode);
114 overwrite_write(dram[addr], d);
115 } else dram[addr] = d;
116 ssp->pmac_write[reg] += inc;
118 else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
121 overwrite_write(dram[addr], d);
122 } else dram[addr] = d;
123 ssp->pmac_write[reg] += (addr&1) ? 0x1f : 1;
125 else if ((mode & 0x47ff) == 0x001c) // IRAM
127 int inc = get_inc(mode);
128 ((unsigned short *)svp->iram_rom)[addr&0x3ff] = d;
129 ssp->pmac_write[reg] += inc;
130 ssp->drc.iram_dirty = 1;
133 rPMC.v = ssp->pmac_write[reg];
137 // -----------------------------------------------------
140 static unsigned char iram_context_map[] =
142 0, 0, 0, 0, 1, 0, 0, 0, // 04
143 0, 0, 0, 0, 0, 0, 2, 0, // 0e
144 0, 0, 0, 0, 0, 3, 0, 4, // 15 17
145 5, 0, 0, 6, 0, 7, 0, 0, // 18 1b 1d
146 8, 9, 0, 0, 0,10, 0, 0, // 20 21 25
147 0, 0, 0, 0, 0, 0, 0, 0,
148 0, 0,11, 0, 0,12, 0, 0, // 32 35
149 13,14, 0, 0, 0, 0, 0, 0 // 38 39
152 int ssp_get_iram_context(void)
154 unsigned char *ir = (unsigned char *)svp->iram_rom;
155 int val1, val = ir[0x083^1] + ir[0x4FA^1] + ir[0x5F7^1] + ir[0x47B^1];
156 val1 = iram_context_map[(val>>1)&0x3f];
159 elprintf(EL_ANOMALY, "svp: iram ctx val: %02x PC=%04x\n", (val>>1)&0x3f, rPC);
160 //debug_dump2file(name, svp->iram_rom, 0x800);
166 // -----------------------------------------------------
168 /* regs with known values */
173 unsigned int pmac_read[5];
174 unsigned int pmac_write[5];
176 unsigned int emu_status;
179 #define KRREG_X (1 << SSP_X)
180 #define KRREG_Y (1 << SSP_Y)
181 #define KRREG_A (1 << SSP_A) /* AH only */
182 #define KRREG_ST (1 << SSP_ST)
183 #define KRREG_STACK (1 << SSP_STACK)
184 #define KRREG_PC (1 << SSP_PC)
185 #define KRREG_P (1 << SSP_P)
186 #define KRREG_PR0 (1 << 8)
187 #define KRREG_PR4 (1 << 12)
188 #define KRREG_AL (1 << 16)
189 #define KRREG_PMCM (1 << 18) /* only mode word of PMC */
190 #define KRREG_PMC (1 << 19)
191 #define KRREG_PM0R (1 << 20)
192 #define KRREG_PM1R (1 << 21)
193 #define KRREG_PM2R (1 << 22)
194 #define KRREG_PM3R (1 << 23)
195 #define KRREG_PM4R (1 << 24)
196 #define KRREG_PM0W (1 << 25)
197 #define KRREG_PM1W (1 << 26)
198 #define KRREG_PM2W (1 << 27)
199 #define KRREG_PM3W (1 << 28)
200 #define KRREG_PM4W (1 << 29)
202 /* bitfield of known register values */
203 static u32 known_regb = 0;
205 /* known vals, which need to be flushed
206 * (only ST, P, r0-r7, PMCx, PMxR, PMxW)
207 * ST means flags are being held in ARM PSR
208 * P means that it needs to be recalculated
210 static u32 dirty_regb = 0;
212 /* known values of host regs.
214 * 000000-00ffff - 16bit value
215 * 100000-10ffff - base reg (r7) + 16bit val
216 * 0r0000 - means reg (low) eq gr[r].h, r != AL
218 static int hostreg_r[4];
220 static void hostreg_clear(void)
223 for (i = 0; i < 4; i++)
227 static void hostreg_sspreg_changed(int sspreg)
230 for (i = 0; i < 4; i++)
231 if (hostreg_r[i] == (sspreg<<16)) hostreg_r[i] = -1;
235 #define PROGRAM(x) ((unsigned short *)svp->iram_rom)[x]
236 #define PROGRAM_P(x) ((unsigned short *)svp->iram_rom + (x))
238 void tr_unhandled(void)
240 //FILE *f = fopen("tcache.bin", "wb");
241 //fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
243 elprintf(EL_ANOMALY, "unhandled @ %04x\n", known_regs.gr[SSP_PC].h<<1);
247 /* update P, if needed. Trashes r0 */
248 static void tr_flush_dirty_P(void)
251 if (!(dirty_regb & KRREG_P)) return;
252 EOP_MOV_REG_ASR(10, 4, 16); // mov r10, r4, asr #16
253 EOP_MOV_REG_LSL( 0, 4, 16); // mov r0, r4, lsl #16
254 EOP_MOV_REG_ASR( 0, 0, 15); // mov r0, r0, asr #15
255 EOP_MUL(10, 0, 10); // mul r10, r0, r10
256 dirty_regb &= ~KRREG_P;
260 /* write dirty pr to host reg. Nothing is trashed */
261 static void tr_flush_dirty_pr(int r)
265 if (!(dirty_regb & (1 << (r+8)))) return;
268 case 0: ror = 0; break;
269 case 1: ror = 24/2; break;
270 case 2: ror = 16/2; break;
272 reg = (r < 4) ? 8 : 9;
273 EOP_BIC_IMM(reg,reg,ror,0xff);
274 if (known_regs.r[r] != 0)
275 EOP_ORR_IMM(reg,reg,ror,known_regs.r[r]);
276 dirty_regb &= ~(1 << (r+8));
279 /* write all dirty pr0-pr7 to host regs. Nothing is trashed */
280 static void tr_flush_dirty_prs(void)
283 int dirty = dirty_regb >> 8;
284 if ((dirty&7) == 7) {
285 emit_mov_const(A_COND_AL, 8, known_regs.r[0]|(known_regs.r[1]<<8)|(known_regs.r[2]<<16));
288 if ((dirty&0x70) == 0x70) {
289 emit_mov_const(A_COND_AL, 9, known_regs.r[4]|(known_regs.r[5]<<8)|(known_regs.r[6]<<16));
293 for (i = 0; dirty && i < 8; i++, dirty >>= 1)
295 if (!(dirty&1)) continue;
297 case 0: ror = 0; break;
298 case 1: ror = 24/2; break;
299 case 2: ror = 16/2; break;
301 reg = (i < 4) ? 8 : 9;
302 EOP_BIC_IMM(reg,reg,ror,0xff);
303 if (known_regs.r[i] != 0)
304 EOP_ORR_IMM(reg,reg,ror,known_regs.r[i]);
306 dirty_regb &= ~0xff00;
309 /* write dirty pr and "forget" it. Nothing is trashed. */
310 static void tr_release_pr(int r)
312 tr_flush_dirty_pr(r);
313 known_regb &= ~(1 << (r+8));
316 /* fush ARM PSR to r6. Trashes r1 */
317 static void tr_flush_dirty_ST(void)
319 if (!(dirty_regb & KRREG_ST)) return;
320 EOP_BIC_IMM(6,6,0,0x0f);
322 EOP_ORR_REG_LSR(6,6,1,28);
323 dirty_regb &= ~KRREG_ST;
327 /* inverse of above. Trashes r1 */
328 static void tr_make_dirty_ST(void)
330 if (dirty_regb & KRREG_ST) return;
331 if (known_regb & KRREG_ST) {
333 if (known_regs.gr[SSP_ST].h & SSP_FLAG_N) flags |= 8;
334 if (known_regs.gr[SSP_ST].h & SSP_FLAG_Z) flags |= 4;
335 EOP_MSR_IMM(4/2, flags);
337 EOP_MOV_REG_LSL(1, 6, 28);
341 dirty_regb |= KRREG_ST;
344 /* load 16bit val into host reg r0-r3. Nothing is trashed */
345 static void tr_mov16(int r, int val)
347 if (hostreg_r[r] != val) {
348 emit_mov_const(A_COND_AL, r, val);
353 static void tr_mov16_cond(int cond, int r, int val)
355 emit_mov_const(cond, r, val);
360 static void tr_flush_dirty_pmcrs(void)
362 u32 i, val = (u32)-1;
363 if (!(dirty_regb & 0x3ff80000)) return;
365 if (dirty_regb & KRREG_PMC) {
366 val = known_regs.pmc.v;
367 emit_mov_const(A_COND_AL, 1, val);
368 EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
370 if (known_regs.emu_status & (SSP_PMC_SET|SSP_PMC_HAVE_ADDR)) {
371 elprintf(EL_ANOMALY, "!! SSP_PMC_SET|SSP_PMC_HAVE_ADDR set on flush\n");
375 for (i = 0; i < 5; i++)
377 if (dirty_regb & (1 << (20+i))) {
378 if (val != known_regs.pmac_read[i]) {
379 val = known_regs.pmac_read[i];
380 emit_mov_const(A_COND_AL, 1, val);
382 EOP_STR_IMM(1,7,0x454+i*4); // pmac_read
384 if (dirty_regb & (1 << (25+i))) {
385 if (val != known_regs.pmac_write[i]) {
386 val = known_regs.pmac_write[i];
387 emit_mov_const(A_COND_AL, 1, val);
389 EOP_STR_IMM(1,7,0x46c+i*4); // pmac_write
392 dirty_regb &= ~0x3ff80000;
396 /* read bank word to r0 (upper bits zero). Thrashes r1. */
397 static void tr_bank_read(int addr) /* word addr 0-0x1ff */
401 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
402 EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1); // add r1, r7, ((op&0x180)<<1)
403 hostreg_r[1] = 0x100000|((addr&0x180)<<1);
407 EOP_LDRH_IMM(0,breg,(addr&0x7f)<<1); // ldrh r0, [r1, (op&0x7f)<<1]
411 /* write r0 to bank. Trashes r1. */
412 static void tr_bank_write(int addr)
416 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
417 EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1); // add r1, r7, ((op&0x180)<<1)
418 hostreg_r[1] = 0x100000|((addr&0x180)<<1);
422 EOP_STRH_IMM(0,breg,(addr&0x7f)<<1); // strh r0, [r1, (op&0x7f)<<1]
425 /* handle RAM bank pointer modifiers. if need_modulo, trash r1-r3, else nothing */
426 static void tr_ptrr_mod(int r, int mod, int need_modulo, int count)
428 int modulo_shift = -1; /* unknown */
430 if (mod == 0) return;
432 if (!need_modulo || mod == 1) // +!
434 else if (need_modulo && (known_regb & KRREG_ST)) {
435 modulo_shift = known_regs.gr[SSP_ST].h & 7;
436 if (modulo_shift == 0) modulo_shift = 8;
439 if (modulo_shift == -1)
441 int reg = (r < 4) ? 8 : 9;
443 if (dirty_regb & KRREG_ST) {
444 // avoid flushing ARM flags
445 EOP_AND_IMM(1, 6, 0, 0x70);
446 EOP_SUB_IMM(1, 1, 0, 0x10);
447 EOP_AND_IMM(1, 1, 0, 0x70);
448 EOP_ADD_IMM(1, 1, 0, 0x10);
450 EOP_C_DOP_IMM(A_COND_AL,A_OP_AND,1,6,1,0,0x70); // ands r1, r6, #0x70
451 EOP_C_DOP_IMM(A_COND_EQ,A_OP_MOV,0,0,1,0,0x80); // moveq r1, #0x80
453 EOP_MOV_REG_LSR(1, 1, 4); // mov r1, r1, lsr #4
454 EOP_RSB_IMM(2, 1, 0, 8); // rsb r1, r1, #8
455 EOP_MOV_IMM(3, 8/2, count); // mov r3, #0x01000000
457 EOP_ADD_IMM(1, 1, 0, (r&3)*8); // add r1, r1, #(r&3)*8
458 EOP_MOV_REG2_ROR(reg,reg,1); // mov reg, reg, ror r1
460 EOP_SUB_REG2_LSL(reg,reg,3,2); // sub reg, reg, #0x01000000 << r2
461 else EOP_ADD_REG2_LSL(reg,reg,3,2);
462 EOP_RSB_IMM(1, 1, 0, 32); // rsb r1, r1, #32
463 EOP_MOV_REG2_ROR(reg,reg,1); // mov reg, reg, ror r1
464 hostreg_r[1] = hostreg_r[2] = hostreg_r[3] = -1;
466 else if (known_regb & (1 << (r + 8)))
468 int modulo = (1 << modulo_shift) - 1;
470 known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] - count) & modulo);
471 else known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] + count) & modulo);
475 int reg = (r < 4) ? 8 : 9;
476 int ror = ((r&3) + 1)*8 - (8 - modulo_shift);
477 EOP_MOV_REG_ROR(reg,reg,ror);
478 // {add|sub} reg, reg, #1<<shift
479 EOP_C_DOP_IMM(A_COND_AL,(mod==2)?A_OP_SUB:A_OP_ADD,0,reg,reg, 8/2, count << (8 - modulo_shift));
480 EOP_MOV_REG_ROR(reg,reg,32-ror);
484 /* handle writes r0 to (rX). Trashes r1.
485 * fortunately we can ignore modulo increment modes for writes. */
486 static void tr_rX_write(int op)
490 int mod = (op>>2) & 3; // direct addressing
491 tr_bank_write((op & 0x100) + mod);
495 int r = (op&3) | ((op>>6)&4);
496 if (known_regb & (1 << (r + 8))) {
497 tr_bank_write((op&0x100) | known_regs.r[r]);
499 int reg = (r < 4) ? 8 : 9;
500 int ror = ((4 - (r&3))*8) & 0x1f;
501 EOP_AND_IMM(1,reg,ror/2,0xff); // and r1, r{7,8}, <mask>
503 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1); // orr r1, r1, 1<<shift
504 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1); // add r1, r7, r1, lsr #lsr
505 else EOP_ADD_REG_LSL(1,7,1,1);
506 EOP_STRH_SIMPLE(0,1); // strh r0, [r1]
509 tr_ptrr_mod(r, (op>>2) & 3, 0, 1);
513 /* read (rX) to r0. Trashes r1-r3. */
514 static void tr_rX_read(int r, int mod)
518 tr_bank_read(((r << 6) & 0x100) + mod); // direct addressing
522 if (known_regb & (1 << (r + 8))) {
523 tr_bank_read(((r << 6) & 0x100) | known_regs.r[r]);
525 int reg = (r < 4) ? 8 : 9;
526 int ror = ((4 - (r&3))*8) & 0x1f;
527 EOP_AND_IMM(1,reg,ror/2,0xff); // and r1, r{7,8}, <mask>
529 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1); // orr r1, r1, 1<<shift
530 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1); // add r1, r7, r1, lsr #lsr
531 else EOP_ADD_REG_LSL(1,7,1,1);
532 EOP_LDRH_SIMPLE(0,1); // ldrh r0, [r1]
533 hostreg_r[0] = hostreg_r[1] = -1;
535 tr_ptrr_mod(r, mod, 1, 1);
539 /* read ((rX)) to r0. Trashes r1,r2. */
540 static void tr_rX_read2(int op)
542 int r = (op&3) | ((op>>6)&4); // src
545 tr_bank_read((op&0x100) | ((op>>2)&3));
546 } else if (known_regb & (1 << (r+8))) {
547 tr_bank_read((op&0x100) | known_regs.r[r]);
549 int reg = (r < 4) ? 8 : 9;
550 int ror = ((4 - (r&3))*8) & 0x1f;
551 EOP_AND_IMM(1,reg,ror/2,0xff); // and r1, r{7,8}, <mask>
553 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1); // orr r1, r1, 1<<shift
554 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1); // add r1, r7, r1, lsr #lsr
555 else EOP_ADD_REG_LSL(1,7,1,1);
556 EOP_LDRH_SIMPLE(0,1); // ldrh r0, [r1]
558 EOP_LDR_IMM(2,7,0x48c); // ptr_iram_rom
559 EOP_ADD_REG_LSL(2,2,0,1); // add r2, r2, r0, lsl #1
560 EOP_ADD_IMM(0,0,0,1); // add r0, r0, #1
562 tr_bank_write((op&0x100) | ((op>>2)&3));
563 } else if (known_regb & (1 << (r+8))) {
564 tr_bank_write((op&0x100) | known_regs.r[r]);
566 EOP_STRH_SIMPLE(0,1); // strh r0, [r1]
569 EOP_LDRH_SIMPLE(0,2); // ldrh r0, [r2]
570 hostreg_r[0] = hostreg_r[2] = -1;
573 // check if AL is going to be used later in block
574 static int tr_predict_al_need(void)
576 int tmpv, tmpv2, op, pc = known_regs.gr[SSP_PC].h;
585 tmpv2 = (op >> 4) & 0xf; // dst
586 tmpv = op & 0xf; // src
587 if ((tmpv2 == SSP_A && tmpv == SSP_P) || tmpv2 == SSP_AL) // ld A, P; ld AL, *
596 case 0x10: case 0x30: case 0x40: case 0x60: case 0x70:
597 tmpv = op & 0xf; // src
598 if (tmpv == SSP_AL) // OP *, AL
608 case 0x74: pc++; break;
618 // mpya (rj), (ri), b
622 case 0x5b: return 0; // cleared anyway
626 tmpv = op & 0xf; // src
627 if (tmpv == SSP_AL) return 1;
628 case 0x51: case 0x53: case 0x54: case 0x55: case 0x59: case 0x5c:
636 /* get ARM cond which would mean that SSP cond is satisfied. No trash. */
637 static int tr_cond_check(int op)
639 int f = (op & 0x100) >> 8;
641 case 0x00: return A_COND_AL; /* always true */
642 case 0x50: /* Z matches f(?) bit */
643 if (dirty_regb & KRREG_ST) return f ? A_COND_EQ : A_COND_NE;
644 EOP_TST_IMM(6, 0, 4);
645 return f ? A_COND_NE : A_COND_EQ;
646 case 0x70: /* N matches f(?) bit */
647 if (dirty_regb & KRREG_ST) return f ? A_COND_MI : A_COND_PL;
648 EOP_TST_IMM(6, 0, 8);
649 return f ? A_COND_NE : A_COND_EQ;
651 elprintf(EL_ANOMALY, "unimplemented cond?\n");
657 static int tr_neg_cond(int cond)
660 case A_COND_AL: elprintf(EL_ANOMALY, "neg for AL?\n"); exit(1);
661 case A_COND_EQ: return A_COND_NE;
662 case A_COND_NE: return A_COND_EQ;
663 case A_COND_MI: return A_COND_PL;
664 case A_COND_PL: return A_COND_MI;
665 default: elprintf(EL_ANOMALY, "bad cond for neg\n"); exit(1);
670 static int tr_aop_ssp2arm(int op)
673 case 1: return A_OP_SUB;
674 case 3: return A_OP_CMP;
675 case 4: return A_OP_ADD;
676 case 5: return A_OP_AND;
677 case 6: return A_OP_ORR;
678 case 7: return A_OP_EOR;
685 // -----------------------------------------------------
689 //@ r6: STACK and emu flags
693 // read general reg to r0. Trashes r1
694 static void tr_GR0_to_r0(int op)
699 static void tr_X_to_r0(int op)
701 if (hostreg_r[0] != (SSP_X<<16)) {
702 EOP_MOV_REG_LSR(0, 4, 16); // mov r0, r4, lsr #16
703 hostreg_r[0] = SSP_X<<16;
707 static void tr_Y_to_r0(int op)
709 if (hostreg_r[0] != (SSP_Y<<16)) {
710 EOP_MOV_REG_SIMPLE(0, 4); // mov r0, r4
711 hostreg_r[0] = SSP_Y<<16;
715 static void tr_A_to_r0(int op)
717 if (hostreg_r[0] != (SSP_A<<16)) {
718 EOP_MOV_REG_LSR(0, 5, 16); // mov r0, r5, lsr #16 @ AH
719 hostreg_r[0] = SSP_A<<16;
723 static void tr_ST_to_r0(int op)
725 // VR doesn't need much accuracy here..
726 EOP_MOV_REG_LSR(0, 6, 4); // mov r0, r6, lsr #4
727 EOP_AND_IMM(0, 0, 0, 0x67); // and r0, r0, #0x67
731 static void tr_STACK_to_r0(int op)
734 EOP_SUB_IMM(6, 6, 8/2, 0x20); // sub r6, r6, #1<<29
735 EOP_ADD_IMM(1, 7, 24/2, 0x04); // add r1, r7, 0x400
736 EOP_ADD_IMM(1, 1, 0, 0x48); // add r1, r1, 0x048
737 EOP_ADD_REG_LSR(1, 1, 6, 28); // add r1, r1, r6, lsr #28
738 EOP_LDRH_SIMPLE(0, 1); // ldrh r0, [r1]
739 hostreg_r[0] = hostreg_r[1] = -1;
742 static void tr_PC_to_r0(int op)
744 tr_mov16(0, known_regs.gr[SSP_PC].h);
747 static void tr_P_to_r0(int op)
750 EOP_MOV_REG_LSR(0, 10, 16); // mov r0, r10, lsr #16
754 static void tr_AL_to_r0(int op)
757 if (known_regb & KRREG_PMC) {
758 known_regs.emu_status &= ~(SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
760 EOP_LDR_IMM(0,7,0x484); // ldr r1, [r7, #0x484] // emu_status
761 EOP_BIC_IMM(0,0,0,SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
762 EOP_STR_IMM(0,7,0x484);
766 if (hostreg_r[0] != (SSP_AL<<16)) {
767 EOP_MOV_REG_SIMPLE(0, 5); // mov r0, r5
768 hostreg_r[0] = SSP_AL<<16;
772 static void tr_PMX_to_r0(int reg)
774 if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
776 known_regs.pmac_read[reg] = known_regs.pmc.v;
777 known_regs.emu_status &= ~SSP_PMC_SET;
778 known_regb |= 1 << (20+reg);
779 dirty_regb |= 1 << (20+reg);
783 if ((known_regb & KRREG_PMC) && (known_regb & (1 << (20+reg))))
785 u32 pmcv = known_regs.pmac_read[reg];
787 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
789 if ((mode & 0xfff0) == 0x0800)
791 EOP_LDR_IMM(1,7,0x488); // rom_ptr
792 emit_mov_const(A_COND_AL, 0, (pmcv&0xfffff)<<1);
793 EOP_LDRH_REG(0,1,0); // ldrh r0, [r1, r0]
794 known_regs.pmac_read[reg] += 1;
796 else if ((mode & 0x47ff) == 0x0018) // DRAM
798 int inc = get_inc(mode);
799 EOP_LDR_IMM(1,7,0x490); // dram_ptr
800 emit_mov_const(A_COND_AL, 0, (pmcv&0xffff)<<1);
801 EOP_LDRH_REG(0,1,0); // ldrh r0, [r1, r0]
802 if (reg == 4 && (pmcv == 0x187f03 || pmcv == 0x187f04)) // wait loop detection
804 int flag = (pmcv == 0x187f03) ? SSP_WAIT_30FE06 : SSP_WAIT_30FE08;
806 EOP_LDR_IMM(1,7,0x484); // ldr r1, [r7, #0x484] // emu_status
807 EOP_TST_REG_SIMPLE(0,0);
808 EOP_C_DOP_IMM(A_COND_EQ,A_OP_SUB,0,11,11,22/2,1); // subeq r11, r11, #1024
809 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1,24/2,flag>>8); // orreq r1, r1, #SSP_WAIT_30FE08
810 EOP_STR_IMM(1,7,0x484); // str r1, [r7, #0x484] // emu_status
812 known_regs.pmac_read[reg] += inc;
818 known_regs.pmc.v = known_regs.pmac_read[reg];
819 //known_regb |= KRREG_PMC;
820 dirty_regb |= KRREG_PMC;
821 dirty_regb |= 1 << (20+reg);
822 hostreg_r[0] = hostreg_r[1] = -1;
826 known_regb &= ~KRREG_PMC;
827 dirty_regb &= ~KRREG_PMC;
828 known_regb &= ~(1 << (20+reg));
829 dirty_regb &= ~(1 << (20+reg));
831 // call the C code to handle this
833 //tr_flush_dirty_pmcrs();
835 emit_call(A_COND_AL, ssp_pm_read);
839 static void tr_PM0_to_r0(int op)
844 static void tr_PM1_to_r0(int op)
849 static void tr_PM2_to_r0(int op)
854 static void tr_XST_to_r0(int op)
856 EOP_ADD_IMM(0, 7, 24/2, 4); // add r0, r7, #0x400
857 EOP_LDRH_IMM(0, 0, SSP_XST*4+2);
860 static void tr_PM4_to_r0(int op)
865 static void tr_PMC_to_r0(int op)
867 if (known_regb & KRREG_PMC)
869 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
870 known_regs.emu_status |= SSP_PMC_SET;
871 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
872 // do nothing - this is handled elsewhere
874 tr_mov16(0, known_regs.pmc.l);
875 known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
880 EOP_LDR_IMM(1,7,0x484); // ldr r1, [r7, #0x484] // emu_status
883 EOP_LDR_IMM(0, 7, 0x400+SSP_PMC*4);
884 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
885 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
886 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
887 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET); // orrne r1, r1, #..
888 EOP_STR_IMM(1,7,0x484);
889 hostreg_r[0] = hostreg_r[1] = -1;
894 typedef void (tr_read_func)(int op);
896 static tr_read_func *tr_read_funcs[16] =
911 (tr_read_func *)tr_unhandled,
917 // write r0 to general reg handlers. Trashes r1
918 #define TR_WRITE_R0_TO_REG(reg) \
920 hostreg_sspreg_changed(reg); \
921 hostreg_r[0] = (reg)<<16; \
922 if (const_val != -1) { \
923 known_regs.gr[reg].h = const_val; \
924 known_regb |= 1 << (reg); \
926 known_regb &= ~(1 << (reg)); \
930 static void tr_r0_to_GR0(int const_val)
935 static void tr_r0_to_X(int const_val)
937 EOP_MOV_REG_LSL(4, 4, 16); // mov r4, r4, lsl #16
938 EOP_MOV_REG_LSR(4, 4, 16); // mov r4, r4, lsr #16
939 EOP_ORR_REG_LSL(4, 4, 0, 16); // orr r4, r4, r0, lsl #16
940 dirty_regb |= KRREG_P; // touching X or Y makes P dirty.
941 TR_WRITE_R0_TO_REG(SSP_X);
944 static void tr_r0_to_Y(int const_val)
946 EOP_MOV_REG_LSR(4, 4, 16); // mov r4, r4, lsr #16
947 EOP_ORR_REG_LSL(4, 4, 0, 16); // orr r4, r4, r0, lsl #16
948 EOP_MOV_REG_ROR(4, 4, 16); // mov r4, r4, ror #16
949 dirty_regb |= KRREG_P;
950 TR_WRITE_R0_TO_REG(SSP_Y);
953 static void tr_r0_to_A(int const_val)
955 if (tr_predict_al_need()) {
956 EOP_MOV_REG_LSL(5, 5, 16); // mov r5, r5, lsl #16
957 EOP_MOV_REG_LSR(5, 5, 16); // mov r5, r5, lsr #16 @ AL
958 EOP_ORR_REG_LSL(5, 5, 0, 16); // orr r5, r5, r0, lsl #16
961 EOP_MOV_REG_LSL(5, 0, 16);
962 TR_WRITE_R0_TO_REG(SSP_A);
965 static void tr_r0_to_ST(int const_val)
967 // VR doesn't need much accuracy here..
968 EOP_AND_IMM(1, 0, 0, 0x67); // and r1, r0, #0x67
969 EOP_AND_IMM(6, 6, 8/2, 0xe0); // and r6, r6, #7<<29 @ preserve STACK
970 EOP_ORR_REG_LSL(6, 6, 1, 4); // orr r6, r6, r1, lsl #4
971 TR_WRITE_R0_TO_REG(SSP_ST);
973 dirty_regb &= ~KRREG_ST;
976 static void tr_r0_to_STACK(int const_val)
979 EOP_ADD_IMM(1, 7, 24/2, 0x04); // add r1, r7, 0x400
980 EOP_ADD_IMM(1, 1, 0, 0x48); // add r1, r1, 0x048
981 EOP_ADD_REG_LSR(1, 1, 6, 28); // add r1, r1, r6, lsr #28
982 EOP_STRH_SIMPLE(0, 1); // strh r0, [r1]
983 EOP_ADD_IMM(6, 6, 8/2, 0x20); // add r6, r6, #1<<29
987 static void tr_r0_to_PC(int const_val)
990 * do nothing - dispatcher will take care of this
991 EOP_MOV_REG_LSL(1, 0, 16); // mov r1, r0, lsl #16
992 EOP_STR_IMM(1,7,0x400+6*4); // str r1, [r7, #(0x400+6*8)]
997 static void tr_r0_to_AL(int const_val)
999 EOP_MOV_REG_LSR(5, 5, 16); // mov r5, r5, lsr #16
1000 EOP_ORR_REG_LSL(5, 5, 0, 16); // orr r5, r5, r0, lsl #16
1001 EOP_MOV_REG_ROR(5, 5, 16); // mov r5, r5, ror #16
1002 hostreg_sspreg_changed(SSP_AL);
1003 if (const_val != -1) {
1004 known_regs.gr[SSP_A].l = const_val;
1005 known_regb |= 1 << SSP_AL;
1007 known_regb &= ~(1 << SSP_AL);
1010 static void tr_r0_to_PMX(int reg)
1012 if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
1014 known_regs.pmac_write[reg] = known_regs.pmc.v;
1015 known_regs.emu_status &= ~SSP_PMC_SET;
1016 known_regb |= 1 << (25+reg);
1017 dirty_regb |= 1 << (25+reg);
1021 if ((known_regb & KRREG_PMC) && (known_regb & (1 << (25+reg))))
1025 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1027 mode = known_regs.pmac_write[reg]>>16;
1028 addr = known_regs.pmac_write[reg]&0xffff;
1029 if ((mode & 0x43ff) == 0x0018) // DRAM
1031 int inc = get_inc(mode);
1032 if (mode & 0x0400) tr_unhandled();
1033 EOP_LDR_IMM(1,7,0x490); // dram_ptr
1034 emit_mov_const(A_COND_AL, 2, addr<<1);
1035 EOP_STRH_REG(0,1,2); // strh r0, [r1, r2]
1036 known_regs.pmac_write[reg] += inc;
1038 else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
1040 if (mode & 0x0400) tr_unhandled();
1041 EOP_LDR_IMM(1,7,0x490); // dram_ptr
1042 emit_mov_const(A_COND_AL, 2, addr<<1);
1043 EOP_STRH_REG(0,1,2); // strh r0, [r1, r2]
1044 known_regs.pmac_write[reg] += (addr&1) ? 31 : 1;
1046 else if ((mode & 0x47ff) == 0x001c) // IRAM
1048 int inc = get_inc(mode);
1049 EOP_LDR_IMM(1,7,0x48c); // iram_ptr
1050 emit_mov_const(A_COND_AL, 2, (addr&0x3ff)<<1);
1051 EOP_STRH_REG(0,1,2); // strh r0, [r1, r2]
1053 EOP_STR_IMM(1,7,0x494); // iram_dirty
1054 known_regs.pmac_write[reg] += inc;
1059 known_regs.pmc.v = known_regs.pmac_write[reg];
1060 //known_regb |= KRREG_PMC;
1061 dirty_regb |= KRREG_PMC;
1062 dirty_regb |= 1 << (25+reg);
1063 hostreg_r[1] = hostreg_r[2] = -1;
1067 known_regb &= ~KRREG_PMC;
1068 dirty_regb &= ~KRREG_PMC;
1069 known_regb &= ~(1 << (25+reg));
1070 dirty_regb &= ~(1 << (25+reg));
1072 // call the C code to handle this
1073 tr_flush_dirty_ST();
1074 //tr_flush_dirty_pmcrs();
1076 emit_call(A_COND_AL, ssp_pm_write);
1080 static void tr_r0_to_PM0(int const_val)
1085 static void tr_r0_to_PM1(int const_val)
1090 static void tr_r0_to_PM2(int const_val)
1095 static void tr_r0_to_PM4(int const_val)
1100 static void tr_r0_to_PMC(int const_val)
1102 if ((known_regb & KRREG_PMC) && const_val != -1)
1104 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
1105 known_regs.emu_status |= SSP_PMC_SET;
1106 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1107 known_regs.pmc.h = const_val;
1109 known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
1110 known_regs.pmc.l = const_val;
1115 tr_flush_dirty_ST();
1116 if (known_regb & KRREG_PMC) {
1117 emit_mov_const(A_COND_AL, 1, known_regs.pmc.v);
1118 EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
1119 known_regb &= ~KRREG_PMC;
1120 dirty_regb &= ~KRREG_PMC;
1122 EOP_LDR_IMM(1,7,0x484); // ldr r1, [r7, #0x484] // emu_status
1123 EOP_ADD_IMM(2,7,24/2,4); // add r2, r7, #0x400
1124 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
1125 EOP_C_AM3_IMM(A_COND_EQ,1,0,2,0,0,1,SSP_PMC*4); // strxx r0, [r2, #SSP_PMC]
1126 EOP_C_AM3_IMM(A_COND_NE,1,0,2,0,0,1,SSP_PMC*4+2);
1127 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
1128 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
1129 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET); // orrne r1, r1, #..
1130 EOP_STR_IMM(1,7,0x484);
1131 hostreg_r[1] = hostreg_r[2] = -1;
1135 typedef void (tr_write_func)(int const_val);
1137 static tr_write_func *tr_write_funcs[16] =
1146 (tr_write_func *)tr_unhandled,
1150 (tr_write_func *)tr_unhandled,
1152 (tr_write_func *)tr_unhandled,
1157 static void tr_mac_load_XY(int op)
1159 tr_rX_read(op&3, (op>>2)&3); // X
1160 EOP_MOV_REG_LSL(4, 0, 16);
1161 tr_rX_read(((op>>4)&3)|4, (op>>6)&3); // Y
1162 EOP_ORR_REG_SIMPLE(4, 0);
1163 dirty_regb |= KRREG_P;
1164 hostreg_sspreg_changed(SSP_X);
1165 hostreg_sspreg_changed(SSP_Y);
1166 known_regb &= ~KRREG_X;
1167 known_regb &= ~KRREG_Y;
1170 // -----------------------------------------------------
1172 static int tr_detect_set_pm(unsigned int op, int *pc, int imm)
1175 if (!((op&0xfef0) == 0x08e0 && (PROGRAM(*pc)&0xfef0) == 0x08e0)) return 0;
1181 pmcv = imm | (PROGRAM((*pc)++) << 16);
1182 known_regs.pmc.v = pmcv;
1183 known_regb |= KRREG_PMC;
1184 dirty_regb |= KRREG_PMC;
1185 known_regs.emu_status |= SSP_PMC_SET;
1188 // check for possible reg programming
1189 tmpv = PROGRAM(*pc);
1190 if ((tmpv & 0xfff8) == 0x08 || (tmpv & 0xff8f) == 0x80)
1192 int is_write = (tmpv & 0xff8f) == 0x80;
1193 int reg = is_write ? ((tmpv>>4)&0x7) : (tmpv&0x7);
1194 if (reg > 4) tr_unhandled();
1195 if ((tmpv & 0x0f) != 0 && (tmpv & 0xf0) != 0) tr_unhandled();
1196 known_regs.pmac_read[is_write ? reg + 5 : reg] = pmcv;
1197 known_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1198 dirty_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1199 known_regs.emu_status &= ~SSP_PMC_SET;
1209 static const short pm0_block_seq[] = { 0x0880, 0, 0x0880, 0, 0x0840, 0x60 };
1211 static int tr_detect_pm0_block(unsigned int op, int *pc, int imm)
1218 if (op != 0x0840 || imm != 0) return 0;
1219 pp = PROGRAM_P(*pc);
1220 if (memcmp(pp, pm0_block_seq, sizeof(pm0_block_seq)) != 0) return 0;
1222 EOP_AND_IMM(6, 6, 8/2, 0xe0); // and r6, r6, #7<<29 @ preserve STACK
1223 EOP_ORR_IMM(6, 6, 24/2, 6); // orr r6, r6, 0x600
1224 hostreg_sspreg_changed(SSP_ST);
1225 known_regs.gr[SSP_ST].h = 0x60;
1226 known_regb |= 1 << SSP_ST;
1227 dirty_regb &= ~KRREG_ST;
1233 static int tr_detect_rotate(unsigned int op, int *pc, int imm)
1239 if (op != 0x02e3 || PROGRAM(*pc) != 0x04e3 || PROGRAM(*pc + 1) != 0x000f) return 0;
1242 EOP_MOV_REG_LSL(0, 0, 4);
1243 EOP_ORR_REG_LSR(0, 0, 0, 16);
1250 // -----------------------------------------------------
1252 static int translate_op(unsigned int op, int *pc, int imm, int *end_cond, int *jump_pc)
1254 u32 tmpv, tmpv2, tmpv3;
1256 known_regs.gr[SSP_PC].h = *pc;
1262 if (op == 0) { ret++; break; } // nop
1263 tmpv = op & 0xf; // src
1264 tmpv2 = (op >> 4) & 0xf; // dst
1265 if (tmpv2 == SSP_A && tmpv == SSP_P) { // ld A, P
1267 EOP_MOV_REG_SIMPLE(5, 10);
1268 hostreg_sspreg_changed(SSP_A);
1269 known_regb &= ~(KRREG_A|KRREG_AL);
1272 tr_read_funcs[tmpv](op);
1273 tr_write_funcs[tmpv2]((known_regb & (1 << tmpv)) ? known_regs.gr[tmpv].h : -1);
1274 if (tmpv2 == SSP_PC) {
1276 *end_cond = -A_COND_AL;
1282 int r = (op&3) | ((op>>6)&4);
1283 int mod = (op>>2)&3;
1284 tmpv = (op >> 4) & 0xf; // dst
1285 ret = tr_detect_rotate(op, pc, imm);
1291 while (PROGRAM(*pc) == op) {
1292 (*pc)++; cnt++; ret++;
1295 tr_ptrr_mod(r, mod, 1, cnt); // skip
1297 tr_write_funcs[tmpv](-1);
1298 if (tmpv == SSP_PC) {
1300 *end_cond = -A_COND_AL;
1307 tmpv = (op >> 4) & 0xf; // src
1308 tr_read_funcs[tmpv](op);
1314 tr_bank_read(op&0x1ff);
1320 tmpv = (op & 0xf0) >> 4; // dst
1321 ret = tr_detect_pm0_block(op, pc, imm);
1323 ret = tr_detect_set_pm(op, pc, imm);
1326 tr_write_funcs[tmpv](imm);
1327 if (tmpv == SSP_PC) {
1335 tmpv2 = (op >> 4) & 0xf; // dst
1337 tr_write_funcs[tmpv2](-1);
1338 if (tmpv2 == SSP_PC) {
1340 *end_cond = -A_COND_AL;
1353 tr_bank_write(op&0x1ff);
1359 r = (op&3) | ((op>>6)&4); // src
1360 tmpv2 = (op >> 4) & 0xf; // dst
1361 if ((r&3) == 3) tr_unhandled();
1363 if (known_regb & (1 << (r+8))) {
1364 tr_mov16(0, known_regs.r[r]);
1365 tr_write_funcs[tmpv2](known_regs.r[r]);
1367 int reg = (r < 4) ? 8 : 9;
1368 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8); // mov r0, r{7,8}, lsr #lsr
1369 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff); // and r0, r{7,8}, <mask>
1371 tr_write_funcs[tmpv2](-1);
1379 r = (op&3) | ((op>>6)&4); // dst
1380 tmpv = (op >> 4) & 0xf; // src
1381 if ((r&3) == 3) tr_unhandled();
1383 if (known_regb & (1 << tmpv)) {
1384 known_regs.r[r] = known_regs.gr[tmpv].h;
1385 known_regb |= 1 << (r + 8);
1386 dirty_regb |= 1 << (r + 8);
1388 int reg = (r < 4) ? 8 : 9;
1389 int ror = ((4 - (r&3))*8) & 0x1f;
1390 tr_read_funcs[tmpv](op);
1391 EOP_BIC_IMM(reg, reg, ror/2, 0xff); // bic r{7,8}, r{7,8}, <mask>
1392 EOP_AND_IMM(0, 0, 0, 0xff); // and r0, r0, 0xff
1393 EOP_ORR_REG_LSL(reg, reg, 0, (r&3)*8); // orr r{7,8}, r{7,8}, r0, lsl #lsl
1395 known_regb &= ~(1 << (r+8));
1396 dirty_regb &= ~(1 << (r+8));
1402 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1404 known_regs.r[tmpv] = op;
1405 known_regb |= 1 << (tmpv + 8);
1406 dirty_regb |= 1 << (tmpv + 8);
1411 u32 *jump_op = NULL;
1412 tmpv = tr_cond_check(op);
1413 if (tmpv != A_COND_AL) {
1414 jump_op = tcache_ptr;
1415 EOP_MOV_IMM(0, 0, 0); // placeholder for branch
1418 tr_r0_to_STACK(*pc);
1419 if (tmpv != A_COND_AL) {
1420 u32 *real_ptr = tcache_ptr;
1421 tcache_ptr = jump_op;
1422 EOP_C_B(tr_neg_cond(tmpv),0,real_ptr - jump_op - 2);
1423 tcache_ptr = real_ptr;
1425 tr_mov16_cond(tmpv, 0, imm);
1426 if (tmpv != A_COND_AL)
1427 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1428 tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1437 tmpv2 = (op >> 4) & 0xf; // dst
1439 EOP_LDR_IMM(1,7,0x48c); // ptr_iram_rom
1440 EOP_ADD_REG_LSL(0,1,0,1); // add r0, r1, r0, lsl #1
1441 EOP_LDRH_SIMPLE(0,0); // ldrh r0, [r0]
1442 hostreg_r[0] = hostreg_r[1] = -1;
1443 tr_write_funcs[tmpv2](-1);
1444 if (tmpv2 == SSP_PC) {
1446 *end_cond = -A_COND_AL;
1452 tmpv = tr_cond_check(op);
1453 tr_mov16_cond(tmpv, 0, imm);
1454 if (tmpv != A_COND_AL)
1455 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1456 tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1464 // check for repeats of this op
1466 while (PROGRAM(*pc) == op && (op & 7) != 6) {
1470 if ((op&0xf0) != 0) // !always
1473 tmpv2 = tr_cond_check(op);
1475 case 2: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_ASR,5); break; // shr (arithmetic)
1476 case 3: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_LSL,5); break; // shl
1477 case 6: EOP_C_DOP_IMM(tmpv2,A_OP_RSB,1,5,5,0,0); break; // neg
1478 case 7: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_EOR,0,5,1,31,A_AM1_ASR,5); // eor r1, r5, r5, asr #31
1479 EOP_C_DOP_REG_XIMM(tmpv2,A_OP_ADD,1,1,5,31,A_AM1_LSR,5); // adds r5, r1, r5, lsr #31
1480 hostreg_r[1] = -1; break; // abs
1481 default: tr_unhandled();
1484 hostreg_sspreg_changed(SSP_A);
1485 dirty_regb |= KRREG_ST;
1486 known_regb &= ~KRREG_ST;
1487 known_regb &= ~(KRREG_A|KRREG_AL);
1496 EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_SUB,1,5,5,0,A_AM1_LSL,10); // subs r5, r5, r10
1497 hostreg_sspreg_changed(SSP_A);
1498 known_regb &= ~(KRREG_A|KRREG_AL);
1499 dirty_regb |= KRREG_ST;
1502 // mpya (rj), (ri), b
1507 EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_ADD,1,5,5,0,A_AM1_LSL,10); // adds r5, r5, r10
1508 hostreg_sspreg_changed(SSP_A);
1509 known_regb &= ~(KRREG_A|KRREG_AL);
1510 dirty_regb |= KRREG_ST;
1513 // mld (rj), (ri), b
1515 EOP_C_DOP_IMM(A_COND_AL,A_OP_MOV,1,0,5,0,0); // movs r5, #0
1516 hostreg_sspreg_changed(SSP_A);
1517 known_regs.gr[SSP_A].v = 0;
1518 known_regb |= (KRREG_A|KRREG_AL);
1519 dirty_regb |= KRREG_ST;
1530 tmpv = op & 0xf; // src
1531 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1532 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1533 if (tmpv == SSP_P) {
1535 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL,10); // OPs r5, r5, r10
1536 } else if (tmpv == SSP_A) {
1537 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL, 5); // OPs r5, r5, r5
1539 tr_read_funcs[tmpv](op);
1540 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL, 0); // OPs r5, r5, r0, lsl #16
1542 hostreg_sspreg_changed(SSP_A);
1543 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1544 dirty_regb |= KRREG_ST;
1554 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1555 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1556 tr_rX_read((op&3)|((op>>6)&4), (op>>2)&3);
1557 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1558 hostreg_sspreg_changed(SSP_A);
1559 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1560 dirty_regb |= KRREG_ST;
1570 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1571 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1572 tr_bank_read(op&0x1ff);
1573 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1574 hostreg_sspreg_changed(SSP_A);
1575 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1576 dirty_regb |= KRREG_ST;
1586 tmpv = (op & 0xf0) >> 4;
1587 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1588 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1590 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1591 hostreg_sspreg_changed(SSP_A);
1592 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1593 dirty_regb |= KRREG_ST;
1603 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1604 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1606 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1607 hostreg_sspreg_changed(SSP_A);
1608 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1609 dirty_regb |= KRREG_ST;
1620 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1621 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1622 r = (op&3) | ((op>>6)&4); // src
1623 if ((r&3) == 3) tr_unhandled();
1625 if (known_regb & (1 << (r+8))) {
1626 EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,known_regs.r[r]); // OPs r5, r5, #val<<16
1628 int reg = (r < 4) ? 8 : 9;
1629 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8); // mov r0, r{7,8}, lsr #lsr
1630 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff); // and r0, r{7,8}, <mask>
1631 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1634 hostreg_sspreg_changed(SSP_A);
1635 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1636 dirty_regb |= KRREG_ST;
1647 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1648 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1649 EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,op & 0xff); // OPs r5, r5, #val<<16
1650 hostreg_sspreg_changed(SSP_A);
1651 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1652 dirty_regb |= KRREG_ST;
1661 static void emit_block_prologue(void)
1663 // check if there are enough cycles..
1664 // note: r0 must contain PC of current block
1665 EOP_CMP_IMM(11,0,0); // cmp r11, #0
1666 emit_jump(A_COND_LE, ssp_drc_end);
1670 * >0: direct (un)conditional jump
1673 static void emit_block_epilogue(int cycles, int cond, int pc, int end_pc)
1675 if (cycles > 0xff) { elprintf(EL_ANOMALY, "large cycle count: %i\n", cycles); cycles = 0xff; }
1676 EOP_SUB_IMM(11,11,0,cycles); // sub r11, r11, #cycles
1678 if (cond < 0 || (end_pc >= 0x400 && pc < 0x400)) {
1679 // indirect jump, or rom -> iram jump, must use dispatcher
1680 emit_jump(A_COND_AL, ssp_drc_next);
1682 else if (cond == A_COND_AL) {
1683 u32 *target = (pc < 0x400) ? ssp_block_table_iram[ssp->drc.iram_context][pc] : ssp_block_table[pc];
1685 emit_jump(A_COND_AL, target);
1687 int ops = emit_jump(A_COND_AL, ssp_drc_next);
1688 // cause the next block to be emitted over jump instruction
1693 u32 *target1 = (pc < 0x400) ? ssp_block_table_iram[ssp->drc.iram_context][pc] : ssp_block_table[pc];
1694 u32 *target2 = (end_pc < 0x400) ? ssp_block_table_iram[ssp->drc.iram_context][end_pc] : ssp_block_table[end_pc];
1695 if (target1 != NULL)
1696 emit_jump(cond, target1);
1697 if (target2 != NULL)
1698 emit_jump(tr_neg_cond(cond), target2); // neg_cond, to be able to swap jumps if needed
1700 // emit patchable branches
1701 if (target1 == NULL)
1702 emit_call(cond, ssp_drc_next_patch);
1703 if (target2 == NULL)
1704 emit_call(tr_neg_cond(cond), ssp_drc_next_patch);
1706 // won't patch indirect jumps
1707 if (target1 == NULL || target2 == NULL)
1708 emit_jump(A_COND_AL, ssp_drc_next);
1713 void *ssp_translate_block(int pc)
1715 unsigned int op, op1, imm, ccount = 0;
1716 unsigned int *block_start;
1717 int ret, end_cond = A_COND_AL, jump_pc = -1;
1719 //printf("translate %04x -> %04x\n", pc<<1, (tcache_ptr-tcache)<<2);
1721 block_start = tcache_ptr;
1723 dirty_regb = KRREG_P;
1724 known_regs.emu_status = 0;
1727 emit_block_prologue();
1729 for (; ccount < 100;)
1735 if ((op1 & 0xf) == 4 || (op1 & 0xf) == 6)
1736 imm = PROGRAM(pc++); // immediate
1738 ret = translate_op(op, &pc, imm, &end_cond, &jump_pc);
1741 elprintf(EL_ANOMALY, "NULL func! op=%08x (%02x)\n", op, op1);
1745 ccount += ret & 0xffff;
1746 if (ret & 0x10000) break;
1749 if (ccount >= 100) {
1750 end_cond = A_COND_AL;
1752 emit_mov_const(A_COND_AL, 0, pc);
1755 tr_flush_dirty_prs();
1756 tr_flush_dirty_ST();
1757 tr_flush_dirty_pmcrs();
1758 emit_block_epilogue(ccount, end_cond, jump_pc, pc);
1760 if (tcache_ptr - tcache > SSP_TCACHE_SIZE/4) {
1761 elprintf(EL_ANOMALY|EL_STATUS|EL_SVP, "tcache overflow!\n");
1768 //printf("%i blocks, %i bytes, k=%.3f\n", nblocks, (tcache_ptr - tcache)*4,
1769 // (double)(tcache_ptr - tcache) / (double)n_in_ops);
1773 FILE *f = fopen("tcache.bin", "wb");
1774 fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
1777 printf("dumped tcache.bin\n");
1788 // -----------------------------------------------------
1790 static void ssp1601_state_load(void)
1792 ssp->drc.iram_dirty = 1;
1793 ssp->drc.iram_context = 0;
1796 int ssp1601_dyn_startup(void)
1798 memset(tcache, 0, SSP_TCACHE_SIZE);
1799 memset(ssp_block_table, 0, sizeof(ssp_block_table));
1800 memset(ssp_block_table_iram, 0, sizeof(ssp_block_table_iram));
1801 tcache_ptr = tcache;
1803 PicoLoadStateHook = ssp1601_state_load;
1808 ssp_block_table[0x800/2] = (void *) ssp_hle_800;
1809 ssp_block_table[0x902/2] = (void *) ssp_hle_902;
1810 ssp_block_table_iram[ 7][0x030/2] = (void *) ssp_hle_07_030;
1811 ssp_block_table_iram[ 7][0x036/2] = (void *) ssp_hle_07_036;
1812 ssp_block_table_iram[ 7][0x6d6/2] = (void *) ssp_hle_07_6d6;
1813 ssp_block_table_iram[11][0x12c/2] = (void *) ssp_hle_11_12c;
1814 ssp_block_table_iram[11][0x384/2] = (void *) ssp_hle_11_384;
1815 ssp_block_table_iram[11][0x38a/2] = (void *) ssp_hle_11_38a;
1822 void ssp1601_dyn_reset(ssp1601_t *ssp)
1825 ssp->drc.iram_dirty = 1;
1826 ssp->drc.iram_context = 0;
1827 // must do this here because ssp is not available @ startup()
1828 ssp->drc.ptr_rom = (u32) Pico.rom;
1829 ssp->drc.ptr_iram_rom = (u32) svp->iram_rom;
1830 ssp->drc.ptr_dram = (u32) svp->dram;
1831 ssp->drc.ptr_btable = (u32) ssp_block_table;
1832 ssp->drc.ptr_btable_iram = (u32) ssp_block_table_iram;
1834 // prevent new versions of IRAM from appearing
1835 memset(svp->iram_rom, 0, 0x800);
1839 void ssp1601_dyn_run(int cycles)
1841 if (ssp->emu_status & SSP_WAIT_MASK) return;
1844 ssp_translate_block(DUMP_BLOCK >> 1);
1847 ssp_drc_entry(cycles);