32x drc functional on ARM, random adjustments
[picodrive.git] / pico / carthw / svp / compiler.c
1 // SSP1601 to ARM recompiler
2
3 // (c) Copyright 2008, Grazvydas "notaz" Ignotas
4 // Free for non-commercial use.
5
6 #include "../../pico_int.h"
7 #include "../../../cpu/drc/cmn.h"
8 #include "compiler.h"
9
10 // FIXME: asm has these hardcoded
11 #define SSP_BLOCKTAB_ENTS       (0x5090/2)
12 #define SSP_BLOCKTAB_IRAM_ONE   (0x800/2) // table entries
13 #define SSP_BLOCKTAB_IRAM_ENTS  (15*SSP_BLOCKTAB_IRAM_ONE)
14
15 static u32 **ssp_block_table; // [0x5090/2];
16 static u32 **ssp_block_table_iram; // [15][0x800/2];
17
18 static u32 *tcache_ptr = NULL;
19
20 static int nblocks = 0;
21 static int n_in_ops = 0;
22
23 extern ssp1601_t *ssp;
24
25 #define rPC    ssp->gr[SSP_PC].h
26 #define rPMC   ssp->gr[SSP_PMC]
27
28 #define SSP_FLAG_Z (1<<0xd)
29 #define SSP_FLAG_N (1<<0xf)
30
31 #ifndef ARM
32 //#define DUMP_BLOCK 0x0c9a
33 void ssp_drc_next(void){}
34 void ssp_drc_next_patch(void){}
35 void ssp_drc_end(void){}
36 #endif
37
38 #define COUNT_OP
39 #include "../../../cpu/drc/emit_arm.c"
40
41 // -----------------------------------------------------
42
43 static int get_inc(int mode)
44 {
45         int inc = (mode >> 11) & 7;
46         if (inc != 0) {
47                 if (inc != 7) inc--;
48                 inc = 1 << inc; // 0 1 2 4 8 16 32 128
49                 if (mode & 0x8000) inc = -inc; // decrement mode
50         }
51         return inc;
52 }
53
54 u32 ssp_pm_read(int reg)
55 {
56         u32 d = 0, mode;
57
58         if (ssp->emu_status & SSP_PMC_SET)
59         {
60                 ssp->pmac_read[reg] = rPMC.v;
61                 ssp->emu_status &= ~SSP_PMC_SET;
62                 return 0;
63         }
64
65         // just in case
66         ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
67
68         mode = ssp->pmac_read[reg]>>16;
69         if      ((mode & 0xfff0) == 0x0800) // ROM
70         {
71                 d = ((unsigned short *)Pico.rom)[ssp->pmac_read[reg]&0xfffff];
72                 ssp->pmac_read[reg] += 1;
73         }
74         else if ((mode & 0x47ff) == 0x0018) // DRAM
75         {
76                 unsigned short *dram = (unsigned short *)svp->dram;
77                 int inc = get_inc(mode);
78                 d = dram[ssp->pmac_read[reg]&0xffff];
79                 ssp->pmac_read[reg] += inc;
80         }
81
82         // PMC value corresponds to last PMR accessed
83         rPMC.v = ssp->pmac_read[reg];
84
85         return d;
86 }
87
88 #define overwrite_write(dst, d) \
89 { \
90         if (d & 0xf000) { dst &= ~0xf000; dst |= d & 0xf000; } \
91         if (d & 0x0f00) { dst &= ~0x0f00; dst |= d & 0x0f00; } \
92         if (d & 0x00f0) { dst &= ~0x00f0; dst |= d & 0x00f0; } \
93         if (d & 0x000f) { dst &= ~0x000f; dst |= d & 0x000f; } \
94 }
95
96 void ssp_pm_write(u32 d, int reg)
97 {
98         unsigned short *dram;
99         int mode, addr;
100
101         if (ssp->emu_status & SSP_PMC_SET)
102         {
103                 ssp->pmac_write[reg] = rPMC.v;
104                 ssp->emu_status &= ~SSP_PMC_SET;
105                 return;
106         }
107
108         // just in case
109         ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
110
111         dram = (unsigned short *)svp->dram;
112         mode = ssp->pmac_write[reg]>>16;
113         addr = ssp->pmac_write[reg]&0xffff;
114         if      ((mode & 0x43ff) == 0x0018) // DRAM
115         {
116                 int inc = get_inc(mode);
117                 if (mode & 0x0400) {
118                        overwrite_write(dram[addr], d);
119                 } else dram[addr] = d;
120                 ssp->pmac_write[reg] += inc;
121         }
122         else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
123         {
124                 if (mode & 0x0400) {
125                        overwrite_write(dram[addr], d);
126                 } else dram[addr] = d;
127                 ssp->pmac_write[reg] += (addr&1) ? 0x1f : 1;
128         }
129         else if ((mode & 0x47ff) == 0x001c) // IRAM
130         {
131                 int inc = get_inc(mode);
132                 ((unsigned short *)svp->iram_rom)[addr&0x3ff] = d;
133                 ssp->pmac_write[reg] += inc;
134                 ssp->drc.iram_dirty = 1;
135         }
136
137         rPMC.v = ssp->pmac_write[reg];
138 }
139
140
141 // -----------------------------------------------------
142
143 // 14 IRAM blocks
144 static unsigned char iram_context_map[] =
145 {
146          0, 0, 0, 0, 1, 0, 0, 0, // 04
147          0, 0, 0, 0, 0, 0, 2, 0, // 0e
148          0, 0, 0, 0, 0, 3, 0, 4, // 15 17
149          5, 0, 0, 6, 0, 7, 0, 0, // 18 1b 1d
150          8, 9, 0, 0, 0,10, 0, 0, // 20 21 25
151          0, 0, 0, 0, 0, 0, 0, 0,
152          0, 0,11, 0, 0,12, 0, 0, // 32 35
153         13,14, 0, 0, 0, 0, 0, 0  // 38 39
154 };
155
156 int ssp_get_iram_context(void)
157 {
158         unsigned char *ir = (unsigned char *)svp->iram_rom;
159         int val1, val = ir[0x083^1] + ir[0x4FA^1] + ir[0x5F7^1] + ir[0x47B^1];
160         val1 = iram_context_map[(val>>1)&0x3f];
161
162         if (val1 == 0) {
163                 elprintf(EL_ANOMALY, "svp: iram ctx val: %02x PC=%04x\n", (val>>1)&0x3f, rPC);
164                 //debug_dump2file(name, svp->iram_rom, 0x800);
165                 //exit(1);
166         }
167         return val1;
168 }
169
170 // -----------------------------------------------------
171
172 /* regs with known values */
173 static struct
174 {
175         ssp_reg_t gr[8];
176         unsigned char r[8];
177         unsigned int pmac_read[5];
178         unsigned int pmac_write[5];
179         ssp_reg_t pmc;
180         unsigned int emu_status;
181 } known_regs;
182
183 #define KRREG_X     (1 << SSP_X)
184 #define KRREG_Y     (1 << SSP_Y)
185 #define KRREG_A     (1 << SSP_A)        /* AH only */
186 #define KRREG_ST    (1 << SSP_ST)
187 #define KRREG_STACK (1 << SSP_STACK)
188 #define KRREG_PC    (1 << SSP_PC)
189 #define KRREG_P     (1 << SSP_P)
190 #define KRREG_PR0   (1 << 8)
191 #define KRREG_PR4   (1 << 12)
192 #define KRREG_AL    (1 << 16)
193 #define KRREG_PMCM  (1 << 18)           /* only mode word of PMC */
194 #define KRREG_PMC   (1 << 19)
195 #define KRREG_PM0R  (1 << 20)
196 #define KRREG_PM1R  (1 << 21)
197 #define KRREG_PM2R  (1 << 22)
198 #define KRREG_PM3R  (1 << 23)
199 #define KRREG_PM4R  (1 << 24)
200 #define KRREG_PM0W  (1 << 25)
201 #define KRREG_PM1W  (1 << 26)
202 #define KRREG_PM2W  (1 << 27)
203 #define KRREG_PM3W  (1 << 28)
204 #define KRREG_PM4W  (1 << 29)
205
206 /* bitfield of known register values */
207 static u32 known_regb = 0;
208
209 /* known vals, which need to be flushed
210  * (only ST, P, r0-r7, PMCx, PMxR, PMxW)
211  * ST means flags are being held in ARM PSR
212  * P means that it needs to be recalculated
213  */
214 static u32 dirty_regb = 0;
215
216 /* known values of host regs.
217  * -1            - unknown
218  * 000000-00ffff - 16bit value
219  * 100000-10ffff - base reg (r7) + 16bit val
220  * 0r0000        - means reg (low) eq gr[r].h, r != AL
221  */
222 static int hostreg_r[4];
223
224 static void hostreg_clear(void)
225 {
226         int i;
227         for (i = 0; i < 4; i++)
228                 hostreg_r[i] = -1;
229 }
230
231 static void hostreg_sspreg_changed(int sspreg)
232 {
233         int i;
234         for (i = 0; i < 4; i++)
235                 if (hostreg_r[i] == (sspreg<<16)) hostreg_r[i] = -1;
236 }
237
238
239 #define PROGRAM(x)   ((unsigned short *)svp->iram_rom)[x]
240 #define PROGRAM_P(x) ((unsigned short *)svp->iram_rom + (x))
241
242 void tr_unhandled(void)
243 {
244         //FILE *f = fopen("tcache.bin", "wb");
245         //fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
246         //fclose(f);
247         elprintf(EL_ANOMALY, "unhandled @ %04x\n", known_regs.gr[SSP_PC].h<<1);
248         //exit(1);
249 }
250
251 /* update P, if needed. Trashes r0 */
252 static void tr_flush_dirty_P(void)
253 {
254         // TODO: const regs
255         if (!(dirty_regb & KRREG_P)) return;
256         EOP_MOV_REG_ASR(10, 4, 16);             // mov  r10, r4, asr #16
257         EOP_MOV_REG_LSL( 0, 4, 16);             // mov  r0,  r4, lsl #16
258         EOP_MOV_REG_ASR( 0, 0, 15);             // mov  r0,  r0, asr #15
259         EOP_MUL(10, 0, 10);                     // mul  r10, r0, r10
260         dirty_regb &= ~KRREG_P;
261         hostreg_r[0] = -1;
262 }
263
264 /* write dirty pr to host reg. Nothing is trashed */
265 static void tr_flush_dirty_pr(int r)
266 {
267         int ror = 0, reg;
268
269         if (!(dirty_regb & (1 << (r+8)))) return;
270
271         switch (r&3) {
272                 case 0: ror =    0; break;
273                 case 1: ror = 24/2; break;
274                 case 2: ror = 16/2; break;
275         }
276         reg = (r < 4) ? 8 : 9;
277         EOP_BIC_IMM(reg,reg,ror,0xff);
278         if (known_regs.r[r] != 0)
279                 EOP_ORR_IMM(reg,reg,ror,known_regs.r[r]);
280         dirty_regb &= ~(1 << (r+8));
281 }
282
283 /* write all dirty pr0-pr7 to host regs. Nothing is trashed */
284 static void tr_flush_dirty_prs(void)
285 {
286         int i, ror = 0, reg;
287         int dirty = dirty_regb >> 8;
288         if ((dirty&7) == 7) {
289                 emith_move_r_imm(8, known_regs.r[0]|(known_regs.r[1]<<8)|(known_regs.r[2]<<16));
290                 dirty &= ~7;
291         }
292         if ((dirty&0x70) == 0x70) {
293                 emith_move_r_imm(9, known_regs.r[4]|(known_regs.r[5]<<8)|(known_regs.r[6]<<16));
294                 dirty &= ~0x70;
295         }
296         /* r0-r7 */
297         for (i = 0; dirty && i < 8; i++, dirty >>= 1)
298         {
299                 if (!(dirty&1)) continue;
300                 switch (i&3) {
301                         case 0: ror =    0; break;
302                         case 1: ror = 24/2; break;
303                         case 2: ror = 16/2; break;
304                 }
305                 reg = (i < 4) ? 8 : 9;
306                 EOP_BIC_IMM(reg,reg,ror,0xff);
307                 if (known_regs.r[i] != 0)
308                         EOP_ORR_IMM(reg,reg,ror,known_regs.r[i]);
309         }
310         dirty_regb &= ~0xff00;
311 }
312
313 /* write dirty pr and "forget" it. Nothing is trashed. */
314 static void tr_release_pr(int r)
315 {
316         tr_flush_dirty_pr(r);
317         known_regb &= ~(1 << (r+8));
318 }
319
320 /* fush ARM PSR to r6. Trashes r1 */
321 static void tr_flush_dirty_ST(void)
322 {
323         if (!(dirty_regb & KRREG_ST)) return;
324         EOP_BIC_IMM(6,6,0,0x0f);
325         EOP_MRS(1);
326         EOP_ORR_REG_LSR(6,6,1,28);
327         dirty_regb &= ~KRREG_ST;
328         hostreg_r[1] = -1;
329 }
330
331 /* inverse of above. Trashes r1 */
332 static void tr_make_dirty_ST(void)
333 {
334         if (dirty_regb & KRREG_ST) return;
335         if (known_regb & KRREG_ST) {
336                 int flags = 0;
337                 if (known_regs.gr[SSP_ST].h & SSP_FLAG_N) flags |= 8;
338                 if (known_regs.gr[SSP_ST].h & SSP_FLAG_Z) flags |= 4;
339                 EOP_MSR_IMM(4/2, flags);
340         } else {
341                 EOP_MOV_REG_LSL(1, 6, 28);
342                 EOP_MSR_REG(1);
343                 hostreg_r[1] = -1;
344         }
345         dirty_regb |= KRREG_ST;
346 }
347
348 /* load 16bit val into host reg r0-r3. Nothing is trashed */
349 static void tr_mov16(int r, int val)
350 {
351         if (hostreg_r[r] != val) {
352                 emith_move_r_imm(r, val);
353                 hostreg_r[r] = val;
354         }
355 }
356
357 static void tr_mov16_cond(int cond, int r, int val)
358 {
359         emith_op_imm(cond, A_OP_MOV, r, val);
360         hostreg_r[r] = -1;
361 }
362
363 /* trashes r1 */
364 static void tr_flush_dirty_pmcrs(void)
365 {
366         u32 i, val = (u32)-1;
367         if (!(dirty_regb & 0x3ff80000)) return;
368
369         if (dirty_regb & KRREG_PMC) {
370                 val = known_regs.pmc.v;
371                 emith_move_r_imm(1, val);
372                 EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
373
374                 if (known_regs.emu_status & (SSP_PMC_SET|SSP_PMC_HAVE_ADDR)) {
375                         elprintf(EL_ANOMALY, "!! SSP_PMC_SET|SSP_PMC_HAVE_ADDR set on flush\n");
376                         tr_unhandled();
377                 }
378         }
379         for (i = 0; i < 5; i++)
380         {
381                 if (dirty_regb & (1 << (20+i))) {
382                         if (val != known_regs.pmac_read[i]) {
383                                 val = known_regs.pmac_read[i];
384                                 emith_move_r_imm(1, val);
385                         }
386                         EOP_STR_IMM(1,7,0x454+i*4); // pmac_read
387                 }
388                 if (dirty_regb & (1 << (25+i))) {
389                         if (val != known_regs.pmac_write[i]) {
390                                 val = known_regs.pmac_write[i];
391                                 emith_move_r_imm(1, val);
392                         }
393                         EOP_STR_IMM(1,7,0x46c+i*4); // pmac_write
394                 }
395         }
396         dirty_regb &= ~0x3ff80000;
397         hostreg_r[1] = -1;
398 }
399
400 /* read bank word to r0 (upper bits zero). Thrashes r1. */
401 static void tr_bank_read(int addr) /* word addr 0-0x1ff */
402 {
403         int breg = 7;
404         if (addr > 0x7f) {
405                 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
406                         EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1);  // add  r1, r7, ((op&0x180)<<1)
407                         hostreg_r[1] = 0x100000|((addr&0x180)<<1);
408                 }
409                 breg = 1;
410         }
411         EOP_LDRH_IMM(0,breg,(addr&0x7f)<<1);    // ldrh r0, [r1, (op&0x7f)<<1]
412         hostreg_r[0] = -1;
413 }
414
415 /* write r0 to bank. Trashes r1. */
416 static void tr_bank_write(int addr)
417 {
418         int breg = 7;
419         if (addr > 0x7f) {
420                 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
421                         EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1);  // add  r1, r7, ((op&0x180)<<1)
422                         hostreg_r[1] = 0x100000|((addr&0x180)<<1);
423                 }
424                 breg = 1;
425         }
426         EOP_STRH_IMM(0,breg,(addr&0x7f)<<1);            // strh r0, [r1, (op&0x7f)<<1]
427 }
428
429 /* handle RAM bank pointer modifiers. if need_modulo, trash r1-r3, else nothing */
430 static void tr_ptrr_mod(int r, int mod, int need_modulo, int count)
431 {
432         int modulo_shift = -1;  /* unknown */
433
434         if (mod == 0) return;
435
436         if (!need_modulo || mod == 1) // +!
437                 modulo_shift = 8;
438         else if (need_modulo && (known_regb & KRREG_ST)) {
439                 modulo_shift = known_regs.gr[SSP_ST].h & 7;
440                 if (modulo_shift == 0) modulo_shift = 8;
441         }
442
443         if (modulo_shift == -1)
444         {
445                 int reg = (r < 4) ? 8 : 9;
446                 tr_release_pr(r);
447                 if (dirty_regb & KRREG_ST) {
448                         // avoid flushing ARM flags
449                         EOP_AND_IMM(1, 6, 0, 0x70);
450                         EOP_SUB_IMM(1, 1, 0, 0x10);
451                         EOP_AND_IMM(1, 1, 0, 0x70);
452                         EOP_ADD_IMM(1, 1, 0, 0x10);
453                 } else {
454                         EOP_C_DOP_IMM(A_COND_AL,A_OP_AND,1,6,1,0,0x70); // ands  r1, r6, #0x70
455                         EOP_C_DOP_IMM(A_COND_EQ,A_OP_MOV,0,0,1,0,0x80); // moveq r1, #0x80
456                 }
457                 EOP_MOV_REG_LSR(1, 1, 4);               // mov r1, r1, lsr #4
458                 EOP_RSB_IMM(2, 1, 0, 8);                // rsb r1, r1, #8
459                 EOP_MOV_IMM(3, 8/2, count);             // mov r3, #0x01000000
460                 if (r&3)
461                         EOP_ADD_IMM(1, 1, 0, (r&3)*8);  // add r1, r1, #(r&3)*8
462                 EOP_MOV_REG2_ROR(reg,reg,1);            // mov reg, reg, ror r1
463                 if (mod == 2)
464                      EOP_SUB_REG2_LSL(reg,reg,3,2);     // sub reg, reg, #0x01000000 << r2
465                 else EOP_ADD_REG2_LSL(reg,reg,3,2);
466                 EOP_RSB_IMM(1, 1, 0, 32);               // rsb r1, r1, #32
467                 EOP_MOV_REG2_ROR(reg,reg,1);            // mov reg, reg, ror r1
468                 hostreg_r[1] = hostreg_r[2] = hostreg_r[3] = -1;
469         }
470         else if (known_regb & (1 << (r + 8)))
471         {
472                 int modulo = (1 << modulo_shift) - 1;
473                 if (mod == 2)
474                      known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] - count) & modulo);
475                 else known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] + count) & modulo);
476         }
477         else
478         {
479                 int reg = (r < 4) ? 8 : 9;
480                 int ror = ((r&3) + 1)*8 - (8 - modulo_shift);
481                 EOP_MOV_REG_ROR(reg,reg,ror);
482                 // {add|sub} reg, reg, #1<<shift
483                 EOP_C_DOP_IMM(A_COND_AL,(mod==2)?A_OP_SUB:A_OP_ADD,0,reg,reg, 8/2, count << (8 - modulo_shift));
484                 EOP_MOV_REG_ROR(reg,reg,32-ror);
485         }
486 }
487
488 /* handle writes r0 to (rX). Trashes r1.
489  * fortunately we can ignore modulo increment modes for writes. */
490 static void tr_rX_write(int op)
491 {
492         if ((op&3) == 3)
493         {
494                 int mod = (op>>2) & 3; // direct addressing
495                 tr_bank_write((op & 0x100) + mod);
496         }
497         else
498         {
499                 int r = (op&3) | ((op>>6)&4);
500                 if (known_regb & (1 << (r + 8))) {
501                         tr_bank_write((op&0x100) | known_regs.r[r]);
502                 } else {
503                         int reg = (r < 4) ? 8 : 9;
504                         int ror = ((4 - (r&3))*8) & 0x1f;
505                         EOP_AND_IMM(1,reg,ror/2,0xff);                  // and r1, r{7,8}, <mask>
506                         if (r >= 4)
507                                 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1);            // orr r1, r1, 1<<shift
508                         if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1);     // add r1, r7, r1, lsr #lsr
509                         else     EOP_ADD_REG_LSL(1,7,1,1);
510                         EOP_STRH_SIMPLE(0,1);                           // strh r0, [r1]
511                         hostreg_r[1] = -1;
512                 }
513                 tr_ptrr_mod(r, (op>>2) & 3, 0, 1);
514         }
515 }
516
517 /* read (rX) to r0. Trashes r1-r3. */
518 static void tr_rX_read(int r, int mod)
519 {
520         if ((r&3) == 3)
521         {
522                 tr_bank_read(((r << 6) & 0x100) + mod); // direct addressing
523         }
524         else
525         {
526                 if (known_regb & (1 << (r + 8))) {
527                         tr_bank_read(((r << 6) & 0x100) | known_regs.r[r]);
528                 } else {
529                         int reg = (r < 4) ? 8 : 9;
530                         int ror = ((4 - (r&3))*8) & 0x1f;
531                         EOP_AND_IMM(1,reg,ror/2,0xff);                  // and r1, r{7,8}, <mask>
532                         if (r >= 4)
533                                 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1);            // orr r1, r1, 1<<shift
534                         if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1);     // add r1, r7, r1, lsr #lsr
535                         else     EOP_ADD_REG_LSL(1,7,1,1);
536                         EOP_LDRH_SIMPLE(0,1);                           // ldrh r0, [r1]
537                         hostreg_r[0] = hostreg_r[1] = -1;
538                 }
539                 tr_ptrr_mod(r, mod, 1, 1);
540         }
541 }
542
543 /* read ((rX)) to r0. Trashes r1,r2. */
544 static void tr_rX_read2(int op)
545 {
546         int r = (op&3) | ((op>>6)&4); // src
547
548         if ((r&3) == 3) {
549                 tr_bank_read((op&0x100) | ((op>>2)&3));
550         } else if (known_regb & (1 << (r+8))) {
551                 tr_bank_read((op&0x100) | known_regs.r[r]);
552         } else {
553                 int reg = (r < 4) ? 8 : 9;
554                 int ror = ((4 - (r&3))*8) & 0x1f;
555                 EOP_AND_IMM(1,reg,ror/2,0xff);                  // and r1, r{7,8}, <mask>
556                 if (r >= 4)
557                         EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1);            // orr r1, r1, 1<<shift
558                 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1);     // add r1, r7, r1, lsr #lsr
559                 else     EOP_ADD_REG_LSL(1,7,1,1);
560                 EOP_LDRH_SIMPLE(0,1);                           // ldrh r0, [r1]
561         }
562         EOP_LDR_IMM(2,7,0x48c);                                 // ptr_iram_rom
563         EOP_ADD_REG_LSL(2,2,0,1);                               // add  r2, r2, r0, lsl #1
564         EOP_ADD_IMM(0,0,0,1);                                   // add  r0, r0, #1
565         if ((r&3) == 3) {
566                 tr_bank_write((op&0x100) | ((op>>2)&3));
567         } else if (known_regb & (1 << (r+8))) {
568                 tr_bank_write((op&0x100) | known_regs.r[r]);
569         } else {
570                 EOP_STRH_SIMPLE(0,1);                           // strh r0, [r1]
571                 hostreg_r[1] = -1;
572         }
573         EOP_LDRH_SIMPLE(0,2);                                   // ldrh r0, [r2]
574         hostreg_r[0] = hostreg_r[2] = -1;
575 }
576
577 // check if AL is going to be used later in block
578 static int tr_predict_al_need(void)
579 {
580         int tmpv, tmpv2, op, pc = known_regs.gr[SSP_PC].h;
581
582         while (1)
583         {
584                 op = PROGRAM(pc);
585                 switch (op >> 9)
586                 {
587                         // ld d, s
588                         case 0x00:
589                                 tmpv2 = (op >> 4) & 0xf; // dst
590                                 tmpv  = op & 0xf; // src
591                                 if ((tmpv2 == SSP_A && tmpv == SSP_P) || tmpv2 == SSP_AL) // ld A, P; ld AL, *
592                                         return 0;
593                                 break;
594
595                         // ld (ri), s
596                         case 0x02:
597                         // ld ri, s
598                         case 0x0a:
599                         // OP a, s
600                         case 0x10: case 0x30: case 0x40: case 0x60: case 0x70:
601                                 tmpv  = op & 0xf; // src
602                                 if (tmpv == SSP_AL) // OP *, AL
603                                         return 1;
604                                 break;
605
606                         case 0x04:
607                         case 0x06:
608                         case 0x14:
609                         case 0x34:
610                         case 0x44:
611                         case 0x64:
612                         case 0x74: pc++; break;
613
614                         // call cond, addr
615                         case 0x24:
616                         // bra cond, addr
617                         case 0x26:
618                         // mod cond, op
619                         case 0x48:
620                         // mpys?
621                         case 0x1b:
622                         // mpya (rj), (ri), b
623                         case 0x4b: return 1;
624
625                         // mld (rj), (ri), b
626                         case 0x5b: return 0; // cleared anyway
627
628                         // and A, *
629                         case 0x50:
630                                 tmpv  = op & 0xf; // src
631                                 if (tmpv == SSP_AL) return 1;
632                         case 0x51: case 0x53: case 0x54: case 0x55: case 0x59: case 0x5c:
633                                 return 0;
634                 }
635                 pc++;
636         }
637 }
638
639
640 /* get ARM cond which would mean that SSP cond is satisfied. No trash. */
641 static int tr_cond_check(int op)
642 {
643         int f = (op & 0x100) >> 8;
644         switch (op&0xf0) {
645                 case 0x00: return A_COND_AL;    /* always true */
646                 case 0x50:                      /* Z matches f(?) bit */
647                         if (dirty_regb & KRREG_ST) return f ? A_COND_EQ : A_COND_NE;
648                         EOP_TST_IMM(6, 0, 4);
649                         return f ? A_COND_NE : A_COND_EQ;
650                 case 0x70:                      /* N matches f(?) bit */
651                         if (dirty_regb & KRREG_ST) return f ? A_COND_MI : A_COND_PL;
652                         EOP_TST_IMM(6, 0, 8);
653                         return f ? A_COND_NE : A_COND_EQ;
654                 default:
655                         elprintf(EL_ANOMALY, "unimplemented cond?\n");
656                         tr_unhandled();
657                         return 0;
658         }
659 }
660
661 static int tr_neg_cond(int cond)
662 {
663         switch (cond) {
664                 case A_COND_AL: elprintf(EL_ANOMALY, "neg for AL?\n"); exit(1);
665                 case A_COND_EQ: return A_COND_NE;
666                 case A_COND_NE: return A_COND_EQ;
667                 case A_COND_MI: return A_COND_PL;
668                 case A_COND_PL: return A_COND_MI;
669                 default:        elprintf(EL_ANOMALY, "bad cond for neg\n"); exit(1);
670         }
671         return 0;
672 }
673
674 static int tr_aop_ssp2arm(int op)
675 {
676         switch (op) {
677                 case 1: return A_OP_SUB;
678                 case 3: return A_OP_CMP;
679                 case 4: return A_OP_ADD;
680                 case 5: return A_OP_AND;
681                 case 6: return A_OP_ORR;
682                 case 7: return A_OP_EOR;
683         }
684
685         tr_unhandled();
686         return 0;
687 }
688
689 // -----------------------------------------------------
690
691 //@ r4:  XXYY
692 //@ r5:  A
693 //@ r6:  STACK and emu flags
694 //@ r7:  SSP context
695 //@ r10: P
696
697 // read general reg to r0. Trashes r1
698 static void tr_GR0_to_r0(int op)
699 {
700         tr_mov16(0, 0xffff);
701 }
702
703 static void tr_X_to_r0(int op)
704 {
705         if (hostreg_r[0] != (SSP_X<<16)) {
706                 EOP_MOV_REG_LSR(0, 4, 16);      // mov  r0, r4, lsr #16
707                 hostreg_r[0] = SSP_X<<16;
708         }
709 }
710
711 static void tr_Y_to_r0(int op)
712 {
713         if (hostreg_r[0] != (SSP_Y<<16)) {
714                 EOP_MOV_REG_SIMPLE(0, 4);       // mov  r0, r4
715                 hostreg_r[0] = SSP_Y<<16;
716         }
717 }
718
719 static void tr_A_to_r0(int op)
720 {
721         if (hostreg_r[0] != (SSP_A<<16)) {
722                 EOP_MOV_REG_LSR(0, 5, 16);      // mov  r0, r5, lsr #16  @ AH
723                 hostreg_r[0] = SSP_A<<16;
724         }
725 }
726
727 static void tr_ST_to_r0(int op)
728 {
729         // VR doesn't need much accuracy here..
730         EOP_MOV_REG_LSR(0, 6, 4);               // mov  r0, r6, lsr #4
731         EOP_AND_IMM(0, 0, 0, 0x67);             // and  r0, r0, #0x67
732         hostreg_r[0] = -1;
733 }
734
735 static void tr_STACK_to_r0(int op)
736 {
737         // 448
738         EOP_SUB_IMM(6, 6,  8/2, 0x20);          // sub  r6, r6, #1<<29
739         EOP_ADD_IMM(1, 7, 24/2, 0x04);          // add  r1, r7, 0x400
740         EOP_ADD_IMM(1, 1, 0, 0x48);             // add  r1, r1, 0x048
741         EOP_ADD_REG_LSR(1, 1, 6, 28);           // add  r1, r1, r6, lsr #28
742         EOP_LDRH_SIMPLE(0, 1);                  // ldrh r0, [r1]
743         hostreg_r[0] = hostreg_r[1] = -1;
744 }
745
746 static void tr_PC_to_r0(int op)
747 {
748         tr_mov16(0, known_regs.gr[SSP_PC].h);
749 }
750
751 static void tr_P_to_r0(int op)
752 {
753         tr_flush_dirty_P();
754         EOP_MOV_REG_LSR(0, 10, 16);             // mov  r0, r10, lsr #16
755         hostreg_r[0] = -1;
756 }
757
758 static void tr_AL_to_r0(int op)
759 {
760         if (op == 0x000f) {
761                 if (known_regb & KRREG_PMC) {
762                         known_regs.emu_status &= ~(SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
763                 } else {
764                         EOP_LDR_IMM(0,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
765                         EOP_BIC_IMM(0,0,0,SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
766                         EOP_STR_IMM(0,7,0x484);
767                 }
768         }
769
770         if (hostreg_r[0] != (SSP_AL<<16)) {
771                 EOP_MOV_REG_SIMPLE(0, 5);       // mov  r0, r5
772                 hostreg_r[0] = SSP_AL<<16;
773         }
774 }
775
776 static void tr_PMX_to_r0(int reg)
777 {
778         if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
779         {
780                 known_regs.pmac_read[reg] = known_regs.pmc.v;
781                 known_regs.emu_status &= ~SSP_PMC_SET;
782                 known_regb |= 1 << (20+reg);
783                 dirty_regb |= 1 << (20+reg);
784                 return;
785         }
786
787         if ((known_regb & KRREG_PMC) && (known_regb & (1 << (20+reg))))
788         {
789                 u32 pmcv = known_regs.pmac_read[reg];
790                 int mode = pmcv>>16;
791                 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
792
793                 if      ((mode & 0xfff0) == 0x0800)
794                 {
795                         EOP_LDR_IMM(1,7,0x488);         // rom_ptr
796                         emith_move_r_imm(0, (pmcv&0xfffff)<<1);
797                         EOP_LDRH_REG(0,1,0);            // ldrh r0, [r1, r0]
798                         known_regs.pmac_read[reg] += 1;
799                 }
800                 else if ((mode & 0x47ff) == 0x0018) // DRAM
801                 {
802                         int inc = get_inc(mode);
803                         EOP_LDR_IMM(1,7,0x490);         // dram_ptr
804                         emith_move_r_imm(0, (pmcv&0xffff)<<1);
805                         EOP_LDRH_REG(0,1,0);            // ldrh r0, [r1, r0]
806                         if (reg == 4 && (pmcv == 0x187f03 || pmcv == 0x187f04)) // wait loop detection
807                         {
808                                 int flag = (pmcv == 0x187f03) ? SSP_WAIT_30FE06 : SSP_WAIT_30FE08;
809                                 tr_flush_dirty_ST();
810                                 EOP_LDR_IMM(1,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
811                                 EOP_TST_REG_SIMPLE(0,0);
812                                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_SUB,0,11,11,22/2,1);       // subeq r11, r11, #1024
813                                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1,24/2,flag>>8); // orreq r1, r1, #SSP_WAIT_30FE08
814                                 EOP_STR_IMM(1,7,0x484);                 // str r1, [r7, #0x484] // emu_status
815                         }
816                         known_regs.pmac_read[reg] += inc;
817                 }
818                 else
819                 {
820                         tr_unhandled();
821                 }
822                 known_regs.pmc.v = known_regs.pmac_read[reg];
823                 //known_regb |= KRREG_PMC;
824                 dirty_regb |= KRREG_PMC;
825                 dirty_regb |= 1 << (20+reg);
826                 hostreg_r[0] = hostreg_r[1] = -1;
827                 return;
828         }
829
830         known_regb &= ~KRREG_PMC;
831         dirty_regb &= ~KRREG_PMC;
832         known_regb &= ~(1 << (20+reg));
833         dirty_regb &= ~(1 << (20+reg));
834
835         // call the C code to handle this
836         tr_flush_dirty_ST();
837         //tr_flush_dirty_pmcrs();
838         tr_mov16(0, reg);
839         emith_call(ssp_pm_read);
840         hostreg_clear();
841 }
842
843 static void tr_PM0_to_r0(int op)
844 {
845         tr_PMX_to_r0(0);
846 }
847
848 static void tr_PM1_to_r0(int op)
849 {
850         tr_PMX_to_r0(1);
851 }
852
853 static void tr_PM2_to_r0(int op)
854 {
855         tr_PMX_to_r0(2);
856 }
857
858 static void tr_XST_to_r0(int op)
859 {
860         EOP_ADD_IMM(0, 7, 24/2, 4);     // add r0, r7, #0x400
861         EOP_LDRH_IMM(0, 0, SSP_XST*4+2);
862 }
863
864 static void tr_PM4_to_r0(int op)
865 {
866         tr_PMX_to_r0(4);
867 }
868
869 static void tr_PMC_to_r0(int op)
870 {
871         if (known_regb & KRREG_PMC)
872         {
873                 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
874                         known_regs.emu_status |= SSP_PMC_SET;
875                         known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
876                         // do nothing - this is handled elsewhere
877                 } else {
878                         tr_mov16(0, known_regs.pmc.l);
879                         known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
880                 }
881         }
882         else
883         {
884                 EOP_LDR_IMM(1,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
885                 tr_flush_dirty_ST();
886                 if (op != 0x000e)
887                         EOP_LDR_IMM(0, 7, 0x400+SSP_PMC*4);
888                 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
889                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
890                 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
891                 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET);       // orrne r1, r1, #..
892                 EOP_STR_IMM(1,7,0x484);
893                 hostreg_r[0] = hostreg_r[1] = -1;
894         }
895 }
896
897
898 typedef void (tr_read_func)(int op);
899
900 static tr_read_func *tr_read_funcs[16] =
901 {
902         tr_GR0_to_r0,
903         tr_X_to_r0,
904         tr_Y_to_r0,
905         tr_A_to_r0,
906         tr_ST_to_r0,
907         tr_STACK_to_r0,
908         tr_PC_to_r0,
909         tr_P_to_r0,
910         tr_PM0_to_r0,
911         tr_PM1_to_r0,
912         tr_PM2_to_r0,
913         tr_XST_to_r0,
914         tr_PM4_to_r0,
915         (tr_read_func *)tr_unhandled,
916         tr_PMC_to_r0,
917         tr_AL_to_r0
918 };
919
920
921 // write r0 to general reg handlers. Trashes r1
922 #define TR_WRITE_R0_TO_REG(reg) \
923 { \
924         hostreg_sspreg_changed(reg); \
925         hostreg_r[0] = (reg)<<16; \
926         if (const_val != -1) { \
927                 known_regs.gr[reg].h = const_val; \
928                 known_regb |= 1 << (reg); \
929         } else { \
930                 known_regb &= ~(1 << (reg)); \
931         } \
932 }
933
934 static void tr_r0_to_GR0(int const_val)
935 {
936         // do nothing
937 }
938
939 static void tr_r0_to_X(int const_val)
940 {
941         EOP_MOV_REG_LSL(4, 4, 16);              // mov  r4, r4, lsl #16
942         EOP_MOV_REG_LSR(4, 4, 16);              // mov  r4, r4, lsr #16
943         EOP_ORR_REG_LSL(4, 4, 0, 16);           // orr  r4, r4, r0, lsl #16
944         dirty_regb |= KRREG_P;                  // touching X or Y makes P dirty.
945         TR_WRITE_R0_TO_REG(SSP_X);
946 }
947
948 static void tr_r0_to_Y(int const_val)
949 {
950         EOP_MOV_REG_LSR(4, 4, 16);              // mov  r4, r4, lsr #16
951         EOP_ORR_REG_LSL(4, 4, 0, 16);           // orr  r4, r4, r0, lsl #16
952         EOP_MOV_REG_ROR(4, 4, 16);              // mov  r4, r4, ror #16
953         dirty_regb |= KRREG_P;
954         TR_WRITE_R0_TO_REG(SSP_Y);
955 }
956
957 static void tr_r0_to_A(int const_val)
958 {
959         if (tr_predict_al_need()) {
960                 EOP_MOV_REG_LSL(5, 5, 16);      // mov  r5, r5, lsl #16
961                 EOP_MOV_REG_LSR(5, 5, 16);      // mov  r5, r5, lsr #16  @ AL
962                 EOP_ORR_REG_LSL(5, 5, 0, 16);   // orr  r5, r5, r0, lsl #16
963         }
964         else
965                 EOP_MOV_REG_LSL(5, 0, 16);
966         TR_WRITE_R0_TO_REG(SSP_A);
967 }
968
969 static void tr_r0_to_ST(int const_val)
970 {
971         // VR doesn't need much accuracy here..
972         EOP_AND_IMM(1, 0,   0, 0x67);           // and   r1, r0, #0x67
973         EOP_AND_IMM(6, 6, 8/2, 0xe0);           // and   r6, r6, #7<<29     @ preserve STACK
974         EOP_ORR_REG_LSL(6, 6, 1, 4);            // orr   r6, r6, r1, lsl #4
975         TR_WRITE_R0_TO_REG(SSP_ST);
976         hostreg_r[1] = -1;
977         dirty_regb &= ~KRREG_ST;
978 }
979
980 static void tr_r0_to_STACK(int const_val)
981 {
982         // 448
983         EOP_ADD_IMM(1, 7, 24/2, 0x04);          // add  r1, r7, 0x400
984         EOP_ADD_IMM(1, 1, 0, 0x48);             // add  r1, r1, 0x048
985         EOP_ADD_REG_LSR(1, 1, 6, 28);           // add  r1, r1, r6, lsr #28
986         EOP_STRH_SIMPLE(0, 1);                  // strh r0, [r1]
987         EOP_ADD_IMM(6, 6,  8/2, 0x20);          // add  r6, r6, #1<<29
988         hostreg_r[1] = -1;
989 }
990
991 static void tr_r0_to_PC(int const_val)
992 {
993 /*
994  * do nothing - dispatcher will take care of this
995         EOP_MOV_REG_LSL(1, 0, 16);              // mov  r1, r0, lsl #16
996         EOP_STR_IMM(1,7,0x400+6*4);             // str  r1, [r7, #(0x400+6*8)]
997         hostreg_r[1] = -1;
998 */
999 }
1000
1001 static void tr_r0_to_AL(int const_val)
1002 {
1003         EOP_MOV_REG_LSR(5, 5, 16);              // mov  r5, r5, lsr #16
1004         EOP_ORR_REG_LSL(5, 5, 0, 16);           // orr  r5, r5, r0, lsl #16
1005         EOP_MOV_REG_ROR(5, 5, 16);              // mov  r5, r5, ror #16
1006         hostreg_sspreg_changed(SSP_AL);
1007         if (const_val != -1) {
1008                 known_regs.gr[SSP_A].l = const_val;
1009                 known_regb |= 1 << SSP_AL;
1010         } else
1011                 known_regb &= ~(1 << SSP_AL);
1012 }
1013
1014 static void tr_r0_to_PMX(int reg)
1015 {
1016         if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
1017         {
1018                 known_regs.pmac_write[reg] = known_regs.pmc.v;
1019                 known_regs.emu_status &= ~SSP_PMC_SET;
1020                 known_regb |= 1 << (25+reg);
1021                 dirty_regb |= 1 << (25+reg);
1022                 return;
1023         }
1024
1025         if ((known_regb & KRREG_PMC) && (known_regb & (1 << (25+reg))))
1026         {
1027                 int mode, addr;
1028
1029                 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1030
1031                 mode = known_regs.pmac_write[reg]>>16;
1032                 addr = known_regs.pmac_write[reg]&0xffff;
1033                 if      ((mode & 0x43ff) == 0x0018) // DRAM
1034                 {
1035                         int inc = get_inc(mode);
1036                         if (mode & 0x0400) tr_unhandled();
1037                         EOP_LDR_IMM(1,7,0x490);         // dram_ptr
1038                         emith_move_r_imm(2, addr << 1);
1039                         EOP_STRH_REG(0,1,2);            // strh r0, [r1, r2]
1040                         known_regs.pmac_write[reg] += inc;
1041                 }
1042                 else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
1043                 {
1044                         if (mode & 0x0400) tr_unhandled();
1045                         EOP_LDR_IMM(1,7,0x490);         // dram_ptr
1046                         emith_move_r_imm(2, addr << 1);
1047                         EOP_STRH_REG(0,1,2);            // strh r0, [r1, r2]
1048                         known_regs.pmac_write[reg] += (addr&1) ? 31 : 1;
1049                 }
1050                 else if ((mode & 0x47ff) == 0x001c) // IRAM
1051                 {
1052                         int inc = get_inc(mode);
1053                         EOP_LDR_IMM(1,7,0x48c);         // iram_ptr
1054                         emith_move_r_imm(2, (addr&0x3ff) << 1);
1055                         EOP_STRH_REG(0,1,2);            // strh r0, [r1, r2]
1056                         EOP_MOV_IMM(1,0,1);
1057                         EOP_STR_IMM(1,7,0x494);         // iram_dirty
1058                         known_regs.pmac_write[reg] += inc;
1059                 }
1060                 else
1061                         tr_unhandled();
1062
1063                 known_regs.pmc.v = known_regs.pmac_write[reg];
1064                 //known_regb |= KRREG_PMC;
1065                 dirty_regb |= KRREG_PMC;
1066                 dirty_regb |= 1 << (25+reg);
1067                 hostreg_r[1] = hostreg_r[2] = -1;
1068                 return;
1069         }
1070
1071         known_regb &= ~KRREG_PMC;
1072         dirty_regb &= ~KRREG_PMC;
1073         known_regb &= ~(1 << (25+reg));
1074         dirty_regb &= ~(1 << (25+reg));
1075
1076         // call the C code to handle this
1077         tr_flush_dirty_ST();
1078         //tr_flush_dirty_pmcrs();
1079         tr_mov16(1, reg);
1080         emith_call(ssp_pm_write);
1081         hostreg_clear();
1082 }
1083
1084 static void tr_r0_to_PM0(int const_val)
1085 {
1086         tr_r0_to_PMX(0);
1087 }
1088
1089 static void tr_r0_to_PM1(int const_val)
1090 {
1091         tr_r0_to_PMX(1);
1092 }
1093
1094 static void tr_r0_to_PM2(int const_val)
1095 {
1096         tr_r0_to_PMX(2);
1097 }
1098
1099 static void tr_r0_to_PM4(int const_val)
1100 {
1101         tr_r0_to_PMX(4);
1102 }
1103
1104 static void tr_r0_to_PMC(int const_val)
1105 {
1106         if ((known_regb & KRREG_PMC) && const_val != -1)
1107         {
1108                 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
1109                         known_regs.emu_status |= SSP_PMC_SET;
1110                         known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1111                         known_regs.pmc.h = const_val;
1112                 } else {
1113                         known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
1114                         known_regs.pmc.l = const_val;
1115                 }
1116         }
1117         else
1118         {
1119                 tr_flush_dirty_ST();
1120                 if (known_regb & KRREG_PMC) {
1121                         emith_move_r_imm(1, known_regs.pmc.v);
1122                         EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
1123                         known_regb &= ~KRREG_PMC;
1124                         dirty_regb &= ~KRREG_PMC;
1125                 }
1126                 EOP_LDR_IMM(1,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
1127                 EOP_ADD_IMM(2,7,24/2,4);                // add r2, r7, #0x400
1128                 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
1129                 EOP_C_AM3_IMM(A_COND_EQ,1,0,2,0,0,1,SSP_PMC*4);         // strxx r0, [r2, #SSP_PMC]
1130                 EOP_C_AM3_IMM(A_COND_NE,1,0,2,0,0,1,SSP_PMC*4+2);
1131                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
1132                 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
1133                 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET);       // orrne r1, r1, #..
1134                 EOP_STR_IMM(1,7,0x484);
1135                 hostreg_r[1] = hostreg_r[2] = -1;
1136         }
1137 }
1138
1139 typedef void (tr_write_func)(int const_val);
1140
1141 static tr_write_func *tr_write_funcs[16] =
1142 {
1143         tr_r0_to_GR0,
1144         tr_r0_to_X,
1145         tr_r0_to_Y,
1146         tr_r0_to_A,
1147         tr_r0_to_ST,
1148         tr_r0_to_STACK,
1149         tr_r0_to_PC,
1150         (tr_write_func *)tr_unhandled,
1151         tr_r0_to_PM0,
1152         tr_r0_to_PM1,
1153         tr_r0_to_PM2,
1154         (tr_write_func *)tr_unhandled,
1155         tr_r0_to_PM4,
1156         (tr_write_func *)tr_unhandled,
1157         tr_r0_to_PMC,
1158         tr_r0_to_AL
1159 };
1160
1161 static void tr_mac_load_XY(int op)
1162 {
1163         tr_rX_read(op&3, (op>>2)&3); // X
1164         EOP_MOV_REG_LSL(4, 0, 16);
1165         tr_rX_read(((op>>4)&3)|4, (op>>6)&3); // Y
1166         EOP_ORR_REG_SIMPLE(4, 0);
1167         dirty_regb |= KRREG_P;
1168         hostreg_sspreg_changed(SSP_X);
1169         hostreg_sspreg_changed(SSP_Y);
1170         known_regb &= ~KRREG_X;
1171         known_regb &= ~KRREG_Y;
1172 }
1173
1174 // -----------------------------------------------------
1175
1176 static int tr_detect_set_pm(unsigned int op, int *pc, int imm)
1177 {
1178         u32 pmcv, tmpv;
1179         if (!((op&0xfef0) == 0x08e0 && (PROGRAM(*pc)&0xfef0) == 0x08e0)) return 0;
1180
1181         // programming PMC:
1182         // ldi PMC, imm1
1183         // ldi PMC, imm2
1184         (*pc)++;
1185         pmcv = imm | (PROGRAM((*pc)++) << 16);
1186         known_regs.pmc.v = pmcv;
1187         known_regb |= KRREG_PMC;
1188         dirty_regb |= KRREG_PMC;
1189         known_regs.emu_status |= SSP_PMC_SET;
1190         n_in_ops++;
1191
1192         // check for possible reg programming
1193         tmpv = PROGRAM(*pc);
1194         if ((tmpv & 0xfff8) == 0x08 || (tmpv & 0xff8f) == 0x80)
1195         {
1196                 int is_write = (tmpv & 0xff8f) == 0x80;
1197                 int reg = is_write ? ((tmpv>>4)&0x7) : (tmpv&0x7);
1198                 if (reg > 4) tr_unhandled();
1199                 if ((tmpv & 0x0f) != 0 && (tmpv & 0xf0) != 0) tr_unhandled();
1200                 known_regs.pmac_read[is_write ? reg + 5 : reg] = pmcv;
1201                 known_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1202                 dirty_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1203                 known_regs.emu_status &= ~SSP_PMC_SET;
1204                 (*pc)++;
1205                 n_in_ops++;
1206                 return 5;
1207         }
1208
1209         tr_unhandled();
1210         return 4;
1211 }
1212
1213 static const short pm0_block_seq[] = { 0x0880, 0, 0x0880, 0, 0x0840, 0x60 };
1214
1215 static int tr_detect_pm0_block(unsigned int op, int *pc, int imm)
1216 {
1217         // ldi ST, 0
1218         // ldi PM0, 0
1219         // ldi PM0, 0
1220         // ldi ST, 60h
1221         unsigned short *pp;
1222         if (op != 0x0840 || imm != 0) return 0;
1223         pp = PROGRAM_P(*pc);
1224         if (memcmp(pp, pm0_block_seq, sizeof(pm0_block_seq)) != 0) return 0;
1225
1226         EOP_AND_IMM(6, 6, 8/2, 0xe0);           // and   r6, r6, #7<<29     @ preserve STACK
1227         EOP_ORR_IMM(6, 6, 24/2, 6);             // orr   r6, r6, 0x600
1228         hostreg_sspreg_changed(SSP_ST);
1229         known_regs.gr[SSP_ST].h = 0x60;
1230         known_regb |= 1 << SSP_ST;
1231         dirty_regb &= ~KRREG_ST;
1232         (*pc) += 3*2;
1233         n_in_ops += 3;
1234         return 4*2;
1235 }
1236
1237 static int tr_detect_rotate(unsigned int op, int *pc, int imm)
1238 {
1239         // @ 3DA2 and 426A
1240         // ld PMC, (r3|00)
1241         // ld (r3|00), PMC
1242         // ld -, AL
1243         if (op != 0x02e3 || PROGRAM(*pc) != 0x04e3 || PROGRAM(*pc + 1) != 0x000f) return 0;
1244
1245         tr_bank_read(0);
1246         EOP_MOV_REG_LSL(0, 0, 4);
1247         EOP_ORR_REG_LSR(0, 0, 0, 16);
1248         tr_bank_write(0);
1249         (*pc) += 2;
1250         n_in_ops += 2;
1251         return 3;
1252 }
1253
1254 // -----------------------------------------------------
1255
1256 static int translate_op(unsigned int op, int *pc, int imm, int *end_cond, int *jump_pc)
1257 {
1258         u32 tmpv, tmpv2, tmpv3;
1259         int ret = 0;
1260         known_regs.gr[SSP_PC].h = *pc;
1261
1262         switch (op >> 9)
1263         {
1264                 // ld d, s
1265                 case 0x00:
1266                         if (op == 0) { ret++; break; } // nop
1267                         tmpv  = op & 0xf; // src
1268                         tmpv2 = (op >> 4) & 0xf; // dst
1269                         if (tmpv2 == SSP_A && tmpv == SSP_P) { // ld A, P
1270                                 tr_flush_dirty_P();
1271                                 EOP_MOV_REG_SIMPLE(5, 10);
1272                                 hostreg_sspreg_changed(SSP_A);
1273                                 known_regb &= ~(KRREG_A|KRREG_AL);
1274                                 ret++; break;
1275                         }
1276                         tr_read_funcs[tmpv](op);
1277                         tr_write_funcs[tmpv2]((known_regb & (1 << tmpv)) ? known_regs.gr[tmpv].h : -1);
1278                         if (tmpv2 == SSP_PC) {
1279                                 ret |= 0x10000;
1280                                 *end_cond = -A_COND_AL;
1281                         }
1282                         ret++; break;
1283
1284                 // ld d, (ri)
1285                 case 0x01: {
1286                         int r = (op&3) | ((op>>6)&4);
1287                         int mod = (op>>2)&3;
1288                         tmpv = (op >> 4) & 0xf; // dst
1289                         ret = tr_detect_rotate(op, pc, imm);
1290                         if (ret > 0) break;
1291                         if (tmpv != 0)
1292                                 tr_rX_read(r, mod);
1293                         else {
1294                                 int cnt = 1;
1295                                 while (PROGRAM(*pc) == op) {
1296                                         (*pc)++; cnt++; ret++;
1297                                         n_in_ops++;
1298                                 }
1299                                 tr_ptrr_mod(r, mod, 1, cnt); // skip
1300                         }
1301                         tr_write_funcs[tmpv](-1);
1302                         if (tmpv == SSP_PC) {
1303                                 ret |= 0x10000;
1304                                 *end_cond = -A_COND_AL;
1305                         }
1306                         ret++; break;
1307                 }
1308
1309                 // ld (ri), s
1310                 case 0x02:
1311                         tmpv = (op >> 4) & 0xf; // src
1312                         tr_read_funcs[tmpv](op);
1313                         tr_rX_write(op);
1314                         ret++; break;
1315
1316                 // ld a, adr
1317                 case 0x03:
1318                         tr_bank_read(op&0x1ff);
1319                         tr_r0_to_A(-1);
1320                         ret++; break;
1321
1322                 // ldi d, imm
1323                 case 0x04:
1324                         tmpv = (op & 0xf0) >> 4; // dst
1325                         ret = tr_detect_pm0_block(op, pc, imm);
1326                         if (ret > 0) break;
1327                         ret = tr_detect_set_pm(op, pc, imm);
1328                         if (ret > 0) break;
1329                         tr_mov16(0, imm);
1330                         tr_write_funcs[tmpv](imm);
1331                         if (tmpv == SSP_PC) {
1332                                 ret |= 0x10000;
1333                                 *jump_pc = imm;
1334                         }
1335                         ret += 2; break;
1336
1337                 // ld d, ((ri))
1338                 case 0x05:
1339                         tmpv2 = (op >> 4) & 0xf;  // dst
1340                         tr_rX_read2(op);
1341                         tr_write_funcs[tmpv2](-1);
1342                         if (tmpv2 == SSP_PC) {
1343                                 ret |= 0x10000;
1344                                 *end_cond = -A_COND_AL;
1345                         }
1346                         ret += 3; break;
1347
1348                 // ldi (ri), imm
1349                 case 0x06:
1350                         tr_mov16(0, imm);
1351                         tr_rX_write(op);
1352                         ret += 2; break;
1353
1354                 // ld adr, a
1355                 case 0x07:
1356                         tr_A_to_r0(op);
1357                         tr_bank_write(op&0x1ff);
1358                         ret++; break;
1359
1360                 // ld d, ri
1361                 case 0x09: {
1362                         int r;
1363                         r = (op&3) | ((op>>6)&4); // src
1364                         tmpv2 = (op >> 4) & 0xf;  // dst
1365                         if ((r&3) == 3) tr_unhandled();
1366
1367                         if (known_regb & (1 << (r+8))) {
1368                                 tr_mov16(0, known_regs.r[r]);
1369                                 tr_write_funcs[tmpv2](known_regs.r[r]);
1370                         } else {
1371                                 int reg = (r < 4) ? 8 : 9;
1372                                 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8);      // mov r0, r{7,8}, lsr #lsr
1373                                 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff);           // and r0, r{7,8}, <mask>
1374                                 hostreg_r[0] = -1;
1375                                 tr_write_funcs[tmpv2](-1);
1376                         }
1377                         ret++; break;
1378                 }
1379
1380                 // ld ri, s
1381                 case 0x0a: {
1382                         int r;
1383                         r = (op&3) | ((op>>6)&4); // dst
1384                         tmpv = (op >> 4) & 0xf;   // src
1385                         if ((r&3) == 3) tr_unhandled();
1386
1387                         if (known_regb & (1 << tmpv)) {
1388                                 known_regs.r[r] = known_regs.gr[tmpv].h;
1389                                 known_regb |= 1 << (r + 8);
1390                                 dirty_regb |= 1 << (r + 8);
1391                         } else {
1392                                 int reg = (r < 4) ? 8 : 9;
1393                                 int ror = ((4 - (r&3))*8) & 0x1f;
1394                                 tr_read_funcs[tmpv](op);
1395                                 EOP_BIC_IMM(reg, reg, ror/2, 0xff);             // bic r{7,8}, r{7,8}, <mask>
1396                                 EOP_AND_IMM(0, 0, 0, 0xff);                     // and r0, r0, 0xff
1397                                 EOP_ORR_REG_LSL(reg, reg, 0, (r&3)*8);          // orr r{7,8}, r{7,8}, r0, lsl #lsl
1398                                 hostreg_r[0] = -1;
1399                                 known_regb &= ~(1 << (r+8));
1400                                 dirty_regb &= ~(1 << (r+8));
1401                         }
1402                         ret++; break;
1403                 }
1404
1405                 // ldi ri, simm
1406                 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1407                         tmpv = (op>>8)&7;
1408                         known_regs.r[tmpv] = op;
1409                         known_regb |= 1 << (tmpv + 8);
1410                         dirty_regb |= 1 << (tmpv + 8);
1411                         ret++; break;
1412
1413                 // call cond, addr
1414                 case 0x24: {
1415                         u32 *jump_op = NULL;
1416                         tmpv = tr_cond_check(op);
1417                         if (tmpv != A_COND_AL) {
1418                                 jump_op = tcache_ptr;
1419                                 EOP_MOV_IMM(0, 0, 0); // placeholder for branch
1420                         }
1421                         tr_mov16(0, *pc);
1422                         tr_r0_to_STACK(*pc);
1423                         if (tmpv != A_COND_AL) {
1424                                 u32 *real_ptr = tcache_ptr;
1425                                 tcache_ptr = jump_op;
1426                                 EOP_C_B(tr_neg_cond(tmpv),0,real_ptr - jump_op - 2);
1427                                 tcache_ptr = real_ptr;
1428                         }
1429                         tr_mov16_cond(tmpv, 0, imm);
1430                         if (tmpv != A_COND_AL)
1431                                 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1432                         tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1433                         ret |= 0x10000;
1434                         *end_cond = tmpv;
1435                         *jump_pc = imm;
1436                         ret += 2; break;
1437                 }
1438
1439                 // ld d, (a)
1440                 case 0x25:
1441                         tmpv2 = (op >> 4) & 0xf;  // dst
1442                         tr_A_to_r0(op);
1443                         EOP_LDR_IMM(1,7,0x48c);                                 // ptr_iram_rom
1444                         EOP_ADD_REG_LSL(0,1,0,1);                               // add  r0, r1, r0, lsl #1
1445                         EOP_LDRH_SIMPLE(0,0);                                   // ldrh r0, [r0]
1446                         hostreg_r[0] = hostreg_r[1] = -1;
1447                         tr_write_funcs[tmpv2](-1);
1448                         if (tmpv2 == SSP_PC) {
1449                                 ret |= 0x10000;
1450                                 *end_cond = -A_COND_AL;
1451                         }
1452                         ret += 3; break;
1453
1454                 // bra cond, addr
1455                 case 0x26:
1456                         tmpv = tr_cond_check(op);
1457                         tr_mov16_cond(tmpv, 0, imm);
1458                         if (tmpv != A_COND_AL)
1459                                 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1460                         tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1461                         ret |= 0x10000;
1462                         *end_cond = tmpv;
1463                         *jump_pc = imm;
1464                         ret += 2; break;
1465
1466                 // mod cond, op
1467                 case 0x48: {
1468                         // check for repeats of this op
1469                         tmpv = 1; // count
1470                         while (PROGRAM(*pc) == op && (op & 7) != 6) {
1471                                 (*pc)++; tmpv++;
1472                                 n_in_ops++;
1473                         }
1474                         if ((op&0xf0) != 0) // !always
1475                                 tr_make_dirty_ST();
1476
1477                         tmpv2 = tr_cond_check(op);
1478                         switch (op & 7) {
1479                                 case 2: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_ASR,5); break; // shr (arithmetic)
1480                                 case 3: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_LSL,5); break; // shl
1481                                 case 6: EOP_C_DOP_IMM(tmpv2,A_OP_RSB,1,5,5,0,0); break; // neg
1482                                 case 7: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_EOR,0,5,1,31,A_AM1_ASR,5); // eor  r1, r5, r5, asr #31
1483                                         EOP_C_DOP_REG_XIMM(tmpv2,A_OP_ADD,1,1,5,31,A_AM1_LSR,5); // adds r5, r1, r5, lsr #31
1484                                         hostreg_r[1] = -1; break; // abs
1485                                 default: tr_unhandled();
1486                         }
1487
1488                         hostreg_sspreg_changed(SSP_A);
1489                         dirty_regb |=  KRREG_ST;
1490                         known_regb &= ~KRREG_ST;
1491                         known_regb &= ~(KRREG_A|KRREG_AL);
1492                         ret += tmpv; break;
1493                 }
1494
1495                 // mpys?
1496                 case 0x1b:
1497                         tr_flush_dirty_P();
1498                         tr_mac_load_XY(op);
1499                         tr_make_dirty_ST();
1500                         EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_SUB,1,5,5,0,A_AM1_LSL,10); // subs r5, r5, r10
1501                         hostreg_sspreg_changed(SSP_A);
1502                         known_regb &= ~(KRREG_A|KRREG_AL);
1503                         dirty_regb |= KRREG_ST;
1504                         ret++; break;
1505
1506                 // mpya (rj), (ri), b
1507                 case 0x4b:
1508                         tr_flush_dirty_P();
1509                         tr_mac_load_XY(op);
1510                         tr_make_dirty_ST();
1511                         EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_ADD,1,5,5,0,A_AM1_LSL,10); // adds r5, r5, r10
1512                         hostreg_sspreg_changed(SSP_A);
1513                         known_regb &= ~(KRREG_A|KRREG_AL);
1514                         dirty_regb |= KRREG_ST;
1515                         ret++; break;
1516
1517                 // mld (rj), (ri), b
1518                 case 0x5b:
1519                         EOP_C_DOP_IMM(A_COND_AL,A_OP_MOV,1,0,5,0,0); // movs r5, #0
1520                         hostreg_sspreg_changed(SSP_A);
1521                         known_regs.gr[SSP_A].v = 0;
1522                         known_regb |= (KRREG_A|KRREG_AL);
1523                         dirty_regb |= KRREG_ST;
1524                         tr_mac_load_XY(op);
1525                         ret++; break;
1526
1527                 // OP a, s
1528                 case 0x10:
1529                 case 0x30:
1530                 case 0x40:
1531                 case 0x50:
1532                 case 0x60:
1533                 case 0x70:
1534                         tmpv = op & 0xf; // src
1535                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1536                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1537                         if (tmpv == SSP_P) {
1538                                 tr_flush_dirty_P();
1539                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL,10); // OPs r5, r5, r10
1540                         } else if (tmpv == SSP_A) {
1541                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL, 5); // OPs r5, r5, r5
1542                         } else {
1543                                 tr_read_funcs[tmpv](op);
1544                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL, 0); // OPs r5, r5, r0, lsl #16
1545                         }
1546                         hostreg_sspreg_changed(SSP_A);
1547                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1548                         dirty_regb |= KRREG_ST;
1549                         ret++; break;
1550
1551                 // OP a, (ri)
1552                 case 0x11:
1553                 case 0x31:
1554                 case 0x41:
1555                 case 0x51:
1556                 case 0x61:
1557                 case 0x71:
1558                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1559                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1560                         tr_rX_read((op&3)|((op>>6)&4), (op>>2)&3);
1561                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1562                         hostreg_sspreg_changed(SSP_A);
1563                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1564                         dirty_regb |= KRREG_ST;
1565                         ret++; break;
1566
1567                 // OP a, adr
1568                 case 0x13:
1569                 case 0x33:
1570                 case 0x43:
1571                 case 0x53:
1572                 case 0x63:
1573                 case 0x73:
1574                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1575                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1576                         tr_bank_read(op&0x1ff);
1577                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1578                         hostreg_sspreg_changed(SSP_A);
1579                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1580                         dirty_regb |= KRREG_ST;
1581                         ret++; break;
1582
1583                 // OP a, imm
1584                 case 0x14:
1585                 case 0x34:
1586                 case 0x44:
1587                 case 0x54:
1588                 case 0x64:
1589                 case 0x74:
1590                         tmpv = (op & 0xf0) >> 4;
1591                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1592                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1593                         tr_mov16(0, imm);
1594                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1595                         hostreg_sspreg_changed(SSP_A);
1596                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1597                         dirty_regb |= KRREG_ST;
1598                         ret += 2; break;
1599
1600                 // OP a, ((ri))
1601                 case 0x15:
1602                 case 0x35:
1603                 case 0x45:
1604                 case 0x55:
1605                 case 0x65:
1606                 case 0x75:
1607                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1608                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1609                         tr_rX_read2(op);
1610                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1611                         hostreg_sspreg_changed(SSP_A);
1612                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1613                         dirty_regb |= KRREG_ST;
1614                         ret += 3; break;
1615
1616                 // OP a, ri
1617                 case 0x19:
1618                 case 0x39:
1619                 case 0x49:
1620                 case 0x59:
1621                 case 0x69:
1622                 case 0x79: {
1623                         int r;
1624                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1625                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1626                         r = (op&3) | ((op>>6)&4); // src
1627                         if ((r&3) == 3) tr_unhandled();
1628
1629                         if (known_regb & (1 << (r+8))) {
1630                                 EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,known_regs.r[r]);  // OPs r5, r5, #val<<16
1631                         } else {
1632                                 int reg = (r < 4) ? 8 : 9;
1633                                 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8);      // mov r0, r{7,8}, lsr #lsr
1634                                 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff);           // and r0, r{7,8}, <mask>
1635                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1636                                 hostreg_r[0] = -1;
1637                         }
1638                         hostreg_sspreg_changed(SSP_A);
1639                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1640                         dirty_regb |= KRREG_ST;
1641                         ret++; break;
1642                 }
1643
1644                 // OP simm
1645                 case 0x1c:
1646                 case 0x3c:
1647                 case 0x4c:
1648                 case 0x5c:
1649                 case 0x6c:
1650                 case 0x7c:
1651                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1652                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1653                         EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,op & 0xff);        // OPs r5, r5, #val<<16
1654                         hostreg_sspreg_changed(SSP_A);
1655                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1656                         dirty_regb |= KRREG_ST;
1657                         ret++; break;
1658         }
1659
1660         n_in_ops++;
1661
1662         return ret;
1663 }
1664
1665 static void emit_block_prologue(void)
1666 {
1667         // check if there are enough cycles..
1668         // note: r0 must contain PC of current block
1669         EOP_CMP_IMM(11,0,0);                    // cmp r11, #0
1670         emith_jump_cond(A_COND_LE, ssp_drc_end);
1671 }
1672
1673 /* cond:
1674  * >0: direct (un)conditional jump
1675  * <0: indirect jump
1676  */
1677 static void emit_block_epilogue(int cycles, int cond, int pc, int end_pc)
1678 {
1679         if (cycles > 0xff) { elprintf(EL_ANOMALY, "large cycle count: %i\n", cycles); cycles = 0xff; }
1680         EOP_SUB_IMM(11,11,0,cycles);            // sub r11, r11, #cycles
1681
1682         if (cond < 0 || (end_pc >= 0x400 && pc < 0x400)) {
1683                 // indirect jump, or rom -> iram jump, must use dispatcher
1684                 emith_jump(ssp_drc_next);
1685         }
1686         else if (cond == A_COND_AL) {
1687                 u32 *target = (pc < 0x400) ?
1688                         ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + pc] :
1689                         ssp_block_table[pc];
1690                 if (target != NULL)
1691                         emith_jump(target);
1692                 else {
1693                         int ops = emith_jump(ssp_drc_next);
1694                         // cause the next block to be emitted over jump instruction
1695                         tcache_ptr -= ops;
1696                 }
1697         }
1698         else {
1699                 u32 *target1 = (pc     < 0x400) ?
1700                         ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + pc] :
1701                         ssp_block_table[pc];
1702                 u32 *target2 = (end_pc < 0x400) ?
1703                         ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + end_pc] :
1704                         ssp_block_table[end_pc];
1705                 if (target1 != NULL)
1706                      emith_jump_cond(cond, target1);
1707                 if (target2 != NULL)
1708                      emith_jump_cond(tr_neg_cond(cond), target2); // neg_cond, to be able to swap jumps if needed
1709 #ifndef __EPOC32__
1710                 // emit patchable branches
1711                 if (target1 == NULL)
1712                         emith_call_cond(cond, ssp_drc_next_patch);
1713                 if (target2 == NULL)
1714                         emith_call_cond(tr_neg_cond(cond), ssp_drc_next_patch);
1715 #else
1716                 // won't patch indirect jumps
1717                 if (target1 == NULL || target2 == NULL)
1718                         emith_jump(ssp_drc_next);
1719 #endif
1720         }
1721 }
1722
1723 void *ssp_translate_block(int pc)
1724 {
1725         unsigned int op, op1, imm, ccount = 0;
1726         unsigned int *block_start;
1727         int ret, end_cond = A_COND_AL, jump_pc = -1;
1728
1729         //printf("translate %04x -> %04x\n", pc<<1, (tcache_ptr-tcache)<<2);
1730
1731         block_start = tcache_ptr;
1732         known_regb = 0;
1733         dirty_regb = KRREG_P;
1734         known_regs.emu_status = 0;
1735         hostreg_clear();
1736
1737         emit_block_prologue();
1738
1739         for (; ccount < 100;)
1740         {
1741                 op = PROGRAM(pc++);
1742                 op1 = op >> 9;
1743                 imm = (u32)-1;
1744
1745                 if ((op1 & 0xf) == 4 || (op1 & 0xf) == 6)
1746                         imm = PROGRAM(pc++); // immediate
1747
1748                 ret = translate_op(op, &pc, imm, &end_cond, &jump_pc);
1749                 if (ret <= 0)
1750                 {
1751                         elprintf(EL_ANOMALY, "NULL func! op=%08x (%02x)\n", op, op1);
1752                         //exit(1);
1753                 }
1754
1755                 ccount += ret & 0xffff;
1756                 if (ret & 0x10000) break;
1757         }
1758
1759         if (ccount >= 100) {
1760                 end_cond = A_COND_AL;
1761                 jump_pc = pc;
1762                 emith_move_r_imm(0, pc);
1763         }
1764
1765         tr_flush_dirty_prs();
1766         tr_flush_dirty_ST();
1767         tr_flush_dirty_pmcrs();
1768         emit_block_epilogue(ccount, end_cond, jump_pc, pc);
1769
1770         if (tcache_ptr - (u32 *)tcache > DRC_TCACHE_SIZE/4) {
1771                 elprintf(EL_ANOMALY|EL_STATUS|EL_SVP, "tcache overflow!\n");
1772                 fflush(stdout);
1773                 exit(1);
1774         }
1775
1776         // stats
1777         nblocks++;
1778         //printf("%i blocks, %i bytes, k=%.3f\n", nblocks, (tcache_ptr - tcache)*4,
1779         //      (double)(tcache_ptr - tcache) / (double)n_in_ops);
1780
1781 #ifdef DUMP_BLOCK
1782         {
1783                 FILE *f = fopen("tcache.bin", "wb");
1784                 fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
1785                 fclose(f);
1786         }
1787         printf("dumped tcache.bin\n");
1788         exit(0);
1789 #endif
1790
1791 #ifdef ARM
1792         cache_flush_d_inval_i(tcache, tcache_ptr);
1793 #endif
1794
1795         return block_start;
1796 }
1797
1798
1799
1800 // -----------------------------------------------------
1801
1802 static void ssp1601_state_load(void)
1803 {
1804         ssp->drc.iram_dirty = 1;
1805         ssp->drc.iram_context = 0;
1806 }
1807
1808 void ssp1601_dyn_exit(void)
1809 {
1810         free(ssp_block_table);
1811         free(ssp_block_table_iram);
1812         ssp_block_table = ssp_block_table_iram = NULL;
1813
1814         drc_cmn_cleanup();
1815 }
1816
1817 int ssp1601_dyn_startup(void)
1818 {
1819         drc_cmn_init();
1820
1821         ssp_block_table = calloc(sizeof(ssp_block_table[0]), SSP_BLOCKTAB_ENTS);
1822         if (ssp_block_table == NULL)
1823                 return -1;
1824         ssp_block_table_iram = calloc(sizeof(ssp_block_table_iram[0]), SSP_BLOCKTAB_IRAM_ENTS);
1825         if (ssp_block_table_iram == NULL) {
1826                 free(ssp_block_table);
1827                 return -1;
1828         }
1829
1830         memset(tcache, 0, DRC_TCACHE_SIZE);
1831         tcache_ptr = (void *)tcache;
1832
1833         PicoLoadStateHook = ssp1601_state_load;
1834
1835         n_in_ops = 0;
1836 #ifdef ARM
1837         // hle'd blocks
1838         ssp_block_table[0x800/2] = (void *) ssp_hle_800;
1839         ssp_block_table[0x902/2] = (void *) ssp_hle_902;
1840         ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x030/2] = (void *) ssp_hle_07_030;
1841         ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x036/2] = (void *) ssp_hle_07_036;
1842         ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x6d6/2] = (void *) ssp_hle_07_6d6;
1843         ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x12c/2] = (void *) ssp_hle_11_12c;
1844         ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x384/2] = (void *) ssp_hle_11_384;
1845         ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x38a/2] = (void *) ssp_hle_11_38a;
1846 #endif
1847
1848         return 0;
1849 }
1850
1851
1852 void ssp1601_dyn_reset(ssp1601_t *ssp)
1853 {
1854         ssp1601_reset(ssp);
1855         ssp->drc.iram_dirty = 1;
1856         ssp->drc.iram_context = 0;
1857         // must do this here because ssp is not available @ startup()
1858         ssp->drc.ptr_rom = (u32) Pico.rom;
1859         ssp->drc.ptr_iram_rom = (u32) svp->iram_rom;
1860         ssp->drc.ptr_dram = (u32) svp->dram;
1861         ssp->drc.ptr_btable = (u32) ssp_block_table;
1862         ssp->drc.ptr_btable_iram = (u32) ssp_block_table_iram;
1863
1864         // prevent new versions of IRAM from appearing
1865         memset(svp->iram_rom, 0, 0x800);
1866 }
1867
1868
1869 void ssp1601_dyn_run(int cycles)
1870 {
1871         if (ssp->emu_status & SSP_WAIT_MASK) return;
1872
1873 #ifdef DUMP_BLOCK
1874         ssp_translate_block(DUMP_BLOCK >> 1);
1875 #endif
1876 #ifdef ARM
1877         ssp_drc_entry(cycles);
1878 #endif
1879 }
1880