1 /***************************************************************************
\r
5 Routines to emulate the Texas Instruments SN76489 / SN76496 programmable
\r
6 tone /noise generator. Also known as (or at least compatible with) TMS9919.
\r
8 Noise emulation is not accurate due to lack of documentation. The noise
\r
9 generator uses a shift register with a XOR-feedback network, but the exact
\r
10 layout is unknown. It can be set for either period or white noise; again,
\r
11 the details are unknown.
\r
13 28/03/2005 : Sebastien Chevalier
\r
14 Update th SN76496Write func, according to SN76489 doc found on SMSPower.
\r
15 - On write with 0x80 set to 0, when LastRegister is other then TONE,
\r
16 the function is similar than update with 0x80 set to 1
\r
17 ***************************************************************************/
\r
20 #pragma warning (disable:4244)
\r
23 #include "sn76496.h"
\r
25 #define MAX_OUTPUT 0x47ff // was 0x7fff
\r
27 #define STEP 0x10000
\r
30 /* Formulas for noise generator */
\r
33 /* noise feedback for white noise mode (verified on real SN76489 by John Kortink) */
\r
34 #define FB_WNOISE 0x14002 /* (16bits) bit16 = bit0(out) ^ bit2 ^ bit15 */
\r
36 /* noise feedback for periodic noise mode */
\r
37 //#define FB_PNOISE 0x10000 /* 16bit rorate */
\r
38 #define FB_PNOISE 0x08000 /* JH 981127 - fixes Do Run Run */
\r
41 0x08000 is definitely wrong. The Master System conversion of Marble Madness
\r
42 uses periodic noise as a baseline. With a 15-bit rotate, the bassline is
\r
44 The 16-bit rotate has been confirmed against a real PAL Sega Master System 2.
\r
45 Hope that helps the System E stuff, more news on the PSG as and when!
\r
48 /* noise generator start preset (for periodic noise) */
\r
49 #define NG_PRESET 0x0f35
\r
54 //sound_stream * Channel;
\r
56 unsigned int UpdateStep;
\r
57 int VolTable[16]; /* volume table */
\r
58 int Register[8]; /* registers */
\r
59 int LastRegister; /* last register written */
\r
60 int Volume[4]; /* volume of voice 0-2 and noise */
\r
61 unsigned int RNG; /* noise generator */
\r
62 int NoiseFB; /* noise feedback mask */
\r
69 static struct SN76496 ono_sn; // one and only SN76496
\r
73 void SN76496Write(int data)
\r
75 struct SN76496 *R = &ono_sn;
\r
79 /* update the output buffer before changing the registers */
\r
80 //stream_update(R->Channel,0);
\r
84 int r = (data & 0x70) >> 4;
\r
87 R->LastRegister = r;
\r
88 R->Register[r] = (R->Register[r] & 0x3f0) | (data & 0x0f);
\r
91 case 0: /* tone 0 : frequency */
\r
92 case 2: /* tone 1 : frequency */
\r
93 case 4: /* tone 2 : frequency */
\r
94 R->Period[c] = R->UpdateStep * R->Register[r];
\r
95 if (R->Period[c] == 0) R->Period[c] = R->UpdateStep;
\r
98 /* update noise shift frequency */
\r
99 if ((R->Register[6] & 0x03) == 0x03)
\r
100 R->Period[3] = 2 * R->Period[2];
\r
103 case 1: /* tone 0 : volume */
\r
104 case 3: /* tone 1 : volume */
\r
105 case 5: /* tone 2 : volume */
\r
106 case 7: /* noise : volume */
\r
107 R->Volume[c] = R->VolTable[data & 0x0f];
\r
109 case 6: /* noise : frequency, mode */
\r
111 int n = R->Register[6];
\r
112 R->NoiseFB = (n & 4) ? FB_WNOISE : FB_PNOISE;
\r
114 /* N/512,N/1024,N/2048,Tone #3 output */
\r
115 R->Period[3] = ((n&3) == 3) ? 2 * R->Period[2] : (R->UpdateStep << (5+(n&3)));
\r
117 /* reset noise shifter */
\r
118 R->RNG = NG_PRESET;
\r
119 R->Output[3] = R->RNG & 1;
\r
126 int r = R->LastRegister;
\r
131 case 0: /* tone 0 : frequency */
\r
132 case 2: /* tone 1 : frequency */
\r
133 case 4: /* tone 2 : frequency */
\r
134 R->Register[r] = (R->Register[r] & 0x0f) | ((data & 0x3f) << 4);
\r
135 R->Period[c] = R->UpdateStep * R->Register[r];
\r
136 if (R->Period[c] == 0) R->Period[c] = R->UpdateStep;
\r
139 /* update noise shift frequency */
\r
140 if ((R->Register[6] & 0x03) == 0x03)
\r
141 R->Period[3] = 2 * R->Period[2];
\r
144 case 1: /* tone 0 : volume */
\r
145 case 3: /* tone 1 : volume */
\r
146 case 5: /* tone 2 : volume */
\r
147 case 7: /* noise : volume */
\r
148 R->Volume[c] = R->VolTable[data & 0x0f];
\r
149 R->Register[r] = (R->Register[r] & 0x3f0) | (data & 0x0f);
\r
151 case 6: /* noise : frequency, mode */
\r
153 R->Register[r] = (R->Register[r] & 0x3f0) | (data & 0x0f);
\r
154 n = R->Register[6];
\r
155 R->NoiseFB = (n & 4) ? FB_WNOISE : FB_PNOISE;
\r
157 /* N/512,N/1024,N/2048,Tone #3 output */
\r
158 R->Period[3] = ((n&3) == 3) ? 2 * R->Period[2] : (R->UpdateStep << (5+(n&3)));
\r
160 /* reset noise shifter */
\r
161 R->RNG = NG_PRESET;
\r
162 R->Output[3] = R->RNG & 1;
\r
170 WRITE8_HANDLER( SN76496_0_w ) { SN76496Write(0,data); }
\r
171 WRITE8_HANDLER( SN76496_1_w ) { SN76496Write(1,data); }
\r
172 WRITE8_HANDLER( SN76496_2_w ) { SN76496Write(2,data); }
\r
173 WRITE8_HANDLER( SN76496_3_w ) { SN76496Write(3,data); }
\r
174 WRITE8_HANDLER( SN76496_4_w ) { SN76496Write(4,data); }
\r
178 void SN76496Update(short *buffer, int length, int stereo)
\r
181 struct SN76496 *R = &ono_sn;
\r
183 /* If the volume is 0, increase the counter */
\r
184 for (i = 0;i < 4;i++)
\r
186 if (R->Volume[i] == 0)
\r
188 /* note that I do count += length, NOT count = length + 1. You might think */
\r
189 /* it's the same since the volume is 0, but doing the latter could cause */
\r
190 /* interferencies when the program is rapidly modulating the volume. */
\r
191 if (R->Count[i] <= length*STEP) R->Count[i] += length*STEP;
\r
202 /* vol[] keeps track of how long each square wave stays */
\r
203 /* in the 1 position during the sample period. */
\r
204 vol[0] = vol[1] = vol[2] = vol[3] = 0;
\r
206 for (i = 0;i < 3;i++)
\r
208 if (R->Output[i]) vol[i] += R->Count[i];
\r
209 R->Count[i] -= STEP;
\r
210 /* Period[i] is the half period of the square wave. Here, in each */
\r
211 /* loop I add Period[i] twice, so that at the end of the loop the */
\r
212 /* square wave is in the same status (0 or 1) it was at the start. */
\r
213 /* vol[i] is also incremented by Period[i], since the wave has been 1 */
\r
214 /* exactly half of the time, regardless of the initial position. */
\r
215 /* If we exit the loop in the middle, Output[i] has to be inverted */
\r
216 /* and vol[i] incremented only if the exit status of the square */
\r
218 while (R->Count[i] <= 0)
\r
220 R->Count[i] += R->Period[i];
\r
221 if (R->Count[i] > 0)
\r
224 if (R->Output[i]) vol[i] += R->Period[i];
\r
227 R->Count[i] += R->Period[i];
\r
228 vol[i] += R->Period[i];
\r
230 if (R->Output[i]) vol[i] -= R->Count[i];
\r
238 if (R->Count[3] < left) nextevent = R->Count[3];
\r
239 else nextevent = left;
\r
241 if (R->Output[3]) vol[3] += R->Count[3];
\r
242 R->Count[3] -= nextevent;
\r
243 if (R->Count[3] <= 0)
\r
245 if (R->RNG & 1) R->RNG ^= R->NoiseFB;
\r
247 R->Output[3] = R->RNG & 1;
\r
248 R->Count[3] += R->Period[3];
\r
249 if (R->Output[3]) vol[3] += R->Period[3];
\r
251 if (R->Output[3]) vol[3] -= R->Count[3];
\r
254 } while (left > 0);
\r
256 out = vol[0] * R->Volume[0] + vol[1] * R->Volume[1] +
\r
257 vol[2] * R->Volume[2] + vol[3] * R->Volume[3];
\r
259 if (out > MAX_OUTPUT * STEP) out = MAX_OUTPUT * STEP;
\r
261 if ((out /= STEP)) // will be optimized to shift; max 0x47ff = 18431
\r
263 if(stereo) buffer+=2; // only left for stereo, to be mixed to right later
\r
271 static void SN76496_set_clock(struct SN76496 *R,int clock)
\r
274 /* the base clock for the tone generators is the chip clock divided by 16; */
\r
275 /* for the noise generator, it is clock / 256. */
\r
276 /* Here we calculate the number of steps which happen during one sample */
\r
277 /* at the given sample rate. No. of events = sample rate / (clock/16). */
\r
278 /* STEP is a multiplier used to turn the fraction into a fixed point */
\r
280 R->UpdateStep = ((double)STEP * R->SampleRate * 16) / clock;
\r
284 static void SN76496_set_gain(struct SN76496 *R,int gain)
\r
292 /* increase max output basing on gain (0.2 dB per step) */
\r
293 out = MAX_OUTPUT / 3;
\r
295 out *= 1.023292992; /* = (10 ^ (0.2/20)) */
\r
297 /* build volume table (2dB per step) */
\r
298 for (i = 0;i < 15;i++)
\r
300 /* limit volume to avoid clipping */
\r
301 if (out > MAX_OUTPUT / 3) R->VolTable[i] = MAX_OUTPUT / 3;
\r
302 else R->VolTable[i] = out;
\r
304 out /= 1.258925412; /* = 10 ^ (2/20) = 2dB */
\r
306 R->VolTable[15] = 0;
\r
311 int SN76496_init(int clock,int sample_rate)
\r
313 struct SN76496 *R = &ono_sn;
\r
316 //R->Channel = stream_create(0,1, sample_rate,R,SN76496Update);
\r
317 sn76496_regs = R->Register;
\r
319 R->SampleRate = sample_rate;
\r
320 SN76496_set_clock(R,clock);
\r
322 for (i = 0;i < 4;i++) R->Volume[i] = 0;
\r
324 R->LastRegister = 0;
\r
325 for (i = 0;i < 8;i+=2)
\r
327 R->Register[i] = 0;
\r
328 R->Register[i + 1] = 0x0f; /* volume = 0 */
\r
331 for (i = 0;i < 4;i++)
\r
334 R->Period[i] = R->Count[i] = R->UpdateStep;
\r
336 R->RNG = NG_PRESET;
\r
337 R->Output[3] = R->RNG & 1;
\r
340 SN76496_set_gain(R, 0);
\r