#define HACK_ENABLED(x) ((new_dynarec_hacks | new_dynarec_hacks_pergame) & (x))
- extern int cycle_count; // ... until end of the timeslice, counts -N -> 0
+ extern int cycle_count; // ... until end of the timeslice, counts -N -> 0 (CCREG)
extern int last_count; // last absolute target, often = next_interupt
extern int pcaddr;
extern int pending_exception;
#define LOREG 32 // lo
#define HIREG 33 // hi
//#define FSREG 34 // FPU status (FCSR)
-#define CSREG 35 // Coprocessor status
+//#define CSREG 35 // Coprocessor status
#define CCREG 36 // Cycle count
#define INVCP 37 // Pointer to invalid_code
//#define MMREG 38 // Pointer to memory_map
static void load_all_consts(const signed char regmap[], u_int dirty, int i);
static u_int get_host_reglist(const signed char *regmap);
-static int get_final_value(int hr, int i, int *value);
+static int get_final_value(int hr, int i, u_int *value);
static void add_stub(enum stub_type type, void *addr, void *retaddr,
u_int a, uintptr_t b, uintptr_t c, u_int d, u_int e);
static void add_stub_r(enum stub_type type, void *addr, void *retaddr,
return NULL;
}
+// this doesn't normally happen
+static noinline u_int generate_exception(u_int pc)
+{
+ //if (execBreakCheck(&psxRegs, pc))
+ // return psxRegs.pc;
+
+ // generate an address or bus error
+ psxRegs.CP0.n.Cause &= 0x300;
+ psxRegs.CP0.n.EPC = pc;
+ if (pc & 3) {
+ psxRegs.CP0.n.Cause |= R3000E_AdEL << 2;
+ psxRegs.CP0.n.BadVAddr = pc;
+#ifdef DRC_DBG
+ last_count -= 2;
+#endif
+ } else
+ psxRegs.CP0.n.Cause |= R3000E_IBE << 2;
+ return (psxRegs.pc = 0x80000080);
+}
+
// Get address from virtual address
// This is called from the recompiled JR/JALR instructions
static void noinline *get_addr(u_int vaddr, int can_compile)
return NULL;
int r = new_recompile_block(vaddr);
- if (r == 0)
+ if (likely(r == 0))
return ndrc_get_addr_ht(vaddr);
- // generate an address error
-#ifdef DRC_DBG
- last_count -= 2;
-#endif
- psxRegs.CP0.n.Cause &= 0x300;
- psxRegs.CP0.n.EPC = vaddr;
- if (vaddr & 3) {
- psxRegs.CP0.n.Cause |= R3000E_AdEL << 2;
- psxRegs.CP0.n.BadVAddr = vaddr;
- } else
- psxRegs.CP0.n.Cause |= R3000E_IBE << 2;
- psxRegs.pc = 0x80000080;
- return ndrc_get_addr_ht(0x80000080);
+ return ndrc_get_addr_ht(generate_exception(vaddr));
}
// Look up address in hash table first
switch (ofs) {
#define ofscase(x) case LO_##x: return " ; " #x
ofscase(next_interupt);
+ ofscase(cycle_count);
ofscase(last_count);
ofscase(pending_exception);
ofscase(stop);
static void shift_alloc(struct regstat *current,int i)
{
if(dops[i].rt1) {
- if(dops[i].opcode2<=0x07) // SLLV/SRLV/SRAV
- {
if(dops[i].rs1) alloc_reg(current,i,dops[i].rs1);
if(dops[i].rs2) alloc_reg(current,i,dops[i].rs2);
alloc_reg(current,i,dops[i].rt1);
alloc_reg_temp(current,i,-1);
cinfo[i].min_free_regs=1;
}
- } else { // DSLLV/DSRLV/DSRAV
- assert(0);
- }
clear_const(current,dops[i].rs1);
clear_const(current,dops[i].rs2);
clear_const(current,dops[i].rt1);
// case 0x19: MULTU
// case 0x1A: DIV
// case 0x1B: DIVU
- // case 0x1C: DMULT
- // case 0x1D: DMULTU
- // case 0x1E: DDIV
- // case 0x1F: DDIVU
clear_const(current,dops[i].rs1);
clear_const(current,dops[i].rs2);
alloc_cc(current,i); // for stalls
if(dops[i].rs1&&dops[i].rs2)
{
- if((dops[i].opcode2&4)==0) // 32-bit
- {
current->u&=~(1LL<<HIREG);
current->u&=~(1LL<<LOREG);
alloc_reg(current,i,HIREG);
alloc_reg(current,i,dops[i].rs2);
dirty_reg(current,HIREG);
dirty_reg(current,LOREG);
- }
- else // 64-bit
- {
- assert(0);
- }
}
else
{
// Multiply by zero is zero.
// MIPS does not have a divide by zero exception.
- // The result is undefined, we return zero.
alloc_reg(current,i,HIREG);
alloc_reg(current,i,LOREG);
dirty_reg(current,HIREG);
dirty_reg(current,LOREG);
+ if (dops[i].rs1 && ((dops[i].opcode2 & 0x3e) == 0x1a)) // div(u) 0
+ alloc_reg(current, i, dops[i].rs1);
}
}
#endif
}
else if(dops[i].opcode2==4) // MTC0
{
+ if (((source[i]>>11)&0x1e) == 12) {
+ alloc_cc(current, i);
+ dirty_reg(current, CCREG);
+ }
if(dops[i].rs1){
clear_const(current,dops[i].rs1);
alloc_reg(current,i,dops[i].rs1);
assert(addr >= 0);
if(!c) {
emit_cmpimm(addr, RAM_SIZE);
- if (!offset && s != addr) emit_mov(s, addr);
jaddr=out;
emit_jno(0);
}
if (ram_offset)
offset_reg = get_ro_reg(i_regs, 0);
- if (dops[i].opcode==0x2C||dops[i].opcode==0x2D) { // SDL/SDR
- assert(0);
- }
-
emit_testimm(addr,2);
case23=out;
emit_jne(0);
}
else if(dops[i].opcode2==4) // MTC0
{
- signed char s=get_reg(i_regs->regmap,dops[i].rs1);
+ int s = get_reg(i_regs->regmap, dops[i].rs1);
+ int cc = get_reg(i_regs->regmap, CCREG);
char copr=(source[i]>>11)&0x1f;
assert(s>=0);
wb_register(dops[i].rs1,i_regs->regmap,i_regs->dirty);
- if(copr==9||copr==11||copr==12||copr==13) {
+ if (copr == 12 || copr == 13) {
emit_readword(&last_count,HOST_TEMPREG);
- emit_loadreg(CCREG,HOST_CCREG); // TODO: do proper reg alloc
- emit_add(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
- emit_addimm(HOST_CCREG,ccadj_,HOST_CCREG);
- emit_writeword(HOST_CCREG,&psxRegs.cycle);
- }
- // What a mess. The status register (12) can enable interrupts,
- // so needs a special case to handle a pending interrupt.
- // The interrupt must be taken immediately, because a subsequent
- // instruction might disable interrupts again.
- if(copr==12||copr==13) {
+ if (cc != HOST_CCREG)
+ emit_loadreg(CCREG, HOST_CCREG);
+ emit_add(HOST_CCREG, HOST_TEMPREG, HOST_CCREG);
+ emit_addimm(HOST_CCREG, ccadj_ + 2, HOST_CCREG);
+ emit_writeword(HOST_CCREG, &psxRegs.cycle);
if (is_delayslot) {
// burn cycles to cause cc_interrupt, which will
// reschedule next_interupt. Relies on CCREG from above.
emit_movimm(0,HOST_TEMPREG);
emit_writeword(HOST_TEMPREG,&pending_exception);
}
- if(s==HOST_CCREG)
- emit_loadreg(dops[i].rs1,1);
- else if(s!=1)
- emit_mov(s,1);
- emit_movimm(copr,0);
+ if( s != 1)
+ emit_mov(s, 1);
+ emit_movimm(copr, 0);
emit_far_call(pcsx_mtc0);
- if(copr==9||copr==11||copr==12||copr==13) {
+ if (copr == 12 || copr == 13) {
emit_readword(&psxRegs.cycle,HOST_CCREG);
- emit_readword(&next_interupt,HOST_TEMPREG);
- emit_addimm(HOST_CCREG,-ccadj_,HOST_CCREG);
+ emit_readword(&last_count,HOST_TEMPREG);
emit_sub(HOST_CCREG,HOST_TEMPREG,HOST_CCREG);
- emit_writeword(HOST_TEMPREG,&last_count);
- emit_storereg(CCREG,HOST_CCREG);
- }
- if(copr==12||copr==13) {
+ //emit_writeword(HOST_TEMPREG,&last_count);
assert(!is_delayslot);
emit_readword(&pending_exception,HOST_TEMPREG);
emit_test(HOST_TEMPREG,HOST_TEMPREG);
void *jaddr = out;
emit_jeq(0);
emit_readword(&pcaddr, 0);
- emit_addimm(HOST_CCREG,2,HOST_CCREG);
emit_far_call(ndrc_get_addr_ht);
emit_jmpreg(0);
set_jump_target(jaddr, out);
+ emit_addimm(HOST_CCREG, -ccadj_ - 2, HOST_CCREG);
+ if (cc != HOST_CCREG)
+ emit_storereg(CCREG, HOST_CCREG);
}
emit_loadreg(dops[i].rs1,s);
}
s=get_reg(i_regs->regmap,dops[i].rs1);
tl=get_reg(i_regs->regmap,FTEMP);
offset=cinfo[i].imm;
- assert(dops[i].rs1>0);
assert(tl>=0);
if(i_regs->regmap[HOST_CCREG]==CCREG)
if(cc<0)
emit_loadreg(CCREG,2);
emit_addimm(cc<0?2:cc,(int)stubs[n].d+1,2);
+ emit_movimm(start + i*4,3);
+ emit_writeword(3,&psxRegs.pc);
emit_far_call((dops[i].opcode==0x2a?jump_handle_swl:jump_handle_swr));
emit_addimm(0,-((int)stubs[n].d+1),cc<0?2:cc);
if(cc<0)
// fallthrough
case IMM16:
if(dops[i].rt1&&is_const(®s[i],dops[i].rt1)) {
- int value,hr=get_reg_w(regs[i].regmap, dops[i].rt1);
+ int hr = get_reg_w(regs[i].regmap, dops[i].rt1);
+ u_int value;
if(hr>=0) {
if(get_final_value(hr,i,&value))
smrv[dops[i].rt1]=value;
}
}
-static int get_final_value(int hr, int i, int *value)
+static int get_final_value(int hr, int i, u_int *value)
{
int reg=regs[i].regmap[hr];
while(i<slen-1) {
if(!((regs[i].loadedconst>>hr)&1)) {
assert(regmap[hr]<64);
if(((regs[i].isconst>>hr)&1)&®map[hr]>0) {
- int value,similar=0;
+ u_int value, similar=0;
if(get_final_value(hr,i,&value)) {
// see if some other register has similar value
for(hr2=0;hr2<HOST_REGS;hr2++) {
}
}
if(similar) {
- int value2;
+ u_int value2;
if(get_final_value(hr2,i,&value2)) // is this needed?
emit_movimm_from(value2,hr2,value,hr);
else
{
//emit_movimm(cinfo[i].ba,alt);
//emit_movimm(start+i*4+8,addr);
- emit_mov2imm_compact(cinfo[i].ba,
- (dops[i].opcode2 & 1) ? addr : alt, start + i*4 + 8,
- (dops[i].opcode2 & 1) ? alt : addr);
- emit_test(s1l,s1l);
- emit_cmovs_reg(alt,addr);
+ if (dops[i].rs1) {
+ emit_mov2imm_compact(cinfo[i].ba,
+ (dops[i].opcode2 & 1) ? addr : alt, start + i*4 + 8,
+ (dops[i].opcode2 & 1) ? alt : addr);
+ emit_test(s1l,s1l);
+ emit_cmovs_reg(alt,addr);
+ }
+ else
+ emit_movimm((dops[i].opcode2 & 1) ? cinfo[i].ba : start + i*4 + 8, addr);
}
emit_writeword(addr, &pcaddr);
}
int rt;
unsigned int return_address;
rt=get_reg(branch_regs[i].regmap,31);
- assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
+ //assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
//assert(rt>=0);
return_address=start+i*4+8;
if(rt>=0) {
if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
}
#endif
- emit_movimm(return_address,rt); // PC into link register
+ if (!((regs[i].loadedconst >> rt) & 1))
+ emit_movimm(return_address, rt); // PC into link register
#ifdef IMM_PREFETCH
emit_prefetch(hash_table_get(return_address));
#endif
static void ujump_assemble(int i, const struct regstat *i_regs)
{
- int ra_done=0;
if(i==(cinfo[i].ba-start)>>2) assem_debug("idle loop\n");
address_generation(i+1,i_regs,regs[i].regmap_entry);
#ifdef REG_PREFETCH
if(i_regmap[temp]==PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
}
#endif
- if(dops[i].rt1==31&&(dops[i].rt1==dops[i+1].rs1||dops[i].rt1==dops[i+1].rs2)) {
+ if (dops[i].rt1 == 31)
ujump_assemble_write_ra(i); // writeback ra for DS
- ra_done=1;
- }
ds_assemble(i+1,i_regs);
uint64_t bc_unneeded=branch_regs[i].u;
bc_unneeded|=1|(1LL<<dops[i].rt1);
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
load_reg(regs[i].regmap,branch_regs[i].regmap,CCREG);
- if(!ra_done&&dops[i].rt1==31)
- ujump_assemble_write_ra(i);
int cc,adj;
cc=get_reg(branch_regs[i].regmap,CCREG);
assert(cc==HOST_CCREG);
static void rjump_assemble_write_ra(int i)
{
int rt,return_address;
- assert(dops[i+1].rt1!=dops[i].rt1);
- assert(dops[i+1].rt2!=dops[i].rt1);
rt=get_reg_w(branch_regs[i].regmap, dops[i].rt1);
- assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
+ //assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
assert(rt>=0);
return_address=start+i*4+8;
#ifdef REG_PREFETCH
if(i_regmap[temp]!=PTEMP) emit_movimm((uintptr_t)hash_table_get(return_address),temp);
}
#endif
- emit_movimm(return_address,rt); // PC into link register
+ if (!((regs[i].loadedconst >> rt) & 1))
+ emit_movimm(return_address, rt); // PC into link register
#ifdef IMM_PREFETCH
emit_prefetch(hash_table_get(return_address));
#endif
{
int temp;
int rs,cc;
- int ra_done=0;
rs=get_reg(branch_regs[i].regmap,dops[i].rs1);
assert(rs>=0);
if (ds_writes_rjump_rs(i)) {
if(rh>=0) do_preload_rhash(rh);
}
#endif
- if(dops[i].rt1!=0&&(dops[i].rt1==dops[i+1].rs1||dops[i].rt1==dops[i+1].rs2)) {
+ if (dops[i].rt1 != 0)
rjump_assemble_write_ra(i);
- ra_done=1;
- }
ds_assemble(i+1,i_regs);
uint64_t bc_unneeded=branch_regs[i].u;
bc_unneeded|=1|(1LL<<dops[i].rt1);
bc_unneeded&=~(1LL<<dops[i].rs1);
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,bc_unneeded);
load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i].rs1,CCREG);
- if(!ra_done&&dops[i].rt1!=0)
- rjump_assemble_write_ra(i);
cc=get_reg(branch_regs[i].regmap,CCREG);
assert(cc==HOST_CCREG);
(void)cc;
if(dops[i].rt1==31) {
int rt,return_address;
rt=get_reg(branch_regs[i].regmap,31);
- assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
+ //assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
if(rt>=0) {
// Save the PC even if the branch is not taken
return_address=start+i*4+8;
// In-order execution (branch first)
//printf("IOE\n");
void *nottaken = NULL;
- if (!unconditional) {
+ if (!unconditional && !nevertaken) {
assert(s1l >= 0);
emit_test(s1l, s1l);
}
#endif
}
}
- if (!unconditional) {
+ if (!unconditional && !nevertaken) {
nottaken = out;
if (!(dops[i].opcode2 & 1)) // BLTZ/BLTZAL
emit_jns(DJT_1);
}
// branch not taken
if(!unconditional) {
- set_jump_target(nottaken, out);
+ if (!nevertaken) {
+ assert(nottaken);
+ set_jump_target(nottaken, out);
+ }
assem_debug("1:\n");
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,ds_unneeded);
load_regs(regs[i].regmap,branch_regs[i].regmap,dops[i+1].rs1,dops[i+1].rs2);
return 0;
}
-static noinline void pass1_disassemble(u_int pagelimit)
+static int is_ld_use_hazard(int ld_rt, const struct decoded_insn *op)
{
- int i, j, done = 0, ni_count = 0;
- unsigned int type,op,op2,op3;
+ return ld_rt != 0 && (ld_rt == op->rs1 || ld_rt == op->rs2)
+ && op->itype != LOADLR && op->itype != CJUMP && op->itype != SJUMP;
+}
- for (i = 0; !done; i++)
- {
- int force_j_to_interpreter = 0;
+static void force_intcall(int i)
+{
+ memset(&dops[i], 0, sizeof(dops[i]));
+ dops[i].itype = INTCALL;
+ dops[i].rs1 = CCREG;
+ dops[i].is_exception = 1;
+ cinfo[i].ba = -1;
+}
+
+static void disassemble_one(int i, u_int src)
+{
+ unsigned int type, op, op2, op3;
memset(&dops[i], 0, sizeof(dops[i]));
memset(&cinfo[i], 0, sizeof(cinfo[i]));
cinfo[i].ba = -1;
cinfo[i].addr = -1;
- dops[i].opcode = op = source[i] >> 26;
+ dops[i].opcode = op = src >> 26;
op2 = 0;
type = INTCALL;
set_mnemonic(i, "???");
switch(op)
{
case 0x00: set_mnemonic(i, "special");
- op2=source[i]&0x3f;
+ op2 = src & 0x3f;
switch(op2)
{
case 0x00: set_mnemonic(i, "SLL"); type=SHIFTIMM; break;
case 0x09: set_mnemonic(i, "JALR"); type=RJUMP; break;
case 0x0C: set_mnemonic(i, "SYSCALL"); type=SYSCALL; break;
case 0x0D: set_mnemonic(i, "BREAK"); type=SYSCALL; break;
- case 0x0F: set_mnemonic(i, "SYNC"); type=OTHER; break;
case 0x10: set_mnemonic(i, "MFHI"); type=MOV; break;
case 0x11: set_mnemonic(i, "MTHI"); type=MOV; break;
case 0x12: set_mnemonic(i, "MFLO"); type=MOV; break;
break;
case 0x01: set_mnemonic(i, "regimm");
type = SJUMP;
- op2 = (source[i] >> 16) & 0x1f;
+ op2 = (src >> 16) & 0x1f;
switch(op2)
{
case 0x10: set_mnemonic(i, "BLTZAL"); break;
case 0x0E: set_mnemonic(i, "XORI"); type=IMM16; break;
case 0x0F: set_mnemonic(i, "LUI"); type=IMM16; break;
case 0x10: set_mnemonic(i, "COP0");
- op2 = (source[i]>>21) & 0x1f;
+ op2 = (src >> 21) & 0x1f;
if (op2 & 0x10) {
- op3 = source[i] & 0x1f;
+ op3 = src & 0x1f;
switch (op3)
{
case 0x01: case 0x02: case 0x06: case 0x08: type = INTCALL; break;
u32 rd;
case 0x00:
set_mnemonic(i, "MFC0");
- rd = (source[i] >> 11) & 0x1F;
+ rd = (src >> 11) & 0x1F;
if (!(0x00000417u & (1u << rd)))
type = COP0;
break;
}
break;
case 0x11: set_mnemonic(i, "COP1");
- op2=(source[i]>>21)&0x1f;
+ op2 = (src >> 21) & 0x1f;
break;
case 0x12: set_mnemonic(i, "COP2");
- op2=(source[i]>>21)&0x1f;
+ op2 = (src >> 21) & 0x1f;
if (op2 & 0x10) {
type = OTHER;
- if (gte_handlers[source[i]&0x3f]!=NULL) {
+ if (gte_handlers[src & 0x3f] != NULL) {
#ifdef DISASM
- if (gte_regnames[source[i]&0x3f]!=NULL)
- strcpy(insn[i],gte_regnames[source[i]&0x3f]);
+ if (gte_regnames[src & 0x3f] != NULL)
+ strcpy(insn[i], gte_regnames[src & 0x3f]);
else
- snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
+ snprintf(insn[i], sizeof(insn[i]), "COP2 %x", src & 0x3f);
#endif
type = C2OP;
}
}
break;
case 0x13: set_mnemonic(i, "COP3");
- op2=(source[i]>>21)&0x1f;
+ op2 = (src >> 21) & 0x1f;
break;
case 0x20: set_mnemonic(i, "LB"); type=LOAD; break;
case 0x21: set_mnemonic(i, "LH"); type=LOAD; break;
case 0x32: set_mnemonic(i, "LWC2"); type=C2LS; break;
case 0x3A: set_mnemonic(i, "SWC2"); type=C2LS; break;
case 0x3B:
- if (Config.HLE && (source[i] & 0x03ffffff) < ARRAY_SIZE(psxHLEt)) {
+ if (Config.HLE && (src & 0x03ffffff) < ARRAY_SIZE(psxHLEt)) {
set_mnemonic(i, "HLECALL");
type = HLECALL;
}
break;
}
if (type == INTCALL)
- SysPrintf("NI %08x @%08x (%08x)\n", source[i], start + i*4, start);
+ SysPrintf("NI %08x @%08x (%08x)\n", src, start + i*4, start);
dops[i].itype=type;
dops[i].opcode2=op2;
/* Get registers/immediates */
dops[i].rt2 = 0;
switch(type) {
case LOAD:
- dops[i].rs1=(source[i]>>21)&0x1f;
- dops[i].rt1=(source[i]>>16)&0x1f;
- cinfo[i].imm=(short)source[i];
+ dops[i].rs1 = (src >> 21) & 0x1f;
+ dops[i].rt1 = (src >> 16) & 0x1f;
+ cinfo[i].imm = (short)src;
break;
case STORE:
case STORELR:
- dops[i].rs1=(source[i]>>21)&0x1f;
- dops[i].rs2=(source[i]>>16)&0x1f;
- cinfo[i].imm=(short)source[i];
+ dops[i].rs1 = (src >> 21) & 0x1f;
+ dops[i].rs2 = (src >> 16) & 0x1f;
+ cinfo[i].imm = (short)src;
break;
case LOADLR:
// LWL/LWR only load part of the register,
// therefore the target register must be treated as a source too
- dops[i].rs1=(source[i]>>21)&0x1f;
- dops[i].rs2=(source[i]>>16)&0x1f;
- dops[i].rt1=(source[i]>>16)&0x1f;
- cinfo[i].imm=(short)source[i];
+ dops[i].rs1 = (src >> 21) & 0x1f;
+ dops[i].rs2 = (src >> 16) & 0x1f;
+ dops[i].rt1 = (src >> 16) & 0x1f;
+ cinfo[i].imm = (short)src;
break;
case IMM16:
if (op==0x0f) dops[i].rs1=0; // LUI instruction has no source register
- else dops[i].rs1=(source[i]>>21)&0x1f;
- dops[i].rs2=0;
- dops[i].rt1=(source[i]>>16)&0x1f;
+ else dops[i].rs1 = (src >> 21) & 0x1f;
+ dops[i].rs2 = 0;
+ dops[i].rt1 = (src >> 16) & 0x1f;
if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
- cinfo[i].imm=(unsigned short)source[i];
+ cinfo[i].imm = (unsigned short)src;
}else{
- cinfo[i].imm=(short)source[i];
+ cinfo[i].imm = (short)src;
}
break;
case UJUMP:
dops[i].rs2=CCREG;
break;
case RJUMP:
- dops[i].rs1=(source[i]>>21)&0x1f;
+ dops[i].rs1 = (src >> 21) & 0x1f;
// The JALR instruction writes to rd.
if (op2&1) {
- dops[i].rt1=(source[i]>>11)&0x1f;
+ dops[i].rt1 = (src >> 11) & 0x1f;
}
dops[i].rs2=CCREG;
break;
case CJUMP:
- dops[i].rs1=(source[i]>>21)&0x1f;
- dops[i].rs2=(source[i]>>16)&0x1f;
+ dops[i].rs1 = (src >> 21) & 0x1f;
+ dops[i].rs2 = (src >> 16) & 0x1f;
if(op&2) { // BGTZ/BLEZ
dops[i].rs2=0;
}
break;
case SJUMP:
- dops[i].rs1=(source[i]>>21)&0x1f;
- dops[i].rs2=CCREG;
+ dops[i].rs1 = (src >> 21) & 0x1f;
+ dops[i].rs2 = CCREG;
if (op2 == 0x10 || op2 == 0x11) { // BxxAL
dops[i].rt1 = 31;
// NOTE: If the branch is not taken, r31 is still overwritten
}
break;
case ALU:
- dops[i].rs1=(source[i]>>21)&0x1f; // source
- dops[i].rs2=(source[i]>>16)&0x1f; // subtract amount
- dops[i].rt1=(source[i]>>11)&0x1f; // destination
+ dops[i].rs1=(src>>21)&0x1f; // source
+ dops[i].rs2=(src>>16)&0x1f; // subtract amount
+ dops[i].rt1=(src>>11)&0x1f; // destination
break;
case MULTDIV:
- dops[i].rs1=(source[i]>>21)&0x1f; // source
- dops[i].rs2=(source[i]>>16)&0x1f; // divisor
+ dops[i].rs1=(src>>21)&0x1f; // source
+ dops[i].rs2=(src>>16)&0x1f; // divisor
dops[i].rt1=HIREG;
dops[i].rt2=LOREG;
break;
if(op2==0x11) dops[i].rt1=HIREG; // MTHI
if(op2==0x12) dops[i].rs1=LOREG; // MFLO
if(op2==0x13) dops[i].rt1=LOREG; // MTLO
- if((op2&0x1d)==0x10) dops[i].rt1=(source[i]>>11)&0x1f; // MFxx
- if((op2&0x1d)==0x11) dops[i].rs1=(source[i]>>21)&0x1f; // MTxx
+ if((op2&0x1d)==0x10) dops[i].rt1=(src>>11)&0x1f; // MFxx
+ if((op2&0x1d)==0x11) dops[i].rs1=(src>>21)&0x1f; // MTxx
break;
case SHIFT:
- dops[i].rs1=(source[i]>>16)&0x1f; // target of shift
- dops[i].rs2=(source[i]>>21)&0x1f; // shift amount
- dops[i].rt1=(source[i]>>11)&0x1f; // destination
+ dops[i].rs1=(src>>16)&0x1f; // target of shift
+ dops[i].rs2=(src>>21)&0x1f; // shift amount
+ dops[i].rt1=(src>>11)&0x1f; // destination
break;
case SHIFTIMM:
- dops[i].rs1=(source[i]>>16)&0x1f;
+ dops[i].rs1=(src>>16)&0x1f;
dops[i].rs2=0;
- dops[i].rt1=(source[i]>>11)&0x1f;
- cinfo[i].imm=(source[i]>>6)&0x1f;
+ dops[i].rt1=(src>>11)&0x1f;
+ cinfo[i].imm=(src>>6)&0x1f;
break;
case COP0:
- if(op2==0) dops[i].rt1=(source[i]>>16)&0x1F; // MFC0
- if(op2==4) dops[i].rs1=(source[i]>>16)&0x1F; // MTC0
- if(op2==4&&((source[i]>>11)&0x1f)==12) dops[i].rt2=CSREG; // Status
+ if(op2==0) dops[i].rt1=(src>>16)&0x1F; // MFC0
+ if(op2==4) dops[i].rs1=(src>>16)&0x1F; // MTC0
+ if(op2==4&&((src>>11)&0x1e)==12) dops[i].rs2=CCREG;
break;
case COP2:
- if(op2<3) dops[i].rt1=(source[i]>>16)&0x1F; // MFC2/CFC2
- if(op2>3) dops[i].rs1=(source[i]>>16)&0x1F; // MTC2/CTC2
- dops[i].rs2=CSREG;
- int gr=(source[i]>>11)&0x1F;
+ if(op2<3) dops[i].rt1=(src>>16)&0x1F; // MFC2/CFC2
+ if(op2>3) dops[i].rs1=(src>>16)&0x1F; // MTC2/CTC2
+ int gr=(src>>11)&0x1F;
switch(op2)
{
case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
}
break;
case C2LS:
- dops[i].rs1=(source[i]>>21)&0x1F;
- cinfo[i].imm=(short)source[i];
- if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
- else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
+ dops[i].rs1=(src>>21)&0x1F;
+ cinfo[i].imm=(short)src;
+ if(op==0x32) gte_rt[i]=1ll<<((src>>16)&0x1F); // LWC2
+ else gte_rs[i]=1ll<<((src>>16)&0x1F); // SWC2
break;
case C2OP:
- gte_rs[i]=gte_reg_reads[source[i]&0x3f];
- gte_rt[i]=gte_reg_writes[source[i]&0x3f];
+ gte_rs[i]=gte_reg_reads[src&0x3f];
+ gte_rt[i]=gte_reg_writes[src&0x3f];
gte_rt[i]|=1ll<<63; // every op changes flags
- if((source[i]&0x3f)==GTE_MVMVA) {
- int v = (source[i] >> 15) & 3;
+ if((src&0x3f)==GTE_MVMVA) {
+ int v = (src >> 15) & 3;
gte_rs[i]&=~0xe3fll;
if(v==3) gte_rs[i]|=0xe00ll;
else gte_rs[i]|=3ll<<(v*2);
default:
break;
}
+}
+
+static noinline void pass1_disassemble(u_int pagelimit)
+{
+ int i, j, done = 0, ni_count = 0;
+
+ for (i = 0; !done; i++)
+ {
+ int force_j_to_interpreter = 0;
+ unsigned int type, op, op2;
+
+ disassemble_one(i, source[i]);
+ type = dops[i].itype;
+ op = dops[i].opcode;
+ op2 = dops[i].opcode2;
+
/* Calculate branch target addresses */
if(type==UJUMP)
cinfo[i].ba=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
SysPrintf("branch in DS @%08x (%08x)\n", start + i*4, start);
force_j_to_interpreter = 1;
}
- // basic load delay detection through a branch
+ // load delay detection through a branch
else if (dops[i].is_delay_load && dops[i].rt1 != 0) {
- int t=(cinfo[i-1].ba-start)/4;
- if(0 <= t && t < i &&(dops[i].rt1==dops[t].rs1||dops[i].rt1==dops[t].rs2)&&dops[t].itype!=CJUMP&&dops[t].itype!=SJUMP) {
+ const struct decoded_insn *dop = NULL;
+ int t = -1;
+ if (cinfo[i-1].ba != -1) {
+ t = (cinfo[i-1].ba - start) / 4;
+ if (t < 0 || t > i) {
+ u_int limit = 0;
+ u_int *mem = get_source_start(cinfo[i-1].ba, &limit);
+ if (mem != NULL) {
+ disassemble_one(MAXBLOCK - 1, mem[0]);
+ dop = &dops[MAXBLOCK - 1];
+ }
+ }
+ else
+ dop = &dops[t];
+ }
+ if ((dop && is_ld_use_hazard(dops[i].rt1, dop))
+ || (!dop && Config.PreciseExceptions)) {
// jump target wants DS result - potential load delay effect
SysPrintf("load delay in DS @%08x (%08x)\n", start + i*4, start);
force_j_to_interpreter = 1;
- dops[t+1].bt=1; // expected return from interpreter
+ if (0 <= t && t < i)
+ dops[t + 1].bt = 1; // expected return from interpreter
}
else if(i>=2&&dops[i-2].rt1==2&&dops[i].rt1==2&&dops[i].rs1!=2&&dops[i].rs2!=2&&dops[i-1].rs1!=2&&dops[i-1].rs2!=2&&
!(i>=3&&dops[i-3].is_jump)) {
}
}
}
- else if (i > 0 && dops[i-1].is_delay_load && dops[i-1].rt1 != 0
- && (dops[i].rs1 == dops[i-1].rt1 || dops[i].rs2 == dops[i-1].rt1)) {
+ else if (i > 0 && dops[i-1].is_delay_load
+ && is_ld_use_hazard(dops[i-1].rt1, &dops[i])
+ && (i < 2 || !dops[i-2].is_ujump)) {
SysPrintf("load delay @%08x (%08x)\n", start + i*4, start);
for (j = i - 1; j > 0 && dops[j-1].is_delay_load; j--)
if (dops[j-1].rt1 != dops[i-1].rt1)
force_j_to_interpreter = 1;
}
if (force_j_to_interpreter) {
- memset(&dops[j], 0, sizeof(dops[j]));
- dops[j].itype = INTCALL;
- dops[j].rs1 = CCREG;
- cinfo[j].ba = -1;
+ force_intcall(j);
done = 2;
i = j; // don't compile the problematic branch/load/etc
}
+ if (dops[i].is_exception && i > 0 && dops[i-1].is_jump) {
+ SysPrintf("exception in DS @%08x (%08x)\n", start + i*4, start);
+ i--;
+ force_intcall(i);
+ done = 2;
+ }
+ if (i >= 2 && (source[i-2] & 0xffe0f800) == 0x40806000) // MTC0 $12
+ dops[i].bt = 1;
+ if (i >= 1 && (source[i-1] & 0xffe0f800) == 0x40806800) // MTC0 $13
+ dops[i].bt = 1;
/* Is this the end of the block? */
if (i > 0 && dops[i-1].is_ujump) {
if (dops[i].rt1!=0) {
alloc_reg(¤t,i,dops[i].rt1);
dirty_reg(¤t,dops[i].rt1);
- assert(dops[i+1].rs1!=dops[i].rt1&&dops[i+1].rs2!=dops[i].rt1);
- assert(dops[i+1].rt1!=dops[i].rt1);
#ifdef REG_PREFETCH
alloc_reg(¤t,i,PTEMP);
#endif
}
}
// Cycle count is needed at branches. Assume it is needed at the target too.
- if(i==0||dops[i].bt||dops[i].itype==CJUMP) {
+ if (i == 0 || dops[i].bt || dops[i].may_except || dops[i].itype == CJUMP) {
if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
}