disable some unneeded stuff
[megadrive.git] / teensy3 / pins_teensy.c
CommitLineData
35f00b6c 1/* Teensyduino Core Library
2 * http://www.pjrc.com/teensy/
3 * Copyright (c) 2013 PJRC.COM, LLC.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining
6 * a copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * 1. The above copyright notice and this permission notice shall be
14 * included in all copies or substantial portions of the Software.
15 *
16 * 2. If the Software is incorporated into a build system that allows
17 * selection among a list of target devices, then similar target
18 * devices manufactured by PJRC.COM must be included in the list of
19 * target devices and selectable in the same manner.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
22 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
23 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
24 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
25 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
26 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
27 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
28 * SOFTWARE.
29 */
30
31#include "core_pins.h"
32#include "pins_arduino.h"
5b1ee79c 33//#include "HardwareSerial.h"
35f00b6c 34
35#if 0
36// moved to pins_arduino.h
37struct digital_pin_bitband_and_config_table_struct {
38 volatile uint32_t *reg;
39 volatile uint32_t *config;
40};
41const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[];
42
43// compatibility macros
44#define digitalPinToPort(pin) (pin)
45#define digitalPinToBitMask(pin) (1)
46#define portOutputRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 0))
47#define portSetRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 32))
48#define portClearRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 64))
49#define portToggleRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 96))
50#define portInputRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 128))
51#define portModeRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 160))
52#define portConfigRegister(pin) ((volatile uint32_t *)(digital_pin_to_info_PGM[(pin)].config))
53#endif
54
55//#define digitalPinToTimer(P) ( pgm_read_byte( digital_pin_to_timer_PGM + (P) ) )
56//#define analogInPinToBit(P) (P)
57
58#define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
59#define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
60//#define GPIO_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1)
61//#define GPIO_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0)
62
63const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
64 {GPIO_BITBAND_PTR(CORE_PIN0_PORTREG, CORE_PIN0_BIT), &CORE_PIN0_CONFIG},
65 {GPIO_BITBAND_PTR(CORE_PIN1_PORTREG, CORE_PIN1_BIT), &CORE_PIN1_CONFIG},
66 {GPIO_BITBAND_PTR(CORE_PIN2_PORTREG, CORE_PIN2_BIT), &CORE_PIN2_CONFIG},
67 {GPIO_BITBAND_PTR(CORE_PIN3_PORTREG, CORE_PIN3_BIT), &CORE_PIN3_CONFIG},
68 {GPIO_BITBAND_PTR(CORE_PIN4_PORTREG, CORE_PIN4_BIT), &CORE_PIN4_CONFIG},
69 {GPIO_BITBAND_PTR(CORE_PIN5_PORTREG, CORE_PIN5_BIT), &CORE_PIN5_CONFIG},
70 {GPIO_BITBAND_PTR(CORE_PIN6_PORTREG, CORE_PIN6_BIT), &CORE_PIN6_CONFIG},
71 {GPIO_BITBAND_PTR(CORE_PIN7_PORTREG, CORE_PIN7_BIT), &CORE_PIN7_CONFIG},
72 {GPIO_BITBAND_PTR(CORE_PIN8_PORTREG, CORE_PIN8_BIT), &CORE_PIN8_CONFIG},
73 {GPIO_BITBAND_PTR(CORE_PIN9_PORTREG, CORE_PIN9_BIT), &CORE_PIN9_CONFIG},
74 {GPIO_BITBAND_PTR(CORE_PIN10_PORTREG, CORE_PIN10_BIT), &CORE_PIN10_CONFIG},
75 {GPIO_BITBAND_PTR(CORE_PIN11_PORTREG, CORE_PIN11_BIT), &CORE_PIN11_CONFIG},
76 {GPIO_BITBAND_PTR(CORE_PIN12_PORTREG, CORE_PIN12_BIT), &CORE_PIN12_CONFIG},
77 {GPIO_BITBAND_PTR(CORE_PIN13_PORTREG, CORE_PIN13_BIT), &CORE_PIN13_CONFIG},
78 {GPIO_BITBAND_PTR(CORE_PIN14_PORTREG, CORE_PIN14_BIT), &CORE_PIN14_CONFIG},
79 {GPIO_BITBAND_PTR(CORE_PIN15_PORTREG, CORE_PIN15_BIT), &CORE_PIN15_CONFIG},
80 {GPIO_BITBAND_PTR(CORE_PIN16_PORTREG, CORE_PIN16_BIT), &CORE_PIN16_CONFIG},
81 {GPIO_BITBAND_PTR(CORE_PIN17_PORTREG, CORE_PIN17_BIT), &CORE_PIN17_CONFIG},
82 {GPIO_BITBAND_PTR(CORE_PIN18_PORTREG, CORE_PIN18_BIT), &CORE_PIN18_CONFIG},
83 {GPIO_BITBAND_PTR(CORE_PIN19_PORTREG, CORE_PIN19_BIT), &CORE_PIN19_CONFIG},
84 {GPIO_BITBAND_PTR(CORE_PIN20_PORTREG, CORE_PIN20_BIT), &CORE_PIN20_CONFIG},
85 {GPIO_BITBAND_PTR(CORE_PIN21_PORTREG, CORE_PIN21_BIT), &CORE_PIN21_CONFIG},
86 {GPIO_BITBAND_PTR(CORE_PIN22_PORTREG, CORE_PIN22_BIT), &CORE_PIN22_CONFIG},
87 {GPIO_BITBAND_PTR(CORE_PIN23_PORTREG, CORE_PIN23_BIT), &CORE_PIN23_CONFIG},
88 {GPIO_BITBAND_PTR(CORE_PIN24_PORTREG, CORE_PIN24_BIT), &CORE_PIN24_CONFIG},
89 {GPIO_BITBAND_PTR(CORE_PIN25_PORTREG, CORE_PIN25_BIT), &CORE_PIN25_CONFIG},
90 {GPIO_BITBAND_PTR(CORE_PIN26_PORTREG, CORE_PIN26_BIT), &CORE_PIN26_CONFIG},
91 {GPIO_BITBAND_PTR(CORE_PIN27_PORTREG, CORE_PIN27_BIT), &CORE_PIN27_CONFIG},
92 {GPIO_BITBAND_PTR(CORE_PIN28_PORTREG, CORE_PIN28_BIT), &CORE_PIN28_CONFIG},
93 {GPIO_BITBAND_PTR(CORE_PIN29_PORTREG, CORE_PIN29_BIT), &CORE_PIN29_CONFIG},
94 {GPIO_BITBAND_PTR(CORE_PIN30_PORTREG, CORE_PIN30_BIT), &CORE_PIN30_CONFIG},
95 {GPIO_BITBAND_PTR(CORE_PIN31_PORTREG, CORE_PIN31_BIT), &CORE_PIN31_CONFIG},
96 {GPIO_BITBAND_PTR(CORE_PIN32_PORTREG, CORE_PIN32_BIT), &CORE_PIN32_CONFIG},
97 {GPIO_BITBAND_PTR(CORE_PIN33_PORTREG, CORE_PIN33_BIT), &CORE_PIN33_CONFIG}
98};
99
100
101
102
103typedef void (*voidFuncPtr)(void);
104volatile static voidFuncPtr intFunc[CORE_NUM_DIGITAL];
105
106void init_pin_interrupts(void)
107{
108 //SIM_SCGC5 = 0x00043F82; // clocks active to all GPIO
109 NVIC_ENABLE_IRQ(IRQ_PORTA);
110 NVIC_ENABLE_IRQ(IRQ_PORTB);
111 NVIC_ENABLE_IRQ(IRQ_PORTC);
112 NVIC_ENABLE_IRQ(IRQ_PORTD);
113 NVIC_ENABLE_IRQ(IRQ_PORTE);
114 // TODO: maybe these should be set to a lower priority
115 // so if the user puts lots of slow code on attachInterrupt
116 // fast interrupts will still be serviced quickly?
117}
118
119void attachInterrupt(uint8_t pin, void (*function)(void), int mode)
120{
121 volatile uint32_t *config;
122 uint32_t cfg, mask;
123
124 if (pin >= CORE_NUM_DIGITAL) return;
125 switch (mode) {
126 case CHANGE: mask = 0x0B; break;
127 case RISING: mask = 0x09; break;
128 case FALLING: mask = 0x0A; break;
129 case LOW: mask = 0x08; break;
130 case HIGH: mask = 0x0C; break;
131 default: return;
132 }
133 mask = (mask << 16) | 0x01000000;
134 config = portConfigRegister(pin);
135
136 __disable_irq();
137 cfg = *config;
138 cfg &= ~0x000F0000; // disable any previous interrupt
139 *config = cfg;
140 intFunc[pin] = function; // set the function pointer
141 cfg |= mask;
142 *config = cfg; // enable the new interrupt
143 __enable_irq();
144}
145
146void detachInterrupt(uint8_t pin)
147{
148 volatile uint32_t *config;
149
150 config = portConfigRegister(pin);
151 __disable_irq();
152 *config = ((*config & ~0x000F0000) | 0x01000000);
153 intFunc[pin] = NULL;
154 __enable_irq();
155}
156
157
158void porta_isr(void)
159{
160 uint32_t isfr = PORTA_ISFR;
161 PORTA_ISFR = isfr;
162 if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
163 if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
164 if ((isfr & CORE_PIN24_BITMASK) && intFunc[24]) intFunc[24]();
165 if ((isfr & CORE_PIN33_BITMASK) && intFunc[33]) intFunc[33]();
166}
167
168void portb_isr(void)
169{
170 uint32_t isfr = PORTB_ISFR;
171 PORTB_ISFR = isfr;
172 if ((isfr & CORE_PIN0_BITMASK) && intFunc[0]) intFunc[0]();
173 if ((isfr & CORE_PIN1_BITMASK) && intFunc[1]) intFunc[1]();
174 if ((isfr & CORE_PIN16_BITMASK) && intFunc[16]) intFunc[16]();
175 if ((isfr & CORE_PIN17_BITMASK) && intFunc[17]) intFunc[17]();
176 if ((isfr & CORE_PIN18_BITMASK) && intFunc[18]) intFunc[18]();
177 if ((isfr & CORE_PIN19_BITMASK) && intFunc[19]) intFunc[19]();
178 if ((isfr & CORE_PIN25_BITMASK) && intFunc[25]) intFunc[25]();
179 if ((isfr & CORE_PIN32_BITMASK) && intFunc[32]) intFunc[32]();
180}
181
182void portc_isr(void)
183{
184 // TODO: these are inefficent. Use CLZ somehow....
185 uint32_t isfr = PORTC_ISFR;
186 PORTC_ISFR = isfr;
187 if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
188 if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
189 if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
190 if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
191 if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
192 if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
193 if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
194 if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
195 if ((isfr & CORE_PIN27_BITMASK) && intFunc[27]) intFunc[27]();
196 if ((isfr & CORE_PIN28_BITMASK) && intFunc[28]) intFunc[28]();
197 if ((isfr & CORE_PIN29_BITMASK) && intFunc[29]) intFunc[29]();
198 if ((isfr & CORE_PIN30_BITMASK) && intFunc[30]) intFunc[30]();
199}
200
201void portd_isr(void)
202{
203 uint32_t isfr = PORTD_ISFR;
204 PORTD_ISFR = isfr;
205 if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
206 if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
207 if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
208 if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
209 if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
210 if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
211 if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
212 if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
213}
214
215void porte_isr(void)
216{
217 uint32_t isfr = PORTE_ISFR;
218 PORTE_ISFR = isfr;
219 if ((isfr & CORE_PIN26_BITMASK) && intFunc[26]) intFunc[26]();
220 if ((isfr & CORE_PIN31_BITMASK) && intFunc[31]) intFunc[31]();
221}
222
223
224
225
226unsigned long rtc_get(void)
227{
228 return RTC_TSR;
229}
230
231void rtc_set(unsigned long t)
232{
233 RTC_SR = 0;
234 RTC_TPR = 0;
235 RTC_TSR = t;
236 RTC_SR = RTC_SR_TCE;
237}
238
239
240// adjust is the amount of crystal error to compensate, 1 = 0.1192 ppm
241// For example, adjust = -100 is slows the clock by 11.92 ppm
242//
243void rtc_compensate(int adjust)
244{
245 uint32_t comp, interval, tcr;
246
247 // This simple approach tries to maximize the interval.
248 // Perhaps minimizing TCR would be better, so the
249 // compensation is distributed more evenly across
250 // many seconds, rather than saving it all up and then
251 // altering one second up to +/- 0.38%
252 if (adjust >= 0) {
253 comp = adjust;
254 interval = 256;
255 while (1) {
256 tcr = comp * interval;
257 if (tcr < 128*256) break;
258 if (--interval == 1) break;
259 }
260 tcr = tcr >> 8;
261 } else {
262 comp = -adjust;
263 interval = 256;
264 while (1) {
265 tcr = comp * interval;
266 if (tcr < 129*256) break;
267 if (--interval == 1) break;
268 }
269 tcr = tcr >> 8;
270 tcr = 256 - tcr;
271 }
272 RTC_TCR = ((interval - 1) << 8) | tcr;
273}
274
275#if 0
276// TODO: build system should define this
277// so RTC is automatically initialized to approx correct time
278// at least when the program begins running right after upload
279#ifndef TIME_T
280#define TIME_T 1350160272
281#endif
282
283void init_rtc(void)
284{
285 serial_print("init_rtc\n");
286 //SIM_SCGC6 |= SIM_SCGC6_RTC;
287
288 // enable the RTC crystal oscillator, for approx 12pf crystal
289 if (!(RTC_CR & RTC_CR_OSCE)) {
290 serial_print("start RTC oscillator\n");
291 RTC_SR = 0;
292 RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
293 }
294 // should wait for crystal to stabilize.....
295
296 serial_print("SR=");
297 serial_phex32(RTC_SR);
298 serial_print("\n");
299 serial_print("CR=");
300 serial_phex32(RTC_CR);
301 serial_print("\n");
302 serial_print("TSR=");
303 serial_phex32(RTC_TSR);
304 serial_print("\n");
305 serial_print("TCR=");
306 serial_phex32(RTC_TCR);
307 serial_print("\n");
308
309 if (RTC_SR & RTC_SR_TIF) {
310 // enable the RTC
311 RTC_SR = 0;
312 RTC_TPR = 0;
313 RTC_TSR = TIME_T;
314 RTC_SR = RTC_SR_TCE;
315 }
316}
317#endif
318
319extern void usb_init(void);
320
321
322// create a default PWM at the same 488.28 Hz as Arduino Uno
323#if F_BUS == 48000000
324#define DEFAULT_FTM_MOD (49152 - 1)
325#define DEFAULT_FTM_PRESCALE 1
326#else
327#define DEFAULT_FTM_MOD (49152 - 1)
328#define DEFAULT_FTM_PRESCALE 0
329#endif
330
331//void init_pins(void)
332void _init_Teensyduino_internal_(void)
333{
334 init_pin_interrupts();
335
336 //SIM_SCGC6 |= SIM_SCGC6_FTM0; // TODO: use bitband for atomic read-mod-write
337 //SIM_SCGC6 |= SIM_SCGC6_FTM1;
338 FTM0_CNT = 0;
339 FTM0_MOD = DEFAULT_FTM_MOD;
340 FTM0_C0SC = 0x28; // MSnB:MSnA = 10, ELSnB:ELSnA = 10
341 FTM0_C1SC = 0x28;
342 FTM0_C2SC = 0x28;
343 FTM0_C3SC = 0x28;
344 FTM0_C4SC = 0x28;
345 FTM0_C5SC = 0x28;
346 FTM0_C6SC = 0x28;
347 FTM0_C7SC = 0x28;
348 FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
349 FTM1_CNT = 0;
350 FTM1_MOD = DEFAULT_FTM_MOD;
351 FTM1_C0SC = 0x28;
352 FTM1_C1SC = 0x28;
353 FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
354#if defined(__MK20DX256__)
355 FTM2_CNT = 0;
356 FTM2_MOD = DEFAULT_FTM_MOD;
357 FTM2_C0SC = 0x28;
358 FTM2_C1SC = 0x28;
359 FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
360#endif
361
5b1ee79c 362 //analog_init();
35f00b6c 363 //delay(100); // TODO: this is not necessary, right?
364 delay(4);
365 usb_init();
366}
367
5b1ee79c 368#if 0
35f00b6c 369
370static uint8_t analog_write_res = 8;
371
372// SOPT4 is SIM select clocks?
373// FTM is clocked by the bus clock, either 24 or 48 MHz
374// input capture can be FTM1_CH0, CMP0 or CMP1 or USB start of frame
375// 24 MHz with reload 49152 to match Arduino's speed = 488.28125 Hz
376
377void analogWrite(uint8_t pin, int val)
378{
379 uint32_t cval, max;
380
381#if defined(__MK20DX256__)
382 if (pin == A14) {
383 uint8_t res = analog_write_res;
384 if (res < 12) {
385 val <<= 12 - res;
386 } else if (res > 12) {
387 val >>= res - 12;
388 }
389 analogWriteDAC0(val);
390 return;
391 }
392#endif
393
394 max = 1 << analog_write_res;
395 if (val <= 0) {
396 digitalWrite(pin, LOW);
397 pinMode(pin, OUTPUT); // TODO: implement OUTPUT_LOW
398 return;
399 } else if (val >= max) {
400 digitalWrite(pin, HIGH);
401 pinMode(pin, OUTPUT); // TODO: implement OUTPUT_HIGH
402 return;
403 }
404
405 //serial_print("analogWrite\n");
406 //serial_print("val = ");
407 //serial_phex32(val);
408 //serial_print("\n");
409 //serial_print("analog_write_res = ");
410 //serial_phex(analog_write_res);
411 //serial_print("\n");
412 if (pin == 3 || pin == 4) {
413 cval = ((uint32_t)val * (uint32_t)(FTM1_MOD + 1)) >> analog_write_res;
414#if defined(__MK20DX256__)
415 } else if (pin == 25 || pin == 32) {
416 cval = ((uint32_t)val * (uint32_t)(FTM2_MOD + 1)) >> analog_write_res;
417#endif
418 } else {
419 cval = ((uint32_t)val * (uint32_t)(FTM0_MOD + 1)) >> analog_write_res;
420 }
421 //serial_print("cval = ");
422 //serial_phex32(cval);
423 //serial_print("\n");
424 switch (pin) {
425 case 3: // PTA12, FTM1_CH0
426 FTM1_C0V = cval;
427 CORE_PIN3_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
428 break;
429 case 4: // PTA13, FTM1_CH1
430 FTM1_C1V = cval;
431 CORE_PIN4_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
432 break;
433 case 5: // PTD7, FTM0_CH7
434 FTM0_C7V = cval;
435 CORE_PIN5_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
436 break;
437 case 6: // PTD4, FTM0_CH4
438 FTM0_C4V = cval;
439 CORE_PIN6_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
440 break;
441 case 9: // PTC3, FTM0_CH2
442 FTM0_C2V = cval;
443 CORE_PIN9_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
444 break;
445 case 10: // PTC4, FTM0_CH3
446 FTM0_C3V = cval;
447 CORE_PIN10_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
448 break;
449 case 20: // PTD5, FTM0_CH5
450 FTM0_C5V = cval;
451 CORE_PIN20_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
452 break;
453 case 21: // PTD6, FTM0_CH6
454 FTM0_C6V = cval;
455 CORE_PIN21_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
456 break;
457 case 22: // PTC1, FTM0_CH0
458 FTM0_C0V = cval;
459 CORE_PIN22_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
460 break;
461 case 23: // PTC2, FTM0_CH1
462 FTM0_C1V = cval;
463 CORE_PIN23_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
464 break;
465#if defined(__MK20DX256__)
466 case 32: // PTB18, FTM2_CH0
467 FTM2_C0V = cval;
468 CORE_PIN32_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
469 break;
470 case 25: // PTB19, FTM1_CH1
471 FTM2_C1V = cval;
472 CORE_PIN25_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
473 break;
474#endif
475 default:
476 digitalWrite(pin, (val > 127) ? HIGH : LOW);
477 pinMode(pin, OUTPUT);
478 }
479}
480
481void analogWriteRes(uint32_t bits)
482{
483 if (bits < 1) {
484 bits = 1;
485 } else if (bits > 16) {
486 bits = 16;
487 }
488 analog_write_res = bits;
489}
490
491void analogWriteFrequency(uint8_t pin, uint32_t frequency)
492{
493 uint32_t minfreq, prescale, mod;
494
495 //serial_print("analogWriteFrequency: pin = ");
496 //serial_phex(pin);
497 //serial_print(", freq = ");
498 //serial_phex32(frequency);
499 //serial_print("\n");
500 for (prescale = 0; prescale < 7; prescale++) {
501 minfreq = (F_BUS >> 16) >> prescale;
502 if (frequency > minfreq) break;
503 }
504 //serial_print("F_BUS = ");
505 //serial_phex32(F_BUS >> prescale);
506 //serial_print("\n");
507 //serial_print("prescale = ");
508 //serial_phex(prescale);
509 //serial_print("\n");
510 //mod = ((F_BUS >> prescale) / frequency) - 1;
511 mod = (((F_BUS >> prescale) + (frequency >> 1)) / frequency) - 1;
512 if (mod > 65535) mod = 65535;
513 //serial_print("mod = ");
514 //serial_phex32(mod);
515 //serial_print("\n");
516 if (pin == 3 || pin == 4) {
517 FTM1_SC = 0;
518 FTM1_CNT = 0;
519 FTM1_MOD = mod;
520 FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
521 } else if (pin == 5 || pin == 6 || pin == 9 || pin == 10 ||
522 (pin >= 20 && pin <= 23)) {
523 FTM0_SC = 0;
524 FTM0_CNT = 0;
525 FTM0_MOD = mod;
526 FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
527 }
528}
529
5b1ee79c 530#endif
35f00b6c 531
532
533// TODO: startup code needs to initialize all pins to GPIO mode, input by default
534
535void digitalWrite(uint8_t pin, uint8_t val)
536{
537 if (pin >= CORE_NUM_DIGITAL) return;
538 if (*portModeRegister(pin)) {
539 if (val) {
540 *portSetRegister(pin) = 1;
541 } else {
542 *portClearRegister(pin) = 1;
543 }
544 } else {
545 volatile uint32_t *config = portConfigRegister(pin);
546 if (val) {
547 // TODO use bitband for atomic read-mod-write
548 *config |= (PORT_PCR_PE | PORT_PCR_PS);
549 //*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
550 } else {
551 // TODO use bitband for atomic read-mod-write
552 *config &= ~(PORT_PCR_PE);
553 //*config = PORT_PCR_MUX(1);
554 }
555 }
556
557}
558
559uint8_t digitalRead(uint8_t pin)
560{
561 if (pin >= CORE_NUM_DIGITAL) return 0;
562 return *portInputRegister(pin);
563}
564
565
566
567void pinMode(uint8_t pin, uint8_t mode)
568{
569 volatile uint32_t *config;
570
571 if (pin >= CORE_NUM_DIGITAL) return;
572 config = portConfigRegister(pin);
573
574 if (mode == OUTPUT) {
575 *portModeRegister(pin) = 1;
576 *config = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
577 } else {
578 *portModeRegister(pin) = 0;
579 if (mode == INPUT) {
580 *config = PORT_PCR_MUX(1);
581 } else {
582 *config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS; // pullup
583 }
584 }
585}
586
587
588void _shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t value)
589{
590 if (bitOrder == LSBFIRST) {
591 shiftOut_lsbFirst(dataPin, clockPin, value);
592 } else {
593 shiftOut_msbFirst(dataPin, clockPin, value);
594 }
595}
596
597void shiftOut_lsbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
598{
599 uint8_t mask;
600 for (mask=0x01; mask; mask <<= 1) {
601 digitalWrite(dataPin, value & mask);
602 digitalWrite(clockPin, HIGH);
603 digitalWrite(clockPin, LOW);
604 }
605}
606
607void shiftOut_msbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
608{
609 uint8_t mask;
610 for (mask=0x80; mask; mask >>= 1) {
611 digitalWrite(dataPin, value & mask);
612 digitalWrite(clockPin, HIGH);
613 digitalWrite(clockPin, LOW);
614 }
615}
616
617uint8_t _shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder)
618{
619 if (bitOrder == LSBFIRST) {
620 return shiftIn_lsbFirst(dataPin, clockPin);
621 } else {
622 return shiftIn_msbFirst(dataPin, clockPin);
623 }
624}
625
626uint8_t shiftIn_lsbFirst(uint8_t dataPin, uint8_t clockPin)
627{
628 uint8_t mask, value=0;
629 for (mask=0x01; mask; mask <<= 1) {
630 digitalWrite(clockPin, HIGH);
631 if (digitalRead(dataPin)) value |= mask;
632 digitalWrite(clockPin, LOW);
633 }
634 return value;
635}
636
637uint8_t shiftIn_msbFirst(uint8_t dataPin, uint8_t clockPin)
638{
639 uint8_t mask, value=0;
640 for (mask=0x80; mask; mask >>= 1) {
641 digitalWrite(clockPin, HIGH);
642 if (digitalRead(dataPin)) value |= mask;
643 digitalWrite(clockPin, LOW);
644 }
645 return value;
646}
647
648
649
650// the systick interrupt is supposed to increment this at 1 kHz rate
651volatile uint32_t systick_millis_count = 0;
652
653//uint32_t systick_current, systick_count, systick_istatus; // testing only
654
655uint32_t micros(void)
656{
657 uint32_t count, current, istatus;
658
659 __disable_irq();
660 current = SYST_CVR;
661 count = systick_millis_count;
662 istatus = SCB_ICSR; // bit 26 indicates if systick exception pending
663 __enable_irq();
664 //systick_current = current;
665 //systick_count = count;
666 //systick_istatus = istatus & SCB_ICSR_PENDSTSET ? 1 : 0;
667 if ((istatus & SCB_ICSR_PENDSTSET) && current > 50) count++;
668 current = ((F_CPU / 1000) - 1) - current;
669 return count * 1000 + current / (F_CPU / 1000000);
670}
671
672void delay(uint32_t ms)
673{
674 uint32_t start = micros();
675
676 if (ms > 0) {
677 while (1) {
678 if ((micros() - start) >= 1000) {
679 ms--;
680 if (ms == 0) return;
681 start += 1000;
682 }
683 yield();
684 }
685 }
686}
687
688#if F_CPU == 96000000
689#define PULSEIN_LOOPS_PER_USEC 14
690#elif F_CPU == 48000000
691#define PULSEIN_LOOPS_PER_USEC 7
692#elif F_CPU == 24000000
693#define PULSEIN_LOOPS_PER_USEC 4
694#endif
695
696
697uint32_t pulseIn_high(volatile uint8_t *reg, uint32_t timeout)
698{
699 uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
700 uint32_t usec_start, usec_stop;
701
702 // wait for any previous pulse to end
703 while (*reg) {
704 if (--timeout_count == 0) return 0;
705 }
706 // wait for the pulse to start
707 while (!*reg) {
708 if (--timeout_count == 0) return 0;
709 }
710 usec_start = micros();
711 // wait for the pulse to stop
712 while (*reg) {
713 if (--timeout_count == 0) return 0;
714 }
715 usec_stop = micros();
716 return usec_stop - usec_start;
717}
718
719uint32_t pulseIn_low(volatile uint8_t *reg, uint32_t timeout)
720{
721 uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
722 uint32_t usec_start, usec_stop;
723
724 // wait for any previous pulse to end
725 while (!*reg) {
726 if (--timeout_count == 0) return 0;
727 }
728 // wait for the pulse to start
729 while (*reg) {
730 if (--timeout_count == 0) return 0;
731 }
732 usec_start = micros();
733 // wait for the pulse to stop
734 while (!*reg) {
735 if (--timeout_count == 0) return 0;
736 }
737 usec_stop = micros();
738 return usec_stop - usec_start;
739}
740
741// TODO: an inline version should handle the common case where state is const
742uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
743{
744 if (pin >= CORE_NUM_DIGITAL) return 0;
745 if (state) return pulseIn_high(portInputRegister(pin), timeout);
746 return pulseIn_low(portInputRegister(pin), timeout);;
747}
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775